-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
85 lines (63 loc) · 2.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import cv2
import numpy as np
import torch
from albumentations import Compose, Resize, Normalize
from albumentations.pytorch import ToTensor
from argparse import ArgumentParser
from pathlib import Path
from model import get_model_test
from utils import load_checkpoint_test
from dataset import mlb
def get_args():
parser = ArgumentParser(
description='Planet Amazon from Space Challenge: Predict')
parser.add_argument('--cpu', action='store_true', default=True)
parser.add_argument('--cp_file', type=str, default='cp_best.pt.tar')
parser.add_argument('--img_path', type=str, default='sample.jpg')
parser.add_argument('--drop_rate', type=float, default=0.0)
args = parser.parse_args()
return args
def load_model(args):
cwd = Path.cwd()
path = Path(cwd / 'checkpoint' / args.cp_file)
model = get_model_test(args)
load_checkpoint_test(model, path, args)
model.eval()
return model
def load_data(input, url=False):
SZ = 256
MEAN, STD = np.array([0.485, 0.456, 0.406]), np.array(
[0.229, 0.224, 0.225])
transform = {
'test': Compose([
Resize(height=SZ, width=SZ),
Normalize(mean=MEAN, std=STD),
ToTensor()
])
}
if url:
img = np.frombuffer(input, np.uint8) # read from bytes
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.imread(str(input)) # reads JPG image
img = transform['test'](image=img)['image'] # converts to pytorch tensor
return img.unsqueeze_(dim=0)
def predict(model, args):
data = load_data(args.img_path)
with torch.no_grad():
out = model(data.to(args.device)).detach().cpu().numpy()
prediction = out > 0.2
out = out[prediction]
label = list(map(lambda x: x.replace('_', ' '),
mlb.inverse_transform(prediction)[0]))
return list(zip(label, out))
def main():
args = get_args()
args.device = torch.device('cpu') if args.cpu else torch.device('cuda')
model = load_model(args)
return args, model
if __name__ == "__main__":
args, model = main()
results = predict(model, args)
print(results)