-
Notifications
You must be signed in to change notification settings - Fork 47
/
model.py
77 lines (64 loc) · 1.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
import torch
import torch.nn as nn
import torch.nn.functional as F
class CharCNN(nn.Module):
def __init__(self, args):
super(CharCNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(args.num_features, 256, kernel_size=7, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.conv2 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=7, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.conv3 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv5 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv6 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.fc1 = nn.Sequential(
nn.Linear(8704, 1024),
nn.ReLU(),
nn.Dropout(p=args.dropout)
)
self.fc2 = nn.Sequential(
nn.Linear(1024, 1024),
nn.ReLU(),
nn.Dropout(p=args.dropout)
)
self.fc3 = nn.Linear(1024, 4)
self.log_softmax = nn.LogSoftmax()
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
# collapse
x = x.view(x.size(0), -1)
# linear layer
x = self.fc1(x)
# linear layer
x = self.fc2(x)
# linear layer
x = self.fc3(x)
# output layer
x = self.log_softmax(x)
return x