-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoffcial_train.py
199 lines (169 loc) · 8.12 KB
/
offcial_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from sklearn.metrics import ndcg_score
from transformers import Trainer, TrainingArguments
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForSequenceClassification, FlaxLlamaForCausalLM
import pandas as pd
from torch.utils.data.dataset import random_split
import argparse
import json
from accelerate import Accelerator
import os
import torch.nn as nn
from NAID.dataset import TextDataset
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import transformers.models.qwen2
import torch
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
accelerator = Accelerator()
def NDCG_k(predictions, labels, k=20):
if len(predictions) < k:
return -1 # or handle as preferred
return ndcg_score([labels], [predictions], k=k)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = torch.tensor(predictions).squeeze()
labels = torch.tensor(labels).squeeze()
mse = nn.MSELoss()(predictions, labels).item()
mae = nn.L1Loss()(predictions, labels).item()
# Convert tensors to numpy arrays for NDCG computation
predictions = predictions.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
# Calculate NDCG
ndcg = NDCG_k(predictions, labels)
return {"mse": mse, "mae": mae, "ndcg": ndcg}
def save_args_to_json(args, file_path):
args_dict = vars(args)
with open(file_path, 'w') as f:
json.dump(args_dict, f, indent=4)
def main(args):
args.eff_gpus = int(torch.cuda.device_count())
args.eff_batch_size = args.eff_gpus * args.batch_size
if args.learning_rate is None: # only base_lr is specified
args.learning_rate = args.base_lr * args.eff_batch_size / 256
# Load your dataset
df = pd.read_csv(args.data_path)
df_test = pd.read_csv(args.test_data_path)
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint)
device_map = {'': torch.cuda.current_device()}
model = AutoModelForSequenceClassification.from_pretrained(
args.checkpoint,
num_labels=args.num_labels,
load_in_8bit=args.load_in_8bit,
device_map=device_map,
)
model.config.pad_token_id = model.config.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
model.loss_func = args.loss_func
if len(args.target_modules) > 0:
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=args.target_modules.split(','),
task_type=TaskType.SEQ_CLS,
inference_mode=False
)
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
else:
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
task_type=TaskType.SEQ_CLS,
inference_mode=False
)
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
total_dataset = TextDataset(df, tokenizer, args.max_length, args.prompt_style)
total_size = len(total_dataset)
train_size = int(0.9 * total_size)
val_size = total_size - train_size
train_dataset, val_dataset = random_split(total_dataset, [train_size, val_size])
test_dataset = TextDataset(df_test, tokenizer, args.max_length) # DO NOT USE FOR PARAMETER SEARCHING
# Prepare Accelerator
accelerator = Accelerator()
if accelerator.is_local_main_process:
default_tb_dir = datetime.now().strftime("%m-%d-%H-%M-%s")
if args.runs_dir is None:
args.runs_dir = os.path.join('official_runs', default_tb_dir)
os.makedirs(args.runs_dir, exist_ok=True)
json_file_path = os.path.join(args.runs_dir, 'args.json')
save_args_to_json(args, json_file_path)
# Define training arguments
training_args = TrainingArguments(
ddp_find_unused_parameters=False,
output_dir=args.runs_dir,
learning_rate=args.learning_rate,
num_train_epochs=args.total_epochs,
logging_dir=args.runs_dir,
logging_steps=10,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
weight_decay=args.weight_decay,
evaluation_strategy="epoch",
save_strategy="epoch",
warmup_ratio=args.warmup_ratio,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
# Train model
model, tokenizer = accelerator.prepare(model, tokenizer)
trainer.train()
if accelerator.is_local_main_process:
model_last_id = os.path.join(args.runs_dir, 'last')
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
model_last_id,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
score_state_dict = unwrapped_model.score.state_dict()
print(score_state_dict)
torch.save(score_state_dict, os.path.join(model_last_id, 'score.pt'))
def get_args():
parser = argparse.ArgumentParser(
description="Train a transformer model with LoRA adaptation on text classification tasks.")
# Most likely to be adjusted parameters
parser.add_argument('--checkpoint', type=str, default='llama3_weight', help='Model checkpoint path')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training and validation')
parser.add_argument('--data_path', type=str, default='NAID/NAID_test_extrainfo_arxiv_id.csv',
help='Path to the training dataset CSV file')
parser.add_argument('--test_data_path', type=str, default='NAID/NAID_train_extrainfo_arxiv_id.csv',
help='Path to the testing dataset CSV file')
parser.add_argument('--runs_dir', type=str, default=None,
help='Directory for storing TensorBoard logs and model checkpoints')
# Dataset and training configuration
parser.add_argument('--total_epochs', type=int, default=5, help='Total number of epochs to train')
parser.add_argument('--base_lr', type=float, default=5e-5, help='Base learning rate for the optimizer')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for the optimizer')
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay for the optimizer')
parser.add_argument('--max_length', type=int, default=1024, help='Maximum length of the tokenized input sequences')
parser.add_argument('--loss_func', type=str, default='mse', choices=['bce', 'mse', 'l1', 'smoothl1', 'focalmse'],
help='Loss function to use')
parser.add_argument('--num_labels', type=int, default=1, help='Number of labels for sequence classification')
parser.add_argument('--load_in_8bit', type=bool, default=True,
help='Whether to load the model in 8-bit for efficiency')
parser.add_argument('--device', type=str, default='cuda', help='Device to train the model on (cuda or cpu)')
parser.add_argument('--lora_r', type=int, default=16, help='Rank of LoRA layers')
parser.add_argument('--lora_alpha', type=int, default=32, help='Expansion factor for LoRA layers')
parser.add_argument('--lora_dropout', type=float, default=0.05, help='Dropout rate for LoRA layers')
parser.add_argument('--target_modules', type=str, default='q_proj,v_proj',
help='Comma-separated list of transformer modules to apply LoRA')
parser.add_argument('--warmup_ratio', type=float, default=0.1, help='Warmup ratio for learning rate scheduler')
parser.add_argument('--prompt_style', type=int, default=0) # Modified in NAID/dataset.py as needed
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
main(args)