-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyTeamHeuristic.py
351 lines (309 loc) · 14.4 KB
/
myTeamHeuristic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# myTeam.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import math
from captureAgents import CaptureAgent
import random, time, util
from game import Directions
import game
#################
# Team creation #
#################
def createTeam(firstIndex, secondIndex, isRed,
first='AgentOffensive', second='AgentDefensive'):
"""
This function should return a list of two agents that will form the
team, initialized using firstIndex and secondIndex as their agent
index numbers. isRed is True if the red team is being created, and
will be False if the blue team is being created.
As a potentially helpful development aid, this function can take
additional string-valued keyword arguments ("first" and "second" are
such arguments in the case of this function), which will come from
the --redOpts and --blueOpts command-line arguments to capture.py.
For the nightly contest, however, your team will be created without
any extra arguments, so you should make sure that the default
behavior is what you want for the nightly contest.
"""
# The following line is an example only; feel free to change it.
return [eval(first)(firstIndex), eval(second)(secondIndex)]
##########
# Agents #
##########
class DummyAgent(CaptureAgent):
"""
A Dummy agent to serve as an example of the necessary agent structure.
You should look at baselineTeam.py for more details about how to
create an agent as this is the bare minimum.
"""
def registerInitialState(self, gameState):
"""
This method handles the initial setup of the
agent to populate useful fields (such as what team
we're on).
A distanceCalculator instance caches the maze distances
between each pair of positions, so your agents can use:
self.distancer.getDistance(p1, p2)
IMPORTANT: This method may run for at most 15 seconds.
"""
'''
Make sure you do not delete the following line. If you would like to
use Manhattan distances instead of maze distances in order to save
on initialization time, please take a look at
CaptureAgent.registerInitialState in captureAgents.py.
'''
CaptureAgent.registerInitialState(self, gameState)
'''
Your initialization code goes here, if you need any.
'''
self.boundaries = self.mapBoundaries(gameState)
self.isRed = self.red
self.capsulesNum = len(self.getCapsules(gameState))
mapWidth = gameState.data.layout.width
self.middleLine = int(mapWidth / 2) - 1 if self.isRed else int(mapWidth / 2)
self.defendedFoodNumber = len(self.getFoodYouAreDefending(gameState).asList())
def chooseAction(self, gameState):
"""
Picks among actions randomly.
"""
actions = gameState.getLegalActions(self.index)
'''
You should change this in your own agent.
'''
return random.choice(actions)
def mapBoundaries(self, gameState):
mapWidth = gameState.data.layout.width
middleWidth = int(mapWidth / 2) - 1 if self.red else int(mapWidth / 2)
mapHeight = gameState.data.layout.height
walls = gameState.getWalls()
boundaries = []
for height in range(mapHeight):
if not walls[middleWidth][height]:
boundaries.append((middleWidth, height))
return boundaries
class AgentOffensive(DummyAgent):
carriedFoods = 0
def chooseAction(self, gameState):
self.goal = None
agentPosition = gameState.getAgentState(self.index).getPosition()
if self.capsulesNum > 0:
if len(self.getCapsules(gameState)) >= self.capsulesNum:
self.goal = self.getCapsules(gameState)[0]
else:
if self.carriedFoods < 5:
foodList = self.getFood(gameState).asList()
self.goal = min(foodList, key=lambda pos: self.getMazeDistance(agentPosition, pos))
else:
self.goal = min(self.boundaries, key=lambda pos: self.getMazeDistance(agentPosition, pos))
if agentPosition in self.boundaries:
self.capsulesNum -= 1
else:
if self.carriedFoods == 3 or len(self.getFood(gameState).asList()) <= 2:
self.goal = min(self.boundaries, key=lambda pos: self.getMazeDistance(agentPosition, pos))
else:
foodList = self.getFood(gameState).asList()
self.goal = min(foodList, key=lambda pos: self.getMazeDistance(agentPosition, pos))
opponents = DummyAgent.getOpponents(self, gameState)
problem = offensiveSearchProblem(gameState, opponents, self.middleLine, self.isRed, self.goal, self.index)
actions = self.aStarSearch(problem)
if actions == []:
actions = gameState.getLegalActions(self.index)
return random.choice(actions)
else:
action = actions[0]
dx, dy = game.Actions.directionToVector(action)
x, y = gameState.getAgentState(self.index).getPosition()
new_x, new_y = int(x + dx), int(y + dy)
if (new_x, new_y) == self.goal:
self.goal = None
if self.getFood(gameState)[new_x][new_y]:
self.carriedFoods += 1
elif (new_x, new_y) in self.boundaries:
self.carriedFoods = 0
return actions[0]
#aStarSearch copied from baseline agent code
def aStarSearch(self, problem):
"""Search the node that has the lowest combined cost and heuristic first."""
from util import PriorityQueue
myPQ = util.PriorityQueue()
startState = problem.getStartState()
# print(f"start states {startState}")
startNode = (startState, '', 0, [])
heuristic = problem._opponentDistance
myPQ.push(startNode, heuristic(startState))
visited = set()
best_g = dict()
while not myPQ.isEmpty():
node = myPQ.pop()
state, action, cost, path = node
if (not state in visited) or cost < best_g.get(str(state)):
visited.add(state)
best_g[str(state)] = cost
if problem.isGoalState(state):
path = path + [(state, action)]
actions = [action[1] for action in path]
del actions[0]
return actions
for succ in problem.getSuccessors(state):
succState, succAction, succCost = succ
newNode = (succState, succAction, cost + succCost, path + [(node, action)])
myPQ.push(newNode, heuristic(succState) + cost + succCost)
return []
class AgentDefensive(DummyAgent):
goUp = False
def chooseAction(self, gameState):
agentPosition = gameState.getAgentState(self.index).getPosition()
closestOpponent = self.isOpponentsOnMySide(gameState, agentPosition)
foodList = self.getFoodYouAreDefending(gameState).asList()
# Chase your opponent.
if closestOpponent is not None:
problem = defensiveSearchProblem(gameState, self.middleLine, self.isRed, closestOpponent, self.index)
actions = self.aStarSearch(problem)
return actions[0]
elif len(foodList) < self.defendedFoodNumber // 2:
if agentPosition in foodList:
foodList.remove(agentPosition)
# food = max(foodList, key=lambda pos: self.getMazeDistance(agentPosition, pos))
food = random.choice(foodList)
problem = defensiveSearchProblem(gameState, self.middleLine, self.isRed, food, self.index)
actions = self.aStarSearch(problem)
return actions[0]
# Patrol at the border
else:
middleIndex = len(self.boundaries) // 2
if middleIndex > 3:
startIndex = middleIndex - 3
endIndex = middleIndex + 3
else:
startIndex = 0
endIndex = -1
if self.goUp:
if agentPosition == self.boundaries[startIndex]:
self.goUp = False
patrolPosition = self.boundaries[endIndex]
else:
patrolPosition = self.boundaries[startIndex]
else:
if agentPosition == self.boundaries[endIndex]:
self.goUp = True
patrolPosition = self.boundaries[startIndex]
else:
patrolPosition = self.boundaries[endIndex]
# patrolPosition = random.choice(available_boundaries)
problem = defensiveSearchProblem(gameState, self.middleLine, self.isRed, patrolPosition, self.index)
actions = self.aStarSearch(problem)
return actions[0]
def isOpponentsOnMySide(self, gameState, agentPosition):
opponents = DummyAgent.getOpponents(self, gameState)
closestOpponent = None
closestOpponentDistance = 99999
for opponent in opponents:
opponentPosition = gameState.getAgentPosition(opponent)
# opponent observable
if opponentPosition is not None:
if (self.isRed and opponentPosition[0] <= self.middleLine) or (
not self.isRed and opponentPosition[0] >= self.middleLine):
agentToOpponentDistance = self.getMazeDistance(agentPosition, opponentPosition)
if agentToOpponentDistance < closestOpponentDistance:
closestOpponent = opponentPosition
closestOpponentDistance = agentToOpponentDistance
return closestOpponent
# aStarSearch copied from baseline agent code
def aStarSearch(self, problem):
"""Search the node that has the lowest combined cost and heuristic first."""
from util import PriorityQueue
myPQ = util.PriorityQueue()
startState = problem.getStartState()
# print(f"start states {startState}")
startNode = (startState, '', 0, [])
heuristic = problem._manhattanDistance
myPQ.push(startNode, heuristic(startState))
visited = set()
best_g = dict()
while not myPQ.isEmpty():
node = myPQ.pop()
state, action, cost, path = node
if (not state in visited) or cost < best_g.get(str(state)):
visited.add(state)
best_g[str(state)] = cost
if problem.isGoalState(state):
path = path + [(state, action)]
actions = [action[1] for action in path]
del actions[0]
return actions
for succ in problem.getSuccessors(state):
succState, succAction, succCost = succ
newNode = (succState, succAction, cost + succCost, path + [(node, action)])
myPQ.push(newNode, heuristic(succState) + cost + succCost)
return []
#implemented problem based on basline problem
class offensiveSearchProblem:
def __init__(self, gameState, opponents, middleLine, isRed, goal, agentIndex=0):
x, y = gameState.getAgentState(agentIndex).getPosition()
self.agentCurrentPosition = int(x), int(y)
self.gameState = gameState
self.goal = goal
self.middleLine = middleLine
self.isRed = isRed
self.walls = gameState.getWalls()
self.opponents = opponents
def getStartState(self):
return self.agentCurrentPosition
def isGoalState(self, state):
return state == self.goal
def getSuccessors(self, state):
successors = []
for action in [game.Directions.NORTH, game.Directions.SOUTH, game.Directions.EAST, game.Directions.WEST]:
x, y = state
dx, dy = game.Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextState = (nextx, nexty)
successors.append((nextState, action, 1))
return successors
def _opponentDistance(self, current):
opponentDistance = 0
for opponent in self.opponents:
opponentPosition = self.gameState.getAgentPosition(opponent)
if opponentPosition is not None:
if (self.isRed and opponentPosition[0] > self.middleLine) or (
not self.isRed and opponentPosition[0] < self.middleLine):
distance = util.manhattanDistance(current, opponentPosition)
if opponentDistance < distance < 2:
opponentDistance = 9999
return opponentDistance + util.manhattanDistance(current, self.goal)
#implemented problem based on basline problem
class defensiveSearchProblem:
def __init__(self, gameState, middleLine, isRed, goal, agentIndex=0):
x, y = gameState.getAgentState(agentIndex).getPosition()
self.agentCurrentPosition = int(x), int(y)
self.middleLine = middleLine
self.isRed = isRed
self.goal = goal
self.walls = gameState.getWalls()
def getStartState(self):
return self.agentCurrentPosition
def isGoalState(self, state):
return state == self.goal
def getSuccessors(self, state):
successors = []
for action in [game.Directions.NORTH, game.Directions.SOUTH, game.Directions.EAST, game.Directions.WEST]:
x, y = state
dx, dy = game.Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
if (self.isRed and nextx <= self.middleLine) or (
not self.isRed and nextx >= self.middleLine):
nextState = (nextx, nexty)
successors.append((nextState, action, 1))
return successors
def _manhattanDistance(self, current):
return util.manhattanDistance(current, self.goal)