-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
270 lines (221 loc) · 9.77 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import os.path
import numpy as np
import h5py
import torch
import os
import pandas as pd
from PIL import Image
from torchvision import transforms
import math
DATASET_REGISTRY = {}
def build_dataset(name, *args, **kwargs):
return DATASET_REGISTRY[name](*args, **kwargs)
def register_dataset(name):
def register_dataset_fn(fn):
if name in DATASET_REGISTRY:
raise ValueError(
"Cannot register duplicate H5dataset ({})".format(name))
DATASET_REGISTRY[name] = fn
return fn
return register_dataset_fn
@register_dataset("bsd400")
def load_bsd400(data, batch_size=100, num_workers=0):
data = os.path.join(data, "bsd400")
train_dataset = H5Dataset(filename=os.path.join(data, "train.h5"))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, num_workers=1, shuffle=True)
valid_dataset = H5Dataset(filename=os.path.join(data, "valid.h5"))
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=1, num_workers=1, shuffle=False)
return train_loader, valid_loader, None
def get_transform(training, rotation_aug, resize_aug, image_size):
def rotatedRectWithMaxArea(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle (maximal area) within the rotated rectangle.
"""
if w <= 0 or h <= 0:
return 0,0
width_is_longer = w >= h
side_long, side_short = (w,h) if width_is_longer else (h,w)
# since the solutions for angle, -angle and 180-angle are all the same,
# if suffices to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5*side_short
wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a*cos_a - sin_a*sin_a
wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a
return wr,hr
def randomrotate(x, angles):
angle = angles[0] + (angles[1]-angles[0]) * np.random.random()
xrot = x.rotate(angle, Image.NEAREST, expand = False, fillcolor= 0)
w, h = x.size
wr, hr = rotatedRectWithMaxArea(w, h, math.radians(angle))
return transforms.CenterCrop((hr, wr))(xrot)
return xrot
def randomresize(x, resize_min, resize_max):
resize_factor = resize_min + (resize_max - resize_min)*np.random.random()
w, h = x.size
return transforms.functional.resize(x,
(int(w*resize_factor), int(h*resize_factor)),
Image.BILINEAR)
transform = []
transform.append(transforms.RandomHorizontalFlip()
) if training else None
transform.append(transforms.RandomVerticalFlip()
) if training else None
if resize_aug:
transform.append(lambda x: randomresize(x, 0.75, 0.82)) if training else transform.append(lambda x: randomresize(x, 0.785, 0.785))
if rotation_aug:
transform.append(lambda x: randomrotate(x, angles=(-45, 45))) if training else transform.append(lambda x: randomrotate(x, angles=(28, 28)))
transform.append(transforms.RandomCrop(
image_size)) if training else None
transform.append(transforms.ToTensor())
return transforms.Compose(transform)
def load_ptceo2_v2(
data,
contrast='white',
batch_size=100,
image_size=400,
num_workers=2,
repeat_train=1,
test_batch_size=5,
rotation_aug = True,
resize_aug = True,
generalization_exp = None,
allowed_gen_values = None):
root_dir = data
contrast = sorted(contrast.split('-'))
contrast = '_'.join(contrast)
if generalization_exp is not None:
assert(generalization_exp in ['structure', 'defect'])
if allowed_gen_values is not None:
allowed_gen_values = sorted(allowed_gen_values.split('-'))
train_dataset = ParticleDataset(
os.path.join(
root_dir,
f'train_{contrast}.csv'),
root_dir,
get_transform(
training=True, rotation_aug=rotation_aug, resize_aug=resize_aug, image_size=image_size),
generalization_exp = generalization_exp,
allowed_gen_values = allowed_gen_values)
train_dataset = torch.utils.data.ConcatDataset(
[train_dataset] * repeat_train)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True)
valid_dataset = ParticleDataset(
os.path.join(
root_dir,
f'valid_{contrast}.csv'),
root_dir,
get_transform(
training=False, rotation_aug=rotation_aug, resize_aug=resize_aug, image_size=image_size),
generalization_exp = generalization_exp,
allowed_gen_values = allowed_gen_values)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=test_batch_size, num_workers=num_workers, shuffle=False)
test_dataset = ParticleDataset(
os.path.join(
root_dir,
f'test_{contrast}.csv'),
root_dir,
get_transform(
training=False, rotation_aug=rotation_aug, resize_aug=resize_aug, image_size=image_size),
generalization_exp = generalization_exp,
allowed_gen_values = allowed_gen_values)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, num_workers=1, shuffle=False)
return train_loader, valid_loader, test_loader
@register_dataset("ptceo2")
def load_regular_dataloaders(
data,
contrast='white',
batch_size=100,
image_size=400,
num_workers=2,
repeat_train=1,
test_batch_size=5,
rotation_aug = True,
resize_aug = True,
generalization_exp = None,
allowed_gen_values = None):
return load_ptceo2_v2(data = data, contrast = contrast, batch_size = batch_size,
image_size = image_size, num_workers = num_workers, repeat_train = repeat_train,
test_batch_size = test_batch_size, rotation_aug = rotation_aug, resize_aug = resize_aug)
@register_dataset("ptceo2-structure")
def load_regular_dataloaders(
data,
contrast='white',
batch_size=100,
image_size=400,
num_workers=2,
repeat_train=1,
test_batch_size=5,
rotation_aug = True,
resize_aug = True,
generalization_exp = 'structure',
allowed_gen_values = None):
return load_ptceo2_v2(data = data, contrast = contrast, batch_size = batch_size,
image_size = image_size, num_workers = num_workers, repeat_train = repeat_train,
test_batch_size = test_batch_size, rotation_aug = rotation_aug, resize_aug = resize_aug,
generalization_exp = generalization_exp, allowed_gen_values = allowed_gen_values)
@register_dataset("ptceo2-defect")
def load_regular_dataloaders(
data,
contrast='white',
batch_size=100,
image_size=400,
num_workers=2,
repeat_train=1,
test_batch_size=5,
rotation_aug = True,
resize_aug = True,
generalization_exp = 'defect',
allowed_gen_values = None):
return load_ptceo2_v2(data = data, contrast = contrast, batch_size = batch_size,
image_size = image_size, num_workers = num_workers, repeat_train = repeat_train,
test_batch_size = test_batch_size, rotation_aug = rotation_aug, resize_aug = resize_aug,
generalization_exp = generalization_exp, allowed_gen_values = allowed_gen_values)
class ParticleDataset(torch.utils.data.Dataset):
def __init__(self, csv_file, root_dir, transform=None, generalization_exp=None, allowed_gen_values=None):
super().__init__()
self.metadata = pd.read_csv(csv_file, sep=",", header=0)
if generalization_exp is not None:
self.metadata[['structure', 'defect']] = self.metadata['particle'].str.split('-',expand=True)
if generalization_exp == 'structure':
self.metadata = self.metadata.loc[self.metadata['defect'].isin(['D0', 'D1'])]
elif generalization_exp == 'defect':
self.metadata = self.metadata.loc[self.metadata['structure'].isin(['PtNp1'])]
self.metadata = self.metadata.loc[self.metadata[generalization_exp].isin(allowed_gen_values)]
print(self.metadata.groupby(['structure', 'defect']).size())
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.metadata)
def __getitem__(self, index):
path = os.path.join(self.root_dir, self.metadata.iloc[index, 0])
image = Image.open(path)
if self.transform is not None:
image = self.transform(image)
particle, thickness, tilt_x, tilt_y, defocus, contrast = self.metadata.iloc[index, [
1, 4, 5, 6, 10, 11]]
return dict(
image=image,
name=f"{thickness}A-{tilt_x:02d}x-{tilt_y:02d}y-{defocus}nm",
thickness=thickness,
tilt_x=tilt_x,
tilt_y=tilt_y,
defocus=defocus,
contrast=contrast,
particle=particle)