-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbase-model.py
75 lines (58 loc) · 2.02 KB
/
base-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
def conv3x3(ni, no, ks=3, s=2, p=1):
'''
Conv2D with stride 2: change image sz to (image sz / 2)
'''
return nn.Conv2d(ni, no, kernel_size=3, stride=s, padding=p)
def conv1x1(ni, no, ks=1, s=1, p=0):
'''
Conv2D: increase number of channels fromm ni to no
'''
return nn.Conv2d(ni, no, kernel_size=ks, stride=s, padding=p)
class ConvBlock(nn.Module):
'''
ConvBlock: BatchNorm -> ReLU -> Conv
'''
def __init__(self, ni, no):
super().__init__()
self.conv = conv3x3(ni, no)
self.bn = nn.BatchNorm2d(no)
def forward(self, x):
return self.bn(F.relu_(self.conv(x)))
class Lambda(nn.Module):
'''
Applies a function to the input
'''
def __init__(self, func):
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class Net(nn.Module):
'''
Create a neural network.
layers: # of Layers with number of channels
c: # of classes
'''
def __init__(self, layers, c):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=2)
self.layers = nn.ModuleList(
[ConvBlock(layers[i], layers[i+1]) for i in range(len(layers) - 1)])
self.flatten = Lambda(lambda x: x.view(x.size(0), -1))
self.linear = nn.Linear(layers[-1], c)
def forward(self, x):
x = self.conv1(x) # x: bs x 3 x sz x sz
for layer in self.layers: x = layer(x) # x: bs x channels x sz/2 x sz/2
x = F.adaptive_avg_pool2d(x, 1) # x: bs x channels x 1 x 1
x = self.flatten(x) # x: bs x channels
x = self.linear(x) # x: bs x c
return torch.sigmoid(x)
def get_model(args):
model = Net([16, 32, 64], 17)
model.to(args.device)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
return model, optimizer