forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture14.tex
223 lines (165 loc) · 6.55 KB
/
lecture14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
\section{Lecture 14: \underline{Matter}}
two types of matter
point matter
\underline{field matter}
\underline{point matter}
massive point particle
more of a phenomenological importance
\underline{field matter}
electromagnetic field
more fundamental from the GR point of view
both classical matter types
\subsection{Point matter}
Our postulates (P1) and (P2) already constrain the possible particle worldlines.
But what is their precise law of motion, possibly in the presence of ``forces'',
\begin{enumerate}
\item[(a)] \underline{without external forces}
\[
S_{\text{massive}}[\gamma] := m \int d\lambda \sqrt{ g_{\gamma(\lambda)}( v_{\gamma,\gamma(\lambda)} , v_{\gamma,\gamma(\lambda) } ) }
\]
\underline{with}:
\[
g_{\gamma(\lambda)}(T_{\gamma(\lambda)}, v_{\gamma, \gamma(\lambda) } ) > 0
\]
dynamical law Euler-Lagrange equation
\underline{similarly}
\[
S_{\text{massless}}[\gamma,\mu] = \int d\lambda \mu g(v_{\gamma, \gamma(\lambda)} , v_{\gamma,\gamma(\lambda)} )
\]
\[
\begin{aligned}
\delta_{\mu} \quad \quad \, & g(v_{\gamma,\gamma(\lambda)}, v_{\gamma,\gamma(\lambda) } ) = 0 \\
\delta_{\gamma} \quad \quad \, & \text{e.o.m.}
\end{aligned}
\]
Reason for describing equations of motion by actions is that composite systems have an action that is the sum of the actions of the parts of that system, possibly including ``\underline{interaction terms.}''
\underline{Example}. \[
S[\gamma] + S[\delta] + S_{\text{int}}[\gamma,\delta]
\]
\item[(b)] \underline{presence of external forces} \\
or rather presence of \underline{fields} to which a particle ``\underline{couples}''
\underline{Example}
\[
S[\gamma;A] = \int d\lambda m \sqrt{ g_{\gamma(\lambda)}(v_{\gamma, \gamma(\lambda)}, v_{\gamma,\gamma(\lambda)} ) } + qA(v_{\gamma,\gamma(\lambda)})
\]
where $A$ is a \textbf{covector field} on $M$. $A$ fixed
(e.g. the electromagnetic potential)
\end{enumerate}
Consider Euler-Lagrange eqns. $L_{\text{int}} = q A_{(x)} \dot{\gamma}^m_{(x)}$
\[
m (\nabla_{v_{\gamma}} v_{\gamma})_a + \underbrace{ \dot{ \left( \frac{ \partial L_{\text{int}} }{ \partial \dot{\gamma}^m_{(x)} } \right) }- \frac{ \partial L_{\text{int}} }{ \partial \gamma^m_{(x)} } }_{*} = 0 \Longrightarrow \boxed{ m (\nabla_{v_{\gamma} } v_{\gamma})^a = \underbrace{ -q F^a_{ \, \, m } \dot{\gamma}^m }_{\text{Lorentz force on a charged particle in an electromagnetic field } } }
\]
\[
\frac{ \partial L}{ \partial \dot{\gamma}^a} = qA_{(x)a}, \quad \quad \, \dot{ \left( \frac{ \partial L}{ \partial \dot{\gamma}^m} \right) } = q \cdot \frac{ \partial }{ \partial x^m} (A_{(x)m} ) \cdot \dot{\gamma}^m_{(x)}
\]
\[
\frac{ \partial L}{ \partial \gamma^a} = q \cdot \frac{ \partial }{ \partial x^a} (A_{(x)m} ) \dot{\gamma}^m
\]
\[
\begin{aligned}
* & = q\left( \frac{ \partial A_a}{ \partial x^m} - \frac{ \partial A_m}{ \partial x^a} \right) \dot{\gamma}^m_{(x)}
& = q \cdot F_{(x)am} \dot{\gamma}^m_{(x)}
\end{aligned}
\]
$F \leftarrow $ Faraday
\[
S[\gamma] = \int(m\sqrt{g(v_{\gamma},v_{\gamma} ) } + q A(v_{\gamma}) ) d\lambda
\]
\subsection{Field matter}
\begin{definition}
Classical (non-quantum) field matter is any tensor field on spacetime where equations of motion derive from an action.
\end{definition}
\underline{Example}:
\[
S_{\text{Maxwell}}[A] = \frac{1}{4}\int_M d^4x \sqrt{-g}F_{ab}F_{cd}g^{ac}g^{bd}
\]
$A$ $(0,1)$-tensor field \\
$=$ thought cloud: for \underline{simplicity} one chart covers all of $M$ \\
$-$ for $\sqrt{-g}$ $(+---)$ \\
$F_{ab} := 2\partial_{[a}A_{b]} = 2(\nabla_{[a} A)_{b]}$
\underline{Euler-Lagrange equations for fields}
\[
0 = \frac{ \partial \mathcal{L}}{ \partial A_m} - \frac{ \partial }{ \partial x^s} \left( \frac{ \partial \mathcal{L}}{ \partial \partial _s A_m } \right) + \frac{ \partial }{ \partial x^s} \frac{ \partial }{ \partial x^t} \frac{ \partial^2 \mathcal{L}}{ \partial \partial_t \partial_s A_m }
\]
\underline{Example} \dots
\[
(\nabla_{\frac{ \partial }{ \partial x^m} }F)^{ma} = j^a
\]
\textbf{in}homogeneous Maxwell
thought bubble $j=qv_{\gamma}$
\[
\partial_{[a}F_{b]} - ()
\]
homogeneous Maxwell
Other example well-liked by textbooks
\[
S_{\text{Klein-Gordon}}[\phi] := \int_M d^4x \sqrt{-g}[g^{ab}(\partial_a \phi) (\partial_b \phi ) - m^2\phi^2]
\]
$\phi$ $(0,0)$-tensor field
\subsection{Energy-momentum tensor of matter fields}
At some point, we want to write down an \underline{action} for the metric tensor field itself.
But then, this action $S_{\text{grav}}[g]$ will be added to any $S_{\text{matter}}[A,\phi,\dots]$ in order to describe the total system.
\[
S_{\text{total}}[g,A] = S_{\text{grav}}[g] + S_{\text{Maxwell}}[A,g]
\]
\[
\begin{aligned}
& \delta A & : \Longrightarrow \text{ Maxwell's equations } \\
& \delta g_{ab} & : \boxed{ \frac{1}{ 16 \pi G } G^{ab} } + (-2T^{ab} ) = 0
\end{aligned}
\]
$G$ Newton's constant
\[
G^{ab} = 8 \pi G_N T^{ab}
\]
\begin{definition}
$ S_{\text{matter}}[\Phi,g] $ is a matter action, the \textbf{so-called energy-momentum tensor} is
\[
T^{ab} := \frac{-2}{ \sqrt{-g}} \left( \frac{ \partial \mathcal{L}_{\text{matter}} }{ \partial g_{ab}} - \partial_s \frac{ \partial \mathcal{L}_{\text{matter}} }{ \partial \partial_s g_{ab}} + \dots \right)
\]
\end{definition}
$-$ of $\frac{-2}{\sqrt{g}}$ is Schr\"{o}dinger minus (EY : 20150408 F.Schuller's joke? but wise)
choose all sign conventions s.t.
\[
T(\epsilon^0,\epsilon^0) >0
\]
\underline{Example}: For $S_{\text{Maxwell}}$:
\[
T_{ab} = F_{am} F_{bn}g^{mn} - \frac{1}{4} F_{mn} F^{mn} g_{ab}
\]
$T_{ab} \equiv T_{\text{Maxwell}ab}$
\[
T(e_0,e_0) = \underline{E}^2+\underline{B}^2
\]
\[
T(e_0,e_{\alpha}) = (E\times B)_{\alpha}
\]
\underline{Fact}: One often does not specify the fundamental action for some matter, but one is rather satisfied to assume certain properties / forms of
\[
T_{ab}
\]
\underline{Example} Cosmology: (homogeneous \& isotropic)
perfect fluid \\
of pressure $p$ and density $\rho$
modelled by
\[
T^{ab} = (\rho + p)u^a u^b - pg^{ab}
\]
radiative fluid
What is a fluid of photons:
observe: $\begin{aligned}
& T_{\text{Maxwell}}^{ \, \, ab} g_{ab} = 0 \\
& T_{\text{p.f.}}^{ \, \, ab} g_{ab} \overset{!}{=} 0 \\
& = (\rho + p)u^a u^b g_{ab} - p\underbrace{ g^{ab} g_{ab} }_{ 4}
\end{aligned}$
\[
\begin{aligned}
\leftrightarrow & \rho _ p 04p = 0 \\
& \rho = 3p
\end{aligned}
\]
$p=\frac{1}{3}\rho$
Reconvene at 3 pm? (EY : 20150409 I sent a Facebook (FB) message to the International Winter School on Gravity and Light: there was no missing video; it continues on Lecture 15 immediately)
\subsection*{Tutorial 14: Relativistic Spacetime, Matter and Gravitation}
\exercisehead{2: Lorentz force law}
\questionhead{electromagnetic potential}