-
Notifications
You must be signed in to change notification settings - Fork 0
/
kitti2bag.py
391 lines (325 loc) · 16.3 KB
/
kitti2bag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#!env python
# -*- coding: utf-8 -*-
import sys
try:
import pykitti
except ImportError as e:
print('Could not load module \'pykitti\'. Please run `pip install pykitti`')
sys.exit(1)
import tf
import os
import cv2
import rospy
import rosbag
import progressbar
from tf2_msgs.msg import TFMessage
from datetime import datetime
from std_msgs.msg import Header
from sensor_msgs.msg import CameraInfo, Imu, PointField, NavSatFix
import sensor_msgs.point_cloud2 as pcl2
from geometry_msgs.msg import TransformStamped, TwistStamped, Transform
from cv_bridge import CvBridge
import numpy as np
import argparse
def save_imu_data(bag, kitti, imu_frame_id, topic):
print("Exporting IMU")
for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
q = tf.transformations.quaternion_from_euler(oxts.packet.roll, oxts.packet.pitch, oxts.packet.yaw)
imu = Imu()
imu.header.frame_id = imu_frame_id
imu.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
imu.orientation.x = q[0]
imu.orientation.y = q[1]
imu.orientation.z = q[2]
imu.orientation.w = q[3]
imu.linear_acceleration.x = oxts.packet.af
imu.linear_acceleration.y = oxts.packet.al
imu.linear_acceleration.z = oxts.packet.au
imu.angular_velocity.x = oxts.packet.wf
imu.angular_velocity.y = oxts.packet.wl
imu.angular_velocity.z = oxts.packet.wu
bag.write(topic, imu, t=imu.header.stamp)
def save_dynamic_tf(bag, kitti, kitti_type, initial_time):
print("Exporting time dependent transformations")
if kitti_type.find("raw") != -1:
for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
tf_oxts_msg = TFMessage()
tf_oxts_transform = TransformStamped()
tf_oxts_transform.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
tf_oxts_transform.header.frame_id = 'world'
tf_oxts_transform.child_frame_id = 'base_link'
transform = (oxts.T_w_imu)
t = transform[0:3, 3]
q = tf.transformations.quaternion_from_matrix(transform)
oxts_tf = Transform()
oxts_tf.translation.x = t[0]
oxts_tf.translation.y = t[1]
oxts_tf.translation.z = t[2]
oxts_tf.rotation.x = q[0]
oxts_tf.rotation.y = q[1]
oxts_tf.rotation.z = q[2]
oxts_tf.rotation.w = q[3]
tf_oxts_transform.transform = oxts_tf
tf_oxts_msg.transforms.append(tf_oxts_transform)
bag.write('/tf', tf_oxts_msg, tf_oxts_msg.transforms[0].header.stamp)
elif kitti_type.find("odom") != -1:
timestamps = map(lambda x: initial_time + x.total_seconds(), kitti.timestamps)
for timestamp, tf_matrix in zip(timestamps, kitti.T_w_cam0):
tf_msg = TFMessage()
tf_stamped = TransformStamped()
tf_stamped.header.stamp = rospy.Time.from_sec(timestamp)
tf_stamped.header.frame_id = 'world'
tf_stamped.child_frame_id = 'camera_left'
t = tf_matrix[0:3, 3]
q = tf.transformations.quaternion_from_matrix(tf_matrix)
transform = Transform()
transform.translation.x = t[0]
transform.translation.y = t[1]
transform.translation.z = t[2]
transform.rotation.x = q[0]
transform.rotation.y = q[1]
transform.rotation.z = q[2]
transform.rotation.w = q[3]
tf_stamped.transform = transform
tf_msg.transforms.append(tf_stamped)
bag.write('/tf', tf_msg, tf_msg.transforms[0].header.stamp)
def save_camera_data(bag, kitti_type, kitti, util, bridge, camera, camera_frame_id, topic, initial_time):
print("Exporting camera {}".format(camera))
if kitti_type.find("raw") != -1:
camera_pad = '{0:02d}'.format(camera)
image_dir = os.path.join(kitti.data_path, 'image_{}'.format(camera_pad))
image_path = os.path.join(image_dir, 'data')
image_filenames = sorted(os.listdir(image_path))
with open(os.path.join(image_dir, 'timestamps.txt')) as f:
image_datetimes = map(lambda x: datetime.strptime(x[:-4], '%Y-%m-%d %H:%M:%S.%f'), f.readlines())
calib = CameraInfo()
calib.header.frame_id = camera_frame_id
calib.width, calib.height = tuple(util['S_rect_{}'.format(camera_pad)].tolist())
calib.distortion_model = 'plumb_bob'
calib.K = util['K_{}'.format(camera_pad)]
calib.R = util['R_rect_{}'.format(camera_pad)]
calib.D = util['D_{}'.format(camera_pad)]
calib.P = util['P_rect_{}'.format(camera_pad)]
elif kitti_type.find("odom") != -1:
camera_pad = '{0:01d}'.format(camera)
image_path = os.path.join(kitti.sequence_path, 'image_{}'.format(camera_pad))
image_filenames = sorted(os.listdir(image_path))
image_datetimes = map(lambda x: initial_time + x.total_seconds(), kitti.timestamps)
calib = CameraInfo()
calib.header.frame_id = camera_frame_id
calib.P = util['P{}'.format(camera_pad)]
iterable = zip(image_datetimes, image_filenames)
bar = progressbar.ProgressBar()
for dt, filename in bar(iterable):
image_filename = os.path.join(image_path, filename)
cv_image = cv2.imread(image_filename)
calib.height, calib.width = cv_image.shape[:2]
if camera in (0, 1):
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
encoding = "mono8" if camera in (0, 1) else "bgr8"
image_message = bridge.cv2_to_imgmsg(cv_image, encoding=encoding)
image_message.header.frame_id = camera_frame_id
if kitti_type.find("raw") != -1:
image_message.header.stamp = rospy.Time.from_sec(float(datetime.strftime(dt, "%s.%f")))
topic_ext = "/image_raw"
elif kitti_type.find("odom") != -1:
image_message.header.stamp = rospy.Time.from_sec(dt)
topic_ext = "/image_rect"
calib.header.stamp = image_message.header.stamp
bag.write(topic + topic_ext, image_message, t = image_message.header.stamp)
bag.write(topic + '/camera_info', calib, t = calib.header.stamp)
def save_velo_data(bag, kitti, velo_frame_id, topic):
print("Exporting velodyne data")
velo_path = os.path.join(kitti.data_path, 'velodyne_points')
velo_data_dir = os.path.join(velo_path, 'data')
velo_filenames = sorted(os.listdir(velo_data_dir))
with open(os.path.join(velo_path, 'timestamps.txt')) as f:
lines = f.readlines()
velo_datetimes = []
for line in lines:
if len(line) == 1:
continue
dt = datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f')
velo_datetimes.append(dt)
iterable = zip(velo_datetimes, velo_filenames)
bar = progressbar.ProgressBar()
for dt, filename in bar(iterable):
if dt is None:
continue
velo_filename = os.path.join(velo_data_dir, filename)
# read binary data
scan = (np.fromfile(velo_filename, dtype=np.float32)).reshape(-1, 4)
# create header
header = Header()
header.frame_id = velo_frame_id
header.stamp = rospy.Time.from_sec(float(datetime.strftime(dt, "%s.%f")))
# fill pcl msg
fields = [PointField('x', 0, PointField.FLOAT32, 1),
PointField('y', 4, PointField.FLOAT32, 1),
PointField('z', 8, PointField.FLOAT32, 1),
PointField('i', 12, PointField.FLOAT32, 1)]
pcl_msg = pcl2.create_cloud(header, fields, scan)
bag.write(topic + '/pointcloud', pcl_msg, t=pcl_msg.header.stamp)
def get_static_transform(from_frame_id, to_frame_id, transform):
t = transform[0:3, 3]
q = tf.transformations.quaternion_from_matrix(transform)
tf_msg = TransformStamped()
tf_msg.header.frame_id = from_frame_id
tf_msg.child_frame_id = to_frame_id
tf_msg.transform.translation.x = float(t[0])
tf_msg.transform.translation.y = float(t[1])
tf_msg.transform.translation.z = float(t[2])
tf_msg.transform.rotation.x = float(q[0])
tf_msg.transform.rotation.y = float(q[1])
tf_msg.transform.rotation.z = float(q[2])
tf_msg.transform.rotation.w = float(q[3])
return tf_msg
def inv(transform):
"Invert rigid body transformation matrix"
R = transform[0:3, 0:3]
t = transform[0:3, 3]
t_inv = -1 * R.T.dot(t)
transform_inv = np.eye(4)
transform_inv[0:3, 0:3] = R.T
transform_inv[0:3, 3] = t_inv
return transform_inv
def save_static_transforms(bag, transforms, timestamps):
print("Exporting static transformations")
tfm = TFMessage()
for transform in transforms:
t = get_static_transform(from_frame_id=transform[0], to_frame_id=transform[1], transform=transform[2])
tfm.transforms.append(t)
for timestamp in timestamps:
time = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
for i in range(len(tfm.transforms)):
tfm.transforms[i].header.stamp = time
bag.write('/tf_static', tfm, t=time)
def save_gps_fix_data(bag, kitti, gps_frame_id, topic):
for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
navsatfix_msg = NavSatFix()
navsatfix_msg.header.frame_id = gps_frame_id
navsatfix_msg.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
navsatfix_msg.latitude = oxts.packet.lat
navsatfix_msg.longitude = oxts.packet.lon
navsatfix_msg.altitude = oxts.packet.alt
navsatfix_msg.status.service = 1
bag.write(topic, navsatfix_msg, t=navsatfix_msg.header.stamp)
def save_gps_vel_data(bag, kitti, gps_frame_id, topic):
for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):
twist_msg = TwistStamped()
twist_msg.header.frame_id = gps_frame_id
twist_msg.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))
twist_msg.twist.linear.x = oxts.packet.vf
twist_msg.twist.linear.y = oxts.packet.vl
twist_msg.twist.linear.z = oxts.packet.vu
twist_msg.twist.angular.x = oxts.packet.wf
twist_msg.twist.angular.y = oxts.packet.wl
twist_msg.twist.angular.z = oxts.packet.wu
bag.write(topic, twist_msg, t=twist_msg.header.stamp)
def run_kitti2bag():
parser = argparse.ArgumentParser(description = "Convert KITTI dataset to ROS bag file the easy way!")
# Accepted argument values
kitti_types = ["raw_synced", "odom_color", "odom_gray"]
odometry_sequences = []
for s in range(22):
odometry_sequences.append(str(s).zfill(2))
parser.add_argument("kitti_type", choices = kitti_types, help = "KITTI dataset type")
parser.add_argument("dir", nargs = "?", default = os.getcwd(), help = "base directory of the dataset, if no directory passed the deafult is current working directory")
parser.add_argument("-t", "--date", help = "date of the raw dataset (i.e. 2011_09_26), option is only for RAW datasets.")
parser.add_argument("-r", "--drive", help = "drive number of the raw dataset (i.e. 0001), option is only for RAW datasets.")
parser.add_argument("-s", "--sequence", choices = odometry_sequences,help = "sequence of the odometry dataset (between 00 - 21), option is only for ODOMETRY datasets.")
args = parser.parse_args()
bridge = CvBridge()
compression = rosbag.Compression.NONE
# compression = rosbag.Compression.BZ2
# compression = rosbag.Compression.LZ4
# CAMERAS
cameras = [
(0, 'camera_gray_left', '/kitti/camera_gray_left'),
(1, 'camera_gray_right', '/kitti/camera_gray_right'),
(2, 'camera_color_left', '/kitti/camera_color_left'),
(3, 'camera_color_right', '/kitti/camera_color_right')
]
if args.kitti_type.find("raw") != -1:
if args.date == None:
print("Date option is not given. It is mandatory for raw dataset.")
print("Usage for raw dataset: kitti2bag raw_synced [dir] -t <date> -r <drive>")
sys.exit(1)
elif args.drive == None:
print("Drive option is not given. It is mandatory for raw dataset.")
print("Usage for raw dataset: kitti2bag raw_synced [dir] -t <date> -r <drive>")
sys.exit(1)
bag = rosbag.Bag("kitti_{}_drive_{}_{}.bag".format(args.date, args.drive, args.kitti_type[4:]), 'w', compression=compression)
kitti = pykitti.raw(args.dir, args.date, args.drive)
if not os.path.exists(kitti.data_path):
print('Path {} does not exists. Exiting.'.format(kitti.data_path))
sys.exit(1)
if len(kitti.timestamps) == 0:
print('Dataset is empty? Exiting.')
sys.exit(1)
try:
# IMU
imu_frame_id = 'imu_link'
imu_topic = '/kitti/oxts/imu'
gps_fix_topic = '/kitti/oxts/gps/fix'
gps_vel_topic = '/kitti/oxts/gps/vel'
velo_frame_id = 'velo_link'
velo_topic = '/kitti/velo'
T_base_link_to_imu = np.eye(4, 4)
T_base_link_to_imu[0:3, 3] = [-2.71/2.0-0.05, 0.32, 0.93]
# tf_static
transforms = [
('base_link', imu_frame_id, T_base_link_to_imu),
(imu_frame_id, velo_frame_id, inv(kitti.calib.T_velo_imu)),
(imu_frame_id, cameras[0][1], inv(kitti.calib.T_cam0_imu)),
(imu_frame_id, cameras[1][1], inv(kitti.calib.T_cam1_imu)),
(imu_frame_id, cameras[2][1], inv(kitti.calib.T_cam2_imu)),
(imu_frame_id, cameras[3][1], inv(kitti.calib.T_cam3_imu))
]
util = pykitti.utils.read_calib_file(os.path.join(kitti.calib_path, 'calib_cam_to_cam.txt'))
# Export
save_static_transforms(bag, transforms, kitti.timestamps)
save_dynamic_tf(bag, kitti, args.kitti_type, initial_time=None)
save_imu_data(bag, kitti, imu_frame_id, imu_topic)
save_gps_fix_data(bag, kitti, imu_frame_id, gps_fix_topic)
save_gps_vel_data(bag, kitti, imu_frame_id, gps_vel_topic)
for camera in cameras:
save_camera_data(bag, args.kitti_type, kitti, util, bridge, camera=camera[0], camera_frame_id=camera[1], topic=camera[2], initial_time=None)
save_velo_data(bag, kitti, velo_frame_id, velo_topic)
finally:
print("## OVERVIEW ##")
print(bag)
bag.close()
elif args.kitti_type.find("odom") != -1:
if args.sequence == None:
print("Sequence option is not given. It is mandatory for odometry dataset.")
print("Usage for odometry dataset: kitti2bag {odom_color, odom_gray} [dir] -s <sequence>")
sys.exit(1)
bag = rosbag.Bag("kitti_data_odometry_{}_sequence_{}.bag".format(args.kitti_type[5:],args.sequence), 'w', compression=compression)
kitti = pykitti.odometry(args.dir, args.sequence)
if not os.path.exists(kitti.sequence_path):
print('Path {} does not exists. Exiting.'.format(kitti.sequence_path))
sys.exit(1)
kitti.load_calib()
kitti.load_timestamps()
if len(kitti.timestamps) == 0:
print('Dataset is empty? Exiting.')
sys.exit(1)
if args.sequence in odometry_sequences[:11]:
print("Odometry dataset sequence {} has ground truth information (poses).".format(args.sequence))
kitti.load_poses()
try:
util = pykitti.utils.read_calib_file(os.path.join(args.dir,'sequences',args.sequence, 'calib.txt'))
current_epoch = (datetime.utcnow() - datetime(1970, 1, 1)).total_seconds()
# Export
if args.kitti_type.find("gray") != -1:
used_cameras = cameras[:2]
elif args.kitti_type.find("color") != -1:
used_cameras = cameras[-2:]
save_dynamic_tf(bag, kitti, args.kitti_type, initial_time=current_epoch)
for camera in used_cameras:
save_camera_data(bag, args.kitti_type, kitti, util, bridge, camera=camera[0], camera_frame_id=camera[1], topic=camera[2], initial_time=current_epoch)
finally:
print("## OVERVIEW ##")
print(bag)
bag.close()