From d588beaef1013ad5573c166ae8285a3fcc0ccb81 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=D0=A1=D0=BE=D1=84=D0=B8=D1=8F=20=D0=A5=D1=80=D0=B8=D1=81?=
=?UTF-8?q?=D0=B0=D0=BD=D0=BA=D0=BE=D0=B2=D0=B0?=
<132402521+sssoneta@users.noreply.github.com>
Date: Tue, 8 Apr 2025 21:24:09 +0300
Subject: [PATCH 1/3] dz10
---
project/wine_variety_classifier.ipynb | 5095 +++++++++++++++++++++++++
1 file changed, 5095 insertions(+)
create mode 100644 project/wine_variety_classifier.ipynb
diff --git a/project/wine_variety_classifier.ipynb b/project/wine_variety_classifier.ipynb
new file mode 100644
index 00000000..ca554989
--- /dev/null
+++ b/project/wine_variety_classifier.ipynb
@@ -0,0 +1,5095 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "az8fJ8aDd6Q_"
+ },
+ "source": [
+ "## Задача 10. Классификация на выбранном датасете."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Rw9IZG14fxlm",
+ "outputId": "28136302-0275-4d73-b4c4-75cdbb544173"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting opendatasets\n",
+ " Downloading opendatasets-0.1.22-py3-none-any.whl.metadata (9.2 kB)\n",
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from opendatasets) (4.66.6)\n",
+ "Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (from opendatasets) (1.6.17)\n",
+ "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from opendatasets) (8.1.7)\n",
+ "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (1.16.0)\n",
+ "Requirement already satisfied: certifi>=2023.7.22 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2024.8.30)\n",
+ "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.8.2)\n",
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.32.3)\n",
+ "Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (8.0.4)\n",
+ "Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.2.3)\n",
+ "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (6.2.0)\n",
+ "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle->opendatasets) (0.5.1)\n",
+ "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle->opendatasets) (1.3)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.4.0)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.10)\n",
+ "Downloading opendatasets-0.1.22-py3-none-any.whl (15 kB)\n",
+ "Installing collected packages: opendatasets\n",
+ "Successfully installed opendatasets-0.1.22\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install opendatasets"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "11XpX0ldba5F"
+ },
+ "source": [
+ "Импорт модулей"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "R30hzockb6RQ"
+ },
+ "outputs": [],
+ "source": [
+ "import opendatasets as od\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn.model_selection import train_test_split, GridSearchCV\n",
+ "from sklearn.metrics import classification_report, mean_squared_error, accuracy_score, confusion_matrix\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import plotly.express as px"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pSglBQCibe9N"
+ },
+ "source": [
+ "# Подготовка данных"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "w-D38cQ3WVOJ"
+ },
+ "source": [
+ "Возьмем датасет wine-reviews с kaggle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "v_Zx3Wp733_p"
+ },
+ "source": [
+ "В датасете содержится информация о винах. Информации по столбцам соответсвуют списку ниже.\n",
+ "\n",
+ "* Страна-производитель;\n",
+ "* описание;\n",
+ "* виноградник на территории винодельни, откуда собирают виноград;\n",
+ "* оценка вина; цена за бутылку;\n",
+ "* провинция или штат, из которого произведено вино;\n",
+ "* винодельческий район в провинции или штате;\n",
+ "* иногда в пределах винодельческого региона указываются более конкретные регионы;\n",
+ "* имя дегустатора;\n",
+ "* твитер аккаунт дегустатора;\n",
+ "* название;\n",
+ "* сорт винограда;\n",
+ "* винодельня."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "YcAp_Wjisbue",
+ "outputId": "12d94a8a-ddf6-41f1-da03-67fc0a8217b8"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Please provide your Kaggle credentials to download this dataset. Learn more: http://bit.ly/kaggle-creds\n",
+ "Your Kaggle username: Shcherbakov\n",
+ "Your Kaggle Key: ··········\n",
+ "Dataset URL: https://www.kaggle.com/datasets/zynicide/wine-reviews\n",
+ "Downloading wine-reviews.zip to ./wine-reviews\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 50.9M/50.9M [00:00<00:00, 86.9MB/s]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "od.download(\n",
+ " \"https://www.kaggle.com/datasets/zynicide/wine-reviews\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 823
+ },
+ "id": "4mIMtZR1fm4r",
+ "outputId": "c62d7552-68cf-4431-fafa-1e72599adfc0"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "wine_reviews"
+ },
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " country \n",
+ " description \n",
+ " designation \n",
+ " points \n",
+ " price \n",
+ " province \n",
+ " region_1 \n",
+ " region_2 \n",
+ " taster_name \n",
+ " taster_twitter_handle \n",
+ " title \n",
+ " variety \n",
+ " winery \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Italy \n",
+ " Aromas include tropical fruit, broom, brimston... \n",
+ " Vulkà Bianco \n",
+ " 87 \n",
+ " NaN \n",
+ " Sicily & Sardinia \n",
+ " Etna \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Nicosia 2013 Vulkà Bianco (Etna) \n",
+ " White Blend \n",
+ " Nicosia \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " Portugal \n",
+ " This is ripe and fruity, a wine that is smooth... \n",
+ " Avidagos \n",
+ " 87 \n",
+ " 15.0 \n",
+ " Douro \n",
+ " NaN \n",
+ " NaN \n",
+ " Roger Voss \n",
+ " @vossroger \n",
+ " Quinta dos Avidagos 2011 Avidagos Red (Douro) \n",
+ " Portuguese Red \n",
+ " Quinta dos Avidagos \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " US \n",
+ " Tart and snappy, the flavors of lime flesh and... \n",
+ " NaN \n",
+ " 87 \n",
+ " 14.0 \n",
+ " Oregon \n",
+ " Willamette Valley \n",
+ " Willamette Valley \n",
+ " Paul Gregutt \n",
+ " @paulgwine \n",
+ " Rainstorm 2013 Pinot Gris (Willamette Valley) \n",
+ " Pinot Gris \n",
+ " Rainstorm \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " US \n",
+ " Pineapple rind, lemon pith and orange blossom ... \n",
+ " Reserve Late Harvest \n",
+ " 87 \n",
+ " 13.0 \n",
+ " Michigan \n",
+ " Lake Michigan Shore \n",
+ " NaN \n",
+ " Alexander Peartree \n",
+ " NaN \n",
+ " St. Julian 2013 Reserve Late Harvest Riesling ... \n",
+ " Riesling \n",
+ " St. Julian \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " US \n",
+ " Much like the regular bottling from 2012, this... \n",
+ " Vintner's Reserve Wild Child Block \n",
+ " 87 \n",
+ " 65.0 \n",
+ " Oregon \n",
+ " Willamette Valley \n",
+ " Willamette Valley \n",
+ " Paul Gregutt \n",
+ " @paulgwine \n",
+ " Sweet Cheeks 2012 Vintner's Reserve Wild Child... \n",
+ " Pinot Noir \n",
+ " Sweet Cheeks \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 129966 \n",
+ " Germany \n",
+ " Notes of honeysuckle and cantaloupe sweeten th... \n",
+ " Brauneberger Juffer-Sonnenuhr Spätlese \n",
+ " 90 \n",
+ " 28.0 \n",
+ " Mosel \n",
+ " NaN \n",
+ " NaN \n",
+ " Anna Lee C. Iijima \n",
+ " NaN \n",
+ " Dr. H. Thanisch (Erben Müller-Burggraef) 2013 ... \n",
+ " Riesling \n",
+ " Dr. H. Thanisch (Erben Müller-Burggraef) \n",
+ " \n",
+ " \n",
+ " 129967 \n",
+ " US \n",
+ " Citation is given as much as a decade of bottl... \n",
+ " NaN \n",
+ " 90 \n",
+ " 75.0 \n",
+ " Oregon \n",
+ " Oregon \n",
+ " Oregon Other \n",
+ " Paul Gregutt \n",
+ " @paulgwine \n",
+ " Citation 2004 Pinot Noir (Oregon) \n",
+ " Pinot Noir \n",
+ " Citation \n",
+ " \n",
+ " \n",
+ " 129968 \n",
+ " France \n",
+ " Well-drained gravel soil gives this wine its c... \n",
+ " Kritt \n",
+ " 90 \n",
+ " 30.0 \n",
+ " Alsace \n",
+ " Alsace \n",
+ " NaN \n",
+ " Roger Voss \n",
+ " @vossroger \n",
+ " Domaine Gresser 2013 Kritt Gewurztraminer (Als... \n",
+ " Gewürztraminer \n",
+ " Domaine Gresser \n",
+ " \n",
+ " \n",
+ " 129969 \n",
+ " France \n",
+ " A dry style of Pinot Gris, this is crisp with ... \n",
+ " NaN \n",
+ " 90 \n",
+ " 32.0 \n",
+ " Alsace \n",
+ " Alsace \n",
+ " NaN \n",
+ " Roger Voss \n",
+ " @vossroger \n",
+ " Domaine Marcel Deiss 2012 Pinot Gris (Alsace) \n",
+ " Pinot Gris \n",
+ " Domaine Marcel Deiss \n",
+ " \n",
+ " \n",
+ " 129970 \n",
+ " France \n",
+ " Big, rich and off-dry, this is powered by inte... \n",
+ " Lieu-dit Harth Cuvée Caroline \n",
+ " 90 \n",
+ " 21.0 \n",
+ " Alsace \n",
+ " Alsace \n",
+ " NaN \n",
+ " Roger Voss \n",
+ " @vossroger \n",
+ " Domaine Schoffit 2012 Lieu-dit Harth Cuvée Car... \n",
+ " Gewürztraminer \n",
+ " Domaine Schoffit \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
129971 rows × 13 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " country description \\\n",
+ "0 Italy Aromas include tropical fruit, broom, brimston... \n",
+ "1 Portugal This is ripe and fruity, a wine that is smooth... \n",
+ "2 US Tart and snappy, the flavors of lime flesh and... \n",
+ "3 US Pineapple rind, lemon pith and orange blossom ... \n",
+ "4 US Much like the regular bottling from 2012, this... \n",
+ "... ... ... \n",
+ "129966 Germany Notes of honeysuckle and cantaloupe sweeten th... \n",
+ "129967 US Citation is given as much as a decade of bottl... \n",
+ "129968 France Well-drained gravel soil gives this wine its c... \n",
+ "129969 France A dry style of Pinot Gris, this is crisp with ... \n",
+ "129970 France Big, rich and off-dry, this is powered by inte... \n",
+ "\n",
+ " designation points price \\\n",
+ "0 Vulkà Bianco 87 NaN \n",
+ "1 Avidagos 87 15.0 \n",
+ "2 NaN 87 14.0 \n",
+ "3 Reserve Late Harvest 87 13.0 \n",
+ "4 Vintner's Reserve Wild Child Block 87 65.0 \n",
+ "... ... ... ... \n",
+ "129966 Brauneberger Juffer-Sonnenuhr Spätlese 90 28.0 \n",
+ "129967 NaN 90 75.0 \n",
+ "129968 Kritt 90 30.0 \n",
+ "129969 NaN 90 32.0 \n",
+ "129970 Lieu-dit Harth Cuvée Caroline 90 21.0 \n",
+ "\n",
+ " province region_1 region_2 \\\n",
+ "0 Sicily & Sardinia Etna NaN \n",
+ "1 Douro NaN NaN \n",
+ "2 Oregon Willamette Valley Willamette Valley \n",
+ "3 Michigan Lake Michigan Shore NaN \n",
+ "4 Oregon Willamette Valley Willamette Valley \n",
+ "... ... ... ... \n",
+ "129966 Mosel NaN NaN \n",
+ "129967 Oregon Oregon Oregon Other \n",
+ "129968 Alsace Alsace NaN \n",
+ "129969 Alsace Alsace NaN \n",
+ "129970 Alsace Alsace NaN \n",
+ "\n",
+ " taster_name taster_twitter_handle \\\n",
+ "0 Kerin O’Keefe @kerinokeefe \n",
+ "1 Roger Voss @vossroger \n",
+ "2 Paul Gregutt @paulgwine \n",
+ "3 Alexander Peartree NaN \n",
+ "4 Paul Gregutt @paulgwine \n",
+ "... ... ... \n",
+ "129966 Anna Lee C. Iijima NaN \n",
+ "129967 Paul Gregutt @paulgwine \n",
+ "129968 Roger Voss @vossroger \n",
+ "129969 Roger Voss @vossroger \n",
+ "129970 Roger Voss @vossroger \n",
+ "\n",
+ " title variety \\\n",
+ "0 Nicosia 2013 Vulkà Bianco (Etna) White Blend \n",
+ "1 Quinta dos Avidagos 2011 Avidagos Red (Douro) Portuguese Red \n",
+ "2 Rainstorm 2013 Pinot Gris (Willamette Valley) Pinot Gris \n",
+ "3 St. Julian 2013 Reserve Late Harvest Riesling ... Riesling \n",
+ "4 Sweet Cheeks 2012 Vintner's Reserve Wild Child... Pinot Noir \n",
+ "... ... ... \n",
+ "129966 Dr. H. Thanisch (Erben Müller-Burggraef) 2013 ... Riesling \n",
+ "129967 Citation 2004 Pinot Noir (Oregon) Pinot Noir \n",
+ "129968 Domaine Gresser 2013 Kritt Gewurztraminer (Als... Gewürztraminer \n",
+ "129969 Domaine Marcel Deiss 2012 Pinot Gris (Alsace) Pinot Gris \n",
+ "129970 Domaine Schoffit 2012 Lieu-dit Harth Cuvée Car... Gewürztraminer \n",
+ "\n",
+ " winery \n",
+ "0 Nicosia \n",
+ "1 Quinta dos Avidagos \n",
+ "2 Rainstorm \n",
+ "3 St. Julian \n",
+ "4 Sweet Cheeks \n",
+ "... ... \n",
+ "129966 Dr. H. Thanisch (Erben Müller-Burggraef) \n",
+ "129967 Citation \n",
+ "129968 Domaine Gresser \n",
+ "129969 Domaine Marcel Deiss \n",
+ "129970 Domaine Schoffit \n",
+ "\n",
+ "[129971 rows x 13 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_reviews = pd.read_csv(\"wine-reviews/winemag-data-130k-v2.csv\", index_col='Unnamed: 0')\n",
+ "wine_reviews"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "H9H8GdrDbrA7"
+ },
+ "source": [
+ "Так как датасет довольно большой выберем одну страну для рассмотрения."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "29H0yQYRmpt4",
+ "outputId": "854572c4-cceb-4d4c-df9b-d8d19d6a56d4"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " \n",
+ " \n",
+ " country \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Argentina \n",
+ " 3800 \n",
+ " \n",
+ " \n",
+ " Armenia \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " Australia \n",
+ " 2329 \n",
+ " \n",
+ " \n",
+ " Austria \n",
+ " 3345 \n",
+ " \n",
+ " \n",
+ " Bosnia and Herzegovina \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " Brazil \n",
+ " 52 \n",
+ " \n",
+ " \n",
+ " Bulgaria \n",
+ " 141 \n",
+ " \n",
+ " \n",
+ " Canada \n",
+ " 257 \n",
+ " \n",
+ " \n",
+ " Chile \n",
+ " 4472 \n",
+ " \n",
+ " \n",
+ " China \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " Croatia \n",
+ " 73 \n",
+ " \n",
+ " \n",
+ " Cyprus \n",
+ " 11 \n",
+ " \n",
+ " \n",
+ " Czech Republic \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " Egypt \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " England \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " France \n",
+ " 22093 \n",
+ " \n",
+ " \n",
+ " Georgia \n",
+ " 86 \n",
+ " \n",
+ " \n",
+ " Germany \n",
+ " 2165 \n",
+ " \n",
+ " \n",
+ " Greece \n",
+ " 466 \n",
+ " \n",
+ " \n",
+ " Hungary \n",
+ " 146 \n",
+ " \n",
+ " \n",
+ " India \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " Israel \n",
+ " 505 \n",
+ " \n",
+ " \n",
+ " Italy \n",
+ " 19540 \n",
+ " \n",
+ " \n",
+ " Lebanon \n",
+ " 35 \n",
+ " \n",
+ " \n",
+ " Luxembourg \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " Macedonia \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " Mexico \n",
+ " 70 \n",
+ " \n",
+ " \n",
+ " Moldova \n",
+ " 59 \n",
+ " \n",
+ " \n",
+ " Morocco \n",
+ " 28 \n",
+ " \n",
+ " \n",
+ " New Zealand \n",
+ " 1419 \n",
+ " \n",
+ " \n",
+ " Peru \n",
+ " 16 \n",
+ " \n",
+ " \n",
+ " Portugal \n",
+ " 5691 \n",
+ " \n",
+ " \n",
+ " Romania \n",
+ " 120 \n",
+ " \n",
+ " \n",
+ " Serbia \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " Slovakia \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " Slovenia \n",
+ " 87 \n",
+ " \n",
+ " \n",
+ " South Africa \n",
+ " 1401 \n",
+ " \n",
+ " \n",
+ " Spain \n",
+ " 6645 \n",
+ " \n",
+ " \n",
+ " Switzerland \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " Turkey \n",
+ " 90 \n",
+ " \n",
+ " \n",
+ " US \n",
+ " 54504 \n",
+ " \n",
+ " \n",
+ " Ukraine \n",
+ " 14 \n",
+ " \n",
+ " \n",
+ " Uruguay \n",
+ " 109 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ],
+ "text/plain": [
+ "country\n",
+ "Argentina 3800\n",
+ "Armenia 2\n",
+ "Australia 2329\n",
+ "Austria 3345\n",
+ "Bosnia and Herzegovina 2\n",
+ "Brazil 52\n",
+ "Bulgaria 141\n",
+ "Canada 257\n",
+ "Chile 4472\n",
+ "China 1\n",
+ "Croatia 73\n",
+ "Cyprus 11\n",
+ "Czech Republic 12\n",
+ "Egypt 1\n",
+ "England 74\n",
+ "France 22093\n",
+ "Georgia 86\n",
+ "Germany 2165\n",
+ "Greece 466\n",
+ "Hungary 146\n",
+ "India 9\n",
+ "Israel 505\n",
+ "Italy 19540\n",
+ "Lebanon 35\n",
+ "Luxembourg 6\n",
+ "Macedonia 12\n",
+ "Mexico 70\n",
+ "Moldova 59\n",
+ "Morocco 28\n",
+ "New Zealand 1419\n",
+ "Peru 16\n",
+ "Portugal 5691\n",
+ "Romania 120\n",
+ "Serbia 12\n",
+ "Slovakia 1\n",
+ "Slovenia 87\n",
+ "South Africa 1401\n",
+ "Spain 6645\n",
+ "Switzerland 7\n",
+ "Turkey 90\n",
+ "US 54504\n",
+ "Ukraine 14\n",
+ "Uruguay 109\n",
+ "Name: title, dtype: int64"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_reviews.groupby(\"country\")['title'].count()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "VHjuA5XTb5Wv"
+ },
+ "source": [
+ "Наибольшее количество информации содержится о винах Америки, Франции и Италии.\n",
+ "\n",
+ "Рассмотрим Италию."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "pAVugV0xnZWl"
+ },
+ "outputs": [],
+ "source": [
+ "wine_reviews = wine_reviews[wine_reviews['country'] == 'Italy']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Q79LaXnDICTn"
+ },
+ "source": [
+ "Добавим год разлива вина. Пропущенные значения заменим медианой для сорта."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HINLwR7PDTmO"
+ },
+ "outputs": [],
+ "source": [
+ "def unwrap_list(num_in_list):\n",
+ " try:\n",
+ " return num_in_list[0]\n",
+ " except:\n",
+ " return np.nan"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "dHdgOEhbIAWv",
+ "outputId": "2211aaf3-3fce-4353-c1bd-530665e85661"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ ":1: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " wine_reviews['year'] = wine_reviews['title'].transform(lambda x: unwrap_list(list(filter(lambda a: a.isdigit() and len(a) == 4, x.split())))).astype(float)\n",
+ ":2: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " wine_reviews['year'] = wine_reviews.groupby(['variety'])['year'].transform(lambda x: x.fillna(x.median()))\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "repr_error": "Out of range float values are not JSON compliant: nan",
+ "type": "dataframe",
+ "variable_name": "wine_reviews"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " country \n",
+ " description \n",
+ " designation \n",
+ " points \n",
+ " price \n",
+ " province \n",
+ " region_1 \n",
+ " region_2 \n",
+ " taster_name \n",
+ " taster_twitter_handle \n",
+ " title \n",
+ " variety \n",
+ " winery \n",
+ " year \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Italy \n",
+ " Aromas include tropical fruit, broom, brimston... \n",
+ " Vulkà Bianco \n",
+ " 87 \n",
+ " NaN \n",
+ " Sicily & Sardinia \n",
+ " Etna \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Nicosia 2013 Vulkà Bianco (Etna) \n",
+ " White Blend \n",
+ " Nicosia \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " Italy \n",
+ " Here's a bright, informal red that opens with ... \n",
+ " Belsito \n",
+ " 87 \n",
+ " 16.0 \n",
+ " Sicily & Sardinia \n",
+ " Vittoria \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Terre di Giurfo 2013 Belsito Frappato (Vittoria) \n",
+ " Frappato \n",
+ " Terre di Giurfo \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " Italy \n",
+ " This is dominated by oak and oak-driven aromas... \n",
+ " Rosso \n",
+ " 87 \n",
+ " NaN \n",
+ " Sicily & Sardinia \n",
+ " Etna \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Masseria Setteporte 2012 Rosso (Etna) \n",
+ " Nerello Mascalese \n",
+ " Masseria Setteporte \n",
+ " 2012.0 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " Italy \n",
+ " Delicate aromas recall white flower and citrus... \n",
+ " Ficiligno \n",
+ " 87 \n",
+ " 19.0 \n",
+ " Sicily & Sardinia \n",
+ " Sicilia \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Baglio di Pianetto 2007 Ficiligno White (Sicilia) \n",
+ " White Blend \n",
+ " Baglio di Pianetto \n",
+ " 2007.0 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " Italy \n",
+ " Aromas of prune, blackcurrant, toast and oak c... \n",
+ " Aynat \n",
+ " 87 \n",
+ " 35.0 \n",
+ " Sicily & Sardinia \n",
+ " Sicilia \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Canicattì 2009 Aynat Nero d'Avola (Sicilia) \n",
+ " Nero d'Avola \n",
+ " Canicattì \n",
+ " 2009.0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 129929 \n",
+ " Italy \n",
+ " This luminous sparkler has a sweet, fruit-forw... \n",
+ " NaN \n",
+ " 91 \n",
+ " 38.0 \n",
+ " Veneto \n",
+ " Prosecco Superiore di Cartizze \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " Col Vetoraz Spumanti NV Prosecco Superiore di... \n",
+ " Prosecco \n",
+ " Col Vetoraz Spumanti \n",
+ " 2007.0 \n",
+ " \n",
+ " \n",
+ " 129943 \n",
+ " Italy \n",
+ " A blend of Nero d'Avola and Syrah, this convey... \n",
+ " Adènzia \n",
+ " 90 \n",
+ " 29.0 \n",
+ " Sicily & Sardinia \n",
+ " Sicilia \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Baglio del Cristo di Campobello 2012 Adènzia R... \n",
+ " Red Blend \n",
+ " Baglio del Cristo di Campobello \n",
+ " 2012.0 \n",
+ " \n",
+ " \n",
+ " 129947 \n",
+ " Italy \n",
+ " A blend of 65% Cabernet Sauvignon, 30% Merlot ... \n",
+ " Symposio \n",
+ " 90 \n",
+ " 20.0 \n",
+ " Sicily & Sardinia \n",
+ " Terre Siciliane \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Feudo Principi di Butera 2012 Symposio Red (Te... \n",
+ " Red Blend \n",
+ " Feudo Principi di Butera \n",
+ " 2012.0 \n",
+ " \n",
+ " \n",
+ " 129961 \n",
+ " Italy \n",
+ " Intense aromas of wild cherry, baking spice, t... \n",
+ " NaN \n",
+ " 90 \n",
+ " 30.0 \n",
+ " Sicily & Sardinia \n",
+ " Sicilia \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " COS 2013 Frappato (Sicilia) \n",
+ " Frappato \n",
+ " COS \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 129962 \n",
+ " Italy \n",
+ " Blackberry, cassis, grilled herb and toasted a... \n",
+ " Sàgana Tenuta San Giacomo \n",
+ " 90 \n",
+ " 40.0 \n",
+ " Sicily & Sardinia \n",
+ " Sicilia \n",
+ " NaN \n",
+ " Kerin O’Keefe \n",
+ " @kerinokeefe \n",
+ " Cusumano 2012 Sàgana Tenuta San Giacomo Nero d... \n",
+ " Nero d'Avola \n",
+ " Cusumano \n",
+ " 2012.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
19540 rows × 14 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " country description \\\n",
+ "0 Italy Aromas include tropical fruit, broom, brimston... \n",
+ "6 Italy Here's a bright, informal red that opens with ... \n",
+ "13 Italy This is dominated by oak and oak-driven aromas... \n",
+ "22 Italy Delicate aromas recall white flower and citrus... \n",
+ "24 Italy Aromas of prune, blackcurrant, toast and oak c... \n",
+ "... ... ... \n",
+ "129929 Italy This luminous sparkler has a sweet, fruit-forw... \n",
+ "129943 Italy A blend of Nero d'Avola and Syrah, this convey... \n",
+ "129947 Italy A blend of 65% Cabernet Sauvignon, 30% Merlot ... \n",
+ "129961 Italy Intense aromas of wild cherry, baking spice, t... \n",
+ "129962 Italy Blackberry, cassis, grilled herb and toasted a... \n",
+ "\n",
+ " designation points price province \\\n",
+ "0 Vulkà Bianco 87 NaN Sicily & Sardinia \n",
+ "6 Belsito 87 16.0 Sicily & Sardinia \n",
+ "13 Rosso 87 NaN Sicily & Sardinia \n",
+ "22 Ficiligno 87 19.0 Sicily & Sardinia \n",
+ "24 Aynat 87 35.0 Sicily & Sardinia \n",
+ "... ... ... ... ... \n",
+ "129929 NaN 91 38.0 Veneto \n",
+ "129943 Adènzia 90 29.0 Sicily & Sardinia \n",
+ "129947 Symposio 90 20.0 Sicily & Sardinia \n",
+ "129961 NaN 90 30.0 Sicily & Sardinia \n",
+ "129962 Sàgana Tenuta San Giacomo 90 40.0 Sicily & Sardinia \n",
+ "\n",
+ " region_1 region_2 taster_name \\\n",
+ "0 Etna NaN Kerin O’Keefe \n",
+ "6 Vittoria NaN Kerin O’Keefe \n",
+ "13 Etna NaN Kerin O’Keefe \n",
+ "22 Sicilia NaN Kerin O’Keefe \n",
+ "24 Sicilia NaN Kerin O’Keefe \n",
+ "... ... ... ... \n",
+ "129929 Prosecco Superiore di Cartizze NaN NaN \n",
+ "129943 Sicilia NaN Kerin O’Keefe \n",
+ "129947 Terre Siciliane NaN Kerin O’Keefe \n",
+ "129961 Sicilia NaN Kerin O’Keefe \n",
+ "129962 Sicilia NaN Kerin O’Keefe \n",
+ "\n",
+ " taster_twitter_handle \\\n",
+ "0 @kerinokeefe \n",
+ "6 @kerinokeefe \n",
+ "13 @kerinokeefe \n",
+ "22 @kerinokeefe \n",
+ "24 @kerinokeefe \n",
+ "... ... \n",
+ "129929 NaN \n",
+ "129943 @kerinokeefe \n",
+ "129947 @kerinokeefe \n",
+ "129961 @kerinokeefe \n",
+ "129962 @kerinokeefe \n",
+ "\n",
+ " title variety \\\n",
+ "0 Nicosia 2013 Vulkà Bianco (Etna) White Blend \n",
+ "6 Terre di Giurfo 2013 Belsito Frappato (Vittoria) Frappato \n",
+ "13 Masseria Setteporte 2012 Rosso (Etna) Nerello Mascalese \n",
+ "22 Baglio di Pianetto 2007 Ficiligno White (Sicilia) White Blend \n",
+ "24 Canicattì 2009 Aynat Nero d'Avola (Sicilia) Nero d'Avola \n",
+ "... ... ... \n",
+ "129929 Col Vetoraz Spumanti NV Prosecco Superiore di... Prosecco \n",
+ "129943 Baglio del Cristo di Campobello 2012 Adènzia R... Red Blend \n",
+ "129947 Feudo Principi di Butera 2012 Symposio Red (Te... Red Blend \n",
+ "129961 COS 2013 Frappato (Sicilia) Frappato \n",
+ "129962 Cusumano 2012 Sàgana Tenuta San Giacomo Nero d... Nero d'Avola \n",
+ "\n",
+ " winery year \n",
+ "0 Nicosia 2013.0 \n",
+ "6 Terre di Giurfo 2013.0 \n",
+ "13 Masseria Setteporte 2012.0 \n",
+ "22 Baglio di Pianetto 2007.0 \n",
+ "24 Canicattì 2009.0 \n",
+ "... ... ... \n",
+ "129929 Col Vetoraz Spumanti 2007.0 \n",
+ "129943 Baglio del Cristo di Campobello 2012.0 \n",
+ "129947 Feudo Principi di Butera 2012.0 \n",
+ "129961 COS 2013.0 \n",
+ "129962 Cusumano 2012.0 \n",
+ "\n",
+ "[19540 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_reviews['year'] = wine_reviews['title'].transform(lambda x: unwrap_list(list(filter(lambda a: a.isdigit() and len(a) == 4, x.split())))).astype(float)\n",
+ "wine_reviews['year'] = wine_reviews.groupby(['variety'])['year'].transform(lambda x: x.fillna(x.median()))\n",
+ "wine_reviews"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "inCyvZZB94db"
+ },
+ "source": [
+ "Посмотрим есть ли в region_2 не NaN значения."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "dvvW7jf39Aon",
+ "outputId": "cc9d7c69-afaf-4de5-8351-c17ee065a085"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_reviews['region_2'].notnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MblBifJc-ANA"
+ },
+ "source": [
+ "Нет."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0wI9FO6aBBwD"
+ },
+ "source": [
+ "Посмотрим на количество вин, оцененных каждым дегустатором."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 272
+ },
+ "id": "zAO6YTbjA8bX",
+ "outputId": "a4b62fbd-cdf5-4506-e68e-e62be5b84b32"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " \n",
+ " \n",
+ " taster_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Kerin O’Keefe \n",
+ " 10776 \n",
+ " \n",
+ " \n",
+ " Roger Voss \n",
+ " 97 \n",
+ " \n",
+ " \n",
+ " Joe Czerwinski \n",
+ " 89 \n",
+ " \n",
+ " \n",
+ " Michael Schachner \n",
+ " 76 \n",
+ " \n",
+ " \n",
+ " Paul Gregutt \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ],
+ "text/plain": [
+ "taster_name\n",
+ "Kerin O’Keefe 10776\n",
+ "Roger Voss 97\n",
+ "Joe Czerwinski 89\n",
+ "Michael Schachner 76\n",
+ "Paul Gregutt 4\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_reviews['taster_name'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IELV46tjBhFB"
+ },
+ "source": [
+ "При таком распределении Kerin O’Keefe почти не будет влиять на обучение, а остальные признаки могут влиять слишком сильно или не попасть в тренировочную выборку. Уберем этот признак."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1BzsdrTWIIUT"
+ },
+ "source": [
+ "Будем пытаться предсказать сорт вина"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MAgAGDx33kRd"
+ },
+ "source": [
+ "Заметим, что некоторые сорта встречаются всего несколько раз, поэтому они могут, либо не попасть в тренировочную выборку, либо слишком сильно влиять на модель.\n",
+ "\n",
+ "Страна у всех вин одна. Убираем столбец country.\n",
+ "\n",
+ "Так как description яляется уникальным признаком, то оно не повлияет на обучение.\n",
+ "\n",
+ "Информации о винограднике на территории винодельни не содержательна т.к. винодельня может содержать несколько виноградников. Оба признака могут замедлить модель, т.к. они связаны, то оставим один. Если оставить информацию о винограднике вместо винодельни, то шанс переобучения выше. Убираем столбец designation.\n",
+ "\n",
+ "По аналогичной причине оставляем province и убираем region_1.\n",
+ "\n",
+ "В region_2 все значения NaN. Убираем.\n",
+ "\n",
+ "Хранить информацию о твитере дегустатора, очевидно, не нужно.\n",
+ "\n",
+ "Так как title яляется уникальным признаком, то оно не повлияет на обучение.\n",
+ "\n",
+ "\n",
+ "Удалим эти данные.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 429
+ },
+ "id": "Y22RJ1Je3gpX",
+ "outputId": "5793e461-fdfc-44ed-b5ff-8b74f7a1be56"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " \n",
+ " \n",
+ " variety \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Red Blend \n",
+ " 3624 \n",
+ " \n",
+ " \n",
+ " Nebbiolo \n",
+ " 2736 \n",
+ " \n",
+ " \n",
+ " Sangiovese \n",
+ " 2265 \n",
+ " \n",
+ " \n",
+ " White Blend \n",
+ " 779 \n",
+ " \n",
+ " \n",
+ " Sangiovese Grosso \n",
+ " 750 \n",
+ " \n",
+ " \n",
+ " Glera \n",
+ " 709 \n",
+ " \n",
+ " \n",
+ " Corvina, Rondinella, Molinara \n",
+ " 619 \n",
+ " \n",
+ " \n",
+ " Pinot Grigio \n",
+ " 605 \n",
+ " \n",
+ " \n",
+ " Barbera \n",
+ " 479 \n",
+ " \n",
+ " \n",
+ " Nero d'Avola \n",
+ " 361 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ],
+ "text/plain": [
+ "variety\n",
+ "Red Blend 3624\n",
+ "Nebbiolo 2736\n",
+ "Sangiovese 2265\n",
+ "White Blend 779\n",
+ "Sangiovese Grosso 750\n",
+ "Glera 709\n",
+ "Corvina, Rondinella, Molinara 619\n",
+ "Pinot Grigio 605\n",
+ "Barbera 479\n",
+ "Nero d'Avola 361\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "match_id_counts = wine_reviews['variety'].value_counts()\n",
+ "match_id_counts[:10]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4Jk_qQEG-XKY"
+ },
+ "source": [
+ "Оставим первые три сорта вина, т.к. между ними разница в количестве строк не так велика, как между 3 и 4 (нумеруя с 1 сверху)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 424
+ },
+ "id": "eykVrqCL3pXR",
+ "outputId": "92c22c11-0aa7-4440-a808-bbec5aa64d2c"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"data\",\n \"rows\": 8625,\n \"fields\": [\n {\n \"column\": \"points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 80,\n \"max\": 100,\n \"num_unique_values\": 21,\n \"samples\": [\n 87,\n 81,\n 84\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 42.73811041300064,\n \"min\": 6.0,\n \"max\": 800.0,\n \"num_unique_values\": 192,\n \"samples\": [\n 120.0,\n 320.0,\n 100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"province\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Northwestern Italy\",\n \"Central Italy\",\n \"Veneto\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winery\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1724,\n \"samples\": [\n \"Cordella\",\n \"Corte dei Papi\",\n \"Castello Banfi\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.170948183314536,\n \"min\": 1637.0,\n \"max\": 2016.0,\n \"num_unique_values\": 27,\n \"samples\": [\n 2012.0,\n 1997.0,\n 2005.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"variety\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Red Blend\",\n \"Sangiovese\",\n \"Nebbiolo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "data"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " points \n",
+ " price \n",
+ " province \n",
+ " winery \n",
+ " year \n",
+ " variety \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 87 \n",
+ " 17.0 \n",
+ " Sicily and Sardinia \n",
+ " Terre di Giurfo \n",
+ " 2011.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 86 \n",
+ " NaN \n",
+ " Sicily and Sardinia \n",
+ " Duca di Salaparuta \n",
+ " 2010.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 86 \n",
+ " NaN \n",
+ " Sicily and Sardinia \n",
+ " Viticultori Associati Canicatti \n",
+ " 2008.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ " 54 \n",
+ " 85 \n",
+ " NaN \n",
+ " Sicily and Sardinia \n",
+ " Corvo \n",
+ " 2010.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ " 61 \n",
+ " 86 \n",
+ " 17.0 \n",
+ " Central Italy \n",
+ " Podere dal Nespoli \n",
+ " 2015.0 \n",
+ " Sangiovese \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 129826 \n",
+ " 88 \n",
+ " 50.0 \n",
+ " Piedmont \n",
+ " Vinchio-Vaglio Serra \n",
+ " 2006.0 \n",
+ " Nebbiolo \n",
+ " \n",
+ " \n",
+ " 129844 \n",
+ " 86 \n",
+ " NaN \n",
+ " Tuscany \n",
+ " Caparzo \n",
+ " 2006.0 \n",
+ " Sangiovese \n",
+ " \n",
+ " \n",
+ " 129892 \n",
+ " 91 \n",
+ " 72.0 \n",
+ " Tuscany \n",
+ " La Mannella \n",
+ " 2012.0 \n",
+ " Sangiovese \n",
+ " \n",
+ " \n",
+ " 129943 \n",
+ " 90 \n",
+ " 29.0 \n",
+ " Sicily and Sardinia \n",
+ " Baglio del Cristo di Campobello \n",
+ " 2012.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ " 129947 \n",
+ " 90 \n",
+ " 20.0 \n",
+ " Sicily and Sardinia \n",
+ " Feudo Principi di Butera \n",
+ " 2012.0 \n",
+ " Red Blend \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8625 rows × 6 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " points price province winery \\\n",
+ "28 87 17.0 Sicily and Sardinia Terre di Giurfo \n",
+ "31 86 NaN Sicily and Sardinia Duca di Salaparuta \n",
+ "50 86 NaN Sicily and Sardinia Viticultori Associati Canicatti \n",
+ "54 85 NaN Sicily and Sardinia Corvo \n",
+ "61 86 17.0 Central Italy Podere dal Nespoli \n",
+ "... ... ... ... ... \n",
+ "129826 88 50.0 Piedmont Vinchio-Vaglio Serra \n",
+ "129844 86 NaN Tuscany Caparzo \n",
+ "129892 91 72.0 Tuscany La Mannella \n",
+ "129943 90 29.0 Sicily and Sardinia Baglio del Cristo di Campobello \n",
+ "129947 90 20.0 Sicily and Sardinia Feudo Principi di Butera \n",
+ "\n",
+ " year variety \n",
+ "28 2011.0 Red Blend \n",
+ "31 2010.0 Red Blend \n",
+ "50 2008.0 Red Blend \n",
+ "54 2010.0 Red Blend \n",
+ "61 2015.0 Sangiovese \n",
+ "... ... ... \n",
+ "129826 2006.0 Nebbiolo \n",
+ "129844 2006.0 Sangiovese \n",
+ "129892 2012.0 Sangiovese \n",
+ "129943 2012.0 Red Blend \n",
+ "129947 2012.0 Red Blend \n",
+ "\n",
+ "[8625 rows x 6 columns]"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "valid_match_ids = match_id_counts[match_id_counts >= 2265].index\n",
+ "data = pd.DataFrame(wine_reviews[wine_reviews['variety'].isin(valid_match_ids)][['points', 'price', 'province', 'winery', 'year', 'variety']])\n",
+ "data['province'] = data['province'].replace({'Sicily & Sardinia' : 'Sicily and Sardinia'})\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true,
+ "id": "zG1ELGzz7GYh"
+ },
+ "outputs": [],
+ "source": [
+ "data['points'] = data['points'].astype(int)\n",
+ "data['price'] = data['price'].astype(float)\n",
+ "data['province'] = data['province'].astype('category')\n",
+ "data['winery'] = data['winery'].astype('category')\n",
+ "data['variety'] = data['variety'].astype('category')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UcLgQziMPkV-",
+ "outputId": "6ccaaf7d-2bb2-49d8-f4ad-6d6652fb2a5b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Index: 8625 entries, 28 to 129947\n",
+ "Data columns (total 6 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 points 8625 non-null int64 \n",
+ " 1 price 7468 non-null float64 \n",
+ " 2 province 8625 non-null category\n",
+ " 3 winery 8625 non-null category\n",
+ " 4 year 8625 non-null float64 \n",
+ " 5 variety 8625 non-null category\n",
+ "dtypes: category(3), float64(2), int64(1)\n",
+ "memory usage: 381.7 KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QAIF_9egdRtw"
+ },
+ "source": [
+ "Заменим NaN значения цены на средние по провинции."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 362
+ },
+ "id": "SRqKZBU-bU5J",
+ "outputId": "16ac89cc-79a8-4fbb-fdc9-f4cb61db2c88"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ ":1: FutureWarning:\n",
+ "\n",
+ "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " points \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " price \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " province \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " winery \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " year \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " variety \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ],
+ "text/plain": [
+ "points 0\n",
+ "price 0\n",
+ "province 0\n",
+ "winery 0\n",
+ "year 0\n",
+ "variety 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['price'] = data.groupby(['province'])['price'].transform(lambda x: x.fillna(x.mean()))\n",
+ "data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7gbTQQGBdqcc"
+ },
+ "source": [
+ " # Визуализация"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "eR9GASTOabhA"
+ },
+ "source": [
+ "Посмотрим на зависимость сорта винограда в зависимости от провинции"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 542
+ },
+ "id": "SYcr7AzFY7Qb",
+ "outputId": "3bd91c7e-86ad-4129-bdcf-a2c4a0f9f606"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = px.scatter(data, x='province', y='variety', title=\"Scatter plot: variety by province\")\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OdFdWRw6ajqx"
+ },
+ "source": [
+ "Можно заметить, что в каждой провинции используются не все сорта. Значит признак будет влиять на модель."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qLRcau1KXPgt"
+ },
+ "source": [
+ "Посмотрим на количество строк для каждого сорта."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 487
+ },
+ "id": "wiZwp7dC5x8o",
+ "outputId": "29a6b95e-37d5-4da1-efe3-f0127ac4e47f"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAHWCAYAAAComkTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXR0lEQVR4nO3deXyM5/7/8fckZLJJIpZEiEhRErWmlrTHrmI5yqFUORKlHEpb0uLkHLW2ddAWp1Xa0xZtaelCq1r7TmirgqKKRmkJiog1JLl+f/SX+RoJTSK3sbyej8c8Hu7ruu77/lwzmZnk7V5sxhgjAAAAAAAAAIXKzdUFAAAAAAAAAHcigjcAAAAAAADAAgRvAAAAAAAAgAUI3gAAAAAAAAALELwBAAAAAAAAFiB4AwAAAAAAACxA8AYAAAAAAABYgOANAAAAAAAAsADBGwAAAAAAAGABgjcAAOAyTZo0UZMmTVxdxh1j1KhRstlsri6j0OQ2nwoVKqhnz56uKcjFmjRpovvuu8/VZRQqPgMAAHc6gjcAAJDD4cOHNWrUKCUlJbm6lNvaxo0bNWrUKKWmprq6FNwmeO/l3UsvvaQFCxa4ugwAAK6L4A0AAORw+PBhjR492vI//pcuXaqlS5daug9X2rhxo0aPHk3wVoj27Nmj//3vf64uwzI36713q7iRzwCCNwDA7YDgDQAAuIyHh4c8PDxcXUaenTt3ztUl3PXsdruKFi3q6jJwg86fPy/p9vsMAAAgvwjeAABwkd9++029e/dWSEiI7Ha7wsPD1b9/f126dMkx5ueff1bnzp0VGBgob29vNWjQQIsWLXLazsyZM2Wz2XTgwAGn9tWrV8tms2n16tWOtuxrRO3atUtNmzaVt7e3ypYtqwkTJjitV7duXUnS448/LpvNJpvNppkzZ+Y6j+3bt8tms+mLL75wtG3ZskU2m0116tRxGtu6dWvVr1/fqZ4rr++UXfO8efP04osvqly5cvL09FTz5s21b9++HPvevHmzWrVqJX9/f3l7e6tx48basGGD05gzZ85o0KBBqlChgux2u0qXLq2HHnpI33//fa7zyZZ9fbFdu3apW7duKl68uP7yl7845tyzZ0/dc8898vT0VHBwsHr16qUTJ044rT9kyBBJUnh4uON5vPJ1+uCDDxQVFSUvLy8FBgaqa9euOnTo0HXryrZ+/XrVrVtXnp6eqlixot58881rjs3LfrJ/NrZs2aIHHnhAXl5eCg8P1/Tp03NsLz09XSNHjlSlSpVkt9sVGhqqoUOHKj093WmczWbTwIEDtWDBAt13332y2+2qVq2aFi9eXOD5XH2Nt+yf/w0bNig+Pl6lSpWSj4+P/va3v+n48eNO62ZlZWnUqFEKCQmRt7e3mjZtql27duX5unHnzp3Ts88+q9DQUNntdlWpUkUvv/yyjDEFnveV8vreu977N1teX6OrDRw4UL6+vo5g7EqPPfaYgoODlZmZKUn6/PPP1bZtW8dnWMWKFTV27FhHf7Yrf7YaNWokb29v/etf/3L0XX2Nt7zUbrPZdO7cOc2aNcvxPPXs2VOrVq2SzWbT/Pnzc9Q/Z84c2Ww2JSYmXvc5AACgMBVxdQEAANyNDh8+rHr16ik1NVV9+/ZV1apV9dtvv+mTTz7R+fPn5eHhoaNHj+qBBx7Q+fPn9fTTT6tEiRKaNWuWHn74YX3yySf629/+VqB9nzp1Sq1atVLHjh3VpUsXffLJJxo2bJiqV6+u1q1bKyIiQmPGjNGIESPUt29fNWzYUJL0wAMP5Lq9++67TwEBAVq7dq0efvhhSdK6devk5uambdu2KS0tTX5+fsrKytLGjRvVt2/fP63xP//5j9zc3PTcc8/p9OnTmjBhgrp3767Nmzc7xqxcuVKtW7dWVFSURo4cKTc3N82YMUPNmjXTunXrVK9ePUlSv3799Mknn2jgwIGKjIzUiRMntH79eu3evTtHMJibzp07q3LlynrppZccAcuyZcv0888/6/HHH1dwcLB27typt956Szt37tSmTZtks9nUsWNH/fTTT/rwww81adIklSxZUpJUqlQpSdKLL76o559/Xl26dNETTzyh48eP67XXXlOjRo20detWBQQEXLOmHTt2qGXLlipVqpRGjRqljIwMjRw5UkFBQTnG5mc/p06dUps2bdSlSxc99thjmjdvnvr37y8PDw/16tVL0h/h1cMPP6z169erb9++ioiI0I4dOzRp0iT99NNPOU79W79+vT777DM9+eSTKlasmP773/+qU6dOOnjwoEqUKJHv+VzLU089peLFi2vkyJE6cOCAJk+erIEDB2ru3LmOMQkJCZowYYLatWunmJgYbdu2TTExMbp48eKfbt8Yo4cfflirVq1S7969VatWLS1ZskRDhgzRb7/9pkmTJuV73lfLy3vvz96/Uv5foys9+uijmjp1qhYtWqTOnTs72s+fP6+FCxeqZ8+ecnd3l/RH6Onr66v4+Hj5+vpq5cqVGjFihNLS0jRx4kSn7Z44cUKtW7dW165d9fe///2ar21ea3///ff1xBNPqF69eo7PlIoVK6pBgwYKDQ3V7Nmzc3xGzp49WxUrVlR0dPQ15w8AQKEzAADgpouNjTVubm7m22+/zdGXlZVljDFm0KBBRpJZt26do+/MmTMmPDzcVKhQwWRmZhpjjJkxY4aRZJKTk522s2rVKiPJrFq1ytHWuHFjI8m89957jrb09HQTHBxsOnXq5Gj79ttvjSQzY8aMPM2nbdu2pl69eo7ljh07mo4dOxp3d3fz9ddfG2OM+f77740k8/nnnzvV07hx4xw1R0REmPT0dEf7lClTjCSzY8cOx3NUuXJlExMT43i+jDHm/PnzJjw83Dz00EOONn9/fzNgwIA8zeNKI0eONJLMY489lqPv/PnzOdo+/PBDI8msXbvW0TZx4sRcX5sDBw4Yd3d38+KLLzq179ixwxQpUiRH+9U6dOhgPD09zS+//OJo27Vrl3F3dzdX/nqXn/1k/2y88sorjrb09HRTq1YtU7p0aXPp0iVjjDHvv/++cXNzc/q5NMaY6dOnG0lmw4YNjjZJxsPDw+zbt8/Rtm3bNiPJvPbaa/mejzHGhIWFmbi4OMdy9s9/ixYtnH4WBg8ebNzd3U1qaqoxxpiUlBRTpEgR06FDB6ftjRo1ykhy2mZuFixYYCSZF154wan9kUceMTabzWmOeZ13bq733svr+zc/r9HVsrKyTNmyZZ22Z4wx8+bNy/Hzndv74B//+Ifx9vY2Fy9ezFH39OnTc53TlZ8B+andx8cn19ctISHB2O12x2tvjDHHjh0zRYoUMSNHjrzm3AEAsAKnmgIAcJNlZWVpwYIFateune6///4c/TabTZL01VdfqV69eo7TGyXJ19dXffv21YEDB7Rr164C7d/X11d///vfHcseHh6qV6+efv755wJtT5IaNmyo77//3nENtPXr16tNmzaqVauW1q1bJ+mPo+BsNpvTfK7l8ccfd7ruU/aRP9k1JiUlae/everWrZtOnDih33//Xb///rvOnTun5s2ba+3atcrKypIkBQQEaPPmzTp8+HCB5tavX78cbV5eXo5/X7x4Ub///rsaNGggSX96CqskffbZZ8rKylKXLl0ctf/+++8KDg5W5cqVtWrVqmuum5mZqSVLlqhDhw4qX768oz0iIkIxMTE3tJ8iRYroH//4h2PZw8ND//jHP3Ts2DFt2bJFkvTxxx8rIiJCVatWddpms2bNJCnHNlu0aKGKFSs6lmvUqCE/Pz/Ha5mf+VxP3759He8d6Y+fmczMTP3yyy+SpBUrVigjI0NPPvmk03pPPfVUnrb/1Vdfyd3dXU8//bRT+7PPPitjjL7++mun9j+bd0Hl5f2b39foSjabTZ07d9ZXX32ls2fPOtrnzp2rsmXLOr1/r3wfnDlzRr///rsaNmyo8+fP68cff3Tart1u1+OPP/6n87uR2rPFxsYqPT1dn3zyiVP9GRkZTs8dAAA3A6eaAgBwkx0/flxpaWm67777rjvul19+cboeWraIiAhH/59tIzflypVzCigkqXjx4tq+fXu+t5WtYcOGysjIUGJiokJDQ3Xs2DE1bNhQO3fudAreIiMjFRgY+KfbuzKAya5P+uM0O0nau3evJCkuLu6a2zh9+rSKFy+uCRMmKC4uTqGhoYqKilKbNm0UGxure+65J09zCw8Pz9F28uRJjR49Wh999JGOHTuWY79/Zu/evTLGqHLlyrn2X+/mAcePH9eFCxdyXbdKlSr66quvCryfkJAQ+fj4OLXde++9kqQDBw6oQYMG2rt3r3bv3u04ZfZqVz8fV7+W0h+vZ/ZrmZ/5XM+f/cxkB3CVKlVyGhcYGOgYez2//PKLQkJCVKxYMaf2K9+P16snu6bsegoqL+/f/L5GV3v00Uc1efJkffHFF+rWrZvOnj2rr776Sv/4xz+c9r1z504NHz5cK1euVFpamtM2rn4flC1bNk83UbjR2iWpatWqqlu3rmbPnq3evXtL+uM00wYNGuR4/QEAsBrBGwAAt7mr/wjPdvUFzrNlX5/pauaqC8Tnx/333y9PT0+tXbtW5cuXV+nSpXXvvfeqYcOGeuONN5Senq5169bl+bp0f1Zj9tFsEydOVK1atXId6+vrK0nq0qWLGjZsqPnz52vp0qWaOHGixo8fr88++8xxTazrufKonmxdunTRxo0bNWTIENWqVUu+vr7KyspSq1atHLVdT1ZWlmw2m77++utc55pd+42yYj9ZWVmqXr26Xn311Vz7Q0NDnZat+HnLzc3aT15ZVU9etpvf1+hqDRo0UIUKFTRv3jx169ZNCxcu1IULF/Too486xqSmpqpx48by8/PTmDFjVLFiRXl6eur777/XsGHDcrwPcnsf5eZGa88WGxurZ555Rr/++qvS09O1adMmvf7663laFwCAwkTwBgDATVaqVCn5+fnphx9+uO64sLAw7dmzJ0d79ilcYWFhkv7vyJ7U1FSncVcfgZMf1wrzriX7dLd169apfPnyjlNDGzZsqPT0dM2ePVtHjx5Vo0aNClzTlbJP4fPz81OLFi3+dHyZMmX05JNP6sknn9SxY8dUp04dvfjii3kK3q526tQprVixQqNHj9aIESMc7dlH4V3pWs9jxYoVZYxReHi444iyvCpVqpS8vLxy3d/VPy/53c/hw4d17tw5p6PefvrpJ0l/3E00e5vbtm1T8+bN8/1zkpv8zOdGZL9f9u3b53QU44kTJ/J0FFpYWJiWL1+uM2fOOB31dvX78UYVxnNaGK9Rly5dNGXKFKWlpWnu3LmqUKGC43Rq6Y87sJ44cUKfffaZ0/s6OTn5ptV+vf6uXbsqPj5eH374oS5cuKCiRYs6BYcAANwsXOMNAICbzM3NTR06dNDChQv13Xff5ejPPnKlTZs2+uabb5SYmOjoO3funN566y1VqFBBkZGRkv4vhFq7dq1jXGZmpt56660C15gdvFwd5l1Pw4YNtXnzZq1atcoRvJUsWVIREREaP368Y0xhiIqKUsWKFfXyyy87XYcq2/HjxyX98Txcfcpb6dKlFRISovT09ALtO/uIo6uPXJo8eXKOsdd6Hjt27Ch3d3eNHj06x3aMMTpx4sR19x8TE6MFCxbo4MGDjvbdu3dryZIlN7SfjIwMvfnmm47lS5cu6c0331SpUqUUFRUl6Y9A5rffftP//ve/HLVduHDBcZ2/vMrPfG5E8+bNVaRIEU2bNs2pPa9HQbVp00aZmZk5xk+aNEk2m61AIW5uCvLeu1phvEaPPvqo0tPTNWvWLC1evFhdunRx6s/tfXDp0iW98cYbBa47v7X7+Phc83kqWbKkWrdurQ8++ECzZ89Wq1atHHcWBgDgZuKINwAAXOCll17S0qVL1bhxY/Xt21cRERE6cuSIPv74Y61fv14BAQH65z//qQ8//FCtW7fW008/rcDAQM2aNUvJycn69NNP5eb2x/+fVatWTQ0aNFBCQoJOnjypwMBAffTRR8rIyChwfRUrVlRAQICmT5+uYsWKycfHR/Xr18/1emfZGjZsqBdffFGHDh1yCtgaNWqkN998UxUqVFC5cuUKXNOV3Nzc9Pbbb6t169aqVq2aHn/8cZUtW1a//fabVq1aJT8/Py1cuFBnzpxRuXLl9Mgjj6hmzZry9fXV8uXL9e233+qVV14p0L79/PzUqFEjTZgwQZcvX1bZsmW1dOnSXI/0yQ6r/v3vf6tr164qWrSo2rVrp4oVK+qFF15QQkKCDhw4oA4dOqhYsWJKTk7W/Pnz1bdvXz333HPXrGH06NFavHixGjZsqCeffFIZGRl67bXXVK1aNadrfeV3PyEhIRo/frwOHDige++9V3PnzlVSUpLeeustx/XgevTooXnz5qlfv35atWqVHnzwQWVmZurHH3/UvHnztGTJklxvGnI9eZ3PjQgKCtIzzzyjV155RQ8//LBatWqlbdu26euvv1bJkiX/9Oiqdu3aqWnTpvr3v/+tAwcOqGbNmlq6dKk+//xzDRo0yOlGCjeiIO+9qxXGa1SnTh1VqlRJ//73v5Wenp7jaLEHHnhAxYsXV1xcnJ5++mnZbDa9//77N3wqbX5qj4qK0vLly/Xqq68qJCRE4eHhTtfFjI2N1SOPPCJJGjt27A3VBQBAgd3ku6gCAID/75dffjGxsbGmVKlSxm63m3vuuccMGDDApKenO8bs37/fPPLIIyYgIMB4enqaevXqmS+//DLHtvbv329atGhh7Ha7CQoKMv/617/MsmXLjCSzatUqx7jGjRubatWq5Vg/Li7OhIWFObV9/vnnJjIy0hQpUsRIMjNmzLjufNLS0oy7u7spVqyYycjIcLR/8MEHRpLp0aNHjnUaN25sGjdu7FhetWqVkWQ+/vhjp3HJycm51rB161bTsWNHU6JECWO3201YWJjp0qWLWbFihTHGmPT0dDNkyBBTs2ZNU6xYMePj42Nq1qxp3njjjevOxRhjRo4caSSZ48eP5+j79ddfzd/+9jcTEBBg/P39TefOnc3hw4eNJDNy5EinsWPHjjVly5Y1bm5uRpJJTk529H366afmL3/5i/Hx8TE+Pj6matWqZsCAAWbPnj1/Wt+aNWtMVFSU8fDwMPfcc4+ZPn26o+ar5WU/2T8b3333nYmOjjaenp4mLCzMvP766zm2d+nSJTN+/HhTrVo1Y7fbTfHixU1UVJQZPXq0OX36tGOcJDNgwIAc64eFhZm4uLgCzefqdWfMmGEkmW+//dZpXPbP0pU//xkZGeb55583wcHBxsvLyzRr1szs3r3blChRwvTr1y/X5/lKZ86cMYMHDzYhISGmaNGipnLlymbixIkmKyvLaVx+5p2ba7338vP+zetrdD3//ve/jSRTqVKlXPs3bNhgGjRoYLy8vExISIgZOnSoWbJkSZ4/d7L7rvwMyE/tP/74o2nUqJHx8vIyknI8t+np6aZ48eLG39/fXLhwIU9zBgCgsNmMcdEVZwEAAHDLaNKkiX7//fc/vfbgnSY1NVXFixfXCy+8oH//+9+uLgeFKCMjQyEhIWrXrp3eeecdV5cDALhLcY03AAAA3BUuXLiQoy372nxNmjS5ucXAcgsWLNDx48cVGxvr6lIAAHcxrvEGAACAu8LcuXM1c+ZMtWnTRr6+vlq/fr0+/PBDtWzZUg8++KCry0Mh2bx5s7Zv366xY8eqdu3aaty4satLAgDcxQjeAAAAcFeoUaOGihQpogkTJigtLc1xw4UXXnjB1aWhEE2bNk0ffPCBatWqpZkzZ7q6HADAXY5rvAEAAAAAAAAW4BpvAAAAAAAAgAUI3gAAAAAAAAALcI23PMjKytLhw4dVrFgx2Ww2V5cDAAAAAAAAFzLG6MyZMwoJCZGb27WPayN4y4PDhw8rNDTU1WUAAAAAAADgFnLo0CGVK1fumv0Eb3lQrFgxSX88mX5+fi6uBgAAAAAAAK6Ulpam0NBQR2Z0LQRveZB9eqmfnx/BGwAAAAAAACTpTy9Jxs0VAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACRVxdAAAAKBxRQ95zdQkAUKi2TIx1dQkAANwQjngDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWcGnwNm3aNNWoUUN+fn7y8/NTdHS0vv76a0d/kyZNZLPZnB79+vVz2sbBgwfVtm1beXt7q3Tp0hoyZIgyMjKcxqxevVp16tSR3W5XpUqVNHPmzJsxPQAAAAAAANzFirhy5+XKldN//vMfVa5cWcYYzZo1S+3bt9fWrVtVrVo1SVKfPn00ZswYxzre3t6Of2dmZqpt27YKDg7Wxo0bdeTIEcXGxqpo0aJ66aWXJEnJyclq27at+vXrp9mzZ2vFihV64oknVKZMGcXExNzcCQMAAAAAAOCu4dLgrV27dk7LL774oqZNm6ZNmzY5gjdvb28FBwfnuv7SpUu1a9cuLV++XEFBQapVq5bGjh2rYcOGadSoUfLw8ND06dMVHh6uV155RZIUERGh9evXa9KkSQRvAAAAAAAAsMwtc423zMxMffTRRzp37pyio6Md7bNnz1bJkiV13333KSEhQefPn3f0JSYmqnr16goKCnK0xcTEKC0tTTt37nSMadGihdO+YmJilJiYeM1a0tPTlZaW5vQAAAAAAAAA8sOlR7xJ0o4dOxQdHa2LFy/K19dX8+fPV2RkpCSpW7duCgsLU0hIiLZv365hw4Zpz549+uyzzyRJKSkpTqGbJMdySkrKdcekpaXpwoUL8vLyylHTuHHjNHr06EKfKwAAAAAAAO4eLg/eqlSpoqSkJJ0+fVqffPKJ4uLitGbNGkVGRqpv376OcdWrV1eZMmXUvHlz7d+/XxUrVrSspoSEBMXHxzuW09LSFBoaatn+AAAAAAAAcOdx+ammHh4eqlSpkqKiojRu3DjVrFlTU6ZMyXVs/fr1JUn79u2TJAUHB+vo0aNOY7KXs68Ld60xfn5+uR7tJkl2u91xp9XsBwAAAAAAAJAfLg/erpaVlaX09PRc+5KSkiRJZcqUkSRFR0drx44dOnbsmGPMsmXL5Ofn5zhdNTo6WitWrHDazrJly5yuIwcAAAAAAAAUNpeeapqQkKDWrVurfPnyOnPmjObMmaPVq1dryZIl2r9/v+bMmaM2bdqoRIkS2r59uwYPHqxGjRqpRo0akqSWLVsqMjJSPXr00IQJE5SSkqLhw4drwIABstvtkqR+/frp9ddf19ChQ9WrVy+tXLlS8+bN06JFi1w5dQAAAAAAANzhXBq8HTt2TLGxsTpy5Ij8/f1Vo0YNLVmyRA899JAOHTqk5cuXa/LkyTp37pxCQ0PVqVMnDR8+3LG+u7u7vvzyS/Xv31/R0dHy8fFRXFycxowZ4xgTHh6uRYsWafDgwZoyZYrKlSunt99+WzExMa6YMgAAAAAAAO4SNmOMcXURt7q0tDT5+/vr9OnTXO8NAHDLihrynqtLAIBCtWVirKtLAAAgV3nNim65a7wBAAAAAAAAdwKCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFjApcHbtGnTVKNGDfn5+cnPz0/R0dH6+uuvHf0XL17UgAEDVKJECfn6+qpTp046evSo0zYOHjyotm3bytvbW6VLl9aQIUOUkZHhNGb16tWqU6eO7Ha7KlWqpJkzZ96M6QEAAAAAAOAu5tLgrVy5cvrPf/6jLVu26LvvvlOzZs3Uvn177dy5U5I0ePBgLVy4UB9//LHWrFmjw4cPq2PHjo71MzMz1bZtW126dEkbN27UrFmzNHPmTI0YMcIxJjk5WW3btlXTpk2VlJSkQYMG6YknntCSJUtu+nwBAAAAAABw97AZY4yri7hSYGCgJk6cqEceeUSlSpXSnDlz9Mgjj0iSfvzxR0VERCgxMVENGjTQ119/rb/+9a86fPiwgoKCJEnTp0/XsGHDdPz4cXl4eGjYsGFatGiRfvjhB8c+unbtqtTUVC1evDhPNaWlpcnf31+nT5+Wn59f4U8aAIBCEDXkPVeXAACFasvEWFeXAABArvKaFd0y13jLzMzURx99pHPnzik6OlpbtmzR5cuX1aJFC8eYqlWrqnz58kpMTJQkJSYmqnr16o7QTZJiYmKUlpbmOGouMTHRaRvZY7K3kZv09HSlpaU5PQAAAAAAAID8cHnwtmPHDvn6+sput6tfv36aP3++IiMjlZKSIg8PDwUEBDiNDwoKUkpKiiQpJSXFKXTL7s/uu96YtLQ0XbhwIdeaxo0bJ39/f8cjNDS0MKYKAAAAAACAu4jLg7cqVaooKSlJmzdvVv/+/RUXF6ddu3a5tKaEhASdPn3a8Th06JBL6wEAAAAAAMDtp4irC/Dw8FClSpUkSVFRUfr22281ZcoUPfroo7p06ZJSU1Odjno7evSogoODJUnBwcH65ptvnLaXfdfTK8dcfSfUo0ePys/PT15eXrnWZLfbZbfbC2V+AAAAAAAAuDu5/Ii3q2VlZSk9PV1RUVEqWrSoVqxY4ejbs2ePDh48qOjoaElSdHS0duzYoWPHjjnGLFu2TH5+foqMjHSMuXIb2WOytwEAAAAAAABYwaVHvCUkJKh169YqX768zpw5ozlz5mj16tVasmSJ/P391bt3b8XHxyswMFB+fn566qmnFB0drQYNGkiSWrZsqcjISPXo0UMTJkxQSkqKhg8frgEDBjiOWOvXr59ef/11DR06VL169dLKlSs1b948LVq0yJVTBwAAAAAAwB3OpcHbsWPHFBsbqyNHjsjf3181atTQkiVL9NBDD0mSJk2aJDc3N3Xq1Enp6emKiYnRG2+84Vjf3d1dX375pfr376/o6Gj5+PgoLi5OY8aMcYwJDw/XokWLNHjwYE2ZMkXlypXT22+/rZiYmJs+XwAAAAAAANw9bMYY4+oibnVpaWny9/fX6dOn5efn5+pyAADIVdSQ91xdAgAUqi0TY11dAgAAucprVnTLXeMNAAAAAAAAuBMQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFigiKsLwI2LGvKeq0sAgEK1ZWKsq0sAAAAAgBvGEW8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWcGnwNm7cONWtW1fFihVT6dKl1aFDB+3Zs8dpTJMmTWSz2Zwe/fr1cxpz8OBBtW3bVt7e3ipdurSGDBmijIwMpzGrV69WnTp1ZLfbValSJc2cOdPq6QEAAAAAAOAu5tLgbc2aNRowYIA2bdqkZcuW6fLly2rZsqXOnTvnNK5Pnz46cuSI4zFhwgRHX2Zmptq2batLly5p48aNmjVrlmbOnKkRI0Y4xiQnJ6tt27Zq2rSpkpKSNGjQID3xxBNasmTJTZsrAAAAAAAA7i5FXLnzxYsXOy3PnDlTpUuX1pYtW9SoUSNHu7e3t4KDg3PdxtKlS7Vr1y4tX75cQUFBqlWrlsaOHathw4Zp1KhR8vDw0PTp0xUeHq5XXnlFkhQREaH169dr0qRJiomJsW6CAAAAAAAAuGvdUtd4O336tCQpMDDQqX327NkqWbKk7rvvPiUkJOj8+fOOvsTERFWvXl1BQUGOtpiYGKWlpWnnzp2OMS1atHDaZkxMjBITE3OtIz09XWlpaU4PAAAAAAAAID9cesTblbKysjRo0CA9+OCDuu+++xzt3bp1U1hYmEJCQrR9+3YNGzZMe/bs0WeffSZJSklJcQrdJDmWU1JSrjsmLS1NFy5ckJeXl1PfuHHjNHr06EKfIwAAAAAAAO4et0zwNmDAAP3www9av369U3vfvn0d/65evbrKlCmj5s2ba//+/apYsaIltSQkJCg+Pt6xnJaWptDQUEv2BQAAAAAAgDvTLXGq6cCBA/Xll19q1apVKleu3HXH1q9fX5K0b98+SVJwcLCOHj3qNCZ7Ofu6cNca4+fnl+NoN0my2+3y8/NzegAAAAAAAAD54dLgzRijgQMHav78+Vq5cqXCw8P/dJ2kpCRJUpkyZSRJ0dHR2rFjh44dO+YYs2zZMvn5+SkyMtIxZsWKFU7bWbZsmaKjowtpJgAAAAAAAIAzlwZvAwYM0AcffKA5c+aoWLFiSklJUUpKii5cuCBJ2r9/v8aOHastW7bowIED+uKLLxQbG6tGjRqpRo0akqSWLVsqMjJSPXr00LZt27RkyRINHz5cAwYMkN1ulyT169dPP//8s4YOHaoff/xRb7zxhubNm6fBgwe7bO4AAAAAAAC4s7k0eJs2bZpOnz6tJk2aqEyZMo7H3LlzJUkeHh5avny5WrZsqapVq+rZZ59Vp06dtHDhQsc23N3d9eWXX8rd3V3R0dH6+9//rtjYWI0ZM8YxJjw8XIsWLdKyZctUs2ZNvfLKK3r77bcVExNz0+cMAAAAAACAu4NLb65gjLluf2hoqNasWfOn2wkLC9NXX3113TFNmjTR1q1b81UfAAAAAAAAUFC3xM0VAAAAAAAAgDsNwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALBAEVcXAAAAAAAoHFFD3nN1CQBQqLZMjHV1CTeEI94AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYoUPDWrFkzpaam5mhPS0tTs2bNbrQmAAAAAAAA4LZXoOBt9erVunTpUo72ixcvat26dTdcFAAAAAAAAHC7K5Kfwdu3b3f8e9euXUpJSXEsZ2ZmavHixSpbtmzhVQcAAAAAAADcpvJ1xFutWrVUu3Zt2Ww2NWvWTLVq1XI8oqKi9MILL2jEiBF53t64ceNUt25dFStWTKVLl1aHDh20Z88epzEXL17UgAEDVKJECfn6+qpTp046evSo05iDBw+qbdu28vb2VunSpTVkyBBlZGQ4jVm9erXq1Kkju92uSpUqaebMmfmZOgAAAAAAAJAv+QrekpOTtX//fhlj9M033yg5Odnx+O2335SWlqZevXrleXtr1qzRgAEDtGnTJi1btkyXL19Wy5Ytde7cOceYwYMHa+HChfr444+1Zs0aHT58WB07dnT0Z2Zmqm3btrp06ZI2btyoWbNmaebMmU4BYHJystq2baumTZsqKSlJgwYN0hNPPKElS5bkZ/oAAAAAAABAnuXrVNOwsDBJUlZWVqHsfPHixU7LM2fOVOnSpbVlyxY1atRIp0+f1jvvvKM5c+Y4btowY8YMRUREaNOmTWrQoIGWLl2qXbt2afny5QoKClKtWrU0duxYDRs2TKNGjZKHh4emT5+u8PBwvfLKK5KkiIgIrV+/XpMmTVJMTEyhzAUAAAAAAAC4Ur6Ctyvt3btXq1at0rFjx3IEcfk53fRKp0+fliQFBgZKkrZs2aLLly+rRYsWjjFVq1ZV+fLllZiYqAYNGigxMVHVq1dXUFCQY0xMTIz69++vnTt3qnbt2kpMTHTaRvaYQYMG5VpHenq60tPTHctpaWkFmg8AAAAAAADuXgUK3v73v/+pf//+KlmypIKDg2Wz2Rx9NputQMFbVlaWBg0apAcffFD33XefJCklJUUeHh4KCAhwGhsUFOS4sUNKSopT6Jbdn913vTFpaWm6cOGCvLy8nPrGjRun0aNH53sOAAAAAAAAQLYCBW8vvPCCXnzxRQ0bNqzQChkwYIB++OEHrV+/vtC2WVAJCQmKj493LKelpSk0NNSFFQEAAAAAAOB2U6Dg7dSpU+rcuXOhFTFw4EB9+eWXWrt2rcqVK+doDw4O1qVLl5Samup01NvRo0cVHBzsGPPNN984bS/7rqdXjrn6TqhHjx6Vn59fjqPdJMlut8tutxfK3AAAAAAAAHB3ytddTbN17txZS5cuveGdG2M0cOBAzZ8/XytXrlR4eLhTf1RUlIoWLaoVK1Y42vbs2aODBw8qOjpakhQdHa0dO3bo2LFjjjHLli2Tn5+fIiMjHWOu3Eb2mOxtAAAAAAAAAIWtQEe8VapUSc8//7w2bdqk6tWrq2jRok79Tz/9dJ62M2DAAM2ZM0eff/65ihUr5rgmm7+/v7y8vOTv76/evXsrPj5egYGB8vPz01NPPaXo6Gg1aNBAktSyZUtFRkaqR48emjBhglJSUjR8+HANGDDAcdRav3799Prrr2vo0KHq1auXVq5cqXnz5mnRokUFmT4AAAAAAADwpwoUvL311lvy9fXVmjVrtGbNGqc+m82W5+Bt2rRpkqQmTZo4tc+YMUM9e/aUJE2aNElubm7q1KmT0tPTFRMTozfeeMMx1t3dXV9++aX69++v6Oho+fj4KC4uTmPGjHGMCQ8P16JFizR48GBNmTJF5cqV09tvv62YmJgCzB4AAAAAAAD4cwUK3pKTkwtl58aYPx3j6empqVOnaurUqdccExYWpq+++uq622nSpIm2bt2a7xoBAAAAAACAgijQNd4AAAAAAAAAXF+Bjnjr1avXdfvffffdAhUDAAAAAAAA3CkKFLydOnXKafny5cv64YcflJqaqmbNmhVKYQAAAAAAAMDtrEDB2/z583O0ZWVlqX///qpYseINFwUAAAAAAADc7grtGm9ubm6Kj4/XpEmTCmuTAAAAAAAAwG2rUG+usH//fmVkZBTmJgEAAAAAAIDbUoFONY2Pj3daNsboyJEjWrRokeLi4gqlMAAAAAAAAOB2VqDgbevWrU7Lbm5uKlWqlF555ZU/veMpAAAAAAAAcDcoUPC2atWqwq4DAAAAAAAAuKMUKHjLdvz4ce3Zs0eSVKVKFZUqVapQigIAAAAAAABudwW6ucK5c+fUq1cvlSlTRo0aNVKjRo0UEhKi3r176/z584VdIwAAAAAAAHDbKVDwFh8frzVr1mjhwoVKTU1VamqqPv/8c61Zs0bPPvtsYdcIAAAAAAAA3HYKdKrpp59+qk8++URNmjRxtLVp00ZeXl7q0qWLpk2bVlj1AQAAAAAAALelAh3xdv78eQUFBeVoL126NKeaAgAAAAAAACpg8BYdHa2RI0fq4sWLjrYLFy5o9OjRio6OLrTiAAAAAAAAgNtVgU41nTx5slq1aqVy5cqpZs2akqRt27bJbrdr6dKlhVogAAAAAAAAcDsqUPBWvXp17d27V7Nnz9aPP/4oSXrsscfUvXt3eXl5FWqBAAAAAAAAwO2oQMHbuHHjFBQUpD59+ji1v/vuuzp+/LiGDRtWKMUBAAAAAAAAt6sCXePtzTffVNWqVXO0V6tWTdOnT7/hogAAAAAAAIDbXYGCt5SUFJUpUyZHe6lSpXTkyJEbLgoAAAAAAAC43RUoeAsNDdWGDRtytG/YsEEhISE3XBQAAAAAAABwuyvQNd769OmjQYMG6fLly2rWrJkkacWKFRo6dKieffbZQi0QAAAAAAAAuB0VKHgbMmSITpw4oSeffFKXLl2SJHl6emrYsGFKSEgo1AIBAAAAAACA21GBgjebzabx48fr+eef1+7du+Xl5aXKlSvLbrcXdn0AAAAAAADAbalAwVs2X19f1a1bt7BqAQAAAAAAAO4YBbq5AgAAAAAAAIDrI3gDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABVwavK1du1bt2rVTSEiIbDabFixY4NTfs2dP2Ww2p0erVq2cxpw8eVLdu3eXn5+fAgIC1Lt3b509e9ZpzPbt29WwYUN5enoqNDRUEyZMsHpqAAAAAAAAuMu5NHg7d+6catasqalTp15zTKtWrXTkyBHH48MPP3Tq7969u3bu3Klly5bpyy+/1Nq1a9W3b19Hf1pamlq2bKmwsDBt2bJFEydO1KhRo/TWW29ZNi8AAAAAAACgiCt33rp1a7Vu3fq6Y+x2u4KDg3Pt2717txYvXqxvv/1W999/vyTptddeU5s2bfTyyy8rJCREs2fP1qVLl/Tuu+/Kw8ND1apVU1JSkl599VWngA4AAAAAAAAoTLf8Nd5Wr16t0qVLq0qVKurfv79OnDjh6EtMTFRAQIAjdJOkFi1ayM3NTZs3b3aMadSokTw8PBxjYmJitGfPHp06dSrXfaanpystLc3pAQAAAAAAAOTHLR28tWrVSu+9955WrFih8ePHa82aNWrdurUyMzMlSSkpKSpdurTTOkWKFFFgYKBSUlIcY4KCgpzGZC9nj7nauHHj5O/v73iEhoYW9tQAAAAAAABwh3PpqaZ/pmvXro5/V69eXTVq1FDFihW1evVqNW/e3LL9JiQkKD4+3rGclpZG+AYAAAAAAIB8uaWPeLvaPffco5IlS2rfvn2SpODgYB07dsxpTEZGhk6ePOm4LlxwcLCOHj3qNCZ7+VrXjrPb7fLz83N6AAAAAAAAAPlxWwVvv/76q06cOKEyZcpIkqKjo5WamqotW7Y4xqxcuVJZWVmqX7++Y8zatWt1+fJlx5hly5apSpUqKl68+M2dAAAAAAAAAO4aLg3ezp49q6SkJCUlJUmSkpOTlZSUpIMHD+rs2bMaMmSINm3apAMHDmjFihVq3769KlWqpJiYGElSRESEWrVqpT59+uibb77Rhg0bNHDgQHXt2lUhISGSpG7dusnDw0O9e/fWzp07NXfuXE2ZMsXpVFIAAAAAAACgsLk0ePvuu+9Uu3Zt1a5dW5IUHx+v2rVra8SIEXJ3d9f27dv18MMP695771Xv3r0VFRWldevWyW63O7Yxe/ZsVa1aVc2bN1ebNm30l7/8RW+99Zaj39/fX0uXLlVycrKioqL07LPPasSIEerbt+9Nny8AAAAAAADuHi69uUKTJk1kjLlm/5IlS/50G4GBgZozZ851x9SoUUPr1q3Ld30AAAAAAABAQd1W13gDAAAAAAAAbhcEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAZcGb2vXrlW7du0UEhIim82mBQsWOPUbYzRixAiVKVNGXl5eatGihfbu3es05uTJk+revbv8/PwUEBCg3r176+zZs05jtm/froYNG8rT01OhoaGaMGGC1VMDAAAAAADAXc6lwdu5c+dUs2ZNTZ06Ndf+CRMm6L///a+mT5+uzZs3y8fHRzExMbp48aJjTPfu3bVz504tW7ZMX375pdauXau+ffs6+tPS0tSyZUuFhYVpy5YtmjhxokaNGqW33nrL8vkBAAAAAADg7lXElTtv3bq1WrdunWufMUaTJ0/W8OHD1b59e0nSe++9p6CgIC1YsEBdu3bV7t27tXjxYn377be6//77JUmvvfaa2rRpo5dfflkhISGaPXu2Ll26pHfffVceHh6qVq2akpKS9OqrrzoFdAAAAAAAAEBhumWv8ZacnKyUlBS1aNHC0ebv76/69esrMTFRkpSYmKiAgABH6CZJLVq0kJubmzZv3uwY06hRI3l4eDjGxMTEaM+ePTp16lSu+05PT1daWprTAwAAAAAAAMiPWzZ4S0lJkSQFBQU5tQcFBTn6UlJSVLp0aaf+IkWKKDAw0GlMbtu4ch9XGzdunPz9/R2P0NDQG58QAAAAAAAA7iq3bPDmSgkJCTp9+rTjcejQIVeXBAAAAAAAgNvMLRu8BQcHS5KOHj3q1H706FFHX3BwsI4dO+bUn5GRoZMnTzqNyW0bV+7jana7XX5+fk4PAAAAAAAAID9u2eAtPDxcwcHBWrFihaMtLS1NmzdvVnR0tCQpOjpaqamp2rJli2PMypUrlZWVpfr16zvGrF27VpcvX3aMWbZsmapUqaLixYvfpNkAAAAAAADgbuPS4O3s2bNKSkpSUlKSpD9uqJCUlKSDBw/KZrNp0KBBeuGFF/TFF19ox44dio2NVUhIiDp06CBJioiIUKtWrdSnTx9988032rBhgwYOHKiuXbsqJCREktStWzd5eHiod+/e2rlzp+bOnaspU6YoPj7eRbMGAAAAAADA3aCIK3f+3XffqWnTpo7l7DAsLi5OM2fO1NChQ3Xu3Dn17dtXqamp+stf/qLFixfL09PTsc7s2bM1cOBANW/eXG5uburUqZP++9//Ovr9/f21dOlSDRgwQFFRUSpZsqRGjBihvn373ryJAgAAAAAA4K7j0uCtSZMmMsZcs99ms2nMmDEaM2bMNccEBgZqzpw5191PjRo1tG7dugLXCQAAAAAAAOTXLXuNNwAAAAAAAOB2RvAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAAC9zSwduoUaNks9mcHlWrVnX0X7x4UQMGDFCJEiXk6+urTp066ejRo07bOHjwoNq2bStvb2+VLl1aQ4YMUUZGxs2eCgAAAAAAAO4yRVxdwJ+pVq2ali9f7lguUuT/Sh48eLAWLVqkjz/+WP7+/ho4cKA6duyoDRs2SJIyMzPVtm1bBQcHa+PGjTpy5IhiY2NVtGhRvfTSSzd9LgAAAAAAALh73PLBW5EiRRQcHJyj/fTp03rnnXc0Z84cNWvWTJI0Y8YMRUREaNOmTWrQoIGWLl2qXbt2afny5QoKClKtWrU0duxYDRs2TKNGjZKHh8fNng4AAAAAAADuErf0qaaStHfvXoWEhOiee+5R9+7ddfDgQUnSli1bdPnyZbVo0cIxtmrVqipfvrwSExMlSYmJiapevbqCgoIcY2JiYpSWlqadO3dec5/p6elKS0tzegAAAAAAAAD5cUsHb/Xr19fMmTO1ePFiTZs2TcnJyWrYsKHOnDmjlJQUeXh4KCAgwGmdoKAgpaSkSJJSUlKcQrfs/uy+axk3bpz8/f0dj9DQ0MKdGAAAAAAAAO54t/Sppq1bt3b8u0aNGqpfv77CwsI0b948eXl5WbbfhIQExcfHO5bT0tII3wAAAAAAAJAvt/QRb1cLCAjQvffeq3379ik4OFiXLl1Samqq05ijR486rgkXHByc4y6n2cu5XTcum91ul5+fn9MDAAAAAAAAyI/bKng7e/as9u/frzJlyigqKkpFixbVihUrHP179uzRwYMHFR0dLUmKjo7Wjh07dOzYMceYZcuWyc/PT5GRkTe9fgAAAAAAANw9bulTTZ977jm1a9dOYWFhOnz4sEaOHCl3d3c99thj8vf3V+/evRUfH6/AwED5+fnpqaeeUnR0tBo0aCBJatmypSIjI9WjRw9NmDBBKSkpGj58uAYMGCC73e7i2QEAAAAAAOBOdksHb7/++qsee+wxnThxQqVKldJf/vIXbdq0SaVKlZIkTZo0SW5uburUqZPS09MVExOjN954w7G+u7u7vvzyS/Xv31/R0dHy8fFRXFycxowZ46opAQAAAAAA4C5xSwdvH3300XX7PT09NXXqVE2dOvWaY8LCwvTVV18VdmkAAAAAAADAdd1W13gDAAAAAAAAbhcEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABggbsqeJs6daoqVKggT09P1a9fX998842rSwIAAAAAAMAd6q4J3ubOnav4+HiNHDlS33//vWrWrKmYmBgdO3bM1aUBAAAAAADgDnTXBG+vvvqq+vTpo8cff1yRkZGaPn26vL299e6777q6NAAAAAAAANyBiri6gJvh0qVL2rJlixISEhxtbm5uatGihRITE3OMT09PV3p6umP59OnTkqS0tDTriy2AzPQLri4BAArVrfp5e6vj+wDAnYbvg/zjuwDAneZW/S7IrssYc91xd0Xw9vvvvyszM1NBQUFO7UFBQfrxxx9zjB83bpxGjx6doz00NNSyGgEA/8f/tX6uLgEAcAvg+wAAcKt/F5w5c0b+/v7X7L8rgrf8SkhIUHx8vGM5KytLJ0+eVIkSJWSz2VxYGeA6aWlpCg0N1aFDh+Tn5+fqcgAALsL3AQCA7wLgjyPdzpw5o5CQkOuOuyuCt5IlS8rd3V1Hjx51aj969KiCg4NzjLfb7bLb7U5tAQEBVpYI3Db8/Pz4cgUA8H0AAOC7AHe96x3plu2uuLmCh4eHoqKitGLFCkdbVlaWVqxYoejoaBdWBgAAAAAAgDvVXXHEmyTFx8crLi5O999/v+rVq6fJkyfr3Llzevzxx11dGgAAAAAAAO5Ad03w9uijj+r48eMaMWKEUlJSVKtWLS1evDjHDRcA5M5ut2vkyJE5TsMGANxd+D4AAPBdAOSdzfzZfU8BAAAAAAAA5NtdcY03AAAAAAAA4GYjeAMAAAAAAAAsQPAGAAAAAAAAWIDgDbjLVahQQZMnT77uGJvNpgULFlyz/8CBA7LZbEpKSsrzfps0aaJBgwbleTwAwBqrV6+WzWZTamrqDW1n5syZCggIKJSarqew6gUA5A+/vwMFQ/AG3KZ69uwpm82m//znP07tCxYskM1mu6m1hIaG6siRI7rvvvtu6n4B4G6S/blvs9lUtGhRhYeHa+jQobp48aLl+65QoYJj3+7u7goJCVHv3r116tQpy/cNAHe748ePq3///ipfvrzsdruCg4MVExOjDRs23NQ6PvvsM40dO/am7hO4ExC8AbcxT09PjR8/3uV/+Li7uys4OFhFihRxaR0AcKdr1aqVjhw5op9//lmTJk3Sm2++qZEjR96UfY8ZM0ZHjhzRwYMHNXv2bK1du1ZPP/30Tdk3ANzNOnXqpK1bt2rWrFn66aef9MUXX6hJkyY6ceLETa0jMDBQxYoVu6n7BO4EBG/AbaxFixYKDg7WuHHjrjlm/fr1atiwoby8vBQaGqqnn35a586dcxpz5swZPfbYY/Lx8VHZsmU1derUHNs5cuSIWrduLS8vL91zzz365JNPHH25nWq6Zs0a1atXT3a7XWXKlNE///lPZWRkXLPOU6dOKTY2VsWLF5e3t7dat26tvXv35uPZAIA7X/aRDqGhoerQoYNatGihZcuWOfqzsrI0btw4hYeHy8vLSzVr1nT6vJakr776Svfee6+8vLzUtGlTHThwIE/7LlasmIKDg1W2bFk1bdpUcXFx+v7776+7zueff646derI09NT99xzj0aPHu30XWCz2fT222/rb3/7m7y9vVW5cmV98cUXhVIvANwJUlNTtW7dOo0fP15NmzZVWFiY6tWrp4SEBD388MOSpFdffVXVq1eXj4+PQkND9eSTT+rs2bOObWRfCmDJkiWKiIiQr6+v4z9ysmVkZOjpp59WQECASpQooWHDhikuLk4dOnRwjLn6VNPr/f6elpYmLy8vff31107zmT9/vooVK6bz589Lkg4dOqQuXbooICBAgYGBat++vdPn/OrVq1WvXj35+PgoICBADz74oH755RdH/599zwC3AoI34Dbm7u6ul156Sa+99pp+/fXXHP379+9Xq1at1KlTJ23fvl1z587V+vXrNXDgQKdxEydOVM2aNbV161b985//1DPPPOP0h5wkPf/88+rUqZO2bdum7t27q2vXrtq9e3eudf32229q06aN6tatq23btmnatGl655139MILL1xzLj179tR3332nL774QomJiTLGqE2bNrp8+XIBnhkAuPP98MMP2rhxozw8PBxt48aN03vvvafp06dr586dGjx4sP7+979rzZo1kv74A6djx45q166dkpKS9MQTT+if//xnvvf922+/aeHChapfv/41x6xbt06xsbF65plntGvXLr355puaOXOmXnzxRadxo0ePVpcuXbR9+3a1adNG3bt318mTJwu1XgC4Xfn6+srX11cLFixQenp6rmPc3Nz03//+Vzt37tSsWbO0cuVKDR061GnM+fPn9fLLL+v999/X2rVrdfDgQT333HOO/vHjx2v27NmaMWOGNmzYoLS0tOte41m6/u/vfn5++utf/6o5c+Y4rTN79mx16NBB3t7eunz5smJiYlSsWDGtW7dOGzZscISCly5dUkZGhjp06KDGjRtr+/btSkxMVN++fR2X1cnr9wzgcgbAbSkuLs60b9/eGGNMgwYNTK9evYwxxsyfP99kv7V79+5t+vbt67TeunXrjJubm7lw4YIxxpiwsDDTqlUrpzGPPvqoad26tWNZkunXr5/TmPr165v+/fsbY4xJTk42kszWrVuNMcb861//MlWqVDFZWVmO8VOnTjW+vr4mMzPTGGNM48aNzTPPPGOMMeann34yksyGDRsc43///Xfj5eVl5s2bl+/nBgDuRHFxccbd3d34+PgYu91uJBk3NzfzySefGGOMuXjxovH29jYbN250Wq93797mscceM8YYk5CQYCIjI536hw0bZiSZU6dOXXPfYWFhxsPDw/j4+BhPT08jydSvX99pnRkzZhh/f3/HcvPmzc1LL73ktJ3333/flClTxrEsyQwfPtyxfPbsWSPJfP311zdULwDcST755BNTvHhx4+npaR544AGTkJBgtm3bds3xH3/8sSlRooRjecaMGUaS2bdvn6Nt6tSpJigoyLEcFBRkJk6c6FjOyMgw5cuXd/y9YUz+f3+fP3++8fX1NefOnTPGGHP69Gnj6enp+Ix///33c/zNkJ6ebry8vMySJUvMiRMnjCSzevXqXOeZl+8Z4FbAEW/AHWD8+PGaNWtWjiPQtm3bppkzZzr+p8zX11cxMTHKyspScnKyY1x0dLTTetHR0Tm2lZcx2Xbv3q3o6Ginmzw8+OCDOnv2bK5H5u3evVtFihRxOnKiRIkSqlKlyjX3AQB3o6ZNmyopKUmbN29WXFycHn/8cXXq1EmStG/fPp0/f14PPfSQ0+f+e++9p/3790v64/P26qPUrv58v5YhQ4YoKSlJ27dv14oVKyRJbdu2VWZmZq7jt23bpjFjxjjV0qdPHx05csRxipEk1ahRw/FvHx8f+fn56dixYzdcLwDcKTp16qTDhw/riy++UKtWrbR69WrVqVNHM2fOlCQtX75czZs3V9myZVWsWDH16NFDJ06ccPqs9fb2VsWKFR3LZcqUcXzWnj59WkePHlW9evUc/e7u7oqKirpmTXn5/b1NmzYqWrSo4xICn376qfz8/NSiRQtJf3xP7Nu3T8WKFXN8TwQGBurixYvav3+/AgMD1bNnT8XExKhdu3aaMmWK0+mxef2eAVyNK6EDd4BGjRopJiZGCQkJ6tmzp6P97Nmz+sc//pHrxa/Lly9/EysEABQGHx8fVapUSZL07rvvqmbNmnrnnXfUu3dvx/V8Fi1apLJlyzqtZ7fbb3jfJUuWdOy7cuXKmjx5sqKjo7Vq1SrHH1FXOnv2rEaPHq2OHTvm6PP09HT8u2jRok59NptNWVlZN1wvANxJPD099dBDD+mhhx7S888/ryeeeEIjR45UkyZN9Ne//lX9+/fXiy++qMDAQK1fv169e/fWpUuX5O3tLSn3z1pjjKU1e3h46JFHHtGcOXPUtWtXzZkzR48++qjjhmxnz55VVFSUZs+enWPdUqVKSZJmzJihp59+WosXL9bcuXM1fPhwLVu2TA0aNMjz9wzgagRvwB3iP//5j2rVqqUqVao42urUqaNdu3Y5/lC6lk2bNuVYjoiIyNEWGxvrtFy7du1ctxcREaFPP/1UxhjHUW8bNmxQsWLFVK5cuVzHZ2RkaPPmzXrggQckSSdOnNCePXsUGRl53doB4G7l5uamf/3rX4qPj1e3bt0UGRkpu92ugwcPqnHjxrmuExERkePmBVd/B+SVu7u7JOnChQu59tepU0d79uz50++g6ynMegHgThIZGakFCxZoy5YtysrK0iuvvCI3tz9OaJs3b16+tuXv76+goCB9++23atSokSQpMzNT33//vWrVqpXrOnn9/b179+566KGHtHPnTq1cudLpms916tTR3LlzVbp0afn5+V2zvtq1a6t27dpKSEhQdHS05syZowYNGhTK9wxwM3CqKXCHqF69urp3767//ve/jrZhw4Zp48aNGjhwoJKSkrR37159/vnnOW6usGHDBk2YMEE//fSTpk6dqo8//ljPPPOM05iPP/5Y7777rn766SeNHDlS33zzTY7tZHvyySd16NAhPfXUU/rxxx/1+eefa+TIkYqPj3f8QnClypUrq3379urTp4/Wr1+vbdu26e9//7vKli2r9u3bF8KzAwB3ps6dO8vd3V1Tp05VsWLF9Nxzz2nw4MGaNWuW9u/fr++//16vvfaaZs2aJUnq16+f9u7dqyFDhmjPnj2aM2eO41SlP3PmzBmlpKToyJEj+uabbzRkyBCVKlXK8QfX1UaMGKH33ntPo0eP1s6dO7V792599NFHGj58eJ7ndyP1AsCd4MSJE2rWrJk++OADbd++XcnJyfr44481YcIEtW/fXpUqVdLly5f12muv6eeff9b777+v6dOn53s/Tz31lMaNG6fPP/9ce/bs0TPPPKNTp045XTrmSnn9/b1Ro0YKDg5W9+7dFR4e7nRqavfu3VWyZEm1b99e69atU3JyslavXq2nn35av/76q5KTk5WQkKDExET98ssvWrp0qfbu3es4QKAwvmeAm8LVF5kDUDBX3lwhW3JysvHw8DBXvrW/+eYb89BDDxlfX1/j4+NjatSoYV588UVHf1hYmBk9erTp3Lmz8fb2NsHBwWbKlClO25Vkpk6dah566CFjt9tNhQoVzNy5c532qyturmCMMatXrzZ169Y1Hh4eJjg42AwbNsxcvnzZ0X/lxVmNMebkyZOmR48ext/f33h5eZmYmBjz008/3eCzBAB3jtw+940xZty4caZUqVLm7NmzJisry0yePNlUqVLFFC1a1JQqVcrExMSYNWvWOMYvXLjQVKpUydjtdtOwYUPz7rvv5unmCpIcj1KlSpk2bdo4fe5ffXMFY4xZvHixeeCBB4yXl5fx8/Mz9erVM2+99ZajX5KZP3++0zr+/v5mxowZN1QvANwpLl68aP75z3+aOnXqGH9/f+Pt7W2qVKlihg8fbs6fP2+MMebVV181ZcqUcfwO/d577zl9Tub2+XzlDdmMMeby5ctm4MCBxs/PzxQvXtwMGzbMdO7c2XTt2tUxpqC/vw8dOtRIMiNGjMjRd+TIERMbG2tKlixp7Ha7ueeee0yfPn3M6dOnTUpKiunQoYMpU6aM8fDwMGFhYWbEiBGOm7UZ8+ffM8CtwGaMxSd2AwAAAACA20ZWVpYiIiLUpUsXjR071tXlALc1rvEGAAAAAMBdLPtUzsaNGys9PV2vv/66kpOT1a1bN1eXBtz2uMYbAAAAAAB3MTc3N82cOVN169bVgw8+qB07dmj58uU5brgGIP841RQAAAAAAACwAEe8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAA5MmBAwdks9mUlJTk6lIAAABuCzZjjHF1EQAAALj1ZWZm6vjx4ypZsqSKFCmSp3WaNGmiWrVqafLkydYWBwAAcAvK229MAAAAuKtdunRJHh4eCg4OdnUpAAAAtw1ONQUAALjDvPXWWwoJCVFWVpZTe/v27dWrVy/t379f7du3V1BQkHx9fVW3bl0tX77caWyFChU0duxYxcbGys/PT3379s31VNMffvhBrVu3lq+vr4KCgtSjRw/9/vvvkqSePXtqzZo1mjJlimw2m2w2m5KTk1WpUiW9/PLLTvtLSkqSzWbTvn37rHlSAAAAXIDgDQAA4A7TuXNnnThxQqtWrXK0nTx5UosXL1b37t119uxZtWnTRitWrNDWrVvVqlUrtWvXTgcPHnTazssvv6yaNWtq69atev7553PsJzU1Vc2aNVPt2rX13XffafHixTp69Ki6dOkiSZoyZYqio6PVp08fHTlyREeOHFH58uXVq1cvzZgxw2lbM2bMUKNGjVSpUiULnhEAAADX4BpvAAAAd6AOHTqoRIkSeueddyT9cRTc6NGjdejQIbm55fy/1/vuu0/9+vXTwIEDJf1xxFvt2rU1f/58x5gDBw4oPDxcW7duVa1atfTCCy9o3bp1WrJkiWPMr7/+qtDQUO3Zs0f33ntvrtd4O3z4sMqXL6+NGzeqXr16unz5skJCQvTyyy8rLi7OomcEAADg5uOINwAAgDtQ9+7d9emnnyo9PV2SNHv2bHXt2lVubm46e/asnnvuOUVERCggIEC+vr7avXt3jiPe7r///uvuY9u2bVq1apV8fX0dj6pVq0qS9u/ff831QkJC1LZtW7377ruSpIULFyo9PV2dO3e+kSkDAADccri5AgAAwB2oXbt2MsZo0aJFqlu3rtatW6dJkyZJkp577jktW7ZML7/8sipVqiQvLy898sgjunTpktM2fHx8rruPs2fPql27dho/fnyOvjJlylx33SeeeEI9evTQpEmTNGPGDD366KPy9vbO5ywBAABubQRvAAAAdyBPT0917NhRs2fP1r59+1SlShXVqVNHkrRhwwb17NlTf/vb3yT9EaAdOHAg3/uoU6eOPv30U1WoUEFFiuT+a6WHh4cyMzNztLdp00Y+Pj6aNm2aFi9erLVr1+Z7/wAAALc6TjUFAAC4Q3Xv3l2LFi3Su+++q+7duzvaK1eurM8++0xJSUnatm2bunXrluMOqHkxYMAAnTx5Uo899pi+/fZb7d+/X0uWLNHjjz/uCNsqVKigzZs368CBA/r9998d+3F3d1fPnj2VkJCgypUrKzo6unAmDQAAcAsheAMAALhDNWvWTIGBgdqzZ4+6devmaH/11VdVvHhxPfDAA2rXrp1iYmIcR8PlR0hIiDZs2KDMzEy1bNlS1atX16BBgxQQEOC4gcNzzz0nd3d3RUZGqlSpUk7Xkevdu7cuXbqkxx9//MYnCwAAcAvirqYAAABwiXXr1ql58+Y6dOiQgoKCXF0OAABAoSN4AwAAwE2Vnp6u48ePKy4uTsHBwZo9e7arSwIAALAEp5oCAADgpvrwww8VFham1NRUTZgwwdXlAAAAWIYj3gAAAAAAAAALcMQbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwwP8DoJjsUACTVHgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(15,5))\n",
+ "sns.countplot(data=data, x='variety')\n",
+ "plt.title(\"count wines rate depending on the variety\")\n",
+ "plt.xlabel(\"variety\")\n",
+ "plt.ylabel(\"count\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Tmi7YJ7qXUFt"
+ },
+ "source": [
+ "Заметим, что разница между столбцами не очень большая, значит, скорее всего, точность предсказаний будет не сильно отличться."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "s-Ch6pnlekYR"
+ },
+ "source": [
+ "Посмотрим на количество в зависимости от оценки"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "id": "aNIJf7NSTKqw",
+ "outputId": "ab4f6b3d-7100-4691-cb8c-79c45a1a0338"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGdElEQVR4nO3deViU9f7/8dcAsogCoiySiGTmlmnhhqVZckTtuKTp1+Lkkl85mVTmyTz+yjXN1FLTFrNTLiez7ZiWlWlmroSKa2qG5XZUsFTAlfXz+6OL+TqCMsyMLPp8XNdcl3Pfn3nf73tmPvDinvseLcYYIwAAgJucW1k3AAAAUB4QigAAAEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAq6r9u3bq3379mXdxg1j3LhxslgsZd2GyxS1P3Xq1NGAAQPKpqEy1r59e91xxx1l3YZDLBaLxo0bV9ZtwEmEItyUjh8/rnHjxmnHjh1l3UqFtmnTJo0bN07p6ell3QoqCOZeYS+//LKWLl1a1m1AkkdZNwCUhePHj2v8+PGqU6eOmjVrdt22s3LlyutWuzzYtGmTxo8frwEDBiggIKCs27kh7N+/X25uN+7fq6U190rbxYsX5eHh2K/Ul19+WQ8//LB69Ojh2qZQYoQi4Dry9PQs6xZK5Pz58/L19S3rNm5qXl5eZd0CHODt7V3WLcAFbtw/R1Dmjh07pkGDBiksLExeXl6KjIzUkCFDlJ2dbR3z22+/qXfv3goMDFTlypXVunVrffXVVzZ15s+fL4vFokOHDtks/+GHH2SxWPTDDz9YlxWck7B3717df//9qly5sm655RZNnTrV5nEtWrSQJA0cOFAWi0UWi0Xz588vcj927doli8WiL774wrosOTlZFotFd999t83Yzp07q1WrVjb9XH5OUUHPn3zyiSZNmqRatWrJ29tbHTp00IEDBwptOykpSZ06dZK/v78qV66s++67Txs3brQZc/bsWQ0bNkx16tSRl5eXgoOD9Ze//EXbtm0rcn8KFJzPsnfvXj366KOqVq2a7r33Xus+DxgwQLfeequ8vb0VGhqqxx9/XKdOnbJ5/IgRIyRJkZGR1ufx8tfpgw8+UFRUlHx8fBQYGKi+ffvq6NGj1+yrwIYNG9SiRQt5e3urbt26euedd6461p7tFLw3kpOT1aZNG/n4+CgyMlJz5swpVC8rK0tjx47VbbfdJi8vL4WHh+v5559XVlaWzTiLxaKEhAQtXbpUd9xxh7y8vNS4cWOtWLHC4f258pyigvf/xo0bNXz4cAUFBcnX11cPPfSQfv/9d5vH5ufna9y4cQoLC1PlypV1//33a+/evXafp3T+/Hn94x//UHh4uLy8vFS/fn29+uqrMsY4vN+Xs3fuXWv+FrD3NSpKSd4LJ0+e1KBBgxQSEiJvb281bdpUCxYsKDTuynOKCubXgQMHrEdS/f39NXDgQF24cMHmcefPn9eCBQusz0fBa+Xo3IbjOFKE6+L48eNq2bKl0tPTFR8frwYNGujYsWP67LPPdOHCBXl6eiotLU1t2rTRhQsX9PTTT6t69epasGCBunXrps8++0wPPfSQQ9s+c+aMOnXqpJ49e6pPnz767LPPNHLkSDVp0kSdO3dWw4YNNWHCBI0ZM0bx8fFq27atJKlNmzZF1rvjjjsUEBCgdevWqVu3bpKk9evXy83NTTt37lRmZqb8/PyUn5+vTZs2KT4+vtgeX3nlFbm5uem5555TRkaGpk6dqri4OCUlJVnHfP/99+rcubOioqI0duxYubm5ad68eXrggQe0fv16tWzZUpL0xBNP6LPPPlNCQoIaNWqkU6dOacOGDdq3b1+h0FaU3r17q169enr55Zetv/xWrVql3377TQMHDlRoaKj27NmjuXPnas+ePfrxxx9lsVjUs2dP/fLLL1q8eLFmzJihGjVqSJKCgoIkSZMmTdLo0aPVp08f/e///q9+//13zZ49W+3atdP27duv+XHb7t271bFjRwUFBWncuHHKzc3V2LFjFRISUmhsSbZz5swZdenSRX369NEjjzyiTz75REOGDJGnp6cef/xxSX8Gi27dumnDhg2Kj49Xw4YNtXv3bs2YMUO//PJLoXM/NmzYoCVLlujJJ59U1apVNWvWLPXq1UtHjhxR9erVS7w/V/PUU0+pWrVqGjt2rA4dOqSZM2cqISFBH3/8sXXMqFGjNHXqVHXt2lWxsbHauXOnYmNjdenSpWLrG2PUrVs3rVmzRoMGDVKzZs307bffasSIETp27JhmzJhR4v2+kj1zr7j5K5X8NSqKPe+Fixcvqn379jpw4IASEhIUGRmpTz/9VAMGDFB6erqeeeaZYrfTp08fRUZGavLkydq2bZv+9a9/KTg4WFOmTJEk/fvf/9b//u//qmXLltafHXXr1pXk/NyGAwxwHfTr18+4ubmZLVu2FFqXn59vjDFm2LBhRpJZv369dd3Zs2dNZGSkqVOnjsnLyzPGGDNv3jwjyRw8eNCmzpo1a4wks2bNGuuy++67z0gyCxcutC7LysoyoaGhplevXtZlW7ZsMZLMvHnz7NqfBx980LRs2dJ6v2fPnqZnz57G3d3dfPPNN8YYY7Zt22YkmWXLltn0c9999xXquWHDhiYrK8u6/PXXXzeSzO7du63PUb169UxsbKz1+TLGmAsXLpjIyEjzl7/8xbrM39/fDB061K79uNzYsWONJPPII48UWnfhwoVCyxYvXmwkmXXr1lmXTZs2rcjX5tChQ8bd3d1MmjTJZvnu3buNh4dHoeVX6tGjh/H29jaHDx+2Ltu7d69xd3c3l//YKsl2Ct4br732mnVZVlaWadasmQkODjbZ2dnGGGP+/e9/Gzc3N5v3pTHGzJkzx0gyGzdutC6TZDw9Pc2BAwesy3bu3GkkmdmzZ5d4f4wxJiIiwvTv3996v+D9HxMTY/NeePbZZ427u7tJT083xhiTmppqPDw8TI8ePWzqjRs3zkiyqVmUpUuXGklm4sSJNssffvhhY7FYbPbR3v0uyrXmnr3ztySvUVHsfS/MnDnTSDIffPCBdVx2draJjo42VapUMZmZmTbPydixY633C+bX448/brPthx56yFSvXt1mma+vb5Gvj6NzG47j4zO4XH5+vpYuXaquXbuqefPmhdYXXIL89ddfq2XLltaPbCSpSpUqio+P16FDh7R3716Htl+lShX97W9/s9739PRUy5Yt9dtvvzlUT5Latm2rbdu26fz585L+/Cu5S5cuatasmdavXy/pz6NHFovFZn+uZuDAgTbnGxX8xVzQ444dO5SSkqJHH31Up06d0h9//KE//vhD58+fV4cOHbRu3Trl5+dLkgICApSUlKTjx487tG9PPPFEoWU+Pj7Wf1+6dEl//PGHWrduLUl2HbpfsmSJ8vPz1adPH2vvf/zxh0JDQ1WvXj2tWbPmqo/Ny8vTt99+qx49eqh27drW5Q0bNlRsbKxT2/Hw8NDf//53631PT0/9/e9/18mTJ5WcnCxJ+vTTT9WwYUM1aNDApuYDDzwgSYVqxsTEWP+yl6Q777xTfn5+1teyJPtzLfHx8TaX77dt21Z5eXk6fPiwJGn16tXKzc3Vk08+afO4p556yq76X3/9tdzd3fX000/bLP/HP/4hY4y++eYbm+XF7bej7Jm/JX2NimLPe+Hrr79WaGioHnnkEeu4SpUq6emnn9a5c+e0du3aYrdz5fxq27atTp06pczMzGIf6+zcRsnx8Rlc7vfff1dmZmax3zdy+PBhm/NvCjRs2NC63pHvLKlVq1ah736pVq2adu3aVeJaBdq2bavc3FwlJiYqPDxcJ0+eVNu2bbVnzx6bUNSoUSMFBgYWW+/yX44F/Ul/HtKXpJSUFElS//79r1ojIyND1apV09SpU9W/f3+Fh4crKipKXbp0Ub9+/XTrrbfatW+RkZGFlp0+fVrjx4/XRx99pJMnTxbabnFSUlJkjFG9evWKXF+pUqWrPvb333/XxYsXi3xs/fr19fXXXzu8nbCwsEInkt9+++2SpEOHDql169ZKSUnRvn37rB8DXunK5+PK11L68/UseC1Lsj/XUtx7piAc3XbbbTbjAgMDrWOv5fDhwwoLC1PVqlVtll8+H6/VT0FPBf04yp75W9LXqCj2vBcOHz6sevXqFboa8GrPSVGu9br5+fld87HOzm2UHKEI5d7VvqwvLy+vyOXu7u5FLjdXnCxaEs2bN5e3t7fWrVun2rVrKzg4WLfffrvatm2rt956S1lZWVq/fr3d50EV12PBUaBp06Zd9bLlKlWqSPrznIW2bdvq888/18qVKzVt2jRNmTJFS5YssZ6DcS2XHxUq0KdPH23atEkjRoxQs2bNVKVKFeXn56tTp07W3q4lPz9fFotF33zzTZH7WtC7s67HdvLz89WkSRNNnz69yPXh4eE296/H+60opbUde12vfuypW9LXqCw58zw5O7dRcoQiuFxQUJD8/Pz0008/XXNcRESE9u/fX2j5zz//bF0v/d9fVld+QaA9f6VdTUm/FbngEP769etVu3Zt68ddbdu2VVZWlhYtWqS0tDS1a9fO4Z4uV/CxhJ+fn2JiYoodX7NmTT355JN68skndfLkSd19992aNGmSQz84z5w5o9WrV2v8+PEaM2aMdXnB0avLXe15rFu3rowxioyMtP71ba+goCD5+PgUub0r3y8l3c7x48cLfe3AL7/8IunPq74Kau7cuVMdOnRwybdnl2R/nFEwXw4cOGBz9O/UqVN2Hb2JiIjQd999p7Nnz9ocLbpyPjrLFc+pK14je94LERER2rVrl/Lz822OFpXmc+LKuY3icU4RXM7NzU09evTQl19+qa1btxZaX/AXUpcuXbR582YlJiZa150/f15z585VnTp11KhRI0n/FxDWrVtnHZeXl6e5c+c63GPBD8KSfBNz27ZtlZSUpDVr1lhDUY0aNdSwYUPrlSQFy50VFRWlunXr6tVXX9W5c+cKrS+4FDsvL6/Qx1nBwcEKCwuz69LkohT8ZXvlX7IzZ84sNPZqz2PPnj3l7u6u8ePHF6pjjLG5tL+o7cfGxmrp0qU6cuSIdfm+ffv07bffOrWd3Nxcm0vhs7Oz9c477ygoKEhRUVGS/vzr/NixY3r33XcL9Xbx4kXreWX2Ksn+OKNDhw7y8PDQ22+/bbP8jTfesOvxXbp0UV5eXqHxM2bMkMVicdkvYUfm3pVc8RrZ817o0qWLUlNTba7wy83N1ezZs1WlShXdd999Du/D5Xx9fQs9H9djbqN4HCnCdfHyyy9r5cqVuu+++6yXzJ44cUKffvqpNmzYoICAAP3zn//U4sWL1blzZz399NMKDAzUggULdPDgQf3nP/+x/mXWuHFjtW7dWqNGjdLp06cVGBiojz76SLm5uQ73V7duXQUEBGjOnDmqWrWqfH191apVqyLPrynQtm1bTZo0SUePHrUJP+3atdM777yjOnXqqFatWg73dDk3Nzf961//UufOndW4cWMNHDhQt9xyi44dO6Y1a9bIz89PX375pc6ePatatWrp4YcfVtOmTVWlShV999132rJli1577TWHtu3n56d27dpp6tSpysnJ0S233KKVK1fq4MGDhcYW/PJ44YUX1LdvX1WqVEldu3ZV3bp1NXHiRI0aNUqHDh1Sjx49VLVqVR08eFCff/654uPj9dxzz121h/Hjx2vFihVq27atnnzySesvosaNG9ucW1LS7YSFhWnKlCk6dOiQbr/9dn388cfasWOH5s6daz3/6LHHHtMnn3yiJ554QmvWrNE999yjvLw8/fzzz/rkk0/07bffFnkBwbXYuz/OCAkJ0TPPPKPXXntN3bp1U6dOnbRz50598803qlGjRrFHVLp27ar7779fL7zwgg4dOqSmTZtq5cqVWrZsmYYNG2ZzUrUzHJl7V3LFa2TPeyE+Pl7vvPOOBgwYoOTkZNWpU0efffaZNm7cqJkzZxY6/8pRUVFR+u677zR9+nSFhYUpMjJS9evXd/nchh1K+3I33DwOHz5s+vXrZ4KCgoyXl5e59dZbzdChQ20uRf/111/Nww8/bAICAoy3t7dp2bKlWb58eaFav/76q4mJiTFeXl4mJCTE/L//9//MqlWrirwkv3HjxoUe379/fxMREWGzbNmyZaZRo0bGw8PDrsvzMzMzjbu7u6latarJzc21Lv/ggw+MJPPYY48VeszVLsn/9NNPbcYdPHiwyB62b99uevbsaapXr268vLxMRESE6dOnj1m9erUx5s/LiEeMGGGaNm1qqlatanx9fU3Tpk3NW2+9dc19Meb/Lhn+/fffC63773//ax566CETEBBg/P39Te/evc3x48cLXXZsjDEvvfSSueWWW4ybm1uhy/P/85//mHvvvdf4+voaX19f06BBAzN06FCzf//+Yvtbu3atiYqKMp6enubWW281c+bMsfZ8JXu2U/De2Lp1q4mOjjbe3t4mIiLCvPHGG4XqZWdnmylTppjGjRsbLy8vU61aNRMVFWXGjx9vMjIyrOMkFXnJ9JWX1Zdkf652Sf6VX29R1FdS5ObmmtGjR5vQ0FDj4+NjHnjgAbNv3z5TvXp188QTTxT5PF/u7Nmz5tlnnzVhYWGmUqVKpl69embatGk2XwVQ0v0uytXmXknmr72vUVFK8l5IS0szAwcONDVq1DCenp6mSZMmRf6suHJuXG1+FfUVIz///LNp166d8fHxsX59gjNzG46zGFNGZ+kBQClq3769/vjjj2LPdbvRpKenq1q1apo4caJeeOGFsm6nXLhZ3wsoHucUAcAN4uLFi4WWFZwLdvl/NwOgaJxTBAA3iI8//ljz589Xly5dVKVKFW3YsEGLFy9Wx44ddc8995R1e0C5RygCgBvEnXfeKQ8PD02dOlWZmZnWk68nTpxY1q0BFQLnFAEAAIhzigAAACQRigAAACRxTpFd8vPzdfz4cVWtWtUlX1EPAACuP2OMzp49q7CwsEL/sW9RCEV2OH78eLn6DwYBAID9jh49atf/OEAoskPBV7kfPXpUfn5+ZdwNAACwR2ZmpsLDw+3+L1kIRXYo+MjMz8+PUAQAQAVj76kvnGgNAAAgQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkyaOsGwBQ/kWNWOiyWsnT+rmsFgC4EkeKAAAARCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQxJc3AjcEvlwRAJzHkSIAAAARigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACTxjdYAbnB82zcAe3GkCAAAQIQiAAAASWUcitatW6euXbsqLCxMFotFS5cuta7LycnRyJEj1aRJE/n6+iosLEz9+vXT8ePHbWqcPn1acXFx8vPzU0BAgAYNGqRz587ZjNm1a5fatm0rb29vhYeHa+rUqaWxewAAoAIp01B0/vx5NW3aVG+++WahdRcuXNC2bds0evRobdu2TUuWLNH+/fvVrVs3m3FxcXHas2ePVq1apeXLl2vdunWKj4+3rs/MzFTHjh0VERGh5ORkTZs2TePGjdPcuXOv+/4BAICKo0xPtO7cubM6d+5c5Dp/f3+tWrXKZtkbb7yhli1b6siRI6pdu7b27dunFStWaMuWLWrevLkkafbs2erSpYteffVVhYWFadGiRcrOztb7778vT09PNW7cWDt27ND06dNtwhMAALi5VahzijIyMmSxWBQQECBJSkxMVEBAgDUQSVJMTIzc3NyUlJRkHdOuXTt5enpax8TGxmr//v06c+ZMkdvJyspSZmamzQ0AANzYKkwounTpkkaOHKlHHnlEfn5+kqTU1FQFBwfbjPPw8FBgYKBSU1OtY0JCQmzGFNwvGHOlyZMny9/f33oLDw939e4AAIBypkKEopycHPXp00fGGL399tvXfXujRo1SRkaG9Xb06NHrvk0AAFC2yv2XNxYEosOHD+v777+3HiWSpNDQUJ08edJmfG5urk6fPq3Q0FDrmLS0NJsxBfcLxlzJy8tLXl5ertwNAABQzpXrI0UFgSglJUXfffedqlevbrM+Ojpa6enpSk5Oti77/vvvlZ+fr1atWlnHrFu3Tjk5OdYxq1atUv369VWtWrXS2REAAFDulWkoOnfunHbs2KEdO3ZIkg4ePKgdO3boyJEjysnJ0cMPP6ytW7dq0aJFysvLU2pqqlJTU5WdnS1JatiwoTp16qTBgwdr8+bN2rhxoxISEtS3b1+FhYVJkh599FF5enpq0KBB2rNnjz7++GO9/vrrGj58eFntNgAAKIfK9OOzrVu36v7777feLwgq/fv317hx4/TFF19Ikpo1a2bzuDVr1qh9+/aSpEWLFikhIUEdOnSQm5ubevXqpVmzZlnH+vv7a+XKlRo6dKiioqJUo0YNjRkzhsvxAQCAjTINRe3bt5cx5qrrr7WuQGBgoD788MNrjrnzzju1fv36EvcHAABuHuX6nCIAAIDSQigCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAECS5FHWDQC4uUWNWOiyWsnT+rmsFoCbD0eKAAAARCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQVMahaN26deratavCwsJksVi0dOlSm/XGGI0ZM0Y1a9aUj4+PYmJilJKSYjPm9OnTiouLk5+fnwICAjRo0CCdO3fOZsyuXbvUtm1beXt7Kzw8XFOnTr3euwYAACqYMg1F58+fV9OmTfXmm28WuX7q1KmaNWuW5syZo6SkJPn6+io2NlaXLl2yjomLi9OePXu0atUqLV++XOvWrVN8fLx1fWZmpjp27KiIiAglJydr2rRpGjdunObOnXvd9w8AAFQcHmW58c6dO6tz585FrjPGaObMmXrxxRfVvXt3SdLChQsVEhKipUuXqm/fvtq3b59WrFihLVu2qHnz5pKk2bNnq0uXLnr11VcVFhamRYsWKTs7W++//748PT3VuHFj7dixQ9OnT7cJTwAA4OZWbs8pOnjwoFJTUxUTE2Nd5u/vr1atWikxMVGSlJiYqICAAGsgkqSYmBi5ubkpKSnJOqZdu3by9PS0jomNjdX+/ft15syZUtobAABQ3pXpkaJrSU1NlSSFhITYLA8JCbGuS01NVXBwsM16Dw8PBQYG2oyJjIwsVKNgXbVq1QptOysrS1lZWdb7mZmZTu4NAAAo78rtkaKyNHnyZPn7+1tv4eHhZd0SAAC4zsptKAoNDZUkpaWl2SxPS0uzrgsNDdXJkydt1ufm5ur06dM2Y4qqcfk2rjRq1ChlZGRYb0ePHnV+hwAAQLlWbkNRZGSkQkNDtXr1auuyzMxMJSUlKTo6WpIUHR2t9PR0JScnW8d8//33ys/PV6tWraxj1q1bp5ycHOuYVatWqX79+kV+dCZJXl5e8vPzs7kBAIAbW5mGonPnzmnHjh3asWOHpD9Prt6xY4eOHDkii8WiYcOGaeLEifriiy+0e/du9evXT2FhYerRo4ckqWHDhurUqZMGDx6szZs3a+PGjUpISFDfvn0VFhYmSXr00Ufl6empQYMGac+ePfr444/1+uuva/jw4WW01wAAoDwq0xOtt27dqvvvv996vyCo9O/fX/Pnz9fzzz+v8+fPKz4+Xunp6br33nu1YsUKeXt7Wx+zaNEiJSQkqEOHDnJzc1OvXr00a9Ys63p/f3+tXLlSQ4cOVVRUlGrUqKExY8ZwOT4AALBRpqGoffv2MsZcdb3FYtGECRM0YcKEq44JDAzUhx9+eM3t3HnnnVq/fr3DfQIAgBtfuT2nCAAAoDQRigAAAEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkFTOQ1FeXp5Gjx6tyMhI+fj4qG7dunrppZdkjLGOMcZozJgxqlmzpnx8fBQTE6OUlBSbOqdPn1ZcXJz8/PwUEBCgQYMG6dy5c6W9OwAAoBwr16FoypQpevvtt/XGG29o3759mjJliqZOnarZs2dbx0ydOlWzZs3SnDlzlJSUJF9fX8XGxurSpUvWMXFxcdqzZ49WrVql5cuXa926dYqPjy+LXQIAAOWUR1k3cC2bNm1S9+7d9eCDD0qS6tSpo8WLF2vz5s2S/jxKNHPmTL344ovq3r27JGnhwoUKCQnR0qVL1bdvX+3bt08rVqzQli1b1Lx5c0nS7Nmz1aVLF7366qsKCwsrm50DAADlSrk+UtSmTRutXr1av/zyiyRp586d2rBhgzp37ixJOnjwoFJTUxUTE2N9jL+/v1q1aqXExERJUmJiogICAqyBSJJiYmLk5uampKSkUtwbAABQnpXrI0X//Oc/lZmZqQYNGsjd3V15eXmaNGmS4uLiJEmpqamSpJCQEJvHhYSEWNelpqYqODjYZr2Hh4cCAwOtY66UlZWlrKws6/3MzEyX7RMAACifyvWRok8++USLFi3Shx9+qG3btmnBggV69dVXtWDBguu63cmTJ8vf3996Cw8Pv67bAwAAZa9ch6IRI0bon//8p/r27asmTZroscce07PPPqvJkydLkkJDQyVJaWlpNo9LS0uzrgsNDdXJkydt1ufm5ur06dPWMVcaNWqUMjIyrLejR4+6etcAAEA5U65D0YULF+TmZtuiu7u78vPzJUmRkZEKDQ3V6tWrreszMzOVlJSk6OhoSVJ0dLTS09OVnJxsHfP9998rPz9frVq1KnK7Xl5e8vPzs7kBAIAbW7k+p6hr166aNGmSateurcaNG2v79u2aPn26Hn/8cUmSxWLRsGHDNHHiRNWrV0+RkZEaPXq0wsLC1KNHD0lSw4YN1alTJw0ePFhz5sxRTk6OEhIS1LdvX648AwAAVuU6FM2ePVujR4/Wk08+qZMnTyosLEx///vfNWbMGOuY559/XufPn1d8fLzS09N17733asWKFfL29raOWbRokRISEtShQwe5ubmpV69emjVrVlnsEgAAKKfKdSiqWrWqZs6cqZkzZ151jMVi0YQJEzRhwoSrjgkMDNSHH354HToEAAA3inJ9ThEAAEBpIRQBAACIUAQAACCJUAQAACCJUAQAACCpnF99BgA3s6gRC11WK3laP5fVAm5UHCkCAAAQoQgAAEASoQgAAECSg6HogQceUHp6eqHlmZmZeuCBB5ztCQAAoNQ5FIp++OEHZWdnF1p+6dIlrV+/3ummAAAASluJrj7btWuX9d979+5Vamqq9X5eXp5WrFihW265xXXdAQAAlJIShaJmzZrJYrHIYrEU+TGZj4+PZs+e7bLmAAAASkuJQtHBgwdljNGtt96qzZs3KygoyLrO09NTwcHBcnd3d3mTAAAA11uJQlFERIQkKT8//7o0AwAAUFYc/kbrlJQUrVmzRidPniwUksaMGeN0YwBQEbjqW6f5xmmg7DkUit59910NGTJENWrUUGhoqCwWi3WdxWIhFAEAgArHoVA0ceJETZo0SSNHjnR1PwAAAGXCoe8pOnPmjHr37u3qXgAAAMqMQ6God+/eWrlypat7AQAAKDMOfXx22223afTo0frxxx/VpEkTVapUyWb9008/7ZLmAAAASotDoWju3LmqUqWK1q5dq7Vr19qss1gshCIAAFDhOBSKDh486Oo+AAAAypRD5xQBAADcaBw6UvT4449fc/3777/vUDMAAABlxaFQdObMGZv7OTk5+umnn5Senl7kfxQLAABQ3jkUij7//PNCy/Lz8zVkyBDVrVvX6aYAAABKm8vOKXJzc9Pw4cM1Y8YMV5UEAAAoNS490frXX39Vbm6uK0sCAACUCoc+Phs+fLjNfWOMTpw4oa+++kr9+/d3SWMAAAClyaFQtH37dpv7bm5uCgoK0muvvVbslWkAAADlkUOhaM2aNa7uAwAAoEw5FIoK/P7779q/f78kqX79+goKCnJJUwAAAKXNoVB0/vx5PfXUU1q4cKHy8/MlSe7u7urXr59mz56typUru7RJoKKLGrHQZbWSp/VzWS0AwP9x6Oqz4cOHa+3atfryyy+Vnp6u9PR0LVu2TGvXrtU//vEPV/cIAABw3Tl0pOg///mPPvvsM7Vv3966rEuXLvLx8VGfPn309ttvu6o/AACAUuHQkaILFy4oJCSk0PLg4GBduHDB6aYAAABKm0OhKDo6WmPHjtWlS5esyy5evKjx48crOjraZc0BAACUFoc+Pps5c6Y6deqkWrVqqWnTppKknTt3ysvLSytXrnRpgwAAAKXBoVDUpEkTpaSkaNGiRfr5558lSY888oji4uLk4+Pj0gYBAABKg0OhaPLkyQoJCdHgwYNtlr///vv6/fffNXLkSJc0BwAAUFocOqfonXfeUYMGDQotb9y4sebMmeN0UwAAAKXNoVCUmpqqmjVrFloeFBSkEydOON0UAABAaXMoFIWHh2vjxo2Flm/cuFFhYWFONwUAAFDaHApFgwcP1rBhwzRv3jwdPnxYhw8f1vvvv69nn3220HlGzjp27Jj+9re/qXr16vLx8VGTJk20detW63pjjMaMGaOaNWvKx8dHMTExSklJsalx+vRpxcXFyc/PTwEBARo0aJDOnTvn0j4BAEDF5tCJ1iNGjNCpU6f05JNPKjs7W5Lk7e2tkSNHatSoUS5r7syZM7rnnnt0//3365tvvlFQUJBSUlJUrVo165ipU6dq1qxZWrBggSIjIzV69GjFxsZq79698vb2liTFxcXpxIkTWrVqlXJycjRw4EDFx8frww8/dFmvAACgYnMoFFksFk2ZMkWjR4/Wvn375OPjo3r16snLy8ulzU2ZMkXh4eGaN2+edVlkZKT138YYzZw5Uy+++KK6d+8uSVq4cKFCQkK0dOlS9e3bV/v27dOKFSu0ZcsWNW/eXJI0e/ZsdenSRa+++iof9wEAAEkOfnxWoEqVKmrRooXuuOMOlwciSfriiy/UvHlz9e7dW8HBwbrrrrv07rvvWtcfPHhQqampiomJsS7z9/dXq1atlJiYKElKTExUQECANRBJUkxMjNzc3JSUlFTkdrOyspSZmWlzAwAANzanQtH19ttvv+ntt99WvXr19O2332rIkCF6+umntWDBAkl/XgUnqdD/wxYSEmJdl5qaquDgYJv1Hh4eCgwMtI650uTJk+Xv72+9hYeHu3rXAABAOVOuQ1F+fr7uvvtuvfzyy7rrrrsUHx+vwYMHX/fvQho1apQyMjKst6NHj17X7QEAgLJXrkNRzZo11ahRI5tlDRs21JEjRyRJoaGhkqS0tDSbMWlpadZ1oaGhOnnypM363NxcnT592jrmSl5eXvLz87O5AQCAG1u5DkX33HOP9u/fb7Psl19+UUREhKQ/T7oODQ3V6tWrreszMzOVlJSk6OhoSVJ0dLTS09OVnJxsHfP9998rPz9frVq1KoW9AAAAFYFDV5+VlmeffVZt2rTRyy+/rD59+mjz5s2aO3eu5s6dK+nPq+CGDRumiRMnql69etZL8sPCwtSjRw9Jfx5Z6tSpk/Vjt5ycHCUkJKhv375ceQYAAKzKdShq0aKFPv/8c40aNUoTJkxQZGSkZs6cqbi4OOuY559/XufPn1d8fLzS09N17733asWKFdbvKJKkRYsWKSEhQR06dJCbm5t69eqlWbNmlcUuAQCAcqpchyJJ+utf/6q//vWvV11vsVg0YcIETZgw4apjAgMD+aJGAABwTeX6nCIAAIDSQigCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAECS5FHWDQAAykbUiIUuq5U8rZ/LagFlhSNFAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIqmCh6JVXXpHFYtGwYcOsyy5duqShQ4eqevXqqlKlinr16qW0tDSbxx05ckQPPvigKleurODgYI0YMUK5ubml3D0AACjPKkwo2rJli9555x3deeedNsufffZZffnll/r000+1du1aHT9+XD179rSuz8vL04MPPqjs7Gxt2rRJCxYs0Pz58zVmzJjS3gUAAFCOVYhQdO7cOcXFxendd99VtWrVrMszMjL03nvvafr06XrggQcUFRWlefPmadOmTfrxxx8lSStXrtTevXv1wQcfqFmzZurcubNeeuklvfnmm8rOzi6rXQIAAOVMhQhFQ4cO1YMPPqiYmBib5cnJycrJybFZ3qBBA9WuXVuJiYmSpMTERDVp0kQhISHWMbGxscrMzNSePXuK3F5WVpYyMzNtbgAA4MbmUdYNFOejjz7Stm3btGXLlkLrUlNT5enpqYCAAJvlISEhSk1NtY65PBAVrC9YV5TJkydr/PjxLugeAABUFOX6SNHRo0f1zDPPaNGiRfL29i617Y4aNUoZGRnW29GjR0tt2wAAoGyU61CUnJyskydP6u6775aHh4c8PDy0du1azZo1Sx4eHgoJCVF2drbS09NtHpeWlqbQ0FBJUmhoaKGr0QruF4y5kpeXl/z8/GxuAADgxlauQ1GHDh20e/du7dixw3pr3ry54uLirP+uVKmSVq9ebX3M/v37deTIEUVHR0uSoqOjtXv3bp08edI6ZtWqVfLz81OjRo1KfZ8AAED5VK7PKapataruuOMOm2W+vr6qXr26dfmgQYM0fPhwBQYGys/PT0899ZSio6PVunVrSVLHjh3VqFEjPfbYY5o6dapSU1P14osvaujQofLy8ir1fQIAAOVTuQ5F9pgxY4bc3NzUq1cvZWVlKTY2Vm+99ZZ1vbu7u5YvX64hQ4YoOjpavr6+6t+/vyZMmFCGXQMAgPKmwoWiH374wea+t7e33nzzTb355ptXfUxERIS+/vrr69wZAACoyMr1OUUAAAClhVAEAAAgQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAICkCvh/nwEAyr+oEQtdVit5Wj+X1QKuhSNFAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIkjzKugGgvIgasdBltZKn9XNZLQBA6eBIEQAAgAhFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAksp5KJo8ebJatGihqlWrKjg4WD169ND+/fttxly6dElDhw5V9erVVaVKFfXq1UtpaWk2Y44cOaIHH3xQlStXVnBwsEaMGKHc3NzS3BUAAFDOletQtHbtWg0dOlQ//vijVq1apZycHHXs2FHnz5+3jnn22Wf15Zdf6tNPP9XatWt1/Phx9ezZ07o+Ly9PDz74oLKzs7Vp0yYtWLBA8+fP15gxY8pilwAAQDnlUdYNXMuKFSts7s+fP1/BwcFKTk5Wu3btlJGRoffee08ffvihHnjgAUnSvHnz1LBhQ/34449q3bq1Vq5cqb179+q7775TSEiImjVrppdeekkjR47UuHHj5OnpWRa7BgAAyplyfaToShkZGZKkwMBASVJycrJycnIUExNjHdOgQQPVrl1biYmJkqTExEQ1adJEISEh1jGxsbHKzMzUnj17itxOVlaWMjMzbW4AAODGVmFCUX5+voYNG6Z77rlHd9xxhyQpNTVVnp6eCggIsBkbEhKi1NRU65jLA1HB+oJ1RZk8ebL8/f2tt/DwcBfvDQAAKG8qTCgaOnSofvrpJ3300UfXfVujRo1SRkaG9Xb06NHrvk0AAFC2yvU5RQUSEhK0fPlyrVu3TrVq1bIuDw0NVXZ2ttLT022OFqWlpSk0NNQ6ZvPmzTb1Cq5OKxhzJS8vL3l5ebl4LwAAQHlWro8UGWOUkJCgzz//XN9//70iIyNt1kdFRalSpUpavXq1ddn+/ft15MgRRUdHS5Kio6O1e/dunTx50jpm1apV8vPzU6NGjUpnRwAAQLlXro8UDR06VB9++KGWLVumqlWrWs8B8vf3l4+Pj/z9/TVo0CANHz5cgYGB8vPz01NPPaXo6Gi1bt1aktSxY0c1atRIjz32mKZOnarU1FS9+OKLGjp0KEeDAACAVbkORW+//bYkqX379jbL582bpwEDBkiSZsyYITc3N/Xq1UtZWVmKjY3VW2+9ZR3r7u6u5cuXa8iQIYqOjpavr6/69++vCRMmlNZuAACACqBchyJjTLFjvL299eabb+rNN9+86piIiAh9/fXXrmwNAADcYMr1OUUAAAClhVAEAAAgQhEAAICkcn5OEQAARYkasdBltZKn9XNZLVRsHCkCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASX96ICoQvawMAXE8cKQIAABChCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQJLkUdYN4MYSNWKhy2olT+vnsloAABSHUAQAwBX4A+/mxMdnAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABI4uozAABKFVe2lV8cKQIAABChCAAAQBKhCAAAQNJNForefPNN1alTR97e3mrVqpU2b95c1i0BAIBy4qY50frjjz/W8OHDNWfOHLVq1UozZ85UbGys9u/fr+Dg4LJur9Rwgh8A3Nj4Oe+4m+ZI0fTp0zV48GANHDhQjRo10pw5c1S5cmW9//77Zd0aAAAoB26KI0XZ2dlKTk7WqFGjrMvc3NwUExOjxMTEMuysMBI+AKA8c9XvqfL4O+qmCEV//PGH8vLyFBISYrM8JCREP//8c6HxWVlZysrKst7PyMiQJGVmZkqS2r242GW9rZv4iM39vKyLLqtd0O+NUp/ei65d0etX5N5dWb8i915U/Yrc+/WuX5F7d2X9omq7+vdrwTaMMfY9yNwEjh07ZiSZTZs22SwfMWKEadmyZaHxY8eONZK4cePGjRs3bjfA7ejRo3blhZviSFGNGjXk7u6utLQ0m+VpaWkKDQ0tNH7UqFEaPny49X5+fr5Onz6t6tWry2KxFLu9zMxMhYeH6+jRo/Lz83N+B0qxfkXu/XrXr8i9X+/69H5j1qf3G7N+Re69pPWNMTp79qzCwsLsqn1ThCJPT09FRUVp9erV6tGjh6Q/g87q1auVkJBQaLyXl5e8vLxslgUEBJR4u35+ftflDVEa9Sty79e7fkXu/XrXp/cbsz6935j1K3LvJanv7+9vd82bIhRJ0vDhw9W/f381b95cLVu21MyZM3X+/HkNHDiwrFsDAADlwE0Tiv7nf/5Hv//+u8aMGaPU1FQ1a9ZMK1asKHTyNQAAuDndNKFIkhISEor8uMzVvLy8NHbs2EIfwVWE+hW59+tdvyL3fr3r0/uNWZ/eb8z6Fbn3613fYoy916kBAADcuG6ab7QGAAC4FkIRAACACEUAAACSCEUAAACSCEUOy8vL0+jRoxUZGSkfHx/VrVtXL730ks3/r2KM0ZgxY1SzZk35+PgoJiZGKSkpLqu/ZMkSdezY0fpN2zt27HBZ/zk5ORo5cqSaNGkiX19fhYWFqV+/fjp+/LhLeh83bpwaNGggX19fVatWTTExMUpKSnLZc3O5J554QhaLRTNnznRJ7QEDBshisdjcOnXq5NLe9+3bp27dusnf31++vr5q0aKFjhw54pL6V/ZecJs2bZrTtc+dO6eEhATVqlVLPj4+atSokebMmeOy5yYtLU0DBgxQWFiYKleurE6dOtk9p86ePathw4YpIiJCPj4+atOmjbZs2WJd78x8tae+M/O1uPrOzFd7endmvtpT/3Ilma/21ndmztrTu6Pz1Z76js5Xe2o7M1/tqV+S+bpu3Tp17dpVYWFhslgsWrp0qc16e+bn6dOnFRcXJz8/PwUEBGjQoEE6d+6c3ftTsCE4YNKkSaZ69epm+fLl5uDBg+bTTz81VapUMa+//rp1zCuvvGL8/f3N0qVLzc6dO023bt1MZGSkuXjxokvqL1y40IwfP968++67RpLZvn27y/pPT083MTEx5uOPPzY///yzSUxMNC1btjRRUVEu6X3RokVm1apV5tdffzU//fSTGTRokPHz8zMnT550Sf0CS5YsMU2bNjVhYWFmxowZLqndv39/06lTJ3PixAnr7fTp08XWtrf+gQMHTGBgoBkxYoTZtm2bOXDggFm2bJlJS0tzSf3L+z5x4oR5//33jcViMb/++qvTtQcPHmzq1q1r1qxZYw4ePGjeeecd4+7ubpYtW+Z07/n5+aZ169ambdu2ZvPmzebnn3828fHxpnbt2ubcuXPF1u/Tp49p1KiRWbt2rUlJSTFjx441fn5+5r///a8xxrn5ak99Z+ZrcfWdma/29O7MfLWnfoGSzld76zszZ4ur7cx8tae+o/PVntrOzNfi6pd0vn799dfmhRdeMEuWLDGSzOeff26z3p752alTJ9O0aVPz448/mvXr15vbbrvNPPLII3btSwFCkYMefPBB8/jjj9ss69mzp4mLizPG/PkDPDQ01EybNs26Pj093Xh5eZnFixc7Xf9yBw8eLPEP2ZLUL7B582YjyRw+fNjltTMyMowk891337ms9//+97/mlltuMT/99JOJiIiw64esPbX79+9vunfvXmwtR+v/z//8j/nb3/523epfqXv37uaBBx5wSe3GjRubCRMm2Iy5++67zQsvvOB0/f379xtJ5qeffrKuz8vLM0FBQebdd9+9Zu0LFy4Yd3d3s3z58iJ7c3a+Flf/co7M15LUL2DvfHWkdknmq731HZmv9tZ3dM7aU9uZ+erIc2/vfLWntjPztbj6zszXK0ORPfNz7969RpLZsmWLdcw333xjLBaLOXbsWLH7U4CPzxzUpk0brV69Wr/88oskaefOndqwYYM6d+4sSTp48KBSU1MVExNjfYy/v79atWqlxMREp+tf7/6LkpGRIYvFUuz/A1fS2tnZ2Zo7d678/f3VtGlTl/Sen5+vxx57TCNGjFDjxo2LrVnS3n/44QcFBwerfv36GjJkiE6dOuWS+vn5+frqq690++23KzY2VsHBwWrVqlWhQ8nO9l8gLS1NX331lQYNGuSS2m3atNEXX3yhY8eOyRijNWvW6JdfflHHjh2drp+VlSVJ8vb2tj7Gzc1NXl5e2rBhwzVr5+bmKi8vz+axkuTj46MNGzY4PV+Lq+8sR+rbO19LWruk89We+o7O15L078icLa62s/O1pM99SearPbWdma/F1Xdmvl7JnvmZmJiogIAANW/e3DomJiZGbm5uJfqolyNFDsrLyzMjR440FovFeHh4GIvFYl5++WXr+o0bNxpJ5vjx4zaP6927t+nTp4/T9S/nyF+eJalvjDEXL140d999t3n00UddVvvLL780vr6+xmKxmLCwMLN582aX9f7yyy+bv/zlLyY/P98YY+z+y9Oe2osXLzbLli0zu3btMp9//rlp2LChadGihcnNzXW6/okTJ4wkU7lyZTN9+nSzfft2M3nyZGOxWMwPP/zgkv4vN2XKFFOtWjW7PiKyp/alS5dMv379jCTj4eFhPD09zYIFC4qtbU/97OxsU7t2bdO7d29z+vRpk5WVZV555RUjyXTs2LHY+tHR0ea+++4zx44dM7m5uebf//63cXNzM7fffrvT87W4+pdzZL6WpL4xJZuv9tZ2dL7aU9/R+WpvfWfm7LVqOztf7en9ciWZr/bUdma+FlffmfmqK44U2TM/J02aVORzFhQUZN566y2794lQ5KDFixebWrVqmcWLF5tdu3aZhQsXmsDAQDN//nxjjPOhqLj6l3Pkh2xJ6mdnZ5uuXbuau+66y2RkZLis9rlz50xKSopJTEw0jz/+uKlTp45dn8MXV3/r1q0mJCTE5pCpvT9kS/K8FPj111/t/iihuPrHjh0zkgp9Dt61a1fTt29fl/dfv359k5CQUGxde2tPmzbN3H777eaLL74wO3fuNLNnzzZVqlQxq1atckn9rVu3mqZNmxpJxt3d3cTGxprOnTubTp06FVv/wIEDpl27dtbHtmjRwsTFxZkGDRq4JBRdq/7lHA1F9tYv6Xy1t7aj87W4+s7M15L0f7mSzNlr1XZ2vpa095LMV3tqOzNf7anv6HwlFFVAtWrVMm+88YbNspdeesnUr1/fGPN/k+7KH3zt2rUzTz/9tNP1L+fID1l762dnZ5sePXqYO++80/zxxx8urX2l22677ZpHNeytP2PGDGOxWIy7u7v1Jsm4ubmZiIiI69J7jRo1zJw5c5zuPSsry3h4eJiXXnrJZszzzz9v2rRp43T9y61bt85IMjt27Ci2rj21L1y4YCpVqlToHINBgwaZ2NhYl/aenp5uPcm3ZcuW5sknn7RrH4z585d7wQ/XPn36mC5dujg9X4urfzlHQ5E99R2ZryXp/XL2ztfi6jszX53p3945e63azs7XkvRe0vlaXG1n52tJei/pfL0yFNkzP9977z0TEBBgsz4nJ8e4u7ubJUuW2L0vnFPkoAsXLsjNzfbpc3d3V35+viQpMjJSoaGhWr16tXV9ZmamkpKSFB0d7XR9Z9lTPycnR3369FFKSoq+++47Va9e3WW1i5Kfn2/9HNqZ+o899ph27dqlHTt2WG9hYWEaMWKEvv32W5f3/t///lenTp1SzZo1ne7d09NTLVq00P79+23G/PLLL4qIiHC6/uXee+89RUVF2XVeiD21c3JylJOT4/D7tiS9+/v7KygoSCkpKdq6dau6d+9u1z5Ikq+vr2rWrKkzZ87o22+/Vffu3Z2er8XVd6Wr1Xd0vjrau73ztbj6zsxXR/svyZy9Vm1n52tJei/pfC2utrPztSS9OzNfJft+n0ZHRys9PV3JycnWMd9//73y8/PVqlUr+zdmd3yCjf79+5tbbrnFevnwkiVLTI0aNczzzz9vHfPKK6+YgIAA62fZ3bt3t/sSX3vqnzp1ymzfvt189dVXRpL56KOPzPbt282JEyecrp+dnW26detmatWqZXbs2GFzSWhWVpZTtc+dO2dGjRplEhMTzaFDh8zWrVvNwIEDjZeXl82VCs48N1ey93B8cbXPnj1rnnvuOZOYmGgOHjxovvvuO3P33XebevXqmUuXLrmk9yVLlphKlSqZuXPnmpSUFDN79mzj7u5u1q9f77LnJiMjw1SuXNm8/fbbxdYsSe377rvPNG7c2KxZs8b89ttvZt68ecbb29uuw9f21P/kk0/MmjVrzK+//mqWLl1qIiIiTM+ePe3qf8WKFeabb74xv/32m1m5cqVp2rSpadWqlcnOzjbGODdf7anvzHwtrr4z87W42s7OV3uemyuV9OOza9V3ds4W17sz89Xe58aR+WpPbWfmqz31SzJfz549a7Zv3262b99uJFnP0Sq4etKe+dmpUydz1113maSkJLNhwwZTr149LskvLZmZmeaZZ54xtWvXNt7e3ubWW281L7zwgs0PoPz8fDN69GgTEhJivLy8TIcOHcz+/ftdVn/evHlGUqHb2LFjna5fcIi/qNuaNWucqn3x4kXz0EMPmbCwMOPp6Wlq1qxpunXrZveJm/Y8N1ey94dscbUvXLhgOnbsaIKCgkylSpVMRESEGTx4sElNTXVp7++995657bbbjLe3t2natKlZunSpS+u/8847xsfHx6Snp9tV197aJ06cMAMGDDBhYWHG29vb1K9f37z22mvWE2idrf/666+bWrVqmUqVKpnatWubF1980a5f+sYY8/HHH5tbb73VeHp6mtDQUDN06FCb/XdmvtpT35n5Wlx9Z+ZrcbWdna/2PDdXKmkoulZ9Z+esPb07Ol/tre/IfLWntjPz1Z76JZmva9asKfL9279/f2OMffPz1KlT5pFHHjFVqlQxfn5+ZuDAgebs2bMles4sxlzla4ABAABuIpxTBAAAIEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRgJvQ/PnzFRAQUNZtAChn+PJGADedixcv6uzZswoODrb7Me3bt1ezZs00c+bM69cYgDLlUdYNAEBp8/HxkY+PT1m3AaCc4eMzABVO+/btlZCQoISEBPn7+6tGjRoaPXq0Cg58nzlzRv369VO1atVUuXJlde7cWSkpKdbHX/nx2bhx49SsWTP9+9//Vp06deTv76++ffvq7NmzkqQBAwZo7dq1ev3112WxWGSxWHTo0CGdOXNGcXFxCgoKko+Pj+rVq6d58+aV6nMBwHUIRQAqpAULFsjDw0ObN2/W66+/runTp+tf//qXpD9DzNatW/XFF18oMTFRxhh16dJFOTk5V63366+/aunSpVq+fLmWL1+utWvX6pVXXpEkvf7664qOjtbgwYN14sQJnThxQuHh4Ro9erT27t2rb775Rvv27dPbb7+tGjVqlMr+A3A9Pj4DUCGFh4drxowZslgsql+/vnbv3q0ZM2aoffv2+uKLL7Rx40a1adNGkrRo0SKFh4dr6dKl6t27d5H18vPzNX/+fFWtWlWS9Nhjj2n16tWaNGmS/P395enpqcqVKys0NNT6mCNHjuiuu+5S8+bNJUl16tS5vjsN4LriSBGACql169ayWCzW+9HR0UpJSdHevXvl4eGhVq1aWddVr15d9evX1759+65ar06dOtZAJEk1a9bUyZMnr9nDkCFD9NFHH6lZs2Z6/vnntWnTJif2CEBZIxQBgKRKlSrZ3LdYLMrPz7/mYzp37qzDhw/r2Wef1fHjx9WhQwc999xz17NNANcRoQhAhZSUlGRz/8cff1S9evXUqFEj5ebm2qw/deqU9u/fr0aNGjm8PU9PT+Xl5RVaHhQUpP79++uDDz7QzJkzNXfuXIe3AaBsEYoAVEhHjhzR8OHDtX//fi1evFizZ8/WM888o3r16ql79+4aPHiwNmzYoJ07d+pvf/ubbrnlFnXv3t3h7dWpU0dJSUk6dOiQ/vjjD+Xn52vMmDFatmyZDhw4oD179mj58uVq2LChC/cSQGkiFAGokPr166eLFy+qZcuWGjp0qJ555hnFx8dLkubNm6eoqCj99a9/VXR0tIwx+vrrrwt9RFYSzz33nNzd3dWoUSMFBQXpyJEj8vT01KhRo3TnnXeqXbt2cnd310cffeSqXQRQyvhGawAVDt8uDeB64EgRAACACEUAAACS+PgMAABAEkeKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJEn/H6i60oTTbSfJAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(data=data, x='points')\n",
+ "plt.title(\"count wines rate depending on the points\")\n",
+ "plt.xlabel(\"points\")\n",
+ "plt.ylabel(\"count\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SH9b95lPfMAY"
+ },
+ "source": [
+ "Видим, что количество вин с оценкой в диапазоне 87-90 больше всего, следовательно, для них признак оценки будет меньше влиять на модель."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "lGZe1Xt4SGlb"
+ },
+ "source": [
+ "Проверим что оценка и стоимость вина не линейно-зависимы."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "id": "srmdq10zQ2jp",
+ "outputId": "c2c7cdd1-099f-4af9-fbc1-2d286c005292"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHHCAYAAABUcOnjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+vUlEQVR4nO3deViU9f7/8dewIwq4sIgLapqKa2EqlUtG4pJLerLM41Ie62dgpSfreHK3svLkkqfMPKZZmmWn3CrXzI6Jlqa5paFpmAKWxuIGCp/fH13MVwRjGAYB7+fjuuaque973vf7vofP8PJeBpsxxggAAOAG51baDQAAAFwPhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB5Yis1m08SJE0u7jTKvTp06GjJkSGm34TJXb8+XX34pm82mL7/8stR6Ki3Hjh2TzWbTv/71r9JupcgWLlwom82mY8eOlXYrKKcIPUA58MYbb2jhwoWl3QbKkc8++4yAf4UDBw5o4sSJBCaLI/TAUi5cuKCxY8eWdhtFRuhxrfbt2+vChQtq3759abdSYj777DNNmjSptNtwqYEDB+rChQsKDw8v8msPHDigSZMmEXosjtCDG15OTo4uXrwoSfLx8ZGHh0ep9mOM0YULF0q1B6tzc3OTj4+P3Nz4CCxP3N3d5ePjI5vNVtqtoJxixKNcmDhxomw2mw4ePKh+/frJ399fVatW1ZNPPmkPNLlsNpvi4uK0ePFiNWnSRN7e3lqzZo193tWH/E+cOKGhQ4cqLCxM3t7eqlu3roYPH66srCz7MqmpqXrqqadUq1YteXt7q379+nr55ZeVk5NTaO916tTRvffeq7Vr16pVq1by9fXV3LlzJUkLFixQp06dFBwcLG9vb0VERGjOnDn5Xr9//35t3rxZNptNNptNHTt2dElvxhg9//zzqlmzpipUqKC77rpL+/fvL3BZR9Zz5fUiM2bMUHh4uHx9fdWhQwft27cvX82DBw/qL3/5i6pUqSIfHx+1atVKK1euzLNM7nUcX3/9tUaNGqWgoCD5+fnpvvvu06+//urU9hR0TU/Hjh3VtGlTHThwQHfddZcqVKigGjVq6JVXXsn3+p9//lk9e/aUn5+fgoODNXLkSK1du9bh64R27dqlrl27yt/fXxUrVtTdd9+tbdu2Ob3dVxsyZIhef/11SbL/zBQUFN566y3ddNNN8vb21m233aZvv/023zKOvEcFKerPwhdffKF27drJz89PgYGB6tWrl3744YcC98mVR2tyx9eWLVvUunVr+fj4qF69elq0aFGe191///2SpLvuusu+P3Lfqx07digmJkbVqlWTr6+v6tatq0ceeaTQbUT5U7r/5AWKqF+/fqpTp46mTp2qbdu26bXXXtPvv/+e5wNO+uMD9MMPP1RcXJyqVaumOnXqFFjv5MmTat26tVJTU/Xoo4+qUaNGOnHihD766COdP39eXl5eOn/+vDp06KATJ07oscceU+3atbV161aNGTNGSUlJmjlzZqF9Hzp0SP3799djjz2mYcOGqWHDhpKkOXPmqEmTJurZs6c8PDy0atUqPf7448rJyVFsbKwkaebMmRoxYoQqVqyo5557TpIUEhIiScXubfz48Xr++efVrVs3devWTd999506d+6cJ/A5s55FixYpIyNDsbGxunjxombNmqVOnTpp79699t7379+vO+64QzVq1NA//vEP+fn56cMPP1Tv3r313//+V/fdd1+emiNGjFDlypU1YcIEHTt2TDNnzlRcXJw++OCDIm/Ptfz+++/q0qWL+vTpo379+umjjz7Ss88+q2bNmqlr166SpHPnzqlTp05KSkrSk08+qdDQUC1ZskSbNm1yaB379+9Xu3bt5O/vr2eeeUaenp6aO3euOnbsqM2bN6tNmzZF3u6rPfbYYzp58qTWr1+vd999t8BllixZooyMDD322GOy2Wx65ZVX1KdPH/3000/y9PS091qU96ggjvwsbNiwQV27dlW9evU0ceJEXbhwQbNnz9Ydd9yh77777prjN9fhw4f1l7/8RUOHDtXgwYP19ttva8iQIYqMjFSTJk3Uvn17PfHEE3rttdf0z3/+U40bN5YkNW7cWKdOnVLnzp0VFBSkf/zjHwoMDNSxY8f08ccfF7ptKIcMUA5MmDDBSDI9e/bMM/3xxx83ksz3339vnybJuLm5mf379+erI8lMmDDB/nzQoEHGzc3NfPvtt/mWzcnJMcYYM2XKFOPn52d+/PHHPPP/8Y9/GHd3d5OYmPinvYeHhxtJZs2aNfnmnT9/Pt+0mJgYU69evTzTmjRpYjp06JBv2eL0durUKePl5WW6d+9u31ZjjPnnP/9pJJnBgwcXeT1Hjx41koyvr6/55Zdf7Mtt377dSDIjR460T7v77rtNs2bNzMWLF+3TcnJyzO23324aNGhgn7ZgwQIjyURHR+fpc+TIkcbd3d2kpqYWeXs2bdpkJJlNmzbZp3Xo0MFIMosWLbJPy8zMNKGhoaZv3772aa+++qqRZJYvX26fduHCBdOoUaN8NQvSu3dv4+XlZY4cOWKfdvLkSVOpUiXTvn37Im/3tcTGxpqCPuJz36OqVauaM2fO2KevWLHCSDKrVq2yT3P0PSpIUX4WWrZsaYKDg83p06ft077//nvj5uZmBg0alG+fHD161D4td3x99dVX9mmnTp0y3t7e5u9//7t92rJlywp8fz755BMjqcDPANx4OL2FciX36EeuESNGSPrjos0rdejQQREREX9aKycnR8uXL1ePHj3UqlWrfPNzTwcsW7ZM7dq1U+XKlfXbb7/ZH9HR0crOztZXX31VaN9169ZVTExMvum+vr72/09LS9Nvv/2mDh066KefflJaWlqhdYvT24YNG5SVlaURI0bkOfXx1FNPFXs9vXv3Vo0aNezPW7durTZt2tjfpzNnzuiLL75Qv379lJGRYa93+vRpxcTEKCEhQSdOnMhT89FHH83TZ7t27ZSdna2ff/65yNtzLRUrVtRf//pX+3MvLy+1bt1aP/30k33amjVrVKNGDfXs2dM+zcfHR8OGDSu0fnZ2ttatW6fevXurXr169unVq1fXQw89pC1btig9Pb1I2+2sBx54QJUrV85TV5J9W515jwpS2M9CUlKSdu/erSFDhqhKlSr25Zo3b6577rkn39guSEREhL1/SQoKClLDhg3zvG/XEhgYKElavXq1Ll26VOjyKN84vYVypUGDBnme33TTTXJzc8t3R0bdunULrfXrr78qPT1dTZs2/dPlEhIStGfPHgUFBRU4/9SpU4Wu61r9fP3115owYYLi4+N1/vz5PPPS0tIUEBBQYr3l/tK8ep8GBQXl+WXozHqurilJN998sz788ENJf5yOMMZo3LhxGjdu3DVrXvnLsnbt2nnm5/b4+++/F3l7rqVmzZr5rn2pXLmy9uzZY3/+888/66abbsq3XP369Qut/+uvv+r8+fP205tXaty4sXJycnT8+HE1adLEPr2w7XZWYXWdeY8KUtjPQu77dq19snbtWp07d05+fn4Ob0vu9jiyjzp06KC+fftq0qRJmjFjhjp27KjevXvroYcekre3d6GvR/lC6EG5dq27OK48glJcOTk5uueee/TMM88UOP/mm28utEZB/Rw5ckR33323GjVqpOnTp6tWrVry8vLSZ599phkzZjh0IbIrenOEq9eTu21PP/10gUfApPwhwt3dvcDljDFFWvefuR7rKKqS6qmwus68R6WlOPvIZrPpo48+0rZt27Rq1SqtXbtWjzzyiF599VVt27ZNFStWdHW7KEWEHpQrCQkJeY6aHD58WDk5OYVe6FiQoKAg+fv7F3gnyZVuuukmnT17VtHR0UVex59ZtWqVMjMztXLlyjz/Ui3ogthrhbvi9Jb7XScJCQl5TrX8+uuv+f6FXNT1JCQk5Jv2448/2t+n3PV5enq6bL8WZXuKu54DBw7IGJPnfTl8+HChrw0KClKFChV06NChfPMOHjwoNzc31apVyyV9Fve2ble9R4X9LOS+b9faJ9WqVfvTozyOKmx/tG3bVm3bttULL7ygJUuWaMCAAVq6dKn+9re/FXvdKDu4pgflSu5tuLlmz54tSfY7a4rCzc1NvXv31qpVq7Rjx45883P/ldivXz/Fx8dr7dq1+ZZJTU3V5cuXi7xu6f/+dXrlv0bT0tK0YMGCfMv6+fkpNTU13/Ti9BYdHS1PT0/Nnj07Tw8F3fFV1PUsX748z/Ue33zzjbZv325/n4KDg9WxY0fNnTtXSUlJ+WoWdkt2cbenOGJiYnTixIk8t21fvHhR8+bNK/S17u7u6ty5s1asWJHnlGxKSoqWLFmiO++8U/7+/i7pMzcoFPRz4whXvUeF/SxUr15dLVu21DvvvJOn13379mndunXq1q2bU/1f7Vr74/fff893RKhly5aSpMzMTJesG2UHR3pQrhw9elQ9e/ZUly5dFB8fr/fee08PPfSQWrRo4VS9F198UevWrVOHDh306KOPqnHjxkpKStKyZcu0ZcsWBQYGavTo0Vq5cqXuvfde+22w586d0969e/XRRx/p2LFjqlatWpHX3blzZ3l5ealHjx567LHHdPbsWc2bN0/BwcH5fslERkZqzpw5ev7551W/fn0FBwerU6dOxeotKChITz/9tKZOnap7771X3bp1065du/T555/ne01R11O/fn3deeedGj58uDIzMzVz5kxVrVo1z+mx119/XXfeeaeaNWumYcOGqV69ekpJSVF8fLx++eUXff/990Xan0XZnuJ47LHH9O9//1v9+/fXk08+qerVq2vx4sXy8fGRVPgRheeff17r16/XnXfeqccff1weHh6aO3euMjMzC/xOIGdFRkZKkp544gnFxMTI3d1dDz74YJFquOI9cuRnYdq0aeratauioqI0dOhQ+y3rAQEBLvtTGi1btpS7u7tefvllpaWlydvbW506ddKSJUv0xhtv6L777tNNN92kjIwMzZs3T/7+/i4LXChDSuWeMaCIcm9ZP3DggPnLX/5iKlWqZCpXrmzi4uLMhQsX8iwrycTGxhZYR1fdsm6MMT///LMZNGiQCQoKMt7e3qZevXomNjbWZGZm2pfJyMgwY8aMMfXr1zdeXl6mWrVq5vbbbzf/+te/TFZW1p/2Hh4ebrp3717gvJUrV5rmzZsbHx8fU6dOHfPyyy+bt99+O99tucnJyaZ79+6mUqVKRlKe29eL01t2draZNGmSqV69uvH19TUdO3Y0+/btM+Hh4Xlu8XZ0Pbm3KU+bNs28+uqrplatWsbb29u0a9cuz9cK5Dpy5IgZNGiQCQ0NNZ6enqZGjRrm3nvvNR999JF9mdzblK++pbig284d3Z5r3bLepEmTfD0OHjzYhIeH55n2008/me7duxtfX18TFBRk/v73v5v//ve/RpLZtm3bn+5zY4z57rvvTExMjKlYsaKpUKGCueuuu8zWrVvzLFOU7S7I5cuXzYgRI0xQUJCx2Wz229evfI+uVtD4cOQ9KkhRfxY2bNhg7rjjDuPr62v8/f1Njx49zIEDBwrcJ1ffsl7Q+OrQoUO+r3mYN2+eqVevnnF3d7fvw++++87079/f1K5d23h7e5vg4GBz7733mh07dvzp9qF8shlTilfoAQ6aOHGiJk2apF9//dWl/2qHax07dkx169bVtGnT9PTTT5d2O9fVzJkzNXLkSP3yyy+F3tFkBVb+WUDZxTU9AFBEV//ttIsXL2ru3Llq0KABgQcow7imBwCKqE+fPqpdu7ZatmyptLQ0vffeezp48KAWL15c2q0B+BOEHgAoopiYGP3nP//R4sWLlZ2drYiICC1dulQPPPBAabcG4E9wTQ8AALAErukBAACWQOgBAACWwDU9+uNvzJw8eVKVKlUq9le3AwCA68MYo4yMDIWFhcnNrfDjOIQeSSdPnnTZ37sBAADX1/Hjx1WzZs1ClyP0SKpUqZKkP3aaq/7uDQAAKFnp6emqVauW/fd4YQg9+r+/lePv70/oAQCgnHH00hQuZAYAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJbgUdoNAACAG1/k6EUuq7Vz2iCnXseRHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmlGnomTpwom82W59GoUSP7/IsXLyo2NlZVq1ZVxYoV1bdvX6WkpOSpkZiYqO7du6tChQoKDg7W6NGjdfny5eu9KQAAoIzzKO0GmjRpog0bNtife3j8X0sjR47Up59+qmXLlikgIEBxcXHq06ePvv76a0lSdna2unfvrtDQUG3dulVJSUkaNGiQPD099eKLL173bQEAAGVXqYceDw8PhYaG5puelpam+fPna8mSJerUqZMkacGCBWrcuLG2bdumtm3bat26dTpw4IA2bNigkJAQtWzZUlOmTNGzzz6riRMnysvL63pvDgAAKKNK/ZqehIQEhYWFqV69ehowYIASExMlSTt37tSlS5cUHR1tX7ZRo0aqXbu24uPjJUnx8fFq1qyZQkJC7MvExMQoPT1d+/fvv74bAgAAyrRSPdLTpk0bLVy4UA0bNlRSUpImTZqkdu3aad++fUpOTpaXl5cCAwPzvCYkJETJycmSpOTk5DyBJ3d+7rxryczMVGZmpv15enq6i7YIAACUVaUaerp27Wr//+bNm6tNmzYKDw/Xhx9+KF9f3xJb79SpUzVp0qQSqw8AAMqeUj+9daXAwEDdfPPNOnz4sEJDQ5WVlaXU1NQ8y6SkpNivAQoNDc13N1fu84KuE8o1ZswYpaWl2R/Hjx937YYAAIAyp0yFnrNnz+rIkSOqXr26IiMj5enpqY0bN9rnHzp0SImJiYqKipIkRUVFae/evTp16pR9mfXr18vf318RERHXXI+3t7f8/f3zPAAAwI2tVE9vPf300+rRo4fCw8N18uRJTZgwQe7u7urfv78CAgI0dOhQjRo1SlWqVJG/v79GjBihqKgotW3bVpLUuXNnRUREaODAgXrllVeUnJyssWPHKjY2Vt7e3qW5aQAAoIwp1dDzyy+/qH///jp9+rSCgoJ05513atu2bQoKCpIkzZgxQ25uburbt68yMzMVExOjN954w/56d3d3rV69WsOHD1dUVJT8/Pw0ePBgTZ48ubQ2CQAAlFE2Y4wp7SZKW3p6ugICApSWlsapLgAASkDk6EUuq7Vz2iBJRf/9Xaau6QEAACgphB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJZSb0vPTSS7LZbHrqqafs0y5evKjY2FhVrVpVFStWVN++fZWSkpLndYmJierevbsqVKig4OBgjR49WpcvX77O3QMAgLKuTISeb7/9VnPnzlXz5s3zTB85cqRWrVqlZcuWafPmzTp58qT69Oljn5+dna3u3bsrKytLW7du1TvvvKOFCxdq/Pjx13sTAABAGVfqoefs2bMaMGCA5s2bp8qVK9unp6Wlaf78+Zo+fbo6deqkyMhILViwQFu3btW2bdskSevWrdOBAwf03nvvqWXLlurataumTJmi119/XVlZWaW1SQAAoAwq9dATGxur7t27Kzo6Os/0nTt36tKlS3mmN2rUSLVr11Z8fLwkKT4+Xs2aNVNISIh9mZiYGKWnp2v//v3XZwMAAEC54FGaK1+6dKm+++47ffvtt/nmJScny8vLS4GBgXmmh4SEKDk52b7MlYEnd37uvGvJzMxUZmam/Xl6erqzmwAAAMqJUjvSc/z4cT355JNavHixfHx8ruu6p06dqoCAAPujVq1a13X9AADg+iu10LNz506dOnVKt956qzw8POTh4aHNmzfrtddek4eHh0JCQpSVlaXU1NQ8r0tJSVFoaKgkKTQ0NN/dXLnPc5cpyJgxY5SWlmZ/HD9+3LUbBwAAypxSCz1333239u7dq927d9sfrVq10oABA+z/7+npqY0bN9pfc+jQISUmJioqKkqSFBUVpb179+rUqVP2ZdavXy9/f39FRERcc93e3t7y9/fP8wAAADe2Urump1KlSmratGmeaX5+fqpatap9+tChQzVq1ChVqVJF/v7+GjFihKKiotS2bVtJUufOnRUREaGBAwfqlVdeUXJyssaOHavY2Fh5e3tf920CAABlV6leyFyYGTNmyM3NTX379lVmZqZiYmL0xhtv2Oe7u7tr9erVGj58uKKiouTn56fBgwdr8uTJpdg1AAAoi2zGGFPaTZS29PR0BQQEKC0tjVNdAACUgMjRi1xWa+e0QZKK/vu71L+nBwAA4Hog9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEvwKO0GAABA2RA5epHLau2cNshltVyFIz0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASnA497777ru644w6FhYXp559/liTNnDlTK1ascFlzAAAAruJU6JkzZ45GjRqlbt26KTU1VdnZ2ZKkwMBAzZw505X9AQAAuIRToWf27NmaN2+ennvuObm7u9unt2rVSnv37nW4zpw5c9S8eXP5+/vL399fUVFR+vzzz+3zL168qNjYWFWtWlUVK1ZU3759lZKSkqdGYmKiunfvrgoVKig4OFijR4/W5cuXndksAABwA3Mq9Bw9elS33HJLvune3t46d+6cw3Vq1qypl156STt37tSOHTvUqVMn9erVS/v375ckjRw5UqtWrdKyZcu0efNmnTx5Un369LG/Pjs7W927d1dWVpa2bt2qd955RwsXLtT48eOd2SwAAHADcyr01K1bV7t37843fc2aNWrcuLHDdXr06KFu3bqpQYMGuvnmm/XCCy+oYsWK2rZtm9LS0jR//nxNnz5dnTp1UmRkpBYsWKCtW7dq27ZtkqR169bpwIEDeu+999SyZUt17dpVU6ZM0euvv66srCxnNg0AANygnAo9o0aNUmxsrD744AMZY/TNN9/ohRde0JgxY/TMM8841Uh2draWLl2qc+fOKSoqSjt37tSlS5cUHR1tX6ZRo0aqXbu24uPjJUnx8fFq1qyZQkJC7MvExMQoPT3dfrQIAABAkjycedHf/vY3+fr6auzYsTp//rweeughhYWFadasWXrwwQeLVGvv3r2KiorSxYsXVbFiRX3yySeKiIjQ7t275eXlpcDAwDzLh4SEKDk5WZKUnJycJ/Dkzs+ddy2ZmZnKzMy0P09PTy9SzwAAoPxxKvRI0oABAzRgwACdP39eZ8+eVXBwsFN1GjZsqN27dystLU0fffSRBg8erM2bNzvblkOmTp2qSZMmleg6AABA2eL0hcwJCQmSZL9rSpISEhJ07NixItXy8vJS/fr1FRkZqalTp6pFixaaNWuWQkNDlZWVpdTU1DzLp6SkKDQ0VJIUGhqa726u3Oe5yxRkzJgxSktLsz+OHz9epJ4BAED541ToGTJkiLZu3Zpv+vbt2zVkyJBiNZSTk6PMzExFRkbK09NTGzdutM87dOiQEhMTFRUVJUmKiorS3r17derUKfsy69evl7+/vyIiIq65Dm9vb/tt8rkPAABwY3Pq9NauXbt0xx135Jvetm1bxcXFOVxnzJgx6tq1q2rXrq2MjAwtWbJEX375pdauXauAgAANHTpUo0aNUpUqVeTv768RI0YoKipKbdu2lSR17txZERERGjhwoF555RUlJydr7Nixio2Nlbe3tzObBgAAblBOhR6bzaaMjIx809PS0uzfzuyIU6dOadCgQUpKSlJAQICaN2+utWvX6p577pEkzZgxQ25uburbt68yMzMVExOjN954w/56d3d3rV69WsOHD1dUVJT8/Pw0ePBgTZ482ZnNAgAANzCbMcYU9UU9evSQr6+v3n//ffs3MmdnZ+uBBx7QuXPn8nyrcnmQnp6ugIAApaWlcaoLAGBZkaMXuazWzmmDSrx2UX9/O3Wk5+WXX1b79u3VsGFDtWvXTpL0v//9T+np6friiy+cKQkAAFCinLqQOSIiQnv27FG/fv106tQpZWRkaNCgQTp48KCaNm3q6h4BAACKzenv6QkLC9OLL77oyl4AAABKjMOhZ8+ePWratKnc3Ny0Z8+eP122efPmxW4MAADAlRwOPS1btlRycrKCg4PVsmVL2Ww2FXQNtM1mK9IdXAAAANeDw6Hn6NGjCgoKsv8/AABAeeJw6AkPD5ckXbp0SZMmTdK4ceNUt27dEmsMAADAlYp895anp6f++9//lkQvAAAAJcapW9Z79+6t5cuXu7gVAACAkuPULesNGjTQ5MmT9fXXXysyMlJ+fn555j/xxBMuaQ4AAMBVnAo98+fPV2BgoHbu3KmdO3fmmWez2Qg9AACgzHEq9Fx591bubes2m801HQEAAJQAp67pkf442tO0aVP5+PjIx8dHTZs21X/+8x9X9gYAAOAyTh3pGT9+vKZPn64RI0YoKipKkhQfH6+RI0cqMTFRkydPdmmTAAAAxeVU6JkzZ47mzZun/v3726f17NlTzZs314gRIwg9AACgzHHq9NalS5fUqlWrfNMjIyN1+fLlYjcFAADgak6FnoEDB2rOnDn5pr/11lsaMGBAsZsCAABwNadOb0l/XMi8bt06tW3bVpK0fft2JSYmatCgQRo1apR9uenTpxe/SwAAgGJyKvTs27dPt956qyTpyJEjkqRq1aqpWrVq2rdvn305bmMHAABlhVOhZ9OmTa7uAwAAoEQ5/T09AAAA5QmhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWEKphp6pU6fqtttuU6VKlRQcHKzevXvr0KFDeZa5ePGiYmNjVbVqVVWsWFF9+/ZVSkpKnmUSExPVvXt3VahQQcHBwRo9erQuX758PTcFAACUcaUaejZv3qzY2Fht27ZN69ev16VLl9S5c2edO3fOvszIkSO1atUqLVu2TJs3b9bJkyfVp08f+/zs7Gx1795dWVlZ2rp1q9555x0tXLhQ48ePL41NAgAAZZRHaa58zZo1eZ4vXLhQwcHB2rlzp9q3b6+0tDTNnz9fS5YsUadOnSRJCxYsUOPGjbVt2za1bdtW69at04EDB7RhwwaFhISoZcuWmjJlip599llNnDhRXl5epbFpAACgjClT1/SkpaVJkqpUqSJJ2rlzpy5duqTo6Gj7Mo0aNVLt2rUVHx8vSYqPj1ezZs0UEhJiXyYmJkbp6enav3//deweAACUZaV6pOdKOTk5euqpp3THHXeoadOmkqTk5GR5eXkpMDAwz7IhISFKTk62L3Nl4MmdnzuvIJmZmcrMzLQ/T09Pd9VmAACAMqrMHOmJjY3Vvn37tHTp0hJf19SpUxUQEGB/1KpVq8TXCQAASleZCD1xcXFavXq1Nm3apJo1a9qnh4aGKisrS6mpqXmWT0lJUWhoqH2Zq+/myn2eu8zVxowZo7S0NPvj+PHjLtwaAABQFpVq6DHGKC4uTp988om++OIL1a1bN8/8yMhIeXp6auPGjfZphw4dUmJioqKioiRJUVFR2rt3r06dOmVfZv369fL391dERESB6/X29pa/v3+eBwAAuLGV6jU9sbGxWrJkiVasWKFKlSrZr8EJCAiQr6+vAgICNHToUI0aNUpVqlSRv7+/RowYoaioKLVt21aS1LlzZ0VERGjgwIF65ZVXlJycrLFjxyo2Nlbe3t6luXkAAKAMKdXQM2fOHElSx44d80xfsGCBhgwZIkmaMWOG3Nzc1LdvX2VmZiomJkZvvPGGfVl3d3etXr1aw4cPV1RUlPz8/DR48GBNnjz5em0GAAAoB0o19BhjCl3Gx8dHr7/+ul5//fVrLhMeHq7PPvvMla0BAIAbTJm4kBkAAKCkEXoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAleJR2AwAA3EgiRy9ySZ2d0wa5pA7+D0d6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJXDLOgAA5YSrboeXrHlLPEd6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJfBnKAAAlsKfcrAujvQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLKNXQ89VXX6lHjx4KCwuTzWbT8uXL88w3xmj8+PGqXr26fH19FR0drYSEhDzLnDlzRgMGDJC/v78CAwM1dOhQnT179jpuBQAAKA88SnPl586dU4sWLfTII4+oT58++ea/8soreu211/TOO++obt26GjdunGJiYnTgwAH5+PhIkgYMGKCkpCStX79ely5d0sMPP6xHH31US5Ysud6bAwBwgcjRi1xWa+e0QS6rhfKvVENP165d1bVr1wLnGWM0c+ZMjR07Vr169ZIkLVq0SCEhIVq+fLkefPBB/fDDD1qzZo2+/fZbtWrVSpI0e/ZsdevWTf/6178UFhZ23bYFAACUbWX2mp6jR48qOTlZ0dHR9mkBAQFq06aN4uPjJUnx8fEKDAy0Bx5Jio6Olpubm7Zv337dewYAAGVXqR7p+TPJycmSpJCQkDzTQ0JC7POSk5MVHBycZ76Hh4eqVKliX6YgmZmZyszMtD9PT093VdsAAKCMKrNHekrS1KlTFRAQYH/UqlWrtFsCAAAlrMyGntDQUElSSkpKnukpKSn2eaGhoTp16lSe+ZcvX9aZM2fsyxRkzJgxSktLsz+OHz/u4u4BAEBZU2ZDT926dRUaGqqNGzfap6Wnp2v79u2KioqSJEVFRSk1NVU7d+60L/PFF18oJydHbdq0uWZtb29v+fv753kAAIAbW6le03P27FkdPnzY/vzo0aPavXu3qlSpotq1a+upp57S888/rwYNGthvWQ8LC1Pv3r0lSY0bN1aXLl00bNgwvfnmm7p06ZLi4uL04IMPcucWAADIo1RDz44dO3TXXXfZn48aNUqSNHjwYC1cuFDPPPOMzp07p0cffVSpqam68847tWbNGvt39EjS4sWLFRcXp7vvvltubm7q27evXnvtteu+LQAAoGwr1dDTsWNHGWOuOd9ms2ny5MmaPHnyNZepUqUKX0QIAAAKVWav6QEAAHAlQg8AALAEQg8AALAEQg8AALCEMvtnKAAAZRd/CR3lEUd6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJXDLOgDcgLilHMiPIz0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASuHsLAEoBd1cB1x9HegAAgCUQegAAgCUQegAAgCVwTQ8AXAPX3QA3Fo70AAAASyD0AAAAS+D0FoByi9NPAIqCIz0AAMASCD0AAMASCD0AAMASuKYHQIly1XU3XHMDoLg40gMAACyB0AMAACyB0AMAACyBa3oAi+O7bgBYBUd6AACAJRB6AACAJXB6CyjjOP0EAK5B6AFcgGACAGUfp7cAAIAlcKQHlsCRGAAAR3oAAIAlEHoAAIAlcHrrBsIpHAAAro0jPQAAwBI40gOHleSRJI5SAQBKGqHnOuOXOwAApYPTWwAAwBIIPQAAwBIIPQAAwBIIPQAAwBIIPQAAwBIIPQAAwBK4Zf0q3FIOAMCNiSM9AADAEm6Y0PP666+rTp068vHxUZs2bfTNN9+UdksAAKAMuSFCzwcffKBRo0ZpwoQJ+u6779SiRQvFxMTo1KlTpd0aAAAoI26I0DN9+nQNGzZMDz/8sCIiIvTmm2+qQoUKevvtt0u7NQAAUEaU+9CTlZWlnTt3Kjo62j7Nzc1N0dHRio+PL8XOAABAWVLu79767bfflJ2drZCQkDzTQ0JCdPDgwQJfk5mZqczMTPvztLQ0SVJ6erqyMy+4rLf09PR800qyPr0XXLu81y/PvbuyfnnuvaD65bn3kq5fnnt3Zf3y3HtB9Uuidu5/jTGOvdCUcydOnDCSzNatW/NMHz16tGndunWBr5kwYYKRxIMHDx48ePC4AR7Hjx93KDOU+yM91apVk7u7u1JSUvJMT0lJUWhoaIGvGTNmjEaNGmV/npOTozNnzqhq1aqy2Wx/ur709HTVqlVLx48fl7+/f/E34AaqX557L+n69H5j1i/PvZd0fXq/MeuXtd6NMcrIyFBYWJhD9ct96PHy8lJkZKQ2btyo3r17S/ojxGzcuFFxcXEFvsbb21ve3t55pgUGBhZpvf7+/iXyht8I9ctz7yVdn95vzPrlufeSrk/vN2b9stR7QECAw3XLfeiRpFGjRmnw4MFq1aqVWrdurZkzZ+rcuXN6+OGHS7s1AABQRtwQoeeBBx7Qr7/+qvHjxys5OVktW7bUmjVr8l3cDAAArOuGCD2SFBcXd83TWa7k7e2tCRMm5Ds9Rv3y3XtJ16f3G7N+ee69pOvT+41Zvzz3Lkk2Yxy9zwsAAKD8KvdfTggAAOAIQg8AALAEQg8AALAEQg8AALAEQs81ZGdna9y4capbt658fX110003acqUKXn+vocxRuPHj1f16tXl6+ur6OhoJSQkuKT2xx9/rM6dO9u/JXr37t0u6/3SpUt69tln1axZM/n5+SksLEyDBg3SyZMnXbZvJk6cqEaNGsnPz0+VK1dWdHS0tm/f7pLaV/p//+//yWazaebMmS7rfciQIbLZbHkeXbp0cVnvP/zwg3r27KmAgAD5+fnptttuU2JiokvqX9137mPatGkuqX/27FnFxcWpZs2a8vX1VUREhN58802X1E5JSdGQIUMUFhamChUqqEuXLg6Np1wZGRl66qmnFB4eLl9fX91+++369ttv7fOdHa+O1C7OeC2sfnHHqyP9OzteHal9paKOV0fqOzteHe3d2fHqSP3ijFdH6js7Xh2pXZTx+tVXX6lHjx4KCwuTzWbT8uXL88x3ZGyeOXNGAwYMkL+/vwIDAzV06FCdPXvWoW25emUowAsvvGCqVq1qVq9ebY4ePWqWLVtmKlasaGbNmmVf5qWXXjIBAQFm+fLl5vvvvzc9e/Y0devWNRcuXCh27UWLFplJkyaZefPmGUlm165dLus9NTXVREdHmw8++MAcPHjQxMfHm9atW5vIyEiX7ZvFixeb9evXmyNHjph9+/aZoUOHGn9/f3Pq1Kli18718ccfmxYtWpiwsDAzY8YMl/U+ePBg06VLF5OUlGR/nDlzxiW1Dx8+bKpUqWJGjx5tvvvuO3P48GGzYsUKk5KS4pL6V/aclJRk3n77bWOz2cyRI0dcUn/YsGHmpptuMps2bTJHjx41c+fONe7u7mbFihXFqp2Tk2Patm1r2rVrZ7755htz8OBB8+ijj5ratWubs2fPFtq7Mcb069fPREREmM2bN5uEhAQzYcIE4+/vb3755RdjjPPj1ZHaxRmvhdUv7nh1pH9nx6sjtXM5M14dqe/seHWkdnHGqyP1izNeHanv7HgtrHZRx+tnn31mnnvuOfPxxx8bSeaTTz7JM9+RsdmlSxfTokULs23bNvO///3P1K9f3/Tv39+h/XQlQs81dO/e3TzyyCN5pvXp08cMGDDAGPPHh3RoaKiZNm2afX5qaqrx9vY277//frFqX+no0aNF/hAtSv1c33zzjZFkfv755xKpn5aWZiSZDRs2uKT2L7/8YmrUqGH27dtnwsPDHf4QdaT+4MGDTa9evRyqV9TaDzzwgPnrX/9a5NqO1r9ar169TKdOnVxWv0mTJmby5Ml5lrn11lvNc889V6zahw4dMpLMvn377POzs7NNUFCQmTdvXqG9nz9/3ri7u5vVq1cX2Ftxxmthta/kzHgtSv1cRRmvztR3dLw6WtvZ8epIfWfHqyO1izNendnvRRmvjtR3drwWVrs44/Xq0OPI2Dxw4ICRZL799lv7Mp9//rmx2WzmxIkTf7q+q3F66xpuv/12bdy4UT/++KMk6fvvv9eWLVvUtWtXSdLRo0eVnJys6Oho+2sCAgLUpk0bxcfHF6t2SfdekLS0NNlsNof+BllR62dlZemtt95SQECAWrRoUezaOTk5GjhwoEaPHq0mTZoU2q8zvX/55ZcKDg5Ww4YNNXz4cJ0+fbrYtXNycvTpp5/q5ptvVkxMjIKDg9WmTZt8h3qL23uulJQUffrppxo6dKjL6t9+++1auXKlTpw4IWOMNm3apB9//FGdO3cuVu3MzExJko+Pj/01bm5u8vb21pYtWwrt/fLly8rOzs7zekny9fXVli1bijVeC6tdXM7UL8p4LWr9ooxXR2oXZ7w62rsz47Ww2sUdr0Xd70Udr47Ud3a8Fla7uOP1So6Mzfj4eAUGBqpVq1b2ZaKjo+Xm5ubwaVi7IkUkC8nOzjbPPvussdlsxsPDw9hsNvPiiy/a53/99ddGkjl58mSe191///2mX79+xap9JWf+5ViU+sYYc+HCBXPrrbeahx56yKX1V61aZfz8/IzNZjNhYWHmm2++cUntF1980dxzzz0mJyfHGGOK9C9HR+q///77ZsWKFWbPnj3mk08+MY0bNza33XabuXz5crFqJyUlGUmmQoUKZvr06WbXrl1m6tSpxmazmS+//NIlvV/p5ZdfNpUrV3bo9I2j9S9evGgGDRpkJBkPDw/j5eVl3nnnnWLXzsrKMrVr1zb333+/OXPmjMnMzDQvvfSSkWQ6d+7sUP9RUVGmQ4cO5sSJE+by5cvm3XffNW5ububmm28u1ngtrPaVnBmvRalvTNHHq6P1nRmvjtQuznh1pL6z47Ww2sUdr470fqWijldH6js7XgurXZzxqquO9DgyNl944YUC91lQUJB54403HNoe+/qLtLSFvP/++6ZmzZrm/fffN3v27DGLFi0yVapUMQsXLjTGFC/0FFb7Ss58iBalflZWlunRo4e55ZZbTFpamkvrnz171iQkJJj4+HjzyCOPmDp16hR6Lryw2jt27DAhISF5DmkW5UO0KPsm15EjRxw61F9Y7RMnThhJ+c5D9+jRwzz44IMu771hw4YmLi6u0LpFqT9t2jRz8803m5UrV5rvv//ezJ4921SsWNGsX7++2LV37NhhWrRoYSQZd3d3ExMTY7p27Wq6dOniUP+HDx827du3t7/+tttuMwMGDDCNGjUqduj5s9pXcjb0OFrfmfHqaH1nxmthtYs7Xh3t/UqOjtfCahd3vBa196KOV0fqOzteHant7Hgl9JRRNWvWNP/+97/zTJsyZYpp2LChMeb/BtbVH27t27c3TzzxRLFqX8mZD1FH62dlZZnevXub5s2bm99++83l9a9Wv379Pz0y4UjtGTNmGJvNZtzd3e0PScbNzc2Eh4eXWO/VqlUzb775ZrFqZ2ZmGg8PDzNlypQ8yzzzzDPm9ttvd2nvX331lZFkdu/eXWhdR+ufP3/eeHp65jvPP3ToUBMTE+Oy3lNTU+0X0LZu3do8/vjjDm+DMX/88s79AO3Xr5/p1q1bscZrYbWv5GzocaS+s+O1KP1fyZHxWljt4o5XZ3t3ZLwWVru447UovTszXgurX5zxWpTeizperw49jozN+fPnm8DAwDzzL126ZNzd3c3HH3/s8LYYwzU913T+/Hm5ueXdPe7u7srJyZEk1a1bV6Ghodq4caN9fnp6urZv366oqKhi1S7p3qU/boPt16+fEhIStGHDBlWtWtWl9QuSk5NjPxfsbO2BAwdqz5492r17t/0RFham0aNHa+3atSXS+y+//KLTp0+revXqxart5eWl2267TYcOHcqzzI8//qjw8HCX9j5//nxFRkYWek1GUepfunRJly5dcuq9L0rvAQEBCgoKUkJCgnbs2KFevXo5vA2S5Ofnp+rVq+v333/X2rVr1atXr2KN18Jqu9K16hdnvDpSvyCOjNfCahd3vDrTu6PjtbDaxR2vRendmfFaWP3ijNei9F7c8erI2IyKilJqaqp27txpX+aLL75QTk6O2rRpU6T1caTnGgYPHmxq1Khhv8X2448/NtWqVTPPPPOMfZmXXnrJBAYG2s8n9+rVy6FbYB2pffr0abNr1y7z6aefGklm6dKlZteuXSYpKanYvWdlZZmePXuamjVrmt27d+e5ZTIzM7PY9c+ePWvGjBlj4uPjzbFjx8yOHTvMww8/bLy9vfNc7e/svrlaUQ6XF1Y/IyPDPP300yY+Pt4cPXrUbNiwwdx6662mQYMG5uLFi8Xu/eOPPzaenp7mrbfeMgkJCWb27NnG3d3d/O9//yt277nS0tJMhQoVzJw5cxzaJ0Wp36FDB9OkSROzadMm89NPP5kFCxYYHx+fQg8xO1L7ww8/NJs2bTJHjhwxy5cvN+Hh4aZPnz4O979mzRrz+eefm59++smsW7fOtGjRwrRp08ZkZWUZY5wfr47ULs54Lax+ccdrYfWLM14d2TdXK+rprT+rX5zx6kjvxRmvju4bZ8erI/WdHa+O1C7KeM3IyDC7du0yu3btMpLs10jl3n3oyNjs0qWLueWWW8z27dvNli1bTIMGDbhl3ZXS09PNk08+aWrXrm18fHxMvXr1zHPPPZfnQyYnJ8eMGzfOhISEGG9vb3P33XebQ4cOuaT2ggULjKR8jwkTJhS7fu4h+IIemzZtKnb9CxcumPvuu8+EhYUZLy8vU716ddOzZ0+HLox0ZN9crSgfooXVP3/+vOncubMJCgoynp6eJjw83AwbNswkJye7rPf58+eb+vXrGx8fH9OiRQuzfPlyl/Sea+7cucbX19ekpqY6VLco9ZOSksyQIUNMWFiY8fHxMQ0bNjSvvvqq/SLV4tSeNWuWqVmzpvH09DS1a9c2Y8eOdfiXujHGfPDBB6ZevXrGy8vLhIaGmtjY2Dz7wNnx6kjt4ozXwuoXd7wWVr8449WRfXO1ooaeP6tfnPHqaO/OjldH6zs7Xh2p7+x4daR2Ucbrpk2bCvz5HTx4sDHGsbF5+vRp079/f1OxYkXj7+9vHn74YZORkVHkfWYz5hpfdQsAAHAD4ZoeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeADechQsXKjAwsLTbAFDG8OWEAG44Fy5cUEZGhoKDgx1+TceOHdWyZUvNnDmz5BoDUKo8SrsBAHA1X19f+fr6lnYbAMoYTm8BKHM6duyouLg4xcXFKSAgQNWqVdO4ceOUe2D6999/16BBg1S5cmVVqFBBXbt2VUJCgv31V5/emjhxolq2bKl3331XderUUUBAgB588EFlZGRIkoYMGaLNmzdr1qxZstlsstlsOnbsmH7//XcNGDBAQUFB8vX1VYMGDbRgwYLrui8AuA6hB0CZ9M4778jDw0PffPONZs2apenTp+s///mPpD9Cyo4dO7Ry5UrFx8fLGKNu3brp0qVL16x35MgRLV++XKtXr9bq1au1efNmvfTSS5KkWbNmKSoqSsOGDVNSUpKSkpJUq1YtjRs3TgcOHNDnn3+uH374QXPmzFG1atWuy/YDcD1ObwEok2rVqqUZM2bIZrOpYcOG2rt3r2bMmKGOHTtq5cqV+vrrr3X77bdLkhYvXqxatWpp+fLluv/++wusl5OTo4ULF6pSpUqSpIEDB2rjxo164YUXFBAQIC8vL1WoUEGhoaH21yQmJuqWW25Rq1atJEl16tQp2Y0GUKI40gOgTGrbtq1sNpv9eVRUlBISEnTgwAF5eHioTZs29nlVq1ZVw4YN9cMPP1yzXp06deyBR5KqV6+uU6dO/WkPw4cP19KlS9WyZUs988wz2rp1azG2CEBpI/QAsARPT888z202m3Jycv70NV27dtXPP/+skSNH6uTJk7r77rv19NNPl2SbAEoQoQdAmbR9+/Y8z7dt26YGDRooIiJCly9fzjP/9OnTOnTokCIiIpxen5eXl7Kzs/NNDwoK0uDBg/Xee+9p5syZeuutt5xeB4DSRegBUCYlJiZq1KhROnTokN5//33Nnj1bTz75pBo0aKBevXpp2LBh2rJli77//nv99a9/VY0aNdSrVy+n11enTh1t375dx44d02+//aacnByNHz9eK1as0OHDh7V//36tXr1ajRs3duFWArieCD0AyqRBgwbpwoULat26tWJjY/Xkk0/q0UcflSQtWLBAkZGRuvfeexUVFSVjjD777LN8p7CK4umnn5a7u7siIiIUFBSkxMREeXl5acyYMWrevLnat28vd3d3LV261FWbCOA64xuZAZQ5fDsygJLAkR4AAGAJhB4AAGAJnN4CAACWwJEeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCf8frNhOvi9vs3MAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.barplot(data=data, x='points', y='price', errorbar=None)\n",
+ "plt.title(\"price rate depending on the points\")\n",
+ "plt.xlabel(\"points\")\n",
+ "plt.ylabel(\"price\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gV5rvdzQf9Rm"
+ },
+ "source": [
+ "Проверили. Признаки не линейно-зависимы."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "H2EamkuhAPKu"
+ },
+ "source": [
+ "Посмотрим на зависимость оценки вина от года розлива."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 450
+ },
+ "id": "zm_kgoac_-Oq",
+ "outputId": "91648859-c779-404e-93b8-8fafbedf6387"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAHWCAYAAAAIOsSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY5klEQVR4nO3dd5gV5fk//nuXsruUpSkdFRFR0IiiImDERBQ7tmiiiUqsiZ0YEz6xgVHsGhVbVJTYNVFJLEkUNDEiKkXFQlFsKGChiAoC+/z+8Mf5sgMLCy5b2NfruvbSfWbOzH3vM+fsMu8zZ/JSSikAAAAAAADIya/qAgAAAAAAAKobAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAArGD33XeP3XffvarLqLGeffbZyMvLi2effbaqS6kQq+rn2GOPjc0226zKaqpKF154YeTl5cVnn31W1aUAAMB6J0ABAIAKcu+998a1115b1WWU8vHHH8eFF14YkyZNqupSqEEuueSSePTRR6u6DAAAqFICFAAAWMG//vWv+Ne//rVOj62uAcqQIUMEKBXoz3/+c0yZMqWqy1ivBCgAABBRt6oLAACA6qR+/fpVXcJqLVq0KOrXrx/5+d4LVVXq1atX1SVQiTznAABqL38BAgBQYy2/H8Pbb78dhx9+eBQXF0eLFi3ijDPOiEWLFpVad+nSpXHRRRdFp06doqCgIDbbbLP4v//7v1i8eHGp9bL3QFl+D4wHH3wwLr744mjfvn0UFhbGHnvsEdOnTy/1uMcffzzef//9yMvLi7y8vFL3ybj++uujW7du0aBBg2jWrFnsuOOOce+99662v+X7vv/+++Pcc8+Ndu3aRYMGDWLBggXxxRdfxNlnnx3bbrttNGrUKIqLi2OfffaJV199tdTjd9ppp4iIGDhwYK6uO++8M7fOuHHjYu+9944mTZpEgwYNom/fvvG///2vXD//jz76KA466KBo2LBhtGzZMs4666yVfp5rs5+1mc+IiLvvvjt69OgRRUVF0bx58/jpT38aH374Yal1dt9999hmm23izTffjB/96EfRoEGDaNeuXVx++eXr3E/2Hijvvfde5OXlxZVXXhm33npr7hjbaaed4uWXX17p8Q899FB07do1CgsLY5tttolHHnlkre6rcuONN0a3bt2ioKAg2rZtG6ecckrMmzdvnfvOysvLi6+++iruuuuu3DFz7LHHllpn3rx5ceyxx0bTpk2jSZMmMXDgwPj6669X2lZ55ihrzJgxkZeXF4888shKy+69997Iy8uLsWPH5sbefvvtOOyww6J58+ZRWFgYO+64Y4waNarU48rzfIlY/XMOAIDaxxUoAADUeIcffnhsttlmMWzYsHjxxRfjuuuui7lz58bIkSNz6xx//PFx1113xWGHHRa/+c1vYty4cTFs2LB46623VnmiNuvSSy+N/Pz8OPvss2P+/Plx+eWXx1FHHRXjxo2LiIg//OEPMX/+/Pjoo4/immuuiYiIRo0aRcR3H/l0+umnx2GHHZYLA1577bUYN25cHHnkkWvc90UXXRT169ePs88+OxYvXhz169ePN998Mx599NH4yU9+Eh07dozZs2fHLbfcEn379o0333wz2rZtG1tvvXUMHTo0zj///DjxxBPjhz/8YURE9O7dOyIiRo8eHfvss0/06NEjLrjggsjPz48RI0bEj3/84/jvf/8bO++8c5k1ffPNN7HHHnvEBx98EKeffnq0bds2/vKXv8To0aNXWndt91Oe+bz44ovjvPPOi8MPPzyOP/74+PTTT+P666+P3XbbLSZOnBhNmzbNrTt37tzYe++945BDDonDDz88Hn744fjd734X2267beyzzz5r3U9Z7r333vjyyy/jpJNOiry8vLj88svjkEMOiXfffTd31crjjz8eRxxxRGy77bYxbNiwmDt3bhx33HHRrl27cu3jwgsvjCFDhkS/fv3iV7/6VUyZMiVuuummePnll+N///tfqatjytP3qvzlL3+J448/Pnbeeec48cQTIyKiU6dOpdY5/PDDo2PHjjFs2LCYMGFC3HbbbdGyZcu47LLLcuuszRytaPfdd48OHTrEPffcEwcffHCpZffcc0906tQpevXqFRERb7zxRvTp0yfatWsXv//976Nhw4bx4IMPxkEHHRR//etfc49/99131/h8WdGqnnMAANRCCQAAaqgLLrggRUQ68MADS43/+te/ThGRXn311ZRSSpMmTUoRkY4//vhS65199tkpItLo0aNzY3379k19+/bNfT9mzJgUEWnrrbdOixcvzo3/6U9/ShGRXn/99dzYfvvtlzbddNOV6hwwYEDq1q3bWve3fN+bb755+vrrr0stW7RoUVq2bFmpsRkzZqSCgoI0dOjQ3NjLL7+cIiKNGDGi1LolJSWpc+fOqX///qmkpCQ3/vXXX6eOHTumPffcc7W1XXvttSki0oMPPpgb++qrr9IWW2yRIiKNGTNmrfdT3vl87733Up06ddLFF19car3XX3891a1bt9R43759U0SkkSNH5sYWL16cWrdunQ499NC17iellI455phS8zxjxowUEalFixbpiy++yI0/9thjKSLS3//+99zYtttum9q3b5++/PLL3Nizzz6bImKVx86K5syZk+rXr5/22muvUnN/ww03pIhId9xxx1r3XZaGDRumY445ZqXx5XP0y1/+stT4wQcfnFq0aJH7fm3maFUGDx6cCgoK0rx583Jjc+bMSXXr1k0XXHBBbmyPPfZI2267bVq0aFFurKSkJPXu3Tt17tw5N1be58vqnnMAANQ+PsILAIAa75RTTin1/WmnnRYREU888USp/w4aNKjUer/5zW8i4rurAtZk4MCBpd6FvvxqjnfffXeNj23atGl89NFHq/w4p/I45phjoqioqNRYQUFB7p4My5Yti88//zwaNWoUXbp0iQkTJqxxm5MmTYpp06bFkUceGZ9//nl89tln8dlnn8VXX30Ve+yxR/znP/+JkpKSMh//xBNPRJs2beKwww7LjTVo0CB3xcL32c+a5vNvf/tblJSUxOGHH57b3meffRatW7eOzp07x5gxY0o9vlGjRvHzn/889339+vVj5513LjV35e1ndY444oho1qxZ7vvsMfLxxx/H66+/HkcffXTu6qSIiL59+8a22267xu0//fTT8e2338aZZ55Z6n4cJ5xwQhQXF690HJen73V18sknl/r+hz/8YXz++ee5j7pa2znKOvroo2Px4sXx8MMP58YeeOCBWLp0aa6nL774IkaPHh2HH354fPnll7l9fP7559G/f/+YNm1azJw5MyLW/vmyquccAAC1j4/wAgCgxuvcuXOp7zt16hT5+fnx3nvvRUTE+++/H/n5+bHFFluUWq9169bRtGnTeP/999e4j0022aTU98tPlM+dO3eNj/3d734XTz/9dOy8886xxRZbxF577RVHHnlk9OnTZ42PjYjo2LHjSmMlJSXxpz/9KW688caYMWNGLFu2LLesRYsWa9zmtGnTIuK7E8VlmT9/fqlAYEXvv/9+bLHFFpGXl1dqvEuXLt97P2uaz2nTpkVKaaX1lsve5L19+/Yr1dmsWbN47bXX1rqf1VnTMbL8OMseh8vH1hR8LX98tqb69evH5ptvvtJxXJ6+19Xqei0uLl7rOcraaqutYqeddop77rknjjvuuIj47uO7dtlll9zPb/r06ZFSivPOOy/OO++8VW5nzpw50a5du7V+vqzqOQcAQO0jQAEAYIOTPWm8pvHyqFOnzirHU0prfOzWW28dU6ZMiX/84x/x1FNPxV//+te48cYb4/zzz48hQ4as8fGreif8JZdcEuedd1788pe/jIsuuiiaN28e+fn5ceaZZ672ypHllq9zxRVXRPfu3Ve5zopXSayrithPdt5KSkoiLy8vnnzyyVXOS3Z732fu1kZl7ae81mc9a9r22s7Rqhx99NFxxhlnxEcffRSLFy+OF198MW644Ybc8uXH1tlnnx39+/df5TaWhy1r+3xx9QkAABECFAAANgDTpk0r9Y7x6dOnR0lJSWy22WYREbHppptGSUlJTJs2LbbeeuvcerNnz4558+bFpptuWiF1rC6gadiwYRxxxBFxxBFHxLfffhuHHHJIXHzxxTF48OAoLCxc6309/PDD8aMf/Shuv/32UuPz5s2LjTbaaI01Lb8peHFxcfTr12+t97/pppvG5MmTI6VUah9Tpkz53vtZ03x26tQpUkrRsWPH2HLLLde69lUpbz/fdx8R3/WTtaqxsh4/ZcqU2HzzzXPj3377bcyYMWOd5rEs3ydsjKiYOfrpT38agwYNivvuuy+++eabqFevXhxxxBG55ct/BvXq1Vtj7+V9vgAAwIrcAwUAgBpv+PDhpb6//vrrIyJin332iYiIfffdNyIirr322lLrXX311RERsd9++1VIHQ0bNoz58+evNP7555+X+r5+/frRtWvXSCnFkiVL1mlfderUWelKgoceeih3z4cVa4r47kTxinr06BGdOnWKK6+8MhYuXLjS9j/99NPV7n/fffeNjz/+uNQ9Kr7++uu49dZbv/d+1jSfhxxySNSpUyeGDBmy0s8gpbTSz7s8ytvP99G2bdvYZpttYuTIkaV+Fs8991y8/vrra3x8v379on79+nHdddeV6vv222+P+fPnV9hxHPHdcZM9ZtZGRczRRhttFPvss0/cfffdcc8998Tee+9dKuxo2bJl7L777nHLLbfEJ598stLjVzy2yvt8AQCAFbkCBQCAGm/GjBlx4IEHxt577x1jx46Nu+++O4488sjYbrvtIiJiu+22i2OOOSZuvfXWmDdvXvTt2zdeeumluOuuu+Kggw6KH/3oRxVSR48ePeKBBx6IQYMGxU477RSNGjWKAw44IPbaa69o3bp19OnTJ1q1ahVvvfVW3HDDDbHffvtF48aN12lf+++/fwwdOjQGDhwYvXv3jtdffz3uueeeUlcmRHx3JUDTpk3j5ptvjsaNG0fDhg2jZ8+e0bFjx7jttttin332iW7dusXAgQOjXbt2MXPmzBgzZkwUFxfH3//+9zL3f8IJJ8QNN9wQRx99dIwfPz7atGkTf/nLX6JBgwal1svPz1/r/axpPjt16hR//OMfY/DgwfHee+/FQQcdFI0bN44ZM2bEI488EieeeGKcffbZa/XzLG8/39cll1wSAwYMiD59+sTAgQNj7ty5ccMNN8Q222yzyoBpRRtvvHEMHjw4hgwZEnvvvXcceOCBMWXKlLjxxhtjp512KnXD+O+rR48e8fTTT8fVV18dbdu2jY4dO0bPnj3L/fiKmqOjjz46DjvssIiIuOiii1ZaPnz48Nh1111j2223jRNOOCE233zzmD17dowdOzY++uijePXVVyOi/M8XAAAoJQEAQA11wQUXpIhIb775ZjrssMNS48aNU7NmzdKpp56avvnmm1LrLlmyJA0ZMiR17Ngx1atXL3Xo0CENHjw4LVq0qNR6ffv2TX379s19P2bMmBQR6aGHHiq13owZM1JEpBEjRuTGFi5cmI488sjUtGnTFBFp0003TSmldMstt6TddtsttWjRIhUUFKROnTql3/72t2n+/Pmr7a+sfaeU0qJFi9JvfvOb1KZNm1RUVJT69OmTxo4du1L9KaX02GOPpa5du6a6deuuVPPEiRPTIYcckqtt0003TYcffnh65plnVltbSim9//776cADD0wNGjRIG220UTrjjDPSU089lSIijRkzptS65dnP2sxnSin99a9/Tbvuumtq2LBhatiwYdpqq63SKaeckqZMmZJbp2/fvqlbt24rPfaYY47Jzc/a9pN97PJj4YorrlhpPxGRLrjgglJj999/f9pqq61SQUFB2mabbdKoUaPSoYcemrbaaqtV/JRXdsMNN6Stttoq1atXL7Vq1Sr96le/SnPnzi21ztr0vSpvv/122m233VJRUVGKiHTMMceklP7fHH366ael1h8xYkSKiDRjxoxS4+WZo9VZvHhxatasWWrSpMkqj4GUUnrnnXfS0UcfnVq3bp3q1auX2rVrl/bff//08MMP59Yp7/Nldc85AABqn7yUquiOhgAA8D1deOGFMWTIkPj000/dx2ADUJvns3v37rHxxhvHv//976oupVpZunRptG3bNg444ICV7l8CAADrm3ugAAAAVJIlS5bE0qVLS409++yz8eqrr8buu+9eNUVVY48++mh8+umncfTRR1d1KQAA1ELugQIAAFBJZs6cGf369Yuf//zn0bZt23j77bfj5ptvjtatW8fJJ59c1eVVG+PGjYvXXnstLrrooth+++2jb9++VV0SAAC1kAAFAACgkjRr1ix69OgRt912W3z66afRsGHD2G+//eLSSy+NFi1aVHV51cZNN90Ud999d3Tv3j3uvPPOqi4HAIBayj1QAAAAAAAAMtwDBQAAAAAAIEOAAgAAAAAAkLHB3wOlpKQkPv7442jcuHHk5eVVdTkAAAAAAEAVSinFl19+GW3bto38/LKvM9ngA5SPP/44OnToUNVlAAAAAAAA1ciHH34Y7du3L3P5Bh+gNG7cOCK++0EUFxdXcTUAAAAAAEBVWrBgQXTo0CGXH5Rlgw9Qln9sV3FxsQAFAAAAAACIiFjjbT/cRB4AAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACAjLpVXQAAAABQvfX47ciqLmGtjb/i6KouAQCo4QQoAAAAlawmnoyOcEIaAIDaRYACNYR/ZAMAQPXj73QAgA2XAAUAgA2Ck5hQ/XheAlWhNrz21IYeAaoDAcoGzi9UAAAAWDP/fobqpzY8L2tDj1CTCVAAYB34I3fDYS6h+vG8BFg/vL4CwNrJr+oCAAAAAAAAqhsBCgAAAAAAQIYABQAAAAAAIMM9UKjxfIYrAKyZ35cAAEBV8G8RajIBCgAA1CA18R+g/vEJAADURAIUAAAAAAD4HmriG50ivNlpTQQoAJXML1QAAAAAapraeE7LTeQBAAAAAAAyXIECAJSpNr67BAAAACCilgcoTgoBAAAAAACr4iO8AAAAAAAAMgQoAAAAAAAAGbX6I7yA6sXH6gEAAAAA1YUrUAAAAAAAADIEKAAAAAAAABk+wguACufj2AAAAACo6VyBAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACCjSgOUZcuWxXnnnRcdO3aMoqKi6NSpU1x00UWRUsqtk1KK888/P9q0aRNFRUXRr1+/mDZtWhVWDQAAAAAAbOiqNEC57LLL4qabboobbrgh3nrrrbjsssvi8ssvj+uvvz63zuWXXx7XXXdd3HzzzTFu3Lho2LBh9O/fPxYtWlSFlQMAAAAAABuyulW58xdeeCEGDBgQ++23X0REbLbZZnHffffFSy+9FBHfXX1y7bXXxrnnnhsDBgyIiIiRI0dGq1at4tFHH42f/vSnVVY7AAAAAACw4arSK1B69+4dzzzzTEydOjUiIl599dV4/vnnY5999omIiBkzZsSsWbOiX79+ucc0adIkevbsGWPHjl3lNhcvXhwLFiwo9QUAAAAAALA2qvQKlN///vexYMGC2GqrraJOnTqxbNmyuPjii+Ooo46KiIhZs2ZFRESrVq1KPa5Vq1a5ZVnDhg2LIUOGrN/CAQAAAACADVqVXoHy4IMPxj333BP33ntvTJgwIe6666648sor46677lrnbQ4ePDjmz5+f+/rwww8rsGIAAAAAAKA2qNIrUH7729/G73//+9y9TLbddtt4//33Y9iwYXHMMcdE69atIyJi9uzZ0aZNm9zjZs+eHd27d1/lNgsKCqKgoGC91w4AAAAAAGy4qvQKlK+//jry80uXUKdOnSgpKYmIiI4dO0br1q3jmWeeyS1fsGBBjBs3Lnr16lWptQIAAAAAALVHlV6BcsABB8TFF18cm2yySXTr1i0mTpwYV199dfzyl7+MiIi8vLw488wz449//GN07tw5OnbsGOedd160bds2DjrooKosHQAAAAAA2IBVaYBy/fXXx3nnnRe//vWvY86cOdG2bds46aST4vzzz8+tc84558RXX30VJ554YsybNy923XXXeOqpp6KwsLAKKwcAAAAAADZkVRqgNG7cOK699tq49tpry1wnLy8vhg4dGkOHDq28wgAAAAAAgFqtSu+BAgAAAAAAUB0JUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACCjygOUmTNnxs9//vNo0aJFFBUVxbbbbhuvvPJKbnlKKc4///xo06ZNFBUVRb9+/WLatGlVWDEAAAAAALChq9IAZe7cudGnT5+oV69ePPnkk/Hmm2/GVVddFc2aNcutc/nll8d1110XN998c4wbNy4aNmwY/fv3j0WLFlVh5QAAAAAAwIasblXu/LLLLosOHTrEiBEjcmMdO3bM/X9KKa699to499xzY8CAARERMXLkyGjVqlU8+uij8dOf/rTSawYAAAAAADZ8VXoFyqhRo2LHHXeMn/zkJ9GyZcvYfvvt489//nNu+YwZM2LWrFnRr1+/3FiTJk2iZ8+eMXbs2FVuc/HixbFgwYJSXwAAAAAAAGujSgOUd999N2666abo3Llz/POf/4xf/epXcfrpp8ddd90VERGzZs2KiIhWrVqVelyrVq1yy7KGDRsWTZo0yX116NBh/TYBAAAAAABscKo0QCkpKYkddtghLrnkkth+++3jxBNPjBNOOCFuvvnmdd7m4MGDY/78+bmvDz/8sAIrBgAAAAAAaoMqDVDatGkTXbt2LTW29dZbxwcffBAREa1bt46IiNmzZ5daZ/bs2bllWQUFBVFcXFzqCwAAAAAAYG1UaYDSp0+fmDJlSqmxqVOnxqabbhoR391QvnXr1vHMM8/kli9YsCDGjRsXvXr1qtRaAQAAAACA2qNuVe78rLPOit69e8cll1wShx9+eLz00ktx6623xq233hoREXl5eXHmmWfGH//4x+jcuXN07NgxzjvvvGjbtm0cdNBBVVk6AAAAAACwAavSAGWnnXaKRx55JAYPHhxDhw6Njh07xrXXXhtHHXVUbp1zzjknvvrqqzjxxBNj3rx5seuuu8ZTTz0VhYWFVVg5AAAAAACwIavSACUiYv/994/999+/zOV5eXkxdOjQGDp0aCVWBQAAAAAA1GZVeg8UAAAAAACA6kiAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyFinAOWuu+6Kxx9/PPf9OeecE02bNo3evXvH+++/X2HFAQAAAAAAVIV1ClAuueSSKCoqioiIsWPHxvDhw+Pyyy+PjTbaKM4666wKLRAAAAAAAKCy1V2XB3344YexxRZbRETEo48+GoceemiceOKJ0adPn9h9990rsj4AAAAAAIBKt05XoDRq1Cg+//zziIj417/+FXvuuWdERBQWFsY333xTcdUBAAAAAABUgXW6AmXPPfeM448/PrbffvuYOnVq7LvvvhER8cYbb8Rmm21WkfUBAAAAAABUunW6AmX48OHRq1ev+PTTT+Ovf/1rtGjRIiIixo8fHz/72c8qtEAAAAAAAIDKtk5XoCxYsCCuu+66yM8vnb9ceOGF8eGHH1ZIYQAAAAAAAFVlna5A6dixY3z22WcrjX/xxRfRsWPH710UAAAAAABAVVqnACWltMrxhQsXRmFh4fcqCAAAAAAAoKqt1Ud4DRo0KCIi8vLy4vzzz48GDRrkli1btizGjRsX3bt3r9ACAQAAAAAAKttaBSgTJ06MiO+uQHn99dejfv36uWX169eP7bbbLs4+++yKrRAAAAAAAKCSrVWAMmbMmIiIGDhwYPzpT3+K4uLi9VIUAAAAAABAVVqrAGW5ESNGVHQdAAAAAAAA1cY6BShfffVVXHrppfHMM8/EnDlzoqSkpNTyd999t0KKAwAAAAAAqArrFKAcf/zx8dxzz8UvfvGLaNOmTeTl5VV0XQAAAAAAAFVmnQKUJ598Mh5//PHo06dPRdcDAAAAAABQ5fLX5UHNmjWL5s2bV3QtAAAAAAAA1cI6BSgXXXRRnH/++fH1119XdD0AAAAAAABVbp0+wuuqq66Kd955J1q1ahWbbbZZ1KtXr9TyCRMmVEhxAAAAAAAAVWGdApSDDjqogssAAAAAAACoPtYpQLngggsqug4AAAAAAIBqY53ugQIAAAAAALAhK/cVKM2bN4+pU6fGRhttFM2aNYu8vLwy1/3iiy8qpDgAAAAAAICqUO4A5ZprronGjRtHRMS11167vuoBAAAAAACocuUOUI455phV/j8AAAAAAMCGZp1uIh8RsWzZsnj00UfjrbfeioiIbt26xYEHHhh16tSpsOIAAAAAAACqwjoFKNOnT4999903Zs6cGV26dImIiGHDhkWHDh3i8ccfj06dOlVokQAAAAAAAJUpf10edPrpp0enTp3iww8/jAkTJsSECRPigw8+iI4dO8bpp59e0TUCAAAAAABUqnW6AuW5556LF198MZo3b54ba9GiRVx66aXRp0+fCisOAAAAAACgKqzTFSgFBQXx5ZdfrjS+cOHCqF+//vcuCgAAAAAAoCqtU4Cy//77x4knnhjjxo2LlFKklOLFF1+Mk08+OQ488MCKrhEAAAAAAKBSrVOAct1110WnTp2iV69eUVhYGIWFhdG7d+/YYost4k9/+lNF1wgAAAAAAFCp1ukeKE2bNo3HHnsspk+fHm+++WZERHTt2jW22GKLCi0OAAAAAACgKqxTgBIRcfvtt8c111wT06ZNi4iIzp07x5lnnhnHH398hRUHAAAAAABQFdYpQDn//PPj6quvjtNOOy169eoVERFjx46Ns846Kz744IMYOnRohRYJAAAAAABQmdYpQLnpppviz3/+c/zsZz/LjR144IHxgx/8IE477TQBCgAAAAAAUKOt003klyxZEjvuuONK4z169IilS5d+76IAAAAAAACq0joFKL/4xS/ipptuWmn81ltvjaOOOup7FwUAAAAAAFCVvtdN5P/1r3/FLrvsEhER48aNiw8++CCOPvroGDRoUG69q6+++vtXCQAAAAAAUInWKUCZPHly7LDDDhER8c4770RExEYbbRQbbbRRTJ48ObdeXl5eBZQIAAAAAABQudYpQBkzZkxF1wEAAAAAAFBtrNM9UAAAAAAAADZkAhQAAAAAAICMahOgXHrppZGXlxdnnnlmbmzRokVxyimnRIsWLaJRo0Zx6KGHxuzZs6uuSAAAAAAAoFaoFgHKyy+/HLfcckv84Ac/KDV+1llnxd///vd46KGH4rnnnouPP/44DjnkkCqqEgAAAAAAqC2qPEBZuHBhHHXUUfHnP/85mjVrlhufP39+3H777XH11VfHj3/84+jRo0eMGDEiXnjhhXjxxRersGIAAAAAAGBDV+UByimnnBL77bdf9OvXr9T4+PHjY8mSJaXGt9pqq9hkk01i7NixZW5v8eLFsWDBglJfAAAAAAAAa6NuVe78/vvvjwkTJsTLL7+80rJZs2ZF/fr1o2nTpqXGW7VqFbNmzSpzm8OGDYshQ4ZUdKkAAAAAAEAtUmVXoHz44YdxxhlnxD333BOFhYUVtt3BgwfH/Pnzc18ffvhhhW0bAAAAAACoHaosQBk/fnzMmTMndthhh6hbt27UrVs3nnvuubjuuuuibt260apVq/j2229j3rx5pR43e/bsaN26dZnbLSgoiOLi4lJfAAAAAAAAa6PKPsJrjz32iNdff73U2MCBA2OrrbaK3/3ud9GhQ4eoV69ePPPMM3HooYdGRMSUKVPigw8+iF69elVFyQAAAAAAQC1RZQFK48aNY5tttik11rBhw2jRokVu/LjjjotBgwZF8+bNo7i4OE477bTo1atX7LLLLlVRMgAAAAAAUEtU6U3k1+Saa66J/Pz8OPTQQ2Px4sXRv3//uPHGG6u6LAAAAAAAYANXrQKUZ599ttT3hYWFMXz48Bg+fHjVFAQAAAAAANRKVXYTeQAAAAAAgOpKgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAICMKg1Qhg0bFjvttFM0btw4WrZsGQcddFBMmTKl1DqLFi2KU045JVq0aBGNGjWKQw89NGbPnl1FFQMAAAAAALVBlQYozz33XJxyyinx4osvxr///e9YsmRJ7LXXXvHVV1/l1jnrrLPi73//ezz00EPx3HPPxccffxyHHHJIFVYNAAAAAABs6OpW5c6feuqpUt/feeed0bJlyxg/fnzstttuMX/+/Lj99tvj3nvvjR//+McRETFixIjYeuut48UXX4xddtllpW0uXrw4Fi9enPt+wYIF67cJAAAAAABgg1Ot7oEyf/78iIho3rx5RESMHz8+lixZEv369cuts9VWW8Umm2wSY8eOXeU2hg0bFk2aNMl9dejQYf0XDgAAAAAAbFCqTYBSUlISZ555ZvTp0ye22WabiIiYNWtW1K9fP5o2bVpq3VatWsWsWbNWuZ3BgwfH/Pnzc18ffvjh+i4dAAAAAADYwFTpR3it6JRTTonJkyfH888//722U1BQEAUFBRVUFQAAAAAAUBtViytQTj311PjHP/4RY8aMifbt2+fGW7duHd9++23Mmzev1PqzZ8+O1q1bV3KVAAAAAABAbVGlAUpKKU499dR45JFHYvTo0dGxY8dSy3v06BH16tWLZ555Jjc2ZcqU+OCDD6JXr16VXS4AAAAAAFBLVOlHeJ1yyilx7733xmOPPRaNGzfO3dekSZMmUVRUFE2aNInjjjsuBg0aFM2bN4/i4uI47bTTolevXrHLLrtUZekAAAAAAMAGrEoDlJtuuikiInbfffdS4yNGjIhjjz02IiKuueaayM/Pj0MPPTQWL14c/fv3jxtvvLGSKwUAAAAAAGqTKg1QUkprXKewsDCGDx8ew4cPr4SKAAAAAAAAqslN5AEAAAAAAKoTAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABk1IgAZfjw4bHZZptFYWFh9OzZM1566aWqLgkAAAAAANiAVfsA5YEHHohBgwbFBRdcEBMmTIjtttsu+vfvH3PmzKnq0gAAAAAAgA1UtQ9Qrr766jjhhBNi4MCB0bVr17j55pujQYMGcccdd1R1aQAAAAAAwAaqblUXsDrffvttjB8/PgYPHpwby8/Pj379+sXYsWNX+ZjFixfH4sWLc9/Pnz8/IiIWLFiw0rrLFn9TwRVXjlX1UhY9Vl9r02NE7eizNvQYUTv61GP15XhdWW3oMaJ29FkbeoyomX3Whh4jHK+rUhv6rA09RtTMPmtDjxGO11WpDX3Whh4jakefeqy+HK8r25B6XD6WUlrtY/PSmtaoQh9//HG0a9cuXnjhhejVq1du/Jxzzonnnnsuxo0bt9JjLrzwwhgyZEhllgkAAAAAANQwH374YbRv377M5dX6CpR1MXjw4Bg0aFDu+5KSkvjiiy+iRYsWkZeXVyk1LFiwIDp06BAffvhhFBcXV8o+K5seNxy1oc/a0GNE7ehTjxuO2tBnbegxonb0qccNR23oszb0GFE7+qwNPUbUjj71uOGoDX3Whh4jakefetxw1IY+q6LHlFJ8+eWX0bZt29WuV60DlI022ijq1KkTs2fPLjU+e/bsaN269SofU1BQEAUFBaXGmjZtur5KXK3i4uIN9qBeTo8bjtrQZ23oMaJ29KnHDUdt6LM29BhRO/rU44ajNvRZG3qMqB191oYeI2pHn3rccNSGPmtDjxG1o089bjhqQ5+V3WOTJk3WuE61vol8/fr1o0ePHvHMM8/kxkpKSuKZZ54p9ZFeAAAAAAAAFalaX4ESETFo0KA45phjYscdd4ydd945rr322vjqq69i4MCBVV0aAAAAAACwgar2AcoRRxwRn376aZx//vkxa9as6N69ezz11FPRqlWrqi6tTAUFBXHBBRes9FFiGxI9bjhqQ5+1oceI2tGnHjcctaHP2tBjRO3oU48bjtrQZ23oMaJ29FkbeoyoHX3qccNRG/qsDT1G1I4+9bjhqA19Vuce81JKqaqLAAAAAAAAqE6q9T1QAAAAAAAAqoIABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyKjVAcp//vOfOOCAA6Jt27aRl5cXjz766ErrvPXWW3HggQdGkyZNomHDhrHTTjvFBx98kFt+0kknRadOnaKoqCg23njjGDBgQLz99tu55XfeeWfk5eWt8mvOnDll1vbFF1/EUUcdFcXFxdG0adM47rjjYuHChRXe48KFC+PUU0+N9u3bR1FRUXTt2jVuvvnmlbYzduzY+PGPfxwNGzaM4uLi2G233eKbb77JLZ86dWoMGDAgNtpooyguLo5dd901xowZs9raUkpx/vnnR5s2baKoqCj69esX06ZNW+seK6LP9957r8x5euihhyJiw5jLd955Jw4++ODYeOONo7i4OA4//PCYPXt2qXWq+1zOnj07jj322Gjbtm00aNAg9t5771L7+uKLL+K0006LLl26RFFRUWyyySZx+umnx/z580tt55lnnonevXtH48aNo3Xr1vG73/0uli5dutraFi1aFKecckq0aNEiGjVqFIceeuhKP7/K6DGifHO52WabrXSsXnrppRtUjxERjz/+ePTs2TOKioqiWbNmcdBBB622tup0vJanz2effbbM156XX365zNpq2lzW9Nee8vY5YcKE2HPPPaNp06bRokWLOPHEE9f4O6Gi+hw2bFjstNNO0bhx42jZsmUcdNBBMWXKlFLrlOe4+eCDD2K//faLBg0aRMuWLeO3v/3tSq+fzz77bOywww5RUFAQW2yxRdx5551rrO+1116LH/7wh1FYWBgdOnSIyy+/vNr2+Mknn8SRRx4ZW265ZeTn58eZZ55ZrvrK87OrLj3+7W9/iz333DN3PPfq1Sv++c9/rrG+ipjHyuzz+eefjz59+kSLFi2iqKgottpqq7jmmmsqpc/KfE4u97///S/q1q0b3bt3r5QeK7PPsn5fzpo1a733WZlzuXjx4vjDH/4Qm266aRQUFMRmm20Wd9xxx2rrq0mvPccee+wq57Fbt26rra+mHa8REffcc09st9120aBBg2jTpk388pe/jM8//3y19dWkuYyIGD58eGy99dZRVFQUXbp0iZEjR66xvorosSL7PP3006NHjx5RUFBQ5mvnuhx/1Wku19TjokWL4thjj41tt9026tatu8Z/by1XEedCKqvHZ599NgYMGBBt2rSJhg0bRvfu3eOee+5ZY3017XidMmVK/OhHP4pWrVpFYWFhbL755nHuuefGkiVL1nuflfmcXG769OnRuHHjaNq06Rrrq2lzWdZ5zBdffHG991mZc5lSiiuvvDK23HLLKCgoiHbt2sXFF1+82voq6jxstpBa64knnkh/+MMf0t/+9rcUEemRRx4ptXz69OmpefPm6be//W2aMGFCmj59enrsscfS7Nmzc+vccsst6bnnnkszZsxI48ePTwcccEDq0KFDWrp0aUoppa+//jp98sknpb769++f+vbtu9ra9t5777TddtulF198Mf33v/9NW2yxRfrZz35W4T2ecMIJqVOnTmnMmDFpxowZ6ZZbbkl16tRJjz32WG6dF154IRUXF6dhw4alyZMnp7fffjs98MADadGiRbl1OnfunPbdd9/06quvpqlTp6Zf//rXqUGDBumTTz4ps7ZLL700NWnSJD366KPp1VdfTQceeGDq2LFj+uabbyq9z6VLl640T0OGDEmNGjVKX375ZUqp5s/lwoUL0+abb54OPvjg9Nprr6XXXnstDRgwIO20005p2bJlue1U57ksKSlJu+yyS/rhD3+YXnrppfT222+nE088MW2yySZp4cKFKaWUXn/99XTIIYekUaNGpenTp6dnnnkmde7cOR166KG57UyaNCnVr18/DRkyJE2bNi09++yzaauttkq/+c1vVlvbySefnDp06JCeeeaZ9Morr6Rddtkl9e7du9J7LO9cbrrppmno0KGljtnl29hQenz44YdTs2bN0k033ZSmTJmS3njjjfTAAw+strbqdLyWp8/Fixev9Npz/PHHp44dO6aSkpIya6tpc1nTX3vK0+fMmTNTs2bN0sknn5zefvvt9NJLL6XevXuXen1an332798/jRgxIk2ePDlNmjQp7bvvvqV6SGnNx83SpUvTNttsk/r165cmTpyYnnjiibTRRhulwYMH59Z59913U4MGDdKgQYPSm2++ma6//vpUp06d9NRTT5VZ2/z581OrVq3SUUcdlSZPnpzuu+++VFRUlG655ZZq2eOMGTPS6aefnu66667UvXv3dMYZZ6yxtvJstzr1eMYZZ6TLLrssvfTSS2nq1Klp8ODBqV69emnChAll1lZR81iZfU6YMCHde++9afLkyWnGjBnpL3/5S2rQoMFqa65px+tyc+fOTZtvvnnaa6+90nbbbbfa2mriXI4ZMyZFRJoyZUqp35kr/q5ZX31W5lweeOCBqWfPnunf//53mjFjRnrhhRfS888/X2ZtNe21Z968eaXm78MPP0zNmzdPF1xwQZm11cTj9fnnn0/5+fnpT3/6U3r33XfTf//739StW7d08MEHl1lbTZvLG2+8MTVu3Djdf//96Z133kn33XdfatSoURo1atR677Gi+kwppdNOOy3dcMMN6Re/+MUqXzvX5firTnNZnh4XLlyYTj755HTrrbem/v37pwEDBpSrvoo4F1JZPV588cXp3HPPTf/73//S9OnT07XXXpvy8/PT3//+9zJrq4nH6zvvvJPuuOOONGnSpPTee++lxx57LLVs2XK1Nde043W5b7/9Nu24445pn332SU2aNFltbTVxLmfMmJEiIj399NOlfm9+++23673PypzL0047LXXp0iU99thj6d13302vvPJK+te//rXa+irqPOyKanWAsqJVnZA+4ogj0s9//vO12s6rr76aIiJNnz59lcvnzJmT6tWrl0aOHFnmNt58880UEenll1/OjT355JMpLy8vzZw5c63qWdGqeuzWrVsaOnRoqbEddtgh/eEPf8h937Nnz3TuueeWud1PP/00RUT6z3/+kxtbsGBBioj073//e5WPKSkpSa1bt05XXHFFbmzevHmpoKAg3XfffWvT1krWtc+s7t27p1/+8pdlLq9pc/nPf/4z5efnp/nz5+eWz5s3L+Xl5eXmqbrP5ZQpU1JEpMmTJ+fGli1bljbeeOP05z//ucztPPjgg6l+/fppyZIlKaWUBg8enHbcccdS64waNSoVFhamBQsWrHIb8+bNS/Xq1UsPPfRQbuytt95KEZHGjh27Lu2llNatx/LMZUrfBSjXXHNNuWupaT0uWbIktWvXLt12223lrqW6Ha/lncsVffvtt2njjTde6fm+opo2lxvCa095+rzllltSy5YtS53Me+2111JEpGnTplV6n3PmzEkRkZ577rncdtd03DzxxBMpPz8/zZo1K7fOTTfdlIqLi9PixYtTSimdc845qVu3bqX2dcQRR6T+/fuXWcuNN96YmjVrlttGSin97ne/S126dKmWPa6ob9++5QpQ1na75VUZPS7XtWvXNGTIkDKXr695TKly+zz44INX+2+Amnq8HnHEEencc89NF1xwwRoDlJo4l8sDlLlz55a7lpo2l08++WRq0qRJ+vzzz8tdS01/7XnkkUdSXl5eeu+998qspSYer1dccUXafPPNS+3ruuuuS+3atSuzlpo2l7169Upnn312qX0NGjQo9enTp9J7XNc+V1TWa+e6HH/VaS5XVJ7fD8ccc0y5ApT1dS6kMnpcbt99900DBw4sc3lNPF5X5ayzzkq77rprmctr6vF6zjnnpJ///OdpxIgRawxQauJcLg9QJk6cWO5aatpcvvnmm6lu3brp7bffLnct6+u1p1Z/hNfqlJSUxOOPPx5bbrll9O/fP1q2bBk9e/Zc5cd8LffVV1/FiBEjomPHjtGhQ4dVrjNy5Mho0KBBHHbYYWVuZ+zYsdG0adPYcccdc2P9+vWL/Pz8GDdu3Dr3tCq9e/eOUaNGxcyZMyOlFGPGjImpU6fGXnvtFRERc+bMiXHjxkXLli2jd+/e0apVq+jbt288//zzuW20aNEidznuV199FUuXLo1bbrklWrZsGT169FjlfmfMmBGzZs2Kfv365caaNGkSPXv2jLFjx1Zoj+XpM2v8+PExadKkOO6448rcZk2by8WLF0deXl4UFBTkHlNYWBj5+fm5+azuc7l48eJc3cvl5+dHQUFBqWMya/78+VFcXBx169bNbWfFbUREFBUVxaJFi2L8+PGr3Mb48eNjyZIlpfrcaqutYpNNNqnQPsvTY3nmcrlLL700WrRoEdtvv31cccUVq700s6b1OGHChJg5c2bk5+fH9ttvH23atIl99tknJk+eXOa+q9vxujZzudyoUaPi888/j4EDB5a575o2lxvCa095+ly8eHHUr18/8vP/359fRUVFERFlzvf67HP5Rxs2b948Isp33IwdOza23XbbaNWqVW6d/v37x4IFC+KNN97IrbPiNpavs7p6x44dG7vttlvUr1+/1GOmTJkSc+fOrXY9rov1td3K6rGkpCS+/PLL3H7K6nF9zGNE5fU5ceLEeOGFF6Jv375l1lITj9cRI0bEu+++GxdccEG5aqnJc9m9e/do06ZN7LnnnvG///2vSvpcXz2OGjUqdtxxx7j88sujXbt2seWWW8bZZ59d6qOVV9VjTX7tuf3226Nfv36x6aabrrbHmna89urVKz788MN44oknIqUUs2fPjocffjj23Xff1fZZk+ayrH9zvfTSS2V+XND66nFd+yyPdTn+qtNcri/r61xIZfY4f/78Nf7dU9OO16zp06fHU089tca/e2ra8Tp69Oh46KGHYvjw4eVavybP5YEHHhgtW7aMXXfdNUaNGrXadWvaXP7973+PzTffPP7xj39Ex44dY7PNNovjjz8+vvjiizIfs75eewQoZZgzZ04sXLgwLr300th7773jX//6Vxx88MFxyCGHxHPPPVdq3RtvvDEaNWoUjRo1iieffDL+/e9/l/rluaLbb789jjzyyNwJk1WZNWtWtGzZstRY3bp1o3nz5mv8DN+1df3110fXrl2jffv2Ub9+/dh7771j+PDhsdtuu0VExLvvvhsRERdeeGGccMIJ8dRTT8UOO+wQe+yxR+7z1/Py8uLpp5+OiRMnRuPGjaOwsDCuvvrqeOqpp6JZs2Zl9hgRpZ60y7+v6B7L02fW7bffHltvvXX07t27zG3WtLncZZddomHDhvG73/0uvv766/jqq6/i7LPPjmXLlsUnn3wSEdV/Lpe/4A4ePDjmzp0b3377bVx22WXx0Ucf5XrI+uyzz+Kiiy6KE088MTfWv3//eOGFF+K+++6LZcuWxcyZM2Po0KEREWVuZ9asWVG/fv2VPjuzovssT4/lmcuI7z5P8v77748xY8bESSedFJdcckmcc845Ze67pvW44uvTueeeG//4xz+iWbNmsfvuu5f5C7W6Ha/lncsV3X777dG/f/9o3759mfuuaXO5Ibz2lKfPH//4xzFr1qy44oor4ttvv425c+fG73//+4hY/WvP+uizpKQkzjzzzOjTp09ss802uX2t6biZNWvWKmtZsday1lmwYEGZJ/nKs921tT57XBc1vccrr7wyFi5cGIcffniZ9ayvn11l9Nm+ffsoKCiIHXfcMU455ZQ4/vjjy6ynps3ltGnT4ve//33cfffduTeTrElNnMs2bdrEzTffHH/961/jr3/9a3To0CF23333mDBhQqX2uT57fPfdd+P555+PyZMnxyOPPBLXXnttPPzww/HrX/96g+lxRR9//HE8+eSTq30+rst2y2t99tmnT5+455574ogjjoj69etH69ato0mTJqs92VfT5rJ///5x2223xfjx4yOlFK+88krcdtttsWTJkvjss88qrcfv02d5rEvN1Wku15f1cS6kMnt88MEH4+WXX17tm9Zq4vG6XO/evaOwsDA6d+4cP/zhD3PnQ1alph2vn3/+eRx77LFx5513RnFxcbkeUxPnslGjRnHVVVfFQw89FI8//njsuuuucdBBB602RKlpc/nuu+/G+++/Hw899FCMHDky7rzzzhg/fvxq38i+vs7DClDKUFJSEhERAwYMiLPOOiu6d+8ev//972P//fdf6cbcRx11VEycODGee+652HLLLePwww+PRYsWrbTNsWPHxltvvbXaqxoq2/XXXx8vvvhijBo1KsaPHx9XXXVVnHLKKfH0009HxP/7OZx00kkxcODA2H777eOaa66JLl265G5WmFKKU045JVq2bBn//e9/46WXXoqDDjooDjjggDJPCFW2NfW5om+++Sbuvffe1c5TTZzLjTfeOB566KH4+9//Ho0aNYomTZrEvHnzYocddsi9G7q6z2W9evXib3/7W0ydOjWaN28eDRo0iDFjxsQ+++xT6h3dyy1YsCD222+/6Nq1a1x44YW58b322iuuuOKKOPnkk6OgoCC23HLL3Lu9VrWdylSeHsszlxERgwYNit133z1+8IMfxMknnxxXXXVVXH/99bl301eViupx+evTH/7whzj00EOjR48eMWLEiMjLy4uHHnqoyvpbriLncrmPPvoo/vnPf1ab156K6nFDeO0pT5/dunWLu+66K6666qpo0KBBtG7dOjp27BitWrWq9NeeU045JSZPnhz3339/pe63Mumx4tx7770xZMiQePDBB1f6B0llqIw+//vf/8Yrr7wSN998c1x77bVx3333rbd9rcr66nHZsmVx5JFHxpAhQ2LLLbes0G2vi/U5l126dImTTjopevToEb1794477rgjevfuHddcc02F72t11mePJSUlkZeXF/fcc0/svPPOse+++8bVV18dd91112qvQqlolfXac9ddd0XTpk3LfcPqirY++3zzzTfjjDPOiPPPPz/Gjx8fTz31VLz33ntx8sknV/i+Vmd99njeeefFPvvsE7vsskvUq1cvBgwYEMccc0xEVP6/ufxNsGGorB7HjBkTAwcOjD//+c/RrVu39bqvVamMPh944IGYMGFC3HvvvfH444/HlVdeud72tSrrs8cTTjghjjzyyDLfMF2Z1mefG220UQwaNCh69uwZO+20U1x66aXx85//PK644ooK39fqrO+/exYvXhwjR46MH/7wh7H77rvH7bffHmPGjFnppvXrmwClDBtttFHUrVs3unbtWmp86623jg8++KDUWJMmTaJz586x2267xcMPPxxvv/12PPLIIytt87bbbovu3buX+XEky7Vu3TrmzJlTamzp0qXxxRdfROvWrdexo5V988038X//939x9dVXxwEHHBA/+MEP4tRTT40jjjgi9+LZpk2biIjV/hxGjx4d//jHP+L++++PPn36xA477BA33nhjFBUVxV133VVmjxERs2fPLjU+e/bsCu2xvH2u6OGHH46vv/46jj766DK3WRPnMuK74OCdd96JOXPmxGeffRZ/+ctfYubMmbH55ptHRPWfy4iIHj16xKRJk2LevHnxySefxFNPPRWff/55roflvvzyy9h7772jcePG8cgjj0S9evVKLR80aFDMmzcvPvjgg/jss89iwIABERErbWe51q1bx7fffhvz5s0rNb4++ixPj2uay1Xp2bNnLF26NN57771VLq9pPa7q9amgoCA233zzlV6nV+xxeU/ru8eIip/LESNGRIsWLeLAAw9c7X5r2lxuKK895ZnLI488MmbNmhUzZ86Mzz//PC688ML49NNPV/vaU9F9nnrqqfGPf/wjxowZU+pKpvIcN61bt15lLSvWWtY6xcXFZV61WZ7tro313eO6qKk93n///XH88cfHgw8+uNJHs2Wtj59dZfXZsWPH2HbbbeOEE06Is846q9QbL7Jq0lx++eWX8corr8Spp54adevWjbp168bQoUPj1Vdfjbp168bo0aMrpcf13WdZdt5555g+fXqZy2vSXEZ897dPu3btokmTJrl1tt5660gpxUcffbRB9LhcSinuuOOO+MUvflHmpzusuO+adrwOGzYs+vTpE7/97W/jBz/4QfTv3z9uvPHGuOOOO8p880hNm8uioqK444474uuvv4733nsvPvjgg9hss82icePGsfHGG1dKj9+3z/JYl5qr01yuLxV9LqSyenzuuefigAMOiGuuuWa154SW77umHa/LdejQIbp27Ro/+9nP4tJLL40LL7wwli1btsp1a9rxOnr06Ljyyitzf/ccd9xxMX/+/Khbt27ujeBZNXkuV9SzZ88a83dPebRp0ybq1q1b6k1AW2+9dUTEas/5rI/zsAKUMtSvXz922mmnlRKtqVOnrvbzV1NKkVJa6R3eCxcujAcffLBc7xru1atXzJs3r9S9GEaPHh0lJSXRs2fPteykbEuWLIklS5as9O6POnXq5N7Zvdlmm0Xbtm1X+3P4+uuvI2Lld5Hk5+fntpPVsWPHaN26dTzzzDO5sQULFsS4ceOiV69e36+xjPL0uaLbb789DjzwwDL/qKupc7mijTbaKJo2bRqjR4+OOXPm5E7GVve5XFGTJk1i4403jmnTpsUrr7ySC0CW73+vvfaK+vXrx6hRo1b67N3l8vLyom3btlFUVBT33XdfdOjQIXbYYYdVrtujR4+oV69eqT6nTJkSH3zwwXrrc3U9LlfWXK7KpEmTIj8/v8x3D9e0Hnv06BEFBQWlXp+WLFkS7733Xpmv09XxeF1uTXOZUooRI0bE0UcfvVIgmFXT5nJDee1ZrjzPy1atWkWjRo3igQceiMLCwthzzz1Xub+K7DOlFKeeemo88sgjMXr06OjYsWOp5eU5bnr16hWvv/56qT9K//3vf0dxcXEuzOzVq1epbSxfZ3X19urVK/7zn/+U+kz0f//739GlS5cyP8atKntcFxW13crs8b777ouBAwfGfffdF/vtt1+5eqyIeazsPrOWv9ttffdZGT0WFxfH66+/HpMmTcp9nXzyydGlS5eYNGlSmX+PbihzOWnSpNwbLtZnn5XVY58+feLjjz+OhQsX5taZOnVq5Ofnl/nRnjXxtSfiu5OY06dPL/e/uWra8fr111+v8t9uy2soq8+aOJf16tWL9u3bR506deL++++P/fffv8wrUCryd3BF9Fke63L8Vae5XF8q6lxIZfb47LPPxn777ReXXXZZqY8AL0tNPF5XpaSkJJYsWVLmv7tq2vE6duzYUn/3DB06NBo3bhyTJk2Kgw8+eL32WJl9rkp5/u6pSXPZp0+fWLp0abzzzju5salTp0ZElHnOZ72dh13n289vAL788ss0ceLENHHixBQR6eqrr04TJ05M77//fkoppb/97W+pXr166dZbb03Tpk1L119/fapTp07673//m1JK6Z133kmXXHJJeuWVV9L777+f/ve//6UDDjggNW/ePM2ePbvUvm677bZUWFiY5s6du1Id48aNS126dEkfffRRbmzvvfdO22+/fRo3blx6/vnnU+fOndPPfvazCu+xb9++qVu3bmnMmDHp3XffTSNGjEiFhYXpxhtvzG3jmmuuScXFxemhhx5K06ZNS+eee24qLCxM06dPTyml9Omnn6YWLVqkQw45JE2aNClNmTIlnX322alevXpp0qRJue106dIl/e1vf8t9f+mll6amTZumxx57LL322mtpwIABqWPHjumbb76pkj5TSmnatGkpLy8vPfnkk2XuqybP5R133JHGjh2bpk+fnv7yl7+k5s2bp0GDBuWW14S5fPDBB9OYMWPSO++8kx599NG06aabpkMOOST3+Pnz56eePXumbbfdNk2fPj198sknua+lS5fm1rv88svTa6+9liZPnpyGDh2a6tWrlx555JHc8o8++ih16dIljRs3Ljd28sknp0022SSNHj06vfLKK6lXr16pV69eld5jSmueyxdeeCFdc801adKkSemdd95Jd999d9p4443T0UcfvcH0mFJKZ5xxRmrXrl365z//md5+++103HHHpZYtW6Yvvvgit051Pl7L22dKKT399NMpItJbb7210rKaPpcbwmtPefpMKaXrr78+jR8/Pk2ZMiXdcMMNqaioKP3pT38qtc766vNXv/pVatKkSXr22WdLvTZ+/fXXuXXWdNwsXbo0bbPNNmmvvfZKkyZNSk899VTaeOON0+DBg3PrvPvuu6lBgwbpt7/9bXrrrbfS8OHDU506ddJTTz1V6ufw4x//OPf9vHnzUqtWrdIvfvGLNHny5HT//fenBg0apFtuuaVa9phSyh0vPXr0SEceeWSaOHFieuONN3LL//a3v6UuXbqs9XarS4/33HNPqlu3bho+fHip/cybNy+3zvqax8rs84YbbkijRo1KU6dOTVOnTk233XZbaty4cfrDH/6w3vuszON1RRdccEHabrvtSo1tCHN5zTXXpEcffTRNmzYtvf766+mMM85I+fn56emnn17vfVZWj19++WVq3759Ouyww9Ibb7yRnnvuudS5c+d0/PHH59ap6a89y/385z9PPXv2XGUtG8LxOmLEiFS3bt104403pnfeeSc9//zzaccdd0w777xzbp2aPpdTpkxJf/nLX9LUqVPTuHHj0hFHHJGaN2+eZsyYsd57rKg+U/ruHMHEiRPTSSedlLbccsvc7//FixenlMp3/FXnuSxPjyml9MYbb6SJEyemAw44IO2+++65dZZbX+dCKqvH0aNHpwYNGqTBgweX2s/nn3+e28aGcLzefffd6YEHHkhvvvlmeuedd9IDDzyQ2rZtm4466qj13mdlHq8rGjFiRGrSpEmpsQ1hLu+888507733prfeeiu99dZb6eKLL075+fnpjjvuWO99VlaPy5YtSzvssEPabbfd0oQJE9Irr7ySevbsmfbcc8/cNtbnedgV1eoAZcyYMSkiVvo65phjcuvcfvvtaYsttkiFhYVpu+22S48++mhu2cyZM9M+++yTWrZsmerVq5fat2+fjjzyyPT222+vtK9evXqlI488crV1rPiHxOeff55+9rOfpUaNGqXi4uI0cODA9OWXX1Z4j5988kk69thjU9u2bVNhYWHq0qVLuuqqq1JJSUmp7QwbNiy1b98+NWjQIPXq1SsXIi338ssvp7322is1b948NW7cOO2yyy7piSeeKLVORKQRI0bkvi8pKUnnnXdeatWqVSooKEh77LFHmjJlylr3WJF9Dh48OHXo0CEtW7aszH3V5Ln83e9+l1q1apXq1auXOnfuvMqfQXWfyz/96U+pffv2qV69emmTTTZJ5557bqlflGU9PjsvP/rRj1KTJk1SYWFh6tmz50o9zpgxI0VEGjNmTG7sm2++Sb/+9a9Ts2bNUoMGDdLBBx+cPvnkk0rvMaU1z+X48eNTz549cz1uvfXW6ZJLLkmLFi3aYHpMKaVvv/02/eY3v0ktW7ZMjRs3Tv369UuTJ08utU51Pl7L22dKKf3sZz9LvXv3XmUdG8Jc1vTXnvL2+Ytf/CI1b9481a9fP/3gBz9II0eOXKmW9dVnWa+NK+6rPMfNe++9l/bZZ59UVFSUNtpoo/Sb3/wmLVmyZKWfZ/fu3VP9+vXT5ptvXmofKX13AnfTTTctNfbqq6+mXXfdNRUUFKR27dqlSy+9tFr3uKr9rNjTiBEjUva9SuXZbnXpsW/fvmv8O3l9zWNl9nndddelbt26pQYNGqTi4uK0/fbbpxtvvLHU34IbwvG6olUFKBvCXF522WWpU6dOqbCwMDVv3jztvvvuafTo0ZXSZ2XO5VtvvZX69euXioqKUvv27dOgQYNKnbCo6a89KX13QrqoqCjdeuutq6xlQzheU/ru9adr166pqKgotWnTJh111FGlTgDV9Ll88803U/fu3VNRUVEqLi5OAwYMWOlcyfrqsSL7LOv34Yr/tlzT8Vfd57I8PW666aarXGe59XUupLJ6POaYY1a5vG/fvrltbAjH6/3335922GGH1KhRo9SwYcPUtWvXdMkll5R6Y9aGcLyuaFUByoYwl3feeWfaeuutc3/D7rzzzumhhx6qlD4rcy5nzpyZDjnkkNSoUaPUqlWrdOyxx5YKNtfnedgV5f3/jQMAAAAAAPD/cw8UAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAGANli1bFiUlJVVdBgAAUIkEKAAAQI0ycuTIaNGiRSxevLjU+EEHHRS/+MUvIiLiscceix122CEKCwtj8803jyFDhsTSpUtz61599dWx7bbbRsOGDaNDhw7x61//OhYuXJhbfuedd0bTpk1j1KhR0bVr1ygoKIgPPvigchoEAACqBQEKAABQo/zkJz+JZcuWxahRo3Jjc+bMiccffzx++ctfxn//+984+uij44wzzog333wzbrnllrjzzjvj4osvzq2fn58f1113Xbzxxhtx1113xejRo+Occ84ptZ+vv/46LrvssrjtttvijTfeiJYtW1ZajwAAQNXLSymlqi4CAABgbfz617+O9957L5544omI+O6KkuHDh8f06dNjzz33jD322CMGDx6cW//uu++Oc845Jz7++ONVbu/hhx+Ok08+OT777LOI+O4KlIEDB8akSZNiu+22W/8NAQAA1Y4ABQAAqHEmTpwYO+20U7z//vvRrl27+MEPfhA/+clP4rzzzouNN944Fi5cGHXq1Mmtv2zZsli0aFF89dVX0aBBg3j66adj2LBh8fbbb8eCBQti6dKlpZbfeeedcdJJJ8WiRYsiLy+vCjsFAACqSt2qLgAAAGBtbb/99rHddtvFyJEjY6+99oo33ngjHn/88YiIWLhwYQwZMiQOOeSQlR5XWFgY7733Xuy///7xq1/9Ki6++OJo3rx5PP/883HcccfFt99+Gw0aNIiIiKKiIuEJAADUYgIUAACgRjr++OPj2muvjZkzZ0a/fv2iQ4cOERGxww47xJQpU2KLLbZY5ePGjx8fJSUlcdVVV0V+/ne3hXzwwQcrrW4AAKBmEKAAAAA10pFHHhlnn312/PnPf46RI0fmxs8///zYf//9Y5NNNonDDjss8vPz49VXX43JkyfHH//4x9hiiy1iyZIlcf3118cBBxwQ//vf/+Lmm2+uwk4AAIDqKL+qCwAAAFgXTZo0iUMPPTQaNWoUBx10UG68f//+8Y9//CP+9a9/xU477RS77LJLXHPNNbHppptGRMR2220XV199dVx22WWxzTbbxD333BPDhg2roi4AAIDqyk3kAQCAGmuPPfaIbt26xXXXXVfVpQAAABsYAQoAAFDjzJ07N5599tk47LDD4s0334wuXbpUdUkAAMAGxj1QAACAGmf77bePuXPnxmWXXSY8AQAA1gtXoAAAAAAAAGS4iTwAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgIz/D2g6V8HN+B/UAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(20, 5))\n",
+ "sns.barplot(data=data, x='year', y='points', errorbar=None)\n",
+ "plt.title(\"points rate depending on the year\")\n",
+ "plt.xlabel(\"year\")\n",
+ "plt.ylabel(\"points\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "890pOlA8A2se"
+ },
+ "source": [
+ "Проверили. Значения не линейно-зависимы. Функцию нельзя считать константной т.к. колебания оценки на 1-2 могут быть существенны (видно из предыдущего графика)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ndxrlPqeEb0X"
+ },
+ "source": [
+ "Посмотрим на зависимость цены вина от года розлива."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 250,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 450
+ },
+ "id": "Fsl2BUlQEVpj",
+ "outputId": "713d79b8-9076-428e-f6e5-01a72c939ca6"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAHWCAYAAAAIOsSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf6UlEQVR4nO3de5yXc/4//udMh2kqMykddZBTylmonJdIzrTLYp3WccWixW6fdf4gh6WWLSwprZzyccgii9I6JETIIUVEVBadpCnN6/fH/np/zbumptS8m5n7/XZ7327NdV3v1/V8zuua90zvx/u6rryUUgoAAAAAAAAy8nNdAAAAAAAAwPpGgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAACuQl5cXV1xxRa7LWO9tsskmcfLJJ+e6jLUmu58XXngh8vLy4oUXXshZTbny6aefRl5eXvzlL3/JdSkAAJATAhQAAKhGBg0aFEOHDs11GVQhTz31lLAQAABWoHauCwAAgPXRDz/8ELVrV70/lwcNGhQbbbRRtTorJJf22muv+OGHH6Ju3bq5LmWdeeqpp2LgwIFCFAAAyOIMFAAA+P+VlpbGokWLIiKiXr16OQ9QUkrxww8/5LSGmi4/Pz/q1asX+fn+61QT+JkDAOCn/C8AAIBq5Yorroi8vLz48MMP4+ijj46ioqJo0qRJnHfeeZlwZJm8vLw455xzYvjw4bH11ltHQUFBjBo1KrMu+xP5M2bMiFNPPTVatWoVBQUF0b59+/jd734XixcvzmwzZ86cOP/886NNmzZRUFAQm2++eVx//fVRWlq6yto32WSTOOSQQ+KZZ56JnXfeOQoLC+OOO+6IiIghQ4bEvvvuG82aNYuCgoLo1KlT3Hbbbcs9/7333ouxY8dGXl5e5OXlxT777LNWakspxdVXXx2tW7eO+vXrxy9+8Yt47733VrhtRfbz0/tr9O/fP9q1axeFhYWx9957x6RJk5Yb88MPP4xf/vKX0bhx46hXr17svPPOMXLkyDLbDB06NPLy8uLll1+OPn36RNOmTaNBgwZx5JFHxtdff71G/azoHij77LNPbLPNNvH+++/HL37xi6hfv35svPHGccMNNyz3/M8++ywOO+ywaNCgQTRr1iwuuOCCeOaZZyp8X5W33norevbsGUVFRdGwYcPYb7/94tVXX13jvrOdfPLJMXDgwIiIzDGTl5e33HZ///vfY7PNNouCgoLYZZdd4vXXX19um4rMUbaUUmyyySZx+OGHL7du0aJFUVxcHGeeeWZmWUlJSVx++eWx+eabR0FBQbRp0yYuvvjiKCkpKfPcivy8RKz8Zw4AAKreNQkAAKACjj766Nhkk02iX79+8eqrr8Ytt9wS3333XQwbNqzMdqNHj46HHnoozjnnnNhoo41ik002WeF4X375Zey6664xZ86cOOOMM2KrrbaKGTNmxMMPPxwLFy6MunXrxsKFC2PvvfeOGTNmxJlnnhlt27aNV155Jfr27RtfffVVDBgwYJV1T548OY499tg488wz4/TTT48OHTpERMRtt90WW2+9dRx22GFRu3bteOKJJ+Lss8+O0tLS6N27d0REDBgwIM4999xo2LBh/PnPf46IiObNm0dE/OzaLrvssrj66qvjoIMOioMOOijefPPNOOCAA8qER2uyn2HDhsX8+fOjd+/esWjRovjrX/8a++67b7z77ruZ2t97773YfffdY+ONN44//elP0aBBg3jooYfiiCOOiP/7v/+LI488ssyY5557bmy44YZx+eWXx6effhoDBgyIc845Jx588MHV7qc83333XRx44IFx1FFHxdFHHx0PP/xw/PGPf4xtt902evbsGRER33//fey7777x1VdfxXnnnRctWrSI++67L8aMGVOhfbz33nux5557RlFRUVx88cVRp06duOOOO2KfffaJsWPHRpcuXVa772xnnnlmfPnll/Hss8/GP/7xjxVuc99998X8+fPjzDPPjLy8vLjhhhviqKOOik8++STq1KmTqXV15miZvLy8+M1vfhM33HBDfPvtt9G4cePMuieeeCLmzZsXv/nNbyLiv2eIHXbYYfHSSy/FGWecER07dox33303+vfvHx999FE89thjmedW5OdlmfJ+5gAAIBIAAFQjl19+eYqIdNhhh5VZfvbZZ6eISG+//XZmWUSk/Pz89N577y03TkSkyy+/PPP1iSeemPLz89Prr7++3LalpaUppZT+93//NzVo0CB99NFHZdb/6U9/SrVq1UrTp09fae3t2rVLEZFGjRq13LqFCxcut6xHjx5p0003LbNs6623Tnvvvfdy2/6c2mbPnp3q1q2bDj744EyvKaX0P//zPyki0kknnbTa+5k2bVqKiFRYWJi++OKLzHbjx49PEZEuuOCCzLL99tsvbbvttmnRokWZZaWlpWm33XZLW2yxRWbZkCFDUkSk7t27l6nzggsuSLVq1Upz5sxZ7X7GjBmTIiKNGTMms2zvvfdOEZGGDRuWWVZSUpJatGiRevXqlVl20003pYhIjz32WGbZDz/8kLbaaqvlxlyRI444ItWtWzd9/PHHmWVffvll2mCDDdJee+212n2Xp3fv3mlF/zVcNkdNmjRJ3377bWb5448/niIiPfHEE5llFZ2jFZk8eXKKiHTbbbeVWX7YYYelTTbZJNPTP/7xj5Sfn59efPHFMtvdfvvtKSLSyy+/nFlW0Z+Xlf3MAQCAS3gBAFAtZX/K/Nxzz42I/94w+6f23nvv6NSp00rHKi0tjcceeywOPfTQ2HnnnZdbv+ySRyNGjIg999wzNtxww/jPf/6TeXTv3j2WLl0a//73v1dZd/v27aNHjx7LLS8sLMz8e+7cufGf//wn9t577/jkk09i7ty5qxz359T23HPPxeLFi+Pcc88tc3mn888//2fv54gjjoiNN9448/Wuu+4aXbp0yczTt99+G6NHj46jjz465s+fnxnvm2++iR49esSUKVNixowZZcY844wzytS55557xtKlS+Ozzz5b7X7K07Bhw8yZERERdevWjV133TU++eSTzLJRo0bFxhtvHIcddlhmWb169eL0009f5fhLly6Nf/3rX3HEEUfEpptumlnesmXLOO644+Kll16KefPmrVbfa+qYY46JDTfcsMy4EZHpdU3m6Ke23HLL6NKlSwwfPjyz7Ntvv42nn346jj/++DI/Xx07doytttqqzLG17777RkSUObNndX5eyvuZAwAAl/ACAKBa2mKLLcp8vdlmm0V+fn58+umnZZa3b99+lWN9/fXXMW/evNhmm21Wut2UKVPinXfeiaZNm65w/ezZs1e5r/Lqefnll+Pyyy+PcePGxcKFC8usmzt3bhQXF6+z2pa9AZ/9PW3atGmZN9bXZD/ZY0b89w31hx56KCIipk6dGimluPTSS+PSSy8td8yfhjBt27Yts35Zjd99991q91Oe1q1bL3evkA033DDeeeedzNefffZZbLbZZsttt/nmm69y/K+//joWLly4wstJdezYMUpLS+Pzzz+PrbfeOrN8VX2vqVWNuyZzlO3EE0+Mc845Jz777LNo165djBgxIpYsWRInnHBCZpspU6bEBx98UKFja3V+XiryGgAAQM0kQAEAoEZY0Y2xI8p+Uv3nKi0tjf333z8uvvjiFa7fcsstVznGiur5+OOPY7/99outttoqbr755mjTpk3UrVs3nnrqqejfv3+FbgK/NmqriLW9n2W9XXjhheWeJZAdSNSqVWuF26WUVmvfK1MZ+1hd66qmVY27JnOU7de//nVccMEFMXz48Pif//mfuPfee2PnnXcuEyCVlpbGtttuGzfffPMKx2jTpk1ErP7Py9p8DQAAoHoRoAAAUC1NmTKlzCfLp06dGqWlpeXeJH5lmjZtGkVFRTFp0qSVbrfZZpvFggULonv37qu9j5V54oknoqSkJEaOHFnmbIAV3Yy8vKDo59TWrl27iPjv9/Snl5P6+uuvlzu7YXX3M2XKlOWWffTRR5l5Wra/OnXqrLXv6+r083P38/7770dKqcy8TJ06dZXPbdq0adSvXz8mT5683LoPP/ww8vPzM4HBz1XeMVNRa2OOGjduHAcffHAMHz48jj/++Hj55ZdjwIABZbbZbLPN4u2334799ttvpTWvzs8LAACsjHugAABQLQ0cOLDM17feemtERPTs2XO1x8rPz48jjjginnjiiXjjjTeWW7/sk/hHH310jBs3Lp555pnltpkzZ078+OOPq73viP93BsBPzySYO3duDBkyZLltGzRoEHPmzFlu+c+prXv37lGnTp249dZby9SQ/Qb3muznscceK3N/jNdeey3Gjx+fmadmzZrFPvvsE3fccUd89dVXy4359ddfl1v32ujn5+jRo0fMmDEjRo4cmVm2aNGiuPPOO1f53Fq1asUBBxwQjz/+eJnLzs2aNSvuu+++2GOPPaKoqGit1NmgQYOIiBUeNxWxtubohBNOiPfffz8uuuiiqFWrVvz6178us/7oo4+OGTNmrPD798MPP8T3338fEav38wIAACvjDBQAAKqladOmxWGHHRYHHnhgjBs3Lu6999447rjjYvvtt1+j8a699tr417/+FXvvvXecccYZ0bFjx/jqq69ixIgR8dJLL0WjRo3ioosuipEjR8YhhxwSJ598cnTu3Dm+//77ePfdd+Phhx+OTz/9NDbaaKPV3vcBBxwQdevWjUMPPTTOPPPMWLBgQdx5553RrFmz5d6w7ty5c9x2221x9dVXx+abbx7NmjWLfffd92fV1rRp07jwwgujX79+ccghh8RBBx0Ub731Vjz99NPLPWd197P55pvHHnvsEb/73e+ipKQkBgwYEE2aNClzCbCBAwfGHnvsEdtuu22cfvrpsemmm8asWbNi3Lhx8cUXX8Tbb7+9Wt/P1enn5zjzzDPjb3/7Wxx77LFx3nnnRcuWLWP48OFRr169iFj1mR9XX311PPvss7HHHnvE2WefHbVr14477rgjSkpK4oYbblhrdXbu3DkiIn7/+99Hjx49VhherMramKODDz44mjRpEiNGjIiePXtGs2bNyqw/4YQT4qGHHoqzzjorxowZE7vvvnssXbo0Pvzww3jooYfimWeeiZ133nm1fl4AAGBlBCgAAFRLDz74YFx22WXxpz/9KWrXrh3nnHNO3HjjjWs83sYbbxzjx4+PSy+9NIYPHx7z5s2LjTfeOHr27Bn169ePiIj69evH2LFj49prr40RI0bEsGHDoqioKLbccsu48sorV3mj9/J06NAhHn744bjkkkviwgsvjBYtWsTvfve7aNq0afz2t78ts+1ll10Wn332Wdxwww0xf/782HvvvWPffff92bVdffXVUa9evbj99ttjzJgx0aVLl/jXv/4VBx98cJntVnc/J554YuTn58eAAQNi9uzZseuuu8bf/va3aNmyZWabTp06xRtvvBFXXnllDB06NL755pto1qxZ7LjjjnHZZZet0fe0ov38HA0bNozRo0fHueeeG3/961+jYcOGceKJJ8Zuu+0WvXr1ygQp5dl6663jxRdfjL59+0a/fv2itLQ0unTpEvfee2906dJlrdV51FFHxbnnnhsPPPBA3HvvvZFSWu0AZW3MUd26deOYY46JQYMGlbl5/DL5+fnx2GOPRf/+/WPYsGHx6KOPRv369WPTTTeN8847L3N/ndX5eQEAgJXJS7m8yyEAAKxlV1xxRVx55ZXx9ddfr9WzCVi7Pv3002jfvn3ceOONceGFF+a6nEo1YMCAuOCCC+KLL76IjTfeONflrFcuuOCCGDx4cMycOTMTTAIAQK64BwoAAMA68sMPP5T5etGiRXHHHXfEFltsITzJsmjRorj33nujV69ewhMAANYLLuEFAACwjhx11FHRtm3b2GGHHWLu3Llx7733xocffhjDhw/PdWnrjdmzZ8dzzz0XDz/8cHzzzTdx3nnn5bokAACICAEKAADAOtOjR4+46667Yvjw4bF06dLo1KlTPPDAA3HMMcfkurT1xvvvvx/HH398NGvWLG655ZbYYYcdcl0SAABEhHugAAAAAAAALMc9UAAAAAAAALIIUAAAAAAAALJU+3uglJaWxpdffhkbbLBB5OXl5bocAAAAAAAgh1JKMX/+/GjVqlXk55d/nkm1D1C+/PLLaNOmTa7LAAAAAAAA1iOff/55tG7dutz11T5A2WCDDSLiv9+IoqKiHFcDAAAAAADk0rx586JNmzaZ/KA81T5AWXbZrqKiIgEKAAAAAAAQEbHK2364iTwAAAAAAEAWAQoAAAAAAEAWAQoAAAAAAEAWAQoAAAAAAECWnAYoS5cujUsvvTTat28fhYWFsdlmm8X//u//Rkops01KKS677LJo2bJlFBYWRvfu3WPKlCk5rBoAAAAAAKjuchqgXH/99XHbbbfF3/72t/jggw/i+uuvjxtuuCFuvfXWzDY33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRDisHAAAAAACqs7z009M9KtkhhxwSzZs3j8GDB2eW9erVKwoLC+Pee++NlFK0atUq/vCHP8SFF14YERFz586N5s2bx9ChQ+PXv/71Kvcxb968KC4ujrlz50ZRUdE66wUAAAAAAFj/VTQ3yOkZKLvttls8//zz8dFHH0VExNtvvx0vvfRS9OzZMyIipk2bFjNnzozu3btnnlNcXBxdunSJcePGrXDMkpKSmDdvXpkHAAAAAADA6qidy53/6U9/innz5sVWW20VtWrViqVLl8Y111wTxx9/fEREzJw5MyIimjdvXuZ5zZs3z6zL1q9fv7jyyivXbeEAAAAAAEC1ltMzUB566KEYPnx43HffffHmm2/GPffcE3/5y1/innvuWeMx+/btG3Pnzs08Pv/887VYMQAAAAAAUBPk9AyUiy66KP70pz9l7mWy7bbbxmeffRb9+vWLk046KVq0aBEREbNmzYqWLVtmnjdr1qzYYYcdVjhmQUFBFBQUrPPaAQAAAACA6iunZ6AsXLgw8vPLllCrVq0oLS2NiIj27dtHixYt4vnnn8+snzdvXowfPz66detWqbUCAAAAAAA1R07PQDn00EPjmmuuibZt28bWW28db731Vtx8883x29/+NiIi8vLy4vzzz4+rr746tthii2jfvn1ceuml0apVqzjiiCNyWToAAAAAAFCN5TRAufXWW+PSSy+Ns88+O2bPnh2tWrWKM888My677LLMNhdffHF8//33ccYZZ8ScOXNijz32iFGjRkW9evVyWDkAAAAAAFCd5aWUUq6LWJfmzZsXxcXFMXfu3CgqKsp1OQAAAAAAQA5VNDfI6RkoAACwtnS+aFiuS1gjE248MdclAAAAsAI5vYk8AAAAAADA+kiAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkCWnAcomm2wSeXl5yz169+4dERGLFi2K3r17R5MmTaJhw4bRq1evmDVrVi5LBgAAAAAAaoCcBiivv/56fPXVV5nHs88+GxERv/rVryIi4oILLognnngiRowYEWPHjo0vv/wyjjrqqFyWDAAAAAAA1AC1c7nzpk2blvn6uuuui8022yz23nvvmDt3bgwePDjuu+++2HfffSMiYsiQIdGxY8d49dVXo2vXrrkoGQAAAAAAqAHWm3ugLF68OO6999747W9/G3l5eTFhwoRYsmRJdO/ePbPNVlttFW3bto1x48aVO05JSUnMmzevzAMAAAAAAGB1rDcBymOPPRZz5syJk08+OSIiZs6cGXXr1o1GjRqV2a558+Yxc+bMcsfp169fFBcXZx5t2rRZh1UDAAAAAADV0XoToAwePDh69uwZrVq1+lnj9O3bN+bOnZt5fP7552upQgAAAAAAoKbI6T1Qlvnss8/iueeei0ceeSSzrEWLFrF48eKYM2dOmbNQZs2aFS1atCh3rIKCgigoKFiX5QIAAAAAANXcenEGypAhQ6JZs2Zx8MEHZ5Z17tw56tSpE88//3xm2eTJk2P69OnRrVu3XJQJAAAAAADUEDk/A6W0tDSGDBkSJ510UtSu/f/KKS4ujlNPPTX69OkTjRs3jqKiojj33HOjW7du0bVr1xxWDAAAAAAAVHc5D1Cee+65mD59evz2t79dbl3//v0jPz8/evXqFSUlJdGjR48YNGhQDqoEAAAAAABqkryUUsp1EevSvHnzori4OObOnRtFRUW5LgcAgHWk80XDcl3CGplw44m5LgEAAKBGqWhusF7cAwUAAAAAAGB9IkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIkvMAZcaMGfGb3/wmmjRpEoWFhbHtttvGG2+8kVmfUorLLrssWrZsGYWFhdG9e/eYMmVKDisGAAAAAACqu5wGKN99913svvvuUadOnXj66afj/fffj5tuuik23HDDzDY33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRDisHAAAAAACqs9q53Pn1118fbdq0iSFDhmSWtW/fPvPvlFIMGDAgLrnkkjj88MMjImLYsGHRvHnzeOyxx+LXv/51pdcMAAAAAABUfzk9A2XkyJGx8847x69+9ato1qxZ7LjjjnHnnXdm1k+bNi1mzpwZ3bt3zywrLi6OLl26xLhx41Y4ZklJScybN6/MAwAAAAAAYHXkNED55JNP4rbbbostttginnnmmfjd734Xv//97+Oee+6JiIiZM2dGRETz5s3LPK958+aZddn69esXxcXFmUebNm3WbRMAAAAAAEC1k9MApbS0NHbaaae49tprY8cdd4wzzjgjTj/99Lj99tvXeMy+ffvG3LlzM4/PP/98LVYMAAAAAADUBDkNUFq2bBmdOnUqs6xjx44xffr0iIho0aJFRETMmjWrzDazZs3KrMtWUFAQRUVFZR4AAAAAAACrI6cByu677x6TJ08us+yjjz6Kdu3aRcR/byjfokWLeP755zPr582bF+PHj49u3bpVaq0AAAAAAEDNUTuXO7/gggtit912i2uvvTaOPvroeO211+Lvf/97/P3vf4+IiLy8vDj//PPj6quvji222CLat28fl156abRq1SqOOOKIXJYOAAAAAABUYzkNUHbZZZd49NFHo2/fvnHVVVdF+/btY8CAAXH88cdntrn44ovj+++/jzPOOCPmzJkTe+yxR4waNSrq1auXw8oBAAAAAIDqLC+llHJdxLo0b968KC4ujrlz57ofCgBANdb5omG5LmGNTLjxxFyXAAAAUKNUNDfI6T1QAAAAAAAA1kc5vYQXAAAAsP6rimf5OcMPAPi5nIECAAAAAACQRYACAAAAAACQRYACAAAAAACQRYACAAAAAACQxU3kAQCgCnEjZwAAgMrhDBQAAAAAAIAsAhQAAAAAAIAsLuEFAACsV6riZcoiXKoMAACqG2egAAAAAAAAZBGgAAAAAAAAZHEJLwAAAFhDLjkHAFB9OQMFAAAAAAAgiwAFAAAAAAAgiwAFAAAAAAAgi3ugAAAAVDL3zQAAgPWfM1AAAAAAAACyCFAAAAAAAACyuIQXAAAAANVGTbhMYk3oEWB94AwUAAAAAACALM5AAQAAYJ3wCWkAAKoyZ6AAAAAAAABkcQYKAAAAUOM5YwoAyOYMFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCy1c10AAAAAAOte54uG5bqENTLhxhNzXQIANZQzUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALLkNEC54oorIi8vr8xjq622yqxftGhR9O7dO5o0aRINGzaMXr16xaxZs3JYMQAAAAAAUBPk/AyUrbfeOr766qvM46WXXsqsu+CCC+KJJ56IESNGxNixY+PLL7+Mo446KofVAgAAAAAANUHtnBdQu3a0aNFiueVz586NwYMHx3333Rf77rtvREQMGTIkOnbsGK+++mp07dq1sksFAAAAAABqiJyfgTJlypRo1apVbLrppnH88cfH9OnTIyJiwoQJsWTJkujevXtm26222iratm0b48aNK3e8kpKSmDdvXpkHAAAAAADA6shpgNKlS5cYOnRojBo1Km677baYNm1a7LnnnjF//vyYOXNm1K1bNxo1alTmOc2bN4+ZM2eWO2a/fv2iuLg482jTps067gIAAAAAAKhucnoJr549e2b+vd1220WXLl2iXbt28dBDD0VhYeEajdm3b9/o06dP5ut58+YJUQAAAAAAgNWS80t4/VSjRo1iyy23jKlTp0aLFi1i8eLFMWfOnDLbzJo1a4X3TFmmoKAgioqKyjwAAAAAAABWx3oVoCxYsCA+/vjjaNmyZXTu3Dnq1KkTzz//fGb95MmTY/r06dGtW7ccVgkAAAAAAFR3Ob2E14UXXhiHHnpotGvXLr788su4/PLLo1atWnHsscdGcXFxnHrqqdGnT59o3LhxFBUVxbnnnhvdunWLrl275rJsAAAAAACgmstpgPLFF1/EscceG9988000bdo09thjj3j11VejadOmERHRv3//yM/Pj169ekVJSUn06NEjBg0alMuSAQAAAACAGiCnAcoDDzyw0vX16tWLgQMHxsCBAyupIgAAAAAAgPXsHigAAAAAAADrAwEKAAAAAABAFgEKAAAAAABAlpzeAwUAAAAAYEU6XzQs1yWskQk3npjrEoC1xBkoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWWrnugAAAAAAgJqo80XDcl3CGplw44m5LgEqhTNQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAstRe0yf+4x//iNtvvz2mTZsW48aNi3bt2sWAAQOiffv2cfjhh6/NGgFgvdP5omG5LmGNTLjxxFyXAAAAAFAlrNEZKLfddlv06dMnDjrooJgzZ04sXbo0IiIaNWoUAwYMWJv1AQAAAAAAVLo1ClBuvfXWuPPOO+PPf/5z1KpVK7N85513jnfffXetFQcAAAAAAJALaxSgTJs2LXbcccfllhcUFMT333//s4sCAAAAAADIpTW6B0r79u1j4sSJ0a5duzLLR40aFR07dlwrhQFUV+6dAQAAAADrvzUKUPr06RO9e/eORYsWRUopXnvttbj//vujX79+cdddd63tGgEAAAAAACrVGgUop512WhQWFsYll1wSCxcujOOOOy5atWoVf/3rX+PXv/712q4RAAAAAACgUq1RgBIRcfzxx8fxxx8fCxcujAULFkSzZs3WZl0AAAAAAAA5s0YByrRp0+LHH3+MLbbYIurXrx/169ePiIgpU6ZEnTp1YpNNNlmbNQIAAAAAAFSq/DV50sknnxyvvPLKcsvHjx8fJ5988s+tCQAAAAAAIKfWKEB56623Yvfdd19uedeuXWPixIk/tyYAAAAAAICcWqMAJS8vL+bPn7/c8rlz58bSpUt/dlEAAAAAAAC5tEYByl577RX9+vUrE5YsXbo0+vXrF3vsscdaKw4AAAAAACAX1ugm8tdff33stdde0aFDh9hzzz0jIuLFF1+MefPmxejRo9dqgcB/db5oWK5LWCMTbjwx1yUAAAAAAKy2NToDpVOnTvHOO+/E0UcfHbNnz4758+fHiSeeGB9++GFss802a7tGAAAAAACASrVGAUpERKtWreLaa6+NJ598Mh5++OG47LLLonHjxmtcyHXXXRd5eXlx/vnnZ5YtWrQoevfuHU2aNImGDRtGr169YtasWWu8DwAAAAAAgIqo8CW83nnnndhmm20iPz8/3nnnnZVuu912261WEa+//nrccccdyz3vggsuiCeffDJGjBgRxcXFcc4558RRRx0VL7/88mqNDwAAAAAAsDoqHKDssMMOMXPmzGjWrFnssMMOkZeXFyml5bbLy8src3P5VVmwYEEcf/zxceedd8bVV1+dWT537twYPHhw3HfffbHvvvtGRMSQIUOiY8eO8eqrr0bXrl0rvA8AAAAAAIDVUeEAZdq0adG0adPMv9eW3r17x8EHHxzdu3cvE6BMmDAhlixZEt27d88s22qrraJt27Yxbty4cgOUkpKSKCkpyXw9b968tVZrVeTG4wAAAAAAsPoqHKC0a9cuIiKWLFkSV155ZVx66aXRvn37n7XzBx54IN588814/fXXl1s3c+bMqFu3bjRq1KjM8ubNm8fMmTPLHbNfv35x5ZVX/qy6AAAAAACAmm21byJfp06d+L//+7+fvePPP/88zjvvvBg+fHjUq1fvZ4+3TN++fWPu3LmZx+eff77WxgYAAAAAAGqG1Q5QIiKOOOKIeOyxx37WjidMmBCzZ8+OnXbaKWrXrh21a9eOsWPHxi233BK1a9eO5s2bx+LFi2POnDllnjdr1qxo0aJFueMWFBREUVFRmQcAAAAAAMDqqPAlvH5qiy22iKuuuipefvnl6Ny5czRo0KDM+t///verHGO//faLd999t8yyU045Jbbaaqv44x//GG3atIk6derE888/H7169YqIiMmTJ8f06dOjW7dua1I2AAAAAABAhaxRgDJ48OBo1KhRTJgwISZMmFBmXV5eXoUClA022CC22WabMssaNGgQTZo0ySw/9dRTo0+fPtG4ceMoKiqKc889N7p161buDeQBAAAAAADWhjUKUKZNm5b5d0opIv4bnKxt/fv3j/z8/OjVq1eUlJREjx49YtCgQWt9PwAAAAAAAD+1RgFKxH/PQunfv39MmTIlIv57Wa/zzz8/TjvttDUu5oUXXijzdb169WLgwIExcODANR4TAGBlOl80LNclrJEJN56Y6xIAAACgWlujAOWyyy6Lm2++OXNJrYiIcePGxQUXXBDTp0+Pq666aq0WCQAAAAAAUJnWKEC57bbb4s4774xjjz02s+ywww6L7bbbLs4991wBCgAAAAAAUKXlr8mTlixZEjvvvPNyyzt37hw//vjjzy4KAAAAAAAgl9YoQDnhhBPitttuW2753//+9zj++ON/dlEAAAAAAAC59LNuIv+vf/0runbtGhER48ePj+nTp8eJJ54Yffr0yWx38803//wqAQAAAAAAKtEaBSiTJk2KnXbaKSIiPv7444iI2GijjWKjjTaKSZMmZbbLy8tbCyUCAPBzdb5oWK5LWCMTbjwx1yUAAABQQ61RgDJmzJi1XQcAAAAAAMB6Y43ugQIAAAAAAFCdCVAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACy1M51AbnU+aJhuS5hjUy48cRclwAAAAAAANWaM1AAAAAAAACyCFAAAAAAAACy1OhLeAEAAAAAsO64jQJVmTNQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsuQ0QLnttttiu+22i6KioigqKopu3brF008/nVm/aNGi6N27dzRp0iQaNmwYvXr1ilmzZuWwYgAAAAAAoCbIaYDSunXruO6662LChAnxxhtvxL777huHH354vPfeexERccEFF8QTTzwRI0aMiLFjx8aXX34ZRx11VC5LBgAAAAAAaoDaudz5oYceWubra665Jm677bZ49dVXo3Xr1jF48OC47777Yt99942IiCFDhkTHjh3j1Vdfja5du65wzJKSkigpKcl8PW/evHXXAAAAAAAAUC2tN/dAWbp0aTzwwAPx/fffR7du3WLChAmxZMmS6N69e2abrbbaKtq2bRvjxo0rd5x+/fpFcXFx5tGmTZvKKB8AAAAAAKhGch6gvPvuu9GwYcMoKCiIs846Kx599NHo1KlTzJw5M+rWrRuNGjUqs33z5s1j5syZ5Y7Xt2/fmDt3bubx+eefr+MOAAAAAACA6ianl/CKiOjQoUNMnDgx5s6dGw8//HCcdNJJMXbs2DUer6CgIAoKCtZihQAAAAAAQE2T8wClbt26sfnmm0dEROfOneP111+Pv/71r3HMMcfE4sWLY86cOWXOQpk1a1a0aNEiR9UCAAAAAAA1Qc4v4ZWttLQ0SkpKonPnzlGnTp14/vnnM+smT54c06dPj27duuWwQgAAAAAAoLrL6Rkoffv2jZ49e0bbtm1j/vz5cd9998ULL7wQzzzzTBQXF8epp54affr0icaNG0dRUVGce+650a1bt+jatWsuywYAAAAAAKq5nAYos2fPjhNPPDG++uqrKC4uju222y6eeeaZ2H///SMion///pGfnx+9evWKkpKS6NGjRwwaNCiXJQNQAZ0vGpbrEtbIhBtPzHUJAAAAAKwnchqgDB48eKXr69WrFwMHDoyBAwdWUkUAAAAAAADrwU3k4efySXcAAAAAANa29e4m8gAAAAAAALkmQAEAAAAAAMgiQAEAAAAAAMjiHigAQLncZwoAAACoqZyBAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkKV2Lnfer1+/eOSRR+LDDz+MwsLC2G233eL666+PDh06ZLZZtGhR/OEPf4gHHnggSkpKokePHjFo0KBo3rx5DisHAAAAAID/6nzRsFyXsEYm3HhihbetCT1my+kZKGPHjo3evXvHq6++Gs8++2wsWbIkDjjggPj+++8z21xwwQXxxBNPxIgRI2Ls2LHx5ZdfxlFHHZXDqgEAAAAAgOoup2egjBo1qszXQ4cOjWbNmsWECRNir732irlz58bgwYPjvvvui3333TciIoYMGRIdO3aMV199Nbp27ZqLsgEAAAAAgGpuvboHyty5cyMionHjxhERMWHChFiyZEl07949s81WW20Vbdu2jXHjxq1wjJKSkpg3b16ZBwAAAAAAwOrI6RkoP1VaWhrnn39+7L777rHNNttERMTMmTOjbt260ahRozLbNm/ePGbOnLnCcfr16xdXXnnlui4XWAdq4nUUAQAAAID103pzBkrv3r1j0qRJ8cADD/yscfr27Rtz587NPD7//PO1VCEAAAAAAFBTrBdnoJxzzjnxz3/+M/79739H69atM8tbtGgRixcvjjlz5pQ5C2XWrFnRokWLFY5VUFAQBQUF67pkAAAAAACgGsvpGSgppTjnnHPi0UcfjdGjR0f79u3LrO/cuXPUqVMnnn/++cyyyZMnx/Tp06Nbt26VXS4AAAAAAFBD5PQMlN69e8d9990Xjz/+eGywwQaZ+5oUFxdHYWFhFBcXx6mnnhp9+vSJxo0bR1FRUZx77rnRrVu36Nq1ay5LBwAAAAAAqrGcBii33XZbRETss88+ZZYPGTIkTj755IiI6N+/f+Tn50evXr2ipKQkevToEYMGDarkSgEAAAAAgJokpwFKSmmV29SrVy8GDhwYAwcOrISKAAAAAAAAcnwPFAAAAAAAgPWRAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACBLTgOUf//733HooYdGq1atIi8vLx577LEy61NKcdlll0XLli2jsLAwunfvHlOmTMlNsQAAAAAAQI2R0wDl+++/j+233z4GDhy4wvU33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRJVcKAAAAAADUJLVzufOePXtGz549V7gupRQDBgyISy65JA4//PCIiBg2bFg0b948Hnvssfj1r39dmaUCAAAAAAA1yHp7D5Rp06bFzJkzo3v37pllxcXF0aVLlxg3bly5zyspKYl58+aVeQAAAAAAAKyO9TZAmTlzZkRENG/evMzy5s2bZ9atSL9+/aK4uDjzaNOmzTqtEwAAAAAAqH7W2wBlTfXt2zfmzp2beXz++ee5LgkAAAAAAKhi1tsApUWLFhERMWvWrDLLZ82alVm3IgUFBVFUVFTmAQAAAAAAsDrW2wClffv20aJFi3j++eczy+bNmxfjx4+Pbt265bAyAAAAAACguqudy50vWLAgpk6dmvl62rRpMXHixGjcuHG0bds2zj///Lj66qtjiy22iPbt28ell14arVq1iiOOOCJ3RQMAAAAAANVeTgOUN954I37xi19kvu7Tp09ERJx00kkxdOjQuPjii+P777+PM844I+bMmRN77LFHjBo1KurVq5erkgEAAAAAgBogpwHKPvvsEymlctfn5eXFVVddFVdddVUlVgUAAAAAANR06+09UAAAAAAAAHJFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJClSgQoAwcOjE022STq1asXXbp0iddeey3XJQEAAAAAANXYeh+gPPjgg9GnT5+4/PLL480334ztt98+evToEbNnz851aQAAAAAAQDW13gcoN998c5x++ulxyimnRKdOneL222+P+vXrx913353r0gAAAAAAgGqqdq4LWJnFixfHhAkTom/fvpll+fn50b179xg3btwKn1NSUhIlJSWZr+fOnRsREfPmzVtu26UlP6zliivHinopjx7XX6vTY0TN6LMm9BhRM/rU4/rL8bq8mtBjRM3osyb0GFE1+6wJPUY4XlekJvRZE3qMqJp91oQeIxyvK1IT+qwJPUbUjD71uP5yvC6vOvW4bFlKaaXPzUur2iKHvvzyy9h4443jlVdeiW7dumWWX3zxxTF27NgYP378cs+54oor4sorr6zMMgEAAAAAgCrm888/j9atW5e7fr0+A2VN9O3bN/r06ZP5urS0NL799tto0qRJ5OXlVUoN8+bNizZt2sTnn38eRUVFlbLPyqbH6qMm9FkTeoyoGX3qsfqoCX3WhB4jakafeqw+akKfNaHHiJrRZ03oMaJm9KnH6qMm9FkTeoyoGX3qsfqoCX3moseUUsyfPz9atWq10u3W6wBlo402ilq1asWsWbPKLJ81a1a0aNFihc8pKCiIgoKCMssaNWq0rkpcqaKiomp7UC+jx+qjJvRZE3qMqBl96rH6qAl91oQeI2pGn3qsPmpCnzWhx4ia0WdN6DGiZvSpx+qjJvRZE3qMqBl96rH6qAl9VnaPxcXFq9xmvb6JfN26daNz587x/PPPZ5aVlpbG888/X+aSXgAAAAAAAGvTen0GSkREnz594qSTToqdd945dt111xgwYEB8//33ccopp+S6NAAAAAAAoJpa7wOUY445Jr7++uu47LLLYubMmbHDDjvEqFGjonnz5rkurVwFBQVx+eWXL3cpsepEj9VHTeizJvQYUTP61GP1URP6rAk9RtSMPvVYfdSEPmtCjxE1o8+a0GNEzehTj9VHTeizJvQYUTP61GP1URP6XJ97zEsppVwXAQAAAAAAsD5Zr++BAgAAAAAAkAsCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCw1OkD597//HYceemi0atUq8vLy4rHHHltumw8++CAOO+ywKC4ujgYNGsQuu+wS06dPz6w/88wzY7PNNovCwsJo2rRpHH744fHhhx9m1g8dOjTy8vJW+Jg9e3a5tX377bdx/PHHR1FRUTRq1ChOPfXUWLBgwVrvccGCBXHOOedE69ato7CwMDp16hS33377cuOMGzcu9t1332jQoEEUFRXFXnvtFT/88ENm/UcffRSHH354bLTRRlFUVBR77LFHjBkzZqW1pZTisssui5YtW0ZhYWF07949pkyZsto9ro0+P/3003LnacSIERFRPeby448/jiOPPDKaNm0aRUVFcfTRR8esWbPKbLO+z+WsWbPi5JNPjlatWkX9+vXjwAMPLLOvb7/9Ns4999zo0KFDFBYWRtu2beP3v/99zJ07t8w4zz//fOy2226xwQYbRIsWLeKPf/xj/PjjjyutbdGiRdG7d+9o0qRJNGzYMHr16rXc968yeoyo2Fxusskmyx2r1113XbXqMSLiySefjC5dukRhYWFsuOGGccQRR6y0tvXpeK1Iny+88EK5rz2vv/56ubVVtbms6q89Fe3zzTffjP333z8aNWoUTZo0iTPOOGOVvxPWVp/9+vWLXXbZJTbYYINo1qxZHHHEETF58uQy21TkuJk+fXocfPDBUb9+/WjWrFlcdNFFy71+vvDCC7HTTjtFQUFBbL755jF06NBV1vfOO+/EnnvuGfXq1Ys2bdrEDTfcsN72+NVXX8Vxxx0XW265ZeTn58f5559fofoq8r1bX3p85JFHYv/9988cz926dYtnnnlmlfWtjXmszD5feuml2H333aNJkyZRWFgYW221VfTv379S+qzMn8llXn755ahdu3bssMMOldJjZfZZ3u/LmTNnrvM+K3MuS0pK4s9//nO0a9cuCgoKYpNNNom77757pfVVpdeek08+eYXzuPXWW6+0vqp2vEZEDB8+PLbffvuoX79+tGzZMn7729/GN998s9L6qtJcRkQMHDgwOnbsGIWFhdGhQ4cYNmzYKutbGz2uzT5///vfR+fOnaOgoKDc1841Of7Wp7lcVY+LFi2Kk08+ObbddtuoXbv2Kv+/tczaeC+ksnp84YUX4vDDD4+WLVtGgwYNYocddojhw4evsr6qdrxOnjw5fvGLX0Tz5s2jXr16semmm8Yll1wSS5YsWed9VubP5DJTp06NDTbYIBo1arTK+qraXJb3Puarr766zvuszLlMKcVf/vKX2HLLLaOgoCA23njjuOaaa1Za39p6Hza7kBrrqaeeSn/+85/TI488kiIiPfroo2XWT506NTVu3DhddNFF6c0330xTp05Njz/+eJo1a1ZmmzvuuCONHTs2TZs2LU2YMCEdeuihqU2bNunHH39MKaW0cOHC9NVXX5V59OjRI+29994rre3AAw9M22+/fXr11VfTiy++mDbffPN07LHHrvUeTz/99LTZZpulMWPGpGnTpqU77rgj1apVKz3++OOZbV555ZVUVFSU+vXrlyZNmpQ+/PDD9OCDD6ZFixZlttliiy3SQQcdlN5+++300UcfpbPPPjvVr18/ffXVV+XWdt1116Xi4uL02GOPpbfffjsddthhqX379umHH36o9D5//PHH5ebpyiuvTA0bNkzz589PKVX9uVywYEHadNNN05FHHpneeeed9M4776TDDz887bLLLmnp0qWZcdbnuSwtLU1du3ZNe+65Z3rttdfShx9+mM4444zUtm3btGDBgpRSSu+++2466qij0siRI9PUqVPT888/n7bYYovUq1evzDgTJ05MdevWTVdeeWWaMmVKeuGFF9JWW22V/vCHP6y0trPOOiu1adMmPf/88+mNN95IXbt2Tbvttlul91jRuWzXrl266qqryhyzy8aoLj0+/PDDacMNN0y33XZbmjx5cnrvvffSgw8+uNLa1qfjtSJ9lpSULPfac9ppp6X27dun0tLScmuranNZ1V97KtLnjBkz0oYbbpjOOuus9OGHH6bXXnst7bbbbmVen9Zlnz169EhDhgxJkyZNShMnTkwHHXRQmR5SWvVx8+OPP6Ztttkmde/ePb311lvpqaeeShtttFHq27dvZptPPvkk1a9fP/Xp0ye9//776dZbb021atVKo0aNKre2uXPnpubNm6fjjz8+TZo0Kd1///2psLAw3XHHHetlj9OmTUu///3v0z333JN22GGHdN55562ytoqMuz71eN5556Xrr78+vfbaa+mjjz5Kffv2TXXq1ElvvvlmubWtrXmszD7ffPPNdN9996VJkyaladOmpX/84x+pfv36K625qh2vy3z33Xdp0003TQcccEDafvvtV1pbVZzLMWPGpIhIkydPLvM786e/a9ZVn5U5l4cddljq0qVLevbZZ9O0adPSK6+8kl566aVya6tqrz1z5swpM3+ff/55aty4cbr88svLra0qHq8vvfRSys/PT3/961/TJ598kl588cW09dZbpyOPPLLc2qraXA4aNChtsMEG6YEHHkgff/xxuv/++1PDhg3TyJEj13mPa6vPlFI699xz09/+9rd0wgknrPC1c02Ov/VpLivS44IFC9JZZ52V/v73v6cePXqkww8/vEL1rY33Qiqrx2uuuSZdcskl6eWXX05Tp05NAwYMSPn5+emJJ54ot7aqeLx+/PHH6e67704TJ05Mn376aXr88cdTs2bNVlpzVTtel1m8eHHaeeedU8+ePVNxcfFKa6uKczlt2rQUEem5554r83tz8eLF67zPypzLc889N3Xo0CE9/vjj6ZNPPklvvPFG+te//rXS+tbW+7A/VaMDlJ9a0RvSxxxzTPrNb36zWuO8/fbbKSLS1KlTV7h+9uzZqU6dOmnYsGHljvH++++niEivv/56ZtnTTz+d8vLy0owZM1arnp9aUY9bb711uuqqq8os22mnndKf//znzNddunRJl1xySbnjfv311yki0r///e/Msnnz5qWISM8+++wKn1NaWppatGiRbrzxxsyyOXPmpIKCgnT//fevTlvLWdM+s+2www7pt7/9bbnrq9pcPvPMMyk/Pz/NnTs3s37OnDkpLy8vM0/r+1xOnjw5RUSaNGlSZtnSpUtT06ZN05133lnuOA899FCqW7duWrJkSUoppb59+6add965zDYjR45M9erVS/PmzVvhGHPmzEl16tRJI0aMyCz74IMPUkSkcePGrUl7KaU167Eic5nSfwOU/v37V7iWqtbjkiVL0sYbb5zuuuuuCteyvh2vFZ3Ln1q8eHFq2rTpcj/vP1XV5rI6vPZUpM877rgjNWvWrMybee+8806KiDRlypRK73P27NkpItLYsWMz467quHnqqadSfn5+mjlzZmab2267LRUVFaWSkpKUUkoXX3xx2nrrrcvs65hjjkk9evQot5ZBgwalDTfcMDNGSin98Y9/TB06dFgve/ypvffeu0IByuqOW1GV0eMynTp1SldeeWW569fVPKZUuX0eeeSRK/0/QFU9Xo855ph0ySWXpMsvv3yVAUpVnMtlAcp3331X4Vqq2lw+/fTTqbi4OH3zzTcVrqWqv/Y8+uijKS8vL3366afl1lIVj9cbb7wxbbrppmX2dcstt6SNN9643Fqq2lx269YtXXjhhWX21adPn7T77rtXeo9r2udPlffauSbH3/o0lz9Vkd8PJ510UoUClHX1Xkhl9LjMQQcdlE455ZRy11fF43VFLrjggrTHHnuUu76qHq8XX3xx+s1vfpOGDBmyygClKs7lsgDlrbfeqnAtVW0u33///VS7du304YcfVriWdfXaU6Mv4bUypaWl8eSTT8aWW24ZPXr0iGbNmkWXLl1WeJmvZb7//vsYMmRItG/fPtq0abPCbYYNGxb169ePX/7yl+WOM27cuGjUqFHsvPPOmWXdu3eP/Pz8GD9+/Br3tCK77bZbjBw5MmbMmBEppRgzZkx89NFHccABB0RExOzZs2P8+PHRrFmz2G233aJ58+ax9957x0svvZQZo0mTJpnTcb///vv48ccf44477ohmzZpF586dV7jfadOmxcyZM6N79+6ZZcXFxdGlS5cYN27cWu2xIn1mmzBhQkycODFOPfXUcsesanNZUlISeXl5UVBQkHlOvXr1Ij8/PzOf6/tclpSUZOpeJj8/PwoKCsock9nmzp0bRUVFUbt27cw4Px0jIqKwsDAWLVoUEyZMWOEYEyZMiCVLlpTpc6uttoq2bduu1T4r0mNF5nKZ6667Lpo0aRI77rhj3HjjjSs9NbOq9fjmm2/GjBkzIj8/P3bcccdo2bJl9OzZMyZNmlTuvte343V15nKZkSNHxjfffBOnnHJKufuuanNZHV57KtJnSUlJ1K1bN/Lz/9+fX4WFhRER5c73uuxz2aUNGzduHBEVO27GjRsX2267bTRv3jyzTY8ePWLevHnx3nvvZbb56RjLtllZvePGjYu99tor6tatW+Y5kydPju+++26963FNrKtxK6vH0tLSmD9/fmY/5fW4LuYxovL6fOutt+KVV16Jvffeu9xaquLxOmTIkPjkk0/i8ssvr1AtVXkud9hhh2jZsmXsv//+8fLLL+ekz3XV48iRI2PnnXeOG264ITbeeOPYcsst48ILLyxzaeUV9ViVX3sGDx4c3bt3j3bt2q20x6p2vHbr1i0+//zzeOqppyKlFLNmzYqHH344DjrooJX2WZXmsrz/c7322mvlXi5oXfW4pn1WxJocf+vTXK4r6+q9kMrsce7cuav8u6eqHa/Zpk6dGqNGjVrl3z1V7XgdPXp0jBgxIgYOHFih7avyXB522GHRrFmz2GOPPWLkyJEr3baqzeUTTzwRm266afzzn/+M9u3bxyabbBKnnXZafPvtt+U+Z1299ghQyjF79uxYsGBBXHfddXHggQfGv/71rzjyyCPjqKOOirFjx5bZdtCgQdGwYcNo2LBhPP300/Hss8+W+eX5U4MHD47jjjsu84bJisycOTOaNWtWZlnt2rWjcePGq7yG7+q69dZbo1OnTtG6deuoW7duHHjggTFw4MDYa6+9IiLik08+iYiIK664Ik4//fQYNWpU7LTTTrHffvtlrr+el5cXzz33XLz11luxwQYbRL169eLmm2+OUaNGxYYbblhujxFR5od22ddru8eK9Jlt8ODB0bFjx9htt93KHbOqzWXXrl2jQYMG8cc//jEWLlwY33//fVx44YWxdOnS+OqrryJi/Z/LZS+4ffv2je+++y4WL14c119/fXzxxReZHrL95z//if/93/+NM844I7OsR48e8corr8T9998fS5cujRkzZsRVV10VEVHuODNnzoy6desud+3Mtd1nRXqsyFxG/Pd6kg888ECMGTMmzjzzzLj22mvj4osvLnffVa3Hn74+XXLJJfHPf/4zNtxww9hnn33K/YW6vh2vFZ3Lnxo8eHD06NEjWrduXe6+q9pcVofXnor0ue+++8bMmTPjxhtvjMWLF8d3330Xf/rTnyJi5a8966LP0tLSOP/882P33XePbbbZJrOvVR03M2fOXGEtP621vG3mzZtX7pt8FRl3da3LHtdEVe/xL3/5SyxYsCCOPvrocutZV9+7yuizdevWUVBQEDvvvHP07t07TjvttHLrqWpzOWXKlPjTn/4U9957b+bDJKtSFeeyZcuWcfvtt8f//d//xf/93/9FmzZtYp999ok333yzUvtclz1+8skn8dJLL8WkSZPi0UcfjQEDBsTDDz8cZ599drXp8ae+/PLLePrpp1f687gm41bUuuxz9913j+HDh8cxxxwTdevWjRYtWkRxcfFK3+yranPZo0ePuOuuu2LChAmRUoo33ngj7rrrrliyZEn85z//qbQef06fFbEmNa9Pc7murIv3Qiqzx4ceeihef/31lX5orSoer8vstttuUa9evdhiiy1izz33zLwfsiJV7Xj95ptv4uSTT46hQ4dGUVFRhZ5TFeeyYcOGcdNNN8WIESPiySefjD322COOOOKIlYYoVW0uP/nkk/jss89ixIgRMWzYsBg6dGhMmDBhpR9kX1fvwwpQylFaWhoREYcffnhccMEFscMOO8Sf/vSnOOSQQ5a7Mffxxx8fb731VowdOza23HLLOProo2PRokXLjTlu3Lj44IMPVnpWQ2W79dZb49VXX42RI0fGhAkT4qabborevXvHc889FxH/7/tw5plnximnnBI77rhj9O/fPzp06JC5WWFKKXr37h3NmjWLF198MV577bU44ogj4tBDDy33DaHKtqo+f+qHH36I++67b6XzVBXnsmnTpjFixIh44oknomHDhlFcXBxz5syJnXbaKfNp6PV9LuvUqROPPPJIfPTRR9G4ceOoX79+jBkzJnr27FnmE93LzJs3Lw4++ODo1KlTXHHFFZnlBxxwQNx4441x1llnRUFBQWy55ZaZT3utaJzKVJEeKzKXERF9+vSJffbZJ7bbbrs466yz4qabbopbb70182n6XFlbPS57ffrzn/8cvXr1is6dO8eQIUMiLy8vRowYkbP+llmbc7nMF198Ec8888x689qztnqsDq89Felz6623jnvuuSduuummqF+/frRo0SLat28fzZs3r/TXnt69e8ekSZPigQceqNT9ViY9rj333XdfXHnllfHQQw8t9x+SylAZfb744ovxxhtvxO233x4DBgyI+++/f53ta0XWVY9Lly6N4447Lq688srYcsst1+rYa2JdzmWHDh3izDPPjM6dO8duu+0Wd999d+y2227Rv3//tb6vlVmXPZaWlkZeXl4MHz48dt111zjooIPi5ptvjnvuuWelZ6GsbZX12nPPPfdEo0aNKnzD6rVtXfb5/vvvx3nnnReXXXZZTJgwIUaNGhWffvppnHXWWWt9XyuzLnu89NJLo2fPntG1a9eoU6dOHH744XHSSSdFROX/n8vfBNVDZfU4ZsyYOOWUU+LOO++Mrbfeep3ua0Uqo88HH3ww3nzzzbjvvvviySefjL/85S/rbF8rsi57PP300+O4444r9wPTlWld9rnRRhtFnz59okuXLrHLLrvEddddF7/5zW/ixhtvXOv7Wpl1/XdPSUlJDBs2LPbcc8/YZ599YvDgwTFmzJjlblq/rglQyrHRRhtF7dq1o1OnTmWWd+zYMaZPn15mWXFxcWyxxRax1157xcMPPxwffvhhPProo8uNedddd8UOO+xQ7uVIlmnRokXMnj27zLIff/wxvv3222jRosUadrS8H374If7nf/4nbr755jj00ENju+22i3POOSeOOeaYzItny5YtIyJW+n0YPXp0/POf/4wHHnggdt9999hpp51i0KBBUVhYGPfcc0+5PUZEzJo1q8zyWbNmrdUeK9rnTz388MOxcOHCOPHEE8sdsyrOZcR/g4OPP/44Zs+eHf/5z3/iH//4R8yYMSM23XTTiFj/5zIionPnzjFx4sSYM2dOfPXVVzFq1Kj45ptvMj0sM3/+/DjwwANjgw02iEcffTTq1KlTZn2fPn1izpw5MX369PjPf/4Thx9+eETEcuMs06JFi1i8eHHMmTOnzPJ10WdFelzVXK5Ily5d4scff4xPP/10heurWo8ren0qKCiITTfddLnX6Z/2uKyndd1jxNqfyyFDhkSTJk3isMMOW+l+q9pcVpfXnorM5XHHHRczZ86MGTNmxDfffBNXXHFFfP311yt97VnbfZ5zzjnxz3/+M8aMGVPmTKaKHDctWrRYYS0/rbW8bYqKiso9a7Mi466Odd3jmqiqPT7wwANx2mmnxUMPPbTcpdmyrYvvXWX12b59+9h2223j9NNPjwsuuKDMBy+yVaW5nD9/frzxxhtxzjnnRO3ataN27dpx1VVXxdtvvx21a9eO0aNHV0qP67rP8uy6664xderUctdXpbmM+O/fPhtvvHEUFxdntunYsWOklOKLL76oFj0uk1KKu+++O0444YRyr+7w031XteO1X79+sfvuu8dFF10U2223XfTo0SMGDRoUd999d7kfHqlqc1lYWBh33313LFy4MD799NOYPn16bLLJJrHBBhtE06ZNK6XHn9tnRaxJzevTXK4ra/u9kMrqcezYsXHooYdG//79V/qe0LJ9V7XjdZk2bdpEp06d4thjj43rrrsurrjiili6dOkKt61qx+vo0aPjL3/5S+bvnlNPPTXmzp0btWvXznwQPFtVnsuf6tKlS5X5u6ciWrZsGbVr1y7zIaCOHTtGRKz0PZ918T6sAKUcdevWjV122WW5ROujjz5a6fVXU0qRUlruE94LFiyIhx56qEKfGu7WrVvMmTOnzL0YRo8eHaWlpdGlS5fV7KR8S5YsiSVLliz36Y9atWplPtm9ySabRKtWrVb6fVi4cGFELP8pkvz8/Mw42dq3bx8tWrSI559/PrNs3rx5MX78+OjWrdvPayxLRfr8qcGDB8dhhx1W7h91VXUuf2qjjTaKRo0axejRo2P27NmZN2PX97n8qeLi4mjatGlMmTIl3njjjUwAsmz/BxxwQNStWzdGjhy53LV3l8nLy4tWrVpFYWFh3H///dGmTZvYaaedVrht586do06dOmX6nDx5ckyfPn2d9bmyHpcpby5XZOLEiZGfn1/up4erWo+dO3eOgoKCMq9PS5YsiU8//bTc1+n18XhdZlVzmVKKIUOGxIknnrhcIJitqs1ldXntWaYiP5fNmzePhg0bxoMPPhj16tWL/ffff4X7W5t9ppTinHPOiUcffTRGjx4d7du3L7O+IsdNt27d4t133y3zR+mzzz4bRUVFmTCzW7duZcZYts3K6u3WrVv8+9//LnNN9GeffTY6dOhQ7mXcctnjmlhb41Zmj/fff3+ccsopcf/998fBBx9coR7XxjxWdp/Zln3abV33WRk9FhUVxbvvvhsTJ07MPM4666zo0KFDTJw4sdy/R6vLXE6cODHzgYt12Wdl9bj77rvHl19+GQsWLMhs89FHH0V+fn65l/asiq89Ef99E3Pq1KkV/j9XVTteFy5cuML/uy2robw+q+Jc1qlTJ1q3bh21atWKBx54IA455JByz0BZm7+D10afFbEmx9/6NJfrytp6L6Qye3zhhRfi4IMPjuuvv77MJcDLUxWP1xUpLS2NJUuWlPv/rqp2vI4bN67M3z1XXXVVbLDBBjFx4sQ48sgj12mPldnnilTk756qNJe77757/Pjjj/Hxxx9nln300UcREeW+57PO3odd49vPVwPz589Pb731VnrrrbdSRKSbb745vfXWW+mzzz5LKaX0yCOPpDp16qS///3vacqUKenWW29NtWrVSi+++GJKKaWPP/44XXvttemNN95In332WXr55ZfToYcemho3bpxmzZpVZl933XVXqlevXvruu++Wq2P8+PGpQ4cO6YsvvsgsO/DAA9OOO+6Yxo8fn1566aW0xRZbpGOPPXat97j33nunrbfeOo0ZMyZ98sknaciQIalevXpp0KBBmTH69++fioqK0ogRI9KUKVPSJZdckurVq5emTp2aUkrp66+/Tk2aNElHHXVUmjhxYpo8eXK68MILU506ddLEiRMz43To0CE98sgjma+vu+661KhRo/T444+nd955Jx1++OGpffv26YcffshJnymlNGXKlJSXl5eefvrpcvdVlefy7rvvTuPGjUtTp05N//jHP1Ljxo1Tnz59Muurwlw+9NBDacyYMenjjz9Ojz32WGrXrl066qijMs+fO3du6tKlS9p2223T1KlT01dffZV5/Pjjj5ntbrjhhvTOO++kSZMmpauuuirVqVMnPfroo5n1X3zxRerQoUMaP358ZtlZZ52V2rZtm0aPHp3eeOON1K1bt9StW7dK7zGlVc/lK6+8kvr3758mTpyYPv7443Tvvfempk2bphNPPLHa9JhSSuedd17aeOON0zPPPJM+/PDDdOqpp6ZmzZqlb7/9NrPN+ny8VrTPlFJ67rnnUkSkDz74YLl1VX0uq8NrT0X6TCmlW2+9NU2YMCFNnjw5/e1vf0uFhYXpr3/9a5lt1lWfv/vd71JxcXF64YUXyrw2Lly4MLPNqo6bH3/8MW2zzTbpgAMOSBMnTkyjRo1KTZs2TX379s1s88knn6T69euniy66KH3wwQdp4MCBqVatWmnUqFFlvg/77rtv5us5c+ak5s2bpxNOOCFNmjQpPfDAA6l+/frpjjvuWC97TClljpfOnTun4447Lr311lvpvffey6x/5JFHUocOHVZ73PWlx+HDh6fatWungQMHltnPnDlzMtusq3mszD7/9re/pZEjR6aPPvooffTRR+muu+5KG2ywQfrzn/+8zvuszOP1py6//PK0/fbbl1lWHeayf//+6bHHHktTpkxJ7777bjrvvPNSfn5+eu6559Z5n5XV4/z581Pr1q3TL3/5y/Tee++lsWPHpi222CKddtppmW2q+mvPMr/5zW9Sly5dVlhLdThehwwZkmrXrp0GDRqUPv744/TSSy+lnXfeOe26666Zbar6XE6ePDn94x//SB999FEaP358OuaYY1Ljxo3TtGnT1nmPa6vPlP77HsFbb72VzjzzzLTllltmfv+XlJSklCp2/K3Pc1mRHlNK6b333ktvvfVWOvTQQ9M+++yT2WaZdfVeSGX1OHr06FS/fv3Ut2/fMvv55ptvMmNUh+P13nvvTQ8++GB6//3308cff5wefPDB1KpVq3T88cev8z4r83j9qSFDhqTi4uIyy6rDXA4dOjTdd9996YMPPkgffPBBuuaaa1J+fn66++6713mfldXj0qVL00477ZT22muv9Oabb6Y33ngjdenSJe2///6ZMdbl+7A/VaMDlDFjxqSIWO5x0kknZbYZPHhw2nzzzVO9evXS9ttvnx577LHMuhkzZqSePXumZs2apTp16qTWrVun4447Ln344YfL7atbt27puOOOW2kdP/1D4ptvvknHHntsatiwYSoqKkqnnHJKmj9//lrv8auvvkonn3xyatWqVapXr17q0KFDuummm1JpaWmZcfr165dat26d6tevn7p165YJkZZ5/fXX0wEHHJAaN26cNthgg9S1a9f01FNPldkmItKQIUMyX5eWlqZLL700NW/ePBUUFKT99tsvTZ48ebV7XJt99u3bN7Vp0yYtXbq03H1V5bn84x//mJo3b57q1KmTtthiixV+D9b3ufzrX/+aWrdunerUqZPatm2bLrnkkjK/KMt7fva8/OIXv0jFxcWpXr16qUuXLsv1OG3atBQRacyYMZllP/zwQzr77LPThhtumOrXr5+OPPLI9NVXX1V6jymtei4nTJiQunTpkumxY8eO6dprr02LFi2qNj2mlNLixYvTH/7wh9SsWbO0wQYbpO7du6dJkyaV2WZ9Pl4r2mdKKR177LFpt912W2Ed1WEuq/prT0X7POGEE1Ljxo1T3bp103bbbZeGDRu2XC3rqs/yXht/uq+KHDeffvpp6tmzZyosLEwbbbRR+sMf/pCWLFmy3Pdzhx12SHXr1k2bbrppmX2k9N83cNu1a1dm2dtvv5322GOPVFBQkDbeeON03XXXrdc9rmg/P+1pyJAhKfuzShUZd33pce+9917l38nrah4rs89bbrklbb311ql+/fqpqKgo7bjjjmnQoEFl/hasDsfrT60oQKkOc3n99denzTbbLNWrVy81btw47bPPPmn06NGV0mdlzuUHH3yQunfvngoLC1Pr1q1Tnz59yrxhUdVfe1L67xvShYWF6e9///sKa6kOx2tK/3396dSpUyosLEwtW7ZMxx9/fJk3gKr6XL7//vtphx12SIWFhamoqCgdfvjhy71Xsq56XJt9lvf78Kf/t1zV8be+z2VFemzXrt0Kt1lmXb0XUlk9nnTSSStcv/fee2fGqA7H6wMPPJB22mmn1LBhw9SgQYPUqVOndO2115b5YFZ1OF5/akUBSnWYy6FDh6aOHTtm/obddddd04gRIyqlz8qcyxkzZqSjjjoqNWzYMDVv3jydfPLJZYLNdfk+7E/l/f+NAwAAAAAA8P9zDxQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAIBVWLp0aZSWlua6DAAAoBIJUAAAgCpl2LBh0aRJkygpKSmz/IgjjogTTjghIiIef/zx2GmnnaJevXqx6aabxpVXXhk//vhjZtubb745tt1222jQoEG0adMmzj777FiwYEFm/dChQ6NRo0YxcuTI6NSpUxQUFMT06dMrp0EAAGC9IEABAACqlF/96lexdOnSGDlyZGbZ7Nmz48knn4zf/va38eKLL8aJJ54Y5513Xrz//vtxxx13xNChQ+Oaa67JbJ+fnx+33HJLvPfee3HPPffE6NGj4+KLLy6zn4ULF8b1118fd911V7z33nvRrFmzSusRAADIvbyUUsp1EQAAAKvj7LPPjk8//TSeeuqpiPjvGSUDBw6MqVOnxv777x/77bdf9O3bN7P9vffeGxdffHF8+eWXKxzv4YcfjrPOOiv+85//RMR/z0A55ZRTYuLEibH99tuv+4YAAID1jgAFAACoct56663YZZdd4rPPPouNN944tttuu/jVr34Vl156aTRt2jQWLFgQtWrVymy/dOnSWLRoUXz//fdRv379eO6556Jfv37x4Ycfxrx58+LHH38ss37o0KFx5plnxqJFiyIvLy+HnQIAALlSO9cFAAAArK4dd9wxtt9++xg2bFgccMAB8d5778WTTz4ZERELFiyIK6+8Mo466qjlnlevXr349NNP45BDDonf/e53cc0110Tjxo3jpZdeilNPPTUWL14c9evXj4iIwsJC4QkAANRgAhQAAKBKOu2002LAgAExY8aM6N69e7Rp0yYiInbaaaeYPHlybL755it83oQJE6K0tDRuuummyM//720hH3rooUqrGwAAqBoEKAAAQJV03HHHxYUXXhh33nlnDBs2LLP8sssui0MOOSTatm0bv/zlLyM/Pz/efvvtmDRpUlx99dWx+eabx5IlS+LWW2+NQw89NF5++eW4/fbbc9gJAACwPsrPdQEAAABrori4OHr16hUNGzaMI444IrO8R48e8c9//jP+9a9/xS677BJdu3aN/v37R7t27SIiYvvtt4+bb745rr/++thmm21i+PDh0a9fvxx1AQAArK/cRB4AAKiy9ttvv9h6663jlltuyXUpAABANSNAAQAAqpzvvvsuXnjhhfjlL38Z77//fnTo0CHXJQEAANWMe6AAAABVzo477hjfffddXH/99cITAABgnXAGCgAAAAAAQBY3kQcAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMjy/wGgffZku0SWVgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(20, 5))\n",
+ "sns.barplot(data=data, x='year', y='price', errorbar=None)\n",
+ "plt.title(\"price rate depending on the year\")\n",
+ "plt.xlabel(\"year\")\n",
+ "plt.ylabel(\"price\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BTYtTderEeaN"
+ },
+ "source": [
+ "Проверили. Признаки не линейно-зависимы."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "agLGino1gDOT"
+ },
+ "source": [
+ "# Модель и обучение"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "metadata": {
+ "id": "uup4zgoEgomo"
+ },
+ "outputs": [],
+ "source": [
+ "X = data.drop(['variety'], axis=1)\n",
+ "Y = data['variety']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4K3fctb5NeuY"
+ },
+ "source": [
+ "Представляем данные в виде необходимом для обучения."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "metadata": {
+ "id": "KWPAaK1uhhoK"
+ },
+ "outputs": [],
+ "source": [
+ "province = pd.get_dummies(X['province'], drop_first=True)\n",
+ "winery = pd.get_dummies(X['winery'], drop_first=True)\n",
+ "\n",
+ "X_gd = X.drop(['province', 'winery'], axis=1)\n",
+ "\n",
+ "X_gd = pd.concat([X_gd, province, winery], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "41KFmdv-gGrU"
+ },
+ "source": [
+ "Разбиваем данные на тренировочные и тестовые"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 183,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 479
+ },
+ "id": "-SLpeeP7y1fL",
+ "outputId": "8ec058a1-2d75-4d0d-da3d-2f734c406540"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " points price year Italy Other Lombardy Northeastern Italy \\\n",
+ "47486 91 55.000000 2007.0 False False False \n",
+ "122282 87 44.428758 2011.0 False False False \n",
+ "96663 87 20.000000 2011.0 False False False \n",
+ "21437 88 26.000000 2013.0 False False False \n",
+ "66082 87 45.000000 2013.0 False False False \n",
+ "... ... ... ... ... ... ... \n",
+ "84833 86 45.000000 2013.0 False False False \n",
+ "77114 87 44.428758 2006.0 False False False \n",
+ "80524 88 23.000000 2015.0 False False False \n",
+ "12797 88 18.000000 2013.0 False False False \n",
+ "109138 86 16.000000 2012.0 False False False \n",
+ "\n",
+ " Northwestern Italy Piedmont Sicily and Sardinia Southern Italy \\\n",
+ "47486 False True False False \n",
+ "122282 False False False False \n",
+ "96663 False False False False \n",
+ "21437 False False False False \n",
+ "66082 False True False False \n",
+ "... ... ... ... ... \n",
+ "84833 False True False False \n",
+ "77114 False False False False \n",
+ "80524 False False False False \n",
+ "12797 False False False False \n",
+ "109138 False False True False \n",
+ "\n",
+ " ... Vèscine Wine for Food Zanoni Zenato Zeni Ziobaffa Zisola \\\n",
+ "47486 ... False False False False False False False \n",
+ "122282 ... False False False False False False False \n",
+ "96663 ... False False False False False False False \n",
+ "21437 ... False False False False False False False \n",
+ "66082 ... False False False False False False False \n",
+ "... ... ... ... ... ... ... ... ... \n",
+ "84833 ... False False False False False False False \n",
+ "77114 ... False False False False False False False \n",
+ "80524 ... False False False False False False False \n",
+ "12797 ... False False False False False False False \n",
+ "109138 ... False False False False False False False \n",
+ "\n",
+ " Zonin Zymè Ïl Macchione \n",
+ "47486 False False False \n",
+ "122282 False False False \n",
+ "96663 False False False \n",
+ "21437 False False False \n",
+ "66082 False False False \n",
+ "... ... ... ... \n",
+ "84833 False False False \n",
+ "77114 False False False \n",
+ "80524 False False False \n",
+ "12797 False False False \n",
+ "109138 False False False \n",
+ "\n",
+ "[6900 rows x 1735 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " points \n",
+ " price \n",
+ " year \n",
+ " Italy Other \n",
+ " Lombardy \n",
+ " Northeastern Italy \n",
+ " Northwestern Italy \n",
+ " Piedmont \n",
+ " Sicily and Sardinia \n",
+ " Southern Italy \n",
+ " ... \n",
+ " Vèscine \n",
+ " Wine for Food \n",
+ " Zanoni \n",
+ " Zenato \n",
+ " Zeni \n",
+ " Ziobaffa \n",
+ " Zisola \n",
+ " Zonin \n",
+ " Zymè \n",
+ " Ïl Macchione \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 47486 \n",
+ " 91 \n",
+ " 55.000000 \n",
+ " 2007.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " True \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 122282 \n",
+ " 87 \n",
+ " 44.428758 \n",
+ " 2011.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 96663 \n",
+ " 87 \n",
+ " 20.000000 \n",
+ " 2011.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 21437 \n",
+ " 88 \n",
+ " 26.000000 \n",
+ " 2013.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 66082 \n",
+ " 87 \n",
+ " 45.000000 \n",
+ " 2013.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " True \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 84833 \n",
+ " 86 \n",
+ " 45.000000 \n",
+ " 2013.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " True \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 77114 \n",
+ " 87 \n",
+ " 44.428758 \n",
+ " 2006.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 80524 \n",
+ " 88 \n",
+ " 23.000000 \n",
+ " 2015.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 12797 \n",
+ " 88 \n",
+ " 18.000000 \n",
+ " 2013.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " 109138 \n",
+ " 86 \n",
+ " 16.000000 \n",
+ " 2012.0 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " True \n",
+ " False \n",
+ " ... \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
6900 rows × 1735 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "X_train_gd"
+ }
+ },
+ "metadata": {},
+ "execution_count": 183
+ }
+ ],
+ "source": [
+ "X_train_gd, X_test_gd, Y_train, Y_test = train_test_split(X_gd, Y, test_size=0.2, random_state=42)\n",
+ "X_train_gd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WS7tGX1ihEqX"
+ },
+ "source": [
+ "Сперва попробуем модель с прошлого дз с подбором параметров."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "soqCIXWGhXza",
+ "outputId": "495ed1f7-f5d7-45b6-98d6-9102732b53ca"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for DecisionTreeClassifier: {'criterion': 'gini', 'max_depth': None}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.99 0.98 0.98 526\n",
+ " Red Blend 0.82 0.87 0.84 742\n",
+ " Sangiovese 0.78 0.71 0.75 457\n",
+ "\n",
+ " accuracy 0.86 1725\n",
+ " macro avg 0.86 0.85 0.86 1725\n",
+ "weighted avg 0.86 0.86 0.86 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "\n",
+ "# create dict with paramemeters for model\n",
+ "param_grid_clf = {\n",
+ " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
+ " 'max_depth': [5, 10, None],\n",
+ "}\n",
+ "\n",
+ "# create model\n",
+ "clf = DecisionTreeClassifier(random_state=42)\n",
+ "\n",
+ "# selection of best parameters\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "\n",
+ "# train model\n",
+ "grid_search_clf.fit(X_train_gd, Y_train)\n",
+ "\n",
+ "# check of best parameters\n",
+ "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
+ "\n",
+ "# prediction of results\n",
+ "y_pred_dtc_gd = grid_search_clf.predict(X_test_gd)\n",
+ "\n",
+ "# check of metric values\n",
+ "print(classification_report(Y_test, y_pred_dtc_gd))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yhoQcYZVHwED"
+ },
+ "source": [
+ "Видим, что модель неплохо справляется с предсказанием."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kgd_EhRClKF6"
+ },
+ "source": [
+ "Представим данные в другом виде т.к. для других моделей обучение на таких данных происходит очень долго."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "metadata": {
+ "id": "rd8FBKRQZMj6"
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.decomposition import PCA\n",
+ "from sklearn.manifold import TSNE\n",
+ "from sklearn.preprocessing import LabelEncoder"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AwS19hFQIhuj"
+ },
+ "source": [
+ "# LabelEncoder"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 186,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 424
+ },
+ "id": "moPDZmN4Im6e",
+ "outputId": "c7a05214-2768-4f36-f42c-45755e4576a8"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " points price province winery year\n",
+ "47486 91 55.000000 5 1005 2007.0\n",
+ "122282 87 44.428758 8 1670 2011.0\n",
+ "96663 87 20.000000 9 35 2011.0\n",
+ "21437 88 26.000000 8 884 2013.0\n",
+ "66082 87 45.000000 5 1005 2013.0\n",
+ "... ... ... ... ... ...\n",
+ "84833 86 45.000000 5 137 2013.0\n",
+ "77114 87 44.428758 8 127 2006.0\n",
+ "80524 88 23.000000 8 777 2015.0\n",
+ "12797 88 18.000000 8 1248 2013.0\n",
+ "109138 86 16.000000 6 70 2012.0\n",
+ "\n",
+ "[6900 rows x 5 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " points \n",
+ " price \n",
+ " province \n",
+ " winery \n",
+ " year \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 47486 \n",
+ " 91 \n",
+ " 55.000000 \n",
+ " 5 \n",
+ " 1005 \n",
+ " 2007.0 \n",
+ " \n",
+ " \n",
+ " 122282 \n",
+ " 87 \n",
+ " 44.428758 \n",
+ " 8 \n",
+ " 1670 \n",
+ " 2011.0 \n",
+ " \n",
+ " \n",
+ " 96663 \n",
+ " 87 \n",
+ " 20.000000 \n",
+ " 9 \n",
+ " 35 \n",
+ " 2011.0 \n",
+ " \n",
+ " \n",
+ " 21437 \n",
+ " 88 \n",
+ " 26.000000 \n",
+ " 8 \n",
+ " 884 \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 66082 \n",
+ " 87 \n",
+ " 45.000000 \n",
+ " 5 \n",
+ " 1005 \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 84833 \n",
+ " 86 \n",
+ " 45.000000 \n",
+ " 5 \n",
+ " 137 \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 77114 \n",
+ " 87 \n",
+ " 44.428758 \n",
+ " 8 \n",
+ " 127 \n",
+ " 2006.0 \n",
+ " \n",
+ " \n",
+ " 80524 \n",
+ " 88 \n",
+ " 23.000000 \n",
+ " 8 \n",
+ " 777 \n",
+ " 2015.0 \n",
+ " \n",
+ " \n",
+ " 12797 \n",
+ " 88 \n",
+ " 18.000000 \n",
+ " 8 \n",
+ " 1248 \n",
+ " 2013.0 \n",
+ " \n",
+ " \n",
+ " 109138 \n",
+ " 86 \n",
+ " 16.000000 \n",
+ " 6 \n",
+ " 70 \n",
+ " 2012.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
6900 rows × 5 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "X_train_lbe",
+ "summary": "{\n \"name\": \"X_train_lbe\",\n \"rows\": 6900,\n \"fields\": [\n {\n \"column\": \"points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 80,\n \"max\": 100,\n \"num_unique_values\": 21,\n \"samples\": [\n 91,\n 98,\n 84\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 41.19681534610238,\n \"min\": 6.0,\n \"max\": 800.0,\n \"num_unique_values\": 195,\n \"samples\": [\n 145.0,\n 135.0,\n 112.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"province\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 0,\n \"max\": 9,\n \"num_unique_values\": 10,\n \"samples\": [\n 3,\n 8,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winery\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 499,\n \"min\": 0,\n \"max\": 1723,\n \"num_unique_values\": 1622,\n \"samples\": [\n 577,\n 1625,\n 277\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.671348672109806,\n \"min\": 1637.0,\n \"max\": 2016.0,\n \"num_unique_values\": 27,\n \"samples\": [\n 2005.0,\n 1998.0,\n 2014.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 186
+ }
+ ],
+ "source": [
+ "lbe = LabelEncoder()\n",
+ "X_lbe = pd.DataFrame(X)\n",
+ "X_lbe['province'] = lbe.fit_transform(data['province'])\n",
+ "X_lbe['winery'] = lbe.fit_transform(data['winery'])\n",
+ "X_train_lbe, X_test_lbe, Y_train, Y_test = train_test_split(X_lbe, Y, test_size=0.2, random_state=42)\n",
+ "X_train_lbe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "rMIOZOTXKBeS",
+ "outputId": "9df203b0-0326-439e-ef07-889fe6db490f"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.99 0.98 0.99 526\n",
+ " Red Blend 0.80 0.80 0.80 742\n",
+ " Sangiovese 0.69 0.70 0.70 457\n",
+ "\n",
+ " accuracy 0.83 1725\n",
+ " macro avg 0.83 0.83 0.83 1725\n",
+ "weighted avg 0.83 0.83 0.83 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
+ " 'max_depth': [5, 10, None],\n",
+ "}\n",
+ "clf = DecisionTreeClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_lbe, Y_train)\n",
+ "y_pred_dtc_lbe = grid_search_clf.predict(X_test_lbe)\n",
+ "\n",
+ "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_dtc_lbe))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wqviIDxZL22H"
+ },
+ "source": [
+ "Видим незначительное падение точночности модели."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "w1DDtKxQMCgr"
+ },
+ "source": [
+ "Попробуем другие модели"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "NlEebtR5KbOL",
+ "outputId": "842ff145-847c-43f1-ec5b-8d0a91f701e4"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for SGDClassifier: {'loss': 'modified_huber', 'max_iter': 200}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.30 1.00 0.47 526\n",
+ " Red Blend 0.00 0.00 0.00 742\n",
+ " Sangiovese 0.00 0.00 0.00 457\n",
+ "\n",
+ " accuracy 0.30 1725\n",
+ " macro avg 0.10 0.33 0.16 1725\n",
+ "weighted avg 0.09 0.30 0.14 1725\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_stochastic_gradient.py:744: ConvergenceWarning:\n",
+ "\n",
+ "Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import SGDClassifier\n",
+ "\n",
+ "# create dict with paramemeters for model\n",
+ "param_grid_clf = {\n",
+ " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
+ " 'max_iter': [100, 200, 400, 800, 1000]\n",
+ "}\n",
+ "\n",
+ "# create model\n",
+ "clf = SGDClassifier(random_state=42)\n",
+ "\n",
+ "# selection of best parameters\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "\n",
+ "# train model\n",
+ "grid_search_clf.fit(X_train_lbe, Y_train)\n",
+ "\n",
+ "# check of best parameters\n",
+ "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
+ "\n",
+ "# prediction of results\n",
+ "y_pred_sgdc_lbe = grid_search_clf.predict(X_test_lbe)\n",
+ "\n",
+ "# check of metric values\n",
+ "print(classification_report(Y_test, y_pred_sgdc_lbe))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Kp6yGqjKMGMH"
+ },
+ "source": [
+ "Точность модели SGDClassifier очень низкая."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Были попытки перебирать разные параметры ядра модли SVC, но это катастрафически замедляло процесс, а результаты не становились сильно лучше, поэтому тут использую дефолтные параметры."
+ ],
+ "metadata": {
+ "id": "pICdMV1OhQHV"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 189,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "h4Zc9hPFK2HD",
+ "outputId": "0e187de2-7e96-413d-fc6c-1165e991a5f3"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.52 0.22 0.31 526\n",
+ " Red Blend 0.46 0.93 0.61 742\n",
+ " Sangiovese 0.00 0.00 0.00 457\n",
+ "\n",
+ " accuracy 0.46 1725\n",
+ " macro avg 0.33 0.38 0.31 1725\n",
+ "weighted avg 0.36 0.46 0.36 1725\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.svm import SVC\n",
+ "\n",
+ "clf = SVC()\n",
+ "clf.fit(X_train_lbe, Y_train)\n",
+ "y_pred_svc_lbe = clf.predict(X_test_lbe)\n",
+ "\n",
+ "# check of metric values\n",
+ "print(classification_report(Y_test, y_pred_svc_lbe))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "UrYWrS02OeQP"
+ },
+ "source": [
+ "Точность у модели SVC очень низкая."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QZdAmoL2Lhqp"
+ },
+ "source": [
+ "# PCA"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 190,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "-OnYsi83ZVQ6",
+ "outputId": "29c543bf-e71c-4d1d-c3e6-bde96f7d497b"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 4.26507051e+00, -2.31516787e+00, 1.63172872e+00, ...,\n",
+ " 3.58225259e-18, 2.88184583e-18, 1.30234266e-20],\n",
+ " [-6.43751638e+00, 1.66052025e+00, -2.08758127e+00, ...,\n",
+ " 3.15901817e-18, 1.87872264e-19, -8.05538076e-20],\n",
+ " [-3.08530170e+01, 1.59344524e+00, -1.33581991e+00, ...,\n",
+ " -2.35725523e-18, -1.67147617e-18, 1.11176722e-20],\n",
+ " ...,\n",
+ " [-2.78372126e+01, 5.59889241e+00, -4.34360135e-01, ...,\n",
+ " -5.38174105e-20, -7.44436577e-21, 8.56165509e-21],\n",
+ " [-3.28294277e+01, 3.58499107e+00, -2.86877737e-01, ...,\n",
+ " -4.94705731e-20, -2.86098011e-20, 3.72404376e-21],\n",
+ " [-3.48845942e+01, 2.58382951e+00, -2.20524267e+00, ...,\n",
+ " -6.24065254e-20, -3.38691686e-20, 1.20095839e-21]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 190
+ }
+ ],
+ "source": [
+ "pca = PCA()\n",
+ "X_train_pca = pca.fit_transform(X_train_gd)\n",
+ "X_test_pca = pca.transform(X_test_gd)\n",
+ "X_train_pca"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 191,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "id": "zdsFUNX4P6Cy",
+ "outputId": "f79cd830-3838-4566-8c62-7274b1352ad7"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHHCAYAAAD6Rv9iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeMklEQVR4nO3dd1gU1/s28HtBOlKUrgiKig01QSXYCxFLLLHGGAsxmhg7MVGTrzWJWBJ796dGTbPGFLuoaRp7jR0LagRUAigWhH3eP3iZuO6CLMzKAvfnuvbSPXNm5pnZ2dmHmXPOaEREQERERERmwaKgAyAiIiKi/zA5IyIiIjIjTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zOiIiIiMwIkzMiIiIiM8LkjIiIiMiMqJ6cTZgwARqNRu3FFpiitj25cejQIdSvXx8ODg7QaDQ4fvx4QYekx9/fH3379jV6vqtXr0Kj0eCrr75SPabcyGvcplLQ+6OwaNq0KZo2bVrQYagm67x2586dgg7lhdu7dy80Gg3Wr19f0KHkSnx8PLp06YLSpUtDo9Fg1qxZBR0SvQAlCjoAMi9PnjxB165dYWtri5kzZ8Le3h5+fn4FHRaRyZ05cwZr165F37594e/vX9DhqGLy5MmoVq0aOnbsWNChUB6NGDEC27dvx/jx4+Hl5YU6deoUdEjF0rfffouEhAQMHz78hayPyRnpiImJwbVr17B06VK88847BR2O6vz8/PDw4UNYWVkVdChmgfvjP2fOnMHEiRPRtGlTveRsx44dBRNUPk2ePBldunRhclaI7d69Gx06dMDIkSMLOpRi7dtvv8Xp06dfWHLGNmekIyEhAQDg4uJSsIGYiEajga2tLSwtLQs6lAKVnp6OtLS0Ir0/UlNTVVuWtbU1rK2tVVseFX1qHX8JCQlF9nxM2ctXcvbHH3+gbt26sLW1RUBAABYvXpxt3a+//hrBwcGws7NDqVKl8MYbb+D69es6dZo2bYoaNWrgyJEjqF+/Puzs7FC+fHksWrRIb3mPHz/G+PHjUbFiRdjY2MDX1xcfffQRHj9+rFNPo9Fg8ODB2LRpE2rUqAEbGxtUr14d27Zte2Hbc+bMGTRr1gz29vYoU6YMpk2bpre8R48eYcKECahcuTJsbW3h7e2NTp06ISYmRqmj1Woxa9YsVK9eHba2tvD09MS7776Lf//9N9s4n7Z79240atQIDg4OcHFxQYcOHXD27Fllet++fdGkSRMAQNeuXaHRaJ7bziYpKQnDhw+Hr68vbGxsULFiRUydOhVarRYAICJo1qwZ3N3dlcQPANLS0hAUFISAgADlJJbVDubcuXPo1q0bnJycULp0aQwbNgyPHj3KMY7ExESMHDkSQUFBcHR0hJOTE1q3bo0TJ07o1DPUxqpv375wdHTEzZs30bFjRzg6OsLd3R0jR45ERkaGzvy5/QxEBJ999hnKli0Le3t7NGvWDH///XeO2wBk3lYuVaoUIiIi9KalpKTA1tZW+Qs6LS0N48aNQ3BwMJydneHg4IBGjRphz549Brf5iy++wKxZsxAQEAAbGxucOXPG4P44efIk+vbtiwoVKsDW1hZeXl54++23cffuXZ3lZn1ely5dQt++feHi4gJnZ2dERETgwYMHevF//fXXqFevHuzt7eHq6orGjRvrXZHaunWrcoyWLFkSbdu2zdV+++qrr6DRaPDrr7/i/fffh4eHB8qWLQsAuHbtGt5//30EBgbCzs4OpUuXRteuXXH16lWd+bt27QoAaNasGTQaDTQaDfbu3QvAcJuzhIQE9OvXD56enrC1tUWtWrWwcuXK58aaZcGCBahevTpsbGzg4+ODQYMGISkpSaeOMeeQZ2k0GqSmpmLlypXK9jzb3jEpKSnXn93zzneG5PYYyanto0ajwYQJE/SWeeHCBbz11ltwdnaGu7s7xo4dCxHB9evX0aFDBzg5OcHLywtffvmlwdgyMjLw8ccfw8vLCw4ODmjfvr3BbTpw4ABatWoFZ2dn2Nvbo0mTJvjzzz8NbueZM2fw5ptvwtXVFQ0bNsxx31y+fBldu3ZFqVKlYG9vj1deeQWbN29Wpmcd0yKC+fPnK59hTrRaLWbPno2goCDY2trC3d0drVq1wuHDh5U66enp+PTTT5XzgL+/Pz7++GO9305/f3+89tpr2Lt3L+rUqQM7OzsEBQUp34mNGzcq6wkODsaxY8d05s86r16+fBnh4eFwcHCAj48PJk2aBBHRqZuamooPPvhA+R0JDAzEF198oVfPmN/zmzdv4u2334anp6dSb/ny5Tp1stofrl27Fp9//jnKli0LW1tbtGjRApcuXVLqNW3aFJs3b8a1a9eUz+Hpq+tz585F9erVlXNbnTp18O233+b4WT2X5NHJkyfFzs5OypUrJ1FRUfLpp5+Kp6en1KxZU55d7GeffSYajUa6d+8uCxYskIkTJ4qbm5v4+/vLv//+q9Rr0qSJ+Pj4iIeHhwwePFjmzJkjDRs2FACybNkypV5GRoa0bNlS7O3tZfjw4bJ48WIZPHiwlChRQjp06KCzbgBSq1Yt8fb2lk8//VRmzZolFSpUEHt7e7lz584L2R5fX18ZNmyYLFiwQJo3by4AZMuWLUq99PR0adGihQCQN954Q+bNmydRUVHSvHlz2bRpk1LvnXfekRIlSkj//v1l0aJFMmrUKHFwcJC6detKWlpajp/Xzp07pUSJElK5cmWZNm2aErOrq6tcuXJFRET27dsnH3/8sQCQoUOHyurVq2XHjh3ZLjM1NVVq1qwppUuXlo8//lgWLVokvXv3Fo1GI8OGDVPqXb58WRwdHeX1119XykaPHi0ajUZ+/fVXpWz8+PECQIKCgqRdu3Yyb948eeuttwSA9OrVS2fdfn5+0qdPH+X9oUOHJCAgQEaPHi2LFy+WSZMmSZkyZcTZ2Vlu3ryp1Lty5YoAkBUrVihlffr0EVtbW6levbq8/fbbsnDhQuncubMAkAULFuisN7efwf/+9z8BIG3atJF58+bJ22+/LT4+PuLm5qYTtyFvv/22uLi4yOPHj3XKV65cKQDk0KFDIiJy+/Zt8fb2lsjISFm4cKFMmzZNAgMDxcrKSo4dO6a3zdWqVZMKFSrIlClTZObMmXLt2jWD++OLL76QRo0ayaRJk2TJkiUybNgwsbOzk3r16olWq9X7vF566SXp1KmTLFiwQN555x0BIB999JFO7BMmTBAAUr9+fZk+fbrMnj1b3nzzTRk1apRSZ9WqVaLRaKRVq1Yyd+5cmTp1qvj7+4uLi4tyjGZnxYoVyjY2adJE5s6dK1OmTBERkXXr1kmtWrVk3LhxsmTJEvn444/F1dVV/Pz8JDU1VUREYmJiZOjQoQJAPv74Y1m9erWsXr1a4uLiRCTzu9ykSRNlfQ8ePJCqVauKlZWVjBgxQubMmSONGjUSADJr1qwcY31634WFhcncuXNl8ODBYmlpqXcc5fYcYsjq1avFxsZGGjVqpGzPvn37dNafm88ut+e7nLbzeesxdBxmASDjx4/XW2bt2rWlR48esmDBAmnbtq0AkBkzZkhgYKAMHDhQFixYIA0aNBAAOueZPXv2KOeZmjVryowZM2T06NFia2srlStXlgcPHih1o6OjxdraWkJDQ+XLL7+UmTNnSs2aNcXa2loOHDigF1O1atWkQ4cOsmDBApk/f362+yUuLk48PT2lZMmS8sknn8iMGTOkVq1aYmFhIRs3bhSRzGNy9erVAkBeffVV5TPMSd++fQWAtG7dWmbNmiVffPGFdOjQQebOnavU6dOnjwCQLl26yPz586V3794CQDp27KizLD8/PwkMDBRvb2+ZMGGCzJw5U8qUKSOOjo7y9ddfS7ly5WTKlCkyZcoUcXZ2looVK0pGRobOemxtbaVSpUrSq1cvmTdvnrz22msCQMaOHavU02q10rx5c9FoNPLOO+/IvHnzpF27dgJAhg8frncs5Ob3PC4uTsqWLSu+vr4yadIkWbhwobRv314AyMyZM/WOhZdeekmCg4Nl5syZMmHCBLG3t5d69eop9Xbs2CG1a9cWNzc35XP44YcfRERkyZIlyv5cvHixzJ49W/r16ydDhw7N8bN6njwnZx07dhRbW1u5du2aUnbmzBmxtLTUSWauXr0qlpaW8vnnn+vMf+rUKSlRooROeZMmTQSAfPnll0rZ48ePpXbt2uLh4aGctFavXi0WFhby+++/6yxz0aJFAkD+/PPP/zYQEGtra7l06ZJSduLECQGgc8CacntWrVqlsz1eXl7SuXNnpWz58uXKieVZWT+Gv//+uwCQb775Rmf6tm3bDJY/K2sf3r17V2c/WFhYSO/evZWyrIN13bp1OS5PROTTTz8VBwcHuXDhgk756NGjxdLSUmJjY5WyxYsXCwD5+uuv5a+//hJLS0u9L17WCa59+/Y65e+//74AkBMnTihlzyZnjx490jkxiGSe8G1sbGTSpEk6ZYaSMwA69URE+cJmye1nkJCQINbW1tK2bVudZCYr8X1ecrZ9+3YBID///LNOeZs2baRChQrK+/T0dL0E7t9//xVPT095++239bbZyclJEhISdOob2h9P/zhl+e677wSA/Pbbb0pZ1uf19LpERF5//XUpXbq08v7ixYtiYWEhr7/+ut5nlLV/7t27Jy4uLtK/f3+d6XFxceLs7KxX/qys5Kxhw4aSnp6uM83Q9uzfv1/vu7lu3ToBIHv27NGr/2xyNmvWLOV4zpKWliahoaHi6OgoKSkp2caadXy0bNlSZ3/MmzdPAMjy5ct11pubc0h2HBwcDB5vuf3sjDnfGZLb9eQlORswYIBSlp6eLmXLlhWNRqMk5SKZ3wc7OzudfZB1jitTpozO57R27VoBILNnzxaRzGOzUqVKEh4ervM9fvDggZQvX15effVVvZh69OiR4/7IMnz4cAGg8xt27949KV++vPj7++scFwBk0KBBz13m7t27lT+sn5UV//HjxwWAvPPOOzrTR44cKQBk9+7dSpmfn58AUBJ6kf/OTXZ2djq/lVnn96e/O1nn1SFDhujE0bZtW7G2tpbbt2+LiMimTZsEgHz22Wc6MXXp0kU0Go3Ob3duf8/79esn3t7eOgmbiMgbb7whzs7Oyjkh61ioWrWqzrl09uzZAkBOnTqllLVt21b8/Pye3bXSoUMHqV69ul55fuXptmZGRga2b9+Ojh07oly5ckp51apVER4erlN348aN0Gq16NatG+7cuaO8vLy8UKlSJb1bMCVKlMC7776rvLe2tsa7776LhIQEHDlyBACwbt06VK1aFVWqVNFZZvPmzQFAb5lhYWEICAhQ3tesWRNOTk64fPmyybfH0dERb731ls721KtXT1k3AGzYsAFubm4YMmSI3r7Ouoy9bt06ODs749VXX9VZb3BwMBwdHfXW+7Rbt27h+PHj6Nu3L0qVKqWzH1599VVs2bIl23lzsm7dOjRq1Aiurq46MYWFhSEjIwO//fabUnfAgAEIDw/HkCFD0KtXLwQEBGDy5MkGlzto0CCd91n7Jac4bWxsYGGReThnZGTg7t27cHR0RGBgII4ePZqr7Xnvvfd03jdq1Ejnc8rtZ7Br1y6kpaVhyJAhOrchctuQtHnz5nBzc8OaNWuUsn///Rc7d+5E9+7dlTJLS0ulHZRWq0ViYiLS09NRp04dg9vcuXNnuLu7P3f9dnZ2yv8fPXqEO3fu4JVXXgEAg8s1tN/u3r2LlJQUAMCmTZug1Woxbtw45TPKkrV/du7ciaSkJPTo0UNn31paWiIkJCTH4/tp/fv312s/9/T2PHnyBHfv3kXFihXh4uKS62PjWVu2bIGXlxd69OihlFlZWWHo0KG4f/8+fv3112znzTo+hg8frrM/+vfvDycnJ51bW0DuziF59bzPztjzXV7XkxdPd1iytLREnTp1ICLo16+fUu7i4oLAwECD+6p3794oWbKk8r5Lly7w9vZWzjPHjx/HxYsX8eabb+Lu3bvKtqempqJFixb47bfflOYb2W1ndrZs2YJ69erp3Pp0dHTEgAEDcPXqVZw5cyZ3O+EpGzZsgEajwfjx4/WmZX3PsrYtMjJSZ/oHH3wAAHrHXrVq1RAaGqq8DwkJAZB5jnr6tzKr3NB+Hjx4sE4cgwcPRlpaGnbt2qXEZGlpiaFDh+rFJCLYunWrTvnzfs9FBBs2bEC7du0gIjrHbXh4OJKTk/W+9xERETptShs1apTt9jzLxcUFN27cwKFDh55b1xh56q15+/ZtPHz4EJUqVdKbFhgYqPMjevHiRYiIwboA9HqJ+fj4wMHBQaescuXKADLbJbzyyiu4ePEizp49m+0PzdNtmwDoHERZXF1dlXZCptyesmXL6rUTcHV1xcmTJ5X3MTExCAwMRIkS2X8cFy9eRHJyMjw8PAxOf3abn3bt2jVlW55VtWpVbN++HampqXr7/XkuXryIkydP5vpzWLZsGQICAnDx4kXs27dP50fzac/u24CAAFhYWOi0EXpWVluLBQsW4MqVKzptxUqXLv3cbclqn/G0p48RIPefQdb+fnY73N3d4erq+txYSpQogc6dO+Pbb7/F48ePYWNjg40bN+LJkyc6yRkArFy5El9++SXOnTuHJ0+eKOXly5fXW66hMkMSExMxceJEfP/993qfYXJysl79Z79fWdv477//wsnJCTExMbCwsEC1atWyXefFixcBQPkD61lOTk65it3QNj58+BBRUVFYsWIFbt68qdOOxdD25Ma1a9dQqVIlvWSzatWqyvSc5gX0v4/W1taoUKGC3ry5OYfk1fM+O2PPd3ldT148u0xnZ2fY2trCzc1Nr/zZ9pKA/vdTo9GgYsWKynkm65js06dPtjEkJyfrfKdz+x27du2aktA87enjp0aNGrlaVpaYmBj4+Pjo/AFuaL0WFhaoWLGiTrmXlxdcXFz0jj1D+xgAfH19DZY/2/bWwsICFSpU0Cl7+vc8KyYfHx+dRBnI/ruUm9/zpKQkLFmyBEuWLNGrCzw/R3j6+HyeUaNGYdeuXahXrx4qVqyIli1b4s0330SDBg2eO29OTD6UhlarhUajwdatWw32CHN0dMzTMoOCgjBjxgyD0589cLLrifb0SdqYdRuzPWqtW6vVwsPDA998843B6bm5IqI2rVaLV199FR999JHB6Vlfwix79+5VGp2eOnVK5y+ynORmEODJkydj7NixePvtt/Hpp5+iVKlSsLCwwPDhw/X+ujUkN70VX+Rn8MYbb2Dx4sXYunUrOnbsiLVr16JKlSqoVauWUufrr79G37590bFjR3z44Yfw8PCApaUloqKidDqSZMkuGX5Wt27dsG/fPnz44YeoXbs2HB0dodVq0apVK4P7Uo1jPGu5q1evhpeXl970nP5weZqhbRwyZAhWrFiB4cOHIzQ0FM7OztBoNHjjjTdydWwUNDXPX8YuW63z9/PWk913/NkOOc9bptrnegCYPn06ateubbDOs9uf2+9YQcvtwOrZ7U9THpPPk5tjFgDeeuutbBPrmjVrGrXMnFStWhXnz5/HL7/8gm3btmHDhg1YsGABxo0bh4kTJz53/uzkKTlzd3eHnZ2d8pfF086fP6/zPiAgACKC8uXL6/1YG/LPP//oXcW5cOECACi9IwICAnDixAm0aNFCldH7Tbk9uREQEIADBw7gyZMn2f4lGhAQgF27dqFBgwZGnwCyBpF9dlsA4Ny5c3BzczP6qllWTPfv30dYWNhz6966dQtDhgxBy5YtYW1tjZEjRyI8PNzgALcXL17U+Qv00qVL0Gq1OQ4Mun79ejRr1gzLli3TKU9KStL7SzqvcvsZZG3TxYsXdf5qvH37dq571jZu3Bje3t5Ys2YNGjZsiN27d+OTTz7RqbN+/XpUqFABGzdu1PkeGLqtkVv//vsvoqOjMXHiRIwbN04pN/TdyK2AgABotVqcOXMm2x+5rNsUHh4euTqejLF+/Xr06dNHp9feo0eP9HpGGnMu8fPzw8mTJ6HVanWunp07d06ZntO8QOb38enjIy0tDVeuXFF1+/N7fjTF+c6QrCsVz34mOV2BzK9nj2kRwaVLl5Qf7qxj0snJSfVj0s/PL9vzcdZ0YwUEBGD79u1ITEzM9uqZn58ftFotLl68qFyZAjKfQpCUlKT6gONarRaXL1/WOXae/T338/PDrl27cO/ePZ2rZ3ndF+7u7ihZsiQyMjJe2HfJwcEB3bt3R/fu3ZGWloZOnTrh888/x5gxY2Bra5un9eWpzZmlpSXCw8OxadMmxMbGKuVnz57F9u3bdep26tQJlpaWmDhxol4WKiJ6l5vT09N1hrBIS0vD4sWL4e7ujuDgYACZf9nfvHkTS5cu1Yvt4cOHRo8vY8rtyY3OnTvjzp07mDdvnt60rHV069YNGRkZ+PTTT/XqpKen653Unubt7Y3atWtj5cqVOvVOnz6NHTt2oE2bNkbHnBXT/v379fYRkHmSTU9PV973798fWq0Wy5Ytw5IlS1CiRAn069fP4F8m8+fP13k/d+5cAEDr1q2zjcXS0lJvWevWrcPNmzeN2qac5PYzCAsLg5WVFebOnasTkzGPXbGwsECXLl3w888/Y/Xq1UhPT9e7pZn1197T6zhw4AD2799vxFbpMrRMwLjYn9WxY0dYWFhg0qRJeleqstYTHh4OJycnTJ48Wef2bJbbt2/nef2Gjo25c+fqXZXJ+gMlp+9SljZt2iAuLk6nXWB6ejrmzp0LR0dHZUgaQ8LCwmBtbY05c+boxLVs2TIkJyejbdu2udmsXHFwcMjV9mTHFOc7Q5ycnODm5qbTThXIHG7EVFatWoV79+4p79evX49bt24p55ng4GAEBATgiy++wP379/Xmz88x2aZNGxw8eFDnu5qamoolS5bA398/xyYA2encuTNExODVmqzPLutc/+z3OesulJrHXpanf9dEBPPmzYOVlRVatGihxJSRkaH3+zdz5kxoNJocz/uGWFpaonPnztiwYQNOnz6tNz2vn5uDg4PBZhDPfgesra1RrVo1iIhyLnvw4AHOnTtn1OPS8nxbc+LEidi2bRsaNWqE999/XzkxVa9eXactREBAAD777DOMGTMGV69eRceOHVGyZElcuXIFP/zwAwYMGKAz8rGPjw+mTp2Kq1evonLlylizZg2OHz+OJUuWKFeVevXqhbVr1+K9997Dnj170KBBA2RkZODcuXNYu3Yttm/fbvQjLky1PbnRu3dvrFq1CpGRkTh48CAaNWqE1NRU7Nq1C++//z46dOiAJk2a4N1330VUVBSOHz+Oli1bwsrKChcvXsS6deswe/ZsdOnSJdt1TJ8+Ha1bt0ZoaCj69euHhw8fYu7cuXB2dtYZQ8gYH374IX766Se89tpr6Nu3L4KDg5GamopTp05h/fr1uHr1Ktzc3LBixQps3rwZX331lTL21Ny5c/HWW29h4cKFeP/993WWe+XKFbRv3x6tWrXC/v378fXXX+PNN9/UuaX3rNdeew2TJk1CREQE6tevj1OnTuGbb77Ra++QH7n9DLLGSIuKisJrr72GNm3a4NixY9i6datRV/G6d++OuXPnYvz48QgKCtL5Szdrmzdu3IjXX38dbdu2xZUrV7Bo0SJUq1bN4I9Jbjg5OaFx48aYNm0anjx5gjJlymDHjh24cuVKnpYHABUrVsQnn3yCTz/9FI0aNUKnTp1gY2ODQ4cOwcfHB1FRUXBycsLChQvRq1cvvPzyy3jjjTfg7u6O2NhYbN68GQ0aNDD4x0tuvPbaa1i9ejWcnZ1RrVo17N+/H7t27dJri1i7dm1YWlpi6tSpSE5Oho2NDZo3b26wjeGAAQOwePFi9O3bF0eOHIG/vz/Wr1+PP//8E7NmzdJrP/M0d3d3jBkzBhMnTkSrVq3Qvn17nD9/HgsWLEDdunV1Gv/nV3BwMHbt2oUZM2bAx8cH5cuXN9jWKTumON9l55133sGUKVPwzjvvoE6dOvjtt9+UqyymUKpUKTRs2BARERGIj4/HrFmzULFiRfTv3x9A5h9I//d//4fWrVujevXqiIiIQJkyZXDz5k3s2bMHTk5O+Pnnn/O07tGjR+O7775D69atMXToUJQqVQorV67ElStXsGHDBr22jLnRrFkz9OrVC3PmzMHFixeVZgi///47mjVrhsGDB6NWrVro06cPlixZgqSkJDRp0gQHDx7EypUr0bFjRzRr1ixP25MdW1tbbNu2DX369EFISAi2bt2KzZs34+OPP1aagbRr1w7NmjXDJ598gqtXr6JWrVrYsWMHfvzxRwwfPlyn8X9uTZkyBXv27EFISAj69++PatWqITExEUePHsWuXbuQmJho9DKDg4OxZs0aREZGom7dunB0dES7du3QsmVLeHl5oUGDBvD09MTZs2cxb948tG3bVjkPHDx4EM2aNcP48eNz/3ubn66ev/76qwQHB4u1tbVUqFBBFi1apHQpftaGDRukYcOG4uDgIA4ODlKlShUZNGiQnD9/XqnTpEkTqV69uhw+fFhCQ0PF1tZW/Pz8ZN68eXrLS0tLk6lTp0r16tXFxsZGXF1dJTg4WCZOnCjJyclKPWTTDfnZoRhMuT3P6tOnj16X3AcPHsgnn3wi5cuXFysrK/Hy8pIuXbpITEyMTr0lS5ZIcHCw2NnZScmSJSUoKEg++ugj+eeff/TW86xdu3ZJgwYNxM7OTpycnKRdu3Zy5swZnTrGDKUhktn9e8yYMVKxYkWxtrYWNzc3qV+/vnzxxReSlpYm169fF2dnZ2nXrp3evK+//ro4ODjI5cuXReS/7uhnzpyRLl26SMmSJcXV1VUGDx4sDx8+1JnX0FAaH3zwgXh7e4udnZ00aNBA9u/frzcEQnZDaTg4OOjFl91nn5vPICMjQyZOnKjE07RpUzl9+rTB4y47Wq1WfH19DXYzz5o+efJk8fPzExsbG3nppZfkl19+0Tu+srZ5+vTpesswtD9u3Lghr7/+uri4uIizs7N07dpV/vnnn2yHNMjqEp8la1iLZ8cmW758ubz00kvK97VJkyayc+dOnTp79uyR8PBwcXZ2FltbWwkICJC+ffvK4cOHc9xXWevMGgPuaf/++69ERESIm5ubODo6Snh4uJw7d87gZ7F06VKpUKGCMoRO1tAAzx5HIiLx8fHKcq2trSUoKMjgUBDZmTdvnlSpUkWsrKzE09NTBg4cqDdumDHnEEPOnTsnjRs3Fjs7O51hXIz97HJzvjPEmPU8ePBA+vXrJ87OzlKyZEnp1q2bJCQk5Pq4y+57/Ow+zDrHfffddzJmzBjx8PAQOzs7adu2rc7wEFmOHTsmnTp1ktKlS4uNjY34+flJt27dJDo6+rkx5SQmJka6dOkiLi4uYmtrK/Xq1ZNffvlFr152v2GGpKeny/Tp06VKlSpibW0t7u7u0rp1azly5IhS58mTJzJx4kTlt8bX11fGjBkjjx490lmWn5+ftG3bNlfxGDrHZH0eMTExyriknp6eMn78eL0hde7duycjRowQHx8fsbKykkqVKsn06dN1hjDJaV8Y+i7Hx8fLoEGDxNfXV/lNbdGihSxZskSpk93vnaHz4v379+XNN98UFxcXAaB8/xYvXiyNGzdWjo+AgAD58MMPdfKQrPU8fRw/j+b/b7BZaNq0Ke7cuWPwUiQVfRMmTMDEiRNx+/Zt1dqJERHRi9e3b1+sX78+z1fxizs+W5OIiIjIjDA5IyIiIjIjTM6IiIiIzIhZtTkjIiIiKu545YyIiIjIjDA5IyIiIjIjJn+2prnRarX4559/ULJkSVUe/URERESmJyK4d+8efHx88jRQb2FS7JKzf/75R+/B6ERERFQ4XL9+XXnaTFFV7JKzrMcpXL9+HU5OTgUcDREREeVGSkoKfH19c3w8WlFR7JKzrFuZTk5OTM6IiIgKmeLQJKlo37QlIiIiKmSYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmREmZ0RERERmhMkZERERkRlhckZERERkRordEwJMJiMD+P134NYtwNsbaNQIsLQs6KiIiIiokGFypoaNG4Fhw4AbN/4rK1sWmD0b6NSp4OIiIiKiQoe3NfNr40agSxfdxAwAbt7MLN+4sWDiIiIiokKJyVl+ZGRkXjET0Z+WVTZ8eGY9IiIiolxgcpYfv/+uf8XsaSLA9euZ9YiIiIhygclZfty6pW49IiIiKvaYnOWHt7e69YiIiKjYY3KWH40aZfbK1GgMT9doAF/fzHpEREREucDkLD8sLTOHyzAkK2GbNYvjnREREVGuMTnLr06dgPXrAQ8P3fKyZTPLOc4ZERERGYGD0KqhUyfAywto0ABwdwfWruUTAoiIiChPmJypJSsRc3QEmjYt0FCIiIio8OJtTSIiIiIzwuRMbYaeFkBERESUS0zO1JLdcBpERERERmByRkRERGRGmJwRERERmREmZ0RERERmhMmZ2tghgIiIiPKByZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMztTGNmdERESUD0zO1MI2Z0RERKQCJmdEREREZoTJGREREZEZYXJGREREZEaYnKmNHQKIiIgoH5icqYUdAoiIiEgFTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOVMbOwQQERFRPjA5Uws7BBAREZEKmJwRERERmREmZ0RERERmhMkZERERkRlhcqY2dgggIiKifGByphZ2CCAiIiIVMDkjIiIiMiNMzoiIiIjMCJMztbHNGREREeUDkzO1sM0ZERERqYDJGREREZEZYXJGREREZEaYnBERERGZESZnamOHACIiIsoHJmdqYYcAIiIiUgGTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zO1MYOAURERJQPBZ6czZ8/H/7+/rC1tUVISAgOHjyYY/1Zs2YhMDAQdnZ28PX1xYgRI/Do0aMXFG0O2CGAiIiIVFCgydmaNWsQGRmJ8ePH4+jRo6hVqxbCw8ORkJBgsP63336L0aNHY/z48Th79iyWLVuGNWvW4OOPP37BkRMRERGZRoEmZzNmzED//v0RERGBatWqYdGiRbC3t8fy5csN1t+3bx8aNGiAN998E/7+/mjZsiV69Ojx3KttRERERIVFgSVnaWlpOHLkCMLCwv4LxsICYWFh2L9/v8F56tevjyNHjijJ2OXLl7Flyxa0adMm2/U8fvwYKSkpOi8iIiIic1WioFZ8584dZGRkwNPTU6fc09MT586dMzjPm2++iTt37qBhw4YQEaSnp+O9997L8bZmVFQUJk6cqGrsOWKHACIiIsqHAu8QYIy9e/di8uTJWLBgAY4ePYqNGzdi8+bN+PTTT7OdZ8yYMUhOTlZe169fN01w7BBAREREKiiwK2dubm6wtLREfHy8Tnl8fDy8vLwMzjN27Fj06tUL77zzDgAgKCgIqampGDBgAD755BNYWOjnmjY2NrCxsVF/A4iIiIhMoMCunFlbWyM4OBjR0dFKmVarRXR0NEJDQw3O8+DBA70EzNLSEgAgvJ1IRERERUCBXTkDgMjISPTp0wd16tRBvXr1MGvWLKSmpiIiIgIA0Lt3b5QpUwZRUVEAgHbt2mHGjBl46aWXEBISgkuXLmHs2LFo166dkqQVOCaJRERElA8Fmpx1794dt2/fxrhx4xAXF4fatWtj27ZtSieB2NhYnStl//vf/6DRaPC///0PN2/ehLu7O9q1a4fPP/+8oDbhP2xzRkRERCrQSDG7H5iSkgJnZ2ckJyfDyclJvQWfPg0EBQEeHsAz7eiIiIgof0z2+22GClVvTSIiIqKijskZERERkRlhcqa24nWXmIiIiFTG5Ewt7BBAREREKmByRkRERGRGmJwRERERmREmZ0RERERmhMmZ2tghgIiIiPKByZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMzoiIiIjMCJMztbFDABEREeUDkzO1sEMAERERqYDJGREREZEZYXJGREREZEaYnKmNbc6IiIgoH5icqYVtzoiIiEgFTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOVMbOwQQERFRPjA5Uws7BBAREZEKmJwRERERmREmZ0RERERmhMkZERERkRlhcqY2dgggIiKifMhXciYiECYjmdghgIiIiFSQp+Rs1apVCAoKgp2dHezs7FCzZk2sXr1a7diIiIiIip0Sxs4wY8YMjB07FoMHD0aDBg0AAH/88Qfee+893LlzByNGjFA9SCIiIqLiwujkbO7cuVi4cCF69+6tlLVv3x7Vq1fHhAkTmJwRERER5YPRtzVv3bqF+vXr65XXr18ft27dUiWoQo1t8IiIiCgfjE7OKlasiLVr1+qVr1mzBpUqVVIlqEKJHQKIiIhIBUbf1pw4cSK6d++O3377TWlz9ueffyI6Otpg0kZEREREuWf0lbPOnTvjwIEDcHNzw6ZNm7Bp0ya4ubnh4MGDeP31100RIxEREVGxYfSVMwAIDg7G119/rXYsRQPbnBEREVE+5Co5S0lJgZOTk/L/nGTVK3bY5oyIiIhUkKvkzNXVFbdu3YKHhwdcXFygMZCIiAg0Gg0yMjJUD5KIiIiouMhVcrZ7926UKlUKALBnzx6TBkRERERUnOUqOWvSpIny//Lly8PX11fv6pmI4Pr16+pGR0RERFTMGN1bs3z58rh9+7ZeeWJiIsqXL69KUIUaOwQQERFRPhidnGW1LXvW/fv3YWtrq0pQhRI7BBAREZEKcj2URmRkJABAo9Fg7NixsLe3V6ZlZGTgwIEDqF27tuoBEhERERUnuU7Ojh07BiDzytmpU6dgbW2tTLO2tkatWrUwcuRI9SMkIiIiKkZynZxl9dKMiIjA7Nmzi+94ZkREREQmZPQTAlasWGGKOIoOdgggIiKifMjT45sOHz6MtWvXIjY2FmlpaTrTNm7cqEpghQ47BBAREZEKjO6t+f3336N+/fo4e/YsfvjhBzx58gR///03du/eDWdnZ1PESERERFRsGJ2cTZ48GTNnzsTPP/8Ma2trzJ49G+fOnUO3bt1Qrlw5U8RIREREVGwYnZzFxMSgbdu2ADJ7aaampkKj0WDEiBFYsmSJ6gESERERFSdGJ2eurq64d+8eAKBMmTI4ffo0ACApKQkPHjxQN7rCiB0CiIiIKB+M7hDQuHFj7Ny5E0FBQejatSuGDRuG3bt3Y+fOnWjRooUpYiwc2CGAiIiIVGB0cjZv3jw8evQIAPDJJ5/AysoK+/btQ+fOnfG///1P9QCJiIiIihOjkrP09HT88ssvCA8PBwBYWFhg9OjRJgmMiIiIqDgyqs1ZiRIl8N577ylXzsgAtjkjIiKifDC6Q0C9evVw/PhxE4RSyLHNGREREanA6DZn77//PiIjI3H9+nUEBwfDwcFBZ3rNmjVVC46IiIiouNGIGHcfzsJC/2KbRqOBiECj0SAjI0O14EwhJSUFzs7OSE5OVvfh7VevAuXLA/b2QGqqesslIiIi0/1+myGjr5xduXLFFHEQEREREfKQnPn5+ZkijqKDHQKIiIgoH4zuEKC2+fPnw9/fH7a2tggJCcHBgwdzrJ+UlIRBgwbB29sbNjY2qFy5MrZs2fKCos0BOwQQERGRCoy+cqamNWvWIDIyEosWLUJISAhmzZqF8PBwnD9/Hh4eHnr109LS8Oqrr8LDwwPr169HmTJlcO3aNbi4uLz44ImIiIhMwOgOAWoKCQlB3bp1MW/ePACAVquFr68vhgwZYnBw20WLFmH69Ok4d+4crKys8rROkzUovHYN8PcH7OwAPmOUiIhIVcWpQ0CB3dZMS0vDkSNHEBYW9l8wFhYICwvD/v37Dc7z008/ITQ0FIMGDYKnpydq1KiByZMn59hD9PHjx0hJSdF5EREREZmrPCVnSUlJ+L//+z+MGTMGiYmJAICjR4/i5s2buV7GnTt3kJGRAU9PT51yT09PxMXFGZzn8uXLWL9+PTIyMrBlyxaMHTsWX375JT777LNs1xMVFQVnZ2fl5evrm+sY84QdAoiIiCgfjG5zdvLkSYSFhcHZ2RlXr15F//79UapUKWzcuBGxsbFYtWqVKeIEkHnb08PDA0uWLIGlpSWCg4Nx8+ZNTJ8+HePHjzc4z5gxYxAZGam8T0lJMU2Cxg4BREREpAKjr5xFRkaib9++uHjxImxtbZXyNm3a4Lfffsv1ctzc3GBpaYn4+Hid8vj4eHh5eRmcx9vbG5UrV4alpaVSVrVqVcTFxSEtLc3gPDY2NnByctJ5EREREZkro5OzQ4cO4d1339UrL1OmTLa3Iw2xtrZGcHAwoqOjlTKtVovo6GiEhoYanKdBgwa4dOkStFqtUnbhwgV4e3vD2traiK0gIiIiMk9GJ2c2NjYGG9VfuHAB7u7uRi0rMjISS5cuxcqVK3H27FkMHDgQqampiIiIAAD07t0bY8aMUeoPHDgQiYmJGDZsGC5cuIDNmzdj8uTJGDRokLGbQURERGSWjG5z1r59e0yaNAlr164FkPlczdjYWIwaNQqdO3c2alndu3fH7du3MW7cOMTFxaF27drYtm2b0kkgNjZW51mevr6+2L59O0aMGIGaNWuiTJkyGDZsGEaNGmXsZpgOOwQQERFRPhg9zllycjK6dOmCw4cP4969e/Dx8UFcXBxCQ0OxZcsWODg4mCpWVZhsnJTr14Fy5QAbG+DRI/WWS0RERMVqnDOjr5w5Oztj586d+PPPP3HixAncv38fL7/8ss54ZURERESUN3l+fFODBg3QoEEDNWMhIiIiKvaM7hAwdOhQzJkzR6983rx5GD58uBoxFW5sc0ZERET5YHRytmHDBoNXzOrXr4/169erEhQRERFRcWV0cnb37l04OzvrlTs5OeHOnTuqBFUo8QkBREREpAKjk7OKFSti27ZteuVbt25FhQoVVAmKiIiIqLgyukNAZGQkBg8ejNu3b6N58+YAgOjoaHz55ZeYNWuW2vERERERFStGJ2dvv/02Hj9+jM8//xyffvopAMDf3x8LFy5E7969VQ+w0GGHACIiIsoHowehfdrt27dhZ2cHR0dHNWMyKZMNYnfzJlC2LGBlBWTzEHYiIiLKGw5Cm0vGPkuTiIiIiHJmdIeA+Ph49OrVCz4+PihRogQsLS11XkRERESUd0ZfOevbty9iY2MxduxYeHt7Q8MhJIiIiIhUY3Ry9scff+D3339H7dq1TRBOEcAOAURERJQPRt/W9PX1RT76EBRdvIJIREREKjA6OZs1axZGjx6Nq1evmiAcIiIiouLN6Nua3bt3x4MHDxAQEAB7e3tYWVnpTE9MTFQtOCIiIqLixujkjE8BICIiIjIdo5OzPn36mCKOooPt8YiIiCgf8jUI7aNHj5D2zGj4RX3U3myxQwARERGpwOgOAampqRg8eDA8PDzg4OAAV1dXnRcRERER5Z3RydlHH32E3bt3Y+HChbCxscH//d//YeLEifDx8cGqVatMESMRERFRsWH0bc2ff/4Zq1atQtOmTREREYFGjRqhYsWK8PPzwzfffIOePXuaIk4iIiKiYsHoK2eJiYmoUKECgMz2ZVlDZzRs2BC//fabutEVRuwQQERERPlgdHJWoUIFXLlyBQBQpUoVrF27FkDmFTUXFxdVgytU2CGAiIiIVGB0chYREYETJ04AAEaPHo358+fD1tYWI0aMwIcffqh6gERERETFiUby+aDMa9eu4ciRI6hYsSJq1qypVlwmk5KSAmdnZyQnJ6s77EdcHODtDVhYABkZ6i2XiIiITPf7bYbyNc4ZAPj5+cHPz0+NWIoGtjkjIiKifMhVcjZnzhwMGDAAtra2mDNnTo51hw4dqkpghQ7bnBEREZEKcnVbs3z58jh8+DBKly6N8uXLZ78wjQaXL19WNUC1meyyaHw84OWVmaRpteotl4iIiHhb81lZvTOf/T8RERERqcuo3ppPnjxBQEAAzp49a6p4iIiIiIo1o5IzKysrPHr0yFSxFA3sEEBERET5YPQ4Z4MGDcLUqVORnp5uingKL3YIICIiIhUYPZTGoUOHEB0djR07diAoKAgODg460zdu3KhacERERETFjdHJmYuLCzp37myKWIiIiIiKPaOTsxUrVpgiDiIiIiJCHtqcEREREZHp5OnxTevXr8fatWsRGxuLtLQ0nWlHjx5VJbBChx0CiIiISAVGXzmbM2cOIiIi4OnpiWPHjqFevXooXbo0Ll++jNatW5siRiIiIqJiw+jkbMGCBViyZAnmzp0La2trfPTRR9i5cyeGDh2K5ORkU8RIREREVGwYnZzFxsaifv36AAA7Ozvcu3cPANCrVy9899136kZHREREVMwYnZx5eXkhMTERAFCuXDn89ddfADKfuZmLZ6gXD9wPRERElEdGJ2fNmzfHTz/9BACIiIjAiBEj8Oqrr6J79+54/fXXVQ+w0GCHACIiIlKBRoy83KXVaqHValGiRGZHz++//x779u1DpUqV8O6778La2tokgaolJSUFzs7OSE5OhpOTk3oLvnMHcHfP/L9Wy2SNiIhIRSb7/TZDRidnhR2TMyIiosKnOCVnRt/WrFixIiZMmIALFy6YIp6ioXjlu0RERKQio5OzQYMGYfPmzahatSrq1q2L2bNnIy4uzhSxFS68UkZEREQqMDo5GzFiBA4dOoSzZ8+iTZs2mD9/Pnx9fdGyZUusWrXKFDESERERFRuqtDn766+/MHDgQJw8eRIZGRlqxGUyJrtnffcu4OaW+f+MDMCCjy0lIiJSS3Fqc5anZ2tmOXjwIL799lusWbMGKSkp6Nq1q1pxERERERVLRidnFy5cwDfffIPvvvsOV65cQfPmzTF16lR06tQJjo6Opoix8GGHACIiIsojo5OzKlWqoG7duhg0aBDeeOMNeHp6miKuwocdAoiIiEgFRidn58+fR6VKlUwRCxEREVGxZ3SrdSZmRERERKbDLoVEREREZoTJmSmwQwARERHlEZMztbBDABEREamAyRkRERGRGclVb83IyMhcL3DGjBl5DoaIiIiouMtVcnbs2DGd90ePHkV6ejoCAwMBZA5Ma2lpieDgYPUjJCIiIipGcnVbc8+ePcqrXbt2aNKkCW7cuIGjR4/i6NGjuH79Opo1a4a2bdvmKYj58+fD398ftra2CAkJwcGDB3M13/fffw+NRoOOHTvmab0mww4BRERElEdGtzn78ssvERUVBVdXV6XM1dUVn332Gb788kujA1izZg0iIyMxfvx4HD16FLVq1UJ4eDgSEhJynO/q1asYOXIkGjVqZPQ6TYIdAoiIiEgFRidnKSkpuH37tl757du3ce/ePaMDmDFjBvr374+IiAhUq1YNixYtgr29PZYvX57tPBkZGejZsycmTpyIChUqGL1OIiIiInNldHL2+uuvIyIiAhs3bsSNGzdw48YNbNiwAf369UOnTp2MWlZaWhqOHDmCsLCw/wKysEBYWBj279+f7XyTJk2Ch4cH+vXrZ2z4RERERGbN6GdrLlq0CCNHjsSbb76JJ0+eZC6kRAn069cP06dPN2pZd+7cQUZGht7D0z09PXHu3DmD8/zxxx9YtmwZjh8/nqt1PH78GI8fP1bep6SkGBVjnrDNGREREeWR0cmZvb09FixYgOnTpyMmJgYAEBAQAAcHB9WDe9a9e/fQq1cvLF26FG5ubrmaJyoqChMnTjRxZGCbMyIiIlKF0clZllu3buHWrVto3Lgx7OzsICLQGJmguLm5wdLSEvHx8Trl8fHx8PLy0qsfExODq1evol27dkqZVqsFkHn17vz58wgICNCZZ8yYMTrjtKWkpMDX19eoOImIiIheFKPbnN29exctWrRA5cqV0aZNG9y6dQsA0K9fP3zwwQdGLcva2hrBwcGIjo5WyrRaLaKjoxEaGqpXv0qVKjh16hSOHz+uvNq3b49mzZrh+PHjBpMuGxsbODk56byIiIiIzJXRydmIESNgZWWF2NhY2NvbK+Xdu3fHtm3bjA4gMjISS5cuxcqVK3H27FkMHDgQqampiIiIAAD07t0bY8aMAQDY2tqiRo0aOi8XFxeULFkSNWrUgLW1tdHrJyIiIjInRt/W3LFjB7Zv346yZcvqlFeqVAnXrl0zOoDu3bvj9u3bGDduHOLi4lC7dm1s27ZN6SQQGxsLC4tC9ghQdgggIiKiPDI6OUtNTdW5YpYlMTERNjY2eQpi8ODBGDx4sMFpe/fuzXHer776Kk/rVB07BBAREZEKjL4k1ahRI6xatUp5r9FooNVqMW3aNDRr1kzV4IiIiIiKG6OvnE2bNg0tWrTA4cOHkZaWho8++gh///03EhMT8eeff5oiRiIiIqJiw+grZzVq1MCFCxfQsGFDdOjQAampqejUqROOHTumN4wFERERERknT+OcOTs745NPPlE7lqKDHQKIiIgoj/KUnCUlJeHgwYNISEhQBoHN0rt3b1UCK3TYIYCIiIhUYHRy9vPPP6Nnz564f/8+nJycdJ4KoNFoim9yRkRERKQCo9ucffDBB3j77bdx//59JCUl4d9//1VeiYmJpoiRiIiIqNgwOjm7efMmhg4danCsMyIiIiLKH6OTs/DwcBw+fNgUsRQd7BBAREREeWR0m7O2bdviww8/xJkzZxAUFAQrKyud6e3bt1ctuEKFHQKIiIhIBRoR4y7z5PScS41Gg4yMjHwHZUopKSlwdnZGcnIynJyc1Fvw/ftAyZKZ/3/wALCzU2/ZRERExZzJfr/NkNFXzp4dOoOIiIiI1GN0mzPKBbY5IyIiojzK1ZWzOXPmYMCAAbC1tcWcOXNyrDt06FBVAit02OaMiIiIVJCrNmfly5fH4cOHUbp0aZQvXz77hWk0uHz5sqoBqs1k96xTUwFHx//+z6FGiIiIVMM2Z8+4cuWKwf8TERERkbrY5oyIiIjIjOTpwec3btzATz/9hNjYWKSlpelMmzFjhiqBFWrsEEBERER5ZHRyFh0djfbt26NChQo4d+4catSogatXr0JE8PLLL5sixsKBHQKIiIhIBUbf1hwzZgxGjhyJU6dOwdbWFhs2bMD169fRpEkTdO3a1RQxEhERERUbRidnZ8+eRe/evQEAJUqUwMOHD+Ho6IhJkyZh6tSpqgdIREREVJwYnZw5ODgo7cy8vb0RExOjTLtz5456kREREREVQ0a3OXvllVfwxx9/oGrVqmjTpg0++OADnDp1Chs3bsQrr7xiihgLH3YIICIiojwyOjmbMWMG7t+/DwCYOHEi7t+/jzVr1qBSpUrFu6cmOwQQERGRCnL1hICixGQjDD98+N9TAe7d++9pAURERJRvxekJARyEloiIiMiM5Oq2pqurKzS5vG2XmJiYr4CIiIiIirNcJWezZs0ycRhFTPG6U0xEREQqylVy1qdPH1PHUfixQwARERGpIE/P1szIyMAPP/yAs2fPAgCqVauGDh06oESJPC2OiIiIiP4/o7Opv//+G+3bt0dcXBwCAwMBAFOnToW7uzt+/vln1KhRQ/UgiYiIiIoLo3trvvPOO6hevTpu3LiBo0eP4ujRo7h+/Tpq1qyJAQMGmCLGwodtzoiIiCiPjL5ydvz4cRw+fBiurq5KmaurKz7//HPUrVtX1eAKFbY5IyIiIhUYfeWscuXKiI+P1ytPSEhAxYoVVQmKiIiIqLgyOjmLiorC0KFDsX79ety4cQM3btzA+vXrMXz4cEydOhUpKSnKi4iIiIiMY/Tjmyws/svnsgamzVrE0+81Gg0yMjLUilM1Jnv8w+PHgK1t5v+Tk4Ei/mgJIiKiF6k4Pb7J6DZne/bsMUUcRQs7BBAREVEeGZ2cNWnSxBRxFH7sEEBEREQqMLrN2YQJE6DVavXKk5OT0aNHD1WCIiIiIiqujE7Oli1bhoYNG+Ly5ctK2d69exEUFISYmBhVgyMiIiIqboxOzk6ePImyZcuidu3aWLp0KT788EO0bNkSvXr1wr59+0wRIxEREVGxYXSbM1dXV6xduxYff/wx3n33XZQoUQJbt25FixYtTBFf4cQOAURERJRHRl85A4C5c+di9uzZ6NGjBypUqIChQ4fixIkTasdWuLBDABEREanA6OSsVatWmDhxIlauXIlvvvkGx44dQ+PGjfHKK69g2rRppoiRiIiIqNgwOjnLyMjAyZMn0aVLFwCAnZ0dFi5ciPXr12PmzJmqB0hERERUnBj9hICc3LlzB25ubmotziRMNsLwkyeAtXXm///9F3BxUW/ZRERExVxxekJAntqc/f7773jrrbcQGhqKmzdvAgBWr16Nc+fOqRpcocUOAURERJRHRidnGzZsQHh4OOzs7HDs2DE8fvwYQOYgtJMnT1Y9wEKDHQKIiIhIBUYnZ5999hkWLVqEpUuXwsrKSilv0KABjh49qmpwRERERMWN0cnZ+fPn0bhxY71yZ2dnJCUlqRETERERUbFldHLm5eWFS5cu6ZX/8ccfqFChgipBFXpsc0ZERER5ZHRy1r9/fwwbNgwHDhyARqPBP//8g2+++QYjR47EwIEDTRFj4cA2Z0RERKQCox/fNHr0aGi1WrRo0QIPHjxA48aNYWNjg5EjR2LIkCGmiJGIiIio2MjzOGdpaWm4dOkS7t+/j2rVqsHR0VHt2EzCZOOkZGQAJf5/rnv3LlCqlHrLJiIiKuaK0zhnRl85y2JtbY1q1aqpGQsRERFRsZenQWjpOdghgIiIiPKIyZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMzoiIiIjMiFkkZ/Pnz4e/vz9sbW0REhKCgwcPZlt36dKlaNSoEVxdXeHq6oqwsLAc6xcIdgggIiKiPCrw5GzNmjWIjIzE+PHjcfToUdSqVQvh4eFISEgwWH/v3r3o0aMH9uzZg/3798PX1xctW7bEzZs3X3Dkz2CHACIiIlJBngehVUtISAjq1q2LefPmAQC0Wi18fX0xZMgQjB49+rnzZ2RkwNXVFfPmzUPv3r2fW99kg9iJABb/P9e9fRtwc1Nv2URERMVccRqEtkCvnKWlpeHIkSMICwtTyiwsLBAWFob9+/fnahkPHjzAkydPUIoj8hMREVERkOcnBKjhzp07yMjIgKenp065p6cnzp07l6tljBo1Cj4+PjoJ3tMeP36Mx48fK+9TUlLyHjARERGRiRV4m7P8mDJlCr7//nv88MMPsLW1NVgnKioKzs7OysvX19f0gbFDABEREeVRgSZnbm5usLS0RHx8vE55fHw8vLy8cpz3iy++wJQpU7Bjxw7UrFkz23pjxoxBcnKy8rp+/boqsethhwAiIiJSQYEmZ9bW1ggODkZ0dLRSptVqER0djdDQ0GznmzZtGj799FNs27YNderUyXEdNjY2cHJy0nkRERERmasCbXMGAJGRkejTpw/q1KmDevXqYdasWUhNTUVERAQAoHfv3ihTpgyioqIAAFOnTsW4cePw7bffwt/fH3FxcQAAR0dHODo6Fth2EBEREamhwJOz7t274/bt2xg3bhzi4uJQu3ZtbNu2TekkEBsbCwuL/y7wLVy4EGlpaejSpYvOcsaPH48JEya8yNCzxzZnRERElEcFPs7Zi2bScVKy2p3FxwMeHuoum4iIqBjjOGdEREREVCCYnBERERGZESZnRERERGaEyZkpFK9mfERERKQiJmdq4kC0RERElE9MzoiIiIjMCJMzIiIiIjPC5IyIiIjIjDA5MwV2CCAiIqI8YnKmJnYIICIionxickZERERkRpicEREREZkRJmdEREREZoTJmSmwQwARERHlEZMzNbFDABEREeUTkzMiIiIiM8LkjIiIiMiMMDkzBbY5IyIiojxicqYmtjkjIiKifGJyRkRERGRGmJwRERERmREmZ0RERERmhMmZKbBDABEREeURkzM1sUMAERER5ROTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zOTIEdAoiIiCiPmJypiR0CiIiIKJ+YnBERERGZESZnRERERGaEyRkRERGRGWFyZgrsEEBERER5xORMTewQQERERPnE5IyIiIjIjDA5IyIiIjIjTM5MgW3OiIiIKI+YnKmJbc6IiIgon5icEREREZkRJmdEREREZoTJGREREZEZYXKmloyMzBcA7Nv33/+JiIiIjMDkTA0bNwL+/sCTJ5nve/TIfL9xY0FGRURERIUQk7P82rgR6NIFuHFDt/zmzcxyJmhERERkBCZn+ZGRAQwbZnhcs6yy4cN5i5OIiIhyjclZfvz+u/4Vs6eJANevZ9YjIiIiygUmZ/lx65a69YiIiKjYY3KWH97e6tYjIiKiYo/JWX40agSULZv9Y5s0GsDXN7MeERERUS4wOcsPS0tg9uzM/z+boGW9nzUrsx4RERFRLjA5y69OnYD164EyZXTLy5bNLO/UqWDiIiIiokKJyZkaOnUCrl4F3N0z3y9aBFy5wsSMiIiIjMbkTC2WloCDQ+b/a9fmrUwiIiLKEyZnaipRIvPf9PSCjYOIiIgKLSZnamJyRkRERPnE5ExNWckZH9dEREREecTkTE28ckZERET5xORMTVmdAJicERERUR4xOVMTr5wRERFRPjE5U0tGBpCamvn/48fZ7oyIiIjyRCMiUtBBvEgpKSlwdnZGcnIynJyc1Fnoxo3AsGHAjRv60zQaILtdnN00zlPw8xT0+jmPec9T0OvnPC9unoJef2GbR6MBbG2BwEBg8mSgZUvVxv00ye+3mTKLK2fz58+Hv78/bG1tERISgoMHD+ZYf926dahSpQpsbW0RFBSELVu2vKBIDdi4EejSxXBiBmR/QOc0jfMU/DwFvX7OY97zFPT6Oc+Lm6eg11/Y5hEBHj7MvIPUpg1gZ5f5O0lGKfDkbM2aNYiMjMT48eNx9OhR1KpVC+Hh4UhISDBYf9++fejRowf69euHY8eOoWPHjujYsSNOnz79giNH5q3LYcNyPnCJiIiKqydPgM6dmaAZqcBva4aEhKBu3bqYN28eAECr1cLX1xdDhgzB6NGj9ep3794dqamp+OWXX5SyV155BbVr18aiRYueuz5VL4vu3Qs0a5a/ZRARERV1ZcoA167l6xYnb2u+IGlpaThy5AjCwsKUMgsLC4SFhWH//v0G59m/f79OfQAIDw/Ptv7jx4+RkpKi81LNrVvqLYuIiKiounkT+P33go6i0CjQ5OzOnTvIyMiAp6enTrmnpyfi4uIMzhMXF2dU/aioKDg7OysvX19fdYIHAG9v9ZZFRERUlPGCRq4VeJszUxszZgySk5OV1/Xr19VbeKNGgI2NessjIiIqqnhBI9cKNDlzc3ODpaUl4uPjdcrj4+Ph5eVlcB4vLy+j6tvY2MDJyUnnpRpLS2DZMvWWR0REVBSVKZN5QYNypUCTM2trawQHByM6Olop02q1iI6ORmhoqMF5QkNDdeoDwM6dO7Otb3I9ewIBAQWzbiIiosJgzhzVxjsrDgr8tmZkZCSWLl2KlStX4uzZsxg4cCBSU1MREREBAOjduzfGjBmj1B82bBi2bduGL7/8EufOncOECRNw+PBhDB48uKA2Abh0CahTp+DWT0REZI6srYENG4BOnQo6kkKlwJOz7t2744svvsC4ceNQu3ZtHD9+HNu2bVMa/cfGxuLWU40I69evj2+//RZLlixBrVq1sH79emzatAk1atQoqE3IdOgQcO8e8NprmaMjZ9Fosp8nu2mcp+DnKej1cx7znqeg1895Xtw8Bb3+wjaPRpM58Gzt2sCWLcCDB0zM8qDAxzl70YrTOClERERFRXH6/S7wK2dERERE9B8mZ0RERERmhMkZERERkRlhckZERERkRpicEREREZkRJmdEREREZoTJGREREZEZYXJGREREZEaYnBERERGZkRIFHcCLlvVAhJSUlAKOhIiIiHIr63e7ODzYqNglZ/fu3QMA+Pr6FnAkREREZKx79+7B2dm5oMMwqWL3bE2tVot//vkHJUuWhCanh7nmQUpKCnx9fXH9+vUi/9yv7HAfcB8A3AcA9wHAfQBwHwDq7QMRwb179+Dj4wMLi6LdKqvYXTmzsLBA2bJlTboOJyenYvslzMJ9wH0AcB8A3AcA9wHAfQCosw+K+hWzLEU79SQiIiIqZJicEREREZkRJmcqsrGxwfjx42FjY1PQoRQY7gPuA4D7AOA+ALgPAO4DgPsgL4pdhwAiIiIic8YrZ0RERERmhMkZERERkRlhckZERERkRpicEREREZkRJmcqmT9/Pvz9/WFra4uQkBAcPHiwoENSRVRUFOrWrYuSJUvCw8MDHTt2xPnz53XqNG3aFBqNRuf13nvv6dSJjY1F27ZtYW9vDw8PD3z44YdIT09/kZuSLxMmTNDbxipVqijTHz16hEGDBqF06dJwdHRE586dER8fr7OMwr4P/P399faBRqPBoEGDABTN4+C3335Du3bt4OPjA41Gg02bNulMFxGMGzcO3t7esLOzQ1hYGC5evKhTJzExET179oSTkxNcXFzQr18/3L9/X6fOyZMn0ahRI9ja2sLX1xfTpk0z9ablWk774MmTJxg1ahSCgoLg4OAAHx8f9O7dG//884/OMgwdO1OmTNGpU1j3AQD07dtXb/tatWqlU6coHwcADJ4bNBoNpk+frtQp7MfBCyWUb99//71YW1vL8uXL5e+//5b+/fuLi4uLxMfHF3Ro+RYeHi4rVqyQ06dPy/Hjx6VNmzZSrlw5uX//vlKnSZMm0r9/f7l165bySk5OVqanp6dLjRo1JCwsTI4dOyZbtmwRNzc3GTNmTEFsUp6MHz9eqlevrrONt2/fVqa/99574uvrK9HR0XL48GF55ZVXpH79+sr0orAPEhISdLZ/586dAkD27NkjIkXzONiyZYt88sknsnHjRgEgP/zwg870KVOmiLOzs2zatElOnDgh7du3l/Lly8vDhw+VOq1atZJatWrJX3/9Jb///rtUrFhRevTooUxPTk4WT09P6dmzp5w+fVq+++47sbOzk8WLF7+ozcxRTvsgKSlJwsLCZM2aNXLu3DnZv3+/1KtXT4KDg3WW4efnJ5MmTdI5Np4+hxTmfSAi0qdPH2nVqpXO9iUmJurUKcrHgYjobPutW7dk+fLlotFoJCYmRqlT2I+DF4nJmQrq1asngwYNUt5nZGSIj4+PREVFFWBUppGQkCAA5Ndff1XKmjRpIsOGDct2ni1btoiFhYXExcUpZQsXLhQnJyd5/PixKcNVzfjx46VWrVoGpyUlJYmVlZWsW7dOKTt79qwAkP3794tI0dgHzxo2bJgEBASIVqsVkaJ/HDz7g6TVasXLy0umT5+ulCUlJYmNjY189913IiJy5swZASCHDh1S6mzdulU0Go3cvHlTREQWLFggrq6uOvtg1KhREhgYaOItMp6hH+VnHTx4UADItWvXlDI/Pz+ZOXNmtvMU9n3Qp08f6dChQ7bzFMfjoEOHDtK8eXOdsqJ0HJgab2vmU1paGo4cOYKwsDClzMLCAmFhYdi/f38BRmYaycnJAIBSpUrplH/zzTdwc3NDjRo1MGbMGDx48ECZtn//fgQFBcHT01MpCw8PR0pKCv7+++8XE7gKLl68CB8fH1SoUAE9e/ZEbGwsAODIkSN48uSJzjFQpUoVlCtXTjkGiso+yJKWloavv/4ab7/9NjQajVJeHI6DLFeuXEFcXJzO5+7s7IyQkBCdz93FxQV16tRR6oSFhcHCwgIHDhxQ6jRu3BjW1tZKnfDwcJw/fx7//vvvC9oa9SQnJ0Oj0cDFxUWnfMqUKShdujReeuklTJ8+Xed2dlHYB3v37oWHhwcCAwMxcOBA3L17V5lW3I6D+Ph4bN68Gf369dObVtSPA7UUuwefq+3OnTvIyMjQ+cEBAE9PT5w7d66AojINrVaL4cOHo0GDBqhRo4ZS/uabb8LPzw8+Pj44efIkRo0ahfPnz2Pjxo0AgLi4OIP7J2taYRASEoKvvvoKgYGBuHXrFiZOnIhGjRrh9OnTiIuLg7W1td6Pkaenp7J9RWEfPG3Tpk1ISkpC3759lbLicBw8LStmQ9v09Ofu4eGhM71EiRIoVaqUTp3y5cvrLSNrmqurq0niN4VHjx5h1KhR6NGjh84DrocOHYqXX34ZpUqVwr59+zBmzBjcunULM2bMAFD490GrVq3QqVMnlC9fHjExMfj444/RunVr7N+/H5aWlsXuOFi5ciVKliyJTp066ZQX9eNATUzOKNcGDRqE06dP448//tApHzBggPL/oKAgeHt7o0WLFoiJiUFAQMCLDtMkWrdurfy/Zs2aCAkJgZ+fH9auXQs7O7sCjKxgLFu2DK1bt4aPj49SVhyOA8rekydP0K1bN4gIFi5cqDMtMjJS+X/NmjVhbW2Nd999F1FRUUXikT5vvPGG8v+goCDUrFkTAQEB2Lt3L1q0aFGAkRWM5cuXo2fPnrC1tdUpL+rHgZp4WzOf3NzcYGlpqdczLz4+Hl5eXgUUlfoGDx6MX375BXv27EHZsmVzrBsSEgIAuHTpEgDAy8vL4P7JmlYYubi4oHLlyrh06RK8vLyQlpaGpKQknTpPHwNFaR9cu3YNu3btwjvvvJNjvaJ+HGTFnNN338vLCwkJCTrT09PTkZiYWKSOjazE7Nq1a9i5c6fOVTNDQkJCkJ6ejqtXrwIoGvvgaRUqVICbm5vOsV8cjgMA+P3333H+/Pnnnh+Aon8c5AeTs3yytrZGcHAwoqOjlTKtVovo6GiEhoYWYGTqEBEMHjwYP/zwA3bv3q13ydmQ48ePAwC8vb0BAKGhoTh16pTOySnrBF6tWjWTxG1q9+/fR0xMDLy9vREcHAwrKyudY+D8+fOIjY1VjoGitA9WrFgBDw8PtG3bNsd6Rf04KF++PLy8vHQ+95SUFBw4cEDnc09KSsKRI0eUOrt374ZWq1WS19DQUPz222948uSJUmfnzp0IDAwsFLdxshKzixcvYteuXShduvRz5zl+/DgsLCyUW32FfR8868aNG7h7967OsV/Uj4Msy5YtQ3BwMGrVqvXcukX9OMiXgu6RUBR8//33YmNjI1999ZWcOXNGBgwYIC4uLjq90gqrgQMHirOzs+zdu1en+/ODBw9EROTSpUsyadIkOXz4sFy5ckV+/PFHqVChgjRu3FhZRtYQCi1btpTjx4/Ltm3bxN3d3ayHUHjWBx98IHv37pUrV67In3/+KWFhYeLm5iYJCQkikjmURrly5WT37t1y+PBhCQ0NldDQUGX+orAPRDJ7IpcrV05GjRqlU15Uj4N79+7JsWPH5NixYwJAZsyYIceOHVN6Ik6ZMkVcXFzkxx9/lJMnT0qHDh0MDqXx0ksvyYEDB+SPP/6QSpUq6QyhkJSUJJ6entKrVy85ffq0fP/992Jvb282wwfktA/S0tKkffv2UrZsWTl+/LjOOSKrx92+fftk5syZcvz4cYmJiZGvv/5a3N3dpXfv3so6CvM+uHfvnowcOVL2798vV65ckV27dsnLL78slSpVkkePHinLKMrHQZbk5GSxt7eXhQsX6s1fFI6DF4nJmUrmzp0r5cqVE2tra6lXr5789ddfBR2SKgAYfK1YsUJERGJjY6Vx48ZSqlQpsbGxkYoVK8qHH36oM76ViMjVq1eldevWYmdnJ25ubvLBBx/IkydPCmCL8qZ79+7i7e0t1tbWUqZMGenevbtcunRJmf7w4UN5//33xdXVVezt7eX111+XW7du6SyjsO8DEZHt27cLADl//rxOeVE9Dvbs2WPw+O/Tp4+IZA6nMXbsWPH09BQbGxtp0aKF3r65e/eu9OjRQxwdHcXJyUkiIiLk3r17OnVOnDghDRs2FBsbGylTpoxMmTLlRW3ic+W0D65cuZLtOSJr/LsjR45ISEiIODs7i62trVStWlUmT56sk7iIFN598ODBA2nZsqW4u7uLlZWV+Pn5Sf/+/fX+OC/Kx0GWxYsXi52dnSQlJenNXxSOgxdJIyJi0ktzRERERJRrbHNGREREZEaYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmREmZ0RERERmhMkZERERkRlhckZE9AL07dsXHTt2LOgwiKgQYHJGREREZEaYnBGRjqZNm2Lo0KH46KOPUKpUKXh5eWHChAnPnW/58uWoXr06bGxs4O3tjcGDByvTYmNj0aFDBzg6OsLJyQndunVDfHy8Mn3ChAmoXbs2li9fjnLlysHR0RHvv/8+MjIyMG3aNHh5ecHDwwOff/65zjo1Gg0WLlyI1q1bw87ODhUqVMD69et16pw6dQrNmzeHnZ0dSpcujQEDBuD+/fvK9KwrWl988QW8vb1RunRpDBo0CE+ePFHqPH78GCNHjkSZMmXg4OCAkJAQ7N27V5n+1VdfwcXFBdu3b0fVqlXh6OiIVq1a4datW8r2rVy5Ej/++CM0Gg00Gg327t2LtLQ0DB48GN7e3rC1tYWfnx+ioqJy9TkRUdHF5IyI9KxcuRIODg44cOAApk2bhkmTJmHnzp3Z1l+4cCEGDRqEAQMG4NSpU/jpp59QsWJFAIBWq0WHDh2QmJiIX3/9FTt37sTly5fRvXt3nWXExMRg69at2LZtG7777jssW7YMbdu2xY0bN/Drr79i6tSp+N///ocDBw7ozDd27Fh07twZJ06cQM+ePfHGG2/g7NmzAIDU1FSEh4fD1dUVhw4dwrp167Br1y6dxBEA9uzZg5iYGOzZswcrV67EV199ha+++kqZPnjwYOzfvx/ff/89Tp48ia5du6JVq1a4ePGiUufBgwf44osvsHr1avz222+IjY3FyJEjAQAjR45Et27dlITt1q1bqF+/PubMmYOffvoJa9euxfnz5/HNN9/A39/f6M+LiIqYgn7yOhGZlyZNmkjDhg11yurWrSujRo3Kdh4fHx/55JNPDE7bsWOHWFpaSmxsrFL2999/CwA5ePCgiIiMHz9e7O3tJSUlRakTHh4u/v7+kpGRoZQFBgZKVFSU8h6AvPfeezrrCwkJkYEDB4qIyJIlS8TV1VXu37+vTN+8ebNYWFhIXFyciIj06dNH/Pz8JD09XanTtWtX6d69u4iIXLt2TSwtLeXmzZs662nRooWMGTNGRERWrFghAOTSpUvK9Pnz54unp6fyvk+fPtKhQwedZQwZMkSaN28uWq3W4L4jouKJV86ISE/NmjV13nt7eyMhIcFg3YSEBPzzzz9o0aKFwelnz56Fr68vfH19lbJq1arBxcVFucIFAP7+/ihZsqTy3tPTE9WqVYOFhYVO2bNxhIaG6r3PWu7Zs2dRq1YtODg4KNMbNGgArVaL8+fPK2XVq1eHpaWlwe09deoUMjIyULlyZTg6OiqvX3/9FTExMco89vb2CAgIMLiM7PTt2xfHjx9HYGAghg4dih07duRYn4iKhxIFHQARmR8rKyud9xqNBlqt1mBdOzs7k63TmDjUXnfWeu7fvw9LS0scOXJEJ4EDAEdHxxyXISI5rvfll1/GlStXsHXrVuzatQvdunVDWFiYXrs5IipeeOWMiPKlZMmS8Pf3R3R0tMHpVatWxfXr13H9+nWl7MyZM0hKSkK1atXyvf6//vpL733VqlWVdZ84cQKpqanK9D///BMWFhYIDAzM1fJfeuklZGRkICEhARUrVtR5eXl55TpOa2trZGRk6JU7OTmhe/fuWLp0KdasWYMNGzYgMTEx18sloqKHyRkR5duECRPw5ZdfYs6cObh48SKOHj2KuXPnAgDCwsIQFBSEnj174ujRozh48CB69+6NJk2aoE6dOvle97p167B8+XJcuHAB48ePx8GDB5UG/z179oStrS369OmD06dPY8+ePRgyZAh69eoFT0/PXC2/cuXK6NmzJ3r37o2NGzfiypUrOHjwIKKiorB58+Zcx+nv74+TJ0/i/PnzuHPnDp48eYIZM2bgu+++w7lz53DhwgWsW7cOXl5ecHFxycuuIKIigskZEeVbnz59MGvWLCxYsADVq1fHa6+9pvRk1Gg0+PHHH+Hq6orGjRsjLCwMFSpUwJo1a1RZ98SJE/H999+jZs2aWLVqFb777jvlipy9vT22b9+OxMRE1K1bF126dEGLFi0wb948o9axYsUK9O7dGx988AECAwPRsWNHHDp0COXKlcv1Mvr374/AwEDUqVMH7u7u+PPPP1GyZElMmzYNderUQd26dXH16lVs2bJFp50dERU/GnleowgiIjOl0Wjwww8/cOR9IipS+OcZERERkRlhckZERERkRjiUBhEVWmyVQURFEa+cEREREZkRJmdEREREZoTJGREREZEZYXJGREREZEaYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmZH/B/7niNYajRA5AAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "plt.plot(np.arange(pca.n_components_) + 1, pca.explained_variance_ratio_, 'ro-')\n",
+ "plt.title('dependence of explained variance ratio on the number of components.')\n",
+ "plt.xlabel('n components')\n",
+ "plt.ylabel('explained variance ratio')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4_m5ji1CRrOB"
+ },
+ "source": [
+ "Видим что большинство параметров дает распределение дисперсии близкое к нулю. Но их количество все ещё слишком велико."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Попробуем установить конкретное количество компонент."
+ ],
+ "metadata": {
+ "id": "fRK5Ut_IXyZt"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "pca = PCA(n_components=30)\n",
+ "X_train_pca = pca.fit_transform(X_train_gd)\n",
+ "X_test_pca = pca.transform(X_test_gd)\n",
+ "X_train_pca"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "SQJDyhOAXlLg",
+ "outputId": "22951ca3-dd32-46d3-b5d3-0aeac5256f23"
+ },
+ "execution_count": 192,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 4.26507051e+00, -2.31516787e+00, 1.63172872e+00, ...,\n",
+ " 5.05657142e-04, 3.32621442e-03, 6.09493572e-03],\n",
+ " [-6.43751638e+00, 1.66052025e+00, -2.08758127e+00, ...,\n",
+ " -3.35528178e-03, 1.48453024e-03, 1.42042476e-03],\n",
+ " [-3.08530170e+01, 1.59344524e+00, -1.33581991e+00, ...,\n",
+ " 1.46636958e-03, 3.41066691e-03, -1.85772109e-03],\n",
+ " ...,\n",
+ " [-2.78372126e+01, 5.59889241e+00, -4.34360135e-01, ...,\n",
+ " -5.51559775e-03, 1.44925595e-03, 6.24520492e-03],\n",
+ " [-3.28294277e+01, 3.58499107e+00, -2.86877737e-01, ...,\n",
+ " -5.74142636e-03, 1.06299879e-03, 2.40827452e-03],\n",
+ " [-3.48845942e+01, 2.58382951e+00, -2.20524267e+00, ...,\n",
+ " 1.57198953e-02, 1.40492514e-02, 1.21808361e-02]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 192
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "plt.plot(np.arange(pca.n_components_) + 1, pca.explained_variance_ratio_, 'ro-')\n",
+ "plt.title('dependence of explained variance ratio on the number of components.')\n",
+ "plt.xlabel('n components')\n",
+ "plt.ylabel('explained variance ratio')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "id": "BJhCUDZMXunC",
+ "outputId": "a3e4f378-f6b1-4149-f3f3-f6eb7d693644"
+ },
+ "execution_count": 193,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHHCAYAAAD6Rv9iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABffUlEQVR4nO3dd1hT59sH8G+IQBgyFGUogoDiRPuiUtyDiqPurVVEq611U20dVURbqaNO3L86q9Zth1vraNWqdbduHLgQlQqKCpI87x+YlJAACQQTwvdzXbk0z1n3OTk5ubnPOc+RCCEEiIiIiMgkWBg7ACIiIiL6D5MzIiIiIhPC5IyIiIjIhDA5IyIiIjIhTM6IiIiITAiTMyIiIiITwuSMiIiIyIQwOSMiIiIyIUzOiIiIiEyIwZOzSZMmQSKRGHq2RmNu66OLU6dOoW7durCzs4NEIsG5c+eMHZIGb29v9O3bV+/pbt++DYlEgpUrVxo8Jl3kNe6CYuztUVg0btwYjRs3NnYYBqM8rj158sTYobxzhw4dgkQiwebNm40dik4ePXqEzp07o2TJkpBIJJgzZ46xQ6J3oJixAyDT8ubNG3Tp0gUymQyzZ8+Gra0tvLy8jB0WUYG7dOkSNm7ciL59+8Lb29vY4RjE1KlTUaVKFbRv397YoVAejRw5Env27EFkZCTc3NxQq1YtY4dUJK1btw4JCQkYMWLEO1kekzNSExsbizt37mDZsmX4+OOPjR2OwXl5eeHVq1ewtLQ0digmgdvjP5cuXUJUVBQaN26skZzt3bvXOEHl09SpU9G5c2cmZ4XYb7/9hnbt2mHUqFHGDqVIW7duHf7+++93lpzxmjNSk5CQAABwcnIybiAFRCKRQCaTQSqVGjsUo0pPT0daWppZb4+UlBSDzcvKygpWVlYGmx+ZP0PtfwkJCWZ7PKbs5Ss5++OPP1C7dm3IZDL4+vpiyZIl2Y77ww8/IDAwEDY2NihRogS6d++Ou3fvqo3TuHFjVKtWDadPn0bdunVhY2OD8uXLY/HixRrzS01NRWRkJPz8/GBtbQ1PT0988cUXSE1NVRtPIpFgyJAh2L59O6pVqwZra2tUrVoVu3fvfmfrc+nSJTRp0gS2trYoU6YMpk+frjG/169fY9KkSahYsSJkMhnc3d3RsWNHxMbGqsZRKBSYM2cOqlatCplMBldXV3zyySf4999/s40zs99++w0NGjSAnZ0dnJyc0K5dO1y+fFk1vG/fvmjUqBEAoEuXLpBIJLleZ/Ps2TOMGDECnp6esLa2hp+fH6ZNmwaFQgEAEEKgSZMmKFWqlCrxA4C0tDRUr14dvr6+qoOY8jqYK1euoGvXrnBwcEDJkiUxfPhwvH79Osc4EhMTMWrUKFSvXh329vZwcHBAy5Ytcf78ebXxtF1j1bdvX9jb2+P+/fto37497O3tUapUKYwaNQpyuVxtel0/AyEEvv76a5QtWxa2trZo0qQJ/vnnnxzXAcg4rVyiRAmEh4drDEtOToZMJlP9BZ2WloaJEyciMDAQjo6OsLOzQ4MGDXDw4EGt6zxz5kzMmTMHvr6+sLa2xqVLl7RujwsXLqBv377w8fGBTCaDm5sb+vXrh6dPn6rNV/l53bhxA3379oWTkxMcHR0RHh6Oly9fasT/ww8/oE6dOrC1tYWzszMaNmyoUZHatWuXah8tXrw4WrdurdN2W7lyJSQSCQ4fPozPPvsMpUuXRtmyZQEAd+7cwWeffQZ/f3/Y2NigZMmS6NKlC27fvq02fZcuXQAATZo0gUQigUQiwaFDhwBov+YsISEB/fv3h6urK2QyGWrUqIFVq1blGqvSwoULUbVqVVhbW8PDwwODBw/Gs2fP1MbR5xiSlUQiQUpKClatWqVan6zXOz579kznzy634502uu4jOV37KJFIMGnSJI15Xrt2DR999BEcHR1RqlQpTJgwAUII3L17F+3atYODgwPc3Nzw3XffaY1NLpdj3LhxcHNzg52dHdq2bat1nU6cOIEWLVrA0dERtra2aNSoEY4ePap1PS9duoSePXvC2dkZ9evXz3Hb3Lx5E126dEGJEiVga2uL999/Hzt27FANV+7TQggsWLBA9RnmRKFQYO7cuahevTpkMhlKlSqFFi1a4K+//lKNk56ejilTpqiOA97e3hg3bpzGb6e3tzc+/PBDHDp0CLVq1YKNjQ2qV6+u+k5s3bpVtZzAwECcPXtWbXrlcfXmzZsIDQ2FnZ0dPDw8MHnyZAgh1MZNSUnB559/rvod8ff3x8yZMzXG0+f3/P79++jXrx9cXV1V4y1fvlxtHOX1hxs3bsQ333yDsmXLQiaToVmzZrhx44ZqvMaNG2PHjh24c+eO6nPIXF2fP38+qlatqjq21apVC+vWrcvxs8qVyKMLFy4IGxsbUa5cOREdHS2mTJkiXF1dRUBAgMg626+//lpIJBLRrVs3sXDhQhEVFSVcXFyEt7e3+Pfff1XjNWrUSHh4eIjSpUuLIUOGiHnz5on69esLAOL7779XjSeXy0Xz5s2Fra2tGDFihFiyZIkYMmSIKFasmGjXrp3asgGIGjVqCHd3dzFlyhQxZ84c4ePjI2xtbcWTJ0/eyfp4enqK4cOHi4ULF4qmTZsKAGLnzp2q8dLT00WzZs0EANG9e3cRExMjoqOjRdOmTcX27dtV43388ceiWLFiYsCAAWLx4sXiyy+/FHZ2dqJ27doiLS0tx89r3759olixYqJixYpi+vTpqpidnZ3FrVu3hBBCHDt2TIwbN04AEMOGDRNr1qwRe/fuzXaeKSkpIiAgQJQsWVKMGzdOLF68WPTp00dIJBIxfPhw1Xg3b94U9vb2okOHDqq2MWPGCIlEIg4fPqxqi4yMFABE9erVRZs2bURMTIz46KOPBADRu3dvtWV7eXmJsLAw1ftTp04JX19fMWbMGLFkyRIxefJkUaZMGeHo6Cju37+vGu/WrVsCgFixYoWqLSwsTMhkMlG1alXRr18/sWjRItGpUycBQCxcuFBtubp+Bl999ZUAIFq1aiViYmJEv379hIeHh3BxcVGLW5t+/foJJycnkZqaqta+atUqAUCcOnVKCCHE48ePhbu7u4iIiBCLFi0S06dPF/7+/sLS0lKcPXtWY52rVKkifHx8xLfffitmz54t7ty5o3V7zJw5UzRo0EBMnjxZLF26VAwfPlzY2NiIOnXqCIVCofF5vffee6Jjx45i4cKF4uOPPxYAxBdffKEW+6RJkwQAUbduXTFjxgwxd+5c0bNnT/Hll1+qxlm9erWQSCSiRYsWYv78+WLatGnC29tbODk5qfbR7KxYsUK1jo0aNRLz588X3377rRBCiE2bNokaNWqIiRMniqVLl4px48YJZ2dn4eXlJVJSUoQQQsTGxophw4YJAGLcuHFizZo1Ys2aNSI+Pl4IkfFdbtSokWp5L1++FJUrVxaWlpZi5MiRYt68eaJBgwYCgJgzZ06OsWbediEhIWL+/PliyJAhQiqVauxHuh5DtFmzZo2wtrYWDRo0UK3PsWPH1Javy2en6/Eup/XMbTna9kMlACIyMlJjnjVr1hQ9evQQCxcuFK1btxYAxKxZs4S/v78YNGiQWLhwoahXr54AoHacOXjwoOo4ExAQIGbNmiXGjBkjZDKZqFixonj58qVq3AMHDggrKysRHBwsvvvuOzF79mwREBAgrKysxIkTJzRiqlKlimjXrp1YuHChWLBgQbbbJT4+Xri6uorixYuL8ePHi1mzZokaNWoICwsLsXXrViFExj65Zs0aAUB88MEHqs8wJ3379hUARMuWLcWcOXPEzJkzRbt27cT8+fNV44SFhQkAonPnzmLBggWiT58+AoBo37692ry8vLyEv7+/cHd3F5MmTRKzZ88WZcqUEfb29uKHH34Q5cqVE99++6349ttvhaOjo/Dz8xNyuVxtOTKZTFSoUEH07t1bxMTEiA8//FAAEBMmTFCNp1AoRNOmTYVEIhEff/yxiImJEW3atBEAxIgRIzT2BV1+z+Pj40XZsmWFp6enmDx5sli0aJFo27atACBmz56tsS+89957IjAwUMyePVtMmjRJ2Nraijp16qjG27t3r6hZs6ZwcXFRfQ7btm0TQgixdOlS1fZcsmSJmDt3rujfv78YNmxYjp9VbvKcnLVv317IZDJx584dVdulS5eEVCpVS2Zu374tpFKp+Oabb9Smv3jxoihWrJhae6NGjQQA8d1336naUlNTRc2aNUXp0qVVB601a9YICwsL8fvvv6vNc/HixQKAOHr06H8rCAgrKytx48YNVdv58+cFALUdtiDXZ/Xq1Wrr4+bmJjp16qRqW758uerAkpXyx/D3338XAMTatWvVhu/evVtre1bKbfj06VO17WBhYSH69OmjalPurJs2bcpxfkIIMWXKFGFnZyeuXbum1j5mzBghlUpFXFycqm3JkiUCgPjhhx/En3/+KaRSqcYXT3mAa9u2rVr7Z599JgCI8+fPq9qyJmevX79WOzAIkXHAt7a2FpMnT1Zr05acAVAbTwih+sIq6foZJCQkCCsrK9G6dWu1ZEaZ+OaWnO3Zs0cAEL/88otae6tWrYSPj4/qfXp6ukYC9++//wpXV1fRr18/jXV2cHAQCQkJauNr2x6Zf5yU1q9fLwCII0eOqNqUn1fmZQkhRIcOHUTJkiVV769fvy4sLCxEhw4dND4j5fZ5/vy5cHJyEgMGDFAbHh8fLxwdHTXas1ImZ/Xr1xfp6elqw7Stz/HjxzW+m5s2bRIAxMGDBzXGz5qczZkzR7U/K6WlpYng4GBhb28vkpOTs41VuX80b95cbXvExMQIAGL58uVqy9XlGJIdOzs7rfubrp+dPsc7bXRdTl6Ss4EDB6ra0tPTRdmyZYVEIlEl5UJkfB9sbGzUtoHyGFemTBm1z2njxo0CgJg7d64QImPfrFChgggNDVX7Hr98+VKUL19efPDBBxox9ejRI8ftoTRixAgBQO037Pnz56J8+fLC29tbbb8AIAYPHpzrPH/77TfVH9ZZKeM/d+6cACA+/vhjteGjRo0SAMRvv/2mavPy8hIAVAm9EP8dm2xsbNR+K5XH98zfHeVxdejQoWpxtG7dWlhZWYnHjx8LIYTYvn27ACC+/vprtZg6d+4sJBKJ2m+3rr/n/fv3F+7u7moJmxBCdO/eXTg6OqqOCcp9oXLlymrH0rlz5woA4uLFi6q21q1bCy8vr6ybVrRr105UrVpVoz2/8nRaUy6XY8+ePWjfvj3KlSunaq9cuTJCQ0PVxt26dSsUCgW6du2KJ0+eqF5ubm6oUKGCximYYsWK4ZNPPlG9t7KywieffIKEhAScPn0aALBp0yZUrlwZlSpVUptn06ZNAUBjniEhIfD19VW9DwgIgIODA27evFng62Nvb4+PPvpIbX3q1KmjWjYAbNmyBS4uLhg6dKjGtlaWsTdt2gRHR0d88MEHassNDAyEvb29xnIze/jwIc6dO4e+ffuiRIkSatvhgw8+wM6dO7OdNiebNm1CgwYN4OzsrBZTSEgI5HI5jhw5ohp34MCBCA0NxdChQ9G7d2/4+vpi6tSpWuc7ePBgtffK7ZJTnNbW1rCwyNid5XI5nj59Cnt7e/j7++PMmTM6rc+nn36q9r5BgwZqn5Oun8H+/fuRlpaGoUOHqp2G0PVC0qZNm8LFxQUbNmxQtf3777/Yt28funXrpmqTSqWq66AUCgUSExORnp6OWrVqaV3nTp06oVSpUrku38bGRvX/169f48mTJ3j//fcBQOt8tW23p0+fIjk5GQCwfft2KBQKTJw4UfUZKSm3z759+/Ds2TP06NFDbdtKpVIEBQXluH9nNmDAAI3r5zKvz5s3b/D06VP4+fnByclJ530jq507d8LNzQ09evRQtVlaWmLYsGF48eIFDh8+nO20yv1jxIgRattjwIABcHBwUDu1Beh2DMmr3D47fY93eV1OXmS+YUkqlaJWrVoQQqB///6qdicnJ/j7+2vdVn369EHx4sVV7zt37gx3d3fVcebcuXO4fv06evbsiadPn6rWPSUlBc2aNcORI0dUl29kt57Z2blzJ+rUqaN26tPe3h4DBw7E7du3cenSJd02QiZbtmyBRCJBZGSkxjDl90y5bhEREWrDP//8cwDQ2PeqVKmC4OBg1fugoCAAGceozL+VynZt23nIkCFqcQwZMgRpaWnYv3+/KiapVIphw4ZpxCSEwK5du9Tac/s9F0Jgy5YtaNOmDYQQavttaGgokpKSNL734eHhateUNmjQINv1ycrJyQn37t3DqVOnch1XH3m6W/Px48d49eoVKlSooDHM399f7Uf0+vXrEEJoHReAxl1iHh4esLOzU2urWLEigIzrEt5//31cv34dly9fzvaHJvO1TQDUdiIlZ2dn1XVCBbk+ZcuW1bhOwNnZGRcuXFC9j42Nhb+/P4oVy/7juH79OpKSklC6dGmtw7Ouc2Z37txRrUtWlStXxp49e5CSkqKx3XNz/fp1XLhwQefP4fvvv4evry+uX7+OY8eOqf1oZpZ12/r6+sLCwkLtGqGslNdaLFy4ELdu3VK7VqxkyZK5rovy+ozMMu8jgO6fgXJ7Z12PUqVKwdnZOddYihUrhk6dOmHdunVITU2FtbU1tm7dijdv3qglZwCwatUqfPfdd7hy5QrevHmjai9fvrzGfLW1aZOYmIioqCj8+OOPGp9hUlKSxvhZv1/Kdfz333/h4OCA2NhYWFhYoEqVKtku8/r16wCg+gMrKwcHB51i17aOr169QnR0NFasWIH79++rXceibX10cefOHVSoUEEj2axcubJqeE7TAprfRysrK/j4+GhMq8sxJK9y++z0Pd7ldTl5kXWejo6OkMlkcHFx0WjPer0koPn9lEgk8PPzUx1nlPtkWFhYtjEkJSWpfad1/Y7duXNHldBklnn/qVatmk7zUoqNjYWHh4faH+DalmthYQE/Pz+1djc3Nzg5OWnse9q2MQB4enpqbc967a2FhQV8fHzU2jL/nitj8vDwUEuUgey/S7r8nj979gxLly7F0qVLNcYFcs8RMu+fufnyyy+xf/9+1KlTB35+fmjevDl69uyJevXq5TptTgq8Kw2FQgGJRIJdu3ZpvSPM3t4+T/OsXr06Zs2apXV41h0nuzvRMh+k9Vm2PutjqGUrFAqULl0aa9eu1Tpcl4qIoSkUCnzwwQf44osvtA5XfgmVDh06pLro9OLFi2p/keVEl06Ap06digkTJqBfv36YMmUKSpQoAQsLC4wYMULjr1ttdLlb8V1+Bt27d8eSJUuwa9cutG/fHhs3bkSlSpVQo0YN1Tg//PAD+vbti/bt22P06NEoXbo0pFIpoqOj1W4kUcouGc6qa9euOHbsGEaPHo2aNWvC3t4eCoUCLVq00LotDbGPK+e7Zs0auLm5aQzP6Q+XzLSt49ChQ7FixQqMGDECwcHBcHR0hEQiQffu3XXaN4zNkMcvfedtqON3bsvJ7jue9Yac3OZp6GM9AMyYMQM1a9bUOk7W9df1O2Zsunasnt32LMh9Mje67LMA8NFHH2WbWAcEBOg1z5xUrlwZV69exa+//ordu3djy5YtWLhwISZOnIioqKhcp89OnpKzUqVKwcbGRvWXRWZXr15Ve+/r6wshBMqXL6/xY63NgwcPNKo4165dAwDV3RG+vr44f/48mjVrZpDe+wtyfXTh6+uLEydO4M2bN9n+Jerr64v9+/ejXr16eh8AlJ3IZl0XALhy5QpcXFz0rpopY3rx4gVCQkJyHffhw4cYOnQomjdvDisrK4waNQqhoaFaO7i9fv262l+gN27cgEKhyLFj0M2bN6NJkyb4/vvv1dqfPXum8Zd0Xun6GSjX6fr162p/NT5+/FjnO2sbNmwId3d3bNiwAfXr18dvv/2G8ePHq42zefNm+Pj4YOvWrWrfA22nNXT177//4sCBA4iKisLEiRNV7dq+G7ry9fWFQqHApUuXsv2RU56mKF26tE77kz42b96MsLAwtbv2Xr9+rXFnpD7HEi8vL1y4cAEKhUKtenblyhXV8JymBTK+j5n3j7S0NNy6dcug65/f42NBHO+0UVYqsn4mOVUg8yvrPi2EwI0bN1Q/3Mp90sHBweD7pJeXV7bHY+Vwffn6+mLPnj1ITEzMtnrm5eUFhUKB69evqypTQMZTCJ49e2bwDscVCgVu3ryptu9k/T338vLC/v378fz5c7XqWV63RalSpVC8eHHI5fJ39l2ys7NDt27d0K1bN6SlpaFjx4745ptvMHbsWMhksjwtL0/XnEmlUoSGhmL79u2Ii4tTtV++fBl79uxRG7djx46QSqWIiorSyEKFEBrl5vT0dLUuLNLS0rBkyRKUKlUKgYGBADL+sr9//z6WLVumEdurV6/07l+mINdHF506dcKTJ08QExOjMUy5jK5du0Iul2PKlCka46Snp2sc1DJzd3dHzZo1sWrVKrXx/v77b+zduxetWrXSO2ZlTMePH9fYRkDGQTY9PV31fsCAAVAoFPj++++xdOlSFCtWDP3799f6l8mCBQvU3s+fPx8A0LJly2xjkUqlGvPatGkT7t+/r9c65UTXzyAkJASWlpaYP3++Wkz6PHbFwsICnTt3xi+//II1a9YgPT1d45Sm8q+9zMs4ceIEjh8/rsdaqdM2T0C/2LNq3749LCwsMHnyZI1KlXI5oaGhcHBwwNSpU9VOzyo9fvw4z8vXtm/Mnz9foyqj/AMlp++SUqtWrRAfH692XWB6ejrmz58Pe3t7VZc02oSEhMDKygrz5s1Ti+v7779HUlISWrdurctq6cTOzk6n9clOQRzvtHFwcICLi4vadapARncjBWX16tV4/vy56v3mzZvx8OFD1XEmMDAQvr6+mDlzJl68eKExfX72yVatWuHkyZNq39WUlBQsXboU3t7eOV4CkJ1OnTpBCKG1WqP87JTH+qzfZ+VZKEPue0qZf9eEEIiJiYGlpSWaNWumikkul2v8/s2ePRsSiSTH4742UqkUnTp1wpYtW/D3339rDM/r52ZnZ6f1Mois3wErKytUqVIFQgjVsezly5e4cuWKXo9Ly/NpzaioKOzevRsNGjTAZ599pjowVa1aVe1aCF9fX3z99dcYO3Ysbt++jfbt26N48eK4desWtm3bhoEDB6r1fOzh4YFp06bh9u3bqFixIjZs2IBz585h6dKlqqpS7969sXHjRnz66ac4ePAg6tWrB7lcjitXrmDjxo3Ys2eP3o+4KKj10UWfPn2wevVqRERE4OTJk2jQoAFSUlKwf/9+fPbZZ2jXrh0aNWqETz75BNHR0Th37hyaN28OS0tLXL9+HZs2bcLcuXPRuXPnbJcxY8YMtGzZEsHBwejfvz9evXqF+fPnw9HRUa0PIX2MHj0aP//8Mz788EP07dsXgYGBSElJwcWLF7F582bcvn0bLi4uWLFiBXbs2IGVK1eq+p6aP38+PvroIyxatAifffaZ2nxv3bqFtm3bokWLFjh+/Dh++OEH9OzZU+2UXlYffvghJk+ejPDwcNStWxcXL17E2rVrNa53yA9dPwNlH2nR0dH48MMP0apVK5w9exa7du3Sq4rXrVs3zJ8/H5GRkahevbraX7rKdd66dSs6dOiA1q1b49atW1i8eDGqVKmi9cdEFw4ODmjYsCGmT5+ON2/eoEyZMti7dy9u3bqVp/kBgJ+fH8aPH48pU6agQYMG6NixI6ytrXHq1Cl4eHggOjoaDg4OWLRoEXr37o3/+7//Q/fu3VGqVCnExcVhx44dqFevntY/XnTx4YcfYs2aNXB0dESVKlVw/Phx7N+/X+NaxJo1a0IqlWLatGlISkqCtbU1mjZtqvUaw4EDB2LJkiXo27cvTp8+DW9vb2zevBlHjx7FnDlzNK6fyaxUqVIYO3YsoqKi0KJFC7Rt2xZXr17FwoULUbt2bbWL//MrMDAQ+/fvx6xZs+Dh4YHy5ctrvdYpOwVxvMvOxx9/jG+//RYff/wxatWqhSNHjqiqLAWhRIkSqF+/PsLDw/Ho0SPMmTMHfn5+GDBgAICMP5D+97//oWXLlqhatSrCw8NRpkwZ3L9/HwcPHoSDgwN++eWXPC17zJgxWL9+PVq2bIlhw4ahRIkSWLVqFW7duoUtW7ZoXMuoiyZNmqB3796YN28erl+/rroM4ffff0eTJk0wZMgQ1KhRA2FhYVi6dCmePXuGRo0a4eTJk1i1ahXat2+PJk2a5Gl9siOTybB7926EhYUhKCgIu3btwo4dOzBu3DjVZSBt2rRBkyZNMH78eNy+fRs1atTA3r178dNPP2HEiBFqF//r6ttvv8XBgwcRFBSEAQMGoEqVKkhMTMSZM2ewf/9+JCYm6j3PwMBAbNiwAREREahduzbs7e3Rpk0bNG/eHG5ubqhXrx5cXV1x+fJlxMTEoHXr1qrjwMmTJ9GkSRNERkbq/nubn1s9Dx8+LAIDA4WVlZXw8fERixcvVt1SnNWWLVtE/fr1hZ2dnbCzsxOVKlUSgwcPFlevXlWN06hRI1G1alXx119/ieDgYCGTyYSXl5eIiYnRmF9aWpqYNm2aqFq1qrC2thbOzs4iMDBQREVFiaSkJNV4yOY25KxdMRTk+mQVFhamcUvuy5cvxfjx40X58uWFpaWlcHNzE507dxaxsbFq4y1dulQEBgYKGxsbUbx4cVG9enXxxRdfiAcPHmgsJ6v9+/eLevXqCRsbG+Hg4CDatGkjLl26pDaOPl1pCJFx+/fYsWOFn5+fsLKyEi4uLqJu3bpi5syZIi0tTdy9e1c4OjqKNm3aaEzboUMHYWdnJ27evCmE+O929EuXLonOnTuL4sWLC2dnZzFkyBDx6tUrtWm1daXx+eefC3d3d2FjYyPq1asnjh8/rtEFQnZdadjZ2WnEl91nr8tnIJfLRVRUlCqexo0bi7///lvrfpcdhUIhPD09td5mrhw+depU4eXlJaytrcV7770nfv31V439S7nOM2bM0JiHtu1x79490aFDB+Hk5CQcHR1Fly5dxIMHD7Lt0kB5S7ySsluLrH2TLV++XLz33nuq72ujRo3Evn371MY5ePCgCA0NFY6OjkImkwlfX1/Rt29f8ddff+W4rZTLVPYBl9m///4rwsPDhYuLi7C3txehoaHiypUrWj+LZcuWCR8fH1UXOsquAbLuR0II8ejRI9V8raysRPXq1bV2BZGdmJgYUalSJWFpaSlcXV3FoEGDNPoN0+cYos2VK1dEw4YNhY2NjVo3Lvp+droc77TRZzkvX74U/fv3F46OjqJ48eKia9euIiEhQef9LrvvcdZtqDzGrV+/XowdO1aULl1a2NjYiNatW6t1D6F09uxZ0bFjR1GyZElhbW0tvLy8RNeuXcWBAwdyjSknsbGxonPnzsLJyUnIZDJRp04d8euvv2qMl91vmDbp6elixowZolKlSsLKykqUKlVKtGzZUpw+fVo1zps3b0RUVJTqt8bT01OMHTtWvH79Wm1eXl5eonXr1jrFo+0Yo/w8YmNjVf2Surq6isjISI0udZ4/fy5GjhwpPDw8hKWlpahQoYKYMWOGWhcmOW0Lbd/lR48eicGDBwtPT0/Vb2qzZs3E0qVLVeNk93un7bj44sUL0bNnT+Hk5CQAqL5/S5YsEQ0bNlTtH76+vmL06NFqeYhyOZn349xI3q6wSWjcuDGePHmitRRJ5m/SpEmIiorC48ePDXadGBERvXt9+/bF5s2b81zFL+r4bE0iIiIiE8LkjIiIiMiEMDkjIiIiMiEmdc0ZERERUVHHyhkRERGRCWFyRkRERGRCCvzZmqZGoVDgwYMHKF68uEEe/UREREQFTwiB58+fw8PDI08d9RYmRS45e/DggcaD0YmIiKhwuHv3ruppM+aqyCVnyscp3L17Fw4ODkaOhoiIiHSRnJwMT0/PHB+PZi6KXHKmPJXp4ODA5IyIiKiQKQqXJJn3SVsiIiKiQobJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkRERGRCmJwRERERmRAmZ0REREQmpMg9IaDAyOXA778DDx8C7u5AgwaAVGrsqIiIiKiQYXJmCFu3AsOHA/fu/ddWtiwwdy7QsaPx4iIiIqJCh6c182vrVqBzZ/XEDADu389o37rVOHERERFRocTkLD/k8oyKmRCaw5RtI0ZkjEdERESkAyZn+fH775oVs8yEAO7ezRiPiIiISAdMzvLj4UPDjkdERERFHpOz/HB3N+x4REREVOQxOcuPBg0y7sqUSLQPl0gAT8+M8YiIiIh0wOQsP6TSjO4yAM0ETfl+zhz2d0ZEREQ6Y3KWXx07Aps3A2XKqLeXLZvRzn7OiIiISA9MzgyhY0fg9m1AJst4/8MPwK1bTMyIiIhIb0zODEUqBZycMv5ftSpPZRIREVGeMDkzpOLFM/598cK4cRAREVGhxeTMkOztM/59/ty4cRAREVGhxeTMkJSVMyZnRERElEdMzgxJWTnjaU0iIiLKIyZnhsTKGREREeUTkzNDYuWMiIiI8onJmSGxckZERET5xOTMkFg5IyIionxicmZIrJwRERFRPjE5MyRWzoiIiCifmJwZEitnRERElE9MzgyJj28iIiKifGJyZkh8fBMRERHlE5MzQ2LljIiIiPKJyZkhsXJGRERE+cTkzJBYOSMiIqJ8YnJmSMrKWWoq8OaNcWMhIiKiQonJmSEpkzOApzaJiIgoT5icGZKVVcYL4KlNIiIiyhMmZ4bGjmiJiIgoH5icGRof4URERET5wOTM0Fg5IyIionxgcmZorJwRERFRPjA5MzRWzoiIiCgfmJwZGjuiJSIionxgcmZofIQTERER5QOTM0Nj5YyIiIjygcmZobFyRkRERPnA5MzQWDkjIiKifGByZmisnBEREVE+MDkzNHalQURERPnA5MzQ2AktERER5QOTM0Nj5YyIiIjygcmZobFyRkRERPnA5MzQWDkjIiKifGByZmisnBEREVE+MDkztMz9nCkUxo2FiIiICh0mZ4amTM4A4OVL48VBREREhRKTM0OzsQEs3m5WXndGREREemJyZmgSCa87IyIiojwzenK2YMECeHt7QyaTISgoCCdPnsxx/Dlz5sDf3x82Njbw9PTEyJEj8fr163cUrY74CCciIiLKI6MmZxs2bEBERAQiIyNx5swZ1KhRA6GhoUhISNA6/rp16zBmzBhERkbi8uXL+P7777FhwwaMGzfuHUeeCz78nIiIiPLIqMnZrFmzMGDAAISHh6NKlSpYvHgxbG1tsXz5cq3jHzt2DPXq1UPPnj3h7e2N5s2bo0ePHrlW2945Vs6IiIgoj4yWnKWlpeH06dMICQn5LxgLC4SEhOD48eNap6lbty5Onz6tSsZu3ryJnTt3olWrVtkuJzU1FcnJyWqvAseOaImIiCiPihlrwU+ePIFcLoerq6tau6urK65cuaJ1mp49e+LJkyeoX78+hBBIT0/Hp59+muNpzejoaERFRRk09lzxhgAiIiLKI6PfEKCPQ4cOYerUqVi4cCHOnDmDrVu3YseOHZgyZUq204wdOxZJSUmq1927dws+UFbOiIiIKI+MVjlzcXGBVCrFo0eP1NofPXoENzc3rdNMmDABvXv3xscffwwAqF69OlJSUjBw4ECMHz8eFhaauaa1tTWsra0NvwI5YeWMiIiI8sholTMrKysEBgbiwIEDqjaFQoEDBw4gODhY6zQvX77USMCkUikAQAhRcMHqi5UzIiIiyiOjVc4AICIiAmFhYahVqxbq1KmDOXPmICUlBeHh4QCAPn36oEyZMoiOjgYAtGnTBrNmzcJ7772HoKAg3LhxAxMmTECbNm1USZpJYOWMiIiI8sioyVm3bt3w+PFjTJw4EfHx8ahZsyZ2796tukkgLi5OrVL21VdfQSKR4KuvvsL9+/dRqlQptGnTBt98842xVkE7Vs6IiIgojyTCpM4HFrzk5GQ4OjoiKSkJDg4OBbOQJUuATz8F2rcHtm0rmGUQEREVIe/k99tEFKq7NQsNdkJLREREecTkrCDw8U1ERESUR0zOCgIrZ0RERJRHTM4KAitnRERElEdMzgoCK2dERESUR0zOCkLmrjSK1s2wRERElE9MzgqCsnKWng6kpRk3FiIiIipUmJwVBGVyBvDUJhEREemFyVlBKFYMkMky/s+bAoiIiEgPTM4KCh/hRERERHnA5Kyg8OHnRERElAdMzgoKK2dERESUB0zOCgo7oiUiIqI8YHJWUNgRLREREeUBk7OCwsoZERER5QGTs4LCyhkRERHlAZOzgsLKGREREeUBk7OCwsoZERER5QGTs4LCrjSIiIgoD5icFRR2QktERER5wOSsoLByRkRERHnA5KygsHJGREREecDkrKCwckZERER5wOSsoLByRkRERHnA5KygsHJGREREecDkrKCwE1oiIiLKAyZnBUV5WvPlS0AuN24sREREVGjkKzkTQkAIYahYzIuycgYAKSnGi4OIiIgKlTwlZ6tXr0b16tVhY2MDGxsbBAQEYM2aNYaOrXCztgak0oz/87ozIiIi0lExfSeYNWsWJkyYgCFDhqBevXoAgD/++AOffvopnjx5gpEjRxo8yEJJIsmonj17xuvOiIiISGd6J2fz58/HokWL0KdPH1Vb27ZtUbVqVUyaNInJWWb29hnJGStnREREpCO9T2s+fPgQdevW1WivW7cuHj58aJCgzAbv2CQiIiI96Z2c+fn5YePGjRrtGzZsQIUKFQwSlNlQ3rHJyhkRERHpSO/TmlFRUejWrRuOHDmiuubs6NGjOHDggNakrUhjR7RERESkJ70rZ506dcKJEyfg4uKC7du3Y/v27XBxccHJkyfRoUOHgoix8OIjnIiIiEhPelfOACAwMBA//PCDoWMxP6ycERERkZ50Ss6Sk5Ph4OCg+n9OlOMRWDkjIiIivemUnDk7O+Phw4coXbo0nJycIJFINMYRQkAikUDORxX9h5UzIiIi0pNOydlvv/2GEiVKAAAOHjxYoAGZFXalQURERHrSKTlr1KiR6v/ly5eHp6enRvVMCIG7d+8aNrrCjl1pEBERkZ70vluzfPnyePz4sUZ7YmIiypcvb5CgzAYrZ0RERKQnvZMz5bVlWb148QIymcwgQZkNVs6IiIhITzp3pREREQEAkEgkmDBhAmxtbVXD5HI5Tpw4gZo1axo8wEKNlTMiIiLSk87J2dmzZwFkVM4uXrwIKysr1TArKyvUqFEDo0aNMnyEhRkrZ0RERKQnnZMz5V2a4eHhmDt3Lvsz0wUrZ0RERKQnvZ8QsGLFioKIwzyxckZERER6ytPjm/766y9s3LgRcXFxSEtLUxu2detWgwRmFjJ3QisEoOVGCiIiIqLM9L5b88cff0TdunVx+fJlbNu2DW/evME///yD3377DY6OjgURY+GlrJwpFMDr18aNhYiIiAoFvZOzqVOnYvbs2fjll19gZWWFuXPn4sqVK+jatSvKlStXEDEWXnZ2//2fpzaJiIhIB3onZ7GxsWjdujWAjLs0U1JSIJFIMHLkSCxdutTgARZqUimg7HKENwUQERGRDvROzpydnfH8bRWoTJky+PvvvwEAz549w8uXLw0bnTngw8+JiIhID3onZw0bNsS+ffsAAF26dMHw4cMxYMAA9OjRA82aNTN4gIUeu9MgIiIiPeh9t2ZMTAxev724ffz48bC0tMSxY8fQqVMnfPXVVwYPsNBjdxpERESkB72Ss/T0dPz6668IDQ0FAFhYWGDMmDEFEpjZYOWMiIiI9KDXac1ixYrh008/VVXOSAesnBEREZEe9L7mrE6dOjh37lwBhGKmWDkjIiIiPeh9zdlnn32GiIgI3L17F4GBgbDL3JcXgICAAIMFZxZYOSMiIiI96J2cde/eHQAwbNgwVZtEIoEQAhKJBHK53HDRmQNWzoiIiEgPeidnt27dKog4zBcrZ0RERKQHvZMzLy+vgojDfLETWiIiItKD3jcEGNqCBQvg7e0NmUyGoKAgnDx5Msfxnz17hsGDB8Pd3R3W1taoWLEidu7c+Y6izQNl5YynNYmIiEgHelfODGnDhg2IiIjA4sWLERQUhDlz5iA0NBRXr15F6dKlNcZPS0vDBx98gNKlS2Pz5s0oU6YM7ty5Aycnp3cfvK5YOSMiIiI9GDU5mzVrFgYMGIDw8HAAwOLFi7Fjxw4sX75ca+e2y5cvR2JiIo4dOwZLS0sAgLe397sMWX+snBEREZEejHZaMy0tDadPn0ZISMh/wVhYICQkBMePH9c6zc8//4zg4GAMHjwYrq6uqFatGqZOnZrjHaKpqalITk5We71TrJwRERGRHvKUnD179gz/+9//MHbsWCQmJgIAzpw5g/v37+s8jydPnkAul8PV1VWt3dXVFfHx8VqnuXnzJjZv3gy5XI6dO3diwoQJ+O677/D1119nu5zo6Gg4OjqqXp6enjrHaBDsSoOIiIj0oPdpzQsXLiAkJASOjo64ffs2BgwYgBIlSmDr1q2Ii4vD6tWrCyJOAIBCoUDp0qWxdOlSSKVSBAYG4v79+5gxYwYiIyO1TjN27FhERESo3icnJ7/bBI1daRAREZEe9K6cRUREoG/fvrh+/TpkMpmqvVWrVjhy5IjO83FxcYFUKsWjR4/U2h89egQ3Nzet07i7u6NixYqQSqWqtsqVKyM+Ph5paWlap7G2toaDg4Pa651i5YyIiIj0oHdydurUKXzyySca7WXKlMn2dKQ2VlZWCAwMxIEDB1RtCoUCBw4cQHBwsNZp6tWrhxs3bkChUKjarl27Bnd3d1hZWemxFu+QsnL2+jWQnm7cWIiIiMjk6Z2cWVtba72o/tq1ayhVqpRe84qIiMCyZcuwatUqXL58GYMGDUJKSorq7s0+ffpg7NixqvEHDRqExMREDB8+HNeuXcOOHTswdepUDB48WN/VeHeUlTOA1TMiIiLKld7XnLVt2xaTJ0/Gxo0bAWQ8VzMuLg5ffvklOnXqpNe8unXrhsePH2PixImIj49HzZo1sXv3btVNAnFxcbCw+C9/9PT0xJ49ezBy5EgEBASgTJkyGD58OL788kt9V+PdsbICLC2BN28yrjsz5T7ZiIiIyOgkQgihzwRJSUno3Lkz/vrrLzx//hweHh6Ij49HcHAwdu7cCTs7u4KK1SCSk5Ph6OiIpKSkd3f9WcmSQGIicOkSULnyu1kmERGRGTHK77eR6F05c3R0xL59+3D06FGcP38eL168wP/93/+p9VdGWdjbZyRnvGOTiIiIcpHnJwTUq1cP9erVM2Qs5osd0RIREZGO9L4hYNiwYZg3b55Ge0xMDEaMGGGImMwPH+FEREREOtI7OduyZYvWilndunWxefNmgwRldlg5IyIiIh3pnZw9ffoUjo6OGu0ODg548uSJQYIyO6ycERERkY70Ts78/Pywe/dujfZdu3bBx8fHIEGZHVbOiIiISEd63xAQERGBIUOG4PHjx2jatCkA4MCBA/juu+8wZ84cQ8dnHvgIJyIiItKR3slZv379kJqaim+++QZTpkwBAHh7e2PRokXo06ePwQM0C3z4OREREekoT11pDBo0CIMGDcLjx49hY2MDe2XyQdqxckZEREQ6ynM/ZwD0fpZmkcXKGREREelI7xsCHj16hN69e8PDwwPFihWDVCpVe5EWrJwRERGRjvSunPXt2xdxcXGYMGEC3N3dIZFICiIu88LKGREREelI7+Tsjz/+wO+//46aNWsWQDhmipUzIiIi0pHepzU9PT0hhCiIWMwXK2dERESkI72Tszlz5mDMmDG4fft2AYRjptgJLREREelI79Oa3bp1w8uXL+Hr6wtbW1tYWlqqDU9MTDRYcGaDj28iIiIiHemdnPEpAHmQ+ZozIQDeREFERETZ0Ds5CwsLK4g4zJuyciYE8PIlYGdn3HiIiIjIZOWrE9rXr18jLS1Nrc3BwSFfAZklO7uMapkQGdedMTkjIiKibOh9Q0BKSgqGDBmC0qVLw87ODs7Ozmov0kIi4XVnREREpBO9k7MvvvgCv/32GxYtWgRra2v873//Q1RUFDw8PLB69eqCiNE8sDsNIiIi0oHepzV/+eUXrF69Go0bN0Z4eDgaNGgAPz8/eHl5Ye3atejVq1dBxFn4FS8OPHzIyhkRERHlSO/KWWJiInx8fABkXF+m7Dqjfv36OHLkiGGjMyesnBEREZEO9E7OfHx8cOvWLQBApUqVsHHjRgAZFTUnJyeDBmdW+AgnIiIi0oHeyVl4eDjOnz8PABgzZgwWLFgAmUyGkSNHYvTo0QYP0GywckZEREQ60Puas5EjR6r+HxISgitXruD06dPw8/NDQECAQYMzK6ycERERkQ7y1c8ZAHh5ecHLy8sQsZg3Vs6IiIhIBzolZ/PmzcPAgQMhk8kwb968HMcdNmyYQQIzO6ycERERkQ50Ss5mz56NXr16QSaTYfbs2dmOJ5FImJxlh5UzIiIi0oFOyZny7sys/yc9KCtnTM6IiIgoB3rdrfnmzRv4+vri8uXLBRWP+eLjm4iIiEgHeiVnlpaWeP36dUHFYt5YOSMiIiId6N3P2eDBgzFt2jSkp6cXRDzmizcEEBERkQ707krj1KlTOHDgAPbu3Yvq1avDzs5ObfjWrVsNFpxZ4Q0BREREpAO9kzMnJyd06tSpIGIxb6ycERERkQ70Ts5WrFhREHGYP1bOiIiISAd6X3NGecTKGREREekgT49v2rx5MzZu3Ii4uDikpaWpDTtz5oxBAjM7yspZWlrGy8rKuPEQERGRSdK7cjZv3jyEh4fD1dUVZ8+eRZ06dVCyZEncvHkTLVu2LIgYzYMyOQNYPSMiIqJs6Z2cLVy4EEuXLsX8+fNhZWWFL774Avv27cOwYcOQlJRUEDGaB0tLwNo64/+87oyIiIiyoXdyFhcXh7p16wIAbGxs8PxtotG7d2+sX7/esNGZG153RkRERLnQOzlzc3NDYmIiAKBcuXL4888/AWQ8c1MIYdjozA3v2CQiIqJc6J2cNW3aFD///DMAIDw8HCNHjsQHH3yAbt26oUOHDgYP0KzwEU5ERESUC73v1ly6dCkUCgWAjEc5lSxZEseOHUPbtm3xySefGDxAs8KHnxMREVEu9E7OLCwsYGHxX8Gte/fu6N69u0GDMlusnBEREVEu9D6t6efnh0mTJuHatWsFEY954w0BRERElAu9k7PBgwdjx44dqFy5MmrXro25c+ciPj6+IGIzP7whgIiIiHKhd3I2cuRInDp1CpcvX0arVq2wYMECeHp6onnz5li9enVBxGg+WDkjIiKiXOT52ZoVK1ZEVFQUrl27ht9//x2PHz9GeHi4IWMzP6ycERERUS7y9GxNpZMnT2LdunXYsGEDkpOT0aVLF0PFZZ5YOSMiIqJc6J2cXbt2DWvXrsX69etx69YtNG3aFNOmTUPHjh1hn/n5kaSJlTMiIiLKhd7JWaVKlVC7dm0MHjwY3bt3h6ura0HEZZ5YOSMiIqJc6J2cXb16FRUqVCiIWMwfK2dERESUC71vCGBilg+snBEREVEu8ny3JuUBK2dERESUCyZn7xIf30RERES5YHL2LvHB50RERJQLJmfvkrJylpICKBTGjYWIiIhMkk53a0ZEROg8w1mzZuU5GLOnTM6AjAQt83siIiIi6JicnT17Vu39mTNnkJ6eDn9/fwAZHdNKpVIEBgYaPkJzIpMBFhYZVbPnz5mcERERkQadTmsePHhQ9WrTpg0aNWqEe/fu4cyZMzhz5gzu3r2LJk2aoHXr1nkKYsGCBfD29oZMJkNQUBBOnjyp03Q//vgjJBIJ2rdvn6flvnMSCbvTICIiohzpfc3Zd999h+joaDg7O6vanJ2d8fXXX+O7777TO4ANGzYgIiICkZGROHPmDGrUqIHQ0FAkJCTkON3t27cxatQoNGjQQO9lGhW70yAiIqIc6J2cJScn4/Hjxxrtjx8/xvM8JByzZs3CgAEDEB4ejipVqmDx4sWwtbXF8uXLs51GLpejV69eiIqKgo+Pj97LNCpWzoiIiCgHeidnHTp0QHh4OLZu3Yp79+7h3r172LJlC/r374+OHTvqNa+0tDScPn0aISEh/wVkYYGQkBAcP3482+kmT56M0qVLo3///vqGb3ysnBEREVEO9H625uLFizFq1Cj07NkTb968yZhJsWLo378/ZsyYode8njx5ArlcrvHwdFdXV1y5ckXrNH/88Qe+//57nDt3TqdlpKamIjU1VfU+OTlZrxgNjpUzIiIiyoHeyZmtrS0WLlyIGTNmIDY2FgDg6+sLOzs7gweX1fPnz9G7d28sW7YMLi4uOk0THR2NqKioAo5MD6ycERERUQ70Ts6UHj58iIcPH6Jhw4awsbGBEAISiUSvebi4uEAqleLRo0dq7Y8ePYKbm5vG+LGxsbh9+zbatGmjalO87cy1WLFiuHr1Knx9fdWmGTt2rFo/bcnJyfD09NQrToNi5YyIiIhyoPc1Z0+fPkWzZs1QsWJFtGrVCg8fPgQA9O/fH59//rle87KyskJgYCAOHDigalMoFDhw4ACCg4M1xq9UqRIuXryIc+fOqV5t27ZFkyZNcO7cOa1Jl7W1NRwcHNReRsXKGREREeVA7+Rs5MiRsLS0RFxcHGxtbVXt3bp1w+7du/UOICIiAsuWLcOqVatw+fJlDBo0CCkpKQgPDwcA9OnTB2PHjgUAyGQyVKtWTe3l5OSE4sWLo1q1arCystJ7+e8cH35OREREOdD7tObevXuxZ88elC1bVq29QoUKuHPnjt4BdOvWDY8fP8bEiRMRHx+PmjVrYvfu3aqbBOLi4mBhYUaPAOXDz4mIiCgHeidnKSkpahUzpcTERFhbW+cpiCFDhmDIkCFahx06dCjHaVeuXJmnZRoNK2dERESUA71LUg0aNMDq1atV7yUSCRQKBaZPn44mTZoYNDizxBsCiIiIKAd6V86mT5+OZs2a4a+//kJaWhq++OIL/PPPP0hMTMTRo0cLIkbzwhsCiIiIKAd6V86qVauGa9euoX79+mjXrh1SUlLQsWNHnD17VqMbC9KClTMiIiLKQZ76OXN0dMT48eMNHUvRwMoZERER5SBPydmzZ89w8uRJJCQkqDqBVerTp49BAjNbrJwRERFRDvROzn755Rf06tULL168gIODg9pTASQSCZOz3LByRkRERDnQ+5qzzz//HP369cOLFy/w7Nkz/Pvvv6pXYmJiQcRoXjJXzoQwbixERERkcvROzu7fv49hw4Zp7euMdKCsnKWnA6mpxo2FiIiITI7eyVloaCj++uuvgoilaFAmZwCvOyMiIiINel9z1rp1a4wePRqXLl1C9erVYWlpqTa8bdu2BgvOLEmlgI0N8OpVxnVnLi7GjoiIiIhMiEQI/S58yuk5lxKJBHK5PN9BFaTk5GQ4OjoiKSkJDg4OxgnC1RVISADOnwcCAowTAxERUSFiEr/f74jelbOsXWdQHtjbZyRnPK1JREREWeh9zRkZAB9+TkRERNnQqXI2b948DBw4EDKZDPPmzctx3GHDhhkkMLPGjmiJiIgoGzolZ7Nnz0avXr0gk8kwe/bsbMeTSCRMznTBjmiJiIgoGzolZ7du3dL6f8ojVs6IiIgoG7zmzBhYOSMiIqJs5OnB5/fu3cPPP/+MuLg4pKWlqQ2bNWuWQQIza6ycERERUTb0Ts4OHDiAtm3bwsfHB1euXEG1atVw+/ZtCCHwf//3fwURo/lh5YyIiIiyofdpzbFjx2LUqFG4ePEiZDIZtmzZgrt376JRo0bo0qVLQcRoflg5IyIiomzonZxdvnwZffr0AQAUK1YMr169gr29PSZPnoxp06YZPECzxMoZERERZUPv5MzOzk51nZm7uztiY2NVw548eWK4yMwZK2dERESUDb2vOXv//ffxxx9/oHLlymjVqhU+//xzXLx4EVu3bsX7779fEDGaH1bOiIiIKBt6J2ezZs3Ci7cVn6ioKLx48QIbNmxAhQoVeKemrlg5IyIiomzonZz5+Pio/m9nZ4fFixcbNKAigZUzIiIiygY7oTUGPviciIiIsqFT5czZ2RkSiUSnGSYmJuYroCKBpzWJiIgoGzolZ3PmzCngMIoY5WnNV6+A9HSgWJ4e1EBERERmSKesICwsrKDjKFqUlTMASEkBHB2NFwsRERGZlDyVbORyObZt24bLly8DAKpUqYJ27dqhGCtAurGyyqiWpadnXHfG5IyIiIje0jub+ueff9C2bVvEx8fD398fADBt2jSUKlUKv/zyC6pVq2bwIM2ORJJRPfv3X153RkRERGr0vlvz448/RtWqVXHv3j2cOXMGZ86cwd27dxEQEICBAwcWRIzmid1pEBERkRZ6V87OnTuHv/76C87Ozqo2Z2dnfPPNN6hdu7ZBgzNrvGOTiIiItNC7claxYkU8evRIoz0hIQF+fn4GCapIYOWMiIiItNA7OYuOjsawYcOwefNm3Lt3D/fu3cPmzZsxYsQITJs2DcnJyaoX5YCVMyIiItJC79OaH374IQCga9euqo5phRAAgDZt2qjeSyQSyOVyQ8Vpflg5IyIiIi30Ts4OHjxYEHEUPaycERERkRZ6J2eNGjUqiDiKHlbOiIiISAu9rzmbNGkSFAqFRntSUhJ69OhhkKCKBD78nIiIiLTQOzn7/vvvUb9+fdy8eVPVdujQIVSvXh2xsbEGDc6s8bQmERERaaF3cnbhwgWULVsWNWvWxLJlyzB69Gg0b94cvXv3xrFjxwoiRvPE05pERESkhd7XnDk7O2Pjxo0YN24cPvnkExQrVgy7du1Cs2bNCiI+88XKGREREWmhd+UMAObPn4+5c+eiR48e8PHxwbBhw3D+/HlDx2beWDkjIiIiLfROzlq0aIGoqCisWrUKa9euxdmzZ9GwYUO8//77mD59ekHEaJ5YOSMiIiIt9E7O5HI5Lly4gM6dOwMAbGxssGjRImzevBmzZ882eIBmi5UzIiIi0kLva8727duntb1169a4ePFivgMqMlg5IyIiIi3ydM3Z77//jo8++gjBwcG4f/8+AGDNmjW4cuWKQYMza6ycERERkRZ6J2dbtmxBaGgobGxscPbsWaSmpgLI6IR26tSpBg/QbGWunL19NikRERGR3snZ119/jcWLF2PZsmWwtLRUtderVw9nzpwxaHBmTVk5UyiAV6+MGwsRERGZDL2Ts6tXr6Jhw4Ya7Y6Ojnj27JkhYioa7Oz++z+vOyMiIqK39E7O3NzccOPGDY32P/74Az4+PgYJqkiwsPgvQeN1Z0RERPSW3snZgAEDMHz4cJw4cQISiQQPHjzA2rVrMWrUKAwaNKggYjRffPg5ERERZaF3VxpjxoyBQqFAs2bN8PLlSzRs2BDW1tYYNWoUhg4dWhAxmq/ixYH4eJ7WJCIiIhW9kzOJRILx48dj9OjRuHHjBl68eIEqVarAXnmBO+mO3WkQERFRFnonZ0pWVlaoUqWKIWMpetgRLREREWWRp05oyUBYOSMiIqIsmJwZEytnRERElAWTM2Ni5YyIiIiyYHJmTKycERERURZMzoyJlTMiIiLKwiSSswULFsDb2xsymQxBQUE4efJktuMuW7YMDRo0gLOzM5ydnRESEpLj+CaNlTMiIiLKwujJ2YYNGxAREYHIyEicOXMGNWrUQGhoKBISErSOf+jQIfTo0QMHDx7E8ePH4enpiebNm+P+/fvvOHIDYOWMiIiIspAIIYQxAwgKCkLt2rURExMDAFAoFPD09MTQoUMxZsyYXKeXy+VwdnZGTEwM+vTpk+v4ycnJcHR0RFJSEhwcHPIdf76sWQP06QM0bw7s2WPcWIiIiEyYSf1+FzCjVs7S0tJw+vRphISEqNosLCwQEhKC48eP6zSPly9f4s2bNyhRokRBhVlwWDkjIiKiLPL8hABDePLkCeRyOVxdXdXaXV1dceXKFZ3m8eWXX8LDw0MtwcssNTUVqampqvfJycl5D9jQ+OBzIiIiysLo15zlx7fffosff/wR27Ztg0wm0zpOdHQ0HB0dVS9PT893HGUOeEMAERERZWHU5MzFxQVSqRSPHj1Sa3/06BHc3NxynHbmzJn49ttvsXfvXgQEBGQ73tixY5GUlKR63b171yCxGwRPaxIREVEWRk3OrKysEBgYiAMHDqjaFAoFDhw4gODg4Gynmz59OqZMmYLdu3ejVq1aOS7D2toaDg4Oai+TwcoZERERZWHUa84AICIiAmFhYahVqxbq1KmDOXPmICUlBeHh4QCAPn36oEyZMoiOjgYATJs2DRMnTsS6devg7e2N+Ph4AIC9vT3slZWowkIZb2oq8OYNYGlp3HiIiIjI6IyenHXr1g2PHz/GxIkTER8fj5o1a2L37t2qmwTi4uJgYfFfgW/RokVIS0tD586d1eYTGRmJSZMmvcvQ8y9zMvniBeDsbLxYiIiIyCQYvZ+zd83k+kmxtgbS0oA7d4By5YwdDRERkUkyud/vAlSo79Y0C7zujIiIiDJhcmZsvGOTiIiIMmFyZmysnBEREVEmTM6MjZUzIiIiyoTJmbGxckZERESZMDkzNlbOiIiIKBMmZ8bGyhkRERFlwuTM2JTJGStnREREBCZnxsfTmkRERJQJkzNj42lNIiIiyoTJmbGxckZERESZMDkzNlbOiIiIKBMmZ8bGyhkRERFlwuTM2Fg5IyIiokyYnBkbK2dERESUCZMzY2PljIiIiDJhcmZsrJwRERFRJkzOjE1ZOUtJARQK48ZCRERERsfkzNiUlTMhgJcvjRsLERERGR2TM2OztQUs3n4MvO6MiIioyGNyZmwSCa87IyIiIhUmZ6aAyRkRERG9xeTMFLA7DSIiInqLyZkpYOWMiIiI3mJyZgpYOSMiIqK3mJyZAlbOiIiI6C0mZ6aAlTMiIiJ6i8mZKWDljIiIiN5icmYKWDkjIiKit5icmQJWzoiIiOgtJmemgJUzIiIieovJmSlg5YyIiIjeYnJmClg5IyIioreYnJkCZXLGyhkREVGRx+TMFPC0JhEREb3F5MwU8LQmERERvcXkzBSwckZERERvMTkzBaycERER0VtMzkyBsnL25g2QmmrcWIiIiMiomJyZAmVyBrB6RkREVMQxOTMFxYoBMlnG/3ndGRERUZHG5MwUyOWAtXXG/w8ezHhPRERERRKTM2PbuhXw9gaSkjLe9+uX8X7rVmNGRUREREbC5MyYtm4FOncG7t1Tb79/P6OdCRoREVGRw+TMWORyYPhwQAjNYcq2ESN4ipOIiKiIYXJmLL//rlkxy0wI4O7djPGIiIioyGByZiwPHxp2PCIiIjILTM6Mxd3dsOMRERGRWWByZiwNGgBlywISSfbjeHpmjEdERERFBpMzY5FKgblzM/6fXYJWu3bGeERERFRkMDkzpo4dgc2bgTJl1NtLlMj4d+tWICbm3cdFRERERsPkzNg6dgRu3854MsC6dRn/JiQAU6ZkDB82LCOBIyIioiKhmLEDIGScumzcWL1t/HjgwQNg0SKgVy+gVCmgUSOjhEdERETvDitnpkoiAebPBzp0ANLSgHbtgIsXjR0VERERFTAmZ6ZMKgXWrgXq1ct49mbLlhkd0xIREZHZYnJm6mxsgJ9/BqpUyXjmZosWQGKisaMiIiKiAsLkrDAoUQLYvTvjrs5LlzJOcb56ZeyoiIiIqAAwOSssPD0zEjRHR+CPP4CePflQdCIiIjPE5KwwqVYN+OknwNoa2L4dGDo04wHpREREZDaYnBU2jRpl3CQgkWR0szF1akYF7dAhYP36jH9ZUSMiIiq0JEIUrdJLcnIyHB0dkZSUBAcHB2OHk3cxMRmVMwBwdgb+/fe/YWXLZjwaqmPH3OcjlwO//w48fJjxkPUGDfR7ZJQxp+eyi9ayC3PsXHbRWnZhjt3Y2y0HZvP7rQthAmJiYoSXl5ewtrYWderUESdOnMhx/I0bNwp/f39hbW0tqlWrJnbs2KHzspKSkgQAkZSUlN+wja9jRyEyTmyqvySSjNeWLTlPv2WLEGXLqk9btmzu05nC9Fx20Vp2YY6dyy5ayy7MsRt7u+XCrH6/c2H05OzHH38UVlZWYvny5eKff/4RAwYMEE5OTuLRo0daxz969KiQSqVi+vTp4tKlS+Krr74SlpaW4uLFizotz2w+3PR0zS9B1gTN0zNjPG22bMkYJz+JnbGm57KL1rILc+xcdtFadmGO3djbTQdm8/utA6Of1gwKCkLt2rUR8/YB3wqFAp6enhg6dCjGjBmjMX63bt2QkpKCX3/9VdX2/vvvo2bNmli8eHGuyzObsuihQ0CTJrmPV7p0Rmm5RImM058lSmTc8fm//2V0bKuNRJIx3a5dQLFiGe+VLwBQKIAPPgDi47Of3s0t4zmhxbQ8IUyhABo2zH36I0c0y+FyeUaZPLdpf/9deyldLgfq1899+j/+0L7s+vUzyvX6Tpvf6Yvqsgtz7Fx20Vp2YY79XSy7bFng1q18neI0m99vHRg1OUtLS4OtrS02b96M9u3bq9rDwsLw7Nkz/PTTTxrTlCtXDhERERgxYoSqLTIyEtu3b8f58+c1xk9NTUVqaqrqfXJyMjw9PQv/h7t+fUZ3GkRERIXBwYOaz5HWQ1FKzoz64PMnT55ALpfD1dVVrd3V1RVXrlzROk18fLzW8eOzqYRER0cjKirKMAGbEnd33cZbtAgoXz7jhoHExIx/jx0Ddu7MfVoHB0Am+69ADWT8+/o1kJKS+/QyGWBpqd4mBPDmDZApYc6WtXVG5S3z3w/p6RnPGs2NpaX2ql16esby8zK9PtNm99dlXqfPz7SFedn5nZ7L5rLf1bLzO31RWHZ2lTXSZMxzqvfv3xcAxLFjx9TaR48eLerUqaN1GktLS7Fu3Tq1tgULFojSpUtrHf/169ciKSlJ9bp79655nLNWXnOm7Rx/btecHTyY/bVqmV8HD2pftjGn57KL1rILc+xcdtFadmGO3djbTUdF6ZozGHPhqampQiqVim3btqm19+nTR7Rt21brNJ6enmL27NlqbRMnThQBAQE6LdOsPlzlBZhZE7TcLsDMT2Jn7Om57KK17MIcO5ddtJZdmGM39nbTkVn9fucCxg6gTp06YsiQIar3crlclClTRkRHR2sdv2vXruLDDz9UawsODhaffPKJTsszuw9X263Lnp6631mjb2JnCtNz2UVr2YU5di67aC27MMdu7O2mA7P7/c6B0ZOzH3/8UVhbW4uVK1eKS5cuiYEDBwonJycRHx8vhBCid+/eYsyYMarxjx49KooVKyZmzpwpLl++LCIjI4tmVxqZpadnlIvXrcv4V9e/TvKa2JnC9Fx20Vp2YY6dyy5ayy7MsRt7u+XCLH+/syERQgijXfD2VkxMDGbMmIH4+HjUrFkT8+bNQ1BQEACgcePG8Pb2xsqVK1Xjb9q0CV999RVu376NChUqYPr06WjVqpVOyypKd3voxNi9QRfWnqy5bO4vXDaXbY6xG3u75aAo/X6bRHL2LhWlD5eIiMhcFKXfbz74nIiIiMiEMDkjIiIiMiFMzoiIiIhMCJMzIiIiIhPC5IyIiIjIhDA5IyIiIjIhTM6IiIiITAiTMyIiIiITwuSMiIiIyIQUM3YA75rygQjJyclGjoSIiIh0pfzdLgoPNipyydnz588BAJ6enkaOhIiIiPT1/PlzODo6GjuMAlXknq2pUCjw4MEDFC9eHBKJRG1YcnIyPD09cffuXbN/bpchcbvlDbdb3nC76Y/bLG+43fKmoLabEALPnz+Hh4cHLCzM+6qsIlc5s7CwQNmyZXMcx8HBgV/EPOB2yxtut7zhdtMft1necLvlTUFsN3OvmCmZd+pJREREVMgwOSMiIiIyIUzOMrG2tkZkZCSsra2NHUqhwu2WN9xuecPtpj9us7zhdssbbrf8K3I3BBARERGZMlbOiIiIiEwIkzMiIiIiE8LkjIiIiMiEMDkjIiIiMiFMzjJZsGABvL29IZPJEBQUhJMnTxo7JJM2adIkSCQStVelSpWMHZbJOXLkCNq0aQMPDw9IJBJs375dbbgQAhMnToS7uztsbGwQEhKC69evGydYE5HbNuvbt6/GvteiRQvjBGsioqOjUbt2bRQvXhylS5dG+/btcfXqVbVxXr9+jcGDB6NkyZKwt7dHp06d8OjRIyNFbBp02W6NGzfW2N8+/fRTI0VsGhYtWoSAgABVR7PBwcHYtWuXajj3tfxhcvbWhg0bEBERgcjISJw5cwY1atRAaGgoEhISjB2aSatatSoePnyoev3xxx/GDsnkpKSkoEaNGliwYIHW4dOnT8e8efOwePFinDhxAnZ2dggNDcXr16/fcaSmI7dtBgAtWrRQ2/fWr1//DiM0PYcPH8bgwYPx559/Yt++fXjz5g2aN2+OlJQU1TgjR47EL7/8gk2bNuHw4cN48OABOnbsaMSojU+X7QYAAwYMUNvfpk+fbqSITUPZsmXx7bff4vTp0/jrr7/QtGlTtGvXDv/88w8A7mv5JkgIIUSdOnXE4MGDVe/lcrnw8PAQ0dHRRozKtEVGRooaNWoYO4xCBYDYtm2b6r1CoRBubm5ixowZqrZnz54Ja2trsX79eiNEaHqybjMhhAgLCxPt2rUzSjyFRUJCggAgDh8+LITI2K8sLS3Fpk2bVONcvnxZABDHjx83VpgmJ+t2E0KIRo0aieHDhxsvqELC2dlZ/O9//+O+ZgCsnAFIS0vD6dOnERISomqzsLBASEgIjh8/bsTITN/169fh4eEBHx8f9OrVC3FxccYOqVC5desW4uPj1fY9R0dHBAUFcd/LxaFDh1C6dGn4+/tj0KBBePr0qbFDMilJSUkAgBIlSgAATp8+jTdv3qjta5UqVUK5cuW4r2WSdbsprV27Fi4uLqhWrRrGjh2Lly9fGiM8kySXy/Hjjz8iJSUFwcHB3NcMoMg9+FybJ0+eQC6Xw9XVVa3d1dUVV65cMVJUpi8oKAgrV66Ev78/Hj58iKioKDRo0AB///03ihcvbuzwCoX4+HgA0LrvKYeRphYtWqBjx44oX748YmNjMW7cOLRs2RLHjx+HVCo1dnhGp1AoMGLECNSrVw/VqlUDkLGvWVlZwcnJSW1c7mv/0bbdAKBnz57w8vKCh4cHLly4gC+//BJXr17F1q1bjRit8V28eBHBwcF4/fo17O3tsW3bNlSpUgXnzp3jvpZPTM4oz1q2bKn6f0BAAIKCguDl5YWNGzeif//+RoyMzF337t1V/69evToCAgLg6+uLQ4cOoVmzZkaMzDQMHjwYf//9N68B1VN2223gwIGq/1evXh3u7u5o1qwZYmNj4evr+67DNBn+/v44d+4ckpKSsHnzZoSFheHw4cPGDsss8LQmABcXF0ilUo07SR49egQ3NzcjRVX4ODk5oWLFirhx44axQyk0lPsX97388fHxgYuLC/c9AEOGDMGvv/6KgwcPomzZsqp2Nzc3pKWl4dmzZ2rjc1/LkN120yYoKAgAivz+ZmVlBT8/PwQGBiI6Oho1atTA3Llzua8ZAJMzZOxggYGBOHDggKpNoVDgwIEDCA4ONmJkhcuLFy8QGxsLd3d3Y4dSaJQvXx5ubm5q+15ycjJOnDjBfU8P9+7dw9OnT4v0vieEwJAhQ7Bt2zb89ttvKF++vNrwwMBAWFpaqu1rV69eRVxcXJHe13LbbtqcO3cOAIr0/qaNQqFAamoq9zUD4GnNtyIiIhAWFoZatWqhTp06mDNnDlJSUhAeHm7s0EzWqFGj0KZNG3h5eeHBgweIjIyEVCpFjx49jB2aSXnx4oXaX9i3bt3CuXPnUKJECZQrVw4jRozA119/jQoVKqB8+fKYMGECPDw80L59e+MFbWQ5bbMSJUogKioKnTp1gpubG2JjY/HFF1/Az88PoaGhRozauAYPHox169bhp59+QvHixVXX9jg6OsLGxgaOjo7o378/IiIiUKJECTg4OGDo0KEIDg7G+++/b+TojSe37RYbG4t169ahVatWKFmyJC5cuICRI0eiYcOGCAgIMHL0xjN27Fi0bNkS5cqVw/Pnz7Fu3TocOnQIe/bs4b5mCMa+XdSUzJ8/X5QrV05YWVmJOnXqiD///NPYIZm0bt26CXd3d2FlZSXKlCkjunXrJm7cuGHssEzOwYMHBQCNV1hYmBAiozuNCRMmCFdXV2FtbS2aNWsmrl69atygjSynbfby5UvRvHlzUapUKWFpaSm8vLzEgAEDRHx8vLHDNipt2wuAWLFihWqcV69eic8++0w4OzsLW1tb0aFDB/Hw4UPjBW0CcttucXFxomHDhqJEiRLC2tpa+Pn5idGjR4ukpCTjBm5k/fr1E15eXsLKykqUKlVKNGvWTOzdu1c1nPta/kiEEOJdJoNERERElD1ec0ZERERkQpicEREREZkQJmdEREREJoTJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkT0DvTt27dIP5KLiHTH5IyIiIjIhDA5IyI1jRs3xrBhw/DFF1+gRIkScHNzw6RJk3Kdbvny5ahatSqsra3h7u6OIUOGqIbFxcWhXbt2sLe3h4ODA7p27YpHjx6phk+aNAk1a9bE8uXLUa5cOdjb2+Ozzz6DXC7H9OnT4ebmhtKlS+Obb75RW6ZEIsGiRYvQsmVL2NjYwMfHB5s3b1Yb5+LFi2jatClsbGxQsmRJDBw4EC9evFANV1a0Zs6cCXd3d5QsWRKDBw/GmzdvVOOkpqZi1KhRKFOmDOzs7BAUFIRDhw6phq9cuRJOTk7Ys2cPKleuDHt7e7Ro0QIPHz5Urd+qVavw008/QSKRQCKR4NChQ0hLS8OQIUPg7u4OmUwGLy8vREdH6/Q5EZH5YnJGRBpWrVoFOzs7nDhxAtOnT8fkyZOxb9++bMdftGgRBg8ejIEDB+LixYv4+eef4efnBwBQKBRo164dEhMTcfjwYezbtw83b95Et27d1OYRGxuLXbt2Yffu3Vi/fj2+//57tG7dGvfu3cPhw4cxbdo0fPXVVzhx4oTadBMmTECnTp1w/vx59OrVC927d8fly5cBACkpKQgNDYWzszNOnTqFTZs2Yf/+/WqJIwAcPHgQsbGxOHjwIFatWoWVK1di5cqVquFDhgzB8ePH8eOPP+LChQvo0qULWrRogevXr6vGefnyJWbOnIk1a9bgyJEjiIuLw6hRowAAo0aNQteuXVUJ28OHD1G3bl3MmzcPP//8MzZu3IirV69i7dq18Pb21vvzIiIzY+wnrxORaWnUqJGoX7++Wlvt2rXFl19+me00Hh4eYvz48VqH7d27V0ilUhEXF6dq++effwQAcfLkSSGEEJGRkcLW1lYkJyerxgkNDRXe3t5CLper2vz9/UV0dLTqPQDx6aefqi0vKChIDBo0SAghxNKlS4Wzs7N48eKFaviOHTuEhYWFiI+PF0IIERYWJry8vER6erpqnC5duohu3boJIYS4c+eOkEql4v79+2rLadasmRg7dqwQQogVK1YIAOLGjRuq4QsWLBCurq6q92FhYaJdu3Zq8xg6dKho2rSpUCgUWrcdERVNrJwRkYaAgAC19+7u7khISNA6bkJCAh48eIBmzZppHX758mV4enrC09NT1ValShU4OTmpKlwA4O3tjeLFi6veu7q6okqVKrCwsFBryxpHcHCwxnvlfC9fvowaNWrAzs5ONbxevXpQKBS4evWqqq1q1aqQSqVa1/fixYuQy+WoWLEi7O3tVa/Dhw8jNjZWNY2trS18fX21ziM7ffv2xblz5+Dv749hw4Zh7969OY5PREVDMWMHQESmx9LSUu29RCKBQqHQOq6NjU2BLVOfOAy9bOVyXrx4AalUitOnT6slcABgb2+f4zyEEDku9//+7/9w69Yt7Nq1C/v370fXrl0REhKicd0cERUtrJwRUb4UL14c3t7eOHDggNbhlStXxt27d3H37l1V26VLl/Ds2TNUqVIl38v/888/Nd5XrlxZtezz588jJSVFNfzo0aOwsLCAv7+/TvN/7733IJfLkZCQAD8/P7WXm5ubznFaWVlBLpdrtDs4OKBbt25YtmwZNmzYgC1btiAxMVHn+RKR+WFyRkT5NmnSJHz33XeYN28erl+/jjNnzmD+/PkAgJCQEFSvXh29evXCmTNncPLkSfTp0weNGjVCrVq18r3sTZs2Yfny5bh27RoiIyNx8uRJ1QX/vXr1gkwmQ1hYGP7++28cPHgQQ4cORe/eveHq6qrT/CtWrIhevXqhT58+2Lp1K27duoWTJ08iOjoaO3bs0DlOb29vXLhwAVevXsWTJ0/w5s0bzJo1C+vXr8eVK1dw7do1bNq0CW5ubnBycsrLpiAiM8HkjIjyLSwsDHPmzMHChQtRtWpVfPjhh6o7GSUSCX766Sc4OzujYcOGCAkJgY+PDzZs2GCQZUdFReHHH39EQEAAVq9ejfXr16sqcra2ttizZw8SExNRu3ZtdO7cGc2aNUNMTIxey1ixYgX69OmDzz//HP7+/mjfvj1OnTqFcuXK6TyPAQMGwN/fH7Vq1UKpUqVw9OhRFC9eHNOnT0etWrVQu3Zt3L59Gzt37lS7zo6Iih6JyO2iCCIiEyWRSLBt2zb2vE9EZoV/nhERERGZECZnRERERCaEXWkQUaHFqzKIyByxckZERERkQpicEREREZkQJmdEREREJoTJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkRERGRC/h/fG6fh5NTwwwAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 194,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "PPOGb3m22t0h",
+ "outputId": "17b942fe-602e-4fbb-b831-1e02488bb0d9"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.98 0.98 0.98 526\n",
+ " Red Blend 0.76 0.74 0.75 742\n",
+ " Sangiovese 0.62 0.64 0.63 457\n",
+ "\n",
+ " accuracy 0.79 1725\n",
+ " macro avg 0.78 0.79 0.78 1725\n",
+ "weighted avg 0.79 0.79 0.79 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
+ " 'max_depth': [5, 10, None],\n",
+ "}\n",
+ "clf = DecisionTreeClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_pca, Y_train)\n",
+ "y_pred_dtc_pca = grid_search_clf.predict(X_test_pca)\n",
+ "\n",
+ "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_dtc_pca))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BBCSipxwINo7"
+ },
+ "source": [
+ "Видим, что после уменьшения размерности с помощью PCA модель неплохо справляется с предсказанием."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 195,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "KXjsGlcsg01u",
+ "outputId": "54d80349-e02d-448e-fb56-93d05eb49a55"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for SGDClassifier: {'loss': 'hinge', 'max_iter': 100}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.97 0.98 0.97 526\n",
+ " Red Blend 0.67 0.83 0.74 742\n",
+ " Sangiovese 0.59 0.35 0.44 457\n",
+ "\n",
+ " accuracy 0.75 1725\n",
+ " macro avg 0.74 0.72 0.72 1725\n",
+ "weighted avg 0.74 0.75 0.73 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
+ " 'max_iter': [100, 200, 400, 800, 1000]\n",
+ "}\n",
+ "clf = SGDClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_pca, Y_train)\n",
+ "y_pred_sgdc_pca = grid_search_clf.predict(X_test_pca)\n",
+ "\n",
+ "\n",
+ "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_sgdc_pca))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kign9MkOJcdI"
+ },
+ "source": [
+ "Такая модель так же неплохо справляется с предсказанием, но все же менее точно чем DecisionTreeClassifier."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 196,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "S1CpDRTxhLBG",
+ "outputId": "95ece058-e7fd-4992-90bf-b471c88e23ff"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.85 0.93 0.88 526\n",
+ " Red Blend 0.62 0.86 0.72 742\n",
+ " Sangiovese 0.67 0.18 0.28 457\n",
+ "\n",
+ " accuracy 0.70 1725\n",
+ " macro avg 0.71 0.65 0.63 1725\n",
+ "weighted avg 0.70 0.70 0.65 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = SVC()\n",
+ "clf.fit(X_train_pca, Y_train)\n",
+ "y_pred_svc_pca = clf.predict(X_test_pca)\n",
+ "\n",
+ "print(classification_report(Y_test, y_pred_svc_pca))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "oFIv_FUSHPFg"
+ },
+ "source": [
+ "Такая модель неплохо справляется с предсказанием для Nebbiolo и Red Blend, но для Sngiovese предсказание получется слишком неточным, следовательно, общая точность модели достаточно низкая."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kEYXLr8sJzql"
+ },
+ "source": [
+ "# t-SNE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 197,
+ "metadata": {
+ "id": "5EYwtlZrkyTV",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "42e116c4-e1d5-463c-de88-3b2ac96199c9"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 8.697849 , 56.422546 ],\n",
+ " [ 85.46976 , -6.209872 ],\n",
+ " [-91.522644 , 3.429889 ],\n",
+ " ...,\n",
+ " [-31.943085 , 35.00665 ],\n",
+ " [ 5.8764524, -20.747879 ],\n",
+ " [-89.09723 , 19.900454 ]], dtype=float32)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 197
+ }
+ ],
+ "source": [
+ "tsne = TSNE(random_state=42)\n",
+ "X_train_tsne = tsne.fit_transform(X_train_lbe)\n",
+ "X_test_tsne = tsne.fit_transform(X_test_lbe)\n",
+ "X_train_tsne"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 200,
+ "metadata": {
+ "id": "5iL9lCiGlnjH",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "d4e4d501-cff9-4417-9fc1-622c61907242"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.28 0.19 0.22 526\n",
+ " Red Blend 0.42 0.35 0.38 742\n",
+ " Sangiovese 0.30 0.49 0.37 457\n",
+ "\n",
+ " accuracy 0.34 1725\n",
+ " macro avg 0.33 0.34 0.33 1725\n",
+ "weighted avg 0.35 0.34 0.33 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
+ " 'max_depth': [5, 10, None],\n",
+ "}\n",
+ "clf = DecisionTreeClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_tsne, Y_train)\n",
+ "y_pred_dtc_tsne = grid_search_clf.predict(X_test_tsne)\n",
+ "\n",
+ "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_dtc_tsne))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3dEtGnIkJ5kH"
+ },
+ "source": [
+ "Модель предсказывает данные с очень низкой точностью, после применения t-SNE."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 201,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "shg3-6ZAzWVV",
+ "outputId": "035d4ce7-1c79-43e2-d0de-32b74d562176"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for SGDClassifier: {'loss': 'modified_huber', 'max_iter': 100}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.29 0.37 0.32 526\n",
+ " Red Blend 0.42 0.59 0.49 742\n",
+ " Sangiovese 0.00 0.00 0.00 457\n",
+ "\n",
+ " accuracy 0.37 1725\n",
+ " macro avg 0.24 0.32 0.27 1725\n",
+ "weighted avg 0.27 0.37 0.31 1725\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_stochastic_gradient.py:744: ConvergenceWarning:\n",
+ "\n",
+ "Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
+ " 'max_iter': [100, 200, 400, 800, 1000]\n",
+ "}\n",
+ "clf = SGDClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_tsne, Y_train)\n",
+ "y_pred_sgdc_tsne = grid_search_clf.predict(X_test_tsne)\n",
+ "\n",
+ "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_sgdc_tsne))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uIuYXlGsKDT9"
+ },
+ "source": [
+ "После t-SNE точность модели сильно снизилась."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 202,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "mS7KSWX9zYB-",
+ "outputId": "255f5776-375a-4bc6-da15-3533a8e04dc9"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.38 0.55 0.45 526\n",
+ " Red Blend 0.46 0.59 0.52 742\n",
+ " Sangiovese 0.00 0.00 0.00 457\n",
+ "\n",
+ " accuracy 0.42 1725\n",
+ " macro avg 0.28 0.38 0.32 1725\n",
+ "weighted avg 0.31 0.42 0.36 1725\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n",
+ "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
+ "\n",
+ "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = SVC()\n",
+ "clf.fit(X_train_tsne, Y_train)\n",
+ "y_pred_svc_tsne = clf.predict(X_test_tsne)\n",
+ "\n",
+ "print(classification_report(Y_test, y_pred_svc_tsne))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_o6olr86LPuk"
+ },
+ "source": [
+ "После t-SNE у точность модели сильно снизилась."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# StandartScaler"
+ ],
+ "metadata": {
+ "id": "c5HYyaDQk_FA"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.preprocessing import StandardScaler"
+ ],
+ "metadata": {
+ "id": "8_5pvsWylDf7"
+ },
+ "execution_count": 203,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "scaler = StandardScaler()\n",
+ "X_train_scal = scaler.fit_transform(X_train_lbe)\n",
+ "X_test_scal = scaler.transform(X_test_lbe)\n",
+ "X_train_scal"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "6_FpArVPlRmC",
+ "outputId": "cdbcd123-c798-4082-9b35-3a211947ce67"
+ },
+ "execution_count": 204,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 0.64223813, 0.1020881 , -0.79932341, 0.29019682, -0.24042572],\n",
+ " [-0.83935434, -0.15453387, 0.68902728, 1.6211048 , 0.17319704],\n",
+ " [-0.83935434, -0.7475537 , 1.18514418, -1.6511276 , 0.17319704],\n",
+ " ...,\n",
+ " [-0.46895622, -0.67472726, 0.68902728, -0.16611449, 0.58681979],\n",
+ " [-0.46895622, -0.79610466, 0.68902728, 0.77652861, 0.38000841],\n",
+ " [-1.20975246, -0.84465562, -0.30320652, -1.58107982, 0.27660272]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 204
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 205,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "2d0bd8a9-07b1-435d-bff5-ce0aee53b692",
+ "id": "Ooxr06_ll6xq"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.99 0.98 0.99 526\n",
+ " Red Blend 0.80 0.80 0.80 742\n",
+ " Sangiovese 0.69 0.71 0.70 457\n",
+ "\n",
+ " accuracy 0.83 1725\n",
+ " macro avg 0.83 0.83 0.83 1725\n",
+ "weighted avg 0.83 0.83 0.83 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
+ " 'max_depth': [5, 10, None],\n",
+ "}\n",
+ "clf = DecisionTreeClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_scal, Y_train)\n",
+ "y_pred_dtc_scal= grid_search_clf.predict(X_test_scal)\n",
+ "\n",
+ "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_dtc_scal))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CqRCrNacl6xs"
+ },
+ "source": [
+ "Модель предсказывает данные с неплохой точностью, после применения масштабирования."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 207,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "517356ec-5a3b-408c-c7fa-b1ce76633ec4",
+ "id": "zwAM4RXNl6xt"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "best parameters for SGDClassifier: {'loss': 'hinge', 'max_iter': 100}\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.79 1.00 0.88 526\n",
+ " Red Blend 0.59 0.80 0.68 742\n",
+ " Sangiovese 0.49 0.07 0.12 457\n",
+ "\n",
+ " accuracy 0.67 1725\n",
+ " macro avg 0.63 0.62 0.56 1725\n",
+ "weighted avg 0.63 0.67 0.59 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_grid_clf = {\n",
+ " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
+ " 'max_iter': [100, 200, 400, 800, 1000]\n",
+ "}\n",
+ "clf = SGDClassifier(random_state=42)\n",
+ "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
+ "grid_search_clf.fit(X_train_scal, Y_train)\n",
+ "y_pred_sgdc_scal = grid_search_clf.predict(X_test_scal)\n",
+ "\n",
+ "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
+ "print(classification_report(Y_test, y_pred_sgdc_scal))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "plhnClvOl6xu"
+ },
+ "source": [
+ "Точность модели для Nebbiolo и Red Blend неплохая, но для Sangiovese предсказания очень неточные.\n",
+ "\n",
+ "Общая точность модели довольно низкая."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 208,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "eb870630-4335-4f98-8c5d-a6753e1a8af8",
+ "id": "FFtQnBr-l6xv"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " Nebbiolo 0.95 1.00 0.97 526\n",
+ " Red Blend 0.70 0.80 0.75 742\n",
+ " Sangiovese 0.63 0.44 0.52 457\n",
+ "\n",
+ " accuracy 0.77 1725\n",
+ " macro avg 0.76 0.75 0.75 1725\n",
+ "weighted avg 0.76 0.77 0.76 1725\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = SVC()\n",
+ "clf.fit(X_train_scal, Y_train)\n",
+ "y_pred_svc_scal = clf.predict(X_test_scal)\n",
+ "\n",
+ "print(classification_report(Y_test, y_pred_svc_scal))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "После масштабирования данных модель SVC показала себя лучше чем на предыдущих вариантах. Такую точность можно так же считать неплохой."
+ ],
+ "metadata": {
+ "id": "00bHBluAnIjq"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Графики и сравнения моделей"
+ ],
+ "metadata": {
+ "id": "b6p5JvSinblz"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "fig, axes = plt.subplots(5, 3, figsize=(20, 30))\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_gd), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])\n",
+ "axes[0, 0].set_title('confusion_matrix for DecisionTree after get_dummies')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 0])\n",
+ "axes[1, 0].set_title('confusion_matrix for DecisionTree after LabelEncoder')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 1])\n",
+ "axes[1, 1].set_title('confusion_matrix for SGDClassifier after LabelEncoder')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 2])\n",
+ "axes[1, 2].set_title('confusion_matrix for SVC after LabelEncoder')\n",
+ "\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 0])\n",
+ "axes[2, 0].set_title('confusion_matrix for DecisionTree after PCA')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 1])\n",
+ "axes[2, 1].set_title('confusion_matrix for SGDClassifier after PCA')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 2])\n",
+ "axes[2, 2].set_title('confusion_matrix for SVC after PCA')\n",
+ "\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 0])\n",
+ "axes[3, 0].set_title('confusion_matrix for DecisionTree after t-SNE')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 1])\n",
+ "axes[3, 1].set_title('confusion_matrix for SGDClassifier after t-SNE')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 2])\n",
+ "axes[3, 2].set_title('confusion_matrix for SVC after t-SNE')\n",
+ "\n",
+ "\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 0])\n",
+ "axes[4, 0].set_title('confusion_matrix for DecisionTree after SandartScaler')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 1])\n",
+ "axes[4, 1].set_title('confusion_matrix for SGDClassifier after SandartScaler')\n",
+ "\n",
+ "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 2])\n",
+ "axes[4, 2].set_title('confusion_matrix for SVC after SandartScaler')\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "nETXJ9qLfdei",
+ "outputId": "c2ec037a-9c8c-410e-d4c4-e6edef85053b"
+ },
+ "execution_count": 223,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAuuCAYAAABGADMTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gV1cE/8O9dytIXUFmwYokFa8SoxBpFiS0aW/Q1isYSFTVKYgyJsSuJSewtmsQWTSxRX3tDTWLEhtEf9i6KAiLCUhfYvb8/eFldKYqyu9fL5/M88zzeM2dmzlxmr/PMme85hWKxWAwAAAAAAAAAlKmKlm4AAAAAAAAAADQlHeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jAAAAAAAAAJQ1HeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jAAAAAAAAAJQ1HeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jTeTaa6/NmmuumTZt2qRr166Lff+nnHJKCoXCYt9vOXn77bdTKBRy1VVXLbZ9PvXUU/n2t7+djh07plAo5Nlnn11s+y5FhUIhp5xyyiJtc+CBB6Z3795N0p5y9Nprr2X77bdPVVVVCoVCbrvttpZuUsl65JFHUigU8sgjj7R0U74UfxsAAAAAANBydIw3gZdffjkHHnhgVl111VxxxRW5/PLLW7pJX3t33333InfQLm6zZs3KXnvtlQkTJuTcc8/Ntddem5VWWqnJjje3E3DuUllZmerq6my99dY566yz8uGHHzbZsUvZp7+ThS1fl87TgQMHZuTIkTnzzDNz7bXXZqONNsr111+f8847r6Wb9pVMmzYtp5xyytfm3wEAAAAAAChvhWKxWGzpRpSbyy67LEcccURee+21rLbaak1yjNmzZ2f27Nlp165dk+y/1Bx11FG5+OKLsyiXa7FYTG1tbdq0aZNWrVp95Ta8/PLLWWuttXLFFVfkkEMO+cr7+zyPPPJIvvOd7+SYY47Jt771rdTV1eXDDz/MY489ljvuuCNVVVW58cYbs8022zRZG2bMmJHWrVundevWX3ibWbNmpb6+PpWVlU3Spr/+9a+NPl9zzTV54IEHcu211zYq32677VJdXd0kbVhcpk+fng4dOuRXv/pVzjjjjIbynXfeOc8//3zefvvtlmvcVzR+/Pgss8wyOfnkkxfbSy1z/yYefvjhbL311otln82pqf82AAAAAACABfvivV18YePGjUuSJhlCfa5F7axcksyePTv19fVp27btYn1xoCn+XadOnZqOHTsutM4WW2yRPffcs1HZc889l+233z577LFHXnzxxfTq1WuxtenTvsz316ZNmyZoySd++MMfNvr8+OOP54EHHpin/LOmTZuWDh06NGXTFtnc1H9T/lbMVV9fn5kzZy4xL9OUoqb+2wAAAAAAABas7IdSHz16dA4++OAsu+yyqayszMorr5wjjjgiM2fObKjz5ptvZq+99kr37t3ToUOHbLrpprnrrrsa7WfusNY33nhjzjzzzCy//PJp165dtt1227z++usN9Xr37p2TTz45SbLMMss0mqN5QfM19+7dOwceeGDD51mzZuXUU0/NN77xjbRr1y5LLbVUNt988zzwwAMNdeY3x/js2bNz+umnZ9VVV01lZWV69+6dX/7yl6mtrZ3neDvvvHMeffTRbLzxxmnXrl1WWWWVXHPNNYv03c49p6OOOio33XRT+vTpk/bt26dfv34ZOXJkkuSPf/xjVltttbRr1y5bb731PAnYf//739lrr72y4oorprKyMiussEKOO+64TJ8+vaHOgQcemIsvvrjheHOX5JN5xH//+9/nvPPOazj3F198cZ45xseNG5dlllkmW2+9daPk+euvv56OHTvmBz/4wQLP88ADD8xWW22VJNlrr71SKBQaJVYfeuihbLHFFunYsWO6du2aXXfdNS+99FKjfcz9N3vxxRfzP//zP+nWrVs233zzRfvC/8/666+f8847LxMnTsxFF13UaN3o0aPzox/9KNXV1amsrMzaa6+dv/zlL/PsY8aMGTnllFOy+uqrp127dunVq1d23333vPHGGw11PnvNTp48Occee2x69+6dysrK9OjRI9ttt12eeeaZRt/VZ+dRnjp1an76059mhRVWSGVlZdZYY438/ve/n2cEgLnX02233ZZ11lmnof333nvvIn0/W2+9ddZZZ52MGDEiW265ZTp06JBf/vKXSZLa2tqcfPLJWW211RquuZ///Ofz/J0kc9Lpffv2Tfv27dO9e/fss88+effddz/3+O+8806OPPLIrLHGGmnfvn2WWmqp7LXXXo2u/1NOOaVhKP7jjz8+hUIhvXv3ztZbb5277ror77zzTsO1/unv84u2f+53ed1112XttddOZWXlQr/H+vr6nHLKKVl22WXToUOHfOc738mLL744z+9TkkycODHHHntsw7/naqutlt/+9repr69PMufvcplllkmSnHrqqQ3nsSjJ8ffeey+77bZbOnbsmB49euS4446b77/R/NqXzLkGPv03+unf8FNPPTXLLbdcOnfunD333DOTJk1KbW1tjj322PTo0SOdOnXKQQcdtMDv9Mv+3s3vb6O+vj7nnXde1l577bRr1y7V1dX58Y9/nI8//rhRvaeffjoDBgzI0ksvnfbt22fllVfOj370oy/8fQIAAAAAwJKurCPH77//fjbeeONMnDgxhx12WNZcc82MHj06N998c6ZNm5a2bdtm7Nix+fa3v51p06blmGOOyVJLLZWrr7463/ve93LzzTfn+9//fqN9/uY3v0lFRUV+9rOfZdKkSTn77LOz33775YknnkiSnHfeebnmmmty66235tJLL02nTp2y3nrrLVK7TznllAwdOjSHHHJINt5449TU1OTpp5/OM888k+22226B2x1yyCG5+uqrs+eee+anP/1pnnjiiQwdOjQvvfRSbr311kZ1X3/99ey55545+OCDM3DgwPzlL3/JgQcemL59+2bttddepPb++9//zu23355BgwYlSYYOHZqdd945P//5z3PJJZfkyCOPzMcff5yzzz47P/rRj/LQQw81bHvTTTdl2rRpOeKII7LUUkvlySefzIUXXpj33nsvN910U5Lkxz/+cd5///35Dpc915VXXpkZM2bksMMOS2VlZbp3797QSTdXjx49cumll2avvfbKhRdemGOOOSb19fU58MAD07lz51xyySULPMcf//jHWW655XLWWWc1DG0+d5juBx98MDvssENWWWWVnHLKKZk+fXouvPDCbLbZZnnmmWfm6Qjba6+98o1vfCNnnXXWIg0N/1lz//3uv//+nHnmmUmSsWPHZtNNN23owFtmmWVyzz335OCDD05NTU2OPfbYJEldXV123nnnDBs2LPvss09+8pOfZPLkyXnggQfy/PPPZ9VVV53vMQ8//PDcfPPNOeqoo9KnT5989NFHefTRR/PSSy9lww03nO82xWIx3/ve9/Lwww/n4IMPzgYbbJD77rsvxx9/fEaPHp1zzz23Uf1HH300t9xyS4488sh07tw5F1xwQfbYY4+MGjUqSy211Bf+fj766KPssMMO2WefffLDH/4w1dXVqa+vz/e+9708+uijOeyww7LWWmtl5MiROffcc/Pqq6/mtttua9j+zDPPzK9//evsvffeOeSQQ/Lhhx/mwgsvzJZbbpn//ve/C015P/XUU3nssceyzz77ZPnll8/bb7+dSy+9NFtvvXVefPHFdOjQIbvvvnu6du2a4447Lvvuu2923HHHdOrUKR07dsykSZPy3nvvNXw3nTp1SpJFan8y54WNG2+8MUcddVSWXnrpea7FTxsyZEjOPvvs7LLLLhkwYECee+65DBgwIDNmzGhUb9q0adlqq60yevTo/PjHP86KK66Yxx57LEOGDMkHH3yQ8847L8sss0wuvfTSHHHEEfn+97+f3XffPUm+8G/h9OnTs+2222bUqFE55phjsuyyy+baa69t9NvxZQ0dOjTt27fPL37xi7z++uu58MIL06ZNm1RUVOTjjz/OKaeckscffzxXXXVVVl555Zx00kmNtv8qv3fz8+Mf/zhXXXVVDjrooBxzzDF56623ctFFF+W///1v/vOf/6RNmzYZN25ctt9++yyzzDL5xS9+ka5du+btt9/OLbfc8pW/DwAAAAAAWGIUy9gBBxxQrKioKD711FPzrKuvry8Wi8XiscceW0xS/Pe//92wbvLkycWVV1652Lt372JdXV2xWCwWH3744WKS4lprrVWsra1tqHv++ecXkxRHjhzZUHbyyScXkxQ//PDDRsdMUjz55JPnactKK61UHDhwYMPn9ddfv7jTTjst9NzmHmOuZ599tpikeMghhzSq97Of/ayYpPjQQw81Ol6S4r/+9a+GsnHjxhUrKyuLP/3pTxd63M9KUqysrCy+9dZbDWV//OMfi0mKPXv2LNbU1DSUDxkypJikUd1p06bNs8+hQ4cWC4VC8Z133mkoGzRoUHF+l+tbb71VTFLs0qVLcdy4cfNdd+WVVzYq33fffYsdOnQovvrqq8Xf/e53xSTF22677XPPde41cNNNNzUq32CDDYo9evQofvTRRw1lzz33XLGioqJ4wAEHNJTN/Tfbd999P/dYCzvep62//vrFbt26NXw++OCDi7169SqOHz++Ub199tmnWFVV1fB9/+UvfykmKZ5zzjnz7HPu30axOO81W1VVVRw0aNBC2z1w4MDiSiut1PD5tttuKyYpnnHGGY3q7bnnnsVCoVB8/fXXGx2vbdu2jcqee+65YpLihRdeON/jze/a2GqrrYpJipdddlmj8muvvbZYUVHR6O+9WCwWL7vssmKS4n/+859isVgsvv3228VWrVoVzzzzzEb1Ro4cWWzduvU85Z81v+t6+PDhxSTFa665pqFs7jX6u9/9rlHdnXbaqdF3uKjtLxbnfJcVFRXFF154YaFtLRaLxTFjxhRbt25d3G233RqVn3LKKcUkjX6fTj/99GLHjh2Lr776aqO6v/jFL4qtWrUqjho1qlgsFosffvjhAn/zPs95551XTFK88cYbG8qmTp1aXG211YpJig8//HBD+Wd/P+faaqutiltttVXD57l/T+uss05x5syZDeX77rtvsVAoFHfYYYdG2/fr12+ef4Ov+nv32b+Nf//738Ukxeuuu67Rce69995G5bfeemsxyXz/XwYAAAAAAHwxZTuUen19fW677bbssssu2WijjeZZP3co7rvvvjsbb7xxoyGtO3XqlMMOOyxvv/12XnzxxUbbHXTQQWnbtm3D5y222CLJnOHYF5euXbvmhRdeyGuvvfaFt7n77ruTJIMHD25U/tOf/jRJ5hkavk+fPg1tT+YM+77GGmt8qfPYdtttGyVRN9lkkyTJHnvskc6dO89T/uljtG/fvuG/p06dmvHjx+fb3/52isVi/vvf/37hNuyxxx4NQzd/nosuuihVVVXZc8898+tf/zr7779/dt111y98rE/74IMP8uyzz+bAAw9M9+7dG8rXW2+9bLfddg3/Lp92+OGHf6ljzU+nTp0yefLkJHOS2f/4xz+yyy67pFgsZvz48Q3LgAEDMmnSpIYhz//xj39k6aWXztFHHz3PPj87RP+nde3aNU888UTef//9L9zGu+++O61atcoxxxzTqPynP/1pisVi7rnnnkbl/fv3b5RYX2+99dKlS5dFvjYrKytz0EEHNSq76aabstZaa2XNNdds9P1ss802SZKHH344SXLLLbekvr4+e++9d6N6PXv2zDe+8Y2Gegvy6et61qxZ+eijj7Laaqula9eujYadX1RftP1zbbXVVunTp8/n7nfYsGGZPXt2jjzyyEbl87s+brrppmyxxRbp1q1bozb0798/dXV1+de//vWlz2+uu+++O7169cqee+7ZUNahQ4ccdthhX3nfBxxwQKO5vjfZZJMUi8V5hiXfZJNN8u6772b27NmNyr/K791n3XTTTamqqsp2223X6Lvs27dvOnXq1PDvOXd0gjvvvDOzZs1a9JMGAAAAAADKdyj1Dz/8MDU1NVlnnXUWWu+dd95p6MD4tLXWWqth/af3seKKKzaq161btySZZz7Yr+K0007LrrvumtVXXz3rrLNOvvvd72b//fdf6DDE77zzTioqKrLaaqs1Ku/Zs2e6du2ad955p1H5Z88jmXMuX+Y8PruvqqqqJMkKK6ww3/JPH2PUqFE56aSTcvvtt89z7EmTJn3hNqy88spfuG737t1zwQUXZK+99kp1dXUuuOCCL7ztZ839XtdYY4151q211lq57777MnXq1HTs2PFLtfXzTJkypaEz7sMPP8zEiRNz+eWX5/LLL59v/XHjxiVJ3njjjayxxhpp3XrRfgLOPvvsDBw4MCussEL69u2bHXfcMQcccEBWWWWVBW7zzjvvZNlll23UaZg0/hv7tMV1bS633HKNXmJJktdeey0vvfTSAl+imPv9vPbaaykWi/nGN74x33qf7lidn+nTp2fo0KG58sorM3r06EZD5i/Kdf1ZX7T9c33Ra23uv8Fnfz+6d+/e8Bv36Tb8v//3/75wG76Md955J6uttto8L2nM7+9sUS3K71V9fX0mTZrUaAj/r/J791mvvfZaJk2alB49esx3/dzvcquttsoee+yRU089Neeee2623nrr7Lbbbvmf//mfVFZWLnD/AAAAAADAJ8q2Y7yptGrVar7lxa8wV3RdXV2jz1tuuWXeeOON/O///m/uv//+/OlPf8q5556byy67LIcccshC97WwtO+nLc7zWNC+Pu8YdXV12W677TJhwoSccMIJWXPNNdOxY8eMHj06Bx544DxzhC/MpxO6X8R9992XZE6n1XvvvbfQ+aIXt0Vt64LMmjUrr776asOLG3O/rx/+8IcZOHDgfLdZ1PnuP2vvvffOFltskVtvvTX3339/fve73+W3v/1tbrnlluywww5fad9zLa5rc37fc319fdZdd92cc845891mbudmfX19CoVC7rnnnvm2Z+6c3wty9NFH58orr8yxxx6bfv36paqqKoVCIfvss88iXddftv1zLa5r7bNt2G677fLzn/98vutXX331xX7MhVnQb15dXd18/+2+7O/V4tr+0+rr69OjR49cd911810/9+WDQqGQm2++OY8//njuuOOO3HffffnRj36UP/zhD3n88cc/93oEAAAAAADKuGN8mWWWSZcuXfL8888vtN5KK62UV155ZZ7yl19+uWH94tKtW7dMnDixUdnMmTPzwQcfzFO3e/fuOeigg3LQQQdlypQp2XLLLXPKKacssGN8pZVWSn19fV577bWGJG6SjB07NhMnTlys57G4jBw5Mq+++mquvvrqHHDAAQ3lDzzwwDx1v2iH/xdx77335k9/+lN+/vOf57rrrsvAgQPzxBNPLHJ6Ovnk+ljQNbT00ks3SosvTjfffHOmT5+eAQMGJJlzzXfu3Dl1dXXp37//QrddddVV88QTT2TWrFmfm37+rF69euXII4/MkUcemXHjxmXDDTfMmWeeucCO8ZVWWikPPvhgJk+e3Cg13hR/Y59n1VVXzXPPPZdtt912odfUqquummKxmJVXXvlLdfTefPPNGThwYP7whz80lM2YMWOev/8FWVDbvmj7F9Xcf4PXX3+9Ucr8o48+mifxvOqqq2bKlCmfe419lfattNJKef7551MsFhvtZ35/Z/P7XU3mpM4XNpJBKVh11VXz4IMPZrPNNvtCLzFsuumm2XTTTXPmmWfm+uuvz3777Ze///3vn/vCFAAAAAAAkJTtHOMVFRXZbbfdcscdd+Tpp5+eZ/3cFN+OO+6YJ598MsOHD29YN3Xq1Fx++eXp3bv3F5qf94taddVV55l/9/LLL58nMf7RRx81+typU6esttpqqa2tXeC+d9xxxyTJeeed16h8brJ0p512+rLNbjJzE5afTlQWi8Wcf/7589Sd27n8RTsWF2TixIk55JBDsvHGG+ess87Kn/70pzzzzDM566yzvtT+evXqlQ022CBXX311o7Y9//zzuf/++xv+XRa35557Lscee2y6deuWQYMGJZnzfe6xxx75xz/+Md8XQj788MOG/95jjz0yfvz4XHTRRfPUW1DCta6ubp5hwHv06JFll132c6/Nurq6eY517rnnplAoLLak+Rex9957Z/To0bniiivmWTd9+vRMnTo1SbL77runVatWOfXUU+f5PorF4jx/o5/VqlWreba78MIL5/lbX5COHTvOd8j1L9r+RbXtttumdevWufTSSxuVz+/62HvvvTN8+PCGURc+beLEiQ1zcnfo0KGhbFHtuOOOef/993PzzTc3lE2bNm2+UwSsuuqqefzxxzNz5syGsjvvvDPvvvvuIh+3ue29996pq6vL6aefPs+62bNnN3x3H3/88TzX0wYbbJAkC/3bAwAAAAAAPlG2ifEkOeuss3L//fdnq622ymGHHZa11lorH3zwQW666aY8+uij6dq1a37xi1/kb3/7W3bYYYccc8wx6d69e66++uq89dZb+cc//pGKisX37sAhhxySww8/PHvssUe22267PPfcc7nvvvuy9NJLN6rXp0+fbL311unbt2+6d++ep59+OjfffHOOOuqoBe57/fXXz8CBA3P55Zdn4sSJ2WqrrfLkk0/m6quvzm677ZbvfOc7i+08Fpc111wzq666an72s59l9OjR6dKlS/7xj3/Md07evn37JkmOOeaYDBgwIK1atco+++yzyMf8yU9+ko8++igPPvhgWrVqle9+97s55JBDcsYZZ2TXXXfN+uuvv8j7/N3vfpcddtgh/fr1y8EHH5zp06fnwgsvTFVVVU455ZRF3t9n/fvf/86MGTNSV1eXjz76KP/5z39y++23p6qqKrfeemt69uzZUPc3v/lNHn744WyyySY59NBD06dPn0yYMCHPPPNMHnzwwUyYMCFJcsABB+Saa67J4MGD8+STT2aLLbbI1KlT8+CDD+bII4/MrrvuOk87Jk+enOWXXz577rln1l9//XTq1CkPPvhgnnrqqUbJ6M/aZZdd8p3vfCe/+tWv8vbbb2f99dfP/fffn//93//Nsccem1VXXfUrf0df1P77758bb7wxhx9+eB5++OFsttlmqaury8svv5wbb7wx9913XzbaaKOsuuqqOeOMMzJkyJC8/fbb2W233dK5c+e89dZbufXWW3PYYYflZz/72QKPs/POO+faa69NVVVV+vTpk+HDh+fBBx9sNFf1wvTt2zc33HBDBg8enG9961vp1KlTdtllly/c/kVVXV2dn/zkJ/nDH/6Q733ve/nud7+b5557Lvfcc0+WXnrpRqnt448/Prfffnt23nnnHHjggenbt2+mTp2akSNH5uabb87bb7+dpZdeOu3bt0+fPn1yww03ZPXVV0/37t2zzjrrNAz9vzCHHnpoLrroohxwwAEZMWJEevXqlWuvvbahs/3TDjnkkNx888357ne/m7333jtvvPFG/vrXvzbrdfVlbbXVVvnxj3+coUOH5tlnn83222+fNm3a5LXXXstNN92U888/P3vuuWeuvvrqXHLJJfn+97+fVVddNZMnT84VV1yRLl26NNnLNwAAAAAAUG7KumN8ueWWyxNPPJFf//rXue6661JTU5PlllsuO+ywQ0MHS3V1dR577LGccMIJufDCCzNjxoyst956ueOOOxZ7yvrQQw/NW2+9lT//+c+59957s8UWW+SBBx7Itttu26jeMccck9tvvz33339/amtrs9JKK+WMM87I8ccfv9D9/+lPf8oqq6ySq666qqHDdMiQITn55JMX63ksLm3atMkdd9yRY445JkOHDk27du3y/e9/P0cdddQ8HdS77757jj766Pz973/PX//61xSLxUXuGL/99ttzzTXX5A9/+EPWXHPNhvJzzjknDzzwQAYOHJinnnpqkYcW79+/f+69996cfPLJOemkk9KmTZtstdVW+e1vf9toWOov64ILLkgy5/vq2rVr1lprrZx66qk59NBDG+Ygnqu6ujpPPvlkTjvttNxyyy255JJLstRSS2XttdfOb3/724Z6rVq1yt13390wJPM//vGPLLXUUtl8882z7rrrzrcdHTp0yJFHHpn7778/t9xyS+rr67PaaqvlkksuyRFHHLHA9ldUVOT222/PSSedlBtuuCFXXnllevfund/97nf56U9/+pW/n0VRUVGR2267Leeee26uueaa3HrrrenQoUNWWWWV/OQnP2k0bPovfvGLrL766jn33HNz6qmnJpkzh/f222+f733vews9zvnnn59WrVrluuuuy4wZM7LZZpvlwQcfbBj2/vMceeSRefbZZ3PllVfm3HPPzUorrZRddtllkdq/qH7729+mQ4cOueKKK/Lggw+mX79+uf/++7P55punXbt2DfU6dOiQf/7znznrrLNy00035ZprrkmXLl2y+uqr59RTT01VVVVD3T/96U85+uijc9xxx2XmzJk5+eSTv1DHeIcOHTJs2LAcffTRufDCC9OhQ4fst99+2WGHHfLd7363Ud0BAwbkD3/4Q84555wce+yx2WijjXLnnXc2+7X1ZV122WXp27dv/vjHP+aXv/xlWrdund69e+eHP/xhNttssyRpeNHp73//e8aOHZuqqqpsvPHGue666xbLbwwAAAAAACwJCsUFjZsMwBJt4sSJ6datW84444z86le/aunmAAAAAAAAfGllO8c4AF/c9OnT5yk777zzkiRbb7118zYGAAAAAABgMSvrodT58saMGbPQ9e3bt280ZDLw9XbDDTfkqquuyo477phOnTrl0Ucfzd/+9rdsv/32DUN6f1UzZ85smOd+QaqqqtK+ffvFcjwAAAAAAIC5dIwzX7169Vro+oEDB+aqq65qnsYATW699dZL69atc/bZZ6empibV1dX5yU9+kjPOOGOxHeOxxx7Ld77znYXWufLKK3PggQcutmMCAAAAAAAk5hhnAR588MGFrl922WXTp0+fZmoNUA4+/vjjjBgxYqF11l577c99MQf4+vnXv/6V3/3udxkxYkQ++OCD3Hrrrdltt90Wus0jjzySwYMH54UXXsgKK6yQE0880YszAAAkcX8JAMCXIzHOfPXv37+lmwCUmW7duvltgSXU1KlTs/766+dHP/pRdt9998+t/9Zbb2WnnXbK4Ycfnuuuuy7Dhg3LIYcckl69emXAgAHN0GIAAEqZ+0sAAL4MiXEAAJpNoVD43ETPCSeckLvuuivPP/98Q9k+++yTiRMn5t57722GVgIA8HXh/hIAgC9KYhwAgJIyfPjweUaYGDBgQI499tgFblNbW5va2tqGz/X19ZkwYUKWWmqpFAqFpmoqAABJisViJk+enGWXXTYVFRUt3Zx5uL8EAPh6aar7y5LpGP/4zCNaugks4XYbsX9LNwFSN2tWSzcB8ugdW7XIce9qs0azHWunWa8027FYdGPGjEl1dXWjsurq6tTU1GT69Olp3779PNsMHTo0p556anM1EQCA+Xj33Xez/PLLt3Qz5uH+EgDg62lx31+WTMc4AAB8WUOGDMngwYMbPk+aNCkrrrhi3n333XTp0qUFWwYAUP5qamqywgorpHPnzi3dlMXG/SUAQMtpqvtLHeMAQEkotDEcIXP07NkzY8eObVQ2duzYdOnSZb5pniSprKxMZWXlPOVdunTx4BIAoJmU6hDj7i8BAL6eFvf9ZelN+gMAwBKtX79+GTZsWKOyBx54IP369WuhFgEA8HXm/hIAgETHOAAATWzKlCl59tln8+yzzyZJ3nrrrTz77LMZNWpUkjnDVB5wwAEN9Q8//PC8+eab+fnPf56XX345l1xySW688cYcd9xxLdF8AABKjPtLAAC+DEOpAwAloaJ1aQ67yFf39NNP5zvf+U7D57lzNQ4cODBXXXVVPvjgg4aHmEmy8sor56677spxxx2X888/P8svv3z+9Kc/ZcCAAc3edgAASo/7SwAAvoxCsVgstnQjkuTjM49o6SawhNttxP4t3QRI3axZLd0EyKN3bNUix723y1rNdqzv1rzUbMeiZdTU1KSqqiqTJk0yByQAQBNbEu69loRzBAAoFU117yUxDgCUhEIbM7wAAAAAANA0PIEGAAAAAAAAoKxJjAMAJcEc4wAAAAAANBWJcQAAAAAAAADKmsQ4AFASCm0kxgEAAAAAaBoS4wAAAAAAAACUNYlxAKAkmGMcAAAAAICmIjEOAAAAAAAAQFmTGAcASoI5xgEAAAAAaCoS4wAAAAAAAACUNYlxAKAkmGMcAAAAAICmIjEOAAAAAAAAQFmTGAcASkKhlcQ4AAAAAABNQ2IcAAAAAAAAgLImMQ4AlIQKiXEAAAAAAJqIxDgAAAAAAAAAZU1iHAAoCYUKiXEAAAAAAJqGxDgAAAAAAAAAZU1iHAAoCYVW3tcDAAAAAKBpeAINAAAAAAAAQFnTMQ4AAAAAAABAWTOUOgBQEipaFVq6CQAAAAAAlCmJcQAAAAAAAADKmsQ4AFASChUS4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAPgco0ePzg9/+MMstdRSad++fdZdd908/fTTDeuLxWJOOumk9OrVK+3bt0///v3z2muvNdrHhAkTst9++6VLly7p2rVrDj744EyZMqW5TwUAAAAAYImkYxwAKAmFVoVmWxbFxx9/nM022yxt2rTJPffckxdffDF/+MMf0q1bt4Y6Z599di644IJcdtlleeKJJ9KxY8cMGDAgM2bMaKiz33775YUXXsgDDzyQO++8M//6179y2GGHLbbvDwAAAACABTOUOgDAQvz2t7/NCiuskCuvvLKhbOWVV27472KxmPPOOy8nnnhidt111yTJNddck+rq6tx2223ZZ5998tJLL+Xee+/NU089lY022ihJcuGFF2bHHXfM73//+yy77LLNe1IAAAAAAEsYiXEAoCQUKiqabVkUt99+ezbaaKPstdde6dGjR775zW/miiuuaFj/1ltvZcyYMenfv39DWVVVVTbZZJMMHz48STJ8+PB07dq1oVM8Sfr375+Kioo88cQTX/GbAwAAAADg8+gYBwCWOLW1tampqWm01NbWzrfum2++mUsvvTTf+MY3ct999+WII47IMccck6uvvjpJMmbMmCRJdXV1o+2qq6sb1o0ZMyY9evRotL5169bp3r17Qx0AAAAAAJqOjnEAoCQUKgrNtgwdOjRVVVWNlqFDh863XfX19dlwww1z1lln5Zvf/GYOO+ywHHroobnsssua+RsCAAAAAODL0jEOACxxhgwZkkmTJjVahgwZMt+6vXr1Sp8+fRqVrbXWWhk1alSSpGfPnkmSsWPHNqozduzYhnU9e/bMuHHjGq2fPXt2JkyY0FAHAAAAAICmo2McACgJFa0KzbZUVlamS5cujZbKysr5tmuzzTbLK6+80qjs1VdfzUorrZQkWXnlldOzZ88MGzasYX1NTU2eeOKJ9OvXL0nSr1+/TJw4MSNGjGio89BDD6W+vj6bbLLJ4v4qAQAAAAD4jNYt3QAAgFJ23HHH5dvf/nbOOuus7L333nnyySdz+eWX5/LLL0+SFAqFHHvssTnjjDPyjW98IyuvvHJ+/etfZ9lll81uu+2WZE7C/Lvf/W7DEOyzZs3KUUcdlX322SfLLrtsC54dAAAAAMCSQcc4AFASChWFlm7CfH3rW9/KrbfemiFDhuS0007LyiuvnPPOOy/77bdfQ52f//znmTp1ag477LBMnDgxm2++ee699960a9euoc51112Xo446Kttuu20qKiqyxx575IILLmiJUwIAAAAAWOLoGAcA+Bw777xzdt555wWuLxQKOe2003LaaactsE737t1z/fXXN0XzAAAAAAD4HDrGAYCSUKioaOkmAAAAAABQpjyBBgAAAAAAAKCsSYwDACWhVOcYBwAAAADg609iHAAAAAAAAICyJjEOAJSEilYS4wAAAAAANA2JcQAAAAAAAADKmo5xAAAAAAAAAMqaodQBgJJQqDCUOgAAAAAATUNiHAAAAAAAAICyJjEOAJSEQoX39QAAAAAAaBqeQAMAAAAAAABQ1iTGAYCSYI5xAAAAAACaisQ4AAAAAAAAAGVNYhwAKAkS4wAAAAAANBWJcQAAAAAAAADKmsQ4AFASJMYBAAAAAGgqEuMAAAAAAAAAlDWJcQCgJBQqvK8HAAAAAEDT8AQaAAAAAAAAgLImMQ4AlISKVuYYBwAAAACgaUiMAwAAAAAAAFDWJMYBgJJQqJAYBwAAAACgaUiMAwAAAAAAAFDWJMYBgJJQqPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKzpGAcAAAAAAACgrBlKHQAoCYZSBwAAAACgqUiMAwAAAAAAAFDWJMYBgJJQqPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjAEBpKJhjHAAAAACApiExDgAAAAAAAEBZkxgHAEpCoUJiHAAAAACApiExDgAAAAAAAEBZkxhvRu222Cntt9y5UVnd+DGp+eOpSZK239w8bdf+Vlr3XCGFyvaZ+PvBKdZOn2c/rVdbJ+033zGteiyX4uzZmT3q1Uy9+Y8LP/aWO6fym5unUNk+s997M9PuuT71H3/YsL7QrkPaD/hB2n5j3RSLxcx6+b+Zdv9NyazaxXDmlLr1+nTJvrsum9VX7ZSlu7fNr37zch59ckKjOj/aZ4XsvF11OnVolZEvT845l7+Z0R/MWOh+d/tuz+yz27Lp3rVt3nh7as7/01t5+fUpDevbtinkyAN7Z5vNl06b1hV56tmJOffyN/PxpFlNcp58Pe2+47LZd/cV0r1b27zx1pSc+8fX89JrkxdY/zubLZ1DfrhyevZol/fen5ZLr3orj49ofD0fvF/v7LJ9z3Tu2DojX6rJ7y95Le99MO/vLc2rUOF9PQAAAAAAmoYn0M2sbtz7mXjeCQ3L5Gt+37Cu0LptZr3xQqb/594Fbt9mjW+m4/cOTO3/G56aP52Zydf8LjNfeGqhx6zst30qv/WdTLvn+ky+6uwUZ9Wm077HJK0+eS+i424/SqtlemXy9Rdkyg2XpPWK30jHHff76ifM10L7yoq8/vbUnHfFm/Ndv+/3l8vuO/XKHy57I4f/YmRm1Nbn97/uk7ZtFjzs8Xc2WyqDDuqdq298L4f+7Lm88fbU/P6kPula1aahzlEHrZxvb9Q9J//ulfzk189n6e5tc/oJayz28+Pra5vNl8lRh6yaK//2dg4+dkRef2tKzjlt3UbX0aets2aXnHx8n9x5/wf50U9G5N+Pf5Shv1o7K6/YoaHOfnuskD13Xi6/v+S1HPaz/2b6jLqcc9q6C72eAQAAAACArzcd482sWKxLcWrNJ8v0qQ3rap96KLXD70/d6Lfmv3GhIh223yvTh92Smc/8O/UTxqV+/JjMeumZhR6z3cbbZMaj92TWq/8vdeNGZ+rtV6Wic1XarLFBkqRiqZ5ps+ramXbXX1P3/tupe++NTLvvhrRZu28KnaoW16lTwp7478T8+W/v5t9PTJjv+r127pVrb34v/3nq47z5zrScdcFrWap722y+cfcF7nPvXZbNnQ+MzT0Pjcs7703PH/74ZmbU1mXHbXokSTp2aJUdt+2Ri696O/99viavvjk1v7no9ay7Zpf0Wb1Tk5wnXz/77LZ87rjvg9w9bGzefndafnfJa5lRW5+dt+s53/p7fW+5PPHMhPzt1vfyznvT8qfr3s6rb0zJHjsv16jONTe+k0ef+ChvvD01Z5z7cpbqXpktNl26uU6LBShUFJptAQAAAABgybLIQ6mPHz8+f/nLXzJ8+PCMGTMmSdKzZ898+9vfzoEHHphllllmsTeynLTq1iNVxwydMwT66Dcz/eHbUqz5+Itt22uFVHTplhSL6XzwL1PRqUvqxr6XacNuSf2H7893m4quS6eiU1Vmv/3yJ4W1MzJ79FtpvdzKmfXi02m9/Mqpnz4tdR+Maqgy+62Xk2IxrZfrnVmvPPeVzpmvt17VlVmqW9uMeG5iQ9nUaXV56bXJWXuNznnoPx/Ns03r1oWsvmqnXHfL6IayYjEZ8f8mZe01OidJVl+lY9q0qWi031Gjp2fMh7VZe/XOefHVKZ/dLUuY1q0LWX21zrn25k9+m4rF5OlnP87aa3SZ7zbrrNklf7/tvUZlT/x3Qrb8v07vZavbZenulXnq2U9+d6dOq8uLr9ZknTW7ZNi/PwwAAAAAAFB+Fikx/tRTT2X11VfPBRdckKqqqmy55ZbZcsstU1VVlQsuuCBrrrlmnn766aZq69fe7PffztQ7rsmUv1+Uafden1Zdl0rnA36atK38QttXdJ3z0kG7LXfKjEfvyZQbLklx+rR0/uFxKbTrMN9tCh3ndB7VT61pVF6cOjkVneasq+hYleK0z8zXW6xPcfq0FDpKjC/pundtmySZ8Jl5vz+eOCvdu7Wd7zZVnVundatCPp44c95tus4ZAnupbm0zc1Z9pkyr+0ydmQvcL0uWqi5t0rpVIRM+bnztTZg4K0st4Brp3rXtAq67OfXnXlsfT/zs9ey6KwWFiopmWwAAAAAAWLIsUmL86KOPzl577ZXLLrsshULjYUiLxWIOP/zwHH300Rk+fPhC91NbW5va2trGZbPrUtm61aI052tn9hsvfPJh3OhMGf12qo46M23X6puZzz32+Tv4v+98xn/uzaxX/pskmXrnNak6+qy0WWvDzPzvo03RbAAAAAAAAICvtUWKTD333HM57rjj5ukUT5JCoZDjjjsuzz777OfuZ+jQoamqqmq0nPvPhc+TXY6KtdNTN2FsKrp9seHni1MmJUnqPvzgk8K62amfOD4VVfOf67n4f0nxio6Nhx0udOyc+ilz1tVPnZRCh86NNyxUpNC+Q4pTJ32htlG+Jvxf+rZ7VZtG5d26tsmEj2fOb5NMmjw7s+uK6da17bzb/F9S96OPZ6Ztm4p06tDqM3XaLnC/LFkm1czK7LpiundrfO1179omHy3gGpkwceYCrrs59edeW926fvZ6dt2VAnOMAwAAAADQVBapY7xnz5558sknF7j+ySefTHV19efuZ8iQIZk0aVKj5bitNlyUppSHNpWp6LZMilNqPr9uktkfjEpx9qy0WupT33FFRSqqlkr9pAnz3aZ+4vjUT5mU1r3X+KSwbbu0Xm7lzB791pz9vvdWKtp3SKueKzZUad17jaRQyOzRby/yaVFePhhbm48+npkN1+vaUNahfaus9Y3OeeGVyfPdZvbsYl59Y0r6rvfJUPyFQrLhelUN27z65tTMmlWfDT9VZ4Vl26XnMpV54dX575cly+zZxbz6+uT0Xa9bQ1mhkPRdv1teeGX+v5vPv1yTjdbv1qjsWxt0y/Mvz6n//tgZGT+htlGdDu1bpc/qXRrqAAAAAAAA5WeRhlL/2c9+lsMOOywjRozItttu29AJPnbs2AwbNixXXHFFfv/733/ufiorK1NZ2Xhe7boyH0Y9Sdpvu3tmvTYy9ZM+SqFT17Tfcuekvj4zX3wqyZz5wCs6dUlF9x5JklY9lktx5ozUT5qQ4oxpycwZqX3m32m/5c6pr/k49ZMmpF2/7ZIks176JHHf5ccnZ/ojt2XWK88lSWY8+VDabbZj6id8mLqJ49N+q11SP3lSZr3ybJKk/qMxmfXGC+mw036Zds/1SUWrdBjwg8x6YURDSp3y1r5dRZbr2a7hc68elVmtd4fUTJmdceNn5qY7P8gBey6f9z6YnjFja/OjfVfIRxNm5tEnP3kh45xT+uTfT0zIrfeMSZLceMf7GXL0N/Ly61Py8mtTsucuvdK+slXueWhckmTqtLrcPWxcBh20ciZPmZ2p0+ryk0NWzvMv1+TFV6c07xdAyfr7be/lV8etmZdfn5yXXp2cvXddLu3bVeSuB+dcZycet0Y+/Ghm/njNnBd9brp9dC4aun722W35PPb0R+m/RY+suVrnnH3Rqw37vOn20Rn4gxXz7vvT88HYGTnkh73z0YTa/Pvx8S1yjnxCkhsAAAAAgKaySB3jgwYNytJLL51zzz03l1xySerq6pIkrVq1St++fXPVVVdl7733bpKGloOKzt3ScbcfpdC+Y4rTpmT2u29k8lVnpzhtTidg5YZbzOks/z+dD/hpkmTqHVdn5v97PEkyfdg/kvq6dPzegSm0aZPZo9/O5OvOm9Nx/n9aLd0zhcr2DZ9rh9+fQpu26bDj/6TQrkNmv/tGpvz9wqRudkOdqbf9JR0G7JPO/3NsUixm5iv/zbT7bmzKr4MSssaqnXL+6es0fD7qRysnSe55aFx+c9Hr+duto9O+siI/O3zVdOrYOiNfqsnxp7+YmbOKDdss27Ndqrp8Mjz1w//5KF27tMmP9l0x3bu2yetvTc3xp7+YjyfNaqhz0ZVvpb5YzGnHr5E2bSry1LMTc+7lbzbDGfN18dCjH6ZrVZscsl/vdO/WNq+/OSU/PXlkPv6/Ifmrl2mX+k8uwzz/ck1O/f1LOfSHK+ewA1bOe+9Pz5AzX8hboz75jbzuH++mXbtW+flRq8+5nl+clJ+ePLLR9QwAAAAAAJSXQrFY/FI9AbNmzcr48XPSdUsvvXTatGnzOVss3MdnHvGVtoevarcR+7d0EyB1s2Z9fiVoYo/esVWLHHfckAOa7Vg9hl7TbMeiZdTU1KSqqiqTJk1Kly5dWro5AABlbUm491oSzhEAoFQ01b3XIiXGP61Nmzbp1avXYmsIALCEq6ho6RYAAAAAAFCmPIEGAAAAAAAAoKx96cQ4AMDiVCgUWroJAAAAAACUKYlxAAAAAAAAAMqaxDgAUBIK5hgHAAAAAKCJeAINAAAAAAAAQFmTGAcASkKhwhzjAAAAAAA0DYlxAAAAAAAAAMqajnEAoDRUVDTfQrO7+OKL07t377Rr1y6bbLJJnnzyyYXWP++887LGGmukffv2WWGFFXLcccdlxowZzdRaAAC+DtxjAgCwKDwZBgCgSd1www0ZPHhwTj755DzzzDNZf/31M2DAgIwbN26+9a+//vr84he/yMknn5yXXnopf/7zn3PDDTfkl7/8ZTO3HACAUuUeEwCARaVjHAAoCYWKQrMtNK9zzjknhx56aA466KD06dMnl112WTp06JC//OUv863/2GOPZbPNNsv//M//pHfv3tl+++2z7777fm4CCACAJYd7TAAAFpWOcQAAmszMmTMzYsSI9O/fv6GsoqIi/fv3z/Dhw+e7zbe//e2MGDGi4SHlm2++mbvvvjs77rhjs7QZAIDS5h4TAIAvo3VLNwAAIEkKBe/rlaPx48enrq4u1dXVjcqrq6vz8ssvz3eb//mf/8n48eOz+eabp1gsZvbs2Tn88MMXOsxlbW1tamtrGz7X1NQsnhMAAKDkNMc9pvtLAIDy4wk0AAAl5ZFHHslZZ52VSy65JM8880xuueWW3HXXXTn99NMXuM3QoUNTVVXVsKywwgrN2GIAAErdot5jur8EACg/EuMAQGkw93dZWnrppdOqVauMHTu2UfnYsWPTs2fP+W7z61//Ovvvv38OOeSQJMm6666bqVOn5rDDDsuvfvWrVFTM+27nkCFDMnjw4IbPNTU1Hl4CAJSp5rjHdH8JAFB+JMYBAGgybdu2Td++fTNs2LCGsvr6+gwbNiz9+vWb7zbTpk2b58Fkq1atkiTFYnG+21RWVqZLly6NFgAAylNz3GO6vwQAKD8S4wBASSjMJwVMeRg8eHAGDhyYjTbaKBtvvHHOO++8TJ06NQcddFCS5IADDshyyy2XoUOHJkl22WWXnHPOOfnmN7+ZTTbZJK+//np+/etfZ5dddml4eAkAwJLNPSYAAItKxzgAAE3qBz/4QT788MOcdNJJGTNmTDbYYIPce++9qa6uTpKMGjWqUXrnxBNPTKFQyIknnpjRo0dnmWWWyS677JIzzzyzpU4BAIAS4x4TAIBFVSguaDzKZvbxmUe0dBNYwu02Yv+WbgKkbtaslm4C5NE7tmqR40763dHNdqyq4y9stmPRMmpqalJVVZVJkyYZ9hIAoIktCfdeS8I5AgCUiqa69zJmKQAAAAAAAABlzVDqAEBpKHhfDwAAAACApuEJNADAQpxyyikpFAqNljXXXLNh/YwZMzJo0KAstdRS6dSpU/bYY4+MHTu20T5GjRqVnXbaKR06dEiPHj1y/PHHZ/bs2c19KgAAAAAASyyJcQCAz7H22mvnwQcfbPjcuvUnt1DHHXdc7rrrrtx0002pqqrKUUcdld133z3/+c9/kiR1dXXZaaed0rNnzzz22GP54IMPcsABB6RNmzY566yzmv1cAAAAAACWRDrGAYCSUKgotHQTFqh169bp2bPnPOWTJk3Kn//851x//fXZZpttkiRXXnll1lprrTz++OPZdNNNc//99+fFF1/Mgw8+mOrq6mywwQY5/fTTc8IJJ+SUU05J27Ztm/t0AAAAAACWOIZSBwD4HK+99lqWXXbZrLLKKtlvv/0yatSoJMmIESMya9as9O/fv6HummuumRVXXDHDhw9PkgwfPjzrrrtuqqurG+oMGDAgNTU1eeGFF5r3RAAAAAAAllAS4wBAaahovvf1amtrU1tb26issrIylZWV89TdZJNNctVVV2WNNdbIBx98kFNPPTVbbLFFnn/++YwZMyZt27ZN165dG21TXV2dMWPGJEnGjBnTqFN87vq56wAAAAAAaHoS4wDAEmfo0KGpqqpqtAwdOnS+dXfYYYfstddeWW+99TJgwIDcfffdmThxYm688cZmbjUAAAAAAF+WjnEAoCQUCoVmW4YMGZJJkyY1WoYMGfKF2tm1a9esvvrqef3119OzZ8/MnDkzEydObFRn7NixDXOS9+zZM2PHjp1n/dx1AAAAAAA0PR3jAMASp7KyMl26dGm0zG8Y9fmZMmVK3njjjfTq1St9+/ZNmzZtMmzYsIb1r7zySkaNGpV+/folSfr165eRI0dm3LhxDXUeeOCBdOnSJX369Fm8JwYAAAAAwHyZYxwAKA3NOMf4ovjZz36WXXbZJSuttFLef//9nHzyyWnVqlX23XffVFVV5eCDD87gwYPTvXv3dOnSJUcffXT69euXTTfdNEmy/fbbp0+fPtl///1z9tlnZ8yYMTnxxBMzaNCgL9wZDwAAAADAV6NjHABgId57773su++++eijj7LMMstk8803z+OPP55lllkmSXLuueemoqIie+yxR2prazNgwIBccsklDdu3atUqd955Z4444oj069cvHTt2zMCBA3Paaae11CkBAAAAACxxdIwDACWhUFFo6SbM19///veFrm/Xrl0uvvjiXHzxxQuss9JKK+Xuu+9e3E0DAAAAAOALKs0xSwEAAAAAAABgMZEYBwBKQ8H7egAAAAAANA1PoAEAAAAAAAAoaxLjAEBpKNE5xgEAAAAA+PqTGAcAAAAAAACgrEmMAwAloWCOcQAAAAAAmogn0AAAAAAAAACUNYlxAKA0mGMcAAAAAIAmIjEOAAAAAAAAQFmTGAcASkKhwvt6AAAAAAA0DU+gAQAAAAAAAChrOsYBAAAAAAAAKGuGUgcASkOh0NItAAAAAACgTEmMAwAAAAAAAFDWJMYBgNJQ4X09AAAAAACahifQAAAAAAAAAJQ1iXEAoDSYYxwAAAAAgCYiMQ4AAAAAAABAWZMYBwBKQsEc4wAAAAAANBFPoAEAAAAAAAAoaxLjAEBpKHhfDwAAAACApuEJNAAAAAAAAABlTWIcACgNFYWWbgEAAAAAAGVKYhwAAAAAAACAsiYxDgCUhII5xgEAAAAAaCKeQAMAAAAAAABQ1iTGAYDSYI5xAAAAAACaiMQ4AAAAAAAAAGVNYhwAKA3mGAcAAAAAoIl4Ag0AAAAAAABAWZMYBwBKQ8Ec4wAAAAAANA2JcQAAAAAAAADKmsQ4AFAaKryvBwAAAABA0/AEGgAAAAAAAICypmMcAAAAAAAAgLJmKHUAoDQUvK8HAAAAAEDT8AQaAAAAAAAAgLImMQ4AlIaKQku3AAAAAACAMiUxDgAAAAAAAEBZkxgHAEqDOcYBAAAAAGginkADAAAAAAAAUNYkxgGA0lAwxzgAAAAAAE1DYhwAAAAAAACAsiYxDgCUhgrv6wEAAAAA0DQ8gQYAAAAAAACgrEmMAwClwRzjAAAAAAA0EYlxAAAAAAAAAMqaxDgAUBoK3tcDAAAAAKBpeAINAAAAAAAAQFmTGAcASkOF9/UAAAAAAGgankADAAAAAAAAUNYkxgGA0lAotHQLAAAAAAAoUyXTMb7r0/u1dBNYwp1w50Et3QTIHWc83tJNAAAAAAAAKDsl0zEOACzhCmZ4AQAAAACgaXgCDQAAAAAAAEBZkxgHAEqDOcYBAAAAAGgiEuMAAAAAAAAAlDUd4wAAAAAAAACUNUOpAwClocL7egAAAAAANA1PoAEAAAAAAAAoaxLjAEBJKBYKLd0EAAAAAADKlMQ4AAAAAAAAAGVNYhwAKA0F7+sBAAAAANA0PIEGAAAAAAAAoKxJjAMApUFiHAAAAACAJuIJNAAAAAAAAABlTWIcACgJxUKhpZsAAAAAAECZkhgHAAAAAAAAoKxJjAMApcEc4wAAAAAANBFPoAEAAAAAAAAoaxLjAEBpMMc4AAAAAABNRGIcAAAAAAAAgLKmYxwAKA0VFc23fAW/+c1vUigUcuyxxzaUzZgxI4MGDcpSSy2VTp06ZY899sjYsWMbbTdq1KjstNNO6dChQ3r06JHjjz8+s2fP/kptAQAAAADgi9ExDgDwBT311FP54x//mPXWW69R+XHHHZc77rgjN910U/75z3/m/fffz+67796wvq6uLjvttFNmzpyZxx57LFdffXWuuuqqnHTSSc19CgAAAAAASyQd4wBASSgWCs22fBlTpkzJfvvtlyuuuCLdunVrKJ80aVL+/Oc/55xzzsk222yTvn375sorr8xjjz2Wxx9/PEly//3358UXX8xf//rXbLDBBtlhhx1y+umn5+KLL87MmTMXy/cHAAAAAMCC6RgHAPgCBg0alJ122in9+/dvVD5ixIjMmjWrUfmaa66ZFVdcMcOHD0+SDB8+POuuu26qq6sb6gwYMCA1NTV54YUXmucEAAAAAACWYK1bugEAAEmSQvO9r1dbW5va2tpGZZWVlamsrJxv/b///e955pln8tRTT82zbsyYMWnbtm26du3aqLy6ujpjxoxpqPPpTvG56+euAwAAAACgaUmMAwBLnKFDh6aqqqrRMnTo0PnWfffdd/OTn/wk1113Xdq1a9fMLQUAAAAAYHGQGAcASkKxGRPjQ4YMyeDBgxuVLSgtPmLEiIwbNy4bbrhhQ1ldXV3+9a9/5aKLLsp9992XmTNnZuLEiY1S42PHjk3Pnj2TJD179syTTz7ZaL9jx45tWAcAAAAAQNOSGAcAljiVlZXp0qVLo2VBHePbbrttRo4cmWeffbZh2WijjbLffvs1/HebNm0ybNiwhm1eeeWVjBo1Kv369UuS9OvXLyNHjsy4ceMa6jzwwAPp0qVL+vTp07QnCwAAAACAxDgAwMJ07tw566yzTqOyjh07ZqmllmooP/jggzN48OB07949Xbp0ydFHH51+/fpl0003TZJsv/326dOnT/bff/+cffbZGTNmTE488cQMGjRogR3yAAAAAAAsPjrGAYDSUCi0dAu+tHPPPTcVFRXZY489UltbmwEDBuSSSy5pWN+qVavceeedOeKII9KvX7907NgxAwcOzGmnndaCrQYAAAAAWHLoGAcAWESPPPJIo8/t2rXLxRdfnIsvvniB26y00kq5++67m7hlAAAAAADMjznGAYCSUCxUNNtC87v44ovTu3fvtGvXLptsskmefPLJhdafOHFiBg0alF69eqWysjKrr766FwsAAGjEPSYAAItCYhwAgCZ1ww03ZPDgwbnsssuyySab5LzzzsuAAQPyyiuvpEePHvPUnzlzZrbbbrv06NEjN998c5Zbbrm888476dq1a/M3HgCAkuQeEwCARaVjHAAoDV/jOcZZuHPOOSeHHnpoDjrooCTJZZddlrvuuit/+ctf8otf/GKe+n/5y18yYcKEPPbYY2nTpk2SpHfv3s3ZZAAASpx7TAAAFpWxRAEAaDIzZ87MiBEj0r9//4ayioqK9O/fP8OHD5/vNrfffnv69euXQYMGpbq6Ouuss07OOuus1NXVNVezAQAoYe4xAQD4MiTGAYDSYO7vsjR+/PjU1dWlurq6UXl1dXVefvnl+W7z5ptv5qGHHsp+++2Xu+++O6+//nqOPPLIzJo1KyeffPJ8t6mtrU1tbW3D55qamsV3EgAAlJTmuMd0fwkAUH48gQYAoKTU19enR48eufzyy9O3b9/84Ac/yK9+9atcdtllC9xm6NChqaqqalhWWGGFZmwxAAClblHvMd1fAgCUHx3jAEBJKBYKzbbQfJZeeum0atUqY8eObVQ+duzY9OzZc77b9OrVK6uvvnpatWrVULbWWmtlzJgxmTlz5ny3GTJkSCZNmtSwvPvuu4vvJAAAKCnNcY/p/hIAoPzoGAcAoMm0bds2ffv2zbBhwxrK6uvrM2zYsPTr12++22y22WZ5/fXXU19f31D26quvplevXmnbtu18t6msrEyXLl0aLQAAlKfmuMd0fwkAUH50jAMApaFQ0XwLzWrw4MG54oorcvXVV+ell17KEUcckalTp+aggw5KkhxwwAEZMmRIQ/0jjjgiEyZMyE9+8pO8+uqrueuuu3LWWWdl0KBBLXUKAACUGPeYAAAsqtYt3QAAAMrbD37wg3z44Yc56aSTMmbMmGywwQa59957U11dnSQZNWpUKio+eWFhhRVWyH333Zfjjjsu6623XpZbbrn85Cc/yQknnNBSpwAAQIlxjwkAwKIqFIvFYks3Ikm2/P6jLd0ElnAn3HlwSzcBcscZj7d0EyCXndCtRY476ZkHm+1YVRv2b7Zj0TJqampSVVWVSZMmGfYSAKCJLQn3XkvCOQIAlIqmuvcyligAAAAAAAAAZc1Q6gBASSia+xsAAAAAgCbiCTQAAAAAAAAAZU1iHAAoDRLjAAAAAAA0EU+gAQAAAAAAAChrEuMAQEkoFgot3QQAAAAAAMqUxDgAAAAAAAAAZU3HOAAAAAAAAABlzVDqAEBJKBa8rwcAAAAAQNPwBBoAAAAAAACAsiYxDgCUhkKhpVsAAAAAAECZkhgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjAEBJKMYc4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASzDEOAAAAAEBT8QQaAAAAAAAAgLImMQ4AlIaCOcYBAAAAAGgaEuMAAAAAAAAAlDWJcQCgJBS9rwcAAAAAQBPxBBoAAAAAAACAsiYxDgCUhKI5xgEAAAAAaCIS4wAAAAAAAACUNYlxAKAkFAve1wMAAAAAoGl4Ag0AAAAAAABAWZMYBwBKQjHmGAcAAAAAoGlIjAMAAAAAAABQ1iTGAYCSYI5xAAAAAACaiifQAAAAAAAAAJQ1HeMAAAAAAAAAlDVDqQMAJaFYKLR0EwAAAAAAKFMS4wAAAAAAAACUNYlxAKAkFCMxDgAAAABA05AYBwAAAAAAAKCsSYwDACWhWPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjJWjp7m1z+AG9s8mG3dKubUVGj5mRoRe+llfemLLAbTZYuypHHbRyeq/YIePG1+aam97NvQ+Pa1Tn+zv0yj67LZfuXdvmjben5vw/vZGXXlvwPilflcv2yFpDj88yA7ZIqw7tM/WNd/L/DvllJo14fp6661x8alY6bJ+88NOz8vYFVzeUf+e1YenQe/lGdV/+5e/zxu+uWOBxKyrbZq3f/SLL7r1jKirb5sP7H83zR5+ameM+aqjTboVeWfeiU7LU1ptk9pRpee/a2/LKr/6QYl3dYjhzSlll2+R7W7TPBt9ok84dKvLuuLrc+OC0vDNmzr/9Bqu3yZYbVGbFnq3SqX1FzriyJu+N+/zrYsM12uR7W7TPUlUVGfdxfW59ZFqef3N2ozq7bN4um69fmfaVhbwxenb+dv+0jPu4vknOkwUzxzgAAAAAAE1Fx3iJ6dSxVS4eul7+O3JSfn76C5k4aVaW79U+k6fOXuA2vXpU5rcn9snt943J6ee9kr7rds3PB30jH308M089OzFJss1mS2fQQSvnD5e9nhdfnZy9dlkuvz9pnex31IhMnDSrmc6OUtC6a5d8+59/y0f/fCJP7nJoZn74cTqutlJmfTxpnrrVu/ZP103Wz4zRY+e7r1dOPj/v/vnGhs+zJ09d6LH7/OGX6bHDVnlmn2Mzq2Zy1jn/1+l700UZvtW+cypUVORbt/8xtWPG57Et90llzx5Z/8rfpjhrVl759blf/qT5Wtj/ux2z7DKtcuWd0zJpSn02Wbttjt2nc07906RMnFJMZZtCXn9vdka8PDP779DxC+1zleVa5eDvdcxt/5yekW/Myrf6tM3hu3fKWVfV5P3xczq+t9+kMt/pW5mr75qW8ZPq870t2uXovTvl1D/VZLb3MQAAAAAAoCwYSr3E7Lf78hk3vja/uei1vPTalHwwrjZPPTcx74+ZscBtdh3QKx+Mm5GLr3or77w3Pbfc80H++dj47L3Lcg119v7ecrnzgTG556Fxeee96fnDZa9nRm1ddtq2ujlOixKy6vGHZsZ7Y+YkxJ8amelvv5fxD/4n0958t1G9ymV7ZO3zfp1nD/hZ6mfN/+WJ2VOmpnbs+Ialbtr0BR63dZdOWeGgPfLi8b/JR488nppnXshzh/wy3b+9Ybpusn6SZJntNk/ntVbLswOPT81zL+fD+/6VV085PysdsV8Kbdosvi+BktOmdfLNNdrkloen5fX3ZufDifW58z8zMu7jumz5zcokyRMvzMzdj83Iy28v+EWhz9qmb7u88OasPPBkbcZ8VJ87/j0jo8bWZesN2zXU2Xajdrln+Iw89/qsjP6wLlfeOTVdO1Vkg9Vdc82tWKhotgUAAAAAgCWLJ8MlZrNvLZVXXp+SU49fM/971cb50x82yM7bLbzzeu01OmfEcxMblT357MdZe43OSZLWrQtZfdVOefpTdYrFZMT/m9hQhyVH9c7bZOKI57Ph385P/9GPZfOnbs0KB+/VuFKhkA2u+l3ePOfPmfLi6wvc16rHH5rtxjyezZ+6NasMPjiFVq0WWLdqw3VS0bZtxg97rKFs6itvZto7o9Nt0w2SJN023SA1z7/aaGj1D+9/NG2qOqfz2qt9uRPma6GiImlVUciszyS0Z81OVlv+yw9usspyrfPyO4070l98a1ZWWW7Otbp0VUWqOlXkpU91ts+Ymbz1/uyssqxBVQAAAAAAoFx46l9ielW3y67f7ZUbbx+dv978btZcrVN+cvAqmT27OM+c4XN179Y2EyY2TvR+PHFWOnVsnbZtK9K5Y+u0blXIx58ZMn3CxFlZcbkOTXYulKYOq6yQlX68b94678q8/tvLUrXRuln73BNTP3NWRl97W5I5Hd7F2bPz9oXXLHA/b198bSY982JmfTwp3fp9M2ueMTiVvZbJS8f/Zr71K3sunbramZk9aXKj8pnjPkpl9TINdWaOHd9ofe3/fZ5T56UvedaUutqZyRujZ2enb7fLmI+mpmZqMd9aq21WWbbVV5rru0vHQmqmNt5+8tRiunSc815Yl05z5rSep860T+rQfMwxDgAAAABAU1nsHePvvvtuTj755PzlL39ZYJ3a2trU1tY2Kquvm5mKVm0Xd3O+dioKyStvTMkV172TJHntralZecWO+d6AngvsGIdFUagoZNKI5xvm7K559qV0XvsbWemwfTL62tvSZcO10/voA/LoxrsvdD9vnXdVw39PHvlK6mfOyrqXnJpXfvWH1M80bz2L7so7p+aAHTrkt4O6pq6+mHfH1OWpl2ZmxZ7e4QIAAAAAAL6axR6HmzBhQq6++uqF1hk6dGiqqqoaLe+++tfF3ZSvpY8+npm3353WqOyd96aleunKBW4z4eOZ6d618Vy43bq2yZSpszNzZn0mTZ6V2XXFdKtqXKd71zaZMHHm4ms8XwszPvgwk196o1HZlJffTPsVlk2SdN98o1T2WCrbvPlwdpj+QnaY/kI69F4+fc4+Id95bdgC9zvxyedS0aZN2vdefr7ra8eMT6vKtmld1Xj4/rY9lkrt2A8b6rStXrrR+sr/+zy3DuVr/MT6nPO3KTnmnI8z5JJJ+c21k9OqopDxE798Yrxm6rzJ786fSpHXTCkmybx1OsybNKfpFQuFZlsAAAAAAFiyLHIM7/bbb1/o+jfffPNz9zFkyJAMHjy4UdmOP3x6UZtSlka+XJMVlmvfqGyFZdtn7Ie1C9gieeGVydm0b7dGZRut3zUvvDJnyOrZs4t59Y0p6bte1zz65IQkSaGQbLhu19x6zweL+QwodR8/9kw6rb5yo7KO3+id6aNGJ0lG//V/G80DniSb3PXnvHfd/+a9q29Z4H67rL9WinV1qf3U/OCfNumZ51M/c2aW3qZfxtx6/5zjrr5yOqy0XD5+/Nk5bXv82aw25PC0XaZ7Zn4451pduv+3M2vS5IXOdU55mTkrmTmrmA6VhfRZuXVueWT6l97Xm6NnZ82VWuehpz/5DV2rd5u8OXrOZObjJ9Vn0pT6rLlS67w3bk5Zu7bJysu2zr+eXfDvLgAAAAAA8PWyyB3ju+22WwqFQorF4gLrFD4niVVZWZnKysYJaMOoz3HTHe/nkqHr5Yd7LJ+H/zM+a32jc3bZvmd+f+knnYKH/XClLN29Mmdd8GqS5H/v+yDf37FXDj+gd+4eNjYbrluV72y2TE4444WGbW68fXSGHLN6XnljSl56bXL22nnZtG/XKncPG9vs50jLeuuCq/Ptf/0tq57w43xw8z3p+q31suIhe2fkESclSWZNmJhZEyY22qZ+1qzUjh2fqa++lSTpuukG6brx+vnokccze/LUdNv0m+nz+yEZff3tmT2xJklSuWyPbHrf1Xn2Rz/PpKdGZnbNlLx75T+y1u9+kVkTJmXW5ClZ57wT8/HwZzLxieeSJB8+8Ggmv/R6Nrjq7Lw05HeprF4ma5x6bN659DrDsy8B+qw8539JYyfUp0e3iuy+dfuMmVCfx0bOGdmiQ7tCunepSNf/mxe8uvuclHfN1PrUTJ3z/6QDd+qQiZPrc9u/ZiRJHhoxIz/dt3P6f6syI9+YlW+t1TYr9WyV6+6d2nDcYU/PyA7fbpdxH9dn/MS6fG+L9pk4pT7Pvuqaa27FoiQ3AAAAAABNY5E7xnv16pVLLrkku+6663zXP/vss+nbt+9XbtiS6uXXp+RXv30pP/5h7wzce8WMGTcjF/7lzTzwr0+GkV6qW9tUL/PJiwUfjKvNCWe8mKN+tHL23HnZfPhRbc6++LU89ezEhjoP/Wd8unZpkx/ts2K6d2ub19+amp+d9nw+nqTjZ0kz6emRGbHnUVnjzMH5xomDMv2t9/LiT8/K+3+74wvvo752Zpbde8es/uujUlHZNtPeei9vnX9V3jrvyoY6FW3apNOaq6RV+09GQHjxp2dlrfr6bHjjBamobJvx9z+a548+9VM7rs/Tux6edS46JZv9+4bMnjo9o6+9Na+ecsFiOXdKW/vKQnbbsn26dq7ItBnF/PeVmbntX9NT/38jmq+/WpsM3KljQ/1Dd+2UJLnz0em58z9zOsK7d6nIp9/benN0Xf58x9R8b4v22XXL9hn3cX0uu2VK3h//yTDp9z9Rm8o2hew3oEM6tCvk9fdm58Ibp2R2XdOfMwAAAAAA0DwKxYVFv+fje9/7XjbYYIOcdtpp813/3HPP5Zvf/Gbq6xdtbtYtv//oItWHxe2EOw9u6SZA7jjj8ZZuAuSyE7p9fqUm8Nob7zTbsb6x6krNdixaRk1NTaqqqjJp0qR06dKlpZsDAFDWloR7ryXhHAEASkVT3XstcmL8+OOPz9SpUxe4frXVVsvDDz/8lRoFAAAAAAAAAIvLIneMb7HFFgtd37Fjx2y11VZfukEAAAAAAAAAsDgtcsc4AEBTKKbQ0k0AAAAAAKBMVbR0AwAAAAAAAACgKUmMAwAlQWIcAAAAAICmIjEOAAAAAAAAQFmTGAcASoLEOAAAAAAATUViHAAAAAAAAICyJjEOAJQEiXEAAAAAAJqKxDgAAAAAAAAAZU3HOABQEorFQrMti+LSSy/Neuutly5duqRLly7p169f7rnnnob1M2bMyKBBg7LUUkulU6dO2WOPPTJ27NhG+xg1alR22mmndOjQIT169Mjxxx+f2bNnL5bvDQAAAACAz6djHABgIZZffvn85je/yYgRI/L0009nm222ya677poXXnghSXLcccfljjvuyE033ZR//vOfef/997P77rs3bF9XV5eddtopM2fOzGOPPZarr746V111VU466aSWOiUAAAAAgCWOOcYBgJJQqnOM77LLLo0+n3nmmbn00kvz+OOPZ/nll8+f//znXH/99dlmm22SJFdeeWXWWmutPP7449l0001z//3358UXX8yDDz6Y6urqbLDBBjn99NNzwgkn5JRTTknbtm1b4rQAAAAAAJYoEuMAwBKntrY2NTU1jZba2trP3a6uri5///vfM3Xq1PTr1y8jRozIrFmz0r9//4Y6a665ZlZcccUMHz48STJ8+PCsu+66qa6ubqgzYMCA1NTUNKTOAQAAAABoWjrGAYCSUEyh2ZahQ4emqqqq0TJ06NAFtm3kyJHp1KlTKisrc/jhh+fWW29Nnz59MmbMmLRt2zZdu3ZtVL+6ujpjxoxJkowZM6ZRp/jc9XPXAQAAAADQ9AylDgAscYYMGZLBgwc3KqusrFxg/TXWWCPPPvtsJk2alJtvvjkDBw7MP//5z6ZuJgAAAAAAi4mOcQCgJDTnHOOVlZUL7Qj/rLZt22a11VZLkvTt2zdPPfVUzj///PzgBz/IzJkzM3HixEap8bFjx6Znz55Jkp49e+bJJ59stL+xY8c2rAMAAAAAoOkZSh0AYBHV19entrY2ffv2TZs2bTJs2LCGda+88kpGjRqVfv36JUn69euXkSNHZty4cQ11HnjggXTp0iV9+vRp9rYDAAAAACyJJMYBgJJQLDZfYnxRDBkyJDvssENWXHHFTJ48Oddff30eeeSR3HfffamqqsrBBx+cwYMHp3v37unSpUuOPvro9OvXL5tuummSZPvtt0+fPn2y//775+yzz86YMWNy4oknZtCgQYuUWgcAAAAA4MvTMQ4AsBDjxo3LAQcckA8++CBVVVVZb731ct9992W77bZLkpx77rmpqKjIHnvskdra2gwYMCCXXHJJw/atWrXKnXfemSOOOCL9+vVLx44dM3DgwJx22mktdUoAAAAAAEscHeMAQEmob8Y5xhfFn//854Wub9euXS6++OJcfPHFC6yz0kor5e67717cTQMAAAAA4AsyxzgAAAAAAAAAZU3HOAAAAAAAAABlzVDqAEBJKJboUOoAAAAAAHz9SYwDAAAAAAAAUNYkxgGAklAsSowDAAAAANA0JMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJQEc4wDAAAAANBUJMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJQEc4wDAAAAANBUJMYBAAAAAAAAKGsS4wBASahv6QYAAAAAAFC2JMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJSEYiTGAQAAAABoGhLjAAAAAAAAAJQ1iXEAoCSYYxwAAAAAgKYiMQ4AAAAAAABAWZMYBwBKgjnGAQAAAABoKhLjAAA0uYsvvji9e/dOu3btsskmm+TJJ5/8Qtv9/e9/T6FQyG677da0DQQA4GvHPSYAAItCxzgAAE3qhhtuyODBg3PyySfnmWeeyfrrr58BAwZk3LhxC93u7bffzs9+9rNsscUWzdRSAAC+LtxjAgCwqHSMAwAlob7YfAvN65xzzsmhhx6agw46KH369Mlll12WDh065C9/+csCt6mrq8t+++2XU089NausskozthYAgK8D95gAACwqHeMAADSZmTNnZsSIEenfv39DWUVFRfr375/hw4cvcLvTTjstPXr0yMEHH9wczQQA4GvEPSYAAF9G65ZuAABAkhRTaOkm0ATGjx+furq6VFdXNyqvrq7Oyy+/PN9tHn300fz5z3/Os88++4WPU1tbm9ra2obPNTU1X6q9AACUvua4x3R/CQBQfiTGAQAoGZMnT87++++fK664IksvvfQX3m7o0KGpqqpqWFZYYYUmbCUAAF8nX+Ye0/0lAED5kRgHAEpCsSgxXo6WXnrptGrVKmPHjm1UPnbs2PTs2XOe+m+88Ubefvvt7LLLLg1l9fX1SZLWrVvnlVdeyaqrrjrPdkOGDMngwYMbPtfU1Hh4CQBQpprjHtP9JQBA+dExDgBAk2nbtm369u2bYcOGZbfddksy5yHksGHDctRRR81Tf80118zIkSMblZ144omZPHlyzj///AU+jKysrExlZeVibz8AAKWnOe4x3V8CAJQfHeMAQEkoFlu6BTSVwYMHZ+DAgdloo42y8cYb57zzzsvUqVNz0EEHJUkOOOCALLfcchk6dGjatWuXddZZp9H2Xbt2TZJ5ygEAWHK5xwQAYFHpGAcAoEn94Ac/yIcffpiTTjopY8aMyQYbbJB777031dXVSZJRo0aloqKihVsJAMDXiXtMAAAWVaFYLI181pbff7Slm8AS7oQ7D27pJkDuOOPxlm4C5LITurXIcYeNnNFsx9p23XbNdixaRk1NTaqqqjJp0qR06dKlpZsDAFDWloR7ryXhHAEASkVT3Xt5bRIAAAAAAACAsmYodQCgJBSLhZZuAgAAAAAAZUpiHAAAAAAAAICyJjEOAJSEYrGlWwAAAAAAQLmSGAcAAAAAAACgrEmMAwAloRhzjAMAAAAA0DQkxgEAAAAAAAAoaxLjAEBJqDfHOAAAAAAATURiHAAAAAAAAICyJjEOAJSEYtEc4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASiuYYBwAAAACgiUiMAwAAAAAAAFDWdIwDAAAAAAAAUNYMpQ4AlIT6FFq6CQAAAAAAlCmJcQAAAAAAAADKmsQ4AFASisWWbgEAAAAAAOVKYhwAAAAAAACAsiYxDgCUhGLRHOMAAAAAADQNiXEAAAAAAAAAyprEOABQEurNMQ4AAAAAQBORGAcAAAAAAACgrEmMAwAloSgxDgAAAABAE5EYBwAAAAAAAKCsSYwDACWhmEJLNwEAAAAAgDIlMQ4AAAAAAABAWZMYBwBKQr05xgEAAAAAaCIS4wAAAAAAAACUNYlxAKAkFCXGAQAAAABoIhLjAAAAAAAAAJS1kkmM18+ua+kmsIQbfsXIlm4C5IQtRrV0EyBJtxY5qsQ4AAAAAABNRWIcAAAAAAAAgLJWMolxAGDJVl8stHQTAAAAAAAoUxLjAAAAAAAAAJQ1HeMAAAAAAAAAlDVDqQMAJaFYbOkWAAAAAABQriTGAQAAAAAAAChrEuMAQEmQGAcAAAAAoKlIjAMALMTQoUPzrW99K507d06PHj2y22675ZVXXmlUZ8aMGRk0aFCWWmqpdOrUKXvssUfGjh3bqM6oUaOy0047pUOHDunRo0eOP/74zJ49uzlPBQAAAABgiaVjHAAoCfXF5lsWxT//+c8MGjQojz/+eB544IHMmjUr22+/faZOndpQ57jjjssdd9yRm266Kf/85z/z/vvvZ/fdd29YX1dXl5122ikzZ87MY489lquvvjpXXXVVTjrppMX19QEAAAAAsBCGUgcAWIh777230eerrroqPXr0yIgRI7Lllltm0qRJ+fOf/5zrr78+22yzTZLkyiuvzFprrZXHH388m266ae6///68+OKLefDBB1NdXZ0NNtggp59+ek444YSccsopadu2bUucGgAAAADAEkNiHAAoCcViodmW2tra1NTUNFpqa2u/UDsnTZqUJOnevXuSZMSIEZk1a1b69+/fUGfNNdfMiiuumOHDhydJhg8fnnXXXTfV1dUNdQYMGJCampq88MILi+srBAAAAABgAXSMAwBLnKFDh6aqqqrRMnTo0M/drr6+Pscee2w222yzrLPOOkmSMWPGpG3btunatWujutXV1RkzZkxDnU93is9dP3cdAAAAAABNy1DqAEBJKC7i3N9fxZAhQzJ48OBGZZWVlZ+73aBBg/L888/n0UcfbaqmAQAAAADQBHSMAwBLnMrKyi/UEf5pRx11VO68887861//yvLLL99Q3rNnz8ycOTMTJ05slBofO3Zsevbs2VDnySefbLS/sWPHNqwDAAAAAKBpGUodACgJ9cXmWxZFsVjMUUcdlVtvvTUPPfRQVl555Ubr+/btmzZt2mTYsGENZa+88kpGjRqVfv36JUn69euXkSNHZty4cQ11HnjggXTp0iV9+vT58l8aAAAAAABfiMQ4AMBCDBo0KNdff33+93//N507d26YE7yqqirt27dPVVVVDj744AwePDjdu3dPly5dcvTRR6dfv37ZdNNNkyTbb799+vTpk/333z9nn312xowZkxNPPDGDBg1a5OQ6AAAAAACLTsc4AFASmnOO8UVx6aWXJkm23nrrRuVXXnllDjzwwCTJueeem4qKiuyxxx6pra3NgAEDcskllzTUbdWqVe68884cccQR6devXzp27JiBAwfmtNNOa67TAAAAAABYoukYBwBYiOIX6LFv165dLr744lx88cULrLPSSivl7rvvXpxNAwAAAADgC9IxDgCUhFJNjAMAAAAA8PVX0dINAAAAAAAAAICmJDEOAJSEeolxAAAAAACaiMQ4AAAAAAAAAGVNYhwAKAnmGAcAAAAAoKlIjAMAAAAAAABQ1iTGAYCSUF/f0i0AAAAAAKBcSYwDAAAAAAAAUNZ0jAMAAAAAAABQ1gylDgCUhGKxpVsAAAAAAEC5khgHAAAAAAAAoKxJjAMAJUFiHAAAAACApiIxDgAAAAAAAEBZkxgHAEpCvcQ4AAAAAABNRGIcAAAAAAAAgLImMQ4AlIRis04yXmjGYwEAAAAA0NIkxgEAAAAAAAAoaxLjAEBJaNbAOAAAAAAASxSJcQAAAAAAAADKmsQ4AFAS6utbugUAAAAAAJQriXEAAAAAAAAAyprEOABQEswxDgAAAABAU5EYBwAAAAAAAKCsSYwDACWhXmIcAAAAAIAmIjEOAAAAAAAAQFmTGAcASoI5xgEAAAAAaCoS4wAAAAAAAACUNYlxAKAkFJt1kvFCMx4LAAAAAICWJjEOAAAAAAAAQFmTGAcASkKzBsYBAAAAAFiiSIwDAAAAAAAAUNZ0jAMAAAAAAABQ1gylDgCUhKKh1AEAAAAAaCIS4wAAAAAAAACUNYlxAKAk1NeLjAMAAAAA0DQkxgEAAAAAAAAoaxLjAEBJMMc4AAAAAABNRWIcAAAAAAAAgLImMQ4AlASJcQAAAAAAmorEOAAAAAAAAABlTWIcACgJ9SLjAAAAAAA0EYlxAAAAAAAAAMqaxDgAUBKK9S3dAgAAAAAAypXEOAAAAAAAAABlTWIcACgJRXOMAwAAAADQRCTGAQAAAAAAAChrEuMAQEmoN8c4AAAAAABNRGIcAAAAAAAAgLKmYxwAKAnFYrHZFprfxRdfnN69e6ddu3bZZJNN8uSTTy6w7hVXXJEtttgi3bp1S7du3dK/f/+F1gcAYMnkHhMAgEWhYxwAgCZ1ww03ZPDgwTn55JPzzDPPZP3118+AAQMybty4+dZ/5JFHsu++++bhhx/O8OHDs8IKK2T77bfP6NGjm7nlAACUKveYAAAsqkKxRGJTm+/yz5ZuAku4rffo19JNgBy8xaiWbgJk5VVXa5HjnnjVzGY71hkHtm22Y5Fssskm+da3vpWLLrooSVJfX58VVlghRx99dH7xi1987vZ1dXXp1q1bLrroohxwwAFf6Jg1NTWpqqrKpEmT0qVLl6/UfgAAFq4l7r2a+x7T/SUAQPNpqnsviXEAAJrMzJkzM+L/s3ff4VFUbR/Hf5veSAOSEEroHeERkV4UBKQo0qQoAUFQwIaV1wKIgAKKj4gFVFAUUVCwIdLsFOnSe5GSUEIKCal73j/yZGFJAgmmbr6f69pLOXNm5kzbvTNn7jObN6tDhw62MicnJ3Xo0EHr1q3L0TISEhKUkpKiwMDAbOskJSUpNjbW7gMAAADHVBAxJvElAACA46FjHAAAAPnm3LlzSktLU3BwsF15cHCwIiIicrSMZ599VqGhoXY3Pq82ZcoU+fn52T4VK1b8V+0GAABA0VUQMSbxJQAAgOOhYxwAABQJxmoK7IPi49VXX9XChQu1ZMkSeXh4ZFtv7NixiomJsX3++eefAmwlAAAAipOcxJjElwAAAI7HpbAbAAAAAMdVpkwZOTs7KzIy0q48MjJSISEh15x3+vTpevXVV7Vq1SrddNNN16zr7u4ud3f3f91eAAAAFH0FEWMSXwIAADgeMsYBAECRYEzBfVBw3Nzc1LhxY61evdpWZrVatXr1ajVv3jzb+aZOnaqJEydq+fLluuWWWwqiqQAAACgmiDEBAABwI8gYBwAAQL4aM2aMwsPDdcstt+jWW2/Vm2++qfj4eA0ZMkSSNGjQIJUvX15TpkyRJL322mt66aWXtGDBAlWuXNn2nkgfHx/5+PgU2nYAAACg6CDGBAAAQG7RMQ4AAIoEK+/+dlj33nuvzp49q5deekkRERFq1KiRli9fruDgYEnS8ePH5eR0eSCjd999V8nJyerdu7fdcsaNG6fx48cXZNMBAABQRBFjAgAAILcsxhSNAUVbdf+1sJuAEq5dr+yH2gIKytDWxwu7CYCqVKteKOt9bk5iga3r1Qc9CmxdKByxsbHy8/NTTEyMfH19C7s5AAAADq0kxF4lYRsBAACKivyKvcgYBwAARUIReVYPAAAAAAAAAOCAnK5fBQAAAAAAAAAAAACA4ouMcQAAUCQYa2G3AAAAAAAAAADgqMgYBwAAAAAAAAAAAAA4NDLGAQBAkWDlHeMAAAAAAAAAgHxCx3gR1LCenwb0rKha1XxUprS7xk7aqd/Xn7/mPP+p76fRw6qpSiVvnTmbpI+/PKYfV0fa1enZJVT9e1ZUYICbDh25qBnvH9SeA3H5uSkooioHW9SqvrNCS1vk62XRZ2tStOf45Q6p2xs5q0EVJ/l5SWlW6dR5o5Vb0nTi3OU6nm5St6bOqlXRSUbS7qNW/fBXmpJTs1+vi7PU+RZn3VTFSc7O0sGTRt+uT1V84uU6ft7SXc1cVKWcRckp0tZDVq3cnCYr/WUO5fsfftD3PyzTmcj076lKYWEa2L+/mjS5RXFxcZr/6afavGWrzp49Kz8/PzVv3kzh998vb29vu+WsWLlSXy9ZqpMnT8rLy0utW7XS6FEjs11vcnKyZs/5QL/+9ptSUlLU+OabNXrUSAUEBNjqnDlzRjNnzdLff++Qh4eHOnRorwcGD5azs3P+7AwAAAAAAAAAAJDv6Bgvgjw9nHXwyEX9sPK0Jj9f/7r1ywV7aOq4Bvrmx1N6efpeNW7or2cfqaXzUcn6a+sFSdLtrcpq9LBqmj5rv3bvj1Pfu8rrjZcbqP9DGxUdk5Lfm4QixtVFiogy2nwgTQNvd800/VyM0ffrUxUVZ+TqYlGLuk4a3NFFb3yVooSk9Dp92riolJc0b0WqnJ2ke1q56O4W0qLf0rJd751NnFWrgpMW/pKqxJT0jvUBt7lozo/pvekWi3R/BxddvCTNXpaqUp5S79YuslqllVuyXy6KnzJlyuiBIYNVPjRUxkirVq/ShIkT9fbMtyRjdP58lB4cNlSVKlXSmcgzmvn224o6H6UXnv8/2zK++nqJvl6yRMMeeEC1atdSYmKiIiMjr7FW6f3Zc/TXxo16fuxYeXt7ada772niK5P0xuvTJUlpaWl6adx4BQQE6I3p0xQVdUHTX39dLs4uGjI4PF/3CSRDxjgAAAAAAAAAIJ/wjvEiaP3mKM359Kh+u06WeIYencvpdGSi3v7osI6dSNDXP5zSL3+e1b13V7DV6dejgr776bSWrY7U0X8SNO2dA0pMsqrbHSH5tRkowg6cNFq1Nc0uS/xKfx+x6tBpowsXpTPRRj9uTJOHm0UhgRZJUlk/qWYFJy35Mz2L/NgZox82pKpBFSeV8sx6ne6uUuMaTvpxY6oORxidOm/09Z+pCgt2UoWy6cutHmpRkJ9Fi35LVUSUsbWzaW0nOfNt5VCaNW2qW5s0Ufny5VWhQnkNDg+Xh4eH9u7dq8qVK+vFF55Xs6ZNFVqunBo1aqjw8EHasGGD0tLSH5CIi4vTJ/Pn66knx+i229optFw5Va1SRc2bNct2nfHx8fppxQoNf3CYGjVqqBo1aujJJx7X7j17tGfvXknSli1bdfyff/TM00+pWrVqatLkFg26/3599/33SknhISIAAAAAAAAAAIorupocQL3avtq07YJd2V9bolSvtq8kycXFoprVS2nT9st1jJE2bbugerV8C7StKH6cnaRbajrpUrJRRFR6R3rFsk66lJTeuZ3h0CkjY2Tr5L5a+dIWuThbdOj05XnOxUjRF40q/W+eSmWdFBlt7IZWP3jSKg83i4L8s14uir+0tDT98uuvSkpMVJ06dbKsEx+fIC8vL9tw5lu3bpPVatX58+f14IgRuu/+QZo0eYrOnj2b7XoOHDio1NRU/adRI1tZxYoVFVS2rPbs2SNJ2rN3jypXDrMbWr1x45uVkJCgY8eP58HW4lqsVlNgHwAAAAAAAABAyZLrodQvXbqkzZs3KzAwUHXr1rWblpiYqC+//FKDBg3Kswbi+koHuCkqOtmuLCo6RT7eLnJzc1IpHxe5OFsUdSElU52wCl4F2VQUI7UqWNS3rYtcXaSLCdK8n1Jtw6iX8pQuJtrXtxrpUpJUytMiKXOnk4+nRalpRon2p6ouXjLy8bT8r4508dLV02WbBsdy5MhRPfHkk0pOTpanp6defPEFhVWqlKleTEyMPv/8c915Z2db2emI0zLGaOEXX+qhEcPl7e2tjz/5RGOff0Hvznpbrq6ZXxFw4cIFubq4yMfHx67cPyBAFy5csNXx9w+wn+7vnz4t6oJU7d9uNQAAAAAAAAAAKAy5yhjfv3+/6tSpozZt2qhBgwZq27atTp8+bZseExOjIUOGXHc5SUlJio2NtftY05KvOx+AgnM4wmjWtymavSxVB05a1a+di7w9CrtVcCQVKpTXO2/P1H9nvKGuXbro9dffyJSVHZ+QoJfGjVelSpV038CBtnJjjFJTU/XwQyN0S+PGqlO7tp579lmdOnVK2//+u6A3BXnEmIL7AAAAAAAAAABKllx1jD/77LOqX7++zpw5o3379qlUqVJq2bKljudyeNkpU6bIz8/P7nPi4Ge5WgYuO38hWYH+bnZlgf6uuhifquRkq2JiU5SaZhQY4JqpzvkLPJCArKWkSlFx0omzRkvWpinNpL8jXJLiLkk+V3WSO1kkT3cp7lLWPU4XLxm5OFvkYX+qysfToov/m+fipcyZ4Rn/vjqTHMWfq6urQkNDVaNGDT0wZLCqVK2ipd98Y5uekJCgF158UZ5ennrpxRfk4nJ5kJPAgEBJUqUrMsz9/fzk6+ub7XDqAQEBSklN1cWLF+3Koy9csA2dHhAQoOho+1dTREdHp08LtM8kBwAAAAAAAAAAxUeuOsbXrl2rKVOmqEyZMqpevbq+++47derUSa1bt9bhw4dzvJyxY8cqJibG7lOh+sDrz4gs7dobq8YN/e3KmvwnQLv2xkqSUlON9h+MU+ObLnfqWCxS44YB2rUvtiCbimLMSZKLc/qQ5/+ctcrT3aLQ0pff+121nEUWS3pHelZOnjdKTTOqWu7yPGV8JX8fi47/b57jZ60K9rfYZaZXC3VSYrLRmWhSPB2dsRqlpKS/8iE+IUH/98KLcnFx1fiXXpKbm/0TFRmv8jhx4oStLC4uTrGxsQoKCspy+TVqVJeLi4u2bdtuK/vnxAmdOXvW9m7zOrXr6OjRY7bOcEnasnWrvLy87DrhkT+M1RTYBwAAAAAAAABQsuSqY/zSpUt2GXsWi0XvvvuuunfvrrZt22r//v05Wo67u7t8fX3tPk7ObtefsYTw9HBS9Sreql7FW5JULthD1at4K7isuyRpxKAqeuGJWrb6S5efVmiIpx4eXFWVKnjqni6huq1VkL745nKH0cKlJ9S9Uzl1vj1YYRW89NTIGvL0cNIPqyIKduNQJLi5SCGBFoUEpndSB/ik/7+ft+TqIt1xs7MqlLXI31sKLW3RPS2dVcpb2nnUKkk6GyPtP2FVjxbOKl/GokpBFnVr6qIdR6yK+19mdykv6bF7XFW+TPo6klKkzQes6tLERVVC0jvVe7Zy0fEzVltn+sFTRmdijHq3dlFIgEXVQy3q8B9nbdhrVZq14PcT8s9Hc+dpx46dioiM1JEjR/XR3Hn6e8cO3d7uNsUnJOj5519QYmKinnj8MSUkJCgqKkpRUVFKS0uTlD4Me/NmzfTe+7O1e/duHT16VNNff0MVKlRQw5tukiSdO3dOw4aP0L59+yRJ3t7e6tSxo2bPmaPt27frwIEDemPGDNWpU1t1ateWJN18839UqWJFTZ3+ug4fPqxNmzfr40/mq3u3bnLL4r3lKBl+++03de/eXaGhobJYLFq6dKnddGOMXnrpJZUrV06enp7q0KGDDhw4YFcnKipKAwcOlK+vr/z9/TV06NBMoxcAAAAAAAAAAPKPy/WrXFa7dm1t2rTJllmX4e2335Yk3XXXXXnXshKsdvVSmjmlke3fjw6rLklatjpCk9/cp9KBbgouezml9nRkop6ZsEOPDKumPneV19lzSXpt5j79tfXycMBr/jgrfz9XDRtYWYEBbjp4+KKeHLdDF6JTCmy7UHSUL2PR0M6XO/m63Jr+VbDlYJq+XZemMn4WDajmIi8PKSFJOnnO6INlqXZZ24t+S1W3Zs56oJOLjJF2HbPqhw1ptunOTlJZP4vcrviW+XFjmoyR+t/mIhcn6cApo+/Wp9qmGyN9uipV3Zu7aHhXF6WkSlsPWrV66+XlwjFEx0Rr2uuv60JUlLy8vVWlSmVNmjhRN9/8H23/+2/t/V9n9gNDh9nNN2/uRwoJDpYkPfXUk3p/9my9NH68LBYnNWhQX5Mmvmx7gCs1LU0nTpxQYlKSbf4Rwx+UxWLRxEmTlZKSosaNb9bokSNt052dnTVh/Hi9PWuWnnjyKXm4u6tDh/YadP99+b1LIMlaRF/+HR8fr4YNG+qBBx5Qz549M02fOnWq3nrrLX388ceqUqWKXnzxRXXq1Em7d++Wh0f67/XAgQN1+vRprVy5UikpKRoyZIiGDx+uBQsWFPTmAAAAAAAAAECJZDEm53ehp0yZot9//13Lli3LcvrIkSP13nvvyWrNfWpnq+6/5noeIC+169W8sJsAaGjr44XdBEBVqlUvlPU+8mbBvd5j5uO+NzSfxWLRkiVL1KNHD0np2eKhoaF68skn9dRTT0mSYmJiFBwcrHnz5qlfv37as2eP6tatq40bN+qWW26RJC1fvlxdunTRiRMnFBoamifbBHuxsbHy8/NTTEyMfH1v7HgDAAAgZ0pC7FUSthEAAKCoyK/YK1dDqY8dOzbbTnFJeuedd26oUxwAAKAgJSUlKTY21u6TdMXoAjl15MgRRUREqEOHDrYyPz8/NW3aVOvWrZMkrVu3Tv7+/rZOcUnq0KGDnJyctGHDhn+/MQAAAAAAAACA68pVxzgAAEB+MVZTYJ8pU6bIz8/P7jNlypRctzkiIkKSFPy/If4zBAcH26ZFREQoKCjIbrqLi4sCAwNtdQAAAAAAAAAA+StX7xgHAABwBGPHjtWYMWPsytzd3QupNQAAAAAAAACA/EbHOAAAKBKM1RTYutzd3fOkIzwkJESSFBkZqXLlytnKIyMj1ahRI1udM2fO2M2XmpqqqKgo2/wAAAAAAAAAgPzFUOoAAAA3qEqVKgoJCdHq1attZbGxsdqwYYOaN28uSWrevLmio6O1efNmW501a9bIarWqadOmBd5mAAAAAAAAACiJyBgHAABFQgEmjOfKxYsXdfDgQdu/jxw5om3btikwMFCVKlXS448/rldeeUU1atRQlSpV9OKLLyo0NFQ9evSQJNWpU0edO3fWgw8+qPfee08pKSkaPXq0+vXrp9DQ0ELaKgAAAAAAAAAoWegYBwAAuIZNmzbptttus/07493k4eHhmjdvnp555hnFx8dr+PDhio6OVqtWrbR8+XJ5eHjY5vnss880evRotW/fXk5OTurVq5feeuutAt8WAAAAAAAAACip6BgHAABFQkG+Yzw32rVrJ2Oyb5vFYtHLL7+sl19+Ods6gYGBWrBgQX40DwAAAAAAAACQA7xjHAAAAAAAAAAAAADg0MgYBwAARcK1srIBAAAAAAAAAPg3yBgHAAAAAAAAAAAAADg0MsYBAECRYC2i7xgHAAAAAAAAABR/ZIwDAAAAAAAAAAAAABwaGeMAAKBI4B3jAAAAAAAAAID8QsY4AAAAAAAAAAAAAMChkTEOAACKBMM7xgEAAAAAAAAA+YSMcQAAAAAAAAAAAACAQyNjHAAAFAlkjAMAAAAAAAAA8gsZ4wAAAAAAAAAAAAAAh0bGOAAAKBKshoxxAAAAAAAAAED+IGMcAAAAAAAAAAAAAODQyBgHAABFAu8YBwAAAAAAAADkFzLGAQAAAAAAAAAAAAAOjY5xAAAAAAAAAAAAAIBDYyh1AABQJBjDUOoAAAAAAAAAgPxBxjgAAAAAAAAAAAAAwKGRMQ4AAIoEq5WMcQAAAAAAAABA/iBjHAAAAAAAAAAAAADg0MgYBwAARYIhYxwAAAAAAAAAkE/IGAcAAAAAAAAAAAAAODQyxgEAQJFgDBnjAAAAAAAAAID8QcY4AAAAAAAAAAAAAMChkTEOAACKBGO1FnYTAAAAAAAAAAAOioxxAAAAAAAAAAAAAIBDI2McAAAUCVYr7xgHAAAAAAAAAOQPMsYBAAAAAAAAAAAAAA6NjHEAAFAkGEPGOAAAAAAAAAAgf5AxDgAAAAAAAAAAAABwaGSMAwCAIsHwjnEAAAAAAAAAQD4hYxwAAAAAAAAAAAAA4NDIGAcAAEUCGeMAAAAAAAAAgPxCxjgAAAAAAAAAAAAAwKGRMQ4AAIoEq7EWdhMAAAAAAAAAAA6KjHEAAAAAAAAAAAAAgEOjYxwAAAAAAAAAAAAA4NAYSh0AABQJxmoKuwkAAAAAAAAAAAdFxjgAAAAAAAAAAAAAwKGRMQ4AAIoEMsYBAAAAAAAAAPmFjHEAAAAAAAAAAAAAgEMjYxwAABQJxpAxDgAAAAAAAADIH2SMAwAAAAAAAAAAAAAcGhnjAACgSLBarYXdBAAAAAAAAACAgyJjHAAAAAAAAAAAAADg0MgYBwAARYKx8o5xAAAAAAAAAED+IGMcAAAAAAAAAAAAAODQyBgHAABFgjG8YxwAAAAAAAAAkD/IGAcAAAAAAAAAAAAAODQyxgEAQJHAO8YBAAAAAAAAAPmFjHEAAAAAAAAAAAAAgEMjYxwAABQJZIwDAAAAAAAAAPILGeMAAAAAAAAAAAAAAIdGxjgAACgSrMZa2E0AAAAAAAAAADgoMsYBAAAAAAAAAAAAAA6NjHEAAFAk8I5xAAAAAAAAAEB+IWMcAAAAAAAAAAAAAODQyBgHAABFgrHyjnEAAAAAAAAAQP4gYxwAAAAAAAAAAAAA4NDoGAcAAAAAAAAAAAAAODSGUgcAAEWCsZrCbgIAAAAAAAAAwEGRMQ4AAAAAAAAAAAAAcGhkjAMAgCLBGGthNwEAAAAAAAAA4KDIGAcAAAAAAAAAAAAAODQyxgEAQJFg5R3jAAAAAAAAAIB8QsY4AAAAAAAAAAAAAMChkTEOAACKBGPlHeMAAAAAAAAAgPxBxjgAAAAAAAAAAAAAwKGRMQ4AAIoEwzvGAQAAAAAAAAD5hIxxAAAAAAAAAAAAAIBDI2McAAAUCcbwjnEAAAAAAAAAQP4gYxwAAAAAAAAAAAAA4NDoGAcAAEWCsZoC+9yIWbNmqXLlyvLw8FDTpk31119/5fEecGy53X+LFi1S7dq15eHhoQYNGmjZsmUF1FIAAAAUF8SYAAAAyA06xgEAAK7jiy++0JgxYzRu3Dht2bJFDRs2VKdOnXTmzJnCblqxkNv9t3btWvXv319Dhw7V1q1b1aNHD/Xo0UM7d+4s4JYDAACgqCLGBAAAQG5ZjDE3ljaVx1p1/7Wwm4ASrl2v5oXdBEBDWx8v7CYAqlKteqGstyBjgT++a5ur+k2bNlWTJk309ttvS5KsVqsqVqyoRx55RM8991x+NNGh5Hb/3XvvvYqPj9f3339vK2vWrJkaNWqk9957L0frjI2NlZ+fn2JiYuTr65s3GwIAAIAsFUbsVdAxJvElAABAwcmv2Mslz5YEAABQTCQlJSkpKcmuzN3dXe7u7pnqJicna/PmzRo7dqytzMnJSR06dNC6devyva3F3Y3sv3Xr1mnMmDF2ZZ06ddLSpUuzXc/VxzQmJkZSehANAACA/JURcxVU/k1BxJjElwAAAIUnv+LLItMxntvMLdhLSkrSlClTNHbs2Cxv6gP5jXMwrxROpq6j4Dws3goyFhg/frwmTJhgVzZu3DiNHz8+U91z584pLS1NwcHBduXBwcHau3dvfjbTIdzI/ouIiMiyfkRERLbrmTJlSqZjKkkVK1a8gVYDAADgRpw/f15+fn75vp6CiDGJLwEAAApfXseXRaZjHP9OUlKSJkyYoDFjxtAZhELBOYiigPMQOTV27NhM2SKcM8Xb1cc0OjpaYWFhOn78eIHcnEXBi42NVcWKFfXPP/8wnKkD4zg7Po6x4+MYlwwxMTGqVKmSAgMDC7speYb4smTiO8vxcYwdH8e4ZOA4O778ii/pGAcAACVOdsOmZ6VMmTJydnZWZGSkXXlkZKRCQkLyo3kO5Ub2X0hISK73d3bH1M/Pjz+QHJyvry/HuATgODs+jrHj4xiXDE5OTgWynoKIMYkvSza+sxwfx9jxcYxLBo6z48vr+LJgolUAAIBiys3NTY0bN9bq1attZVarVatXr1bz5s0LsWXFw43sv+bNm9vVl6SVK1eyvwEAACCJGBMAAAA3hoxxAACA6xgzZozCw8N1yy236NZbb9Wbb76p+Ph4DRkypLCbVixcb/8NGjRI5cuX15QpUyRJjz32mNq2bavXX39dXbt21cKFC7Vp0ybNnj27MDcDAAAARQgxJgAAAHKLjnEH4e7urnHjxvF+VBQazkEUBZyHyC/33nuvzp49q5deekkRERFq1KiRli9fruDg4MJuWrFwvf13/Phxu2GRWrRooQULFuiFF17Q//3f/6lGjRpaunSp6tevn+N18n3g+DjGJQPH2fFxjB0fx7hkKIzjXNAxJudyycBxdnwcY8fHMS4ZOM6OL7+OscUYY/J0iQAAAAAAAAAAAAAAFCG8YxwAAAAAAAAAAAAA4NDoGAcAAAAAAAAAAAAAODQ6xgEAAAAAAAAAAAAADo2OcQAAAAAAAAAAAACAQ6Nj3AHMmjVLlStXloeHh5o2baq//vqrsJuEEuS3335T9+7dFRoaKovFoqVLlxZ2k1ACTZkyRU2aNFGpUqUUFBSkHj16aN++fYXdLAD5LLcx0KJFi1S7dm15eHioQYMGWrZsWQG1FDcqN8d4zpw5at26tQICAhQQEKAOHToQFxcTN/r3zMKFC2WxWNSjR4/8bSD+tdwe4+joaI0aNUrlypWTu7u7atasyXd2EZfbY/zmm2+qVq1a8vT0VMWKFfXEE08oMTGxgFqL3LqRv/t/+eUX3XzzzXJ3d1f16tU1b968fG9nXiC+LBmIMR0f8aXjI74sGYgxHVthxZh0jBdzX3zxhcaMGaNx48Zpy5YtatiwoTp16qQzZ84UdtNQQsTHx6thw4aaNWtWYTcFJdivv/6qUaNGaf369Vq5cqVSUlLUsWNHxcfHF3bTAOST3MZAa9euVf/+/TV06FBt3bpVPXr0UI8ePbRz584CbjlyKrfH+JdfflH//v31888/a926dapYsaI6duyokydPFnDLkRs3+vfM0aNH9dRTT6l169YF1FLcqNwe4+TkZN1xxx06evSoFi9erH379mnOnDkqX758AbccOZXbY7xgwQI999xzGjdunPbs2aMPP/xQX3zxhf7v//6vgFuOnMrt3/1HjhxR165dddttt2nbtm16/PHHNWzYMP3000/53NJ/h/iyZCDGdHzEl46P+LJkIMZ0fIUWYxoUa7feeqsZNWqU7d9paWkmNDTUTJkypRBbhZJKklmyZElhNwMwZ86cMZLMr7/+WthNAZBPchsD9e3b13Tt2tWurGnTpmbEiBH52k7cuH8b56ampppSpUqZjz/+OL+aiDxwI8c5NTXVtGjRwnzwwQcmPDzc3H333QXQUtyo3B7jd99911StWtUkJycXVBPxL+X2GI8aNcrcfvvtdmVjxowxLVu2zNd2Im/k5O/+Z555xtSrV8+u7N577zWdOnXKx5b9e8SXJQMxpuMjvnR8xJclAzFmyVKQMSYZ48VYcnKyNm/erA4dOtjKnJyc1KFDB61bt64QWwYAhSsmJkaSFBgYWMgtAZAfbiQGWrdunV19SerUqRMxUxGVF3FuQkKCUlJS+C0owm70OL/88ssKCgrS0KFDC6KZ+Bdu5Bh/++23at68uUaNGqXg4GDVr19fkydPVlpaWkE1G7lwI8e4RYsW2rx5s20ozMOHD2vZsmXq0qVLgbQZ+a84xl3ElyUDMabjI750fMSXJQMxJrKSV7GXS142CgXr3LlzSktLU3BwsF15cHCw9u7dW0itAoDCZbVa9fjjj6tly5aqX79+YTcHQD64kRgoIiIiy/oRERH51k7cuLyIc5999lmFhoZm+qMJRceNHOc//vhDH374obZt21YALcS/dSPH+PDhw1qzZo0GDhyoZcuW6eDBgxo5cqRSUlI0bty4gmg2cuFGjvGAAQN07tw5tWrVSsYYpaam6qGHHmKYSweSXdwVGxurS5cuydPTs5Balj3iy5KBGNPxEV86PuLLkoEYE1nJqxiTjHEAgEMZNWqUdu7cqYULFxZ2UwAAheTVV1/VwoULtWTJEnl4eBR2c5BH4uLidP/992vOnDkqU6ZMYTcH+cRqtSooKEizZ89W48aNde+99+r555/Xe++9V9hNQx755ZdfNHnyZL3zzjvasmWLvv76a/3www+aOHFiYTcNAK6JGNPxEF+WDMSXJQMxJnKKjPFirEyZMnJ2dlZkZKRdeWRkpEJCQgqpVQBQeEaPHq3vv/9ev/32mypUqFDYzQGQT24kBgoJCSFmKkb+TZw7ffp0vfrqq1q1apVuuumm/Gwm/qXcHudDhw7p6NGj6t69u63MarVKklxcXLRv3z5Vq1YtfxuNXLmRa7lcuXJydXWVs7OzraxOnTqKiIhQcnKy3Nzc8rXNyJ0bOcYvvvii7r//fg0bNkyS1KBBA8XHx2v48OF6/vnn5eREDkdxl13c5evrWySzxSXiy5KCGNPxEV86PuLLkoEYE1nJqxiTM6EYc3NzU+PGjbV69WpbmdVq1erVq9W8efNCbBkAFCxjjEaPHq0lS5ZozZo1qlKlSmE3CUA+upEYqHnz5nb1JWnlypXETEXUjca5U6dO1cSJE7V8+XLdcsstBdFU/Au5Pc61a9fWjh07tG3bNtvnrrvu0m233aZt27apYsWKBdl85MCNXMstW7bUwYMHbTelJWn//v0qV64cNy2LoBs5xgkJCZluTGbcqDbG5F9jUWCKY9xFfFkyEGM6PuJLx0d8WTIQYyIreRZ7GRRrCxcuNO7u7mbevHlm9+7dZvjw4cbf399EREQUdtNQQsTFxZmtW7earVu3GknmjTfeMFu3bjXHjh0r7KahBHn44YeNn5+f+eWXX8zp06dtn4SEhMJuGoB8cr0Y6P777zfPPfecrf6ff/5pXFxczPTp082ePXvMuHHjjKurq9mxY0dhbQKuI7fH+NVXXzVubm5m8eLFdr8FcXFxhbUJyIHcHuerhYeHm7vvvruAWosbkdtjfPz4cVOqVCkzevRos2/fPvP999+boKAg88orrxTWJuA6cnuMx40bZ0qVKmU+//xzc/jwYbNixQpTrVo107dv38LaBFzH9f7uf+6558z9999vq3/48GHj5eVlnn76abNnzx4za9Ys4+zsbJYvX15Ym5AjxJclAzGm4yO+dHzElyUDMabjK6wYk45xBzBz5kxTqVIl4+bmZm699Vazfv36wm4SSpCff/7ZSMr0CQ8PL+ymoQTJ6hyUZObOnVvYTQOQj64VA7Vt2zbTb9GXX35patasadzc3Ey9evXMDz/8UMAtRm7l5hiHhYVl+Vswbty4gm84ciW31/KVuHFZPOT2GK9du9Y0bdrUuLu7m6pVq5pJkyaZ1NTUAm41ciM3xzglJcWMHz/eVKtWzXh4eJiKFSuakSNHmgsXLhR8w5Ej1/u7Pzw83LRt2zbTPI0aNTJubm6matWqxeZvM+LLkoEY0/ERXzo+4suSgRjTsRVWjGkxhjEEAAAAAAAAAAAAAACOi3eMAwAAAAAAAAAAAAAcGh3jAAAAAAAAAAAAAACHRsc4AAAAAAAAAAAAAMCh0TEOAAAAAAAAAAAAAHBodIwDAAAAAAAAAAAAABwaHeMAAAAAAAAAAAAAAIdGxzgAAAAAAAAAAAAAwKHRMQ4AAAAAAAAAAAAAcGh0jAMAAAAAAAAAAAAAHBod4wAAAAAAAAAAAAAAh0bHOAAAAAAAAAAAAADAodExDgAAAAAAAAAAAABwaHSMAwAAAAAAAAAAAAAcGh3jAAAAAAAAAAAAAACHRsc4AAAAAAAAAAAAAMCh0TEOAAAAAAAAAAAAAHBodIwDAAAAAAAAAAAAABwaHeP5ZP78+apdu7ZcXV3l7++f58sfP368LBZLni/XkRw9elQWi0Xz5s3Ls2Vu3LhRLVq0kLe3tywWi7Zt25Znyy6KLBaLxo8fn6t5Bg8erMqVK+dLexzRgQMH1LFjR/n5+clisWjp0qWF3aR/LeP76dy5c3m2TEc6r27kugJQchFTFj5iysJV2OfoL7/8IovFol9++cWuPKtrs127dmrXrl2Bt/F68vt7pDBUrlxZ3bp1y9NlOkqMNm/ePFksFh09erSwmwIAN4T4t/AR/xYNy5cvV6NGjeTh4SGLxaLo6OjCbtK/1q5dO9WvXz9Pl1m5cmUNHjw4T5dZGLL7uwNA3qNjPB/s3btXgwcPVrVq1TRnzhzNnj27sJtU7C1btqzQb1KkpKSoT58+ioqK0owZMzR//nyFhYXl2/oyfgwzPu7u7goODla7du00efJknT17Nt/WXZRduU+u9SkuQUR4eLh27NihSZMmaf78+brlllu0YMECvfnmmwXajvwITPPbtY7/Qw89VNjNA4B/jZgy75XEmFJKv7k5ZMgQVatWTR4eHgoJCVGbNm00bty4LOt/99136t69u4KDg+Xm5qbAwEC1adNGr7/+umJjY+3qVq5c2fb76+TkJH9/fzVo0EDDhw/Xhg0bsm1TYmKiZsyYoaZNm8rPz08eHh6qWbOmRo8erf379+fp9ue14nRtZtXWhIQEjR8/vkDj5Ywb7NOnTy+wdf5bGR3M2X3Wr19f2E0EAIdTnH5jiwvi36zj3zNnzsjFxUX33XdftsuIi4uTp6enevbsaVd+6NAhjRgxQlWrVpWHh4d8fX3VsmVL/fe//9WlS5fypP3nz59X37595enpqVmzZmn+/Pny9vbW5MmTCzypxmKxaPTo0QW6zn/j6nvqV38WLlxY2E0EUMhcCrsBjuiXX36R1WrVf//7X1WvXj1f1vHCCy/oueeey5dlF0XLli3TrFmzchXIhYWF6dKlS3J1dc2TNhw6dEjHjh3TnDlzNGzYsDxZZk48+uijatKkidLS0nT27FmtXbtW48aN0xtvvKEvv/xSt99+e76t+9KlS3Jxyd3XxJw5c2S1WvOpRelPDl/pk08+0cqVKzOV16lTJ9/akFcuXbqkdevW6fnnn7cLMBcsWKCdO3fq8ccfL7zGFRN33HGHBg0alKm8Zs2ahdAaAMhbxJR5ryTGlAcPHlSTJk3k6empBx54QJUrV9bp06e1ZcsWvfbaa5owYYKtrtVq1dChQzVv3jw1aNBAI0eOVMWKFRUXF6d169bphRde0LJly7R69Wq7dTRq1EhPPvmkpPQbiHv27NGiRYs0Z84cPfHEE3rjjTfs6p87d06dO3fW5s2b1a1bNw0YMEA+Pj7at2+fFi5cqNmzZys5OTnf901OtGnTRpcuXZKbm5utLLtrc8WKFYXRxGvKqq3nzp2zHfeimOFe1Lz88suqUqVKpvL8+l4GgJKM+DfvEf9mHf8GBQXpjjvu0DfffKOEhAR5eXllWs7XX3+txMREu87zH374QX369JG7u7sGDRqk+vXrKzk5WX/88Yeefvpp7dq1K08e6Ni4caPi4uI0ceJEdejQwVY+efJk9e7dWz169PjX63B0GffUr9a8efNCaA2AooSO8Xxw5swZScrXYepcXFxy3WFZUqSmpspqtcrNzU0eHh55ttz8OK7x8fHy9va+Zp3WrVurd+/edmXbt29Xx44d1atXL+3evVvlypXLszZd6Ub2X14Fzdm5+knO9evXa+XKldd8wlNStkFuYcrI+i+IIS2tVquSk5Pz9JooCmrWrHndY+/IEhMT5ebmJicnBoABHBExZeFylJhyxowZunjxorZt25YpMyejLRmmTp2qefPm6YknntDrr79uN8zoY489ptOnT+uTTz7JtI7y5ctn+j1+7bXXNGDAAM2YMUM1atTQww8/bJs2ePBgbd26VYsXL1avXr3s5ps4caKef/75nG14AXBycsp0/LM7hld2nv9beRW7FcT3SIac/G1THN1555265ZZbCrsZhcZRjyuAoon4t3CVtPh34MCBWr58ub799lv169cv03IWLFggPz8/de3aVZJ05MgR9evXT2FhYVqzZo3d/dhRo0bp4MGD+uGHH/Ji8wo0hnPUe0tZ3VMvSYjhgOw51rddFk6ePKmhQ4cqNDRU7u7uqlKlih5++GG7DITDhw+rT58+CgwMlJeXl5o1a5bpRyxjCI4vv/xSkyZNUoUKFeTh4aH27dvr4MGDtnqVK1e2DclStmxZu/eUZffOsqvfg5GSkqIJEyaoRo0a8vDwUOnSpdWqVSutXLnSVier9+GkpqZq4sSJqlatmtzd3VW5cmX93//9n5KSkjKtr1u3bvrjjz906623ysPDQ1WrVs3yJtf1ZAylsmjRItWtW1eenp5q3ry5duzYIUl6//33Vb16dXl4eKhdu3aZ3nP2+++/q0+fPqpUqZLc3d1VsWJFPfHEE3bDzgwePFizZs2yrS/jI9kPyffmm2/atn337t2Z3odz5swZlS1bVu3atZMxxrb8gwcPytvbW/fee2+22zl48GC1bdtWktSnTx9ZLBa77Io1a9aodevW8vb2lr+/v+6++27t2bPHbhkZx2z37t0aMGCAAgIC1KpVq9zt8P9p2LCh3nzzTUVHR+vtt9+2m3by5Ek98MADCg4Olru7u+rVq6ePPvoo0zISExM1fvx41axZUx4eHipXrpx69uypQ4cO2epcfc7GxcXp8ccfV+XKleXu7m57unLLli12++rqd0HHx8frySefVMWKFeXu7q5atWpp+vTpdschY32jR4/W0qVLVb9+fVv7ly9fnqv9kzEs+ObNm9WmTRt5eXnp//7v/yRJSUlJGjdunKpXr24755555plM14kkffrpp2rcuLE8PT0VGBiofv366Z9//rnu+o8dO6aRI0eqVq1a8vT0VOnSpdWnTx+783/8+PG24Pzpp5+WxWJR5cqV1a5dO/3www86duyY7Vy/cn/mtP0Z+/Kzzz5TvXr15O7unuv9eLW///5bgwcPtg0VFRISogceeEDnz5/Psv65c+fUt29f+fr6qnTp0nrssceUmJiYqd6N7uecyjgfdu/erdtuu01eXl4qX768pk6dmqluTq6LnJ7PSUlJeuKJJ1S2bFmVKlVKd911l06cOJFlG3Ny3Wb8Di1cuFAvvPCCypcvLy8vr0xD2gLIH8SUxJTFNaY8dOiQKlSokOVwlUFBQbb/T0hI0GuvvaZ69epp2rRpWb57s1y5cnr22WezXdeVPD09NX/+fAUGBmrSpEm2fbVhwwb98MMPGjp0aKZOcUlyd3e/7nDbc+fO1e23366goCC5u7urbt26evfddzPV27Rpkzp16qQyZcrI09NTVapU0QMPPGBXZ+HChWrcuLFKlSolX19fNWjQQP/9739t069+19+1rs2s3jGeX7HbN998o65du9q+k6pVq6aJEycqLS3NViertg4ePFhly5aVJE2YMMF2HVz5nbJ371717t1bgYGB8vDw0C233KJvv/3Wbv0Zw4z/+uuvGjlypIKCglShQoVs25tTOT22GVasWGF792bdunX19ddfZ6oTHR2txx9/3Ba7Va9eXa+99lqejXJ15ffH7Nmzbd8fTZo00caNGzPV37t3r/r27auyZcvK09NTtWrVyvQwyNatW3XnnXfK19dXPj4+at++fZZDt+/atUu33367PD09VaFCBb3yyivZbtePP/5o+34pVaqUunbtql27dtnVGTx4sHx8fHTo0CF16dJFpUqV0sCBA//F3gFQnBH/Ev86evx7zz33yNvbWwsWLMhU78yZM1q9erV69+4td3d3SekPkV68eFEffvhhlklK1atX12OPPZZtu6ScHbd27dopPDxcktSkSRNbDGexWBQfH6+PP/7YdiyvPP8L895STmLTK23evFktWrSwxejvvfdepjq5uYd7o3JzLzqvvhMl6cSJE+rRo4e8vb0VFBSkJ554Itvt2rBhgzp37iw/Pz95eXmpbdu2+vPPP+3q5GW/A1ASOPTjcadOndKtt96q6OhoDR8+XLVr19bJkye1ePFiJSQkyM3NTZGRkWrRooUSEhL06KOPqnTp0vr444911113afHixbrnnnvslvnqq6/KyclJTz31lGJiYjR16lQNHDjQ9v68N998U5988omWLFmid999Vz4+Prrpppty1e7x48drypQpGjZsmG699VbFxsZq06ZN2rJli+64445s5xs2bJg+/vhj9e7dW08++aQ2bNigKVOmaM+ePVqyZIld3YMHD6p3794aOnSowsPD9dFHH2nw4MFq3Lix6tWrl6v2/v777/r22281atQoSdKUKVPUrVs3PfPMM3rnnXc0cuRIXbhwQVOnTtUDDzygNWvW2OZdtGiREhIS9PDDD6t06dL666+/NHPmTJ04cUKLFi2SJI0YMUKnTp3KcrjsDHPnzlViYqKGDx8ud3d3BQYGZrohEBQUpHfffVd9+vTRzJkz9eijj8pqtWrw4MEqVaqU3nnnnWy3ccSIESpfvrwmT55sG4YlODhYkrRq1Srdeeedqlq1qsaPH69Lly5p5syZatmypbZs2ZKpk7hPnz6qUaOGJk+enKkjLTcyjt+KFSs0adIkSVJkZKSaNWtm+1EvW7asfvzxRw0dOlSxsbG2obnT0tLUrVs3rV69Wv369dNjjz2muLg4rVy5Ujt37lS1atWyXOdDDz2kxYsXa/To0apbt67Onz+vP/74Q3v27NHNN9+c5TzGGN111136+eefNXToUDVq1Eg//fSTnn76aZ08eVIzZsywq//HH3/o66+/1siRI1WqVCm99dZb6tWrl44fP67SpUvneP+cP39ed955p/r166f77rtPwcHBslqtuuuuu/THH39o+PDhqlOnjnbs2KEZM2Zo//79du/omTRpkl588UX17dtXw4YN09mzZzVz5ky1adNGW7duveYTmxs3btTatWvVr18/VahQQUePHtW7776rdu3aaffu3fLy8lLPnj3l7++vJ554Qv3791eXLl3k4+Mjb29vxcTE6MSJE7Z94+PjI0m5ar+U/sfFl19+qdGjR6tMmTKZzsXcWrlypQ4fPqwhQ4YoJCTENjzUrl27tH79+kx/WPbt21eVK1fWlClTtH79er311lu6cOGC3R+M/2Y/S+kd2efOnctU7uvra5e1deHCBXXu3Fk9e/ZU3759tXjxYj377LNq0KCB7rzzTkk5uy5ycz4PGzZMn376qQYMGKAWLVpozZo1tqeMr5TT6zbDxIkT5ebmpqeeekpJSUl5mp0GIGvElMSUVypuMWVYWJhWrVqlNWvWXPMVPH/88Yeio6P11FNPydnZOdt6ueHj46N77rlHH374oXbv3q169erZOljvv//+G17uu+++q3r16umuu+6Si4uLvvvuO40cOVJWq9V2/pw5c0YdO3ZU2bJl9dxzz8nf319Hjx616zhduXKl+vfvr/bt2+u1116TJO3Zs0d//vlntjc1c3Nt5mfsNm/ePPn4+GjMmDHy8fHRmjVr9NJLLyk2NlbTpk3Ltq0NGjRQs2bN9PDDD+uee+6xvTMzYxt27dqlli1bqnz58nruuefk7e2tL7/8Uj169NBXX32V6bts5MiRKlu2rF566SXFx8dn296cysmxzXDgwAHde++9euihhxQeHq65c+eqT58+Wr58ue07LiEhQW3bttXJkyc1YsQIVapUSWvXrtXYsWN1+vRpvfnmm9dtU0xMTKZ402KxZPrbZMGCBYqLi9OIESNksVg0depU9ezZU4cPH7aNqvX333+rdevWcnV11fDhw1W5cmUdOnRI3333ne1vul27dql169by9fXVM888I1dXV73//vtq166dfv31VzVt2lSSFBERodtuu02pqam2YzV79mx5enpm2ob58+crPDxcnTp10muvvaaEhAS9++67atWqlbZu3Wp3rqWmpqpTp05q1aqVpk+fXuRG3QJQMIh/iX+v5Kjxr7e3t+6++24tXrxYUVFRCgwMtE374osvlJaWZveA2HfffaeqVauqRYsW2S7zenJy3J5//nnVqlVLs2fPtr3SpVq1aurQoYPt3B4+fLgk2e7hFva9pZzEphkuXLigLl26qG/fvurfv7++/PJLPfzww3Jzc7M9xJrbODorcXFxWd4zLF26tN09zJzci87L78RLly6pffv2On78uB599FGFhoZq/vz5dtd3hjVr1ujOO+9U48aNNW7cODk5OdkeJP39999166232tXPq34HwOEZBzZo0CDj5ORkNm7cmGma1Wo1xhjz+OOPG0nm999/t02Li4szVapUMZUrVzZpaWnGGGN+/vlnI8nUqVPHJCUl2er+97//NZLMjh07bGXjxo0zkszZs2ft1inJjBs3LlNbwsLCTHh4uO3fDRs2NF27dr3mtmWsI8O2bduMJDNs2DC7ek899ZSRZNasWWO3Pknmt99+s5WdOXPGuLu7myeffPKa672aJOPu7m6OHDliK3v//feNJBMSEmJiY2Nt5WPHjjWS7OomJCRkWuaUKVOMxWIxx44ds5WNGjXKZHW6HjlyxEgyvr6+5syZM1lOmzt3rl15//79jZeXl9m/f7+ZNm2akWSWLl163W3NOAcWLVpkV96oUSMTFBRkzp8/byvbvn27cXJyMoMGDbKVZRyz/v37X3dd11rflRo2bGgCAgJs/x46dKgpV66cOXfunF29fv36GT8/P9v+/uijj4wk88Ybb2RaZsa1YUzmc9bPz8+MGjXqmu0ODw83YWFhtn8vXbrUSDKvvPKKXb3evXsbi8ViDh48aLc+Nzc3u7Lt27cbSWbmzJlZri+rc6Nt27ZGknnvvffsyufPn2+cnJzsrndjjHnvvfeMJPPnn38aY4w5evSocXZ2NpMmTbKrt2PHDuPi4pKp/GpZndfr1q0zkswnn3xiK8s4R6dNm2ZXt2vXrnb7MLftNyZ9Xzo5OZldu3Zds60Z2rZta+rVq3fNOllt1+eff57p+yTjXL/rrrvs6o4cOdJIMtu3bzfG5G4/X31eZWxjdp/PP//cbtuu3vdJSUkmJCTE9OrVy1aWk+sip+dzxnfyyJEj7eoNGDAg03WV0+s24zuhatWqWR4LAPmHmJKYsjjHlDt37jSenp5GkmnUqJF57LHHzNKlS018fLxdvYxz8OptSE1NNWfPnrX7XBkvhoWFXfM8mzFjhpFkvvnmG2OMMffcc4+RZC5cuJCj9l99jhqT9fHu1KmTqVq1qu3fS5YsMZKyvG4zPPbYY8bX19ekpqZmWyfjeP3888+Z2nT1tdm2bVvTtm1b27/zM3bLah+MGDHCeHl5mcTExGu29ezZs9l+j7Rv3940aNDAbhlWq9W0aNHC1KhRw1Y2d+5cI8m0atXqmvsvQ3Zxb0626+pja8zl75+vvvrKVhYTE2PKlStn/vOf/9jKJk6caLy9vc3+/fvt5n/uueeMs7OzOX78uK3s6n2SsY1Zfdzd3TNtW+nSpU1UVJSt/JtvvjGSzHfffWcra9OmjSlVqpTd95Ix9n+D9ejRw7i5uZlDhw7Zyk6dOmVKlSpl2rRpYyvL+N3ZsGGDrezMmTPGz8/P7jsyLi7O+Pv7mwcffNBunREREcbPz8+uPDw83Egyzz33nAFQshH/Ev+WhPjXGGN++OEHI8m8//77duXNmjUz5cuXt53HMTExRpK5++67c9SG7OT0uGXEIVdfg97e3nbnfIb8vLck6br3g3Mam2bco3v99ddtZUlJSbZzITk52RiTuzj66u+BjG3M7nP69Gm7bcvJvei8/E588803jSTz5Zdf2urFx8eb6tWr2/3dYbVaTY0aNUynTp3sYsWEhARTpUoVc8cdd9jKcnuNACWdww6lbrVatXTpUnXv3j3L94FlPBW0bNky3XrrrXZDS/j4+Gj48OE6evSodu/ebTffkCFD7J6gat26taT0YTLyir+/v3bt2qUDBw7keJ5ly5ZJksaMGWNX/uSTT0pSpiE76tata2u7lD5EUa1atW5oO9q3b2/3BF/GE+y9evVSqVKlMpVfuY4rn2aPj4/XuXPn1KJFCxljtHXr1hy3oVevXrYhAa/n7bfflp+fn3r37q0XX3xR999/v+6+++4cr+tKp0+f1rZt2zR48GC7pwpvuukm3XHHHbbjcqWHHnrohtaVFR8fH8XFxUmSjDH66quv1L17dxljdO7cOdunU6dOiomJsQ15/tVXX6lMmTJ65JFHMi0zq2EzM/j7+2vDhg06depUjtu4bNkyOTs769FHH7Urf/LJJ2WM0Y8//mhX3qFDB7uM9Ztuukm+vr65Pjfd3d01ZMgQu7JFixapTp06ql27tt3+yXh69Oeff5Ykff3117Jarerbt69dvZCQENWoUcNWLztXntcpKSk6f/68qlevLn9/f7th53Mrp+3P0LZtW9WtW/eG13e1K7crI1O7WbNmkpTldl2d1ZNxvmVcF/92P0vS3XffrZUrV2b63HbbbXb1fHx87N596ubmpltvvdXuvMrJdZHT8zljG6+ud/UTurm5bjOEh4dnmQkEIH8QU6YjpsysuMSU9erV07Zt23Tffffp6NGj+u9//6sePXooODhYc+bMsdXLGD4xY6SaDDt27FDZsmXtPtm9RiUrGcvLiFkz1nPlMc2tK493RjZv27ZtdfjwYcXExEi6/D7G77//XikpKVkux9/fX/Hx8XbDq+al/IzdrtwHGdkwrVu3VkJCgvbu3XtD7Y2KitKaNWvUt29f2zLPnTun8+fPq1OnTjpw4IBOnjxpN8+DDz6YZyMMSDk7thlCQ0PtshF9fX01aNAgbd26VREREZLSj0Hr1q0VEBBgdww6dOigtLQ0/fbbb9dt06xZszLFmlf/DSNJ9957rwICAmz/vvp7/ezZs/rtt9/0wAMPqFKlSnbzZvyWpKWlacWKFerRo4eqVq1qm16uXDkNGDBAf/zxh+0aWrZsmZo1a2aXKVS2bNlMQ5+vXLlS0dHR6t+/v90+cHZ2VtOmTbOMuR9++OHr7hcAjov4Nx3xb2aOFv9Kso0wdOVw6keOHNH69evVv39/23u38yKGlfLuuF2pKNxbyk1s6uLiohEjRtj+7ebmphEjRujMmTPavHmzpNzH0Vl56aWXsrxneOX5Jl3/XnRefycuW7ZM5cqVs3v/uZeXl20UgAzbtm3TgQMHNGDAAJ0/f962D+Lj49W+fXv99ttvmUZ3yMt+B8CROexQ6mfPnlVsbKzq169/zXrHjh2zBRdXqlOnjm36lcu4+g/YjD98L1y48G+bbPPyyy/r7rvvVs2aNVW/fn117txZ999//zWHDzp27JicnJxUvXp1u/KQkBD5+/vr2LFjduVXb4eUvi03sh1XL8vPz0+SVLFixSzLr1zH8ePH9dJLL+nbb7/NtO6rb3xcS5UqVXJcNzAwUG+99Zb69Omj4OBgvfXWWzme92oZ+7VWrVqZptWpU0c//fST4uPj5e3tfUNtvZ6LFy/aArKzZ88qOjpas2fP1uzZs7Osf+bMGUnp79qpVauWXFxy9xUwdepUhYeHq2LFimrcuLG6dOmiQYMG2d20udqxY8cUGhqaKXC88hq7Ul6dm+XLl880DNCBAwe0Z8+ebAP+jP1z4MABGWNUo0aNLOtlDIWYnUuXLmnKlCmaO3euTp48aTd0TW7O66vltP0Z8vJck9Jvlk6YMEELFy7MtK6stuvq/VetWjU5OTnZ3ov1b/ezJFWoUEEdOnTIUb2rH/oICAjQ33//bft3Tq6LnJ7PGd/JV7+W4Orvitxctxny+rgCuDZiynTElJkVp5iyZs2amj9/vtLS0rR79259//33mjp1qoYPH64qVaqoQ4cOtt+2ixcv2s1bvXp1W8fxJ598ku0wnNnJWF7G8n19fSWl3zC73itTsvPnn39q3LhxWrdunRISEuymxcTEyM/PT23btlWvXr00YcIEzZgxQ+3atVOPHj00YMAA23siR44cqS+//FJ33nmnypcvr44dO6pv377q3LnzDbXravkZu+3atUsvvPCC1qxZk+mdkDcabx48eFDGGL344ot68cUXs6xz5swZlS9f/obanBM5ObYZqlevnim+q1mzpqT096aGhITowIED+vvvv3N8DLJy6623ZnkT9GrX+17PuLl6rd+Ts2fPKiEhIdvvAqvVqn/++Uf16tXL9nfn6nkzOoeyG0o245rM4OLikifviwdQfBH/piP+zczR4l8p/Xfv3nvv1TvvvKOTJ0+qfPnytk7yKx82uzKG/Tfy6rhdqSjcW8pNbBoaGmp3XCX7GK5Zs2a5jqOz0qBBgxzdM7zeNZ3X34nHjh3LMo7NLobLeN98VmJiYuwezOSeIZAzDtsxnl+yexr+yo6v3EpLS7P7d5s2bXTo0CF98803WrFihT744APNmDFD7733noYNG3bNZV0r2/dKebkd2S3reutIS0vTHXfcoaioKD377LOqXbu2vL29dfLkSQ0ePDjTE0/Xktsn3H766SdJ6QHliRMnbvim3I3Iq6fxUlJStH//ftuPcsb+uu+++7L9wcztu5mu1rdvX7Vu3VpLlizRihUrNG3aNL322mv6+uuvbe9p/rfy6tzMaj9brVY1aNBAb7zxRpbzZPzhYbVaZbFY9OOPP2bZnqszqa72yCOPaO7cuXr88cfVvHlz+fn5yWKxqF+/frk6r2+0/RnyOqu4b9++Wrt2rZ5++mk1atRIPj4+slqt6ty5c4626+rvp3+7n3MjP76788KNXLdkiwOOgZgy58sipszajfweODs7q0GDBmrQoIGaN2+u2267TZ999pk6dOig2rVrS5J27txpl/nj4+Nju6H0xx9/5HqdO3fulCTbzeaM9ezYscMu2yqnDh06pPbt26t27dp64403VLFiRbm5uWnZsmWaMWOG7XhbLBYtXrxY69ev13fffaeffvpJDzzwgF5//XWtX79ePj4+CgoK0rZt2/TTTz/pxx9/1I8//qi5c+dq0KBB+vjjj3PdtqvlV+wWHR2ttm3bytfXVy+//LKqVasmDw8PbdmyRc8+++wNx5sZ8z311FPq1KlTlnWu7jTIy7gkp8c2N6xWq+644w4988wzWU7PuAmbF4p6vDl//nyFhIRkmn71Q6Hu7u627DgAyEvEvzlfFvFv1vI6/s1w33336e2339bnn3+up556Sp9//rnq1q2rRo0a2er4+voqNDTUFtveiLw8blcq7HtL+RGb5jaO/jeKegw3bdo0u3PxSlffO+WeIZAzDtsxXrZsWfn6+l73xyosLEz79u3LVJ4xxEdYWFietSkgIEDR0dF2ZcnJyTp9+nSmuoGBgRoyZIiGDBmiixcvqk2bNho/fny2QVxYWJisVqsOHDhgewpJkiIjIxUdHZ2n25FXduzYof379+vjjz/WoEGDbOVZDWWY0+A0J5YvX64PPvhAzzzzjD777DOFh4drw4YNuc6eli6fH9mdQ2XKlMn0BFxeWbx4sS5dumS7aVW2bFmVKlVKaWlp130arlq1atqwYYNSUlJylJV7pXLlymnkyJEaOXKkzpw5o5tvvlmTJk3KtmM8LCxMq1atUlxcnF2WbX5cY9dTrVo1bd++Xe3bt7/mOVWtWjUZY1SlSpUbulm2ePFihYeH6/XXX7eVJSYmZrr+s5Nd23La/vxw4cIFrV69WhMmTNBLL71kK7/W8GQHDhywe1Lx4MGDslqttmHC/u1+zms5uS5yej5nfCdnZKFnuPq7IjfXLYDCQUyZjpgys+IeU2ZkwGacN61bt5afn58WLlyosWPH5knH2MWLF7VkyRJVrFjRdj51795dU6ZM0aeffnpDHePfffedkpKS9O2339pld2Q3nGKzZs3UrFkzTZo0SQsWLNDAgQO1cOFC2zXg5uam7t27q3v37rJarRo5cqTef/99vfjii5k6gXMrv2K3X375RefPn9fXX3+tNm3a2MqPHDmSo/mza0vGKFCurq6FEpfk9thmZLhfuT379++XJLt48+LFi0UizsrYv9f6PSlbtqy8vLyy/S5wcnKy3QgOCwvLMha/et6MEYyCgoKKxH4AUPQR/6Yj/s3M0eLfDE2bNlW1atW0YMEC3XHHHdq1a5cmTZqUaf5u3bpp9uzZWrdunZo3b57r9efmuGUnq+NZ2PeWchubnjp1KtNoAFnFcIV1D/Rqef2dGBYWpp07d2aKY7OL4Xx9fYnhgDzmsI8BOzk5qUePHvruu++0adOmTNMznvjp0qWL/vrrL61bt842LT4+XrNnz1blypXz9P281apVy/QOs9mzZ2d6uvHqd/b5+PioevXqSkpKynbZXbp0kSS9+eabduUZT1V17dr1RpudbzKexrry6StjjP773/9mqpvxQ5nTjsXsREdHa9iwYbr11ls1efJkffDBB9qyZYsmT558Q8srV66cGjVqpI8//tiubTt37tSKFStsxyWvbd++XY8//rgCAgJs73F2dnZWr1699NVXX2X5Q3327Fnb//fq1Uvnzp3T22+/naledk/DpaWlZRr6JigoSKGhodc9N9PS0jKta8aMGbJYLHmWaZ4Tffv21cmTJzO9T0hKH/48Pj5ektSzZ085OztrwoQJmfaHMea679V0dnbONN/MmTMzXevZ8fb2znL4pJy2Pz9kdb1Kmb9zrjRr1iy7f8+cOVOSbMf83+7nvJaT6yKn53PGf68eVuzq/ZWb6xZA4SCmTEdMaa84xZS///57lu/YznhvY8YDXF5eXnrmmWe0c+dOPffcc1nGhLnJmrh06ZLuv/9+RUVF6fnnn7fd9GnevLk6d+6sDz74QEuXLs00X3Jysp566qlsl5vV8Y6JidHcuXPt6l24cCFTezMyLTKugauvEScnJ1s2zbWuk5zKr9gtq32QnJysd955J0fze3l5Scp8HQQFBaldu3Z6//33s+xoyO+4JKfHNsOpU6e0ZMkS279jY2P1ySefqFGjRrbM6L59+2rdunW27LYrRUdHKzU1NS834ZrKli2rNm3a6KOPPtLx48ftpmVss7Ozszp27KhvvvnG9vohKb1zZsGCBWrVqpVtKNcuXbpo/fr1+uuvv2z1zp49q88++8xu2Z06dZKvr68mT56c5XcB8SaAqxH/piP+teeI8e+VBg4cqK1bt2rcuHGyWCwaMGBApjrPPPOMvL29NWzYMEVGRmaafujQoSyPQYbcHLfseHt7ZzqWhX1vKbexaWpqqt5//327uu+//77Kli2rxo0bSyrce6BXy+vvxC5duujUqVNavHixrV5CQkKmYfAbN26satWqafr06ZledyURwwH/hsNmjEvS5MmTtWLFCrVt21bDhw9XnTp1dPr0aS1atEh//PGH/P399dxzz+nzzz/XnXfeqUcffVSBgYH6+OOPdeTIEX311Vd5OoTYsGHD9NBDD6lXr1664447tH37dv30008qU6aMXb26deuqXbt2aty4sQIDA7Vp0yYtXrxYo0ePznbZDRs2VHh4uGbPnm0bvuSvv/7Sxx9/rB49eui2227Ls+3IK7Vr11a1atX01FNP6eTJk/L19dVXX32V5Tt5Mn4UH330UXXq1EnOzs7q169frtf52GOP6fz581q1apWcnZ3VuXNnDRs2TK+88oruvvtuNWzYMNfLnDZtmu688041b95cQ4cO1aVLlzRz5kz5+flp/PjxuV7e1X7//XclJiYqLS1N58+f159//qlvv/1Wfn5+WrJkid1weK+++qp+/vlnNW3aVA8++KDq1q2rqKgobdmyRatWrVJUVJQkadCgQfrkk080ZswY/fXXX2rdurXi4+O1atUqjRw50m74zAxxcXGqUKGCevfurYYNG8rHx0erVq3Sxo0b7TKjr9a9e3fddtttev7553X06FE1bNhQK1as0DfffKPHH3880zuY89P999+vL7/8Ug899JB+/vlntWzZUmlpadq7d6++/PJL/fTTT7rllltUrVo1vfLKKxo7dqyOHj2qHj16qFSpUjpy5IiWLFmi4cOHX/OGbbdu3TR//nz5+fmpbt26WrdunVatWqXSpUvnqJ2NGzfWF198oTFjxqhJkyby8fFR9+7dc9z+G3X27Fm98sormcqrVKmigQMHqk2bNpo6dapSUlJUvnx5rVix4pqZSUeOHNFdd92lzp07a926dfr00081YMAA23X2b/ezlP5E6aeffpqpPDg4WHfccUeutj8n10VOz+dGjRqpf//+eueddxQTE6MWLVpo9erVOnjwYKb15vS6BVB4iCmJKa9WnGLK1157TZs3b1bPnj1tnb5btmzRJ598osDAQD3++OO2us8995z27NmjadOmacWKFerVq5cqVKigCxcuaMuWLVq0aJGCgoLk4eFht46TJ0/afo8vXryo3bt3a9GiRYqIiNCTTz6pESNG2NX/5JNP1LFjR/Xs2VPdu3dX+/bt5e3trQMHDmjhwoU6ffq0pk+fnuX2dOzY0ZblPWLECF28eFFz5sxRUFCQXWfuxx9/rHfeeUf33HOPqlWrpri4OM2ZM0e+vr62G63Dhg1TVFSUbr/9dlWoUEHHjh3TzJkz1ahRI7uMsRuVX7FbixYtFBAQoPDwcD366KOyWCyaP39+jh9c8PT0VN26dfXFF1+oZs2aCgwMVP369VW/fn3NmjVLrVq1UoMGDfTggw+qatWqioyM1Lp163TixAlt37491+290urVq5WYmJipvEePHjk+thlq1qypoUOHauPGjQoODtZHH32kyMhIu470p59+Wt9++626deumwYMHq3HjxoqPj9eOHTu0ePFiHT16NNN359V+/PFHW6bPlVq0aGHLAs+pt956S61atdLNN99se8fp0aNH9cMPP2jbtm2SpFdeeUUrV65Uq1atNHLkSLm4uOj9999XUlKSpk6dalvWM888o/nz56tz58567LHH5O3trdmzZyssLEx///23rZ6vr6/effdd3X///br55pvVr18/lS1bVsePH9cPP/ygli1bZvlgKICSjfiX+Pdqjhr/Zrjvvvv08ssv65tvvlHLli1tmctXysgqv/fee1WnTh0NGjRI9evXV3JystauXatFixZp8ODB2bYrN8ctO40bN9aqVav0xhtvKDQ0VFWqVFHTpk3z/d7Spk2bsrxn2K5du1zHpqGhoXrttdd09OhR1axZU1988YW2bdum2bNn20ZwzIs4OuOe+tVuuummXL9uNC+/Ex988EG9/fbbGjRokDZv3qxy5cpp/vz5todXMzg5OemDDz7QnXfeqXr16mnIkCEqX768Tp48qZ9//lm+vr767rvvcrUdAP7HOLhjx46ZQYMGmbJlyxp3d3dTtWpVM2rUKJOUlGSrc+jQIdO7d2/j7+9vPDw8zK233mq+//57u+X8/PPPRpJZtGiRXfmRI0eMJDN37lxb2bhx44wkc/bsWbu6aWlp5tlnnzVlypQxXl5eplOnTubgwYMmLCzMhIeH2+q98sor5tZbbzX+/v7G09PT1K5d20yaNMkkJydnWseVUlJSzIQJE0yVKlWMq6urqVixohk7dqxJTEy0qxcWFma6du2aaV+1bdvWtG3b9pr782qSzKhRo7LcJ9OmTbMrz2of7t6923To0MH4+PiYMmXKmAcffNBs37490z5NTU01jzzyiClbtqyxWCy2bc9uXVdOy1jON998YySZ119/3a5ebGysCQsLMw0bNrTbx1fL7hwwxphVq1aZli1bGk9PT+Pr62u6d+9udu/ebVcnu/PieuvL+Li6upqyZcuaNm3amEmTJpkzZ85kOV9kZKQZNWqUqVixonF1dTUhISGmffv2Zvbs2Xb1EhISzPPPP287X0JCQkzv3r3NoUOHbHUkmXHjxhljjElKSjJPP/20adiwoSlVqpTx9vY2DRs2NO+8847dcsPDw01YWJhdWVxcnHniiSdMaGiocXV1NTVq1DDTpk0zVqvVrl5W55MxJtM1cqVRo0Zluhbatm1r6tWrl2X95ORk89prr5l69eoZd3d3ExAQYBo3bmwmTJhgYmJi7Op+9dVXplWrVsbb29t4e3ub2rVrm1GjRpl9+/ZluewMFy5cMEOGDDFlypQxPj4+plOnTmbv3r2ZtiO78/fixYtmwIABxt/f30iy2585bX92+zI7bdu2tTvfrvy0b9/eGGPMiRMnzD333GP8/f2Nn5+f6dOnjzl16pTdeWLM5XN99+7dpnfv3qZUqVImICDAjB492ly6dCnTunOyn7M6r7JrryS777LszoeslpmT6yKn5/OlS5fMo48+akqXLm28vb1N9+7dzT///JNpfxmTs+v2Wt9BAPIfMSUxZXGNKf/8808zatQoU79+fePn52dcXV1NpUqVzODBg+1+3660ZMkS06VLF1O2bFnj4uJi/P39TatWrcy0adNMdHS0Xd2wsDDb76/FYjG+vr6mXr165sEHHzQbNmzItl0JCQlm+vTppkmTJsbHx8e4ubmZGjVqmEceecQcPHgw0/Ze6dtvvzU33XST8fDwMJUrVzavvfaa+eijj4wkc+TIEWOMMVu2bDH9+/c3lSpVMu7u7iYoKMh069bNbNq0ybacxYsXm44dO5qgoCDj5uZmKlWqZEaMGGFOnz5tq5NxvH7++edMbbr6GGR17udX7Pbnn3+aZs2aGU9PTxMaGmqeeeYZ89NPP+W4rWvXrjWNGzc2bm5umWKTQ4cOmUGDBpmQkBDj6upqypcvb7p162YWL15sqzN37lwjyWzcuDFH7c24jrL7zJ8/3xiTs2NrzOXvn59++sncdNNNxt3d3dSuXTvL6youLs6MHTvWVK9e3bi5uZkyZcqYFi1amOnTp9tdq1fvh4xtzO6T8Z1wre+PrOK+nTt32mJqDw8PU6tWLfPiiy/a1dmyZYvp1KmT8fHxMV5eXua2224za9euzbT8v//+27Rt29Z4eHiY8uXLm4kTJ5oPP/ww0/4yJv1c7tSpk/Hz8zMeHh6mWrVqZvDgwXbXRHh4uPH29s60HgAlE/Ev8W9Jin+NMaZJkyZGUqZ7nVfbv3+/efDBB03lypWNm5ubKVWqlGnZsqWZOXNmpnPmajk9btnFWnv37jVt2rQxnp6eRpLd+Z9f95auFQ9NnDjRGJPz2DTjHt2mTZtM8+bNjYeHhwkLCzNvv/12pvXmNI6++nvg6nvqV3+ujM1ycy86r74TM5Z11113GS8vL1OmTBnz2GOPmeXLl2faX8YYs3XrVtOzZ09TunRp4+7ubsLCwkzfvn3N6tWrbXVye40AJZ3FmFyMhwcAAAAAAAAAAAAAQDHjsO8YBwAAAAAAAAAAAABAcvB3jOPGRUREXHO6p6en/Pz8Cqg1AAAAKI6IKQEAAFCSEP8CAFC0MZQ6smSxWK45PTw8XPPmzSuYxgAAAKBYIqYEAABASUL8CwBA0UbGOLK0cuXKa04PDQ0toJYAAACguCKmBAAAQElC/AsAQNFGxjgAAAAAAAAAAAAAwKE5FXYDAAAAAAAAAAAAAADIT3SMAwAAAAAAAAAAAAAcWpF5x/jRYXcXdhNQwg2Ofq6wmwAoNSm5sJsA6I/v2hbKen9wrVVg6+qasq/A1oXCk/jl9MJuAqAO85sUdhMAoNAVVnwpFVyMSXxZMjw+82JhNwHQxOZ/FHYTAN05wbOwmwBwDxM3hIxxAAAAAAAAAAAAAIBDKzIZ4wAAoGSzuFoKuwkAAABwMMSYAAAAyEvEl8UbGeMAAAAAAAAAAAAAAIdGxzgAAAAAAAAAAAAAwKExlDoAACgSnFwYhggAAAB5ixgTAAAAeYn4sngjYxwAAAAAAAAAAAAA4NDIGAcAAEWCxZXn9QAAAJC3iDEBAACQl4gvizeOHgAAAAAAAAAAAADAoZExDgAAigTezwMAAIC8RowJAACAvER8WbyRMQ4AAAAAAAAAAAAAcGhkjAMAgCLB4srTlgAAAMhbxJgAAADIS8SXxRsZ4wAAAAAAAAAAAAAAh0bGOAAAKBJ4Pw8AAADyGjEmAAAA8hLxZfFGxjgAAAAAAAAAAAAAwKGRMQ4AAIoE3s8DAACAvEaMCQAAgLxEfFm8kTEOAAAAAAAAAAAAAHBoZIwDAIAigffzAAAAIK8RYwIAACAvEV8Wb2SMAwAAAAAAAAAAAAAcGhnjAACgSLA487QlAAAA8hYxJgAAAPIS8WXxRsY4AAAAAAAAAAAAAMChkTEOAACKBCeetgQAAEAeI8YEAABAXiK+LN7IGAcAAAAAAAAAAAAAODQyxgEAQJFgceJpSwAAAOQtYkwAAADkJeLL4o2McQAAAAAAAAAAAACAQyNjHAAAFAkWZ57XAwAAQN4ixgQAAEBeIr4s3jh6AAAAAAAAQAGpXLmyLBZLps+oUaMkSYmJiRo1apRKly4tHx8f9erVS5GRkXbLOH78uLp27SovLy8FBQXp6aefVmpqamFsDgAAAFBs0DEOAAAAAAAAFJCNGzfq9OnTts/KlSslSX369JEkPfHEE/ruu++0aNEi/frrrzp16pR69uxpmz8tLU1du3ZVcnKy1q5dq48//ljz5s3TSy+9VCjbAwAAABQXDKUOAACKBCdnS2E3AQAAAA6mKMaYZcuWtfv3q6++qmrVqqlt27aKiYnRhx9+qAULFuj222+XJM2dO1d16tTR+vXr1axZM61YsUK7d+/WqlWrFBwcrEaNGmnixIl69tlnNX78eLm5uRXGZgEAAJQIRTG+RM6RMQ4AAAAAAAAUguTkZH366ad64IEHZLFYtHnzZqWkpKhDhw62OrVr11alSpW0bt06SdK6devUoEEDBQcH2+p06tRJsbGx2rVrV4FvAwAAAFBckDEOAACKBIsTT1sCAAAgbxVUjJmUlKSkpCS7Mnd3d7m7u19zvqVLlyo6OlqDBw+WJEVERMjNzU3+/v529YKDgxUREWGrc2WneMb0jGkAAADIP9zDLN7IGAcAAAAAAAD+hSlTpsjPz8/uM2XKlOvO9+GHH+rOO+9UaGhoAbQSAAAAKNnIGAcAAEUC7+cBAABAXiuoGHPs2LEaM2aMXdn1ssWPHTumVatW6euvv7aVhYSEKDk5WdHR0XZZ45GRkQoJCbHV+euvv+yWFRkZaZsGAACA/MM9zOKNjHEAAAAAAADgX3B3d5evr6/d53od43PnzlVQUJC6du1qK2vcuLFcXV21evVqW9m+fft0/PhxNW/eXJLUvHlz7dixQ2fOnLHVWblypXx9fVW3bt083jIAAADAcZAxDgAAigQLT1sCAAAgjxXVGNNqtWru3LkKDw+Xi8vl23N+fn4aOnSoxowZo8DAQPn6+uqRRx5R8+bN1axZM0lSx44dVbduXd1///2aOnWqIiIi9MILL2jUqFHX7YwHAADAv1NU40vkDB3jAAAAAAAAQAFatWqVjh8/rgceeCDTtBkzZsjJyUm9evVSUlKSOnXqpHfeecc23dnZWd9//70efvhhNW/eXN7e3goPD9fLL79ckJsAAAAAFDt0jAMAgCLB4sQbXgAAAJC3imqM2bFjRxljspzm4eGhWbNmadasWdnOHxYWpmXLluVX8wAAAJCNohpfImc4egAAAAAAAAAAAAAAh0bGOAAAKBIsTryfBwAAAHmLGBMAAAB5ifiyeCNjHAAAAAAAAAAAAADg0MgYBwAARYKTM09bAgAAIG8RYwIAACAvEV8Wb2SMAwAAAAAAAAAAAAAcGhnjAACgSOD9PAAAAMhrxJgAAADIS8SXxRsZ4wAAAAAAAAAAAAAAh0bGOAAAKBIsTjyvBwAAgLxFjAkAAIC8RHxZvHH0AAAAAAAAAAAAAAAOjYxxAABQJPB+HgAAAOQ1YkwAAADkJeLL4o2McQAAAAAAAAAAAACAQyNjHAAAFAlOzjxtCQAAgLxFjAkAAIC8RHxZvJExDgAAAAAAAAAAAABwaHSMAwAAAAAAAAAAAAAcGkOpAwCAIsHixDBEAAAAyFvEmAAAAMhLxJfFGxnjAAAAAAAAAAAAAACHRsY4AAAoEixOPK8HAACAvEWMCQAAgLxEfFm8cfQAAAAAAAAAAAAAAA6NjHEAAFAk8H4eAAAA5DViTAAAAOQl4svijYxxAAAAAAAAAAAAAIBDI2McAAAUCTxtCQAAgLxGjAkAAIC8RHxZvJExDgAAAAAAAAAAAABwaGSMAwCAIoGnLQEAAJDXiDEBAACQl4gvizcyxgEAAAAAAAAAAAAADo2McQAAUCRYnHheDwAAAHmLGBMAAAB5ifiyeOPoAQAAAAAAAAAAAAAcGhnjAACgSHBy5v08AAAAyFvEmAAAAMhLxJfFGxnjAAAAAAAAAAAAAFCMnTx5Uvfdd59Kly4tT09PNWjQQJs2bbJNN8bopZdeUrly5eTp6akOHTrowIEDdsuIiorSwIED5evrK39/fw0dOlQXL14s6E3JN3SMAwCAIsHiZCmwDwAAAEoG4ksAAADkpaJ6D/PChQtq2bKlXF1d9eOPP2r37t16/fXXFRAQYKszdepUvfXWW3rvvfe0YcMGeXt7q1OnTkpMTLTVGThwoHbt2qWVK1fq+++/12+//abhw4fn2f4rbAylDgAAAAAAAAAAAADF1GuvvaaKFStq7ty5trIqVarY/t8YozfffFMvvPCC7r77bknSJ598ouDgYC1dulT9+vXTnj17tHz5cm3cuFG33HKLJGnmzJnq0qWLpk+frtDQ0ILdqHxAxjgAACgSLE5OBfYBAABAyUB8CQAAgLxUkPcwk5KSFBsba/dJSkrKsl3ffvutbrnlFvXp00dBQUH6z3/+ozlz5timHzlyRBEREerQoYOtzM/PT02bNtW6deskSevWrZO/v7+tU1ySOnToICcnJ23YsCGf9mjBInIHAAAAAAAAAAAAgCJkypQp8vPzs/tMmTIly7qHDx/Wu+++qxo1auinn37Sww8/rEcffVQff/yxJCkiIkKSFBwcbDdfcHCwbVpERISCgoLspru4uCgwMNBWp7hjKHUAAFAk8G5GAAAA5DViTAAAAOSlgowvx44dqzFjxtiVubu7Z1nXarXqlltu0eTJkyVJ//nPf7Rz50699957Cg8Pz/e2FhdkjAMAAAAAAAAAAABAEeLu7i5fX1+7T3Yd4+XKlVPdunXtyurUqaPjx49LkkJCQiRJkZGRdnUiIyNt00JCQnTmzBm76ampqYqKirLVKe7oGAcAAAAAAAAAAACAYqply5bat2+fXdn+/fsVFhYmSapSpYpCQkK0evVq2/TY2Fht2LBBzZs3lyQ1b95c0dHR2rx5s63OmjVrZLVa1bRp0wLYivzHUOoAAKBIYJhLAAAA5DViTAAAAOSlohpfPvHEE2rRooUmT56svn376q+//tLs2bM1e/ZsSZLFYtHjjz+uV155RTVq1FCVKlX04osvKjQ0VD169JCUnmHeuXNnPfjgg3rvvfeUkpKi0aNHq1+/fgoNDS3Ercs7dIwDAAAAAAAAAAAAQDHVpEkTLVmyRGPHjtXLL7+sKlWq6M0339TAgQNtdZ555hnFx8dr+PDhio6OVqtWrbR8+XJ5eHjY6nz22WcaPXq02rdvLycnJ/Xq1UtvvfVWYWxSvqBjHAAAFAkWJ97wAgAAgLxFjAkAAIC8VJTjy27duqlbt27ZTrdYLHr55Zf18ssvZ1snMDBQCxYsyI/mFQlF9+gBAAAAAAAAAAAAAJAHyBgHAABFQlF9Pw8AAACKL2JMAAAA5CXiy+KNjHEAAAAAAAAAAAAAgEMjYxwAABQJRfn9PAAAACieiDEBAACQl4gvizeOHgAAAAAAAAAAAADAodExDgAAigaLpeA+uTB+/HhZLBa7T+3atW3TExMTNWrUKJUuXVo+Pj7q1auXIiMj7ZZx/Phxde3aVV5eXgoKCtLTTz+t1NTUPNltAAAAuIYiGF8CAACgGCui9zCRMwylDgAAcB316tXTqlWrbP92cbkcQj3xxBP64YcftGjRIvn5+Wn06NHq2bOn/vzzT0lSWlqaunbtqpCQEK1du1anT5/WoEGD5OrqqsmTJxf4tgAAAAAAAABASUTHOAAAKBIsTkX3KUgXFxeFhIRkKo+JidGHH36oBQsW6Pbbb5ckzZ07V3Xq1NH69evVrFkzrVixQrt379aqVasUHBysRo0aaeLEiXr22Wc1fvx4ubm5FfTmAAAAlBhFOcYEAABA8UN8WbwxlDoAAChxkpKSFBsba/dJSkrKtv6BAwcUGhqqqlWrauDAgTp+/LgkafPmzUpJSVGHDh1sdWvXrq1KlSpp3bp1kqR169apQYMGCg4OttXp1KmTYmNjtWvXrnzaQgAAAAAAAADAlcgYL0D+d/WT/1397cpSTp/QyRdHSZJ82nSUT9M2cqtUTU6eXjr+yABZL8VnWo5ng8by795PrhXCZFJSlLR/p87MmnLtdd89QD6t75CTl7eSDu7V+U/fVeqZ07bpTt4+Cuw/XF4Nm0jGqvjN6xS18AOZpMQ82HIUdTfVKaV+d4eqZlUflQl00wuv7dUfGy/Y1Rlyb0V16xAkHy8X7dwXqzdmH9HJiGufHz06B6vfXaEK9HfTwWPxeuvDo9p78KJtupurRQ+HV9btLUvLzcVJf22P1ptzjuhCTEq+bCeKp55dQtW/Z0UFBrjp0JGLmvH+Qe05EJdt/dtaltGw+6ooJMhDJ04l6N15R7R+c5RdnaEDK6t7xxCV8nbRjj2xmv7OAZ04fSm/NwXXYXEquOf1pkyZogkTJtiVjRs3TuPHj89Ut2nTppo3b55q1aql06dPa8KECWrdurV27typiIgIubm5yd/f326e4OBgRURESJIiIiLsOsUzpmdMA/6td9ds1ns/b7Erq1zGT9881lcxCYl6Z81mrTt4UhExFxXg7aHb6lTWqPa3qJSH/WgF32zZr/lrd+jY+Rh5u7uqY72q+r/uLbNdb1JKql5fvkHLdxxSclqaWlSvoOe7t1RpHy9bndPRFzXpuz+08cgpebq56q5GNfXoHU3k4szzuSUVv+soCjgPS5aCjDEBR1I11Em33+ymimWd5OfjpA9/uKQdh9Ns02+q5qwW9V1VsayzvD0tmvZ5gk6es2a7vBF3eahOmEum5WTlzqZualbPRZ7uFh05naZFPyfpXIyxTfdyl3q2dVf9Ki4yRtp+MFVf/56kZG4nObR5367U2198r/6d2+rJ+3tKkr5es1bL127WviP/KD4xST/PnqJS3pf/Hjl19rw+WPKTNu0+oPPRcSoT4KsuLW/RAz06ytUl+66RpOQUvfnZUq1Yv0XJKalqdlNtPTekj0r7+drqRJyL0pS5i7Rp9wF5ebirW+tbNerebnJxds6/nYAii/iyZCG+LN44egUs+eQx/TMm3PY5/dpztmlObu66tHOrYpYtznZ+r5ubq8ywJ3Txz9U6NeFxRbz6nC5u+O2a6/Tt3FO+7bvq/Kfv6vTkp2WSEhX8xHhZXFxtdcoMGyO30IqKeGOcIt96RR4166n0oJH/foNRLHh4OOvQ0QS9+cGRLKf37xGqXl1C9Mbsw3r4/3boUpJV016sIzfX7IcMua1FaY0Mr6x5i07owWf+1qGjCZr2Qh35+14OOkcNrqwWjQM0/vX9emzcLpUJcNPLT9fM8+1D8XV7q7IaPaya5n5+VEMf36yDRy7qjZcbyN/PNcv69Wv7atzTdfX9itN64LHN+n39eU15vp6qVLr8R9HAXhXVu1t5TX/ngIY/tVWXEtP0xssNrnk+w/GMHTtWMTExdp+xY8dmWffOO+9Unz59dNNNN6lTp05atmyZoqOj9eWXXxZwq4HsVQsK0OpnBto+84bdJUk6E5egs3EJGtO5qb56pLde7tlWfx74R+OX2MePn/z5t2au2qgHWjfU14/01uzBXdSieoVrrnPaj+v1675jmtavvT56oFv6ej5fZZueZrVq9PzlSkmz6uMH79YrPdvp26379c6azXm/A1As8LuOooDzEAByxt3VolPnrFr8a9Yja7m5WHTkVJq+W5v9yFsZ2jZylTHXrSZJan+zq9o0dNWin5M048tLSk6RHrrbUy5X9DXe38lD5QKd9O7SS5r93SVVK++se29zz9kKUCztOnRMX69ZqxqVQu3KE5OS1eKm2hpy9x1Zznf01BkZY/R/D9yrL6Y+pzH33aOvVv+pWV98f831vfHpEv22dadefXSIZr/4qM5diNXTMz6yTU+zWvXYtNlKSU3VR+Me1/gRA/Xdbxv0/uJl/35jUewQXwLFCx3jBS0tTWmx0baP9eLlp4ZiV32nmB+/UtLhfVnP6+SkwH7DdGHRPMX9ulypkaeUcvofJWz685qr9O3QXdHfL9KlbX8p5cQxnf3oTbn4B8rrP80kSa7lKsirQWOd+3iWko/sV9LBPYpaMFveTVrL2S8wzzYdRddfW6P14cJ/9MdfUVlO7921nOZ/dUJ/brygw8cSNGXmQZUJcFOrW7M/P/p0L6cfVp3R8p/P6tiJS3pj9mElJlnV5fYgSZK3l7O63B6kdz4+qq07Y7X/cLxem3VQDWr7qm4Nn3zZThQ//XpU0Hc/nday1ZE6+k+Cpr1zQIlJVnW7I/O7niWpz13ltWFLlD5fckLHTiTog8+Oav+hi+rVrbxdnU++PKY/NpzXoaPxemXGXpUOdFfrZmUKarOQDYuTpcA+7u7u8vX1tfu4u+fsRoq/v79q1qypgwcPKiQkRMnJyYqOjrarExkZaXsneUhIiCIjIzNNz5gG5AUXJ4vKlPKyfQK8PSRJNYID9Ub/O9SudpgqBvqqadXyeqRDE/2675hS09IzemIvJWnW6k2a1KudujSsroqBvqoZUlrt6oRlu764xGQt2bJPT3VupqZVy6tu+bJ6+Z622nY8Un//k35+rzt4UofPRmty73aqXa60WtWsqJHtG+uLDbuUknrtLCE4Jn7XURRwHpY8BRVfAo5mz7E0LVufnG1296Z9qfppY4r2/3PtuK58GSfd9h9Xfb76+h3oktSmkatWbEzWziNpOn3eqs9WJsrP26IGVdMTLYIDLKoT5qKFa5J0LNKqI6et+urXJP2npot8vbkWHVFCYpJefGe+nh/Wzy4bXJIG3NlOg++6Q/WrV85y3hYN62jciIFqdlNtVQgqo7aNG+i+rrfr541/Z7u+iwmX9M0v6/XEwHvUpF5N1alSUeNGDNDfB45ox4GjkqT1f+/VkZMRmjjyftWqXEEtG9XVQ7276MuVfyglNTWvNh3FBPFlyVOQ9zCR93LdMX7u3DlNnTpV99xzj5o3b67mzZvrnnvu0bRp03T27Nn8aKNDcQkOVYXpc1V+yvsqM2yMnANz/kXmFlZNLoFlJGNU7qUZqjB9roIee0muoZWyX1+ZYLn4Bypxz3ZbmbmUoKTD++VerZYkyb1qLaXFX1TysYO2Opf2bJeMkXtVsndLunJB7iod4KbNf8fYyuIT0rT7wEXVrVkqy3lcXCyqVdVHm/+OtpUZI23eEa26tdLnqVnVW66uTnbLPX4qURFnk2x1ULK5uFhUs3opbdp+eVh/Y6RN2y6oXi3fLOepX9tXm7bZvwZgw9Yo1a+dXj802ENlAt218Yo68Qlp2r0/1lYHuJ6LFy/q0KFDKleunBo3bixXV1etXr3aNn3fvn06fvy4mjdvLklq3ry5duzYoTNnztjqrFy5Ur6+vqpbt26Bt78oIr78946dj1WHqZ+pyxsLNXbRGp2Ovpht3YuJyfJxd7MNZ77u4AlZjXQmNl49/rtId0xboKcXrlJETPbL2H3qrFLTrGpa7fIf7lXK+qucn4+2/5N+rm//J1I1ggPshlZvUaOCLial6OCZC5mWCcfG7zqKAs5DoGQhxix8ri7p2d2Lf0lSXML1U8ZL+1rk5+1k19memCwdi7Sqckh67Fo5xFkJiUb/nLk8bPv+f9JkjBQWTA6YI3pt3iK1bFRXTevXypPlXUxIlK+PV7bT9xz5R6lpaWpa//J98cqhwQopHaC/D6aPtrnj4FFVrxhqN7R685vqKP5Sog6d4JVpJQnxJVD85Cpa2Lhxo2rWrKm33npLfn5+atOmjdq0aSM/Pz+99dZbql27tjZt2pRfbS32kg7v17mP/qvIN8fr/KfvyaVMsMo9O0UWd88cze9aJv0JI/+7+inm+y91ZuYrsiZcVMjTk+TknXWGrbNfgCQpLTbarjwtNto2zdkvQNa4GPsZrVZZ4+Pk7Oef8w2EQwoMSB/yJSra/kVNF2KSFeif9XAwfqVc5OxsUdRV7wq/EJ1imyfQ303JKVZdTEjLtg5KNj9fV7k4WxR1wf48iopOUekAtyznCfR304XoZLuy9HMqvX7g/+a7cPX5HJ1sm4bCY3FyKrBPbjz11FP69ddfdfToUa1du1b33HOPnJ2d1b9/f/n5+Wno0KEaM2aMfv75Z23evFlDhgxR8+bN1axZ+sgsHTt2VN26dXX//fdr+/bt+umnn/TCCy9o1KhROc5Sd2TEl/9egwpBmtizrd4Z1FnPd2+pkxfiNOSD7xSflJyp7oX4RM3+Zat63VLbVnbiQpysxuiD37bp6S7N9Hq/9oq5lKQR85Zlm9l9Pu6SXJ2d5Otpfw4H+njqXFxCep2LlxToYx/nlv5fhsf5i7wXraThdx1FAedhyVQU40vkP2LMouGe1u46cjpNO4/kbLSgUl7pmXFXd6LHJVht2eClvC26eMl+utVICYlGvl5k1jman9Zt0d4jJzT63u55srx/Is7qixW/qeftLbKtcz46Vq4uzpmy0wP9Sul8dJytTqCffWJP6f/9+3x0bJ60FcUD8WXJVFTvYSJnXK5f5bJHHnlEffr00XvvvSeLxT7QMMbooYce0iOPPKJ169ZdczlJSUlKSrIfPicpLU3uzs7ZzOEYLu3cYvv/lBPHdObwflV4bY68m7TUxT9WXWPO//nfPo/+YZEStqTv43Nz31LFaR/Jq3FLXfztp3xpNwAAJdmJEyfUv39/nT9/XmXLllWrVq20fv16lS1bVpI0Y8YMOTk5qVevXkpKSlKnTp30zjvv2OZ3dnbW999/r4cffljNmzeXt7e3wsPD9fLLLxfWJhUp+RlfmpRUubvmKtwtllrVrGj7/5ohpdWgQpDufP1z/bTzsHo2vtwBfjExWaM/Xa6qQf566PbGtnJjjFLTrHq2awvbe8Vf7Xu72r/2mf46ckota1xePgAAQHGQFzFmVvFlakqKXFx5uDUn6lVxVo0Kzpq2MKGwm4JiKuL8Bb3+yVeaNXak3N3+fRLNmahoPTL1PXVo2kj3XKNjHADg2HJ1p3D79u2aN29epoBSkiwWi5544gn95z//ue5ypkyZogkTJtiVPfafmnr85trZzOGYrJfilRJ5Si5B5XJUPy0mfeiMlFP/XC5MTVXq2Ui5lC57zXmcff1t/5/x7+R/jtjqOJXys5/RyUlO3qWUFhOdw62Bo8p42i3Q39UuazzAz00Hj8ZnOU9MXKrS0owC/eyD1oArlhEVnSw3Vyf5eDnbZY0HXLUelFwxsSlKTTO2UQsyBPq76vyFzFmQUvp5FeBv/+Rk+jmVXj/qf/MFXLWMAH83HTyc/ZDBKBhF9b05CxcuvOZ0Dw8PzZo1S7Nmzcq2TlhYmJYtW5bXTXMI+RlfPt/7Dr3Qp2OetbW48PV0V1gZP/1z/nKmQnxSskZ+8qO83Vw1o/8dcnW+/NRxmVLpmRDVyvrbygK9PeXv5aGImKx/60uX8lRKmlWxl5LsssajLl6yLa+0j6d2njhjN9/5+ATbNJQs/K6jKOA8LJmKaoyJ/JUXMWZW8WXTzmPVrMv/5WlbHVXNCs4q7WfRlOHeduVD7vTQ4VNWvb0k8whCGZnipbwsir0ia7yUl5NOnk2/dxQXb+TjaX9cnSySl4f9PCj+9h75R1GxF3Xf89NtZWlWq7buPaQvV/yutR+/LuccZlOevRCjhya9rZtqVNHzQ++9Zt3S/r5KSU1TXHyCXdZ4VEycSvuXstXZdei43XznY+Js01ByEF+WTMSXxVuu8vBDQkL0119/ZTv9r7/+UnBw8HWXM3bsWMXExNh9Hm5YIzdNcQgWdw+5BIXYdVhfS9KxgzIpyXINufwuRzk7y6VMkFLPn8lyntRzkUqNjpJHnZsur9fDU+5Vayrp0L705R7eJ2dvH7mFVbPV8ah9k2SxKOnw/hvYMjiS02eSdP5Csm5ucPnhCS9PZ9Wt4aPd++OynCc11Wjf4Yt281gsUuMGftq9L32e/YfjlZJitatTMdRDIWXdbXVQsqWmGu0/GKfGNwXYyiwWqXHDAO3al/WwVDv3xuqWhgF2ZU0aBWjn3vT6pyITdS4qya6Ol6ez6tb0tdUBULDyM758usftednUYiMhKUX/RMXZOqgvJibroY9/lKuzs/47sFOmLPpGldL379Fzl1+tE5OQqOiERJXzz/p1PXVDy8rF2Ul/HT5lKzt6NlqnYy6qYcUgSVLDisE6EHnBbtj09QdPysfdVdWCAjItE46N33UUBZyHQMmRFzFmVvHlLXc8mddNdVirNqdo6oJLmvb55Y8kLf09WQtWJ2Y5z/lYo5h4q2pUvDyqqLtr+rvDj0akv1P8aESavDwsqlD28m3tGhWcZbGkv4scjqNJvZpa+Oqz+mzy07ZP3aoV1blFY302+ekcd4qfiYrWiFdmqnaViho3YoCcrjNfnSoV5eLsrL92Xb4vfvRUpCLOX9BN1atIkhpUr6yD/5xSVMzle5gbdu6Tt6eHqpYPuYGtRXFFfAkUP7nKGH/qqac0fPhwbd68We3bt7cFkJGRkVq9erXmzJmj6dOnX2cpkru7e6Z3akY5+DDqkhTQZ7AStm9U2vmzcvYPlP/d/SWrVfEbfpOUnsXt7BdgyyB3rRAmk3hJqVFnZY2/KJN4SXG/LJf/Xf2VGnVOqefPyq/zPZKkhE1/2tZTfuIsXfh6vhK2rpckxa76Tn5d+yol8rRSz0UqoMcApUZH2aannD6hhB2bVXrQKJ3/9F1ZnJ1VesBwxW/8XWkxUQW5i1BIPD2cVD7Ew/bvkGAPVa/spdiLqTpzLlmLfzit+3tV0InTiTp9JklD+1XUuQvJ+uOvy+fH6+Pq6o8NUVqyPEKStOi70xo7urr2HYrXnoMX1btrOXm4O+vHn89KkuIT0rRszRmNHFxZsRdTlXApTY8OraKd++K0+wBPviHdwqUn9PwTtbX3YJz27I9T37vLy9PDST+sSj/PXniils6eT9b7n6SPgLHo25N6e0pD9etRQWs3nVeH1kGqXb2Upr59+Y+ZRd+eVPi9lfTPqUs6HZmoYfdV1vmoJP2+/lyhbCMu42nLkik/48vEEjCMuiS9vny92tYKUzl/H52NS9C7azbL2WLRnTdVs3WKJ6akavKA2xSflGx793iAt4ecnZxUuYy/bqsdpteWrdNLd7eWt7ur3lq5UZXL+KlJlVBJUmRsvIbP/UGv9GqnBhWCVMrDTffcXEvTf1wvX093+bi76tUf1qphxSDdVDH9GDavXl5Vy/rr+a9+1hMdm+rcxQS9vXqT7m1aT24ujh/7IzN+11EUcB6WPMSYJVNexJhZxZcuriXnfoWbq1TW73IHYqCvk8qXMYpPNIq+aOTlLgWUcrK9+zsoIL1ubIJR3BWfq124aFVU7OXysfd56fu1SdpxOD0j/LdtKep4i5vORqfX69LMTTHxRjsOp0qSIi8Y7TmWqntvd9eiX5Lk7CT1auuurftTFRtPxrgj8fb0UPWKoXZlHu7u8i/lbSs/Fx2r89GxOhGZ/pt78J/T8vJwV0iZAPn5eNs6xcuVCdTjA+7WhdjL13CZ/2V2n4mK1sOTZ2nCw/epfrUw+Xh56u52zTTj06Xy8/aWt5eHpn28WDfVqKwGNSpLkprdVFtVyofopXc/1aP979L5mFi9u+gH9b2jldxKyN+huIz4suQhvizecvUtPWrUKJUpU0YzZszQO++8o7S09IDF2dlZjRs31rx589S3b998aagjcAkoo7LDn5KzdymlxcUo6eAenZ78jKwX05/yKdWus/zv6m+rX+7ZKZKkcx/9VxfXrpEkRS2eJ2NNU9lhT8ji6qakI/sVMf0FWRMuD3PpWq6CnDwvD/MSu/xrObl7qMygkXLy8lbigT2KfHOCTOrl4arPffCGAgcMV8iTE9M767esU9Tnc/J1f6DoqFXNR29OqGf79+jBlSVJy38+o1dnHdLnS0/Jw91ZT42oKh9vF+3YG6tnXtmj5JTLf3CUD3aXn+/lr5Sf156Xv6+rhvSrqEB/Vx08Gq9nJu3RhZjL592seUdlNdLLT9WSq6tFG7dH6805R/J/g1FsrPnjrPz9XDVsYGUFBqQPF/TkuB268L/h9oPLesh6xd+9O/fGasL0PXrwvioaPqiKTpy6pLGTdunI8cvvNPvsq3/k4eGsZ0bXTD+fd8foyXE77M5nAAWH+PLfi4yJ13OL1ig6IVEB3p76T6VgzR9xtwK9PbXxyCnt+N9w5t1mfGE337Ix/VQ+IH0owFd6tdO0H9dp9PzlcrJY1LhyOb0bfqdtyPXUNKuOnotRYkqqbf6n72wmJ4tFTy5cpeTUNLWoXkHPd29pm+7s5KSZ93fSpG//1KA538jT1VXd/1NDI694vzlKFn7XURRwHgIlAzHmv1cpyFmje15+/c09rdMfEvhrT4oWrEpS/SouGnDH5SSL8M7p/798Q7KW/5X18MFZCQ5wkqfb5Q6G1VtS5OZq0b23ucvT3aLDp/+fvfsOj6rK/zj+mUlvkwZJaEGUGgiiQcmIFZGIUWHJ2hYBFRsbUGBFZH+ILKhR1hVbwMYCFmRFF1cQKaKCSkKJgpESOgFCEiCkEMikze+PyOBIAqiTZGbyfj3PfR5yz7l3zp0Zku+953zPqdIbn55U5elV+PTusjIlXeOjvw70k9Uq/birUh+vttRydri7j1d+p7f+u9T28wNTX5EkPfXgX3TLNb20NjNL+/OOaH/eEd006im7Yze8/7IkqbKqSvsO5avMcvp7O/buP8loMOjxl/+t8spKmWM7a/y9t9nKPYxGvfTYg0qZ/aHunTxdfj7euvmqy/XQn2+qz8uFkyK+BFyLwWq1/q7/SRUVFTpypGZ0SrNmzeTl5XWOI85u7/0D/tDxwB91T+ETjd0EQJWW8795BOrLt4uuaZTXzZ8wtMFeKyLlnQZ7LZw/R8eXZR+eO9McqG99372ssZsAAI2useJLqeFiTOJL5+XIGHP0q00nYxzOa6r528ZuAqD+//A7dyWgnvEME7/H757Xw8vLSy1atHBkWwAAQFN2nuuDwX0RXwIAAIcjxmzyiDEBAIBDEV+6ND49AAAAAAAAAAAAAIBb+90Z4wAAAI5kMBjOXQkAAAD4DYgxAQAA4EjEl66NjHEAAAAAAACgAR08eFB33323wsPD5efnp9jYWG3YsMFWbrVaNWnSJLVo0UJ+fn7q27evduzYYXeOgoICDR48WCaTSSEhIRo+fLiOH2cNbAAAAKAuZIwDAACnYGB9HgAAADiYM8aYx44dU+/evXXdddfp888/V/PmzbVjxw6Fhoba6kybNk2vvPKK5s6dq3bt2unJJ59UQkKCtmzZIl9fX0nS4MGDdejQIa1YsUIVFRW699579eCDD2revHmNdWkAAABuzxnjS5w/OsYBAAAAAACABvL888+rTZs2mj17tm1fu3btbP+2Wq166aWXNHHiRA0YMECS9M477ygyMlKffPKJ7rzzTm3dulVLly7V+vXr1bNnT0nSq6++qptuukkvvPCCWrZs2bAXBQAAALgAhjUAAACnYDAaGmwDAABA0+CM8eWnn36qnj176rbbblNERIQuueQSvfXWW7byPXv2KDc3V3379rXtCw4OVq9evZSWliZJSktLU0hIiK1TXJL69u0ro9GotWvX/sF3DQAAAHXhGaZro2McAAAAAAAA+AMsFouKi4vtNovFUmvd3bt3a+bMmerQoYOWLVumESNG6JFHHtHcuXMlSbm5uZKkyMhIu+MiIyNtZbm5uYqIiLAr9/T0VFhYmK0OAAAAAHt0jAMAAOdgNDbcBgAAgKahgeLLlJQUBQcH220pKSm1Nqm6ulqXXnqpnn32WV1yySV68MEH9cADD+j1119v4DcHAAAAvxnPMF0a7yoAAAAAAADwB0yYMEFFRUV224QJE2qt26JFC8XExNjt69Kli7KzsyVJUVFRkqS8vDy7Onl5ebayqKgo5efn25VXVlaqoKDAVgcAAACAPc/GbgAAAIAk1s0BAACAwzVUjOnj4yMfH5/zqtu7d29lZWXZ7du+fbvatm0rSWrXrp2ioqK0cuVK9ejRQ5JUXFystWvXasSIEZIks9mswsJCZWRkKC4uTpL05Zdfqrq6Wr169XLQVQEAAODXeIbp2ugYBwAAAAAAABrImDFjdMUVV+jZZ5/V7bffrnXr1unNN9/Um2++KUkyGAwaPXq0nn76aXXo0EHt2rXTk08+qZYtW2rgwIGSajLMb7zxRtsU7BUVFRo5cqTuvPNOtWzZshGvDgAAAHBedIwDAACnYDCwwgsAAAAcyxljzMsuu0wLFy7UhAkTNGXKFLVr104vvfSSBg8ebKvz+OOPq7S0VA8++KAKCwt15ZVXaunSpfL19bXVef/99zVy5Ehdf/31MhqNSkpK0iuvvNIYlwQAANBkOGN8ifNHxzgAAAAAAADQgG6++WbdfPPNdZYbDAZNmTJFU6ZMqbNOWFiY5s2bVx/NAwAAANwSHeMAAMA5sD4PAAAAHI0YEwAAAI5EfOnSyPcHAAAAAAAAAAAAALg1MsYBAIBTMBgZrwcAAADHIsYEAACAIxFfujY+PQAAAAAAAAAAAACAWyNjHAAAOAUD6/MAAADAwYgxAQAA4EjEl66NjHEAAAAAAAAAAAAAgFsjYxwAADgHA+P1AAAA4GDEmAAAAHAk4kuXxqcHAAAAAAAAAAAAAHBrdIwDAAAAAAAAAAAAANwaU6kDAACnYDAaGrsJAAAAcDPEmAAAAHAk4kvXRsY4AAAAAAAAAAAAAMCtkTEOAACcg5HxegAAAHAwYkwAAAA4EvGlS+PTAwAAAAAAAAAAAAC4NTLGAQCAUzAYWJ8HAAAAjkWMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMA5sD4PAAAAHI0YEwAAAI5EfOnS+PQAAAAAAAAAAAAAAG6NjHEAAOAUDEbW5wEAAIBjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcA4GxusBAADAwYgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NbIGAcAAM6B9XkAAADgaMSYAAAAcCTiS5dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyCgfV5AAAA4GDEmAAAAHAk4kvXxqcHAAAAAAAAAAAAAHBrZIwDAADnwPo8AAAAcDRiTAAAADgS8aVLI2McAAAAAAAAAAAAAODWyBgHAABOwWBkvB4AAAAcixgTAAAAjkR86dr49AAAAAAAAAAAAAAAbo2OcQAAAAAAAAAAAACAW2MqdQAA4BwMhsZuAQAAANwNMSYAAAAcifjSpZExDgAAAAAAAAAAAABwa2SMAwAA52BkvB4AAAAcjBgTAAAAjkR86dL49AAAAAAAAAAAAADARU2ePFkGg8Fu69y5s628rKxMycnJCg8PV2BgoJKSkpSXl2d3juzsbCUmJsrf318REREaN26cKisrG/pS6hUZ4wAAwDmwPg8AAAAcjRgTAAAAjuTE8WXXrl31xRdf2H729DzdDTxmzBh99tlnWrBggYKDgzVy5EgNGjRI3333nSSpqqpKiYmJioqK0po1a3To0CENHTpUXl5eevbZZxv8WuoLHeMAAAAAAAAAAAAA4MI8PT0VFRV1xv6ioiLNmjVL8+bNU58+fSRJs2fPVpcuXZSenq74+HgtX75cW7Zs0RdffKHIyEj16NFDU6dO1fjx4zV58mR5e3s39OXUC6ZSBwAATsFgNDbYBgAAgKaB+BIAAACO1JDPMC0Wi4qLi+02i8VSZ9t27Nihli1b6sILL9TgwYOVnZ0tScrIyFBFRYX69u1rq9u5c2dFR0crLS1NkpSWlqbY2FhFRkba6iQkJKi4uFibN2+up3ez4RG5AwAAAAAAAAAAAIATSUlJUXBwsN2WkpJSa91evXppzpw5Wrp0qWbOnKk9e/boqquuUklJiXJzc+Xt7a2QkBC7YyIjI5WbmytJys3NtesUP1V+qsxdMJU6AABwDgbG6wEAAMDBiDEBAADgSA0YX06YMEFjx4612+fj41Nr3f79+9v+3b17d/Xq1Utt27bVhx9+KD8/v3ptpyvh7gAAAAAAAAAAAAAAnIiPj49MJpPdVlfH+K+FhISoY8eO2rlzp6KiolReXq7CwkK7Onl5ebY1yaOiopSXl3dG+akyd0HHOAAAcA5GQ8NtAAAAaBqILwEAAOBILvIM8/jx49q1a5datGihuLg4eXl5aeXKlbbyrKwsZWdny2w2S5LMZrMyMzOVn59vq7NixQqZTCbFxMT8obY4E6ZSBwAAAAAAAAAAAAAX9dhjj+mWW25R27ZtlZOTo6eeekoeHh666667FBwcrOHDh2vs2LEKCwuTyWTSqFGjZDabFR8fL0nq16+fYmJiNGTIEE2bNk25ubmaOHGikpOTzztL3RXQMQ4AAJyCgfUfAQAA4GDEmAAAAHAkZ40vDxw4oLvuuktHjx5V8+bNdeWVVyo9PV3NmzeXJE2fPl1Go1FJSUmyWCxKSEjQjBkzbMd7eHho8eLFGjFihMxmswICAjRs2DBNmTKlsS6pXtAxDgAAAAAAAAAAAAAuav78+Wct9/X1VWpqqlJTU+us07ZtWy1ZssTRTXMqdIwDAADnwNqMAAAAcDRiTAAAADgS8aVLc858fwAAAAAAAAAAAAAAHISMcQAA4BycdH0eAAAAuDBiTAAAADgS8aVL49MDAAAAAAAAAAAAALg1MsYBAIBzMLA+DwAAAByMGBMAAACORHzp0sgYBwAAAAAAAAAAAAC4NTLGAQCAczAyXg8AAAAORowJAAAARyK+dGl8egAAAAAAAAAAAAAAt0bHOAAAAAAAAAAAAADArTGVOgAAcA4GxusBAADAwYgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NbIGAcAAM7BaGjsFgAAAMDdEGMCAADAkYgvXRoZ4wAAAAAAAAAAAAAAt0bGOAAAcA6szwMAAABHI8YEAACAIxFfujQ+PQAAAAAAAAAAAACAWyNjHAAAOAcD6/MAAADAwYgxAQAA4EjEly6NjHEAAAAAAAAAAAAAgFujYxwAADgHo7Hhtj/gueeek8Fg0OjRo237ysrKlJycrPDwcAUGBiopKUl5eXl2x2VnZysxMVH+/v6KiIjQuHHjVFlZ+YfaAgAAgHNwgfgSAAAALsRFnmGidryrAAAA52n9+vV644031L17d7v9Y8aM0aJFi7RgwQKtWrVKOTk5GjRokK28qqpKiYmJKi8v15o1azR37lzNmTNHkyZNauhLAAAAQCObPHmyDAaD3da5c2dbOYMuAQAAgPpBxzgAAHAOBkPDbb/D8ePHNXjwYL311lsKDQ217S8qKtKsWbP04osvqk+fPoqLi9Ps2bO1Zs0apaenS5KWL1+uLVu26L333lOPHj3Uv39/TZ06VampqSovL3fI2wcAAIBaOGl82bVrVx06dMi2ffvtt7YyBl0CAAA4MSd/homzo2McAADgPCQnJysxMVF9+/a125+RkaGKigq7/Z07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+aGuQAAAAA4DU9PT0VFRdm2Zs2aSWLQJQAAAFCf6BgHAADOwWBssM1isai4uNhus1gsdTZt/vz5+v7775WSknJGWW5urry9vRUSEmK3PzIyUrm5ubY6v+wUP1V+qgwAAAD1xEnjyx07dqhly5a68MILNXjwYGVnZ0ti0CUAAIDTa8BnmHA83lUAANDkpKSkKDg42G6rrdNbkvbv369HH31U77//vnx9fRu4pQAAAHAFvyW+7NWrl+bMmaOlS5dq5syZ2rNnj6666iqVlJQw6BIAAACoR56N3QAAAABJkrHhxutNmDBBY8eOtdvn4+NTa92MjAzl5+fr0ksvte2rqqrS6tWr9dprr2nZsmUqLy9XYWGh3QPMvLw8RUVFSZKioqK0bt06u/Pm5eXZygAAAFBPGijG/C3xZf/+/W3/7t69u3r16qW2bdvqww8/lJ+fX722EwAAAH9QAz7DhOPx6QEAgCbHx8dHJpPJbqvrweX111+vzMxMbdy40bb17NlTgwcPtv3by8tLK1eutB2TlZWl7Oxsmc1mSZLZbFZmZqby8/NtdVasWCGTyaSYmJj6vVgAAADUu98SX/5aSEiIOnbsqJ07dyoqKso26PKXfj3o8tQgy1+WnyoDAAAAUDs6xgEAgHMwGBpu+w2CgoLUrVs3uy0gIEDh4eHq1q2bgoODNXz4cI0dO1ZfffWVMjIydO+998psNis+Pl6S1K9fP8XExGjIkCHatGmTli1bpokTJyo5Ofm8H5gCAADgd3DC+PLXjh8/rl27dqlFixaKi4tj0CUAAIAzc9JnmDg/TjOV+tCj4xq7CWjixi++p7GbAGjrf7Y2dhMA/A7Tp0+X0WhUUlKSLBaLEhISNGPGDFu5h4eHFi9erBEjRshsNisgIEDDhg3TlClTGrHV7m/l4LcauwmAdONljd0CAICTeeyxx3TLLbeobdu2ysnJ0VNPPSUPDw/ddddddoMuw8LCZDKZNGrUqDoHXU6bNk25ubkMumwgB3bmn7sSUM9Wj320sZsASDe+2dgtAIDfxWk6xgEAQBNncJ2JbL7++mu7n319fZWamqrU1NQ6j2nbtq2WLFlSzy0DAACAHSeMMQ8cOKC77rpLR48eVfPmzXXllVcqPT1dzZs3l8SgSwAAAKfmhPElzh8d4wAAAAAAAEADmT9//lnLGXQJAAAA1A86xgEAgHNg3RwAAAA4GjEmAAAAHIn40qWR7w8AAAAAAAAAAAAAcGt0jAMAAAAAAAAAAAAA3BpTqQMAAOdgZLweAAAAHIwYEwAAAI5EfOnS+PQAAAAAAAAAAAAAAG6NjHEAAOAUrAZDYzcBAAAAboYYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBzMDBeDwAAAA5GjAkAAABHIr50aXx6AAAAAAAAAAAAAAC3RsY4AABwDoy2BAAAgKMRYwIAAMCRiC9dGp8eAAAAAAAAAAAAAMCtkTEOAACcgtVgaOwmAAAAwM0QYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwDqzPAwAAAEcjxgQAAIAjEV+6ND49AAAAAAAAAAAAAIBbI2McAAA4B9bnAQAAgKMRYwIAAMCRiC9dGhnjAAAAAAAAAAAAAAC3RsY4AABwDkbG6wEAAMDBiDEBAADgSMSXLo1PDwAAAAAAAAAAAADg1sgYBwAATsHK+jwAAABwMGJMAAAAOBLxpWsjYxwAAAAAAAAAAAAA4NbIGAcAAM7BwHg9AAAAOBgxJgAAAByJ+NKl8ekBAAAAAAAAAAAAANwaGeMAAMApWBltCQAAAAcjxgQAAIAjEV+6Nj49AAAAAAAAAAAAAIBbo2McAAAAAAAAAAAAAODWmEodAAA4B4OhsVsAAAAAd0OMCQAAAEcivnRpZIwDAAAAAAAAAAAAANwaGeMAAMApWA2M1wMAAIBjEWMCAADAkYgvXRufHgAAAAAAAAAAAADArZExDgAAnAPr8wAAAMDRiDEBAADgSMSXLo2McQAAAAAAAAAAAACAWyNjHAAAOAfW5wEAAICjEWMCAADAkYgvXRqfHgAAAAAAAAAAAADArZExDgAAnIKV9XkAAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwD6/MAAADA0YgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NboGAcAAE7BKkODbQAAAGgaiC8BAADgSK7wDPO5556TwWDQ6NGjbfvKysqUnJys8PBwBQYGKikpSXl5eXbHZWdnKzExUf7+/oqIiNC4ceNUWVn5u9vhjOgYBwAAAAAAAAAAAAAXt379er3xxhvq3r273f4xY8Zo0aJFWrBggVatWqWcnBwNGjTIVl5VVaXExESVl5drzZo1mjt3rubMmaNJkyY19CXUKzrGAQCAU7AajA22AQAAoGkgvgQAAIAjOfMzzOPHj2vw4MF66623FBoaattfVFSkWbNm6cUXX1SfPn0UFxen2bNna82aNUpPT5ckLV++XFu2bNF7772nHj16qH///po6dapSU1NVXl7usPevsRG5AwAAAAAAAAAAAIATsVgsKi4uttssj7kP+AABAABJREFUFkud9ZOTk5WYmKi+ffva7c/IyFBFRYXd/s6dOys6OlppaWmSpLS0NMXGxioyMtJWJyEhQcXFxdq8ebODr6zx0DEOAACcg8HYcBsAAACaBuJLAAAAOFIDPsNMSUlRcHCw3ZaSklJrs+bPn6/vv/++1vLc3Fx5e3srJCTEbn9kZKRyc3NtdX7ZKX6q/FSZu/Bs7AYAAAAAAAAAAAAAAE6bMGGCxo4da7fPx8fnjHr79+/Xo48+qhUrVsjX17ehmueS6BgHAABOwWowNHYTAAAA4GaIMQEAAOBIDRlf+vj41NoR/msZGRnKz8/XpZdeattXVVWl1atX67XXXtOyZctUXl6uwsJCu6zxvLw8RUVFSZKioqK0bt06u/Pm5eXZytwFcz0BAAAAAAAAAAAAgAu6/vrrlZmZqY0bN9q2nj17avDgwbZ/e3l5aeXKlbZjsrKylJ2dLbPZLEkym83KzMxUfn6+rc6KFStkMpkUExPT4NdUX8gYBwAAAAAAAAAAAAAXFBQUpG7dutntCwgIUHh4uG3/8OHDNXbsWIWFhclkMmnUqFEym82Kj4+XJPXr108xMTEaMmSIpk2bptzcXE2cOFHJycnnlbXuKugYBwAATsFqYCIbAAAAOBYxJgAAABzJVePL6dOny2g0KikpSRaLRQkJCZoxY4at3MPDQ4sXL9aIESNkNpsVEBCgYcOGacqUKY3YasejYxwAAAAAAAAAAAAA3MTXX39t97Ovr69SU1OVmppa5zFt27bVkiVL6rlljYuOcQAA4BwMhsZuAQAAANwNMSYAAAAcifjSpblmvj8AAAAAAAAAAAAAAOeJjHEAAOAUXHV9HgAAADgvYkwAAAA4EvGla+PTAwAAAAAAAAAAAAC4NTLGAQCAU7CK9XkAAADgWMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwC6/MAAADA0YgxAQAA4EjEl66NTw8AAAAAAAAAAAAA4NbIGAcAAM7BwPo8AAAAcDBiTAAAADgS8aVLI2McAAAAAAAAAAAAAODWyBgHAABOwcp4PQAAADgYMSYAAAAcifjStfHpAQAAAAAAAAAAAADcGh3jAADAKVgNhgbbAAAA0DS4Qnz53HPPyWAwaPTo0bZ9ZWVlSk5OVnh4uAIDA5WUlKS8vDy747Kzs5WYmCh/f39FRERo3Lhxqqys/ENtAQAAwNnxDNO10TEOAAAAAAAANIL169frjTfeUPfu3e32jxkzRosWLdKCBQu0atUq5eTkaNCgQbbyqqoqJSYmqry8XGvWrNHcuXM1Z84cTZo0qaEvAQAAAHAZdIwDAACnYDUYG2wDAABA0+DM8eXx48c1ePBgvfXWWwoNDbXtLyoq0qxZs/Tiiy+qT58+iouL0+zZs7VmzRqlp6dLkpYvX64tW7bovffeU48ePdS/f39NnTpVqampKi8vd8h7BwAAgDPxDNO18a4CAAAAAAAAf4DFYlFxcbHdZrFYznpMcnKyEhMT1bdvX7v9GRkZqqiosNvfuXNnRUdHKy0tTZKUlpam2NhYRUZG2uokJCSouLhYmzdvduCVAQAAAO6DjnEAAOAUrDI02AYAAICmoaHiy5SUFAUHB9ttKSkpdbZr/vz5+v7772utk5ubK29vb4WEhNjtj4yMVG5urq3OLzvFT5WfKgMAAED94Bmma/Ns7AYAAAAAAAAArmzChAkaO3as3T4fH59a6+7fv1+PPvqoVqxYIV9f34ZoHgAAAADRMQ4AAJwE6+YAAADA0RoqxvTx8amzI/zXMjIylJ+fr0svvdS2r6qqSqtXr9Zrr72mZcuWqby8XIWFhXZZ43l5eYqKipIkRUVFad26dXbnzcvLs5UBAACgfvAM07Xx6QEAAAAAAAAN5Prrr1dmZqY2btxo23r27KnBgwfb/u3l5aWVK1fajsnKylJ2drbMZrMkyWw2KzMzU/n5+bY6K1askMlkUkxMTINfEwAAAOAKyBgHAAAAAAAAGkhQUJC6detmty8gIEDh4eG2/cOHD9fYsWMVFhYmk8mkUaNGyWw2Kz4+XpLUr18/xcTEaMiQIZo2bZpyc3M1ceJEJScnn3fmOgAAANDU0DEOAACcgtVgaOwmAAAAwM24aow5ffp0GY1GJSUlyWKxKCEhQTNmzLCVe3h4aPHixRoxYoTMZrMCAgI0bNgwTZkypRFbDQAA4P5cNb5EDTrGAQAAAAAAgEb09ddf2/3s6+ur1NRUpaam1nlM27ZttWTJknpuGQAAAOA+6BgHAABOwSpGWwIAAMCxiDEBAADgSMSXrs3Y2A0AAAAAAAAAAAAAAKA+kTEOAACcgtXAeD0AAAA4FjEmAAAAHIn40rXx6QEAAAAAAAAAAAAA3BoZ4wAAwCmwPg8AAAAcjRgTAAAAjkR86drIGAcAAAAAAAAAAAAAuDUyxgEAgFNgfR4AAAA4GjEmAAAAHIn40rXx6QEAAJzFzJkz1b17d5lMJplMJpnNZn3++ee28rKyMiUnJys8PFyBgYFKSkpSXl6e3Tmys7OVmJgof39/RUREaNy4caqsrGzoSwEAAAAAAACAJouMcSdz7x3RuvfOaLt9+w6c0JBR39d5zLVXhGv4XW0VFeGrg4dO6vV39ir9+2N2de67K1q39I1SYICHMreV6MU3durAobJ6uQY4tw5PjlTHSaPs9h3ftlurYvtLkvwvbKMuz49XaO84GX28dXjZN9o8eqrK84/a6vf870yZLu4s74hwVRwr0pEv07RtwguyHMqv83WNPt7q8s8n1PL2m2rOu/xb/TTqH3bn9W3TQrGvTVb4tb1UefyEDrz7ibL+71+yVlU5+F2AMzi0Z71+XP1vHTm4WSdKDuuGu1/VBV371lr3m4WTtW3dfxSf+IRirxx2RnlVZbk+mXGHCg5t06BR/1V4yy51vm5lhUVrlzyvXZuWqKqqQq079FbvAZPkH9TMVud4YY6+/eQfytm9Tl7e/up46UBdljBGRg/+bNYnZ12fp3Xr1nruuefUoUMHWa1WzZ07VwMGDNAPP/ygrl27asyYMfrss8+0YMECBQcHa+TIkRo0aJC+++47SVJVVZUSExMVFRWlNWvW6NChQxo6dKi8vLz07LPPNvLVwR1ct2Ol/C9ofcb+vTPf1+ZHptjtu2zRW4q48WptSPqr8j5dKUkK6t5JF417UGG94+TdLFQn9x7Uvrfma++r75z1db1Cg9X15ScVkXidVF2t3IXLtXnMM6oqPWGrExTbSd1emaTgnrEqP1ygvanvafe/3nbAVcNVDbqppe4a1EZhod7atee4pr+xU1t3lNRZ/7rezXT/3e0UFeGrAzknNHPOHqVnFNjVGT74At3SL0pBAZ7K3FqsF2bs0IFDJ+v7UuDC+B42Lc4aYwKu5vYbQ3V7/1C7fQfzyvXoswckSf8Y2UJdO/jZlS//rlhvfnjkrOe9o3+o+pqD5O9nVNaeMr254IhyD58eRBzob9TwpHDFdQuQtdqq9B9LNfvjoyortzroyuDMfFpGqEvKODVPuEoe/n4q3bVPP97/dxVl/CRJ8gjwV+dn/6bIW/vKOzxEJ/Yc0N7Ud5X95nxJkl/bVuqz88taz51x56PK/Xhpna/d8alH1Gb4bfIKMenYmu+VOXKyTuzcZys/n/shNB3El00L8aVrI2PcCe3OLtXAe9fatpF//7HOut06BWnS2M76bGWe7v/bD/pm7VE980QXtYv2t9X5y59aKSmxpf71xk49NH6TyixVemFSN3l78Z+3qSr5abu+aN3btq259i+SJA9/P12+5N+S1aq1/YYp7Zq7ZPT20mWfvC4ZTn9fjq5K1/d/Ga1VXW/U93c8ooAL2yjuPy+f9TVj/vV3RSZep+/vHK2064fIt2WE4ha8drqC0ajLPn1DBm8vrbn6Tm267wm1HvondZz8SL28B2h8leUnFdaik64Y8ORZ6+3ZvEL5+zfJ3xRRZ521n7+ggKDm5/W66Z+laN/Wr3X94Jd084Pv6ERxvr54//T3rLq6SkvnPKzqqgoNeHierr0tRdu/X6iML149vwuD27nlllt00003qUOHDurYsaOeeeYZBQYGKj09XUVFRZo1a5ZefPFF9enTR3FxcZo9e7bWrFmj9PR0SdLy5cu1ZcsWvffee+rRo4f69++vqVOnKjU1VeXl5Y18dXAH35n/bPd3PT3hHknSoY/sH/K0e3SYZD3zAWLwpd1UfrhAG4eN06qLE7XzudfV+emxavvXwWd93R7vvKDAmPZa1/9erR/4sMKu7KnYmac74j2DAnT5klk6mZ2jb3sN0tYnpqnjpJFqc//tf/yi4ZL6XNlcI++/SLM/2KvhozO0c89xvTglViHBXrXW79bZpKfGxWjx8kO679EMfZN+VCn/19XuXmdwUhv9+eZWemHGDj342A86WValF6fEcq+DOvE9BIDfL/tQue6fuM+2TXw5x658xZpiu/J3/3e0jjPVGHh9sG662qQ3Pzyiv0/PkaXcqicfbiEvz9O/Px8dEqHWUd6aOuOQUt7KVcxFfnrozvO7/4dr8wwx6YpVH6i6okLrbnlAq7onauu451VxrMhWJ+aFJ9S831U19zKxN2nPq3NrOqtv7iNJOrn/kN290heteytr8iuqLCnV4aWr63ztCx97QBeMHKKfkifru963q7L0pHp9NktGH29bnXPdD6HpIL4EXAsd406oqsqqgsIK21ZUUvdUq3++uaXW/XBM8z85qH0HTmrWB9navvu4Bt3Uwlbntptb6d0F+/XtugLt3ndCz7y8XeFh3rqyV3hDXA6cUHVVlSx5R2xbxdGaGQZCr7hU/he00qbhT6jkp+0q+Wm7Nt03XsFx3RR+Xbzt+D0vz1Xh2k06mZ2jY2k/aOe0txTSq4cMnrVn03qaAtXm3iRtGfecjn6druLvN2vT/X9X2BWXKqTXxZKk5jdcqaAu7bVx2DgVb9qmw8tWa/vkl9V2xGAZvGoPIuDa2nS6Wpf1G612XW+os05pUZ7SPn1G190xTUZj7d+v/VmrdXDHd+p10+PnfM3yshJlbfiv4hPHq9VF8Wreqquu+fOzytv3g/KyN0qSDu74ToX5u3Tt7dMU3rKL2nS6WnE3PKLNafNUVUknZn2yGowNtlksFhUXF9ttFovlnG2sqqrS/PnzVVpaKrPZrIyMDFVUVKhv39OzHXTu3FnR0dFKS0uTJKWlpSk2NlaRkZG2OgkJCSouLtbmzZsd/0aiySk/cszu73pk4nUq3blPBavX2eqYLu6sdqPv048P/P2M4w/M+Vhbxj6jgm/W6+SeAzo471Ptn/tfRQ3sV+drBna+UBE3Xq3MhyaqcN2POvZdhjaPflot70iUT4uagUwt/3KrjN5e2nT/33V8y04d+nCJ9rz2ri589F7HvwlwCXcObK1Fyw5pyco87d1/Qv+csUNllmrdfENUrfVvu7WV1n5foA8WHtC+Ayf09vt7tX3XcSXd3Mquzjsf7tO3a49q195SPT19m8LDfHRVfLNazwnwPWx6Giq+BJqCqiqrCkuqbFtJabVduaXcvvyk5exZ3YnXBOvj5YVa/9MJ7csp16vv5Ss02EOXx9Z0DrWK9NIlMf56ff5h7dhn0bbdFs366Ih6XxKgUJNHvV0nnMNF4x5Q2YHcmgzx9Zk6ufeAjnzxnU7s3m+rExp/iQ68+4kKVq/TyX0Htf/tD1Xy4zaFXNa9pkJ1td29kiXviKIG9tWhjz4/a2Z3u0eGauezM5W3aKVKMrO06d7H5dMyQpEDau79z+d+CE0H8WXT05DPMOF4vKtOqHULP/131mWaP7OnnhzdURHNfOqs27VTkDI2FdrtW7exUF07miRJLSJ9FB7mrQ2/qFN6okpbd5SoWydTfTQfLiCgfVtdv+8bXZf1hXq884J829QMpDD6eMtqtaracrrzr7rMImt1tcJ6x9V6Lq/QYLW66xYdS/tB1jrWyw2+tJuM3t46snKNbV9p1m6d2HdQofE9JEmh8T1U/NN2u6nVDy//Vl7BQQrq2v6PXjJckLW6Wl99OF7dr75PYZEdaq1zouSIvvnvJF17+/Py9Partc4vHT64WdVVFWrV3mzbFxJxoQJDWij/547xvOyNCo3qaDe1eusOV6rCclzH8nf+sYuC00hJSVFwcLDdlpKSUmf9zMxMBQYGysfHRw8//LAWLlyomJgY5ebmytvbWyEhIXb1IyMjlZubK0nKzc216xQ/VX6qDHAkg5eXWv3lVu2f87Ftn9HPVz3e+Zc2PzJFlryzT2V5ildwkCoKCussD4m/RBXHimxTGErSkZVrZK2uVsjlNQ+hQuN7qOCbDbJWVJyus/xbBXa+UJ4hxKFNjaenQR3bB2nDptNLPlmt0oaNx9S1jvuSbp1N2rDRfomotT8UqFvnmvotI33VLMxH639Rp/RElbZsL7bVAX6J7yEA/DEtmnvpzSnRSn2yjR4d0lzNQu07p6/qGah/P9NWLz7RWn+5OfSsmY0R4Z4KDfbUj9tPTwt8osyqHfss6tjOV5LU6QJfHT9RpV37Tz+n+nH7SVmtUocL6n5eCvcQeXMfFWb8pEs/eFl9D67RlesXqs3w2+zqHEv/QZG39JFPy5rO6PBreimgQzsdWfFtrec0XdpVwT1itH/2R3W+rl+71vJtEaEjX55+jllZfFyF6zYpNP4SSed3P4SmgfgScD0slupktuwoUcqr25V98KTCQ7117x3Reu2ZWA17tGa6jF8LC/FWQaF9BuOxwnKFhdZk2IaH1EzvcqzIvk5BYbnCQsjCbYoK1/2oTcMnqHT7HvlENVfHJ5Nl/up9re5xiwrXblRV6Ul1ThmnbRNflMFgUOdn/yajp6d8WthPU9X52cfU9q+D5Rngr2PpP2j9gIfrfE2fqGaqspSrssh+XZXy/KPyiWxuq1P+q4f1px7e19TZ6oCrhyvZtPptGY0e6nrFkFrLrVarVn30d3XudYeat+6mkmMHz3nOkyVHZPTwko+ffRDpF9hMJ0qO2Or4BdrPqOH/888nS86vQwm/T0OuzzNhwgSNHTvWbp+PT90PVjp16qSNGzeqqKhIH330kYYNG6ZVq1bVdzOB3yxqQF95hgTpwDsLbfti/jVBx9J/UN6iled1jlDzJWpxW3+tv/WhOuv4RDaTJd9+/TNrVZUqCorkE9XcVufE3gN2dSz5Nb9HfaOa6Xhh8Xm1B+4h2OQlTw+DCo5V2O0vKKxQ29b+tR4TFuKtY2fc61Qo7Od7nLBQb9s++zrltjLgl/geNk2sAQk4xo59ZUqdV66c/AqFmDx0+42hmvpIS4157oDKLFZ9k3Fch49V6lhRpdq29NHdt4apVYS3/vnvvFrPFxpU06leWGL/vLOopEohP5eFmDxU9Kvy6mrp+IlqWx24L/8L26jtQ3dpz0uztfP51xXcM1Zdp09UdXmFDr77iSRp86NTFfv6VPXd942qKypkrbYq8+GJKvh2Q63njL73zyrZslPH0n6o83V9f76fseTZLwVgyTsqn8iaJIrzuR9C00B82TQRX7o2h2eM79+/X/fdd99Z69Q2fWl1FdPTStLa74/p6zVHtXvfCa3fWKjHp25WYICn+vRmigw4xuFlq5X78VKVZGbpyIpvte6WB+UVYlLL2/qr/MgxfX/no4pIvE43Fv6gfkc3yDPEpKLvf5Kq7ae/2vWvWfr2sj9p7Y33ylpVrR6zn2+kK4I7Onxws3767l1dc1uKDIbaA43Na95ThaVUPa59sIFbB3fg4+Mjk8lkt52tY9zb21vt27dXXFycUlJSdPHFF+vll19WVFSUysvLVVhYaFc/Ly9PUVE1U2ZFRUUpLy/vjPJTZTi33xtfVlirz3qMO2pzb5IOL10ty6F8SVLEzX3U7Np4bRn77HkdH9i1g+I+nqEdU1N15Ivv6rOpAAAAjeb3xpdVledefsld/bD1pNI2lmpfTrk2bTupZ97Ilb+fh664JFCS9EVaiTZtO6nsQxX6JuO4Xn0vX70uDlBkOHlZ+H0MRoOKf9isrCenq3jjVu1/+0Nlz/pQbR+801bnguQhCrm8h9YPfFjf9krS1sefU7dXnlJ4H/MZ5zP6+qjlnTefNVscAOD+HN4xXlBQoLlz5561Tm3Tl+7f/p6jm+IWjp+o0v6ck2rVwrfW8prMb/tRQqEh3rYRSkd/HnkUGmxfpybT3H7EEZqmyqISle7YK/+LoiVJR774Tl93vkErWl6hFVHx2nTP4/JpGWm3fo8kVRw9ptIde3Vk5Rr9MHiMIm66ViE/T4v+a5bcI/Lw8ZZncJDdfu+IcFnyDtvqeEfaDwA5NQrzVB00Hbl7Nuhk6VF98Hwfvf1/3fT2/3XT8cIcrV0yTR88f70kKWf3WuVnb9S/n7xYb/9fN/3nhQRJ0sLU2/T1h0/Uel6/oGaqrqqQ5aR9luLJ40dsU6f7BTXTyeP2o4JP/PyzXxCDlOqT1WBosO2Pqq6ulsViUVxcnLy8vLRy5elM3KysLGVnZ8tsrrkRN5vNyszMVH5+vq3OihUrZDKZFBMT84fb0hT83vjyw+qCsx7jbvyiW6rZ9Vdo/79PP+hpdl28/C+KVr8j69X/5Gb1P1mzrn3ch68q/ot37I4P7HKR4pfN0f63/6OdKTPP+lqWvCPyiQiz22fw8JBXWLAsuYd/UedXf9t//rkslxk4mpqi4gpVVlltM1udEhbipaPHah8kXVBYrtAz7nW8bDNmFfx8XOivZsKquR9i4DXOxPewaXKV+BIN6/fGl1kbXm+gFjq/EyerdehwuaKa1d7xvWNfzSCCqOa1z1h57OdM8F9nfgcHediyyAuLqxT8q3KjUQr0N56RaQ73U3bosEq27rLbd3zbbvm1aSmppqO709NjtHVcivI/+0olmVnaN+N95SxYogvHDj/jfC2SbpSHv68OvvfJ2V/35/sZn0j72QR9IsNts1uez/0Qmgbiy6bJlZ5h4ky/ecjep59+etby3bt3n/MctU1fetPdtU9v0tT5+RrVKspXy1fV/gtvc1aJLu0eogWLc2z7Lrs4RJu313T6HMqz6GhBueK6h2jn3lJJkr+fh7p0CNInSw/V/wXA6XkE+Mv/wjayvG8ftFUcrVnDJPzaePlEhCtv8Zd1n8RYM8bG6F37VC5F3/+k6vJyNetjVu7C5ZKkgI7t5N+2lY6lb5QkHUvfqPYTHpZ38zCVH67pyGjW9wpVFJXo+BbWdW5qOlxyq9064JL0+ewH1OGSW9UxbpAk6Ypb/q6eNzxiKz9RfFifz75f19/1opq3qX09p+atusro4aWcXelq162fJKnw8B4dLzykiOgekqTI6B7a+NUbOnn8qG1K9YM718jLJ1ChEax33xRNmDBB/fv3V3R0tEpKSjRv3jx9/fXXWrZsmYKDgzV8+HCNHTtWYWFhMplMGjVqlMxms+Lj4yVJ/fr1U0xMjIYMGaJp06YpNzdXEydOVHJy8lmz1JuS+oovvwyL+0PtcjWthw2SJf+o8pd8bdu3a9qbyv73Art612xcrC2PpShv8Ve2fYEx7RW/fK4OvPuJsia9dM7XKkz/QV6hwTJd2lXF39d0todfFy+D0ajCdT9Kqvnb3mnKaBk8PWWtrJRU87f9+LbdqmQa9SanstKq7TtLFNc9VN+k1ww4MxikuItD9d/Pal8O5adtxep5cagWfHq6/LIeofppW833JyevTEcKLOp5cah27jl9rxPT0aRPluTUek40bXwPgaajvuLLYRPOvYRXU+HrbVBkuJcKi4/XWn5Bq5pnRIXFtXdg5x+tmXY9tqOf9h6see7p52NQh7Y+Wv5tze/YrL1lCvT30IWtvbX7QE2d2A5+MhikHXubbvZ+U3FszfcK7NjObl9Ahwt0Mrvm/6HRy1NGb29ZfzXLpbWqSgbjmZ1Jbe5NUt6iL1V+5NgZZb90cs8BlR3KV/h1ZhVv2iZJ8gwKUMjlF2vfGx9IOr/7ITQNxJeA6/nNHeMDBw6UwWCQ1Wqts05d096e4uPjc8aDYKMHayNI0l+HXaDvNhQoL9+iZmHeuvfOaFVXS198U9Np+fdHOupIgUVvvrdPkvTR4hy98nSs7ri1ldIyCnT9lc3V6aJA/XPm6Y7EBYsPauhtbXTg0EkdyivT8L+01dGCcn279mitbYB76/L848pb/JVOZufIt2WEOkwaJWtVtXLmL5ZU81D9+LZdKj9coND4SxTz4t+15+U5Kt2+R5IUcnl3BfeM1bHvMlRxrFj+F0ar4z8eVenOfSpMr1mfx6dlhOKXzdXG+x5X0fpMVRYf1/7ZH6vLP59QRUGRKkqOq9tLE3Us7XsVrt0kSTq84luVbN2pHnOmaeuEf8onsrk6/WO09s18X9XlzG7gjiospSo+mm37ueTYAR3N2Sof/2AFhrSUb0CoXX2j0VN+gc0U0rzmpigwpKVduZdPgCTJFNZGgcE101OXFuXps1n36trbnlNEm+7y9g1Sp56DlP7Zc/LxC5aXb6DWfPq0IqJ7KPLnjvFWHXorJOIiffXhePXq/5hOlBzRhuUvq6v5L/Lw5G9VfbJanXMUZH5+voYOHapDhw4pODhY3bt317Jly3TDDTdIkqZPny6j0aikpCRZLBYlJCRoxowZtuM9PDy0ePFijRgxQmazWQEBARo2bJimTJnSWJfkdOorvvQyOHxyJOdlMKj1sEE68O4nsladfvhoyTtiy2r4pZPZOTr58/rfgV07KH75XB1e8a32vDTbNmOLtarK9tAo+LJY9fj3NKUnDJMlJ1/Ht+1W/tLV6v76VGUmPyWjl5e6vvykcv7zmW0a95wPFqnDxGR1f+sZ7frnWwrq2kEXjBqqLY+l1Pe7ASc1/5MD+r8xnbVtZ4m2bi/R7QNayc/XqM++yJUkTRzTSYePluuNd2rizgWfHtRrKRfrzoGttWbDUfW9KkKd2wdp2mvbbedc8OlBDbsjWvtzau517r/7Ah0tsOibdGYlQO34HjY9zhpjon7VV3zp4dl0/18PHRCmDT+d0OFjlQozeej2m0JVbZW+zTiuyHBPXRUXqO+3nFDJiWq1bemte/4Urs07T2pfzulkn5f/3lrvLy7Quh9PSJI+W1WkpH4hOnS4QvlHK3TnTWE6VlSldZk15QfzKvTDlhN6+M7mevPDI/LwkIb/OVzf/VCqY3V0uMN97Hllrq5Y/YEuGv+QDn30uUIu667o+29X5ohJkqTKklIdXbVWXZ4bp6qTZTqZnaPwqy9T67sHasu45+zO5X9RtMKuukzrb6l9Ob5rMj/Xton/Ut7/vvj5td9Rh7+PUOnOfTq594A6Tn5Ulpx8W/n53A+h6SC+bHqIL13bb+4Yb9GihWbMmKEBAwbUWr5x40bFxTWt7BxHah7uo6fGdpIpyEuFRRXK3Fqsh5/YpKLimiybyOY+dkH9T1klmjI9S/f/pa0euLutDhw6qf97bqv2ZJ+w1Zm38KB8fT302Ij2CgzwVObWYj029SeVV9R9cwD35dsqSpe896K8wkNUfrhAx77L0Jorb7c9+A7o2E6dnh4r77Bgndh7UDufe117XppjO77qRJmiBvZTx0mj5BHgL8uhwzq8/Bt9/+wMWwe20ctLgZ0vlIefn+24LX97Vl2qq3Xph6/I6OOtI8u/1U+j/nG6YdXV2jDgYXV7bbJ6f/MfVZae1MF3F2r75Fca5H1Bwzt8cLM+e2uY7ef0z2rWqe9w6UBde5tjOk2qqytVdHiPKivKbPviEyfIYDDqi/cfVVVluVp37K3eAybZyo1GDyUMm6nvPvmH/jfzLnl5+6nDpQMV13eUQ9oE1zNr1qyzlvv6+io1NVWpqal11mnbtq2WLFni6Ka5DeLLP67Z9VfIv20rHZjz8W8+tsWgBPlEhKv14AFqPfj0Z3Bi7wF91aFm+QoPPz8Fdr5QRq/TU7ltHPqYur78pOKXzZW1ulq5C5dr8+inbeWVxce17qbh6vbKJF259r8qP3JMO56eof1vf/gHrhSu7MtvDysk2Ev3D75AYaHe2rn7uP72VKaO/bzEU2RzX/0y4eenbcX6xwtb9cDd7fTg0HY6kHNSE57ZbHev8/7H++Xr66HHR3asudfZUqS/PZXJvQ7qxPcQaBqILx0vPMRTo4dFKCjAQ8XHq7Rtd5n+/uJBFZdWy8vLoNhOfkq8Nlg+3gYdLaxS+qZSfbzMPjO3VaS3/H1PD179ZGWRfLyNeuiOZgrwM2rb7jI9/XquKipP//58+d18Df9zMz2V3ELVVmntplL9+2M6hpqCog2ZyvjzSHV6Zqw6TEzWyT0HtOVvzyrng0W2Oj8MHqtOz4zVJe+8IK+wYJ3cl6OsSdOV/XNm9ylt7klS2YFcHV7xba2vFdj5Qnn9YgnI3S+8Jc8AP8XOnCKvEJOOfZehdTffr2rL6YEe57ofQtNBfAm4FoP1bEMna3HrrbeqR48edWY5bdq0SZdccomqq6t/U0Ou/lPtf5SAhjJ+8ZlrzwANbet/tjZ2EwA9Nqhxsmx37NrXYK/V4aK2DfZaOLf6ii8/8+rkiOYBf0jKjW82dhMAoNF9u+iaRnvthooxiS+dS33Fl39+9NxTsAP17d4Z/Ru7CQD3OXAKjRVj8gzTtf3mjPFx48aptLS0zvL27dvrq6++qrMcAAAA+CXiSwAAADgS8SUAAABq85s7xq+66qqzlgcEBOiaaxpvJDAAAABcC/ElAAAAHIn4EgAAALX5zR3jAAAA9cEqQ2M3AQAAAG6GGBMAAACORHzp2hpnEVEAAAAAAAAAAAAAABoIGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApWK2MtgQAAIBjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcAqszwMAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BQYbQkAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BQYbQkAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BSsVkZbAgAAwLGIMQEAAOBIxJeujYxxAAAAAAAAAAAAAIBbI2McAAA4hWrW5wEAAICDEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bHOAAAAAAAAAAAAADArTGVOgAAcApWpiECAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxzgAAHAKVquhwTYAAAA0DcSXAAAAcCRnfYY5c+ZMde/eXSaTSSaTSWazWZ9//rmtvKysTMnJyQoPD1dgYKCSkpKUl5dnd47s7GwlJibK399fERERGjdunCorKx3yvjkLOsYBAAAAAAAAAAAAwEW1bt1azz33nDIyMrRhwwb16dNHAwYM0ObNmyVJY8aM0aJFi7RgwQKtWrVKOTk5GjRokO34qqoqJSYmqry8XGvWrNHcuXM1Z84cTZo0qbEuqV6wxjgAAHAKrM8DAAAARyPGBAAAgCM5a3x5yy232P38zDPPaObMmUpPT1fr1q01a9YszZs3T3369JEkzZ49W126dFF6erri4+O1fPlybdmyRV988YUiIyPVo0cPTZ06VePHj9fkyZPl7e3dGJflcGSMAwAAAAAAAAAAAIATsVgsKi4uttssFss5j6uqqtL8+fNVWloqs9msjIwMVVRUqG/fvrY6nTt3VnR0tNLS0iRJaWlpio2NVWRkpK1OQkKCiouLbVnn7oCOcQAA4BScdX0eAAAAuC7iSwAAADhSQz7DTElJUXBwsN2WkpJSZ9syMzMVGBgoHx8fPfzww1q4cKFiYmKUm5srb29vhYSE2NWPjIxUbm6uJCk3N9euU/xU+akyd8FU6gAAAAAAAAAAAADgRCZMmKCxY8fa7fPx8amzfqdOnbRx40YVFRXpo48+0rBhw7Rq1ar6bqZLoWMcAAA4BWddnwcAAACuixgTAAAAjtSQ8aWPj89ZO8J/zdvbW+3bt5ckxcXFaf369Xr55Zd1xx13qLy8XIWFhXZZ43l5eYqKipIkRUVFad26dXbny8vLs5W5C6ZSBwAAAAAAAAAAAAA3Ul1dLYvFori4OHl5eWnlypW2sqysLGVnZ8tsNkuSzGazMjMzlZ+fb6uzYsUKmUwmxcTENHjb6wsZ4wAAwCmwNiMAAAAcjRgTAAAAjuSs8eWECRPUv39/RUdHq6SkRPPmzdPXX3+tZcuWKTg4WMOHD9fYsWMVFhYmk8mkUaNGyWw2Kz4+XpLUr18/xcTEaMiQIZo2bZpyc3M1ceJEJScn/6asdWdHxzgAAAAAAAAAAAAAuKj8/HwNHTpUhw4dUnBwsLp3765ly5bphhtukCRNnz5dRqNRSUlJslgsSkhI0IwZM2zHe3h4aPHixRoxYoTMZrMCAgI0bNgwTZkypbEuqV7QMQ4AAJxCdWM3AAAAAG6HGBMAAACO5Kzx5axZs85a7uvrq9TUVKWmptZZp23btlqyZImjm+ZUWGMcAAAAAAAAAAAAAODWyBgHAABOwVnX5wEAAIDrIsYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BSsYrQlAAAAHIsYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTYH0eAAAAOBoxJgAAAByJ+NK1kTEOAAAAAAAANJCZM2eqe/fuMplMMplMMpvN+vzzz23lZWVlSk5OVnh4uAIDA5WUlKS8vDy7c2RnZysxMVH+/v6KiIjQuHHjVFlZ2dCXAgAAALgUMsYBAIBTYH0eAAAAOJozxpitW7fWc889pw4dOshqtWru3LkaMGCAfvjhB3Xt2lVjxozRZ599pgULFig4OFgjR47UoEGD9N1330mSqqqqlJiYqKioKK1Zs0aHDh3S0KFD5eXlpWeffbaRrw4AAMC9OWN8ifNHxzgAAAAAAADQQG655Ra7n5955hnNnDlT6enpat26tWbNmqV58+apT58+kqTZs2erS5cuSk9PV3x8vJYvX64tW7boiy++UGRkpHr06KGpU6dq/Pjxmjx5sry9vRvjsgAAAACnx1TqAAAAAAAAQCOoqqrS/PnzVVpaKrPZrIyMDFVUVKhv3762Op07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+YGvwYAAADAVZAxDgAAnEK1tbFbAAAAAHfTUDGmxWKRxWKx2+fj4yMfH59a62dmZspsNqusrEyBgYFauHChYmJitHHjRnl7eyskJMSufmRkpHJzcyVJubm5dp3ip8pPlQEAAKD+8AzTtZExDgAAAAAAAPwBKSkpCg4OtttSUlLqrN+pUydt3LhRa9eu1YgRIzRs2DBt2bKlAVsMAAAAND1kjAMAAKdglaGxmwAAAAA301Ax5oQJEzR27Fi7fXVli0uSt7e32rdvL0mKi4vT+vXr9fLLL+uOO+5QeXm5CgsL7bLG8/LyFBUVJUmKiorSunXr7M6Xl5dnKwMAAED94RmmayNjHAAAAAAAAPgDfHx8ZDKZ7LazdYz/WnV1tSwWi+Li4uTl5aWVK1fayrKyspSdnS2z2SxJMpvNyszMVH5+vq3OihUrZDKZFBMT47iLAgAAANwMGeMAAMApWK2MtgQAAIBjOWOMOWHCBPXv31/R0dEqKSnRvHnz9PXXX2vZsmUKDg7W8OHDNXbsWIWFhclkMmnUqFEym82Kj4+XJPXr108xMTEaMmSIpk2bptzcXE2cOFHJycm/qTMeAAAAv50zxpc4f3SMAwAAAAAAAA0kPz9fQ4cO1aFDhxQcHKzu3btr2bJluuGGGyRJ06dPl9FoVFJSkiwWixISEjRjxgzb8R4eHlq8eLFGjBghs9msgIAADRs2TFOmTGmsSwIAAABcAh3jAADAKVitjd0CAAAAuBtnjDFnzZp11nJfX1+lpqYqNTW1zjpt27bVkiVLHN00AAAAnIMzxpc4f6wxDgAAAAAAAAAAAABwa2SMAwAAp1At1ucBAACAYxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxjgAAHAKViujLQEAAOBYxJgAAABwJOJL10bGOAAAAAAAAAAAAADArZExDgAAnILV2tgtAAAAgLshxgQAAIAjEV+6NjLGAQAAAAAAAAAAAABujYxxAADgFKxifR4AAAA4FjEmAAAAHIn40rWRMQ4AAAAAAAAAAAAAcGtkjAMAAKdQzfo8AAAAcDBiTAAAADgS8aVrI2McAAAAAAAAAAAAAODWyBgHAABOwWplfR4AAAA4FjEmAAAAHIn40rWRMQ4AAAAAAAAAAAAAcGtkjAMAAKdgZX0eAAAAOBgxJgAAAByJ+NK1kTEOAAAAAAAAAAAAAHBrdIwDAAAAAAAAAAAAANwaU6kDAACnUC1DYzcBAAAAboYYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTsFobuwUAAABwN8SYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyC1cr6PAAAAHAsYkwAAAA4EvGlayNjHAAAAAAAAAAAAADg1sgYBwAATqGa9XkAAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyCldGWAAAAcDBiTAAAADgS8aVrI2McAADgLFJSUnTZZZcpKChIERERGjhwoLKysuzqlJWVKTk5WeHh4QoMDFRSUpLy8vLs6mRnZysxMVH+/v6KiIjQuHHjVFlZ2ZCXAgAAAAAAAABNFh3jAADAKVhlaLDtt1i1apWSk5OVnp6uFStWqKKiQv369VNpaamtzpgxY7Ro0SItWLBAq1atUk5OjgYNGmQrr6qqUmJiosrLy7VmzRrNnTtXc+bM0aRJkxz2/gEAAOBMzhhfAgAAwHU56zNMnB+mUgcAADiLpUuX2v08Z84cRUREKCMjQ1dffbWKioo0a9YszZs3T3369JEkzZ49W126dFF6erri4+O1fPlybdmyRV988YUiIyPVo0cPTZ06VePHj9fkyZPl7e3dGJcGAAAAAAAAAE0GGeMAAMApVFsbbvsjioqKJElhYWGSpIyMDFVUVKhv3762Op07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+Y/1iAAAADUyRXiSwAAALgOV3mGidqRMQ4AAJoci8Uii8Vit8/Hx0c+Pj5nPa66ulqjR49W79691a1bN0lSbm6uvL29FRISYlc3MjJSubm5tjq/7BQ/VX6qDAAAAAAAAABQv8gYBwAATsFqbbgtJSVFwcHBdltKSso525icnKyffvpJ8+fPb4B3BAAAAH9UQ8WXAAAAaBoa8hkmHI+McQAA0ORMmDBBY8eOtdt3rmzxkSNHavHixVq9erVat25t2x8VFaXy8nIVFhbaZY3n5eUpKirKVmfdunV258vLy7OVAQAAAAAAAADql9N0jFdXVjV2E9DEbXpvS2M3AdDwLj80dhMASXGN8qoNOQryfKZNP8VqtWrUqFFauHChvv76a7Vr186uPC4uTl5eXlq5cqWSkpIkSVlZWcrOzpbZbJYkmc1mPfPMM8rPz1dERIQkacWKFTKZTIqJiXHgleGXrvnmn43dBEApzzR2CwCgaSPTBo5UVcXzSzS+q9JfaewmAEqZ3NgtABoP8aVrc5qOcQAAAGeUnJysefPm6X//+5+CgoJsa4IHBwfLz89PwcHBGj58uMaOHauwsDCZTCaNGjVKZrNZ8fHxkqR+/fopJiZGQ4YM0bRp05Sbm6uJEycqOTn5vDvoAQAAAAAAAAC/Hx3jAADAKVRbDY3dhFrNnDlTknTttdfa7Z89e7buueceSdL06dNlNBqVlJQki8WihIQEzZgxw1bXw8NDixcv1ogRI2Q2mxUQEKBhw4ZpypQpDXUZAAAATZKzxpgAAABwTcSXro2OcQAAgLOwnsf8SL6+vkpNTVVqamqdddq2baslS5Y4smkAAAAAAAAAgPNkbOwGAAAAAAAAAAAAAABQn8gYBwAATuE8ErMBAACA34QYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTYLQlAAAAHI0YEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTqGa0JQAAAByMGBMAAACORHzp2sgYBwAAAAAAAAAAAAC4NTLGAQCAU7BaDY3dBAAAALgZYkwAAAA4EvGlayNjHAAAAAAAAAAAAADg1sgYBwAATsHK+jwAAABwMGJMAAAAOBLxpWsjYxwAAAAAAAAAAAAA4NbIGAcAAE6hmtGWAAAAcDBiTAAAADgS8aVrI2McAAAAAAAAAAAAAODWyBgHAABOgfV5AAAA4GjEmAAAAHAk4kvXRsY4AAAAAAAAAAAAALiolJQUXXbZZQoKClJERIQGDhyorKwsuzplZWVKTk5WeHi4AgMDlZSUpLy8PLs62dnZSkxMlL+/vyIiIjRu3DhVVlY25KXUKzrGAQCAU7BaG24DAABA00B8CQAAAEdy1meYq1atUnJystLT07VixQpVVFSoX79+Ki0ttdUZM2aMFi1apAULFmjVqlXKycnRoEGDbOVVVVVKTExUeXm51qxZo7lz52rOnDmaNGmSo96+RsdU6gAAAAAAAAAAAADgopYuXWr385w5cxQREaGMjAxdffXVKioq0qxZszRv3jz16dNHkjR79mx16dJF6enpio+P1/Lly7VlyxZ98cUXioyMVI8ePTR16lSNHz9ekydPlre3d2NcmkORMQ4AAJxCtbXhNgAAADQNxJcAAABwpIZ8hmmxWFRcXGy3WSyW82pnUVGRJCksLEySlJGRoYqKCvXt29dWp3PnzoqOjlZaWpokKS0tTbGxsYqMjLTVSUhIUHFxsTZv3uyot7BR0TEOAAAAAAAAAAAAAE4kJSVFwcHBdltKSso5j6uurtbo0aPVu3dvdevWTZKUm5srb29vhYSE2NWNjIxUbm6urc4vO8VPlZ8qcwdMpQ4AAJwCazMCAADA0YgxAQAA4EgNGV9OmDBBY8eOtdvn4+NzzuOSk5P1008/6dtvv62vprksOsYBAAAAAAAAAAAAwIn4+PicV0f4L40cOVKLFy/W6tWr1bp1a9v+qKgolZeXq7Cw0C5rPC8vT1FRUbY669atsztfXl6ercwdMJU6AABwCtXVDbcBAACgaSC+BAAAgCM56zNMq9WqkSNHauHChfryyy/Vrl07u/K4uDh5eXlp5cqVtn1ZWVnKzs6W2WyWJJnNZmVmZio/P99WZ8WKFTKZTIqJifn9b5oTIWMcAAAAAAAAAAAAAFxUcnKy5s2bp//9738KCgqyrQkeHBwsPz8/BQcHa/jw4Ro7dqzCwsJkMpk0atQomc1mxcfHS5L69eunmJgYDRkyRNOmTVNubq4mTpyo5OTk35y57qzoGAcAAAAAAAAAAAAAFzVz5kxJ0rXXXmu3f/bs2brnnnskSdOnT5fRaFRSUpIsFosSEhI0Y8YMW10PDw8tXrxYI0aMkNlsVkBAgIYNG6YpU6Y01GXUOzrGAQCAU7BaG7sFAAAAcDfEmAAAAHAkZ40vrefRMF9fX6Wmpio1NbXOOm3bttWSJUsc2TSnwhrjAAAAAAAAQANJSUnRZZddpqCgIEVERGjgwIHKysqyq1NWVqbk5GSFh4crMDBQSUlJysvLs6uTnZ2txMRE+fv7KyIiQuPGjVNlZWVDXgoAAADgUugYBwAATsFqbbgNAAAATYMzxperVq1ScnKy0tPTtWLFClVUVKhfv34qLS211RkzZowWLVqkBQsWaNWqVcrJydGgQYNs5VVVVUpMTFR5ebnWrFmjuXPnas6cOZo0aZKj3joAAADUgmeYro2p1AEAAAAAAIAGsnTpUruf58yZo4iICGVkZOjqq69WUVGRZs2apXnz5qlPnz6SataG7NKli9LT0xUfH6/ly5dry5Yt+uKLLxQZGakePXpo6tSpGj9+vCZPnixvb+/GuDQAAADAqZExDgAAnEK1teE2AAAANA2uEF8WFRVJksLCwiRJGRkZqqioUN++fW11OnfurOjoaKWlpUmS0tLSFBsbq8jISFudhIQEFRcXa/PmzX+sQQAAAKgTzzBdGxnjAAAAAAAAwB9gsVhksVjs9vn4+MjHx+esx1VXV2v06NHq3bu3unXrJknKzc2Vt7e3QkJC7OpGRkYqNzfXVueXneKnyk+VAQAAADgTGeMAAMApWK3WBtsAAADQNDRUfJmSkqLg4GC7LSUl5ZztS05O1k8//aT58+c3wLsBAACAP4pnmK6NjHEAAAAAAADgD5gwYYLGjh1rt+9c2eIjR47U4sWLtXr1arVu3dq2PyoqSuXl5SosLLTLGs/Ly1NUVJStzrp16+zOl5eXZysDAAAAcCYyxgEAgFOwWhtuAwAAQNPQUPGlj4+PTCaT3VZXx7jVatXIkSO1cOFCffnll2rXrp1deVxcnLy8vLRy5UrbvqysLGVnZ8tsNkuSzGazMjMzlZ+fb6uzYsUKmUwmxcTE1MM7CQAAAIlnmK6OjHEAAAAAAACggSQnJ2vevHn63//+p6CgINua4MHBwfLz81NwcLCGDx+usWPHKiwsTCaTSaNGjZLZbFZ8fLwkqV+/foqJidGQIUM0bdo05ebmauLEiUpOTj5npjoAAADQVNExDgAAnEJ1dWO3AAAAAO7GGWPMmTNnSpKuvfZau/2zZ8/WPffcI0maPn26jEajkpKSZLFYlJCQoBkzZtjqenh4aPHixRoxYoTMZrMCAgI0bNgwTZkypaEuAwAAoElyxvgS54+OcQAAAAAAAKCBWM9jXkxfX1+lpqYqNTW1zjpt27bVkiVLHNk0AAAAwK3RMQ4AAJwC6+YAAADA0YgxAQAA4EjEl67N2NgNAAAAAAAAAAAAAACgPpExDgAAnEI1oy0BAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwC6/MAAADA0YgxAQAA4EjEl66NjHEAAAAAAAAAAAAAgFsjYxwAADgFa4Mu0GNowNcCAABAY2m4GJP4EgAAoCngGaZrI2McAAAAAAAAAAAAAODWyBgHAABOoUEHWwIAAKBJIMYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2OcQAAAAAAAAAAAACAW2MqdQAA4BSsTEMEAAAAByPGBAAAgCMRX7o2MsYBAAAAAAAAAAAAAG6NjHEAAOAUqqsZbgkAAADHIsYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BRYnwcAAACORowJAAAARyK+dG1kjAMAAAAAAAAAAAAA3BoZ4wAAwCkw2hIAAACORowJAAAARyK+dG1kjAMAAAAAAAAAAAAA3BoZ4wAAwClUM9wSAAAADkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApWKsbuwUAAABwN8SYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyClfV5AAAA4GDEmAAAAHAk4kvXRsY4AAAAAAAAAAAAAMCtkTEOAACcQjXr8wAAAMDBiDEBAADgSMSXro2McQAAAAAAAAAAAACAWyNjHAAAOAXW5wEAAICjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcArVDLYEAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxzgAAAAAAAAAAAAAwK0xlToAAHAKVuYhAgAAgIMRYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwClYGWwIAAMDBiDEBAADgSMSXro2McQAAAAAAAAAAAACAWyNjHAAAOIVq1ucBAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxjgAAHAKVhboAQAAgIMRYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwCtbqxm4BAAAA3A0xJgAAAByJ+NK1kTEOAAAAAAAAAAAAAHBrZIwDAACnUM36PAAAAHAwYkwAAAA4EvGla6Nj3EkNuqml7hrURmGh3tq157imv7FTW3eU1Fn/ut7NdP/d7RQV4asDOSc0c84epWcU2NUZPvgC3dIvSkEBnsrcWqwXZuzQgUMn6/tS4ITaNJfiOxkVFSYF+Rn00bdV2n7wdPlVXQ2KiTYoyF+qqpZyC6RVmdXK+cVX6q83GxUSYLA771ebqpW2re4/Ch5GqW8Pg7pEG+RplHbnSssyqlVqOV3H5C/dGGdU2wipvFLK3GvVVz9axd8a9/LJ5yv0ydIvlJt/RJLULrqVht0+SPFxPVRcclz//uAjrd+YqbwjRxRiMumqXj01/C+3KTDAX5K0c88+vf/fT/XjliwVlZQoKqK5BiRcr9tu6X/W1y0uOa6X3pqjNet/kNFg0NXmy/XI/UPl7+drq7Nrb7amvzFb23buVrApSEmJCfrLoFvq782A01u9erX++c9/KiMjQ4cOHdLChQs1cOBAW7nVatVTTz2lt956S4WFherdu7dmzpypDh062OoUFBRo1KhRWrRokYxGo5KSkvTyyy8rMDCwEa4I7m724i/12oLPdVe/K/XY4AGSpAdTZipj2267eknXxevv9yRJkj79Zr3+8faHtZ5vxatPKcxU+3e16PgJTXvvE33zwxYZjAZd3zNWjw0eIH9fH1udHdk5eu7dT7Rlz36FBgXojr69NSzxOkdcKlwQ9zlwBnwPAeCPGXRDqIYMaKZFXx3Tvz+uua+PaualYX9qpi4X+srL06Aftp7QWwsOq6ik6qzn6n91sAZeH6oQk4f2HizX2wvytWPf6QdFXp4G3Tuoma6MC5Knp0Ebt57QG//JP+d54X7mfLpCqfMX6c4br9Hfhtbcx1jKK/TS+wu1Iu17lVdUKr57F42/7zaFB5tsx23etU+vzV+kbXv2yyCp60VtNeovA9Sxbas6X+t8zpt7pEDP/ftDbdiyQ/6+Pkq86nIl33mLPD086u09gPMivgRcB1OpO6E+VzbXyPsv0uwP9mr46Azt3HNcL06JVUiwV631u3U26alxMVq8/JDuezRD36QfVcr/dVW7aH9bncFJbfTnm1vphRk79OBjP+hkWZVenBIrby9DreeEe/PykPILrVqWUftiGEdLpGXfV+vtpdV6d2W1ik5Ydec1Rvn72NdblVmtl/9XZds27Dh77/UNlxjUvqVBC9dU672vqhXoJw268vSvIYNBuv0qozyM0tyV1Vq0tlrdLzDo6m58T91N8/AwPTTkTr31r6f11gtP69LYrvp7yr+0J/uAjhQc05GCY/rrPX/R3JenacIjD2vtD5v0/Gtv2o7P2rVHIcEmPTkmWe+8Mk1D/zxQb777H3382bKzvu7U6anam31QL/5jgp6b+Jg2bdmqF2a8bSsvPXFCf5ucosiIZnrrX8/or/f8RbPnf6xPl62st/cCp1mt1gbbfovS0lJdfPHFSk1NrbV82rRpeuWVV/T6669r7dq1CggIUEJCgsrKymx1Bg8erM2bN2vFihVavHixVq9erQcffPAPvV9AbTbv3q//fpWuDm1anFH2p2t6adnLT9q2R+5ItJX169XDrmzZy0/KHNtRcZ0vrLNTXJImvj5Puw/mKvXxB/XSmPv0fdYePT37I1v58ZNlSn7hLbUID9F7kx/Vo3fcrDc+WaH/fpXu2AuHS+A+B86A72HT44zxJeDK2kf7qF/vYO05cLrz2sfboKeSW0pWadKrBzVh+gF5ehj0fw+1lOEsvwp7Xxqoe//UTP/5vEB/e36/9h60aFJyKwUHnu5YvC+pmXp2C9A/Zx3SxJcOKCzYQ+PvPzPWhXvbvGufFq78Th2iW9rtn/7uf/XN95uV8uh9euPJR3TkWJEenz7LVn6izKJHn5+pqPBQzZ4yVm9NHi1/Px+Nem6GKivrHlxxrvNWVVdr9D/fUEVllWZNHqOnHr5bi1ev1RsLljj+4uH0iC+bHmd9honzQ8e4E7pzYGstWnZIS1bmae/+E/rnjB0qs1Tr5huiaq1/262ttPb7An2w8ID2HTiht9/fq+27jivp5lZ2dd75cJ++XXtUu/aW6unp2xQe5qOr4ps11GXBiezOlVb9ZLXLEv+lLdlW7c2TCkulI8XSFz9Y5ettUESwfb3ySqm07PRWcZbBuj5e0sXtDFq5sVr78qXcY9Jn66rVpplBLcNr6rSLlJqZpE/Tq5VfeLqdce0NMvLbyq30vjxO5p6XqE3LFmrTqoUeuPsO+fn6anPWDl3Yto2efmKMel8ep1YtIhXXvaseGHy71qz/XpVVNV+yxL7X6tH7h6lHty5qGRWpftdeqf7XX6PV6evrfM29+w9q7feb9PjIBxTTsb26x3TW6Afu0cpv03Sk4JgkacWq71RRWaknRj6kdtGtdf1VVyjp5gR9+Ck3Nk1Z//799fTTT+tPf/rTGWVWq1UvvfSSJk6cqAEDBqh79+565513lJOTo08++USStHXrVi1dulRvv/22evXqpSuvvFKvvvqq5s+fr5ycnAa+GrizE2UWTXx9nibe92eZAvzOKPf18VKzEJNtC/zFbBm+3vZlHkaj1m/ZpQFXX17n6+3JydOazCw9ed9tir0oWpd0bKfH7x6g5Ws36fCxIknS52u+V0VllZ66/3Zd1DpKCfE9dOcNV+q9Zasd/wbA6XGfA2fA9xAAfj9fb4PG3BOlGR/kqfTk6YdAnS/0U/NwL73yXp6yc8qVnVOuV97N00XRPorteGZcesqtfUK1Yk2xvkwv1oHccr0+P1+WcquuN9dk5fr7GnW9OViz/3tEmdtPavd+i159L09dLvJTxwt86zwv3MuJMosmpb6jv99/l4ICTnccHj9xUv/7Ol1j7h6oy7p2VJcLozXpocH6cfseZe7YI0nam5OnouMn9NBtN+mClpG6qHULPTCovwqKSnToSEGtr3c+503/cZv2HMjVlOQh6nRBa/XuEaOHb0vUghXfqKKysv7fFDgV4kvAtdDV5GQ8PQ3q2D5IGzYds+2zWqUNG4+paydTrcd062zSho3H7Pat/aFA3TrX1G8Z6atmYT5a/4s6pSeqtGV7sa0OUBejUbrkIoPKyq3KK7QvM3c2aPRAo+7rZ1SvToazjgKOCpU8PAzak3d639ESqajUqlbhNQe2bmbQ4SLZTa2+O7emU745X1W3VVVVrZXfrFFZmUXdOneotU7piZPy9/c763RUpSdOyHSWaak3Z+1QYIC/Ore/0LYv7uJuMhoM2rJ9p63OxTGd5eV1eqWRyy/pruyDh1Ry/PhvvTT8RtXV1gbbHGXPnj3Kzc1V3759bfuCg4PVq1cvpaWlSZLS0tIUEhKinj172ur07dtXRqNRa9eudVhbgOfeWagrL+6iXl071lr+edoP6pP8lG7/+wt69cMlOmkpr/Nci7/LkK+Pl66/rHuddX7cuU9B/n6KadfGtu/yrh1kNBiUuStbkpS5c58u6XShvDxP/141x3bUvkOHVVx64rdeIlwY9zlwBnwPmyZXiy8BZ/bgHRHa8FOpfsyyn8rXy9MgWaWKytP/F8ora5bF63JR7R3jnh7SRW18tCnrdExotUo/Zp1Qp3Y1nd4XRfvIy9NgV+dgXoXyCypsdeD+ps1eoN6XdFWv2E52+7fu2a/Kqipd3u30/gtaRSqqWagyd+yVJLVtEaHgwAB9+lWaKiorVVZerv99naZ2rSLVonlYra93PufN3LFHF0W3tJtaPb57F5WeLNPuA4ccdOVwBcSXTZMrPsPEab95jfGTJ08qIyNDYWFhiomJsSsrKyvThx9+qKFDhzqsgU1NsMlLnh4GFRyrsNtfUFihtq39az0mLMRbxwrtH2weK6xQWIh3TXmot22ffZ1yWxnwa+1bSAPNRnl5SsdPSh+sqtbJX3zNNmy3KveYVSfLazq0r+1uUKCftHJj7b+sA3wNqqyyymL/NVRpmRToe6pOzc+/Lj9VBveya2+2/vrEUyovr5Cfr6+efmKMLmjT+ox6hcXFmvvhQt3ar0+d58rctl1ffpuu5yeOq7NOwbFChQbbT3vg6eGhoKBAFRwrlCQdPVakFpHN7eqEhQTbyoJYD9ptWCwWWSwWu30+Pj7y8fGp44ja5ebmSpIiIyPt9kdGRtrKcnNzFRERYVfu6empsLAwW52mjvjyj1uWvlHb9h3Uu089Umv5jfGXKKpZqJqHmLRj/yG9+uES7cs9rBceGVZr/f+tXqcb4y+Rr3ftU79J0tGikjOmWff08JApwE9Hi2rWUjtSVKJWv3rgFG4Ksh1vCqg9voX74T4HzoDvIdC0EGM61pVxgbqwjY/GTdt/Rtn2vWUqK6/W0AHheu/TozIYpCEDmsnDw6BQU+2Pn4MCPeThYThjrfDC4kq1iqz5nRxi8lRFRbVOnLRfCrCouEohJtZxbgqWr8nQtr37NXfqY2eUHS0slpenh10WuSSFmYJ0tKhYkhTg56vXnxylcS++rVkLa5bfaxPVXK8+8dc6ky/O57xHC0ts9zWnhAfX/HyksET2XfhwZ8SXgOv5TRnj27dvV5cuXXT11VcrNjZW11xzjQ4dOj0CqqioSPfee+85z2OxWFRcXGy3VVfVnbECoOHty5dmLa/W3JXV2pVr1Z/M9muMr9tuVfZh6XCR9MMuq1ZutKpnB4M8mIcC5ym6VUvNmp6i16dN0YD+ffXsK69r7/4DdnVKT5zQ+Kn/1AVtWuneO5NqPc/uffv192f/pXvuGKTLL6k7sxHOz2ptuC0lJUXBwcF2W0pKSmO/BU1SfcaXlvKKcx7nDnKPFuqF9/+nZx66Sz51dGQPui5eV8R2Uoc2LXTTFZfqHw/eqa8yftL+vCNn1P1x517tycnXwLNMow4AgKtoqPgSzsURMWZt8WVVE31+GR7iqeFJzTV9Tq5dVvgpxcer9M9ZubqsW4A++NdFev+fFynAz6hd2WWsj4rfLffoMf3rnf9qavLQOu9zzqWsvFxPv/mBLu54of49ZazenjxaF7VpodH/fENl5U3z/zOAP64hn2HC8X5TF9b48ePVrVs35efnKysrS0FBQerdu7eys7N/04vW9jD6wM73f9M53FVRcYUqq6wKC7X/Yx8W4qWjx2r/Y11QWK7QEPuRQqEhXir4edRRwc/HhYZ4/aqOt60M+LWKKunYcSnnqLRkvVXVVuniC+ueKz3nqFUeRoOCA2ovLy2zytPDIJ9fxbEBvtLxslN1zswMP/XzrzPJ4fq8vDzVukWUOrW/UA8NuVPtL4jWgkVLbeUnTp7UY/94Xv5+Ndnknp5njjLfu/+Axkx6Rrf266Nht5+5/vMvhYWG6FhRkd2+yqoqlZQcV1hoiCQpPDRYxwrt6xT8/HN4qH22OVzbhAkTVFRUZLdNmDDhN58nKqpmvai8vDy7/Xl5ebayqKgo5efn25VXVlaqoKDAVqcpq8/48l/vfFRPrXYuW/ceUEHxcQ1+6mVdfu94XX7veGVs2635K77T5feOV1V19RnHxF4ULUnan3/0jLJPVq1Tp+iW6tLuzFk8fik8OEgFxfbLTFRWVam49KQtW6JZcJCO/qrO0eIS2/FoOrjPgTPgewg0HY6IMWuLL7dnvF6PrXZeF0X7KMTkqX+Nj9ZHL7fXRy+3V7cO/kq8JkQfvdxeRoO0adsJjfjHPt0zYbeGPrFbL7+Tp7AQT+UdqX2wasnxKlVVWRUcZJ+1G2LyVGFxzRrNhcWV8vIyyt/P/hF2sMlDhcX2meZwP9t271dBcYmG/P2fir97tOLvHq3vt+7Uf5atVvzdoxUWHKSKyiqV/GqJpoLiEtsU58u+y9ChwwWa9NBf1PWitort0E5PjxymnMNHtXpDZq2vGx5iOud5w0OCbPc1p5yaNatZCPc5TQnxJeB6flPH+Jo1a5SSkqJmzZqpffv2WrRokRISEnTVVVdp9+7d532e2h5Gt24/+Dc33h1VVlq1fWeJ4rqH2vYZDFLcxaHanFVc6zE/bStWz4tD7fZd1iNUP22rqZ+TV6YjBRa7Ov5+HorpaLLVAc7FYJA8z/IbIzLUoOpqq07U0YGde0yqqrLqgl/MNhwWJAUHGHTwaM3QpwNHrGoeLLvM9HaRNeubH+Gr6vaqrVZVVNTc/JaeOKG/TU6Rl6enUv7vMfl4nzlN0J7sA3p04tO68bqr9cDdd5zz/F07ddDx0hPK2nn679X3P25WtdWqmI7tbXU2bdmmyspKW50NGzMV3aoF06g3AGu1tcE2Hx8fmUwmu+23TqMuSe3atVNUVJRWrlxp21dcXKy1a9fKbDZLksxmswoLC5WRkWGr8+WXX6q6ulq9evX642+ci6vP+PJvQ/9cjy13HpfHtNd/nvmb5k0dY9ti2rVWf/Mlmjd1jDyMZ/4Bz9p3UJLU/Fed0yfKLFqx7kcNOI9s8e7t26rkxElt3XN6to/1W3aq2mq1dbzHtm+rH7J2q6Ly9IPLtT/tUNsWzZlGvYnhPgfOgO9h09RQ8SWciyNizNriy45xD9dzy53Tj1kn9Ogz+zT2uWzbtmNfmVZvKNHY57L1y/8CJaU1U5/HdvRTcKCH1mWW1nrOyipp136Lunc6HRMaDFJsRz9l7al5uLQr26KKSqtdnZYRXooI87LVgfu6rFtHffD8E3ov5XHb1uXCaN3YO07vpTyumAuj5enhofWbt9uO2ZuTp9wjxxTb4QJJNRnjBqNBBsPpZB+DwSCDap5D1aZLuzbnPG9sh3balZ2jgqLTneNrM7cpwM9X7VoxAL4pIb5smhryGSYc7zd1jJ88edIuY89gMGjmzJm65ZZbdM0112j79u1nOfq02h5GGz1YG+GU+Z8c0C0JLXRjn0i1be2vx/7aQX6+Rn32Rc06pBPHdNJDQ9vZ6i/49KB6XRqqOwe2VnRrP913V1t1bh+kjxcftKsz7I5o9b48XBe2DdDEsZ11tMCib9LPnD4T7s/LU4oIqdmkms7piBDJ5C95eUjXxBrUMrzm56hQKfEyg4L8pK37a34RtwqXLutYc0xIgNS1rUF9exj00z6ryn4eCBzoJz3U36gWPy8raqmQNu2xqm8Po9pG1Jz35suNOnDEqpyfk9X25ElHiqVbexkVESK1i6ppS8ZOq6rOTHaDC3vj3fnauHmrDuUd1q692TU//7RVN1zT++dO8ed0ssyi8SMfVOmJkzp6rFBHjxWq6ucvwu59+/Xok0/rsh7ddfuAm2zlhUWng8Mt23fq7uS/6fDRAknSBW1aqdelF2vajLe1ZftOZW7N0ktvzdH1V5rVLKwm0Ox7dW95eXrq+dfe1J7sA1r5bZo+WrxMt996U8O/SXAax48f18aNG7Vx40ZJ0p49e7Rx40ZlZ2fLYDBo9OjRevrpp/Xpp58qMzNTQ4cOVcuWLTVw4EBJUpcuXXTjjTfqgQce0Lp16/Tdd99p5MiRuvPOO9WyZcvGuzAnUZ/x5e+dbs/VBPj5qn3rKLvNz8dbwYH+at86Svvzjuit/63Q1j0HlHO4QKu+36xJb87XpZ0uVIdo++/g8rWbVFVVpZuuuPSM1/lpV7YGPTFN+QU1M2m0axmpK2I7aersj/TTrmxt3L5H0979RP16XazmP8+ycaP5Enl5emjqrA+160Culq/dqA+Wf6O7E66u/zcGTof7HDgDvodA0+CIGLO2+NKjiT6/LLNYlX2o3G6zlFerpLRK2Ydqshf7xJvU8QJfRTXz0jWXBWnc8BZa9FWhcvJPZ4z/Y1Qr9b/69Gxsn355TDdcYdJ1vYLUOtJLD90RIV8fo1am19zbnyir1sq0It07qJm6dfDThW18NOruSG3bfVLb99Ix7u4C/HzVvk1Lu63mPidA7du0VKC/nwZcG6/p7y3Uhs3btXV3tqa88b5iO1yg2A41f8t7deusktITen72Au05mKtdBw5pyhvvy8PDQz1jOkiS8gsK9ee/Pa3NO/dJ0nmdN757Z7VrHaWnZryr7fsOKm3TVr2+4DPddsNV8vZqGvehOI34EnAtZ85LexadO3fWhg0b1KVLF7v9r732miTp1ltvdVzLmrAvvz2skGAv3T/4AoWFemvn7uP621OZOlZYE0hGNve1G4n507Zi/eOFrXrg7nZ6cGg7Hcg5qQnPbNae7NPTvbz/8X75+nro8ZEdFRjgqcwtRfrbU5kqr2DESVPUIlS6u8/pqapuuKRmjMyPe6r1+QarmpkM6n6BQX4+0sly6VCB9O6X1bas7cpqKSbaoKu61qwpXlRas+b4uqzT3ycPgxRuMsjrFzNirfjBKqtVGnSFUR4e0p5caWnG6R5vq1X68Jtq3Rhn1LDrjaqolH7ca9Xqn/ieuptjhcV69qWZOnqsUAEB/rqobRu98NQTuqxHrH7I3KIt23dKku4aMcbuuP+88bJaRDbX12vWqrCoWMtXfavlq761lUc1b6YP33pFkmSxlCv74CFV/iJL8ckxyXrpzTkaM+lZGY0GXWO+XI/cP8xWHhjgr39NnqDpb8zWA3/7PwWbgjTsjj/p1oTr6/PtwM/qGq3d2DZs2KDrrrvO9vPYsWMlScOGDdOcOXP0+OOPq7S0VA8++KAKCwt15ZVXaunSpfL1Pb02xPvvv6+RI0fq+uuvl9FoVFJSkl555ZUGvxZnRHxZ/7w8PbVu8059sOxbnSwvV2RYiK6/LFbDb+17Rt3/rV6n63rGKijA74yysvIK7Tt0WJVVp3+vPv3wX/T8uws1YtqbMhgMur5nrMbdPcBWHuTvp9THHtBz736iuye/rJDAAD0w8AYNui6+fi4WTo37HDgDvodNj7PGmKhfxJgNr1WEl+6+NVyB/h46XFChj5YV6NMvC+3qRDXzkinw9IOi774/LlOgh+5MDFdokIf2HCzXlNSDKio5HW/+++Mjslqlx+9vIS9PgzZuPaE3/mO/VBWarjFDBslgNGj8S/9WeWWl4rt31vh7b7eVX9AqUi8+9qDe+nip7ntquowGgzpe0FqvjH9YzX4ezFtZVaV9h/Lt1hw/13k9jEZNf+whPffvD3XfUy/Kz8dbiVf30kO3kVjRFBFfNj3El67NYLWe/yeYkpKib775RkuWLKm1/K9//atef/11VdeyjuG5XHnLqt98DOBIN919ZWM3AdDw7hsbuwmAIrvENcrrjnqp4aaDenW0qcFeC2dXn/Hl8fRP/2jzgD/sxmeCz10JANzct4uuabTXbqgYk/jSudRXjPmnkTsc0TzgD5l77/kvOQXUl5sm+567ElDPGivG5Bmma/tNU6lPmDChzoBSkmbMmPG7HloCAACgaSK+BAAAgKMRYwIAAKA2v2kqdQAAgPpirWYaIgAAADgWMSYAAAAcifjStf2mjHEAAAAAAAAAAAAAgPNYvXq1brnlFrVs2VIGg0GffPKJXbnVatWkSZPUokUL+fn5qW/fvtqxw36ZmIKCAg0ePFgmk0khISEaPny4jh8/3oBXUf/oGAcAAE7BWm1tsA0AAABNA/ElAAAAHMlZn2GWlpbq4osvVmpqaq3l06ZN0yuvvKLXX39da9euVUBAgBISElRWVmarM3jwYG3evFkrVqzQ4sWLtXr1aj344IN/6P1yNkylDgAAAAAAAAAAAAAuqn///urfv3+tZVarVS+99JImTpyoAQMGSJLeeecdRUZG6pNPPtGdd96prVu3aunSpVq/fr169uwpSXr11Vd100036YUXXlDLli0b7FrqExnjAADAKVRbG24DAABA00B8CQAAAEdqyGeYFotFxcXFdpvFYvnNbd6zZ49yc3PVt29f277g4GD16tVLaWlpkqS0tDSFhITYOsUl6f/Zu+/wKKq+jeP3bjoJSQikEEoo0kFQQIigiEQQAUVABVGKIIqgAiLKa6Eo8FgQBEGsgAqiqKAi0vWx0RGkNylSktBCSCD9vH/kycKSBBLcJLvJ93Nde11k5szsmdnZcGfO/GaioqJktVq1du3af7/jnAQD4wAAAAAAAAAAAADgRCZMmKCAgAC714QJE/K9nujoaElSaGio3fTQ0FDbvOjoaIWEhNjNd3d3V1BQkK1NccCt1AEAgFPg2YwAAABwNDImAAAAHKkw8+XIkSM1bNgwu2leXl6F9v7FERXjAAAAAAAAQCH65Zdf1KlTJ4WHh8tisWjhwoV2840xevnll1W+fHn5+PgoKipKe/futWtz+vRp9ezZU/7+/goMDFS/fv2UkJBQiFsBAACAguTl5SV/f3+717UMjIeFhUmSYmJi7KbHxMTY5oWFhSk2NtZuflpamk6fPm1rUxwwMA4AAJyCMabQXgAAACgZnDVfJiYmqmHDhpo2bVqO819//XVNmTJFM2bM0Nq1a+Xr66t27dopKSnJ1qZnz57avn27li9frkWLFumXX37RgAEDrnlfAQAA4Opc8Rxm1apVFRYWppUrV9qmxcfHa+3atYqMjJQkRUZGKi4uThs3brS1WbVqlTIyMtSsWTOH9aWocSt1AAAAAAAAoBC1b99e7du3z3GeMUaTJ0/Wiy++qHvuuUeS9Mknnyg0NFQLFy5U9+7dtXPnTi1ZskTr169XkyZNJElTp07VXXfdpTfffFPh4eGFti0AAAAoegkJCdq3b5/t5wMHDmjz5s0KCgpS5cqVNWTIEL366quqUaOGqlatqpdeeknh4eHq3LmzJKlOnTq688479eijj2rGjBlKTU3V4MGD1b1792KVLRkYBwAATiGD5z8CAADAwQorYyYnJys5OdlumpeX1zXd6vLAgQOKjo5WVFSUbVpAQICaNWum1atXq3v37lq9erUCAwNtg+KSFBUVJavVqrVr1+ree++99o0BAABArpz1HOaGDRvUunVr289Zzybv3bu3Zs2apREjRigxMVEDBgxQXFycWrZsqSVLlsjb29u2zJw5czR48GC1adNGVqtVXbt21ZQpUwp9WwoSA+MAAAAAAADAvzBhwgSNGTPGbtqoUaM0evTofK8rOjpakhQaGmo3PTQ01DYvOjpaISEhdvPd3d0VFBRkawMAAICS47bbbrvi7dctFovGjh2rsWPH5tomKChIc+fOLYjuOQ0GxgEAgFPg2d8AAABwtMLKmCNHjrRV5WS5lmpxAAAAODfOYbo2BsYBAAAAAACAf+Fab5uek7CwMElSTEyMypcvb5seExOjRo0a2drExsbaLZeWlqbTp0/blgcAAABgz1rUHQAAAJAkk2EK7QUAAICSwRXzZdWqVRUWFqaVK1fapsXHx2vt2rWKjIyUJEVGRiouLk4bN260tVm1apUyMjLUrFkzh/YHAAAAF3EO07VRMQ4AAAAAAAAUooSEBO3bt8/284EDB7R582YFBQWpcuXKGjJkiF599VXVqFFDVatW1UsvvaTw8HB17txZklSnTh3deeedevTRRzVjxgylpqZq8ODB6t69u8LDw4toqwAAAADnxsA4AABwClwFCQAAAEdz1oy5YcMGtW7d2vZz1vPJe/furVmzZmnEiBFKTEzUgAEDFBcXp5YtW2rJkiXy9va2LTNnzhwNHjxYbdq0kdVqVdeuXTVlypRC3xYAAICSxFnzJfKGgXEAAAAAAACgEN12220yJveTqhaLRWPHjtXYsWNzbRMUFKS5c+cWRPcAAACAYomBcQAA4BQyrnBiEAAAALgWZEwAAAA4EvnStVmLugMAAAAAAAAAAAAAABQkKsYBAIBT4Pk8AAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrDIwDAAAAAAAAAAAAAIo1bqUOAACcgjHchggAAACORcYEAACAI5EvXRsV4wAAAAAAAAAAAACAYo2KcQAA4BQyMrjaEgAAAI5FxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFAxXWwIAAMDByJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIIxXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKJiOjqLsAAACAYoaMCQAAAEciX7o2KsYBAAAAAAAAAAAAAMUaFeMAAMApZGTwfB4AAAA4FhkTAAAAjkS+dG1UjAMAAAAAAAAAAAAAijUqxgEAgFMwhqstAQAA4FhkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwfB8HgAAADgYGRMAAACORL50bVSMAwAAAAAAAAAAAACKNSrGAQCAU+BqSwAAADgaGRMAAACORL50bVSMAwAAAAAAAAAAAACKNSrGAQCAU8gwGUXdBQAAABQzZEwAAAA4EvnStVExDgAAAAAAAAAAAAAo1hgYBwAAAAAAAAAAAAAUa9xKHQAAOAWTYYq6CwAAAChmyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnAJXWwIAAMDRyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIIxXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKGRkZRd0FAAAAFDNkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwWTwfB4AAAA4FhkTAAAAjkS+dG1UjAMAAAAAAAAAAAAAijUqxgEAgFMwhufzAAAAwLHImAAAAHAk8qVro2IcAAAAAAAAAAAAAFCsUTEOAACcAs/nAQAAgKORMQEAAOBI5EvXRsU4AAAAAAAAAAAAAKBYo2IcAAA4Ba62BAAAgKORMQEAAOBI5EvXRsU4AAAAAAAAAAAAAKBYo2IcAAA4hQyTUdRdAAAAQDFDxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFHg+DwAAAByNjAkAAABHIl+6NirGAQAAAAAAAAAAAADFGhXjAADAKZgMns8DAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFjjVuoAAMApmAxT1F0AAABAMUPGBAAAgCORL10bFeMAAAAAAAAAAAAAgGKNinEAAOAUjMko6i4AAACgmCFjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKGTyfBwAAAA5GxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFEwGz+cBAACAY5ExAQAA4EjkS9dGxTgAAAAAAAAAAAAAoFijYhwAADgFw/N5AAAA4GBkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwRiezwMAAADHImMCAADAkciXro2KcQAAAAAAAAAAAABAscbAOAAAcAomwxTa61pMmzZNVapUkbe3t5o1a6Z169Y5eA8AAADA0ciXAAAAcCRnPodJvrw6BsYBAACu4osvvtCwYcM0atQobdq0SQ0bNlS7du0UGxtb1F0DAACACyJfAgAAwJHIl3nDwDgAAHAKJiOj0F759dZbb+nRRx9V3759VbduXc2YMUOlSpXSxx9/XAB7AgAAAI5CvgQAAIAjOes5TPJl3jAwDgAASpzk5GTFx8fbvZKTk3Nsm5KSoo0bNyoqKso2zWq1KioqSqtXry6sLgMAAMCJkS8BAADgaHnNmOTLvHMv6g5k+e37VkXdBZeWnJysCRMmaOTIkfLy8irq7qAE4hh0lMZF3QGXxnHo2gozC4wePVpjxoyxmzZq1CiNHj06W9uTJ08qPT1doaGhdtNDQ0O1a9euguwm/iW/5ncXdRdcGr9THeO374u6B66N4xBFjWPQ9RVWxiRflgwL3qlR1F1wafxOdRSOw3+D49Ax+Dvn3+E4dG3OeA6TfJl3FmNM/p/eDqcTHx+vgIAAnT17Vv7+/kXdHZRAHINwBhyHyKvk5ORsV1d6eXnl+MfIsWPHVKFCBf3xxx+KjIy0TR8xYoT++9//au3atQXeX6Ao8DsVzoDjEEWNYxB5Rb4Ero7fqXAGHIdwBhyHyKu8ZkzyZd45TcU4AABAYcntJGVOypUrJzc3N8XExNhNj4mJUVhYWEF0DwAAAC6GfAkAAABHy2vGJF/mHc8YBwAAuAJPT081btxYK1eutE3LyMjQypUr7a7ABAAAAPKCfAkAAABHIl/mHRXjAAAAVzFs2DD17t1bTZo00U033aTJkycrMTFRffv2LequAQAAwAWRLwEAAOBI5Mu8YWC8mPDy8tKoUaPyfNsuwNE4BuEMOA5RUB544AGdOHFCL7/8sqKjo9WoUSMtWbJEoaGhRd01oMDwOxXOgOMQRY1jEAWFfImSiN+pcAYch3AGHIcoCOTLvLEYY0xRdwIAAAAAAAAAAAAAgILCM8YBAAAAAAAAAAAAAMUaA+MAAAAAAAAAAAAAgGKNgXEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFhjYLwYmDZtmqpUqSJvb281a9ZM69atK+ouoQT55Zdf1KlTJ4WHh8tisWjhwoVF3SWUQBMmTFDTpk1VunRphYSEqHPnztq9e3dRdwsAXBb5EkWNjImiRr4EAMcjY6IokS9R1MiXgHNgYNzFffHFFxo2bJhGjRqlTZs2qWHDhmrXrp1iY2OLumsoIRITE9WwYUNNmzatqLuCEuy///2vBg0apDVr1mj58uVKTU1V27ZtlZiYWNRdAwCXQ76EMyBjoqiRLwHAsciYKGrkSxQ18iXgHCzGGFPUncC1a9asmZo2bap33nlHkpSRkaFKlSrpySef1PPPP1/EvUNJY7FYtGDBAnXu3Lmou4IS7sSJEwoJCdF///tf3XrrrUXdHQBwKeRLOBsyJpwB+RIA/h0yJpwJ+RLOgHwJFA0qxl1YSkqKNm7cqKioKNs0q9WqqKgorV69ugh7BgBF6+zZs5KkoKCgIu4JALgW8iUA5Ix8CQDXjowJANmRL4GiwcC4Czt58qTS09MVGhpqNz00NFTR0dFF1CsAKFoZGRkaMmSIWrRoofr16xd1dwDApZAvASA78iUA/DtkTACwR74Eio57UXcAAABHGjRokLZt26bffvutqLsCAACAYoB8CQAAAEciXwJFh4FxF1auXDm5ubkpJibGbnpMTIzCwsKKqFcAUHQGDx6sRYsW6ZdfflHFihWLujsA4HLIlwBgj3wJAP8eGRMALiJfAkWLW6m7ME9PTzVu3FgrV660TcvIyNDKlSsVGRlZhD0DgMJljNHgwYO1YMECrVq1SlWrVi3qLgGASyJfAkAm8iUAOA4ZEwDIl4CzoGLcxQ0bNky9e/dWkyZNdNNNN2ny5MlKTExU3759i7prKCESEhK0b98+288HDhzQ5s2bFRQUpMqVKxdhz1CSDBo0SHPnztW3336r0qVL255RFhAQIB8fnyLuHQC4FvIlnAEZE0WNfAkAjkXGRFEjX6KokS8B52Axxpii7gT+nXfeeUdvvPGGoqOj1ahRI02ZMkXNmjUr6m6hhPj555/VunXrbNN79+6tWbNmFX6HUCJZLJYcp8+cOVN9+vQp3M4AQDFAvkRRI2OiqJEvAcDxyJgoSuRLFDXyJeAcGBgHAAAAAAAAAAAAABRrPGMcAAAAAAAAAAAAAFCsMTAOAAAAAAAAAAAAACjWGBgHAAAAAAAAAAAAABRrDIwDAAAAAAAAAAAAAIo1BsYBAAAAAAAAAAAAAMUaA+MAAAAAAAAAAAAAgGKNgXEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFhjYBwAAAAAAAAAAAAAUKwxMA4AAAAAAAAAAAAAKNYYGAcAAAAAAAAAAAAAFGsMjAMAAAAAAAAAAAAAijUGxgEAAAAAAAAAAAAAxRoD4wAAAAAAAAAAAACAYo2BcQAAAAAAAAAAAABAscbAOAAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrDEwXkJ9+umnql27tjw8PBQYGOjw9Y8ePVoWi8Xh6y1ODh48KIvFolmzZjlsnevXr9fNN98sX19fWSwWbd682WHrdkYWi0WjR4/O1zJ9+vRRlSpVCqQ/xdHevXvVtm1bBQQEyGKxaOHChUXdJQCAEyFTFj0yZdEq6mP0559/lsVi0c8//2w3Pafv5m233abbbrut0Pt4NQX9ewQAAEci/xY98q9zWLJkiRo1aiRvb29ZLBbFxcUVdZcAIE8YGC+Bdu3apT59+qh69er64IMP9P777xd1l1ze4sWL8z1A62ipqam67777dPr0aU2aNEmffvqpIiIiCuz9sk7CZb28vLwUGhqq2267TePHj9eJEycK7L2d2aX75Eqvy09eOqvevXtr69atGjdunD799FM1adJEc+fO1eTJkwu1H7fddpvd/gsKClLTpk318ccfKyMjI1v7n3/+WV26dFFYWJg8PT0VEhKiTp066Ztvvslx/Tt37pTFYpG3tzdBHgDyiEzpeCUxU0qZJzf79u2r6tWry9vbW2FhYbr11ls1atSoHNt///336tSpk0JDQ+Xp6amgoCDdeuutmjhxouLj4+3aVqlSxZYfrFarAgMD1aBBAw0YMEBr167NtU9JSUmaNGmSmjVrpoCAAHl7e6tmzZoaPHiw9uzZ49DtdzRX+m7m1Nfz589r9OjRhZqXs06wZ73c3NxUuXJl3XvvvTmeGL+W42PEiBGyWCx64IEHCnhrAAAFxZX+j3UV5N+c829sbKzc3d310EMP5bqOc+fOycfHR126dLGbvn//fj322GOqVq2avL295e/vrxYtWujtt9/WhQsXHNL/U6dO6f7775ePj4+mTZumTz/9VL6+vho/fnyhF9VcmuGsVqvCw8PVtm3bHLNkenq6Zs6cqdtuu01BQUHy8vJSlSpV1LdvX23YsCHH9U+fPl0Wi0XNmjUr4C0BUFgsxhhT1J1A4ZoxY4YGDhyovXv36rrrriuQ90hLS1NaWpq8vb0LZP3OZvDgwZo2bZry83Uyxig5OVkeHh5yc3P7133YtWuX6tSpow8++ED9+/f/1+u7mp9//lmtW7fWU089paZNmyo9PV0nTpzQH3/8oe+//14BAQH68ssvdfvttxdYH5KSkuTu7i53d/c8L5OamqqMjAx5eXkVSJ8+++wzu58/+eQTLV++XJ9++qnd9DvuuEOhoaEF0gdHuXDhgkqVKqUXXnhBr776qm16x44dtW3bNh08eLDQ+nLbbbdp//79mjBhgiTpxIkT+uSTT7R582Y999xz+s9//mNrO2rUKI0dO1Y1atRQjx49FBERoVOnTmnx4sX6+eefNWfOHD344IN263/hhRf08ccf68yZM3rnnXcK5TsEAK6OTOl4JTFT7tu3T02bNpWPj48eeeQRValSRcePH9emTZv0448/KikpydY2IyND/fr106xZs9SgQQN17dpVlSpV0rlz57R69Wp9++23uvnmm7Vy5UrbMlWqVFGZMmX0zDPPSMo8gbhz507Nnz9f0dHRGjp0qN566y27Pp08eVJ33nmnNm7cqI4dOyoqKkp+fn7avXu35s2bp+joaKWkpEjKrOoaM2ZMvj4zR8rIyFBKSoo8PT1ltWZe957bdzOrz56enkXS15zk1NeTJ08qODhYo0aNKrQT5QcPHlTVqlXVo0cP3XXXXUpPT9fOnTv17rvvKjk5WWvWrFGjRo1s/cvr8ZHFGKPKlSvL3d1dMTExiomJUenSpQtl2wAAjkP+dTzyb+75t3379vrtt98UExOjUqVKZVvP7Nmz1adPH3399de2wfEffvhB9913n7y8vNSrVy/Vr19fKSkp+u233/T111+rT58+DrmgY8mSJWrfvr2WL1+uqKgo23Q/Pz9169bNodX8V2OxWHTHHXeoV69eMsbowIEDmj59umJjY/XDDz+offv2kjLPc3bp0kVLlizRrbfeqk6dOikoKEgHDx7Ul19+qT179ujw4cOqWLGi3fpbtGihY8eO6eDBgwX63QdQePI+moRiIzY2VpIK9DZ1+R2sLEnS0tKUkZEhT09Ph4bcgvhcExMT5evre8U2t9xyi7p162Y3bcuWLWrbtq26du2qHTt2qHz58g7r06WuZf95eHgUQE8uuvxKzjVr1mj58uVXvMJTks6fP59jyC1KWVX/hXFLy6yTulf6TAMCAuz242OPPaZatWrpnXfe0SuvvCIPDw999dVXGjt2rLp166a5c+fafd7PPvusli5dqtTUVLv1GmM0d+5cPfjggzpw4IDmzJnDwDgA5AGZsmgVl0w5adIkJSQkaPPmzdkqc7L6kuX111/XrFmzNHToUE2cONHuNqNPP/20jh8/rk8++STbe1SoUCFbFnvttdf04IMPatKkSapRo4YGDhxom9enTx/9+eef+uqrr9S1a1e75V555RW98MILedvwQmC1WrN9/rl9ho4cEM9LdsuLwvg9kiUvf9vceOONdsdKixYtdPfdd+vdd9/Ve++9J+najo+ff/5ZR44c0apVq9SuXTt988036t27twO2CgBQmMi/Rauk5d+ePXtqyZIl+u6779S9e/ds65k7d64CAgLUoUMHSdKBAwfUvXt3RUREaNWqVXbnYwcNGqR9+/bphx9+cMTmFWqGS0pKsrsINCc1a9a0y3D33nuvrr/+ek2ePNk2MP7ss89qyZIlmjRpkoYMGWK3/KhRozRp0qRs6z1w4ID++OMPffPNN3rsscc0Z86cXO9qBcCFGBSpI0eOmEceecSUL1/eeHp6mipVqpjHH3/cJCcn29rs37/fdOvWzZQpU8b4+PiYZs2amUWLFtmt56effjKSzBdffGFeffVVU6FCBePl5WVuv/12s3fvXlu7iIgII8nuNWrUKGOMsfv3pSIiIkzv3r1tP6ekpJjRo0eb6667znh5eZmgoCDTokULs2zZMlubUaNGmcsPr9TUVDN27FhTrVo14+npaSIiIszIkSNNUlJStvfr0KGD+fXXX03Tpk2Nl5eXqVq1qpk9e3Z+d6+RZAYNGmS+/PJLU6dOHePt7W2aN29u/vrrL2OMMTNmzDDVq1c3Xl5eplWrVubAgQN2y//yyy+mW7duplKlSsbT09NUrFjRDBkyxJw/f97Wpnfv3tn2ada2HzhwwEgyb7zxhpk0aZKpVq2asVqt5s8//7TNmzlzpjHGmJiYGFOuXDnTqlUrk5GRYVv/3r17TalSpcz999+f63bm1IdWrVrZ5q9cudK0bNnSlCpVygQEBJi7777b7Nixw24dWZ/Z9u3bTY8ePUxgYKBp1KhRru+ZdczNnz8/x/lz5841ksz//d//2U0/cuSI6du3rwkJCTGenp6mbt265qOPPsq2/IULF8yoUaNMjRo1jJeXlwkLCzP33nuv2bdvn63N5cdsfHy8efrpp01ERITx9PQ0wcHBJioqymzcuNFuX0VERNi9V0JCghk2bJipWLGi8fT0NDVr1jRvvPGG3eeQ9X6DBg0yCxYsMPXq1bP1/8cff8x1Pw0aNCjbd6FVq1amXr16ZsOGDeaWW24xPj4+5umnnzbGGJOUlGRefvllU716ddsx9+yzz2b7nhhjzKeffmpuvPFG4+3tbcqUKWMeeOABc/jw4Vz7kuXgwYNm4MCBpmbNmsbb29sEBQWZbt262R3/WcfDpa+IiAjTqlWrHKdnyWv/s/blZ599ZurWrWvc3d3NggULcu1z1j67XLdu3Ywkc/ToUWOMMbVr1zZBQUEmPj7+qvshy6+//mokmXXr1pkvvvjCWK1W888//+R5eQBwBmRKMqWrZsp27dqZKlWqXHH/G2NMYmKiCQwMNPXq1TNpaWlXbZ8l6zjIyblz50xQUJCpUKGCbV+tWbPGSDKPPvpontaf0zH68ccfm9atW5vg4GDj6elp6tSpY6ZPn55t2fXr15u2bduasmXLGm9vb1OlShXTt29fuzaff/65ufHGG42fn58pXbq0qV+/vpk8ebJtftZ39qeffrJtb27fzVatWtl9nsYUXHZbuHChueuuu2y/k6pVq2bGjh1r99nl1NfcvgeX/k7ZuXOn6dq1qylTpozx8vIyjRs3Nt9++63d+8+cOdNIMj///LMZOHCgCQ4ONoGBgbn299Lv2KUSEhKMJHPHHXcYY/J/fGTp16+fqVu3rjHGmPbt29vWBwC4duRf8m9xz78JCQnG19fXdOrUKdu8mJgY4+bmZvr162eb9vjjjxtJ5vfff7/qunOTl88tp3ODuX2Wlx7/eTknnPV9/Pzzz80LL7xgwsPDjcViMWfOnMm1z1nH6uXKlStnatSoYYwx5p9//jHu7u75zmCvvPKKKVOmjElOTjYDBw60rQ+Aa+PysyJ07Ngx3XTTTYqLi9OAAQNUu3ZtHT16VF999ZXOnz8vT09PxcTE6Oabb9b58+f11FNPqWzZspo9e7buvvtuffXVV7r33nvt1vmf//xHVqtVw4cP19mzZ/X666+rZ8+etufnTZ48WZ988okWLFigd999V35+frr++uvz1e/Ro0drwoQJ6t+/v2666SbFx8drw4YN2rRpk+64445cl+vfv79mz56tbt266ZlnntHatWs1YcIE7dy5UwsWLLBru2/fPnXr1k39+vVT79699fHHH6tPnz5q3Lix6tWrl6/+/vrrr/ruu+80aNAgSdKECRPUsWNHjRgxQtOnT9cTTzyhM2fO6PXXX9cjjzyiVatW2ZadP3++zp8/r4EDB6ps2bJat26dpk6dqiNHjmj+/PmSMqtWjx07luPtsrPMnDlTSUlJGjBggLy8vBQUFJTtucghISF69913dd9992nq1Kl66qmnlJGRoT59+qh06dKaPn16rtv42GOPqUKFCho/frzt1uZZt+lesWKF2rdvr2rVqmn06NG6cOGCpk6dqhYtWmjTpk2qUqWK3bruu+8+1ahRQ+PHj/9Xt4TM+vyWLVumcePGSZJiYmLUvHlzWSwWDR48WMHBwfrxxx/Vr18/xcfH267WS09PV8eOHbVy5Up1795dTz/9tM6dO6fly5dr27Ztql69eo7v+fjjj+urr77S4MGDVbduXZ06dUq//fabdu7cqRtvvDHHZYwxuvvuu/XTTz+pX79+atSokZYuXapnn31WR48ezXa14G+//aZvvvlGTzzxhEqXLq0pU6aoa9euOnz4sMqWLZvn/XPq1Cm1b99e3bt310MPPaTQ0FBlZGTo7rvv1m+//aYBAwaoTp062rp1qyZNmqQ9e/bYPaNn3Lhxeumll3T//ferf//+OnHihKZOnapbb71Vf/755xWv2Fy/fr3++OMPde/eXRUrVtTBgwf17rvv6rbbbtOOHTtUqlQpdenSRYGBgRo6dKjtlpJ+fn7y9fXV2bNndeTIEdu+8fPzk6R89V+SVq1apS+//FKDBw9WuXLlsh2LefH333/Lzc1NgYGB2rt3r3bt2qVHHnkkX7emnDNnjqpXr66mTZuqfv36KlWqlD7//HM9++yz+e4PABQFMiWZ8lKulikjIiK0YsUKrVq16oqP4Pntt98UFxen4cOHO+SWmVJmhrn33nv10UcfaceOHapXr56+++47SdLDDz98zet99913Va9ePd19991yd3fX999/ryeeeEIZGRm24yc2NlZt27ZVcHCwnn/+eQUGBurgwYP65ptvbOtZvny5evTooTZt2ui1116TJO3cuVO///67nn766RzfOz/fzYLMbrNmzZKfn5+GDRsmPz8/rVq1Si+//LLi4+P1xhtv5NrXBg0aqHnz5ho4cKDuvfde221Bs7Zh+/btatGihSpUqKDnn39evr6++vLLL9W5c2d9/fXX2X6XPfHEEwoODtbLL7+sxMTEXPubm/3790uSLedfy/GRnJysr7/+2nY7/x49eqhv376Kjo5WWFhYvvsEACD/kn9LRv719fXVPffco6+++kqnT59WUFCQbd4XX3yh9PR09ezZ0zbt+++/V7Vq1XTzzTfnus6rycvn9sILL6hWrVp6//33NXbsWFWtWlXVq1dXVFSU7dgeMGCAJNnO4eb1nHCWV155RZ6enho+fLiSk5PzfeejM2fO6MyZM7bbnv/4449KS0vLd8afM2eOunTpIk9PT/Xo0UPvvvuu1q9fr6ZNm+ZrPQCcTNGOy5dsvXr1Mlar1axfvz7bvKyr24YMGWIkmV9//dU279y5c6Zq1aqmSpUqJj093Rhz8WqqOnXq2F0Z+fbbbxtJZuvWrbZpWVexnThxwu49lcerGxs2bJhr1cXl75Fl8+bNRpLp37+/Xbvhw4cbSWbVqlV27yfJ/PLLL7ZpsbGxxsvLyzzzzDNXfN/LSTJeXl52Vy2+9957RpIJCwuzqyodOXKkkWTX9tKr4bJMmDDBWCwWc+jQIdu0nKqCjbl4daO/v7+JjY3NcV7W1Y1ZevToYUqVKmX27Nlj3njjDSPJLFy48KrbmlsFd6NGjUxISIg5deqUbdqWLVuM1Wo1vXr1sk3L+sx69Ohx1fe60vtdqmHDhqZMmTK2n/v162fKly9vTp48adeue/fuJiAgwLa/P/74YyPJvPXWW9nWeemVn5cfswEBATleIXipyyvGFy5caCSZV1991a5dt27djMViyVah7unpaTdty5YtRpKZOnVqju+XW8W4JDNjxgy76Z9++qmxWq1233djMq/C1SVXfB48eNC4ubmZcePG2bXbunWrcXd3zzb9cjkd16tXrzaSzCeffGKbllvlTIcOHbJV3een/8Zk7kur1Wq2b99+xb5madWqlaldu7Y5ceKEOXHihNm5c6d56qmnjCTblbPffvutkWQmTZqUp3Uak3m1dtmyZc0LL7xgm/bggw+ahg0b5nkdAFDUyJRkSlfOlNu2bTM+Pj5GkmnUqJF5+umnzcKFC01iYqJdu6xj8PJtSEtLs+WDrNelefFKFePGGDNp0iQjyVZxfO+99xpJV6xKuVROVV05fd7t2rUz1apVs/28YMECIynH722Wp59+2vj7+1+xQv7yivFL+3T5d/PyivGCzG457YPHHnvMlCpVyq66Lae+njhxItffI23atDENGjSwW0dGRoa5+eab7Sp4sirGW7Zsmac7DGR9j8aMGWNOnDhhoqOjzc8//2xuuOEGI8l8/fXXxpj8Hx/GGPPVV18ZSbaqw/j4eOPt7Z2vzAoAsEf+Jf+WhPxrjDE//PCDkWTee+89u+nNmzc3FSpUsB3HZ8+eNZLMPffck6c+5Cavn1tW1rr8O+jr62t3zGfJ6znhrM+iWrVqOfYlJ5JMv379zIkTJ0xsbKxZu3atadOmjZFkJk6caIwxZujQoUaS+fPPP/O0TmOM2bBhg5Fkli9fbozJ/N1SsWJF210/Abiu3B/MgAKVkZGhhQsXqlOnTmrSpEm2+VnPy1u8eLFuuukmtWzZ0jbPz89PAwYM0MGDB7Vjxw675fr27Wt3BdUtt9wiKbOq0lECAwO1fft27d27N8/LLF68WJI0bNgwu+lZV81f/nyTunXr2vouScHBwapVq9Y1bUebNm3sruBr1qyZJKlr1652VaVZ0y99Dx8fH9u/ExMTdfLkSd18880yxujPP//Mcx+6du2q4ODgPLV95513FBAQoG7duumll17Sww8/rHvuuSfP73Wp48ePa/PmzerTp4/dVYXXX3+97rjjDtvncqnHH3/8mt4rJ35+fjp37pykzMrsr7/+Wp06dZIxRidPnrS92rVrp7Nnz2rTpk2SpK+//lrlypXTk08+mW2dlz5L8nKBgYFau3atjh07luc+Ll68WG5ubnrqqafspj/zzDMyxujHH3+0mx4VFWVXsX799dfL398/38eml5eX+vbtazdt/vz5qlOnjmrXrm23f7KuHv3pp58kSd98840yMjJ0//3327ULCwtTjRo1bO1yc+lxnZqaqlOnTum6665TYGCg7TO4Fnntf5ZWrVqpbt26eV7/rl27FBwcrODgYNWpU0dTp05Vhw4d9PHHH0uS4uPjJSlf1eI//vijTp06pR49etim9ejRQ1u2bNH27dvzvB4AKCpkykxkyuxcJVPWq1dPmzdv1kMPPaSDBw/q7bffVufOnRUaGqoPPvjA1i7r//msO9Vk2bp1qy0fZL1OnTqV523LWl9WZr2WPHG5Sz/vs2fP6uTJk2rVqpX+/vtvnT17VtLF5zEuWrRIqampOa4nMDBQiYmJWr58+TX35UoKMrtdug/OnTunkydP6pZbbtH58+e1a9eua+rv6dOntWrVKt1///22dZ48eVKnTp1Su3bttHfvXh09etRumUcffTRfdxgYNWqUgoODFRYWpttuu0379+/Xa6+9Zqtcv5bjY86cOWrSpImtYql06dLq0KGD5syZk+d1AAAuIv9mIv9mV9zyryTbHYbmzp1rm3bgwAGtWbNGPXr0sD132xEZVnLc53ap/JwTztK7d2+7vlzNRx99pODgYIWEhKhZs2b6/fffNWzYMFsl+rVmuNDQULVu3VpS5u+WBx54QPPmzVN6enqe1wPA+TAwXkROnDih+Ph41a9f/4rtDh06pFq1amWbXqdOHdv8S1WuXNnu5zJlykjKvH2Io4wdO1ZxcXGqWbOmGjRooGeffVZ//fXXFZc5dOiQrFar7WRAlrCwMAUGBl51O6TMbbmW7bh8XQEBAZKkSpUq5Tj90vc4fPiwLQD5+fkpODhYrVq1kiTbSa28qFq1ap7bBgUFacqUKfrrr78UEBCgKVOm5HnZy2Xt19yOoZMnT2a7pWB++no1CQkJtsBx4sQJxcXF6f3338928jJrgDg2NlZS5i0La9WqJXf3/D3t4fXXX9e2bdtUqVIl3XTTTRo9evRVg/+hQ4cUHh6eLRjl9TsmXduxWaFChWy3Adq7d6+2b9+ebf/UrFlT0sX9s3fvXhljVKNGjWxtd+7caWuXmwsXLujll19WpUqV5OXlpXLlyik4OFhxcXH5Oq4vl9f+Z8nvsValShUtX75cK1as0G+//abo6GgtWrRI5cqVkyT5+/tLunhiOy8+++wzVa1aVV5eXtq3b5/27dun6tWrq1SpUpysBOASyJSZyJTZuVKmrFmzpj799FOdPHlSf/31l8aPHy93d3cNGDBAK1askHTxJFZCQoLdstddd52WL1+u5cuXX9Ptz7PWl7X+a8kTl/v9998VFRUlX19fBQYGKjg4WP/3f/8n6eLn3apVK3Xt2lVjxoxRuXLldM8992jmzJlKTk62reeJJ55QzZo11b59e1WsWFGPPPKIlixZcs39ulxBZrft27fr3nvvVUBAgPz9/RUcHKyHHnpIUv6O+Uvt27dPxhi99NJL2fo8atSof91nSRowYICWL1+ulStXauPGjYqNjdWIESNs8/N7fMTFxWnx4sVq1aqVLWvu27dPLVq00IYNG7Rnz5589Q8AQP7NQv7NrrjlX0lyd3fXAw88oF9//dV2AWDWIPmlt1F3RIaVHPe5XSo/54Sz5DfD3XPPPbZzhmvXrtXJkyc1ceJE24UD+d0/6enpmjdvnlq3bq0DBw7YMlyzZs0UExOjlStX5qt/AJwLzxgvZnK7Gt78i2dFX34F1K233qr9+/fr22+/1bJly/Thhx9q0qRJmjFjhvr373/FdV2p2vdSjtyO3NZ1tfdIT0/XHXfcodOnT+u5555T7dq15evrq6NHj6pPnz7ZnmdzJfm5wk2Sli5dKikzUB45cuSKz4t2tPz2NTepqanas2eP7Q+VrP310EMPqXfv3jkuk99nM13u/vvv1y233KIFCxZo2bJleuONN/Taa6/pm2++Ufv27f/VurM46tjMaT9nZGSoQYMGeuutt3JcJusPj4yMDFksFv3444859ufySqrLPfnkk5o5c6aGDBmiyMhIBQQEyGKxqHv37vk6rq+1/1nye6z5+voqKioq1/m1a9eWlFk5lhfx8fH6/vvvlZSUpBo1amSbP3fuXI0bNy7Pv7cAoDghU+Z9XWTKnF1LpnRzc1ODBg3UoEEDRUZGqnXr1pozZ46ioqJs/89v27bNrvLHz8/Plg9+++23fL/ntm3bJMl2svnSPHFptVVe7d+/X23atFHt2rX11ltvqVKlSvL09NTixYs1adIk2+dtsVj01Vdfac2aNfr++++1dOlSPfLII5o4caLWrFkjPz8/hYSEaPPmzVq6dKl+/PFH/fjjj5o5c6Z69eql2bNn57tvlyuo7BYXF6dWrVrJ399fY8eOVfXq1eXt7a1Nmzbpueeeu+a8mbXc8OHD1a5duxzbXD5okN/jsEaNGnnOm3k5PubPn6/k5GRNnDhREydOzDZ/zpw5GjNmTL76CAAoGOTfvK+L/JszR+ffLA899JDeeecdff755xo+fLg+//xz1a1bV40aNbK18ff3V3h4uC3bXgtHfm6XupZzwvndlxUrVsxzhrt0v+Vm1apVOn78uObNm6d58+Zlmz9nzhy1bds2X30E4DwYGC8iwcHB8vf3v+p/VhEREdq9e3e26Vm3n4uIiHBYn8qUKaO4uDi7aSkpKTp+/Hi2tkFBQerbt6/69u2rhIQE3XrrrRo9enSuIS4iIkIZGRnau3ev7cpMSYqJiVFcXJxDt8NRtm7dqj179mj27Nnq1auXbXpOtzJ05MDZkiVL9OGHH2rEiBGaM2eOevfurbVr1+a7elq6eHzkdgyVK1dOvr6+/7rPOfnqq6904cIF20mr4OBglS5dWunp6VcMKpJUvXp1rV27VqmpqfLw8MjX+5YvX15PPPGEnnjiCcXGxurGG2/UuHHjch0Yj4iI0IoVK3Tu3Dm7qvGC+I5dTfXq1bVlyxa1adPmisdU9erVZYxR1apVbRU9+fHVV1+pd+/edifnkpKSsn3/c5Nb3/La/4JSs2ZN1apVS99++63efvvtq14g8M033ygpKUnvvvuureo8y+7du/Xiiy/q999/t7vtGgA4GzJlJjJldq6eKbNujZp13Nxyyy0KCAjQvHnzNHLkSFv1x7+RkJCgBQsWqFKlSrbjqVOnTpowYYI+++yzaxoY//7775WcnKzvvvvOrsoqt0fdNG/eXM2bN9e4ceM0d+5c9ezZU/PmzbN9Bzw9PdWpUyd16tRJGRkZeuKJJ/Tee+/ppZdeyjYInF8Fld1+/vlnnTp1St98841uvfVW2/QDBw7kafnc+lKtWjVJkoeHx1X/nigo+T0+5syZo/r169sq2i/13nvvae7cuQyMA0A+kX8zkX+zK275N0uzZs1UvXp1zZ07V3fccYe2b9+ucePGZVu+Y8eOev/997V69WpFRkbm+/3z87nlJqfPMz/nhAtK+/bt5ebmps8++yxPd5maM2eOQkJCNG3atGzzvvnmGy1YsEAzZsxwWIEZgMLFrdSLiNVqVefOnfX9999rw4YN2eZnXWF31113ad26dVq9erVtXmJiot5//31VqVIlX8/nvZrq1avrl19+sZv2/vvvZ7u68fJn9vn5+em6666zu+3f5e666y5J0uTJk+2mZ1UndOjQ4Vq7XWCyrn689IpKY4zefvvtbG2zglBeBxZzExcXp/79++umm27S+PHj9eGHH2rTpk0aP378Na2vfPnyatSokWbPnm3Xt23btmnZsmW2z8XRtmzZoiFDhqhMmTIaNGiQpMz92bVrV3399dc5/vFy4sQJ27+7du2qkydP6p133snWLrcrXNPT07Pd0ickJETh4eFXPTbT09OzvdekSZNksVgcVmmeF/fff7+OHj2a7XlCUubtz7Nu0dSlSxe5ublpzJgx2faHMeaqz9V0c3PLttzUqVPz/HwcX1/fHG+flNf+F6QxY8bo1KlT6t+/v9LS0rLNX7ZsmRYtWiQp8zbq1apV0+OPP65u3brZvYYPHy4/Pz9upw7A6ZEpM5Ep7blSpvz1119zfMZ21nMbs25fWapUKY0YMULbtm3T888/n2MmzE8l1IULF/Twww/r9OnTeuGFF2wn8SIjI3XnnXfqww8/1MKFC7Mtl5KSouHDh+e63pw+77Nnz2rmzJl27c6cOZOtv1nVK1nfgcu/I1ar1VZNc6XvSV4VVHbLaR+kpKRo+vTpeVq+VKlSkrJ/D0JCQnTbbbfpvffey3Gg4dK/JwpKfo6Pf/75R7/88ovuv//+bFmzW7du6tu3r/bt26e1a9cWeL8BoDgh/2Yi/9orjvn3Uj179tSff/6pUaNGyWKx6MEHH8zWZsSIEfL19VX//v0VExOTbf7+/ftz/Ayy5Odzy42vr2+2zzI/54QLSqVKlfToo49q2bJlmjp1arb5GRkZmjhxoo4cOaILFy7om2++UceOHXPMcIMHD9a5c+f03XffFXi/ARQMKsaL0Pjx47Vs2TK1atVKAwYMUJ06dXT8+HHNnz9fv/32mwIDA/X888/r888/V/v27fXUU08pKChIs2fP1oEDB/T11187pFIiS//+/fX444+ra9euuuOOO7RlyxYtXbo0WyVl3bp1ddttt6lx48YKCgrShg0b9NVXX2nw4MG5rrthw4bq3bu33n//fdut9datW6fZs2erc+fOat26tcO2w1Fq166t6tWra/jw4Tp69Kj8/f319ddf5/hMnsaNG0uSnnrqKbVr105ubm7q3r17vt/z6aef1qlTp7RixQq5ubnpzjvvVP/+/fXqq6/qnnvuUcOGDfO9zjfeeEPt27dXZGSk+vXrpwsXLmjq1KkKCAjQ6NGj872+y/36669KSkpSenq6Tp06pd9//13fffedAgICtGDBAoWFhdna/uc//9FPP/2kZs2a6dFHH1XdunV1+vRpbdq0SStWrNDp06clSb169dInn3yiYcOGad26dbrllluUmJioFStW6IknnrC7fWaWc+fOqWLFiurWrZsaNmwoPz8/rVixQuvXr8/xtoVZOnXqpNatW+uFF17QwYMH1bBhQy1btkzffvuthgwZourVq//rfZRXDz/8sL788ks9/vjj+umnn9SiRQulp6dr165d+vLLL7V06VI1adJE1atX16uvvqqRI0fq4MGD6ty5s0qXLq0DBw5owYIFGjBgwBVP2Hbs2FGffvqpAgICVLduXa1evVorVqxQ2bJl89TPxo0b64svvtCwYcPUtGlT+fn5qVOnTnnuf0F64IEHtHXrVo0bN05//vmnevTooYiICJ06dUpLlizRypUrNXfuXB07dkw//fSTnnrqqRzX4+XlpXbt2mn+/PmaMmVKvu9cAACFiUxJprycK2XK1157TRs3blSXLl1sg76bNm3SJ598oqCgIA0ZMsTW9vnnn9fOnTv1xhtvaNmyZeratasqVqyoM2fOaNOmTZo/f75CQkLk7e1t9x5Hjx7VZ599JimzSnzHjh2aP3++oqOj9cwzz+ixxx6za//JJ5+obdu26tKlizp16qQ2bdrI19dXe/fu1bx583T8+HG9+eabOW5P27ZtbVXejz32mBISEvTBBx8oJCTEbjB39uzZmj59uu69915Vr15d586d0wcffCB/f3/bidb+/fvr9OnTuv3221WxYkUdOnRIU6dOVaNGjewqxq5VQWW3m2++WWXKlFHv3r311FNPyWKx6NNPP83zhQs+Pj6qW7euvvjiC9WsWVNBQUGqX7++6tevr2nTpqlly5Zq0KCBHn30UVWrVk0xMTFavXq1jhw5oi1btuS7v/mV1+Nj7ty5Msbo7rvvznE9d911l9zd3TVnzhw1a9aswPsNAMUJ+Zf8e7nimn+zPPTQQxo7dqy+/fZbtWjRQlWqVMnWJquq/IEHHlCdOnXUq1cv1a9fXykpKfrjjz80f/589enTJ9d+5edzy03jxo21YsUKvfXWWwoPD1fVqlXVrFmzPJ8TLkgTJ07U/v379dRTT9kGvsuUKaPDhw9r/vz52rVrl7p3767vvvtO586dyzXDNW/eXMHBwZozZ44eeOCBAu83gAJgUKQOHTpkevXqZYKDg42Xl5epVq2aGTRokElOTra12b9/v+nWrZsJDAw03t7e5qabbjKLFi2yW89PP/1kJJn58+fbTT9w4ICRZGbOnGmbNmrUKCPJnDhxwq5tenq6ee6550y5cuVMqVKlTLt27cy+fftMRESE6d27t63dq6++am666SYTGBhofHx8TO3atc24ceNMSkpKtve4VGpqqhkzZoypWrWq8fDwMJUqVTIjR440SUlJdu0iIiJMhw4dsu2rVq1amVatWl1xf15Okhk0aFCO++SNN96wm57TPtyxY4eJiooyfn5+ply5cubRRx81W7ZsybZP09LSzJNPPmmCg4ONxWKxbXtu73XpvKz1fPvtt0aSmThxol27+Ph4ExERYRo2bGi3jy+X2zFgjDErVqwwLVq0MD4+Psbf39906tTJ7Nixw65NbsfF1d4v6+Xh4WGCg4PNrbfeasaNG2diY2NzXC4mJsYMGjTIVKpUyXh4eJiwsDDTpk0b8/7779u1O3/+vHnhhRdsx0tYWJjp1q2b2b9/v62NJDNq1ChjjDHJycnm2WefNQ0bNjSlS5c2vr6+pmHDhmb69Ol26+3du7eJiIiwm3bu3DkzdOhQEx4ebjw8PEyNGjXMG2+8YTIyMuza5XQ8GWOyfUcuNWjQoGzfhVatWpl69erl2D4lJcW89tprpl69esbLy8uUKVPGNG7c2IwZM8acPXvWru3XX39tWrZsaXx9fY2vr6+pXbu2GTRokNm9e3eO685y5swZ07dvX1OuXDnj5+dn2rVrZ3bt2pVtO3I7fhMSEsyDDz5oAgMDjSS7/ZnX/ue2L3NzpX2Wk5UrV5p77rnHhISEGHd3dxMcHGw6depkvv32W2OMMRMnTjSSzMqVK3Ndx6xZs4wk2zIA4MzIlGRKV82Uv//+uxk0aJCpX7++CQgIMB4eHqZy5cqmT58+drnvUgsWLDB33XWXCQ4ONu7u7iYwMNC0bNnSvPHGGyYuLs6ubUREhC2vWiwW4+/vb+rVq2ceffRRs3bt2lz7df78efPmm2+apk2bGj8/P+Pp6Wlq1KhhnnzySbNv375s23up7777zlx//fXG29vbVKlSxbz22mvm448/NpLMgQMHjDHGbNq0yfTo0cNUrlzZeHl5mZCQENOxY0ezYcMG23q++uor07ZtWxMSEmI8PT1N5cqVzWOPPWaOHz9ua5P1ef3000/Z+nT5Z5DTsV9Q2e333383zZs3Nz4+PiY8PNyMGDHCLF26NM99/eOPP0zjxo2Np6enXeY3JvN3Wa9evUxYWJjx8PAwFSpUMB07djRfffWVrc3MmTONJLN+/fo89fdK37Gc5OX4aNCggalcufIV13PbbbeZkJAQk5qamqf3BQBcRP4l/5ak/GuMMU2bNjWSsp3rvNyePXvMo48+aqpUqWI8PT1N6dKlTYsWLczUqVOzHTOXy+vnllvW2rVrl7n11luNj4+PkWR3/OflnPCVPovc5CenpqWlmQ8//NDccssttn0fERFh+vbta/78809jjDGdOnUy3t7eJjExMdf19OnTx3h4eJiTJ0/muZ8AnIfFmHzcbw4AAAAAAAAAAAAAABfDM8YBAAAAAAAAAAAAAMUazxiHS4qOjr7ifB8fHwUEBBRSbwAAAOCKyJQAAAAoSci/AICSjlupwyVZLJYrzu/du7dmzZpVOJ0BAACASyJTAgAAoCQh/wIASjoqxuGSli9ffsX54eHhhdQTAAAAuCoyJQAAAEoS8i8AoKSjYhwAAAAAAAAAAAAAUKxZi7oDAAAAAAAAAAAAAAAUJAbGAQAAAAAAAAAAAADFmtM8Y3xj6xZF3QWUcMOD3yrqLgBKvZBU1F0A9Nv3rYrkfX/wqFVo79UhdXehvReKzvFnHizqLgDqcejJou4CoLTklKLuAkq4osqXUuFlTPJlyZAw/fmi7gKg7n/2KuouAIqLPlHUXQA4h4lrQsU4AAAAAAAAAAAAAKBYc5qKcQAAULJZPCxF3QUAAAAUM2RMAAAAOBL50rVRMQ4AAAAAAAAAAAAAKNYYGAcAAAAAAAAAAAAAFGvcSh0AADgFqzu3IQIAAIBjkTEBAADgSORL10bFOAAAAAAAAAAAAACgWKNiHAAAOAWLB9frAQAAwLHImAAAAHAk8qVr49MDAAAAAAAAAAAAABRrDIwDAACnYHW3FNoLAAAAJYOz5sujR4/qoYceUtmyZeXj46MGDRpow4YNtvnGGL388ssqX768fHx8FBUVpb1799qt4/Tp0+rZs6f8/f0VGBiofv36KSEh4V/vMwAAAOSOc5iujYFxAAAAAAAAoJCcOXNGLVq0kIeHh3788Uft2LFDEydOVJkyZWxtXn/9dU2ZMkUzZszQ2rVr5evrq3bt2ikpKcnWpmfPntq+fbuWL1+uRYsW6ZdfftGAAQOKYpMAAAAAl8AzxgEAgFOweHAVJAAAABzLGTPma6+9pkqVKmnmzJm2aVWrVrX92xijyZMn68UXX9Q999wjSfrkk08UGhqqhQsXqnv37tq5c6eWLFmi9evXq0mTJpKkqVOn6q677tKbb76p8PDwwt0oAACAEsIZ8yXyjopxAAAAAAAA4F9ITk5WfHy83Ss5OTnHtt99952aNGmi++67TyEhIbrhhhv0wQcf2OYfOHBA0dHRioqKsk0LCAhQs2bNtHr1aknS6tWrFRgYaBsUl6SoqChZrVatXbu2gLYSAAAAcG0MjAMAAKfA83kAAADgaIWVLydMmKCAgAC714QJE3Ls099//613331XNWrU0NKlSzVw4EA99dRTmj17tiQpOjpakhQaGmq3XGhoqG1edHS0QkJC7Oa7u7srKCjI1gYAAACOxzlM18at1AEAAAAAAIB/YeTIkRo2bJjdNC8vrxzbZmRkqEmTJho/frwk6YYbbtC2bds0Y8YM9e7du8D7CgAAAJRUDIwDAACnwPN5AAAA4GiFlTG9vLxyHQi/XPny5VW3bl27aXXq1NHXX38tSQoLC5MkxcTEqHz58rY2MTExatSoka1NbGys3TrS0tJ0+vRp2/IAAABwPM5hujZupQ4AAAAAAAAUkhYtWmj37t120/bs2aOIiAhJUtWqVRUWFqaVK1fa5sfHx2vt2rWKjIyUJEVGRiouLk4bN260tVm1apUyMjLUrFmzQtgKAAAAwPVQMQ4AAJwCz80BAACAozljxhw6dKhuvvlmjR8/Xvfff7/WrVun999/X++//74kyWKxaMiQIXr11VdVo0YNVa1aVS+99JLCw8PVuXNnSZkV5nfeeaceffRRzZgxQ6mpqRo8eLC6d++u8PDwItw6AACA4s0Z8yXyjoFxAAAAAAAAoJA0bdpUCxYs0MiRIzV27FhVrVpVkydPVs+ePW1tRowYocTERA0YMEBxcXFq2bKllixZIm9vb1ubOXPmaPDgwWrTpo2sVqu6du2qKVOmFMUmAQAAAC6BgXEAAOAULG5cbQkAAADHctaM2bFjR3Xs2DHX+RaLRWPHjtXYsWNzbRMUFKS5c+cWRPcAAACQC2fNl8gbnjEOAAAAAAAAAAAAACjWqBgHAABOwcrVlgAAAHAwMiYAAAAciXzp2qgYBwAAAAAAAAAAAAAUa1SMAwAAp2CxcrUlAAAAHIuMCQAAAEciX7o2KsYBAAAAAAAAAAAAAMUaFeMAAMApWNy4Xg8AAACORcYEAACAI5EvXRufHgAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrHErdQAA4BSsbpai7gIAAACKGTImAAAAHIl86dqoGAcAAAAAAAAAAAAAF3b06FE99NBDKlu2rHx8fNSgQQNt2LDBNt8Yo5dfflnly5eXj4+PoqKitHfvXrt1nD59Wj179pS/v78CAwPVr18/JSQkFPamFBgGxgEAgFOwWC2F9gIAAEDJQL4EAACAIznrOcwzZ86oRYsW8vDw0I8//qgdO3Zo4sSJKlOmjK3N66+/rilTpmjGjBlau3atfH191a5dOyUlJdna9OzZU9u3b9fy5cu1aNEi/fLLLxowYIDD9l9R41bqAAAAAAAAAAAAAOCiXnvtNVWqVEkzZ860Tatatart38YYTZ48WS+++KLuueceSdInn3yi0NBQLVy4UN27d9fOnTu1ZMkSrV+/Xk2aNJEkTZ06VXfddZfefPNNhYeHF+5GFQAqxgEAgFOwulkK7QUAAICSgXwJAAAAR3LWc5jfffedmjRpovvuu08hISG64YYb9MEHH9jmHzhwQNHR0YqKirJNCwgIULNmzbR69WpJ0urVqxUYGGgbFJekqKgoWa1WrV279l/uOefAwDgAAAAAAAAAAAAAOJHk5GTFx8fbvZKTk3Ns+/fff+vdd99VjRo1tHTpUg0cOFBPPfWUZs+eLUmKjo6WJIWGhtotFxoaapsXHR2tkJAQu/nu7u4KCgqytXF1DIwDAACnYHGzFNoLAAAAJQP5EgAAAI5UmOcwJ0yYoICAALvXhAkTcuxXRkaGbrzxRo0fP1433HCDBgwYoEcffVQzZswo5D3k3BgYBwAAAAAAAAAAAAAnMnLkSJ09e9buNXLkyBzbli9fXnXr1rWbVqdOHR0+fFiSFBYWJkmKiYmxaxMTE2ObFxYWptjYWLv5aWlpOn36tK2Nq3Mv6g4AAABIksXK9XoAAABwLDImAAAAHKkw86WXl5e8vLzy1LZFixbavXu33bQ9e/YoIiJCklS1alWFhYVp5cqVatSokSQpPj5ea9eu1cCBAyVJkZGRiouL08aNG9W4cWNJ0qpVq5SRkaFmzZo5aKuKFgPjAAAAAAAAAAAAAOCihg4dqptvvlnjx4/X/fffr3Xr1un999/X+++/L0myWCwaMmSIXn31VdWoUUNVq1bVSy+9pPDwcHXu3FlSZoX5nXfeabsFe2pqqgYPHqzu3bsrPDy8CLfOcRgYBwAATsFi5dmMAAAAcCwyJgAAABzJWfNl06ZNtWDBAo0cOVJjx45V1apVNXnyZPXs2dPWZsSIEUpMTNSAAQMUFxenli1basmSJfL29ra1mTNnjgYPHqw2bdrIarWqa9eumjJlSlFsUoFgYBwAAAAAAAAAAAAAXFjHjh3VsWPHXOdbLBaNHTtWY8eOzbVNUFCQ5s6dWxDdcwoMjAMAAKdgdXPOqy0BAADgusiYAAAAcCTypWsrvCfEAwAAAAAAAAAAAABQBKgYBwAATsFZn88DAAAA10XGBAAAgCORL10bFeMAAAAAAAAAAAAAgGKNinEAAOAULFau1wMAAIBjkTEBAADgSORL18anBwAAcAWjR4+WxWKxe9WuXds2PykpSYMGDVLZsmXl5+enrl27KiYmxm4dhw8fVocOHVSqVCmFhITo2WefVVpaWmFvCgAAAAAAAACUWFSMAwAAp+DMz+epV6+eVqxYYfvZ3f1ihBo6dKh++OEHzZ8/XwEBARo8eLC6dOmi33//XZKUnp6uDh06KCwsTH/88YeOHz+uXr16ycPDQ+PHjy/0bQEAAChJnDljAgAAwPWQL10bA+MAAABX4e7urrCwsGzTz549q48++khz587V7bffLkmaOXOm6tSpozVr1qh58+ZatmyZduzYoRUrVig0NFSNGjXSK6+8oueee06jR4+Wp6dnYW8OAAAAAAAAAJQ43EodAAA4BaubpdBe+bV3716Fh4erWrVq6tmzpw4fPixJ2rhxo1JTUxUVFWVrW7t2bVWuXFmrV6+WJK1evVoNGjRQaGiorU27du0UHx+v7du3/8u9BgAAgCtx1nwJAAAA1+TM5zBxdVSMAwCAEic5OVnJycl207y8vOTl5ZWtbbNmzTRr1izVqlVLx48f15gxY3TLLbdo27Ztio6OlqenpwIDA+2WCQ0NVXR0tCQpOjrablA8a37WPAAAAAAAAABAwaNiHAAAlDgTJkxQQECA3WvChAk5tm3fvr3uu+8+XX/99WrXrp0WL16suLg4ffnll4XcawAAAAAAAADAtaJiHAAAOAWLtfBuDzRy5EgNGzbMblpO1eI5CQwMVM2aNbVv3z7dcccdSklJUVxcnF3VeExMjO2Z5GFhYVq3bp3dOmJiYmzzAAAAUHAKM2MCAACg+CNfujYqxgEAQInj5eUlf39/u1deB8YTEhK0f/9+lS9fXo0bN5aHh4dWrlxpm797924dPnxYkZGRkqTIyEht3bpVsbGxtjbLly+Xv7+/6tat69gNAwAAAAAAAADkiIpxAADgFCxW57xeb/jw4erUqZMiIiJ07NgxjRo1Sm5uburRo4cCAgLUr18/DRs2TEFBQfL399eTTz6pyMhINW/eXJLUtm1b1a1bVw8//LBef/11RUdH68UXX9SgQYPyPBgPAACAa+OsGRMAAACuiXzp2hgYBwAAuIIjR46oR48eOnXqlIKDg9WyZUutWbNGwcHBkqRJkybJarWqa9euSk5OVrt27TR9+nTb8m5ublq0aJEGDhyoyMhI+fr6qnfv3ho7dmxRbRIAAAAAAAAAlDgMjAMAAKfgrM/nmTdv3hXne3t7a9q0aZo2bVqubSIiIrR48WJHdw0AAABX4awZEwAAAK6JfOnaqPcHAAAAAAAAAAAAABRrVIwDAACnwNWWAAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrVIwDAACnwNWWAAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrVIwDAACnYLFyvR4AAAAci4wJAAAARyJfujY+PQAAAAAAAAAAAABAsUbFOAAAcApWN57PAwAAAMciYwIAAMCRyJeujYpxAAAAAAAAAAAAAECxRsU4AABwChYrV1sCAADAsciYAAAAcCTypWujYhwAAAAAAAAAAAAAUKxRMQ4AAJyCxcr1egAAAHAsMiYAAAAciXzp2vj0AAAAAAAAAAAAAADFGhXjAADAKfB8HgAAADgaGRMAAACORL50bVSMAwAAAAAAAAAAAACKNQbGAQAAAAAAAAAAAADFGrdSBwAAToHbEAEAAMDRyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnILFyvV6AAAAcCwyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMAp8HweAAAAOBoZEwAAAI5EvnRtVIwDAAAAAAAAAAAAAIo1KsYBAIBT4Pk8AAAAcDQyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMA5WHg+DwAAAByMjAkAAABHIl+6NCrGAQAAAAAAAAAAAADFGhXjAADAKVisXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxXghK9/7EYX36Wc3LenwIW3v/aAkqVzHuxXU5g6VqlFLbr6+2tyxndITE3Jcl8XDQ7Wnf6BS19XQjv59dGH/3lzf1+LhqYpPDFZQ6yhZPD0Uv36dDk9+U2lnztjaeISEKmLocJVudKPSL1zQqaU/6ugHM6SMdAdsOZzZ9XVK64G7y6tmVV+VC/LUi2/s0e/rM48NNzeL+nWvqGY3BKp8iJcSz6dr09azen/uPzp1JvWK6+3cLlQPdCqvoEAP7T90XlM+Pqhd+xNt8z08LHqiV4Ra3xwkTw+r1m85q8kfHtCZs2kFur1wLV3uClePLpUUVMZT+w8kaNJ7+7Rz77lc27duUU79H6qqsBBvHTl2Xu/OOqA1G0/btenXs4o6tQ1TaV93bd0Zrzen79WR4xcKelNwFRYr1+sB18KvbVeVbtfVblpa7DGdeG24JMmn+e3yueFmeVSsIqt3KUW/0F8m6Xy29XjVaSS/O7rII7yyTGqqUv7eqTMz37rye7frplLNW8vq46uUA3t09uuPlX4y2jbf4uOrgC595FX3BskYJf21TvELP5FJSXbAlsPZXV+ntLrfE66a1fwyM+Zru/Tb+jN2bfo+UEkdo0LkV8pd23bH6633D+hodNIV19v5zlB1vztcQYGe2ncoUVM+Oqhd+y7+zeTpYdHA3lV0e4uy8nS3at2WOE3+4IDOnL1ydkXJQb4sWciYwL83c/1uvfPHDvVoVF3DW10vSTqZmKS3f9umtYdjlZiSpogyfurXtJba1KggSdpw5IQe+/q3HNf3yQO3qV5YmRznJaela9KvW7VszxGlpGcosnKonm/dUGV9vW1tjsef14SfNmvDkZMq5eGmjnUqa3CLenLn+16stW9VRnfdVkahZT0kSYePJevzRSe1cVtmDgz0d9Mj3UJ1Q10/+XhbdSQ6WV8uPqk/NuX+f7wkdbitjLq0K6syAe468E+y3vv8uPYcvJhHPdwt6nd/qG5t6i8Pd6s2bU/Qu3OOK+4c58yRqWG9AD3YpZJqVfdTubJeGjlum35dc+qKy9xQP0CD+1dX1cq+ij2RrNlfHtKPK2Ps2uQ3s6LwkC9dG59eEbhw4G9t6dLJ9tr15EDbPKuXt86uW6vjcz656noqPPaEUk+ezNN7Vhr0lAIjW+jvMS9qz5DB8ihbTtXHjr/YwGpVjQlvyOLuoV2DH9fB/7yqsne2V/gj/fO9fXA93l5W7T94Xm9/dDD7PE+ralT11adfH9Vjz23TyxP3qlK4j8aNqHnFdbaODNLAXpU1+6sjGvDcNu0/dF6vv1Bbgf4Xr8cZ1DtCkY0DNeatfRoyaofKlvHQ2GeuvF6ULLe3DNbg/tU18/OD6jdko/YdSNBbYxsoMMAjx/b1a/tr1LN1tWjZcT3y9Eb9uuaUJrxQT1Url7K16dm1krp1rKA3p+/VgOF/6kJSut4a20CeHtwCB4DrSj3+j2JGD7S9Tr4zxjbP4uGp5N1blLDy21yX927QVIEPPqEL6/+rE28+r1PvjNaFTb9f8T19W3eS7y3tdParj3Xy7ZdkUpIUNOB5yf3i7+jAnoPkHlpBp9+boNMfvSnPanUUcB/5sqTw9nbT/oPnNfnDAznO79E5XF3vCtNb7/+tgf+3VReSM/TGS3Wu+H9y65vL6oneVTRr/hE9OuIv7T94Xm+8WMc+Y/apopsbl9HoiXv09KjtKlfGU2OfJWMiE/kSAPJne/QZfbPtoGqU87eb/vKyjTp0JkFvdWquLx5qo9uvC9fzP67Trtg4SVLD8mW1tH97u1fnehGq4F9KdUMDc32/ib9s1S9/R+s/dzXTB11v0YnEC3r2h7W2+ekZRk9/t1pp6Rmaef+tGtO2sb7feVgzVu8siM2HEzl1JlWzv47VkFcPaMi4A9qyK1EvDqqkyuFekqRhj1RQxTAvvfLOYQ0avV+r/zyn5x6rqGqVvHNd5y1N/NX//lB9/v0JPf3K3zpwJEljh0QooLSbrc2jD4TqputL6z/vHdHzbxxU2UB3/d8TlQp8e+E6fLzdMjPljNwLFy9VPtRbr49qoD//ilPfpzbqy++O6Lkna+mmGy5eMJTfzAog7xgYLwImPV1pZ07bXunxZ23zYr/+UjGff6bEHduvuA7/m5rLv8lNOjLjnau+n9XXV2Xv6qh/pk/VuT836fye3Tr42jj51b9evnXqZa6vyU3yjqiiA+PH6ML+vYpft0bHPv5QIfd0kcWdGwsUd+s2n9XHXxzJVsEjSYkX0vXsq7v08+rT+ud4knbuTdDbHx9Urep+Cinrmes67+tYXj+sjNWSn0/q0NELeuuDA0pKyVD71sGSJF8fN911e7Cmzz6sP7fHa8+B83pt+t+qX7u06tTwK7BthWvp3rmivl96XItXxujgP+f1xvS9SkrOUMc7wnJsf9/dFbR202l9vuCIDh05rw/nHNSe/Qnq2rGCXZtPvjyk39ae0v6DiXp10i6VDfLSLc3LFdZmIRcWq6XQXkCxk5GujHNnbS+TePEq8vO/LlHiqu+VemhfzstarfLv3Evx38/V+dUrlX4yWmkxR5W0ZW3O7f/H99Y7lbBioZK3b1Ta8X8U9/m7cvMPlHf9JpIk95BweddppLNffqDUw/uVemC34hfMknejSFn9Ax215XBi6/6M00fz/tFv607nOL9bh/L69Osj+n39Gf196LwmTN2ncmU81fKmoFzXeV+n8vphRayW/HRCh45c0Fvv/62k5AzddXuIJMm3lJvuuj1E02cf1J/b4rXn70S9Nm2fGtT2V10yJkS+LInIl8C1O5+SpheXrteLbW6Qv5f9OaC/jp/SAw2rqX5YkCoG+Kr/TbVV2stDO/83MO7hZlU5X2/bK8DbU//9+7g61Y2QxZLzd+Zccqq+3X5Qw25toJsqBatOaBmNuqOxthw/ra3HM/PEmsMxOnA6Xq+0a6JawYFqUSVMA5vX1Zd//a3U9IwC3R8oWuv+StCGbQk6FpuiYzEp+nThCSUlZ6hWNR9JUp3qpfT9qtPaczBJMSdT9cUPJ5V4Pl3XReQ+MN75jrJa+mucVvxxVv8cT9G0z44rOSVDd7QIlCSV8rHqjpZl9NGX0fpr13ntP5ykybOOqe51pWzvC6zZeFoffHZQv1ylSjxL5zvL63hMkt75+G8dOnJe3/xwTD//fkIP3FPR1ia/mRWFi3OYri3fA+MnT57U66+/rnvvvVeRkZGKjIzUvffeqzfeeEMnTpwoiD4WO14VKqrB/G9Vf86XqvLCKHmEhOZrefcyZRQx/DkdHP+KMpKufJtBSfKtWUtWDw+d27jBNi35n8NKjo6Wb736mW3q1deFA3/b3Vo9fv1aufn5ybtK1Xz1D8Wfbyk3ZWQYJZzP+ZZB7m4W1azmq41b423TjJE2bT2rejVLS5JqVvOVh7tVG7devDDkn2NJij6RrHo1OWkJyd3doprXldaGLRd/Lxkjbdh8RvVq+ee4TP3a/tqw2f4Cj7V/nlb92pntw0O9VS7IS+svaZN4Pl079sTb2gAofOTLf8+tXJhCXp6m4P+brMCeg2QNLJvnZT0qVJVbYFnJGJUbNl4ho6apTP8Rcg+rmOsybkEhcvMvo+Q922zTTNIFpRzeL8+IGpnrrVJDGecTlXrkYrVw8t5tkjHyqHzdNWwlipPyIV4qW8ZTG/+6mAUTz6drx94E1f1fXrycu7tFtar5aeNfcbZpxkgbt8apbq1LMqaH1W69h/+XMbPaoOQiXwIlCxnz3/vPz5vVskqYmlUOyTbv+vJltWzPEZ1NSlGGMVq6+4iS0zLUpGLOFwX98vdxnU1K0d11I3J9v52xcUrLMGpWOdg2rWpQaYWV9tFf/xsY/+v4aV1XNsDu1uqRESFKTEnT/lPx2daJ4slqkW5t6i9vT4t27c98TNTO/ed1S1N/+ZWyyvK/+Z4eVm3dnZjjOtzdpOsivLV558X5xkibdyaqdvXMO8NcF+EtD3eLXZsj0SmKPZWi2gyM4xrVyyFfrtt0WvX+lx2vJbMCyLt8lQKvX79e7dq1U6lSpRQVFaWaNTNvRxcTE6MpU6boP//5j5YuXaomTZoUSGeLg8SdO3TwtXFK/uewPMqWVflej6jW29O145GHlXEh+7Mec1LluRd04ruFOr9nlzxDr36FkHtQWWWkpGR7VnnamdPyCMqsxvAIClLqGftKjqyfPYLK6oLydhsQFH8eHhY91rOyVv1+Sucv5DwwHuDvLjc3i87E2T/H8UxcqiqHZ4bGoEAPpaRmKPGywfUzZ1MVFMgtYSAF+HvI3c2i05c9y/50XKoiKpbKcZmgQE+diUuxm3YmLlVBgZlXtgeV8bRNs2+TYpuHosPzeUom8uW/l3p4n87Oe09pJ47J6l9Gpdt2UdlBL+vkm8/JJF/9Ikq3spknOv3adtG57z5T2pmT8mt1l8o+8ZJiJwyTuZD9RJLVP0CSlHHurN30jHNnbfOspQOVkWA/XxkZyjifILfSgdewpShOgspk5r3Tl/+ffDYl1ywYUDozY54+m0PGrJCVMT2VkpqR7QLOzDxAxizpyJclExmzZCJj/ntLdx/Rrtiz+rT7bTnOf+2upnp+8Xrd/t4PcrNa5O3upjc7NlOlwJyLHb7dfkiRlUMVWjr3wcRTiUnycLOq9GXV6WVLeevU+cxce+p8soJKednNz/o5qw2Kr4gKXnrz+ary9LDoQnKGxk0/on+OZ/4//dp7R/TcYxU17+3aSkszSk7J0Ljp/+j4idQc1+Xvl5kt4+LT7KbHxaepYljmMVXG312pqRlKvJBxWZt0lQngLqu4NmXLeOr0ZfnydFyq/Hzd5elpVWk/93xnVhQu8qVry9dv7yeffFL33XefZsyYke2WN8YYPf7443ryySe1evXqK64nOTlZycnJdtNSMjLkWQIOpvh1a2z/vvD3fiXu2KEG875Wmda369TiRVddPrhLN7mVKqXouZ8WZDeBHLm5WTRqaGYV2KQPDxZtZwAAxUJB5svktHR5ubvlskTxkbxry8Ufjv+j04f2KeTFKfJu2FwX1v189RX8b78nrPxWSVvXS5Li5r2nkJffkU/DZjq/ZlUB9BoAAKDgOCJj5pQvU1PT5OVR/AfDos+d15v//UvT722Ra55+d/VOnUtO1bv3tlCgj5d+3n9Mzy9erw/vu0U1ygXYtY05d0GrD8foP+1vKozuoxg7Gp2sp8buVykfN7Vs7K+hj4Tr+TcO6p/jKXqoc4h8fdz0wsRDik9IU/MbSuu5xyrqudcP6tDR5KuvHABQIuRrJHrLli0aOnRojs+BsVgsGjp0qDZv3nzV9UyYMEEBAQF2r5mHjuSnK8VGemKCko78I6/w3G9VeSn/GxrLt2593bjsJ9244r+qP+cLSVKd9z5UledfzHGZtNOnZPX0lJuv/RWb7mWClHo6syo89fRpeZSxf5Zf1s+pp/P2bAwUb5mD4tcprJynnn11V67V4pJ0Nj5N6elGZS6ryikT6GGrCjodlypPD6t8S9n/gVUmwCNb5RBKprPxqUpLN7aKsixBgR46dSYlx2VOx6WoTKD9leWZx11m+9P/Wy77selpm4eiw/N5SqaCzJdT1+0ogB47P5N0Xmknjsu9XN4e15MRHydJSos5enFieprST8XKrUzOt8LMiM+sBLeWtj/paS0dYJuXcS5OVj/7+bJaZS3lp/RzcXnqG4qvrOqHy6u4ywR45poFz57LzJhBAVfKmCny9LDK7/KMGUjGBPmypCJflkyOyJg55cuJy9ZccZniYmdsnE5fSFbPz3/STVMW6qYpC7Xx6EnN27xfN01ZqH/iEvTFlr816o4bdVPlENUMDtCA5nVUNzRQ87f8nW193+04pABvT91arfwV37esr7dS0zN0Ltn+9+ep80kqWyrz1ullS3np9Hn7Qc6sn7PaoPhKS5eOn0jV/sNJmr0gVgf+SdLdbcoqLNhDnW4P0tuzj2nLrkQdOJKsz78/qX0HL6hj6zI5ris+ITNbBvrbX+wS6O+uM/+rIj8TnyYPD6t8fayXtXHTmbP2leZAXp06k2K7+1CWoEAPJSSmKSUl45oyKwoX5zBdW74GxsPCwrRu3bpc569bt06hoVc/ATdy5EidPXvW7tU3Im8Dw8WN1dtHXuEVlHr6ZJ7aH546WTv699aO/n20o38f7X3+WUnS32NH6eiH7+W4TOKe3cpITVXpxhdvD+VVqbK8wsKUuD3zuZCJ27fJp2o1uQcG2tr4N2mq9IQEJR06eG0bh2Ija1C8Ypi3nnlll+ITrhz80tKN9vydqBvrX3zmicUi3Vg/QNv3nJMk7fk7UalpGWrc4GKbSuW9FRbspe17ErKtEyVPWprRnn3n1Pj6i3/AWCxS44ZltH13zs8N27YrXk0a2v/B07RRGW3bldn+WEySTp5OtmtTysdNdWv629oAKFwFmS+fvKmuI7vqMiyeXnIvF6r0/w14X03qkQMyqSlyD77kRKXVTW5BwUo7k3NGTT8dq/T4M/KqUe/i+3r5yLNydaUcynwET+rBvbKW8pV7xaq2Np7X1ZMsFqUe3pf/DUOxcjw2WafOpOjGBhcvnijl46a6Nfy043958XJpaUa7/06wW8ZikRo3CNCO3ZdkzNQMuzaVwjMzZlYblFzkS6DkcETGzClfPtO2uaO76pRuqhSsL3q20dwHb7e96oYEqn3tSpr74O1KSssslrj8fL3VYlHGZesyxuj7HYfUoU5lebhd+VR0nZBAuVstWnf44jPgD545p+hzF3R9+cwCnuvLB2nfqbN2g+NrD8fK19Nd1YJKX/tGwyVZrBZ5eFjk5Zl5bGVkGLv5GUY5XiAjZQ6y7zuUpIZ1fC+uzyI1rONre275vkNJSk0zdm0qhHoqpKyndv19wdGbgxJi+654NW4YaDet6Q1ltP1/2fFaMiuAvMvXvX+GDx+uAQMGaOPGjWrTpo0tQMbExGjlypX64IMP9Oabb151PV5eXvLysn8WTEm4jbokVXh8kM6u/l0p0dHyKFdO4X36y2Sk68zKFZIyq7g9gsrKq0LmhQI+1aor/fx5pcRGK/3cOaXGxujSOoeMC5n/AScfParUk5mh0aNcOdWcOEUHJryi87t2KiMxUacWL1LFgU8qLT5eGecTVenJoUrYtlWJO7dLkuI3rFPSoYOq8n8v6+h70+URFKTwRwYo9ttvZFKprCjuvL2sqhB28ara8iFeqh5RSucS0nQqLlVjhtVQjaql9H+v7ZHValGZ/1XpnEtIU1p6ZuCc+FJt/brujBYujZEkzV90XM8Pqq49fydq574EdbsrTN5eVi35OfM4TbyQrsWrTmhgrwjFJ6Tr/Pk0PflIFW3bfU479zIwjkzzFh7RC0Nra9e+c9q555zuv6eCfLyt+mFFtCTpxaG1dOJUit775IAkaf53R/XOhIbq3rmi/thwSlG3hKj2daX1+jt7bOuc/91R9X6gsv45dkHHY5LU/6EqOnU6Wb+uydsFSig4XAVZMhVkvkwsAbdRl6TSnR5U8vZNSj9zUtaAMirdrptMRoaS/vxDUmYVt7V0oNz+V0HuXr6STHKS0s+clLmQKJN8QedXr1Tpdl2VHndK6WdOyq91R0lS0pa1tvcJfu5Nxf8wT8nbNkiSEn9ZIr+oe5V2Mlrpp06odPv7lB4fp6T/zU+LPaaknZsVeF9/nf3qY8nNTQFd+ihp82pblTqKNx9v+4wZFuqt66qUUnxCmmJPpuirH47r4a4VdeR4ko7HJqtf90o6eSZFv607bVtm4qi6+m3taS1Ykvl///zvj2vk4Ou0e///MmaH8vL2ctOPP/0vY55P1+JVsXqiTxXFJ6Tp/IV0PdWvqrbtPqcdZEyIfFkSkTFLJkdkzJzyZUIJuI26JPl6eui6cvaVij4e7grw9tR15fyVmp6hSgG+Grdys4bcUl8B3p76+e/jWns4VpPvjrRbbv0/J3Q0/rw616uS7X1iEy7o8W9+09i2jVU/LEilvTx0T70qeuvXrfL39pSfp7te/+9fur58kBr8b2C8eeVQVQ3y10tLN+jplvV18nySpq/eofuvrybPEpL/S6re94Zow7YEnTidKh9vq267KUANapbSy5MP60h0so7FJGvww+X18fwYxSemK7JRaTWq46uxU/+xrWPcsAit/jNei346I0lauPyUhj4Srr0HL2jPgQu6J6qsvD2tWvF7nCTp/IUMLf/tjPrfH6pziek6fyFDj/cI085957WbgXH8j4+3VRXK+9h+Lh/qreuq+upcQppiTiTrsV5VFVzWU69O2i1JWrjkuLp0rKCBfarphxXH1fj6MmrdMkQjxmy1reNqmRVFi3zp2vKV5gYNGqRy5cpp0qRJmj59utLTM68OdHNzU+PGjTVr1izdf//9BdLR4sIzOERVXxwjd39/pZ2NU8LWv7Rr0GNKOxsnSQq+u7PC+/Szta81Zbok6eB/xunU0sV5eg+Lm7u8K0fI6nXxJNQ/06aooslQ9THjZPHwUPz6dTo8+ZI/ADIytO//nlXlIc+q9jvvKT3pgk4t/VHHPv7w3280nF6t6r6aPPpiVd2g3hGSpCU/n9Cs+UfUomnm1WkfvtHAbrkho3doy47MypvwUG8FXHLroZ9Wn1aAv4f63F9RQYEe2n/wvJ4bv8vuNkPTZh+SMdKYZ2rIw92i9VvOajLPLsclVv12QoEBHurfs4qCynhq398JembUVp35361QQ4O9denFwNt2xWvMmzv16ENVNaBXVR05dkEjx23XgcPnbW3mfP2PvL3dNGJwTfn5umvrjrN6ZtRWpaSay98eQCEgX/57bgFlFfjQk7L6+ikjIV4pB/bo1JSXlZGY+X90qcgolW7X1da+3OBRkqS4eTN0Yf0vkqT47+fKZKQr8MEnZPHwUOrh/Tr97qsyFxJty7mHhMvqU8r2c+JP38vi6aWAbv1l9SmllAN7dPr9/0hpFy+qjJszTQFd+ijo8f+TjFHS1nWKXzC7QPcHnEet6n6aPObiXQUG96kiSVryU6z+M22/Pl94TN5ebhr+WLXM/5N3xWvEqzvt/k+uEOplnzH/OKVAfw/17V5JQYEe2ncwUSPG7dSZsxePu2mzDirDSGOH15KHh0Xrt8Rp8gcHCn6D4RLIl0DJQMYsWB5uVk2552ZN/X27hn63RudT01Qp0Fdj2jZWy6phdm0Xbj+khuWDVDWHau60jAwdOpNgq0CXpGdubSCrRRrxw1qlpGcoMiJEz7duZJvvZrXo7bsjNWHVZvX58r/y8XBTxzqV9XhknQLbXjiHAH83DXskXEEB7kq8kKGDR5L08uTD2rwz82+W0VP+Ue8uIXrpycry8bLqeGyKJs08pg3bLl4cGRbsIX+/i9ny1w3xCijtpofuCVYZf3f9/U+yXn77sOLOXTwmP/giRhlG+r+BleThbtGm7QmaPud44W04nF7t60pr6oRGtp+f6n+dJGnxymiNn7xbZYM8FRp8cazmeEySRozZqif7V9d9d1fQiZPJem3qbq3784ytzdUyK4BrZzHGXNNfaqmpqTp5MvPq53LlysnDw+MqS1zZxtYt/tXywL81PPitou4CoNQLSUXdBUC/fd+qSN43dmSvQnuvkAmfFNp7Ie8cnS+PP/OgI7oF/Cs9Dj1Z1F0AlJbMswhRtIoqX0qFlzHJl87LkRkzYfrzjuoWcM26/1l4fzsDuYmLPnH1RkAB4xwmrsU13//Hw8ND5cuXv3pDAACAvCghj1VB7siXAADA4ciYJR4ZEwAAOBT50qXx6QEAAAAAAACFZPTo0bJYLHav2rVr2+YnJSVp0KBBKlu2rPz8/NS1a1fFxMTYrePw4cPq0KGDSpUqpZCQED377LNKS0u7/K0AAAAAXOKaK8YBAAAcyWKxFHUXAAAAUMw4a8asV6+eVqxYYfvZ3f3iKbqhQ4fqhx9+0Pz58xUQEKDBgwerS5cu+v333yVJ6enp6tChg8LCwvTHH3/o+PHj6tWrlzw8PDR+/PhC3xYAAICSxFnzJfKGgXEAAAAAAACgELm7uyssLCzb9LNnz+qjjz7S3Llzdfvtt0uSZs6cqTp16mjNmjVq3ry5li1bph07dmjFihUKDQ1Vo0aN9Morr+i5557T6NGj5enpWdibAwAAALgEbqUOAACcgsVqLbQXAAAASgZnzZd79+5VeHi4qlWrpp49e+rw4cOSpI0bNyo1NVVRUVG2trVr11blypW1evVqSdLq1avVoEEDhYaG2tq0a9dO8fHx2r59+7/cYwAAALgSzmG6NirGAQAAAAAAgH8hOTlZycnJdtO8vLzk5eWVrW2zZs00a9Ys1apVS8ePH9eYMWN0yy23aNu2bYqOjpanp6cCAwPtlgkNDVV0dLQkKTo62m5QPGt+1jwAAAAAOWNgHAAAOAWLlefzAAAAwLEKK2NOmDBBY8aMsZs2atQojR49Olvb9u3b2/59/fXXq1mzZoqIiNCXX34pHx+fgu4qAAAA/gXOYbo26vABAAAAAACAf2HkyJE6e/as3WvkyJF5WjYwMFA1a9bUvn37FBYWppSUFMXFxdm1iYmJsT2TPCwsTDExMdnmZ80DAAAAkDMGxgEAgHOwWgvvBQAAgJKhkPKll5eX/P397V453UY9JwkJCdq/f7/Kly+vxo0by8PDQytXrrTN3717tw4fPqzIyEhJUmRkpLZu3arY2Fhbm+XLl8vf319169Z17P4DAACAPc5hujRupQ4AAAAAAAAUkuHDh6tTp06KiIjQsWPHNGrUKLm5ualHjx4KCAhQv379NGzYMAUFBcnf319PPvmkIiMj1bx5c0lS27ZtVbduXT388MN6/fXXFR0drRdffFGDBg3K82A8AAAAUBIxMA4AAJwCz+cBAACAozljxjxy5Ih69OihU6dOKTg4WC1bttSaNWsUHBwsSZo0aZKsVqu6du2q5ORktWvXTtOnT7ct7+bmpkWLFmngwIGKjIyUr6+vevfurbFjxxbVJgEAAJQYzpgvkXcMjAMAAAAAAACFZN68eVec7+3trWnTpmnatGm5tomIiNDixYsd3TUAAACgWGNgHAAAOAWLhefmAAAAwLHImAAAAHAk8qVr49MDAAAAAAAAAAAAABRrVIwDAADnwPN5AAAA4GhkTAAAADgS+dKlUTEOAAAAAAAAAAAAACjWqBgHAABOwWLlej0AAAA4FhkTAAAAjkS+dG18egAAAAAAAAAAAACAYo2BcQAA4BQsVkuhvQAAAFAykC8BAADgSM56DnP06NGyWCx2r9q1a9vmJyUladCgQSpbtqz8/PzUtWtXxcTE2K3j8OHD6tChg0qVKqWQkBA9++yzSktLc8h+cxbcSh0AAAAAAAAAAAAAXFi9evW0YsUK28/u7heHgYcOHaoffvhB8+fPV0BAgAYPHqwuXbro999/lySlp6erQ4cOCgsL0x9//KHjx4+rV69e8vDw0Pjx4wt9WwoKA+MAAMA5WLiRDQAAAByMjAkAAABHcuJ86e7urrCwsGzTz549q48++khz587V7bffLkmaOXOm6tSpozVr1qh58+ZatmyZduzYoRUrVig0NFSNGjXSK6+8oueee06jR4+Wp6dnYW9OgXDeTw8AAAAAAAAAAAAAcFV79+5VeHi4qlWrpp49e+rw4cOSpI0bNyo1NVVRUVG2trVr11blypW1evVqSdLq1avVoEEDhYaG2tq0a9dO8fHx2r59e+FuSAGiYhwAAAAAAAAAAAAAnEhycrKSk5Ptpnl5ecnLyytb22bNmmnWrFmqVauWjh8/rjFjxuiWW27Rtm3bFB0dLU9PTwUGBtotExoaqujoaElSdHS03aB41vysecUFA+MAAMApWKyWou4CAAAAihkyJgAAABypMPPlhAkTNGbMGLtpo0aN0ujRo7O1bd++ve3f119/vZo1a6aIiAh9+eWX8vHxKeiuugxupQ4AAAAAAAAAAAAATmTkyJE6e/as3WvkyJF5WjYwMFA1a9bUvn37FBYWppSUFMXFxdm1iYmJsT2TPCwsTDExMdnmZ80rLhgYBwAAzsFqLbwXAAAASgbyJQAAABypEM9henl5yd/f3+6V023Uc5KQkKD9+/erfPnyaty4sTw8PLRy5Urb/N27d+vw4cOKjIyUJEVGRmrr1q2KjY21tVm+fLn8/f1Vt25dx+7DIsSt1AEAAAAAAAAAAADARQ0fPlydOnVSRESEjh07plGjRsnNzU09evRQQECA+vXrp2HDhikoKEj+/v568sknFRkZqebNm0uS2rZtq7p16+rhhx/W66+/rujoaL344osaNGhQngfjXQED4wAAwClYLDz/EQAAAI5FxgQAAIAjOWu+PHLkiHr06KFTp04pODhYLVu21Jo1axQcHCxJmjRpkqxWq7p27ark5GS1a9dO06dPty3v5uamRYsWaeDAgYqMjJSvr6969+6tsWPHFtUmFQgGxgEAAAAAAAAAAADARc2bN++K8729vTVt2jRNmzYt1zYRERFavHixo7vmVBgYBwAAzoFnMwIAAMDRyJgAAABwJPKlS+PTAwAAAAAAAAAAAAAUa1SMAwAAp2CxOufzeQAAAOC6yJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIOF6/UAAADgYGRMAAAAOBL50qXx6QEAAAAAAAAAAAAAijUqxgEAgHPg+TwAAABwNDImAAAAHIl86dKoGAcAAAAAAAAAAAAAFGtUjAMAAKdg4fk8AAAAcDAyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMA58HweAAAAOBoZEwAAAI5EvnRpVIwDAAAAAAAAAAAAAIo1KsYBAIBTsFi5Xg8AAACORcYEAACAI5EvXRufHgAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrHErdQAA4BwslqLuAQAAAIobMiYAAAAciXzp0qgYBwAAAAAAAAAAAAAUa1SMAwAA52Dlej0AAAA4GBkTAAAAjkS+dGl8egAAAAAAAAAAAACAYo2BcQAA4BwslsJ7/Qv/+c9/ZLFYNGTIENu0pKQkDRo0SGXLlpWfn5+6du2qmJgYu+UOHz6sDh06qFSpUgoJCdGzzz6rtLS0f9UXAAAAXIUL5EsAAAC4EBc5h4mcMTAOAACQR+vXr9d7772n66+/3m760KFD9f3332v+/Pn673//q2PHjqlLly62+enp6erQoYNSUlL0xx9/aPbs2Zo1a5Zefvnlwt4EAAAAAAAAACiRGBgHAABOwWK1FtrrWiQkJKhnz5764IMPVKZMGdv0s2fP6qOPPtJbb72l22+/XY0bN9bMmTP1xx9/aM2aNZKkZcuWaceOHfrss8/UqFEjtW/fXq+88oqmTZumlJQUh+w/AAAAZOfM+RIAAACux9nPYeLK2KsAAKDESU5OVnx8vN0rOTn5issMGjRIHTp0UFRUlN30jRs3KjU11W567dq1VblyZa1evVqStHr1ajVo0EChoaG2Nu3atVN8fLy2b9/uwC0DAAAAAAAAAOSEgXEAAOAcLNZCe02YMEEBAQF2rwkTJuTatXnz5mnTpk05tomOjpanp6cCAwPtpoeGhio6OtrW5tJB8az5WfMAAABQQAorYwIAAKBkKMRzmHA896LuAAAAQGEbOXKkhg0bZjfNy8srx7b//POPnn76aS1fvlze3t6F0T0AAAAAAAAAgIMxMA4AAJyD1VJob+Xl5ZXrQPjlNm7cqNjYWN144422aenp6frll1/0zjvvaOnSpUpJSVFcXJxd1XhMTIzCwsIkSWFhYVq3bp3demNiYmzzAAAAUEAKMWMCAACgBCBfujTq8AEAAK6gTZs22rp1qzZv3mx7NWnSRD179rT928PDQytXrrQts3v3bh0+fFiRkZGSpMjISG3dulWxsbG2NsuXL5e/v7/q1q1b6NsEAAAAAAAAACUNFeMAAMApWJz0uTmlS5dW/fr17ab5+vqqbNmytun9+vXTsGHDFBQUJH9/fz355JOKjIxU8+bNJUlt27ZV3bp19fDDD+v1119XdHS0XnzxRQ0aNCjPlesAAADIP2fNmAAAAHBN5EvXxsA4AADAvzRp0iRZrVZ17dpVycnJateunaZPn26b7+bmpkWLFmngwIGKjIyUr6+vevfurbFjxxZhrwEAAAAAAACg5GBgHAAAOAcXej7Pzz//bPezt7e3pk2bpmnTpuW6TEREhBYvXlzAPQMAAIAdF8qYAAAAcAHkS5dGvT8AAAAAAAAAAAAAoFijYhwAADgHns8DAAAARyNjAgAAwJHIly6NTw8AAAAAAAAAAAAAUKxRMQ4AAJyDhefzAAAAwMHImAAAAHAk8qVLo2IcAAAAAAAAAAAAAFCsUTEOAACcg5Xr9QAAAOBgZEwAAAA4EvnSpfHpAQAAAAAAAAAAAACKNQbGAQAAAAAAAAAAAADFGrdSBwAAzsHC9XoAAABwMDImAAAAHIl86dL49AAAAAAAAAAAAAAAxRoV4wAAwDlYLUXdAwAAABQ3ZEwAAAA4EvnSpVExDgAAAAAAAAAAAAAo1qgYBwAAzoHn8wAAAMDRyJgAAABwJPKlS+PTAwAAAAAAAP6fvfsOj6rK/zj+mbRJnUmBJEAIvYUWQIRYERFERFFcdRcBFRsGFHARcRFZUKNYsFEsCFhYlP0tFlSqCgqhBYOhd0JLAqSHZFJmfn9EJo4mFB2SyfB+Pc99Huaec++cOwmT7z3nfs8BAAAA4NbIGAcAAK7BwPo8AAAAcDJiTAAAADgT8WWtRsY4AAAAAAAAAAAAAMCtkTEOAABcgwfP6wEAAMDJiDEBAADgTMSXtRo/PQAAAAAAAAAAAACAWyNjHAAAuAbW5wEAAICzEWMCAADAmYgvazUyxgEAAAAAAAAAAAAAbo2McQAA4BoMPK8HAAAAJyPGBAAAgDMRX9Zq/PQAAAAAAAAAAAAAAG6NjHEAAOAaPHheDwAAAE5GjAkAAABnIr6s1fjpAQAAAAAAAAAAAADcGhnjAADANRgMNd0CAAAAuBtiTAAAADgT8WWt5jID40+EvVLTTcAlbuyiITXdBEAFq3fUdBMAwG3cc3RUTTcB0NgvBtd0EwCteiu5ppsAAG7hodQRNd0EQMPnXl/TTQA0895FNd0EAPhTXGZgHAAAXOIMrPACAAAAJyPGBAAAgDMRX9Zq/PQAAAAAAAAAAAAAAG6NjHEAAOAaWJ8HAAAAzkaMCQAAAGcivqzVyBgHAAAAAAAAasiLL74og8GgUaNG2fcVFRUpPj5eYWFhCgwM1MCBA5Wenu5wXGpqqvr16yd/f3+Fh4dr7NixKi0trebWAwAAALUHA+MAAAAAAABADdi4caPeeecddejQwWH/6NGj9dVXX2nhwoVatWqVjh07pttvv91eXlZWpn79+qm4uFhr167VvHnzNHfuXE2cOLG6LwEAAACoNRgYBwAArsHDo/o2AAAAXBpcOL7Mz8/XoEGD9N577ykkJMS+PycnR7Nnz9Zrr72mnj17qkuXLpozZ47Wrl2rdevWSZKWLVum7du36+OPP1ZsbKz69u2rKVOmaPr06SouLnbKRwcAAIBK0IdZq/GpAgAAAAAAANUsPj5e/fr1U69evRz2JyUlqaSkxGF/69atFR0drcTERElSYmKi2rdvr4iICHudPn36KDc3V9u2baueCwAAAABqGa+abgAAAIAk2QyGmm4CAAAA3Ex1xZgWi0UWi8Vhn9FolNForLT+ggULtHnzZm3cuPEPZWlpafLx8VFwcLDD/oiICKWlpdnr/HZQ/Ez5mTIAAABcHPRh1m5kjAMAAAAAAAB/QUJCgsxms8OWkJBQad3Dhw/r8ccf1yeffCJfX99qbikAAABw6SJjHAAAuAYDz+sBAADAyaopxhw/frzGjBnjsK+qbPGkpCRlZGSoc+fO9n1lZWVavXq13n77bS1dulTFxcXKzs52yBpPT09XZGSkJCkyMlIbNmxwOG96erq9DAAAABcJfZi1Gj89AAAAAAAA4C8wGo0ymUwOW1UD49dff71SUlKUnJxs3y677DINGjTI/m9vb2+tXLnSfsyuXbuUmpqquLg4SVJcXJxSUlKUkZFhr7N8+XKZTCbFxMRc3IsFAAAAaikyxgEAgGvgaUsAAAA4mwvGmEFBQWrXrp3DvoCAAIWFhdn3Dxs2TGPGjFFoaKhMJpNGjhypuLg4de/eXZLUu3dvxcTEaPDgwZo6darS0tI0YcIExcfHVzkgDwAAACdwwfgS54+BcQAAAAAAAMCFTJs2TR4eHho4cKAsFov69OmjGTNm2Ms9PT21ePFiDR8+XHFxcQoICNDQoUM1efLkGmw1AAAA4NoYGAcAAC7BZjDUdBMAAADgZmpLjPnDDz84vPb19dX06dM1ffr0Ko9p1KiRvvnmm4vcMgAAAPxWbYkvUTny/QEAAAAAAAAAAAAAbo2McQAA4BpYnwcAAADORowJAAAAZyK+rNX46QEAAAAAAAAAAAAA3BoD4wAAwDUYDNW3AQAA4NJAfAkAAABnqgV9mC+++KIMBoNGjRpl31dUVKT4+HiFhYUpMDBQAwcOVHp6usNxqamp6tevn/z9/RUeHq6xY8eqtLT0T7fDFTEwDgAAAAAAAAAAAAC13MaNG/XOO++oQ4cODvtHjx6tr776SgsXLtSqVat07Ngx3X777fbysrIy9evXT8XFxVq7dq3mzZunuXPnauLEidV9CRcVA+MAAMA1eHhU3wYAAIBLA/ElAAAAnMmF+zDz8/M1aNAgvffeewoJCbHvz8nJ0ezZs/Xaa6+pZ8+e6tKli+bMmaO1a9dq3bp1kqRly5Zp+/bt+vjjjxUbG6u+fftqypQpmj59uoqLi5328dU0IncAAAAAAAAAAAAAqMXi4+PVr18/9erVy2F/UlKSSkpKHPa3bt1a0dHRSkxMlCQlJiaqffv2ioiIsNfp06ePcnNztW3btuq5gGrgVdMNAAAAkCQbazMCAADAyYgxAQAA4EzVGV9aLBZZLBaHfUajUUaj8Q91FyxYoM2bN2vjxo1/KEtLS5OPj4+Cg4Md9kdERCgtLc1e57eD4mfKz5S5CzLGAQAAAAAAAAAAAMCFJCQkyGw2O2wJCQl/qHf48GE9/vjj+uSTT+Tr61sDLa09yBgHAACuwcDzegAAAHAyYkwAAAA4UzXGl+PHj9eYMWMc9lWWLZ6UlKSMjAx17tzZvq+srEyrV6/W22+/raVLl6q4uFjZ2dkOWePp6emKjIyUJEVGRmrDhg0O501PT7eXuQvuDgAAAAAAAAAAAADAhRiNRplMJoetsoHx66+/XikpKUpOTrZvl112mQYNGmT/t7e3t1auXGk/ZteuXUpNTVVcXJwkKS4uTikpKcrIyLDXWb58uUwmk2JiYi7+xVYTMsYBAIBLsJHNAwAAACcjxgQAAIAzuWJ8GRQUpHbt2jnsCwgIUFhYmH3/sGHDNGbMGIWGhspkMmnkyJGKi4tT9+7dJUm9e/dWTEyMBg8erKlTpyotLU0TJkxQfHx8pYPxtRUD4wAAAAAAAAAAAADgpqZNmyYPDw8NHDhQFotFffr00YwZM+zlnp6eWrx4sYYPH664uDgFBARo6NChmjx5cg222vkYGAcAAAAAAAAAAAAAN/HDDz84vPb19dX06dM1ffr0Ko9p1KiRvvnmm4vcsprFwDgAAHANBkNNtwAAAADuhhgTAAAAzkR8Wau53kT4AAAAAAAAAAAAAAA4ERnjAADAJdgMPK8HAAAA5yLGBAAAgDMRX9Zu/PQAAAAAAAAAAAAAAG6NjHEAAOAaWJ8HAAAAzkaMCQAAAGcivqzVyBgHAAAAAAAAAAAAALg1MsYBAIBrYH0eAAAAOBsxJgAAAJyJ+LJW46cHAAAAAAAAAAAAAHBrZIwDAACXYGN9HgAAADgZMSYAAACcifiydiNjHAAAAAAAAAAAAADg1sgYBwAAroH1eQAAAOBsxJgAAABwJuLLWo2fHgAAAAAAAAAAAADArZExDgAAXIJNrM8DAAAA5yLGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAl2FifBwAAAE5GjAkAAABnIr6s3fjpAQAAAAAAAAAAAADcGhnjAADANfC0JQAAAJyNGBMAAADORHxZq/HTAwAAAAAAAAAAAAC4NTLGAQCAS7AZDDXdBAAAALgZYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArTEwDgAAAAAAAAAAAABwa0ylDgAAXILNwPN6AAAAcC5iTAAAADgT8WXtxk8PAAAAAAAAAAAAAODWyBgHAACuwWCo6RYAAADA3RBjAgAAwJmIL2s1MsYBAAAAAAAAAAAAAG6NjHEAAOASWJ8HAAAAzkaMCQAAAGcivqzd+OkBAAAAAAAAAAAAANwaGeMAAMAl2MT6PAAAAHAuYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXALr8wAAAMDZiDEBAADgTMSXtRs/PQAAAAAAAAAAAACAWyNjHAAAuAYD6/MAAADAyYgxAQAA4EzEl7UaGeMAAABnMXPmTHXo0EEmk0kmk0lxcXH69ttv7eVFRUWKj49XWFiYAgMDNXDgQKWnpzucIzU1Vf369ZO/v7/Cw8M1duxYlZaWVvelAAAAAAAAAMAli4xxAADgEmwu+rxeVFSUXnzxRbVo0UI2m03z5s3Trbfeqp9//llt27bV6NGj9fXXX2vhwoUym80aMWKEbr/9dq1Zs0aSVFZWpn79+ikyMlJr167V8ePHNWTIEHl7e+uFF16o4asDAABwb64aYwIAAKB2Ir6s3RgYBwAAOIv+/fs7vH7++ec1c+ZMrVu3TlFRUZo9e7bmz5+vnj17SpLmzJmjNm3aaN26derevbuWLVum7du3a8WKFYqIiFBsbKymTJmicePGadKkSfLx8amJywIAAAAAAACASwqPNQAAAJdgMxiqbbNYLMrNzXXYLBbLOdtYVlamBQsWqKCgQHFxcUpKSlJJSYl69eplr9O6dWtFR0crMTFRkpSYmKj27dsrIiLCXqdPnz7Kzc3Vtm3bnP9BAgAAwK664ksAAABcGqqzDxPOx8A4AAC45CQkJMhsNjtsCQkJVdZPSUlRYGCgjEajHnnkES1atEgxMTFKS0uTj4+PgoODHepHREQoLS1NkpSWluYwKH6m/EwZAAAAAAAAAODiYyp1AADgEmyG6nteb/z48RozZozDPqPRWGX9Vq1aKTk5WTk5Ofrvf/+roUOHatWqVRe7mQAAAPiLqjPGBAAAgPsjvqzdGBgHAACXHKPReNaB8N/z8fFR8+bNJUldunTRxo0b9cYbb+iuu+5ScXGxsrOzHbLG09PTFRkZKUmKjIzUhg0bHM6Xnp5uLwMAAAAAAAAAXHw81gAAAFyCTYZq2/4qq9Uqi8WiLl26yNvbWytXrrSX7dq1S6mpqYqLi5MkxcXFKSUlRRkZGfY6y5cvl8lkUkxMzF9uCwAAAKpWW+JLAAAA1A61qQ8Tf0TGOAAAwFmMHz9effv2VXR0tPLy8jR//nz98MMPWrp0qcxms4YNG6YxY8YoNDRUJpNJI0eOVFxcnLp37y5J6t27t2JiYjR48GBNnTpVaWlpmjBhguLj4y8oax0AAAAAAAAA8OcxMA4AAFyCq67Pk5GRoSFDhuj48eMym83q0KGDli5dqhtuuEGSNG3aNHl4eGjgwIGyWCzq06ePZsyYYT/e09NTixcv1vDhwxUXF6eAgAANHTpUkydPrqlLAgAAuGS4aowJAACA2on4snZjYBwAAOAsZs+efdZyX19fTZ8+XdOnT6+yTqNGjfTNN984u2kAAAAAAAAAgPPEYw0AAAAAAAAAAAAAALdGxjgAAHAJNoOhppsAAAAAN0OMCQAAAGcivqzdyBgHAAAAAAAAAAAAALg1MsYBAIBLsImnLQEAAOBcxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuASbgef1AAAA4FzEmAAAAHAm4svajZ8eAAAAAAAAAAAAAMCtkTEOAABcAuvzAAAAwNmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCazPAwAAAGcjxgQAAIAzEV/Wbvz0AAAAAAAAAAAAAABujYxxF+Tn66Fhd0frqm6hCjF5a8/BAr31wQHt2ldQ5TGxbU16dGgjNW7orxMni/XR/x3Rkh9OONQZcGOE7r6lvkKDfbT3UIHenH1QO/fmX+zLgYtp8cwItZw40mFf/s79WtW+rySp+4oPFXZtN4fyQ+8u0Nb4Z+2vY6b9S6FXdFZg25bK37lPP1024Jzv62H0UZuXn1L9O2+Sh9FHJ5b9pK0j/63ijFP2Or4N66n925MU1qObSvNP68hHn2vXv16VrazsL1wxXNXBXRv10zcf6NihbcrLPqG/j3xLMV162cstRQVavvA17di8UqfzsxVSN0rde92jy3veLUk6nZ+t7xa9rb3b1ijn1HEFBIWqTefrdf3tj8nXP6jK97XZbPpu0VvatGqhik7nKbpFJ90y5FmFRTa21zmdn62vP35eu5K/l8HgoZjLbtBNg56W0Tfgon0eYH0ewJnatw7SXf0j1aJJgOqE+mjiK7u1ZlO2vfzJ4U3U59q6DsdsSM7W+Bd3n/W8t/YO15396ynU7K19qaf11pxDDjGqt7dBw++J1nVXhMnb26CNW3L05gcHlZVT6tTrg2sy1g9Xm4Sxqtvnann6+6lg3yH98sDTyknaKkmKHHCDoh+6W+bObeUTFqIfL7tVuVt2OpzjfGLRyrR89jE1HPY3eQeblLV2s1JGTNLpvYfs5d4hZrV94xmF97tOslqVtmiZto1+XmUFp5109XAFTep56NqOXoqq6yFTgEHzlli07aDVXt6uiYe6x3ipQV0PBfgaNG1hkY6fstnL/YxS78u81bKhh4IDDcovtGnbQauWbSxRUfHZ37v3ZV66vI2X/IzSwTSrFv1YopM5jucecJW32jTylM0mpewv05drSlTM1+NFR4wJOE+IyUN/72tWx5a+Mvp4KO1Uqd5ZmKkDR0v+UPf+AcHq1T1QH36VrSVrzt7/eEP3AN18bZDMgZ5KPV6ieV9mad+RinN6e0mD+gUrroOfvL0M+mVPkT74PFu5+daznBXu4Fzx5W+1m/5vNXrobm174gUdfHOeff+fiQPpx0RV+l4bopt6hCgizFuSlHrMov8sPqmkreXfc8EmT91/R4Q6xQTKz9dDR9Is+uybk1q7Oe+s5+3XI0S39wlTiNlLBw5b9M5/jmv3wSJ7ubeXQcPujNA1XU3y9vLQ5m35mvnJcWXn8ftWE4gvazcyxl3Q2OHN1KWjWS+8uUf3P7FFm7Zk69WJMaoT6lNp/chwoxLGt9bPW3P1wD9/0X+/Pq6xw5upa0ezvc51V4Tp0aGNNXfhET345C/ad/C0Xp7QRsEmno24FOVt3a0VUVfat7U9/uFQnvr+pw7lO5+a+odzHJ77fzq+8Jvzfs+YV59WRL/rtPnuUUq8frB864ery8K3Kyp4eKjrl+/I4OOttdfcrS33P6WoIbep5aTH/vR1wrUVWwoVGd1KNw9+ptLyJf95SXtSftIdD03VYy98rbjeQ/T1x89px8/fSZLysjOUl52hG+96UiOf/1K3P/CC9qT8qEUfTDjr+/74zftat/xj3TJ0kh6e+Kl8jP6a9+qDKim22Ov8950nlXF0r4aOna17Rs/Uwd2b9MXcs3fIA4Ar8fP10L5Dp/XmnENV1tmQnK07Hv7Zvj3/1r6znrNHXKgeGRytD/97VI+M36p9h07rpfGtHOLJR4dEq3uXYP379T0a/e8dqhPio0ljWjjtuuC6vIJNumLVf2QtKdGG/g9qVYd+2jH2JZVk5djreAb4K3PNZu18+pWznut8YtHfavrPB9V4xGBtjZ+kNVfeqdKCQnX7erY8jBX3T7EfvqLAmOba0Pc+bRzwiEKvukztZ07+axcNl+PjJR0/ZdWiHysfxfbxMuhgmlXfrvvjAI4kmfwNMgUYtDixRK9+ZtFn35eoVUMP3XFt5ffiZ/SI9dKV7b30vx+L9db/LCoukYb185GXZ0Wdv1/vo4gQD7232KI53xaraX0PDbzW+09fKwBUtwA/gyYND1dZmTR1zkmNfS1Nn3ydrYLCPw5OX9bWV82jfZSZc+4Bm+4d/HTPzcH634pc/eutdKUeL9ZTw+rKFFDRbT345mB1buOrN+Znasq7JxQS5KnR94Q59frges4nvjwj4tZeCu7WUUVH0/9Q9mfiQPoxUZVTWSWa938ZGvXcAY16/oC27CzQhPiGiq5vlCSNub+BoiKNmvJ2quIn7VPiz3ka93CUmjb0rfKcV19m0gN3Rug/X53Q41P268CRIk0e1UjmoIpg8sG7InR5hyC9+M4RPfXyQYUFe+npRxte9OsF3BED4y7Gx8dD13YP0zsfHdIvO/J0NK1Icz87oqNpRbq1d0Slx9zSO0JpGRbN/PCQUo8WatGSNK1ad0p/u7m+vc7f+tfT1ysytOT7Ezp0pFCvvbtfRRarbuoZXl2XBhdiLSuTJf2kfSs5leVQXna6yKG8NM9xtoLto5/XoZnzdXr/4fN6Py9ToBreN1Dbx76oUz+sU+7mbdrywNMKvaKzgrt1lCTVveEqBbVpruShY5W7ZadOLF2t3ZPeUKPhg2TwpsPIHbXscI16DRylmC43VFqeuvdnxV55q5q0uVwhdRuoa487FdmwlY7u/0WSFBHVUn8f+aZad7pOoeHRahrTXb0GjtKu5O9VVlZ56o3NZlPisg917S2PqE3n6xXZsJUGPvii8rIytGPzCklSxrF92pPyowbcP0UNm3VUo5ZddPOgCdq6/hvlZmVcnA8DksrX56muDXB3G5JzNOezo1qzMavKOiUlNmXllNi3/IKzd1ze0S9S33x3QktXndSho0V6/f2DshRbdWOP8szzAD9P9b2urmZ9lKrkbXnac+C0ps7ar3atgtSmOTNuuLtmYx9U0ZG08gyejSkqPHhEJ1escYgXj37yhfY+P10nVyae9VznikV/r8ljQ7T3hZlK/2ql8lJ2act9T8pYP1wRt5bPRBPYuqnCb7xGKQ9PUPaGX5S1JknbRj2n+nf1k7Ee90PuZNdhq5ZuLHXIEv+tzXvKtCKpVHuOVl6enmXTR8uKteOQVZm5Nu07ZtWSDSWKaewhj7MkhVzV3ksrN5dq+0Gr0jJt+vT7Ypn8DWrbuLwzMzzYoNbRnvrvqmIdzrDpYJpVn/9Uoo7NPWXy/8uXjXMgvgSco/+1QTqVXaZ3/luezX0iq0wpeyzKyHSMIUNMHhp6S7CmL8hUmdVWxdkq3HRVkL7fUKBVSad1NKNUsz/PlqXYpmsvK48f/YwG9bgsQB8vztH2fRYdOFqid/6bpVaNjWre8OwPLqF2O5/4UirPKm/7+jNKHvJPWUscH377M3Eg/Zg4mw2/5GvT1nwdyyjWsfRiffT5CRVZrGrV1E+S1KaZv776LlO7DxYp/WSJPv36pApOl6l5o6oHxgfcEKalP2ZrxdocHT5erOkfH5el2KobrgyWJPn7eeiGq0I0+7M0/bLztPalFun1uccU09zf/r6oXvRh1m58qi7G00Py9DSouMTxRr242Kr2bSqfGrhtyyAl/eL4pNyG5GzFtAyUJHl5GdSqaaCSfsm2l9tsUlJKtmJaVT3dMNxXQPNGuv7Qj7pu1wrFfviKfBvWcyiv//f+uuH4Ol3z81dq9dwYefhV/Yf7fJg7t5OHj49Orlxr31ewa79OHzqqkO6xkqSQ7rHK3brbYUqiE8t+krc5SEFtm/+l90ftFN28k3Ylf6/crHTZbDbt37FeJ9MPqnm7K6s8pqgwT0a/QHl6Vj4bRtaJI8rPOalmMXH2fb7+QYpq1kGH922RJB3emyxff5MaNGlnr9O0bZwMBg8d2b/FSVcHADWvY0yQ/vtOJ819rb0eH9ZIpsCqZxLy8jSoZZMAbU6piDltNmlzSq495mzR1F/eXh5KSsm11zl8rEjpJyz2OnBfETf3VHbSVnX+zxvqdXStrtq4SA2H/e1PnetCYlG/JlHyrReuk99VxJmlufnK3rBFId07SZKCu3dSSVaOw5SbJ1eulc1qVfDlHf5UG3Hp8PMxqKhYqmpsJzSoPMt8z5GKgaGiYulwhlWNIsu7XKIjPHTaYtORExUn2XvEKptNahhOtwyA2qFzGz/tP1qsx/8RqpkT6umFx8J1XVfHhx8NBunRu0L19ep8Hc0491oRnp5Skwbe2rq3Yrpgm03aurdILRqVD3o3ifKRl5fBoc6xE6U6kVVqrwP3dF7xpcGg2Lkva/9rs5W/fe8fzvFn4kD6MXG+PAzSNV1N8vUxaOe+8qn5d+w7rau7mhTo7yHDr+U+3h5K2VX5w75enlLzRr5K3lFRbrNJyTsK1LpZ+ROUzRv5ytvL4FDnSFqxMk4VqzUD48AFYx5tF1NYZNXWXXkackeUDh3Zo6ycEl1/ZR3FtAzS0bSiSo8JDfZWZo7jVHFZ2SUKDPCSj4+HggI85elpUGZOyR/qRDfgi/NSk73hF20ZNl4Fuw/IGFlXLZ+JV9z3n2h1bH+V5Rfo6ILFKjx0TJbjGQpq30qtX/inAls2UdKdI8998ioYI+uozFKs0hzHtVSKM07JGFHXXqc4/aRDueXX1+V1dvzp90ft1O+eCfpi7kS9PLqHPDy9ZDAYdOt9k9W4VddK6xfkZemHL2fqsmvvrPKc+Tnlv1OBZscp1wJMdZSfc8JeJ8AU6lDu6eklvwCz/XhcHKzPA1Sfjck5+nFDltIyLKofYdSwuxsq4akAjXxme6WDP2aTlzw9DX9YKzwrp0QNG5QPWoYG+6i4xKqC02V/qBMaTNaEu/Nv2lCNHv67Drw+R3tfmiXzZe3VdtoEWYtLdPSjz8/7PBcai/pGlseSlvRTDvst6adkjKgjSTJG1JElI9Oh3FZWppLMHBl/PR6ojL+vdH0XL63fUfXgTpB/efySX+j45ZlXaFOQX0Wdgt+VW21SoaXieFw8xJiAc4SHeqlXt0B9+1OePv8hT82ifDT0lmCVltn04+byAaH+1waprEznXFP8jCB/D3l6GpTzu7XCc/Ktql+3PH4MDvRQSalNp4scv0dz860yB3oK7ut84stmYx+UrbRUB9/6sNJz/Jk4kH5MnEujBka98lQT+XgbVGix6vkZR3T4ePn4zEvvHNG4h6O04I3WKi21yVJs1fMzDuv4iSqW8gksv9fOznWMN7NzSxUVWT49e4jJSyUl1j8sXZGdW6YQM0N8NYH4snZz+v+aw4cP69lnn9UHH3xQZR2LxSKLxeKwz1pWLA9PnvKTpBfe3KMnH22u/3vvMpWV2bR7f4G+W3NSLZsyBSX+uhNLV9v/nZeyS9kbtqjnvu9V/299dXjOf3X4/c8qyrfuluX4CXVfPk/+TRue99TpgDOsW/GxDu/bokGPz1Bwnfo6uGuTFn80RabgcDVre4VD3aLCfH087RGF12+ungPia6jFAC4W4kvn+z6xonPowOFC7U8t1MdvdlTHtib9vDX3LEcClTN4GJSTtFW7npkmScpN3qGgti3U6KG7L2hgnFgUrsLoLd3f16j0LJuWbzp31iOA2uXPxpdlpRZ5ehkvdvNckodB2n+0WJ8uLY8VDx0rUVSEl3p1C9CPm0+rSQNv3XhloJ5+849rPAN/xrniS1Pntmo8coh+uvz2Gm4pLjVH0yx6bPI++ft56qouJo2+v76eevmgDh8v1j0DwhXg56l/vXpIufml6t4pSOMejtK4qQd16Kjl3CcHcNE5fc6uzMxMzZs376x1EhISZDabHbbUXZU/1XUpOpZu0ahnt+nGQev1t4eTNHx8ijw9DTqWXvkXZ2Z2iULNjp2+IcHeyi8oVXGxVTl5pSorsynU7P2HOpnZlT+phEtHaU6eCvYclH+z6ErLszeUTx3t36zRn34PS9pJeRp95GV2nLrfJzxMlvQT9jo+v2b1nHEmy+dMHVw6SoqLtOK/r6vv3ePUutN1imzYSt17DVL7y/vqp2/nONS1FBbow1cflI+vv/4+8i15elWdlRhoLv+dys9xzCoryD2pQHNde52CXMenicvKSlVYkGM/HheHzWCotg21y5+NLw/uOPsxqHA8w6Ls3BI1iKi8ozcntzye/P3T6CHmingyM7tYPt4eCvD3rLIO3FfR8RPK27HPYV/+zv3ya1j/L533XLFoUVp5nGiMcJwNxhgRZs/asaSflDHccTYYg6envEPNsqQRZ+KPjN7SsH4+spTY9OHSYlkrX5JckpR3ujyDMdDPMb4I8jMor7CiTsDvyj0Mkp+x4nhcPMSXqMyfjS+3r5teTS10PVl5ZX+YHv1YRqnCgsvjw1aNjTIFeOitp+rpo+cb6KPnG6huiJfu6WfWG+MiKz1n3mmryspsMgc6dlGbAz2UnV8+C1F2vlXeXgb5+zr+PzMFeign33GmIriXc8WXoVddJmN4mHru/159C7epb+E2+TeOUszUcbpuz0pJfy4OpB8T51JaJh0/UaJ9qUWatyhDBw4X6ZbrwxRZ11v9e4bqjXnHtGVngQ4cseg/X53U3oOFuvm6kErPlZtffq8dbHK81w42eSnr1yzyrNxSeXt7KMDP43d1PP8wqxuqB32YtdsFZ4x/+eWXZy3fv3//Oc8xfvx4jRkzxmHfzUN/vtCmuL0ii1VFFqsCAzx1eWywZn10qNJ623bnqXsnxy/WyzoEa/vu8mmLSktt2rU/X53bm/XTxixJ5Wv+dGlv1qJv0y7uRcDleQb4y79pQ1k+qTxoM8W2kaS/1GmYs3mrrMXFqtMzTmmLlkmSAlo2kX+jBspalyxJylqXrObjH5FP3VAVnygflKzT6wqV5ORVukYQ3FtZWanKykpk8HAM+AwenrLZKnomiwrz9eErD8jTy0eDHp8hb5+zP7kfUjdKgeY62r99neo1amM/x5F9v6jrdXdLkho2j1XR6VwdPbhNDRq3lSQd2LFeNptVUU07OvMyAfzqYsWXtw775S+161JSJ9RbpkAvnapiALu0zKbdBwrUqZ1ZazZlSyqPJzu1M+nzpeVZQXv2n1ZJqVWd25n044bymDOqnq8i6hrtcSncV9bazQps2cRhX0CLxipMPfqXznuuWLTwwBEVHc9Q2HVxyt2yU5LkFRSg4Ms76tA7/5EkZa/7Wd4hZpk6t1Xu5m2SpLDrusvg4aHsDXxPwJHRW3qgn1GlVpvmLilW6TnGXDLzbMotsKlFA08dP1VqP0fDcA8lbiv/Tk1Nt8rfaFCDOgYdPVk+EN6sQfm6k4czzjLqDuBPu1jx5YOTL90Br92HilWvjmNXcmRdL53MLv/u++nn0w7rgEvSU/fX1U8/F2jVptOVnrOsTDpwtERtm/tq0/byYw0GqW1zo5atLV9L98CRYpWW2tS2ua82bi1/4qheHS/VDfHSnkPFlZ4X7uFc8eXRj79wWAdckrp9PVtHPvlCR+b9T9KfiwPpx8SFMngY5O1tkNGnvB/Tav3jEjqGKgY4S8ukvYeK1LFNgNYll0/fbzBIHdsEaPF35b9bew8VqaTUpo5tArR2c3mdBhE+Cg/z0c79hRfrsgC3dcED4wMGDJDBYJDNVvVTzVX9Jz/DaDTKaHQcvGCaywpdO5plMBiUeqxQDSJ9NXxwI6UeLdS335cH3w/+I1p1wnyU8Fb5H9kvl6Xrthsj9fA90fr2uwx1am/WdVeE6akXKtYyWfjVcY0f0Vy79hVox9583dGvnnyNnvZz4tLR5qUnlb74exWmHpNv/XC1mDhStjKrji1YLP+mDVX/7v7KWLJKJaeyFdS+lWJeGa9TqzcoL2WX/Rz+zaLlFegvY2Rdefr6ytSxtSQpb/s+2UpKZKwfru5L5yn5/ieVszFFpbn5Ojzn/9Tm5adUkpmjkrx8tXt9grISNyt7fXkW0InlPylvx17Fzp2qHeNfljGirlr9e5QOzfxE1mKyzNyRpahAmemp9tfZJ4/o+KEd8gs0Kzisvhq36qqln74sb29fBdeprwM7Nyp5zRfq+/dxksoHtOe9PEwlxUX6x8NTZSnMl6WwfOAlwBQqD4/yjMU3nrpJN/xttGK63CCDwaC43kP0w1ezFBrZSCF1orTyf28qKCRcbTr3kiSF12+mFu2v1hdzntEtQyeprKxUiz+aonbdbpIpJLyaP6VLi83GU5CXKuJL5/M1eqhBpK/9dWS4Uc0a+Ssvv1S5+aUackcD/bg+U5k5Jaof4auH/tFQx9It2rQlx37MyxNa6aeNWfpiaYYk6b9fp2nc8Kbavb9AO/fma+BNkfI1emjpqvJ4sqCwTN9+f0LDB0crL79UBYVlGnlfI23bnacdewuq9wNAtTvw5jxdsfo/ajbuYR3/77cK7tpB0Q/cqZThE+11vEPM8ouuJ2O98r+nAb92dFrSTsqSfl55NmgAAQAASURBVPK8Y9FrU77VzgmvKv2LFb++94dq8fRwFew9pMKDR9Ry0uOyHMuwl+fv3K+MJavVYdYUpcQ/Kw9vb7V94xkd+/RrWY5nVNdHhGrg4yWFmSv+XoSaDKoXZlChRcrOt8nPKAUHGmQOKK8THuwhyaq80zblF/46KH6zUT5e0n+WlsjoXb5PkgqKpDN/pv55l1Hfri/RtoPlg9o/pZSqZxcvncyxKjPPpt5dvZV72qZtB8tH1TOybdqZWqY7rvXR/34sloeHQQOu8taWvWXKrXysCE7kijHmzJkzNXPmTB08eFCS1LZtW02cOFF9+/aVJBUVFemJJ57QggULZLFY1KdPH82YMUMRERH2c6Smpmr48OH6/vvvFRgYqKFDhyohIUFeXqw1Kl28+NLT69Jdcubbn/I0aXi4bu0RpHUpp9Usykc9Lw/Q7P+VPxCZf9qq/NOOD/uUWW3KzrPq+MmKjManH6ijTdsKtSyxPD785qc8PfK3UO0/Uqx9h4vV96pA+fp4aFVSeXmhxaYfNhXonn5mFZy2qtBi1dBbgrX7kEV7DzMw7s7OFV+WZGarJDPb4RhrSYks6SdVsPuApPOLA+nHxIUYelu4Nm3N14nMEvn5eqjH5Wa1b+mvia+n6kiaRcfSLRoxuJ4+WJiu3IIyxcUGKbZNgCa/VbEs1PNjGinx51wt/r78+/Pz5ac0+v762nOwULsPFOrWXmHy9fHQijXZkqTThVYt/ylLD9wZobyCMp0utOqRv0dqx97T2sXAeI1wxfgS5++Co+V69eppxowZuvXWWystT05OVpcuXf5ywy5lAf5eenBQtOqG+Sgvv1Sr12Xq/f+kqqysPJgPC/FWRJ2Kjt60DIvGJ+xU/L2NNbBfPZ04VayXZ+7Txt90bH6/9pSCTd667+6GCg321t6DBXry+R3KyuEP9aXGt0GkOn38mrzDglV8IlNZa5K09qo7VXwySx6+RtW5Pk5NHhsizwB/FR0+rrRFy7T3hRkO5+jwznMKu7ab/fXVm76QJH3XvKcKDx2Vh7e3Als3laefn73O9ideUBurVZ0/e1MeRh+dXPaTto78d8VJrVZtuvURtXt7kq788VOVFhTq6EeLtHvSmxf3A0GNOXZgmz54aaj99bf/eUmS1OnKAbr9wQTdOfxVLf/vNC18Z6wKC3IUHFZfvQaOsmd2Hz+4XUf2lz/dO+3JPg7nHvPyCoXUbSBJOpl2QEWnKzIVr77pAZVYCvXlnGdVdDpX0S07a8gT7zpkm9/x8FQt/vg5zZl6nwwGD7W9rLduGvT0xfkgABBfXgStmgXotYlt7K8fHVI+DfXSVSf0+vsH1TTaX72vqaPAAE+dyirRpl9yNPezIyopreg8rh/hK3NQxfIUPyRmymzy0r1/a6CQYG/tO3RaT724y2HqthkfpspmlZ4d00LeXgZt+iVHb8yufNYjuJecTSlKumOEWj0/Ri0mxKvwwBFtf+IFHfvPV/Y6Ef17quPsF+2vO89/XZK0e/Jb2jPlbVmLS84rFg1s3VTev5nacv8r78krwE/tZ06Wd7BJWWuStOHmB2S1VHSWJw/5p9q+8Yy6L50nm9WqtEXLtG3Ucxfp00BNiQr30CO3VMR0/a8ov2/etKtUn31fopjGnrrruop76UE3lP97+aYSLd9UqgZ1PdQoojzT56l/+Oq3Ej4pUlZe+XdkeIiHfI0VnWE/JJfKx0saeK2PfH2kg2lWzf7aMdv8PyuLNeAqbz10s1FWm7T1QJm++In78UtVVFSUXnzxRbVo0UI2m03z5s3Trbfeqp9//llt27bV6NGj9fXXX2vhwoUym80aMWKEbr/9dq1Zs0aSVFZWpn79+ikyMlJr167V8ePHNWTIEHl7e+uFF16o4atzDcSXzrf/SImmfXRKd91o1m3Xm3Qiq1QffZWjNckXNigTEealoICKpXfW/VIoU0C27rjBpOAgTx06VqIXPzip3PyKQfaPFmfLagvWqHvC5OUl/bLbojmfZznt2uCazie+PB/nigPpx8SFMJs8Neb++go1e6mg0KqDR4o08fVUJe8of5hn0puHNfT2cD0zMlp+Rg8dzyjWtDnHtGlrRd9kZN3yGdvO+HFTrsxBnrrn1roKMXlp/2GLJr6Rquy8imDyvU/TZbVJTw9vKG8vgzZvy9eMT45X34UDbsRgO9ujk5W45ZZbFBsbq8mTJ1davmXLFnXq1EnWsy3CVYkedyReUH3A2cZ+cW9NNwFQweod564EXGR3xnmcu9JFsGdf9Q2etahirVrUjIsVX15/9wZnNA/4S8b83+CabgKgVW8l13QTcImb+ojfuStdJNUVY/7V+DI0NFQvv/yy7rjjDtWtW1fz58/XHXfcIUnauXOn2rRpo8TERHXv3l3ffvutbr75Zh07dsyeRT5r1iyNGzdOJ06ckI/PpTtrzhkXK778x1NHnNE84C8Z9Or1Nd0EQDPvXVTTTQC0+L2YGnlf+jBrtwvu+R47dqyuuOKKKsubN2+u77///i81CgAAAJcO4ksAAHCpKisr04IFC1RQUKC4uDglJSWppKREvXr1stdp3bq1oqOjlZhYnlSSmJio9u3bO0yt3qdPH+Xm5mrbtm3Vfg2uiPgSAAAAlbngqdSvvvrqs5YHBATo2muv/dMNAgAAwKWF+BIAANR2FotFFovFYV9la1SfkZKSori4OBUVFSkwMFCLFi1STEyMkpOT5ePjo+DgYIf6ERERSktLkySlpaU5DIqfKT9TBuJLAAAAVK5m5koFAAD4HZsM1bYBAADg0lBd8WVCQoLMZrPDlpCQUGW7WrVqpeTkZK1fv17Dhw/X0KFDtX379mr8ZAAAAPBn0IdZu11wxjgAAAAAAACACuPHj9eYMWMc9lWVLS5JPj4+at68uSSpS5cu2rhxo9544w3dddddKi4uVnZ2tkPWeHp6uiIjIyVJkZGR2rBhg8P50tPT7WUAAAAAKkfGOAAAcAk8bQkAAABnq6740mg0ymQyOWxnGxj/PavVKovFoi5dusjb21srV660l+3atUupqamKi4uTJMXFxSklJUUZGRn2OsuXL5fJZFJMTIzzPjwAAAD8AX2YtRsZ4wAAAAAAAEA1GT9+vPr27avo6Gjl5eVp/vz5+uGHH7R06VKZzWYNGzZMY8aMUWhoqEwmk0aOHKm4uDh1795dktS7d2/FxMRo8ODBmjp1qtLS0jRhwgTFx8df0GA8AAAAcKlhYBwAALgEnoIEAACAs7lijJmRkaEhQ4bo+PHjMpvN6tChg5YuXaobbrhBkjRt2jR5eHho4MCBslgs6tOnj2bMmGE/3tPTU4sXL9bw4cMVFxengIAADR06VJMnT66pSwIAALhkuGJ8ifPHwDgAAAAAAABQTWbPnn3Wcl9fX02fPl3Tp0+vsk6jRo30zTffOLtpAAAAgFtjjXEAAOASWJ8HAAAAzkZ8CQAAAGdy1T7MmTNnqkOHDjKZTDKZTIqLi9O3335rLy8qKlJ8fLzCwsIUGBiogQMHKj093eEcqamp6tevn/z9/RUeHq6xY8eqtLTUKZ+bq2BgHAAAAAAAAAAAAABqqaioKL344otKSkrSpk2b1LNnT916663atm2bJGn06NH66quvtHDhQq1atUrHjh3T7bffbj++rKxM/fr1U3FxsdauXat58+Zp7ty5mjhxYk1d0kXBVOoAAMAl2Gxk2gAAAMC5iDEBAADgTK4aX/bv39/h9fPPP6+ZM2dq3bp1ioqK0uzZszV//nz17NlTkjRnzhy1adNG69atU/fu3bVs2TJt375dK1asUEREhGJjYzVlyhSNGzdOkyZNko+PT01cltORMQ4AAAAAAAAAAAAALsRisSg3N9dhs1gs5zyurKxMCxYsUEFBgeLi4pSUlKSSkhL16tXLXqd169aKjo5WYmKiJCkxMVHt27dXRESEvU6fPn2Um5trzzp3BwyMAwAAl+Cq6/MAAACg9iK+BAAAgDNVZx9mQkKCzGazw5aQkFBl21JSUhQYGCij0ahHHnlEixYtUkxMjNLS0uTj46Pg4GCH+hEREUpLS5MkpaWlOQyKnyk/U+YumEodAAAAAAAAAAAAAFzI+PHjNWbMGId9RqOxyvqtWrVScnKycnJy9N///ldDhw7VqlWrLnYzaxUGxgEAgEsg0wYAAADORowJAAAAZ6rO+NJoNJ51IPz3fHx81Lx5c0lSly5dtHHjRr3xxhu66667VFxcrOzsbIes8fT0dEVGRkqSIiMjtWHDBofzpaen28vcBVOpAwAAAAAAAAAAAIAbsVqtslgs6tKli7y9vbVy5Up72a5du5Samqq4uDhJUlxcnFJSUpSRkWGvs3z5cplMJsXExFR72y8WMsYBAIBLIJsHAAAAzkaMCQAAAGdy1fhy/Pjx6tu3r6Kjo5WXl6f58+frhx9+0NKlS2U2mzVs2DCNGTNGoaGhMplMGjlypOLi4tS9e3dJUu/evRUTE6PBgwdr6tSpSktL04QJExQfH39BWeuujoFxAAAAAAAAAAAAAKilMjIyNGTIEB0/flxms1kdOnTQ0qVLdcMNN0iSpk2bJg8PDw0cOFAWi0V9+vTRjBkz7Md7enpq8eLFGj58uOLi4hQQEKChQ4dq8uTJNXVJFwUD4wAAwCXYbK75tCUAAABqL2JMAAAAOJOrxpezZ88+a7mvr6+mT5+u6dOnV1mnUaNG+uabb5zdNJfCGuMAAAAAAAAAAAAAALdGxjgAAHAJVhddnwcAAAC1FzEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NYYGAcAAAAAAAAAAAAAuDWmUgcAAC7BxjREAAAAcDJiTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgs3G05YAAABwLmJMAAAAOBPxZe1GxjgAAAAAAAAAAAAAwK2RMQ4AAFwC6/MAAADA2YgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJrM8DAAAAZyPGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAlsD4PAAAAnI0YEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXwPo8AAAAcDZiTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgrWmGwAAAAC3Q4wJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEtgfR4AAAA4GzEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NbIGAcAAC7BJp62BAAAgHMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgElifBwAAAM5GjAkAAABnIr6s3cgYBwAAAAAAAAAAAAC4NTLGAQCAS2B9HgAAADgbMSYAAACcifiydiNjHAAAAAAAAAAAAADg1hgYBwAAAAAAAAAAAAC4NaZSBwAALsFqq+kWAAAAwN0QYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgEmwy1HQTAAAA4GaIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCTYbT1sCAADAuYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJNltNtwAAAADuhhgTAAAAzkR8WbuRMQ4AAAAAAAAAAAAAcGtkjAMAAJdgFevzAAAAwLmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCTYbT1sCAADAuYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJNltNtwAAAADuhhgTAAAAzkR8WbuRMQ4AAAAAAAAAAAAAcGtkjAMAAJdgE+vzAAAAwLmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCVbW5wEAAICTEWMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2BcQAA4BJsNkO1bRciISFBXbt2VVBQkMLDwzVgwADt2rXLoU5RUZHi4+MVFhamwMBADRw4UOnp6Q51UlNT1a9fP/n7+ys8PFxjx45VaWnpX/7cAAAAUDVXjC8BAABQe7lqHybODwPjAAAAZ7Fq1SrFx8dr3bp1Wr58uUpKStS7d28VFBTY64wePVpfffWVFi5cqFWrVunYsWO6/fbb7eVlZWXq16+fiouLtXbtWs2bN09z587VxIkTa+KSAAAAAAAAAOCSwxrjAADAJdhcdH2eJUuWOLyeO3euwsPDlZSUpGuuuUY5OTmaPXu25s+fr549e0qS5syZozZt2mjdunXq3r27li1bpu3bt2vFihWKiIhQbGyspkyZonHjxmnSpEny8fGpiUsDAABwe64aYwIAAKB2Ir6s3cgYBwAAuAA5OTmSpNDQUElSUlKSSkpK1KtXL3ud1q1bKzo6WomJiZKkxMREtW/fXhEREfY6ffr0UW5urrZt21aNrQcAAAAAAACASxMZ4wAA4JJjsVhksVgc9hmNRhmNxrMeZ7VaNWrUKF155ZVq166dJCktLU0+Pj4KDg52qBsREaG0tDR7nd8Oip8pP1MGAAAAAAAAALi4yBgHAAAuwSpDtW0JCQkym80OW0JCwjnbGB8fr61bt2rBggXV8IkAAADgr6qu+BIAAACXhursw4TzkTEOAAAuOePHj9eYMWMc9p0rW3zEiBFavHixVq9eraioKPv+yMhIFRcXKzs72yFrPD09XZGRkfY6GzZscDhfenq6vQwAAAAAAAAAcHGRMQ4AAFyCzVZ9m9FolMlkctiqGhi32WwaMWKEFi1apO+++05NmjRxKO/SpYu8vb21cuVK+75du3YpNTVVcXFxkqS4uDilpKQoIyPDXmf58uUymUyKiYm5CJ8mAAAApOqLLwEAAHBpqM4+TDgfGeMAAABnER8fr/nz5+uLL75QUFCQfU1ws9ksPz8/mc1mDRs2TGPGjFFoaKhMJpNGjhypuLg4de/eXZLUu3dvxcTEaPDgwZo6darS0tI0YcIExcfHnzNTHQAAAAAAAADw1zEwDgAAXILN5prr5sycOVOS1KNHD4f9c+bM0b333itJmjZtmjw8PDRw4EBZLBb16dNHM2bMsNf19PTU4sWLNXz4cMXFxSkgIEBDhw7V5MmTq+syAAAALkmuGmMCAACgdiK+rN0YGAcAADgL23nMW+Tr66vp06dr+vTpVdZp1KiRvvnmG2c2DQAAAAAAAABwnhgYBwAALsHKujkAAABwMmJMAAAAOBPxZe3mUdMNAAAAAAAAAAAAAADgYiJjHAAAuITzmLEcAAAAuCDEmAAAAHAm4svajYxxAAAAAAAAAAAAAIBbI2McAAC4BJsMNd0EAAAAuBliTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgpX1eQAAAOBkxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuAQbT1sCAADAyYgxAQAA4EzEl7UbGeMAAAAAAABANUlISFDXrl0VFBSk8PBwDRgwQLt27XKoU1RUpPj4eIWFhSkwMFADBw5Uenq6Q53U1FT169dP/v7+Cg8P19ixY1VaWlqdlwIAAADUKi6TMV5qKa7pJuASl7Fs17krARdZ77CUmm4CIKl9jbwrT1vC2SwFhTXdBEBNd35X000AtH+nb003Aagxrhhjrlq1SvHx8eratatKS0v19NNPq3fv3tq+fbsCAgIkSaNHj9bXX3+thQsXymw2a8SIEbr99tu1Zs0aSVJZWZn69eunyMhIrV27VsePH9eQIUPk7e2tF154oSYvz62dPHqippsA6PItH9V0EwD938I6Nd0EoMa4YnyJ8+cyA+MAAAAAAACAu1uyZInD67lz5yo8PFxJSUm65pprlJOTo9mzZ2v+/Pnq2bOnJGnOnDlq06aN1q1bp+7du2vZsmXavn27VqxYoYiICMXGxmrKlCkaN26cJk2aJB8fn5q4NAAAAMClMZU6AABwCVabodo2AAAAXBpqQ3yZk5MjSQoNDZUkJSUlqaSkRL169bLXad26taKjo5WYmChJSkxMVPv27RUREWGv06dPH+Xm5mrbtm1/qT0AAACoGn2YtRsZ4wAAAAAAAMBfYLFYZLFYHPYZjUYZjcazHme1WjVq1ChdeeWVateunSQpLS1NPj4+Cg4OdqgbERGhtLQ0e53fDoqfKT9TBgAAAOCPyBgHAAAAAAAA/oKEhASZzWaHLSEh4ZzHxcfHa+vWrVqwYEE1tBIAAAC4tJExDgAAXILNVtMtAAAAgLuprhhz/PjxGjNmjMO+c2WLjxgxQosXL9bq1asVFRVl3x8ZGani4mJlZ2c7ZI2np6crMjLSXmfDhg0O50tPT7eXAQAA4OKgD7N2I2McAAAAAAAA+AuMRqNMJpPDVtXAuM1m04gRI7Ro0SJ99913atKkiUN5ly5d5O3trZUrV9r37dq1S6mpqYqLi5MkxcXFKSUlRRkZGfY6y5cvl8lkUkxMzEW4QgAAAKD2Y2AcAAC4BJut+jYAAABcGlwxvoyPj9fHH3+s+fPnKygoSGlpaUpLS1NhYaEkyWw2a9iwYRozZoy+//57JSUl6b777lNcXJy6d+8uSerdu7diYmI0ePBgbdmyRUuXLtWECRMUHx9/zkx1AAAA/Hmu2oeZkJCgrl27KigoSOHh4RowYIB27drlUKeoqEjx8fEKCwtTYGCgBg4caJ916IzU1FT169dP/v7+Cg8P19ixY1VaWvpXPzaXwcA4AAAAAAAAUE1mzpypnJwc9ejRQ/Xq1bNvn376qb3OtGnTdPPNN2vgwIG65pprFBkZqf/973/2ck9PTy1evFienp6Ki4vTPffcoyFDhmjy5Mk1cUkAAACoYatWrVJ8fLzWrVun5cuXq6SkRL1791ZBQYG9zujRo/XVV19p4cKFWrVqlY4dO6bbb7/dXl5WVqZ+/fqpuLhYa9eu1bx58zR37lxNnDixJi7pomCNcQAA4BKsZHIDAADAyVwxxrSdR/qPr6+vpk+frunTp1dZp1GjRvrmm2+c2TQAAACcgyvGl5K0ZMkSh9dz585VeHi4kpKSdM011ygnJ0ezZ8/W/Pnz1bNnT0nSnDlz1KZNG61bt07du3fXsmXLtH37dq1YsUIRERGKjY3VlClTNG7cOE2aNEk+Pj41cWlORcY4AAAAAAAAAAAAALgQi8Wi3Nxch81isZzXsTk5OZKk0NBQSVJSUpJKSkrUq1cve53WrVsrOjpaiYmJkqTExES1b99eERER9jp9+vRRbm6utm3b5qzLqlEMjAMAAJdgsxmqbQMAAMClgfgSAAAAzlSdfZgJCQkym80OW0JCwjnbaLVaNWrUKF155ZVq166dJCktLU0+Pj4KDg52qBsREaG0tDR7nd8Oip8pP1PmDphKHQAAAAAAAAAAAABcyPjx4zVmzBiHfUaj8ZzHxcfHa+vWrfrpp58uVtNqLQbGAQCASziPpRYBAACAC0KMCQAAAGeqzvjSaDSe10D4b40YMUKLFy/W6tWrFRUVZd8fGRmp4uJiZWdnO2SNp6enKzIy0l5nw4YNDudLT0+3l7kDplIHAAAAAAAAAAAAgFrKZrNpxIgRWrRokb777js1adLEobxLly7y9vbWypUr7ft27dql1NRUxcXFSZLi4uKUkpKijIwMe53ly5fLZDIpJiamei7kIiNjHAAAuAQr2TwAAABwMmJMAAAAOJOrxpfx8fGaP3++vvjiCwUFBdnXBDebzfLz85PZbNawYcM0ZswYhYaGymQyaeTIkYqLi1P37t0lSb1791ZMTIwGDx6sqVOnKi0tTRMmTFB8fPwFZ667KgbGAQAAAAAAAAAAAKCWmjlzpiSpR48eDvvnzJmje++9V5I0bdo0eXh4aODAgbJYLOrTp49mzJhhr+vp6anFixdr+PDhiouLU0BAgIYOHarJkydX12VcdAyMAwAAl8D6jwAAAHA2YkwAAAA4k6vGl7bzaJivr6+mT5+u6dOnV1mnUaNG+uabb5zZNJfCGuMAAAAAAAAAAAAAALdGxjgAAHAJrvq0JQAAAGovYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXIKVpy0BAADgZMSYAAAAcCbiy9qNjHEAAAAAAAAAAAAAgFsjYxwAALgE1ucBAACAsxFjAgAAwJmIL2s3MsYBAAAAAAAAAAAAAG6NjHEAAOASrNaabgEAAADcDTEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NYYGAcAAAAAAAAAAAAAuDWmUgcAAC7BZqvpFgAAAMDdEGMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2McQAA4BJ42hIAAADORowJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEuw8rQlAAAAnIwYEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXYKvWBXoM1fheAAAAqCnVF2MSXwIAAFwK6MOs3cgYBwAAAAAAAAAAAAC4NTLGAQCAS6jWhy0BAABwSSDGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAlWK013QIAAAC4G2JMAAAAOBPxZe1GxjgAAAAAAAAAAAAAwK2RMQ4AAFwC6/MAAADA2YgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJVp62BAAAgJMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgElifBwAAAM5GjAkAAABnIr6s3cgYBwAAAAAAAAAAAAC4NTLGAQCAS7BV6wI9hmp8LwAAANSU6osxiS8BAAAuBfRh1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVU68OWAAAAuCQQYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYFxAAAAAAAAAAAAAIBbYyp1AADgEmxMQwQAAAAnI8YEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYrTxuCQAAAOcixgQAAIAzEV/WbmSMAwAAAAAAAAAAAADcGhnjAADAJbA+DwAAAJyNGBMAAADORHxZu5ExDgAAAAAAAAAAAABwa2SMAwAAl8DTlgAAAHA2YkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXIKVxy0BAADgZMSYAAAAcCbiy9qNjHEAAAAAAAAAAAAAgFsjYxwAALgEm7WmWwAAAAB3Q4wJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEuwsT4PAAAAnIwYEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXYGV9HgAAADgZMSYAAACcifiydiNjHAAAAAAAAAAAAADg1sgYBwAALoH1eQAAAOBsxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuAQrD1sCAADAyYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALfGwDgAAAAAAAAAAAAAwK0xlToAAHAJNuYhAgAAgJMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgEmw8bAkAAAAnI8YEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYWZ8HAAAATkaMCQAAAGcivqzdyBgHAAA4i9WrV6t///6qX7++DAaDPv/8c4dym82miRMnql69evLz81OvXr20Z88ehzqZmZkaNGiQTCaTgoODNWzYMOXn51fjVQAAAAAAAADApY2BcQAA4BJsNlu1bReioKBAHTt21PTp0ystnzp1qt58803NmjVL69evV0BAgPr06aOioiJ7nUGDBmnbtm1avny5Fi9erNWrV+uhhx76S58XAAAAzs0V40sAAADUXq7ah4nzw1TqAAAAZ9G3b1/17du30jKbzabXX39dEyZM0K233ipJ+vDDDxUREaHPP/9cd999t3bs2KElS5Zo48aNuuyyyyRJb731lm666Sa98sorql+/frVdCwAAAAAAAABcqsgYBwAALsFmrb7NYrEoNzfXYbNYLBfc5gMHDigtLU29evWy7zObzerWrZsSExMlSYmJiQoODrYPiktSr1695OHhofXr1//1Dw4AAABVqq74EgAAAJeG6uzDhPMxMA4AAC45CQkJMpvNDltCQsIFnyctLU2SFBER4bA/IiLCXpaWlqbw8HCHci8vL4WGhtrrAAAAAAAAAAAuLqZSBwAALsFajevmjB8/XmPGjHHYZzQaq+39AQAAUD2qM8YEAACA+yO+rN0YGHdBHdua9Y/bG6pVs0DVCTNq/PNb9eO6U2c9plM7s0Y80ExNogOUccKieZ8d0rcr0x3q3H5Tff399oYKDfHRvgP5mvbOXu3Yk3cxLwUuKnXPRq1fNlvpqVuVn3NCtz8yXS1jeznUOXl8n35Y9LIO794oq7VMYfWa6baH35I5tHwt3E9eHazDezY4HBN79V26cdDkKt/XZrPpx6/e1JafFspSmKsGzTqrz98nKTSisb1OYUG2li+Yor0p38tg8FCrTr3V685/ycc3wHkfAGrc/IX/049r1yv16FEZfXzUtnUrPXjvPYqOamCvc/R4mmZ98KG2bt+pkpISde0cq5EPD1NoSLC9zsef/p/WbUrSvv0H5eXtpa8WfHjO97bZbJr7yaf6etkK5RecVrs2rTTq0YcUVb+evU5uXp7eeme2EjckyeBh0DVXdNeIB++Tn5+fUz8H1Byj0eiUgfDIyEhJUnp6uurVq/gdSk9PV2xsrL1ORkaGw3GlpaXKzMy0Hw9cbPfc0VDXXlFHjRr4y1JsVcrOXM2cu1+Hjxae9bjrrqyjB+5poshwXx05dloz5x7QuqRMhzrDBjVW/96RCgrwUsqOXL0yY4+OHD/7eeF+/vvpfK1b+6OOHEmV0ceoVm3aauj9D6pBVLS9zvHjRzX3/VnasW2rSkpK1KlLVz00fKSCQ0LtdZ7/9790YP8+5WRnKTAwSB1iO2vo/Q8pNKxOle9dXFysOe/N1E+rv1dJSbFiO3fVI/GPO5z3REa6Zk1/XSm/JMvP10/X9eqtwfc+KE9Pz4vzgaBGHN23UT9/P1sZR7bpdO4J3XTf22ra3vE+JzN9n9YufkXH9pXf54RGNFPfe99UUEh9FRVka/3St3R41xrlZR2XX2Comra7Xt36Pi6jX1CV72uz2bRhyVvatq78Pqdek87qccezCq7b2F6nqCBbqxc9pwPbyu9zmnXoratve1o+Ru5zANQOd/eP0JWXmdWwnq+KS6zavqdA7y84piNplS9J9fw/m6lrR5Mmvb5fa5NyznruIbdHqu91dRTo76ltuwv05tzDOpZecd6gAE/FD4lSt05m2aw2/bQpRzM+OqIiC3PMurNFS1bo8yXf6XjGCUlSk4ZRuvfOAYrr0lGSNGLC80rettPhmFt799TY4fdJknJy8/Tv12dq38HDys3LV4jZpKsu76yH77lTAf5V9+/k5uVr2vsfas3Gn+Vh8NC1cZfp8WGD5e/na6+z92CqXnt3nnbuPaBgU5AG9rtBg2672dkfAVyQwSAN6BGg7u19ZQ70UHaeVWu2FOqr1acd6g3oEaBrOvvK39dDew+X6MOv85SRWXbWc/fs6qcbr/CXOdBDh9NK9cm3eTpwrNRe7uUp3d0nUJe39ZWXl7R1b7E+/iZPuQUM0gIXgqnUXZCfr6f2HsjXa7P2nFf9ehG+mvpse/38S7bueyxJn315RONGttLlnULsdXpeVVcjHmimOf85qGGjksrPP7m9gs3eF+sy4MJKLKcVEdVKN9z9bKXlWSdS9fEr/1BYRFP9fcxHuv+ZL3XlTY/Ky8txEKnjVXdqxEs/2bfrbn/yrO+7ftl7Svr+I/X5xyQNGfeZvH389Olbw1RaUnGz89UH/9TJ43t19+NzdEf8LB3es0lLPpn41y8aLmXL1u26td+NevvlBL08ZaJKy8r05MQpKiwqkiQVFhXpyYlTZDBIrz7/rN6c+pxKS0v1rykvymqtuPEtLS3VtVfG6Zab+pz3ey/4v8/1v8XfaPSjD2n6Ky/I19eocROnqLi42F7nhVfe0MHUI3p5yjN64Znx+mXrdr369jvO+wBQKZvNVm2bszRp0kSRkZFauXKlfV9ubq7Wr1+vuLg4SVJcXJyys7OVlJRkr/Pdd9/JarWqW7duTmsLcDad2gXrf18f08Njf9boZ36Rl6dB0yZ3kK+x6tuBdq1NenZsjBYvO677H0/Sj+tOKeFfbdUk2t9eZ9DAhrrj5gZ6ZcYePfTPn1VYVKbXJreXj7ehOi4LLmTb1i3qe/Otmvra25r0/MsqKyvVpH89qaKi8ockiooKNelfT8pgMGhywqtKeOVNlZaW6vl//8vhb3v7DrEaO36ipr87T+P+NUlpacf00guTzvreH7w7XRs3JGrs+Il67qXXlZV5Si8+VxHnlpWVacqzT6u0pFQvvvKWHhszTt8tX6r5H825KJ8Fak5pcaHq1G+ta2+v/P4h52Sq/u+tfygkvKlue/RD/f2fX6jrDY/K89f7nILcDBXkZOjKW57UP578Sr3+nqBDu37Ud5/+66zvu/m797Xlx4/U42+T9LdR5fc5X77zgMN9zrJPxiozba9ufeQD3fzALB3bv0nff8Z9TnWobfEl4Kratw7UlytO6vF/79ZTL+2Tp6dBCeOaVxpP3n5jXdl0fv8v7uwXrgG96+rNOYf12KRdKrKUKeHJZvL+TTz51PDGatTAV+Nf2qtnXtuv9q0CNOr+hk67NrimumGhemTwnZr9yhS9//JkdW4fo/EvTtP+1CP2Ov1v6KEvPnjLvj069G57mcHDQ1df3lkvPT1a/5n+sp5+7CFt+mWbXp519hjw39Nm6kDqUU2bNE4v/WuMtmzfpakzP7CXF5wu1Jh/T1Vk3Tp6/5XJenTo3fpgwSJ9sew7538IcDk3XemvHpf56ZNv8/Sv6ae0cEW++l7hr16XVzxs0fdKf/Xq5qcPv87Tc+9nylJs0xP3BMvrLM/kdm1r1F29A/XlqgL9+51MHU4v1Zh7ghXkX/Fd+PcbA9WxpVEzFubopbnZCg7yVPyd5ot5uahCbezDRAUGxl3QuqRMvffxQa0+R5b4GQNurKfj6UV6+4P9OnTktP739TH9sOaE7ro1yl7n7gFR+mrpcX2zMl0HD5/WyzP2qMhi1c03kKl2KWrW7lpdc+totep0Q6Xlq7+YpmbtrtF1A59UZHSMQupGq0XH6xVgCnOo5+3jq0BzXftm9Aus8j1tNps2rvxQV/QdrpaxvRQe1Vo33zdV+dkZ2p28QlJ5lvr+bT+q7+DnVL9JRzVsfpluuHuCtm/6WnnZ6VWeG7XPS/+eoBt7XacmjRqqWZPGGjcqXhknTmr33v2SpK3bdyo944TGjRqhpo0bqWnjRho3eoR2792nn3/Zaj/PvYPu0t8G9FeTRtFVvZUDm82m//vya91z50Bd2f1yNWvSWE+NHqmTmVn6aV35DAiHDh/Rhs3J+ufIR9SmVUu1b9tGIx8epu9/XKOTpzLP8Q5wR/n5+UpOTlZycrIk6cCBA0pOTlZqaqoMBoNGjRql5557Tl9++aVSUlI0ZMgQ1a9fXwMGDJAktWnTRjfeeKMefPBBbdiwQWvWrNGIESN09913q379+jV3YbikPDEpRd+uTNeB1NPae7BAL7y+S5HhvmrVvOoMyL/d0kDrN2fqP4uO6NCR03r/k4PavS9fA29u4FDnw88O6af1p7TvYIGem7ZTYaFGXd296uxeuKdnp7yk62+4UdGNmqhJ02Z6bMw4nTiRoX17dkuSdmzfqhMZ6XpszDg1btJUjZs01eNPjNPePbuVsuVn+3luue1vatU6RuERkWod004D//Z37d65Q6WlpZW+b0FBvlYs+1b3PzhcHWI7q3mLlho5+knt3LFNu3ZulyQlb96kI4cPafTY8WrarLm6dO2mfwy+T98u/kIlJSUX/8NBtWnU5hp1v2mUmnWo/D5n3Tevq3Gba3Vl/7GqGxUjc51oNWnXU/5B5fc5YfVa6qb73lKTtj1lrhOtqBbdFdd3tA5s+17Wssp/B202m7as/lCX3fCImra7XnXqt1Kvf7ykgtwM7d9afp+Tmb5PqTt/1HV3TVFko46q37SLrrltgvYkf6P8HO5zANQO/3p5n5b/mKlDR4u0P7VQr7ybqog6PmrR2DHztmm0nwb2Dder76We13lvuzFc879MV+LmHB04XKSp7xxSWLC3ruxSPtjTsL5RXTua9NrsVO3cd1rbdhdo+odH1KN7iEKDmQzVnV3VtbPiusSqYf1IRTeop4fv+Zv8fH21ffdeex1fo1FhIcH27beZ4KbAAN12Yy+1bt5UkeF1dFmHtrrtxuv1y/ZdVb7nwcNHtf7nX/RU/DC1bdlcHWNaadQDQ7Typ3U6mZklSVq2eo1KSks1fsSDahodpV5Xx+mOfr316ZdLLt6HAZfRvKG3kndZ9MueYp3KsSpph0Vb9xWrSYOKBMQbuvnpq9UFSt5VrCMZZXr/81wFB3moc+uqZy7s091fqzcX6qfkIh07WaYPF+epuMSmqzuV/077GQ26upOfFizN186DJTp0vFQffJGrFtE+atqA70LgQjAw7gbatjZpU3KWw74NmzPVtrVJkuTlZVDL5kHatKWijs0mbUrOUttWpmptK1yfzWrVvpQfFBreWJ++OUxvjo3TvBf/Zh+8/q1tG77SG0900/uTb9YPi15VSXHV06bmnDyigtwTatzmCvs+X78g1W/SUUf3l3eGHt3/s4z+JtVr1N5ep3HrK2QweOjYgV+cd5FwOQUF5dMNmYLKH64o+bXz29u7Iqj08fGRwWBQyvYdf/p9jqdnKDMrW11iO9j3BQYEqE3LFtq+s7zjfvvOXQoMCFCrFs3tdbrEdpDBYNCO3ec3kwf+HKvVVm3bhdi0aZM6deqkTp06SZLGjBmjTp06aeLE8iyvJ598UiNHjtRDDz2krl27Kj8/X0uWLJGvb8U0a5988olat26t66+/XjfddJOuuuoqvfvuu8778IALFBBQ/qh6bl7Vg4LtKokx1/+cqXa/xpj1I3xVJ9Sojb+pU3C6TNt359rr4NJ1uqBAkhQYVP67cGYAurK/7du3pVR6jry8XK36fqVat2krL6/KO3v27dmt0tJSdYjtYt8X1TBadeuGa9eObZKkXTu3K7pxE4ep1Tt16arTpwt0OPXgn79I1Co2q1UHd/yg4LqN9cU7wzR74hVa+Pqd2p/yx/uc37IU5cnHN1AenpX/DuZmHtHpvBNq2LLiPsfoF6SI6A5KO5gsSUo7mCyjn0kRDSvucxq2jJPB4KH0Q9znXGyuGF8C7iDAr7xbOa+gYmpgo49B4x9tpLfnHVFWTuUPFP1WZF0fhQV7a/PWiqUeTxdatXN/gdo0L19qIqZ5gPIKSrXnQEWf0+ZtebLZpDbNWI7iUlFWZtWKHxNVVGRR21Yt7PuXr16rfkOGa/BjT2nWR5+qyFL51P6SdDIzS6vWbVJs29ZV1tm6a68CA/zVunlT+77LOraVh8Ggbbv32evExrSSt3dFbNCtU3ulHj2u3PyCv3KZqAX2Hi5RmyY+iggtv6duGOGlFtE+Stlb/rtXN9hDwUGe2r6/4l670GLT/iMlataw8tl7PT2kRvW9tH1/xWyWNknb9xerWVT5MY3qecnL0+BQJ+1UmU5ml1V5Xlw8rtqHifNzwQPjhYWF+umnn7R9+/Y/lBUVFenDD8+9viucKyzER5nZxQ77MrNLFBjgJR8fD5lN3vLyNCgzq+QPdcJCfKqzqagFCvJOqdhyWuuWvqcmMVfrrsc+UMvYG/S/d0YodXfFmuJtL79Z/e97WX8f86Hi+jykbeu/0FcfjK3yvPm55esB/T7rPCAoTAW5J8vfO/ekAoJCHco9PL3kF2BWwa/Hw/1YrVZNf2+O2rVpbc/8jmnVQn6+vnp37scqKrKosKhIsz74UFarVZmZ2X/6vTKzygdvQoKDHfaHBJuVmZX9a51sBQc7TkPk6ekpU1CgvQ4uLT169Kh0KqO5c+dKUvm0wJMnKy0tTUVFRVqxYoVatmzpcI7Q0FDNnz9feXl5ysnJ0QcffKDAwKpn2bjUEF9WL4NBeuzB5vple44OpJ6usl5osI+yfhdjZmWXKDS4PH4M/TWOzMou+V2dYnsZLk1Wq1Wz35muNjHt1KhxE0lSq9Yx8vX107wP3pWlqEhFRYWa8/4sWa1WZWU5zsgy74N3dddtN2nwXQN08kSGxk+cUuV7ZWVlycvL+w/fqcEhIcr69e9+VlamgoNDHMt/fZ2VyWwwl4rT+adUYjmtpO/eU6PWV+uWh2erafte+mbuSB3du6HSYwrzs7Rp+Uy1jbuz6vP+ep9yJuv8DP+gOjqdV36fczrvhPwC/3if4+tvttfBpWf16tXq37+/6tevL4PBoM8//9yh3GazaeLEiapXr578/PzUq1cv7dnj+KBuZmamBg0aJJPJpODgYA0bNkz5+fnVeBWujRjz4jEYpEfuidLWXfk6eKTIvv+RQVHavqdAiZvPvqb4GaHB5YM52Tm/iydzShXy6/KPIWZvZec6DrJbrVJeQalCghkMcnf7Dh3WDX9/QD3vvE+vzJqrF556XE0als9gdcM1cXpm1CN6c8rTGjywv5auWqPJ02b94RzPvjpd1981TAOGPaYAfz+Nix9W5ftlZucoxOz4kK+Xp6eCAgOUmZ1dXicrRyG/6zc685p+I/f3zU+ntWFrkZ4fEap3J9TVsw+HaPn601qXUj4wbgosH3LLLbA6HJdbYJU5oPLhuCB/D3l6GCo/5tfzmQM9VFJqU6HFVmUdAOfngv7H7N69W23atNE111yj9u3b69prr9Xx48ft5Tk5ObrvvvvOeR6LxaLc3FyHzVpWfM7jAFx8Nlv5H+AWHa/X5b3uVUTDNoq78SE1b99DP69eYK8Xe/Vdatr2aoU3aKW23W5Rv3tf0u7k5co6cX5TZQFnvDHrfR1IPaxnnhxt3xdsNmviuDFK3LBJ/e68R/3vGqL8/AK1aNZUBg/WrXVXNlv1bXAdxJfVb8wjLdQ0OkDPTv1jJzHgDO/OeEOHDh3QE089Y99nNgdr7NMTtXF9ou4e2E//uKO/CvLz1bR5C3kYHP+23zbwLr321jua9NxUeXh46I1XX2RtNfxlZ+5zmrTtqdhr71XdBm3U5fqH1Dimh7YmLvhD/eKifC1+/2GFRDTT5X1GVHdz4USuGl8WFBSoY8eOmj59eqXlU6dO1ZtvvqlZs2Zp/fr1CggIUJ8+fVRUVDEIOWjQIG3btk3Lly/X4sWLtXr1aj300EN/9qNyK86IMYkvqzZiaJQaR/nqhekH7fu6dzIpNiZQMz8+WnMNg9uJrl9Pc157Xu9MnaQBN/bU82++qwOHy3/Hbu3dU906dVCzRg3V+9orNeGxh7V6/SYdPe64TMlj9w/SB69O0YvjR+toWobemjO/Ji4FbqJrW6O6t/fVu/+Xq3+/m6nZn+fpxjh/XdHR99wHw23Qh1m7XdDA+Lhx49SuXTtlZGRo165dCgoK0pVXXqnU1AsbCEtISJDZbHbYjuz95ILOgQqnsortmTtnhAZ7K7+gVMXFVuXklqi0zKbQEO8/1DmVRUAPR/6BIfLw8FJYvWYO+8Mimyk381iVx9Vv0lGSlJVxqNLyQFNdSVJB7imH/QV5pxRgKl+HNMBURwV5jlk71rJSFRbkKODX4+Fe3pj1vtZtTNJrz09S3TqOWTZdO8fqk/em638fzdbnn8zR0088ppOnMlUvMuJPv19oyK/ZYb8+5XtGVnaOQkOCf60TrOxsx6fby8rKlJuXb68DwHmIL6vX6Ieb64quoXrsX1t04tTZ48DM7GKF/C7GDAn2ts9UlPlrHPn7TJ2QYB97GS497854Qxs3rNNzL76mOnUc47dOnbvqnQ8+0bz5/9OHCz7X6LFPK/PUSUVE1nOoZzKb1SCqoWI7X6YnnnpGSRvX29cL/72QkBCVlpb8IUMyOytLIb/+3Q8JCVV2tuOyAGdeh4Q6ZvHCffkFlN/nhEY2d9gfGt5MeVnHHfYVF+Xry3cfkLcxQDfd97Y8PavOSPT/9T7ldJ7jfc7pvJPyDyq/z/EPqqvC/D/e5xSdzrHXwaWnb9++eu6553Tbbbf9ocxms+n111/XhAkTdOutt6pDhw768MMPdezYMXtm+Y4dO7RkyRK9//776tatm6666iq99dZbWrBggY4dq/re/VLhjBizsvjywNYPLmKra4f4IVHqHmvWkwl7dfI3s1PGxgSpXrhRi97poG/nxurbubGSpGcea6KXn25e6bkyf515KNj8u3jS7KWsX7PIs3JKFGxyXM7Cw0MKCvD6w8xFcD/e3l6Kqheh1s2a6JHBd6lZ42gtXLy00roxLcv7Mo+kOQ6Mh4UEq1FUfV11eWeNfeQ+fb5kpU5WMRthaLBZWTm5DvtKy8qUl1+g0F9nHwwNMSvrd/1GZ17Tb+T+7rwhUN+sOa0N2yw6mlGmxF+KtGzdafW7yl+SlJtf/jCm6XfZ4aYAD+X8LiP8jLzTVpVZbZUf8+v5cvKt8vYyyM9oqLIOgPNzQQPja9euVUJCgurUqaPmzZvrq6++Up8+fXT11Vdr//79532e8ePHKycnx2GLaj7oghuPctt25qpLx2CHfV07hWjbzvI/4qWlNu3em6cuHSqmDzQYpC4dQ7Rtl+MfesDTy0f1GrdXZvoBh/2Z6QdlDmtQ5XEZh8vXfQ40Vz6Aba4TpQBTXR3cmWjfZynM17EDW9Sgafm6vQ2adpLldK7SDm211zm0a51sNqvqN+nwh3Oi9rLZbHpj1vv6KXGDXn1+0lkHu81mkwIDA7R5S4qyc3J0xeWX/en3rRcRrtCQYG3eUrGWacHp09qxe49iWpdPfR3TupXyCwq0e+8+e53NW1Jks9nUpmWLP5wTzmOz2qptg+sgvqw+ox9urmvi6ujxf/2i4+lF56y/dWeuLuvoOP1019gQbf01xjyWXqSTmRaHOv5+noppabLXwaXDZrPp3RlvaF3iT5qS8OofBrt/y2Q2KzAwUL8kb1ZOdrYu735FlXVt1vJOnjNrlP9esxYt5eXlpV+SN9v3HT2SqhMnMtSqTVtJ5dO4px484DA4nvxzkvz9A9QwutEFXSdqL08vH4VHt1N2huN9TvaJgwoKqW9/XVyUry/eGSYPT2/1GzZDXt7Gs57XFBol/6C6OrKn4j6nuChf6am/KLJxrCQpsnGsLIW5yjhccZ9zZG/5fU5EI+5zLrbqii8ryy62nGWt27M5cOCA0tLS1KtXL/s+s9msbt26KTGx/HctMTFRwcHBuuyyivujXr16ycPDQ+vXr/9rH5obcEaMWVl82aTd/Re55a4tfkiUruxi1tiEvUo74fgg5KeL0/XIv3Zq+ISKTZLe+eSoXn2v8gcS0k4U61R2iTq1DbLv8/f1UOumAdqxt3yt5u17CxQU4KUWjf3sdTrFBMlgkHbsYz3nS43Naq0yLtxzoPz3LOwsg9NnZiEqKa38HO1aNVd+wWnt3FcRL2xO2S6rzaa2vw68t2vVXMnbd6m0tGKK/41btiq6QT2ZAln33t35eBv0+24lq618vEWSTmRblZ1XppimFQ/8+PoY1DTKW/sOV/57V2aVDh0rVZumFQ+mGyS1aeqjfUfKjzl0vFSlZTbF/KZOZJin6gR7VnleXDz0YdZuFzQwXlhYKC+viif0DAaDZs6cqf79++vaa6/V7t27z+s8RqNRJpPJYfPwZB3CM/x8PdS8SYCaNyn/Q1ovwlfNmwQoom75DfnDQ5powuhW9vqfLzmu+pF+Gn5vU0VH+em2m+rruqvC9ekXR+x1Fnx+RP371NONPSPUKMpf/3y0hfx8PfT1irTqvTi4hOKiAqUf3qH0Xwezs08eUfrhHcr5NSP88huGacemb5X842fKyjikpO8/1t6U79Xp2r9LkrJOpGrN19OVdmirsk8e0Z4tK7V47jg1bNFV4VGt7e/z7rM3atfPyyWVf190vX6I1n47U3u2rFTG0V1aPPdJBQaHq2Vs+c1+nXrN1LTt1fr242d07MAvOrI3ScsWTFHMZf0UFPzns4Thet6Y+b5W/LBaE/75uPz9fJWZlaXMrCyHjqNvV3yn7Tt36+jxNC3/frUmv/Sq7rj1ZkVHVTygkZ5xQnv3H1DGiZOyWq3au/+A9u4/oMLCQnudoY88ph8TyzuGDAaDBt7STx9/+n9as36j9h88pBdfe0t1QkN0VffLJUmNGkbp8s6xeuWtWdqxe4+2bt+pt96ZreuuvlJ1wsgqA5yN+LJ6PDG8uXr3iNC/X9mh04WlCg32Vmiwt3x8Km4HJoxupYeHNLG/XvjlUXXrHKK7B0QpOspP9/+9kVo3D9L/LT7qUGfoXdG68vIwNW0UoAljWutUpkU/rmPN3EvNOzPe0A/fr9CYJyfIz89fWZmZysrMdPjbvnLZt9q1c7uOHz+qH75brpcTJqv/gDvUICpakrR75w59/dUi7d+3VxnpafolebNefek5Rdarr9ZtYiRJp06eUPxDQ7V7V3kcGxAQqF69+2rOezOUsuVn7d2zW29Om6pWbWLUqnX5MbGdL1NUw0Z6/ZUEHdi/Tz8nbdT8Dz9Q35tvlbc33xPupNhSoBNHd+jE0fLfj9zMIzpxdIfyssrvczr1GKY9yd9qW+Jnyj5xSL/8+LEObP9e7a/8R/nxRfn6YtYwlRYX6vq7nldxUb4Kck+oIPeErNYy+/t8/GJf7ful4j6n4zVDtGn5LB3Y+p1OHtul5fPHKcAUrqbtyu9zQiOaKbr11fr+s4lKP/SLjh/YrFX/m6IWsTcp0Mx9jruoLLs4ISHhT50rLa28ryYiwvH3IyIiwl6Wlpam8PBwh3IvLy+Fhoba61zKnBFjEl86Gjk0StdfEaKEmYdUWFSmELOXQsxe8vEuHw3KyinVwSNFDpskZZwqdhhEn/1SG13ZpWJ95kVLMvSPWyPUvZNJjaN89eQjjXQqu0RrksozcA8fs2jjllyNGhatVk39FdMiQPFDovTDuixlZjuuPQ73MuujT5W8baeOZ5zQvkOHNeujT/Xztp3qfc0VOno8XXM/+1w79x3Q8YwT+mnDZj33xjuKjWml5o3LY8vEpGR9vXK19h86rOMZJ7R2U7JemTVH7Vu3VL3w8sSe7bv36R8jntSJU+UzuzRu2EDdOnXQ1BmztX33Pv2yY7dee/dDXX9Vd9UJLX8g+Iarr5C3l5cSpr+v/alHtPKndVq4eKnuuuXGmvmgUK2Sd1t089X+6tDCR2FmD3Vu7aM+3f21eWfFfc/y9YW6+eoAxbb0UYNwTz1wm0nZeVaHOv8cHKyeXSse+Fm67rSu7eynKzr6ql4dTw2+OUhGb4N+Si7v4yy02PTjz4W6q3egWjf2VqN6Xrr/VpP2Hi7R/qN8F6Lc6tWr1b9/f9WvX18Gg8E+09AZNptNEydOVL169eTn56devXppz549DnUyMzM1aNAgmUwmBQcHa9iwYX+Yoa228zp3lQqtW7fWpk2b1KZNG4f9b7/9tiTplltucV7LLmGtmwfprYRY++vHHiifbuiblWl64fVdCgv1UUTdijUrjqcX6cl/p2jkA830t1sa6MRJi156a5c2/FyREfHdTycUbPbWA4MaKzTER3v35+uJZ1OYcugSdfzQVv1n2hD76+/+W36z3q77bbr53hfVqtMN6vOPSVq35F2t+Ow5hUY00W0PvamGzcufRPf09NbBnYna+N2HKrGclimknlp16q0rbnrU4X0y0w/IUphnf92t94MqthRqyScTVXQ6V1HNu+iuke87ZGH0v/8VLV8wRQteHyqDwUMtO/fWDXdOuJgfB2rAl9+WT3s1+ulnHfY/+Xi8bux1nSTp8JFjen/efOXl5ysyvK4G3TlQd9x6s0P9uZ98qqXf/WB//dDjYyVJr70wSbHt25Wf5+gxFRSctte5e+AAFRVZ9Nrb7yi/oEDtY1rrxX9PkI9PRQfH0/98XG/Omq1/Tvi3PAweuvqKbhr50KWdGVAdrCycc0kivqwet91U/lDR27+JMSXp+dd36tuV5VMNRtT1dXjyfevOXP37lR168J4memhIEx05Vqjxz2/TgdSK79RP/u+wfH099eSIlgoM8FLK9hw98WyKikv4/3ypWfL1l5KkCeNGO+wfOfpJXX9DeSfh0aOH9dG895Wfl6fw8Ejdcdcg3XLbHfa6Pkaj1q35UQs+nqeiokKFhIapc5eu+tvd99gHsEvLynT0yGGHAff7H4qXweChl56fpJKSEnXqcpkefnSUvdzT01MTJj2vWdNf17gnRsjX6KvrevXWPwaffW1Z1D4Zh7fq8xlD7a9/+uJFSVLrrgPU6+8vqlmHG9TjjklKWvmuVi96XiHhTdT33jdVv2mX8uOPbFN66hZJ0kcv9HY495AJK2QKjZIkZWccUHFRxX1O554PqLS4UN8vnChLYa7qNemi/g+953Cf03vQy1r1vyn6fNa9Mhg81KxDb119278uzgcBB9UVY44fP15jxoxx2Gc0nn3GAVw8xJjO179X+UDiq/9ynEnt5XcPafmPmZUdUqmG9X3l7+9pf/3Z1xnyNXpo1P3RCvT31NbdBXr65X0q+U08+eLMg4ofEqWXnmoum036cWO2Znx0pLLTw41k5eTquTfe0amsbAX4+6lZ42i9NnGsusa2V/rJU9q0Zas++2qpiiwWhdcJVY+4yzT0bwPsxxt9fPTV8u/11gefqLi0ROFhYbq2+2W6Z2BF31JRcbFSjx5XaVnFA3DPjh6u1977UI8/+6I8PAy6tntXjXpgsL08MMBfrz37pF57d54e+OdEmU2BuvfO23Rr757V8rmgZs3/Nl+3XRege24KkinAQ9l5Vv2QVKgvV1XMYPHtmtMyehs0tH+Q/H09tCe1RK99nK3Sil8zhYd6Ksi/4kH1jdssCvLP14AeATIHeuhwWqmmfZKt3IKK78L/LMmXrY/06J1meXsatHWfRR997V4DlrWFq/ZhFhQUqGPHjrr//vt1++23/6F86tSpevPNNzVv3jw1adJEzzzzjPr06aPt27fL17d8zHHQoEE6fvy4li9frpKSEt1333166KGHNH/+/Oq+nIvGYLOd/08wISFBP/74o7755ptKyx999FHNmjVLVuuFr2lwVf9VF3wM4EzDxlxb000A1LtByrkrARdZg5bta+R9R75efVMvvzXKVG3vhbMjvoS7e+/1ytfUBKrTip31z10JuIhG9jOcu9LFeu9qijH/SnxpMBi0aNEiDRgwQJK0f/9+NWvWTD///LNiY2Pt9a699lrFxsbqjTfe0AcffKAnnnhCWVkVSRGlpaXy9fXVwoULK127/FJysWLM3oN/dkbzgL/kk/EkOqHmjVvYuKabAOiDZ8PPXekiqA19mL+PL202m+rXr68nnnhC//znPyVJOTk5ioiI0Ny5c3X33Xdrx44diomJ0caNG+3L9SxZskQ33XSTjhw5ovr13eO+8oKmUh8/fnyVAaUkzZgx4091WgIAAODSRHwJAADgqEmTJoqMjNTKlSvt+3Jzc7V+/XrFxcVJkuLi4pSdna2kpCR7ne+++05Wq1XdunWr9ja7GmJMAADgDiwWi3Jzcx22386gdr4OHDigtLQ09erVy77PbDarW7duSkxMlCQlJiYqODjYPiguSb169ZKHh4fWr1//1y/GRVzQwDgAAMDFYrPaqm0DAADApcFV48v8/HwlJycrOTlZUnlnZXJyslJTU2UwGDRq1Cg999xz+vLLL5WSkqIhQ4aofv369qyfNm3a6MYbb9SDDz6oDRs2aM2aNRoxYoTuvvtut8nmAQAAcEXV2YeZkJAgs9nssCUkJFxwm9PS0iRJERERDvsjIiLsZWlpaQoPd8zC9/LyUmhoqL2OO7igNcYBAAAAAAAA/DWbNm3SddddZ399Zn3yoUOHau7cuXryySdVUFCghx56SNnZ2brqqqu0ZMkS+/qPkvTJJ59oxIgRuv766+Xh4aGBAwfqzTffrPZrAQAAwMUxfvx4e5x4htForKHWuAcGxgEAgEsgkxsAAADO5qoxZo8ePWSzVd02g8GgyZMna/LkyVXWCQ0N1fz58y9G8wAAAFCF6owvjUajUwbCIyMjJUnp6emqV6+efX96erpiY2PtdTIyMhyOKy0tVWZmpv14d8BU6gAAAAAAAAAAAADghpo0aaLIyEitXLnSvi83N1fr169XXFycJCkuLk7Z2dlKSkqy1/nuu+9ktVrVrVu3am/zxULGOAAAcAkumswDAACAWowYEwAAAM7kqvFlfn6+9u7da3994MABJScnKzQ0VNHR0Ro1apSee+45tWjRQk2aNNEzzzyj+vXra8CAAZKkNm3a6MYbb9SDDz6oWbNmqaSkRCNGjNDdd9+t+vXr19BVOR8D4wAAAAAAAAAAAABQS23atEnXXXed/fWZtcmHDh2quXPn6sknn1RBQYEeeughZWdn66qrrtKSJUvk6+trP+aTTz7RiBEjdP3118vDw0MDBw7Um2++We3XcjExMA4AAFyCq67/CAAAgNqLGBMAAADO5KrxZY8ePWSzVd02g8GgyZMna/LkyVXWCQ0N1fz58y9G81wGa4wDAAAAAAAAAAAAANwaGeMAAMAlnO2JRgAAAODPIMYEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYXXR9HgAAANRexJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuATW5wEAAICzEWMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2McQAA4BJsrM8DAAAAJyPGBP6fvTuPs7H8/zj+PrObfQYzYx2MdWxTiEkhS5KEaJelkIw9LX4ttlBUSJZSX6S0UIpKlkgLskX2Lfu+zxhmxsxcvz80J8fMMDicxev5eJzHw9z3de77Oue+z/E+931/rhsAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnwNWWAAAAsDcyJgAAAOyJfOnaqBgHAAAAAAAAAAAAALg1KsYBAIBTyDRcbQkAAAD7ImMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAXuzwMAAAB7I2MCAADAnsiXro2KcQAAAAAAAAAAAACAW+PEOAAAAAAAAAAAAADArTGUOgAAcArGMAwRAAAA7IuMCQAAAHsiX7o2KsYBAAAAAAAAAAAAAG6NinEAAOAUMjO52hIAAAD2RcYEAACAPZEvXRsV4wAAAAAAAAAAAAAAt0bFOAAAcAqGqy0BAABgZ2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDFdbAgAAwL7ImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOwWRmOroLAAAAcDNkTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnkJnJ/XkAAABgX2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDFdbAgAAwL7ImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOwXB/HgAAANgZGRMAAAD2RL50bVSMAwAAAAAAAAAAAADcGhXjAADAKXC1JQAAAOyNjAkAAAB7Il+6NirGAQAAAAAAAAAAAABujYpxAADgFDJNpqO7AAAAADdDxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3xolxAAAAAAAAAAAAAIBbYyh1AADgFEymcXQXAAAA4GbImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOgastAQAAYG9kTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnYAxXWwIAAMC+yJgAAACwJ/Kla6NiHAAAAAAAAAAAAADg1qgYBwAATiEzM9PRXQAAAICbIWMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAWTyf15AAAAYF9kTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnYAz35wEAAIB9kTEBAABgT+RL10bFOAAAAAAAAAAAAADArVExDgAAnAL35wEAAIC9kTEBAABgT+RL10bFOAAAAAAAAAAAAADArVExDgAAnAJXWwIAAMDeyJgAAACwJ/Kla6NiHAAAAAAAAAAAAADg1qgYBwAATiHTZDq6CwAAAHAzZEwAAADYE/nStVExDgAAAAAAAAAAAABwa1SMAwAAp8D9eQAAAGBvZEwAAADYE/nStVExDgAAAAAAAAAAAABwa1SMAwAAp2AyuT8PAAAA7IuMCQAAAHsiX7o2KsYBAAAAAAAAAAAAAG6NE+MAAAAAAAAAAAAAALfGUOoAAMApmEzj6C4AAADAzZAxAQAAYE/kS9dGxTgAAAAAAAAAAAAAwK1RMQ4AAJyCMZmO7gIAAADcDBkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClkcn8eAAAA2BkZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMApmEzuzwMAAAD7ImMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAXD/XkAAABgZ2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDPfnAQAAgH2RMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtcWIcAAA4BZNpbtrjWowdO1YlSpSQn5+fatasqeXLl9v5HQAAAIC9kS8BAABgT85+DBOXx4lxAACAK/jyyy/Vp08f9e/fX6tXr1bVqlXVuHFjHTlyxNFdAwAAgAsiXwIAAAA3HyfGAQCAUzCZmTftcbXeffddderUSR06dFBsbKwmTJggf39//e9//7sB7wQAAADshXwJAAAAe3LmY5i4Mk6MAwCAW05qaqoSExNtHqmpqTm2TUtL06pVq9SwYUPrNA8PDzVs2FBLly69WV0GAACAEyNfAgAAAM7Py9EdyPL77LqO7oJLS01N1bBhw9SvXz/5+vo6uju4BbEP2ktlR3fApbEfurabmQUGDBiggQMH2kzr37+/BgwYkK3tsWPHlJGRocjISJvpkZGR2rx5843sJq4T+fL68J0KZ8B+aB8VYhzdA9fFPuj6blYeIF/eGuZNvc3RXXBpfKfCGbAf2sf/+ju6B66N/dC1cbzJtVmMMdy93Q0kJiYqJCREp0+fVnBwsKO7g1sQ+yCcAfsh8io1NTVbBY+vr2+OP0YOHDigIkWKaMmSJYqPj7dOf/HFF7V48WL9+eefN7y/gCPwnQpnwH4IR2MfRF6RL4Er4zsVzoD9EM6A/RBwHKepGAcAALhZcjtImZMCBQrI09NThw8ftpl++PBhRUVF3YjuAQAAwMWQLwEAAADnxz3GAQAALsPHx0fVqlXTzz//bJ2WmZmpn3/+2abCBwAAAMgL8iUAAADgGFSMAwAAXEGfPn3Url07Va9eXXfccYdGjRql5ORkdejQwdFdAwAAgAsiXwIAAAA3HyfG3YSvr6/69++f52G7AHtjH4QzYD/EjfLoo4/q6NGjev3113Xo0CHFxcXpp59+UmRkpKO7BtwwfKfCGbAfwtHYB3GjkC9xK+I7Fc6A/RDOgP0QcByLMcY4uhMAAAAAAAAAAAAAANwo3GMcAAAAAAAAAAAAAODWODEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1TowDAAAAAAAAAAAAANwaJ8bdwNixY1WiRAn5+fmpZs2aWr58uaO7hFvIr7/+qmbNmqlw4cKyWCz69ttvHd0l3IKGDRumGjVqKCgoSBEREWrRooW2bNni6G4BgMsiX8LRyJhwNPIlANgfGROORL6Eo5EvAefAiXEX9+WXX6pPnz7q37+/Vq9erapVq6px48Y6cuSIo7uGW0RycrKqVq2qsWPHOroruIUtXrxYCQkJWrZsmebPn6/z58/r3nvvVXJysqO7BgAuh3wJZ0DGhKORLwHAvsiYcDTyJRyNfAk4B4sxxji6E7h2NWvWVI0aNfT+++9LkjIzM1WsWDF1795dL7/8soN7h1uNxWLRzJkz1aJFC0d3Bbe4o0ePKiIiQosXL1adOnUc3R0AcCnkSzgbMiacAfkSAK4PGRPOhHwJZ0C+BByDinEXlpaWplWrVqlhw4bWaR4eHmrYsKGWLl3qwJ4BgGOdPn1akhQeHu7gngCAayFfAkDOyJcAcO3ImACQHfkScAxOjLuwY8eOKSMjQ5GRkTbTIyMjdejQIQf1CgAcKzMzU7169VLt2rVVqVIlR3cHAFwK+RIAsiNfAsD1IWMCgC3yJeA4Xo7uAAAA9pSQkKD169fr999/d3RXAAAA4AbIlwAAALAn8iXgOJwYd2EFChSQp6enDh8+bDP98OHDioqKclCvAMBxunXrpu+//16//vqrihYt6ujuAIDLIV8CgC3yJQBcPzImAPyHfAk4FkOpuzAfHx9Vq1ZNP//8s3VaZmamfv75Z8XHxzuwZwBwcxlj1K1bN82cOVMLFy5UyZIlHd0lAHBJ5EsAuIB8CQD2Q8YEAPIl4CyoGHdxffr0Ubt27VS9enXdcccdGjVqlJKTk9WhQwdHdw23iDNnzmj79u3Wv3fu3Kk1a9YoPDxcxYsXd2DPcCtJSEjQtGnT9N133ykoKMh6j7KQkBDly5fPwb0DANdCvoQzIGPC0ciXAGBfZEw4GvkSjka+BJyDxRhjHN0JXJ/3339fI0aM0KFDhxQXF6f33ntPNWvWdHS3cIv45ZdfdM8992Sb3q5dO02ePPnmdwi3JIvFkuP0SZMmqX379je3MwDgBsiXcDQyJhyNfAkA9kfGhCORL+Fo5EvAOXBiHAAAAAAAAAAAAADg1rjHOAAAAAAAAAAAAADArXFiHAAAAAAAAAAAAADg1jgxDgAAAAAAAAAAAABwa5wYBwAAAAAAAAAAAAC4NU6MAwAAAAAAAAAAAADcGifGAQAAAAAAAAAAAABujRPjAAAAAAAAAAAAAAC3xolxAAAAAAAAAAAAAIBb48Q4AAAAAAAAAAAAAMCtcWIcAAAAAAAAAAAAAODWODEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1TowDAAAAAAAAAAAAANwaJ8YBAAAAAAAAAAAAAG6NE+MAAAAAAAAAAAAAALfGiXEAAAAAAAAAAAAAgFvjxDgAAAAAAAAAAAAAwK1xYtzNTZ06VeXLl5e3t7dCQ0PtvvwBAwbIYrHYfbnuZNeuXbJYLJo8ebLdlrlixQrdeeedCggIkMVi0Zo1a+y2bGdksVg0YMCAq3pO+/btVaJEiRvSH3e0bds23XvvvQoJCZHFYtG3337r6C4BAJwImdLxyJSO5eh99JdffpHFYtEvv/xiMz2nz2a9evVUr169m97HK7nR3yMAANgL2dfxyL7O4aefflJcXJz8/PxksVh06tQpR3cJAK4bJ8bd2ObNm9W+fXvFxMRo4sSJ+vDDDx3dJZf3448/XvUJWns7f/68Hn74YZ04cUIjR47U1KlTFR0dfcPWl3UQLuvh6+uryMhI1atXT0OHDtXRo0dv2Lqd2cXvyeUelx68dFbt2rXTunXrNGTIEE2dOlXVq1fXtGnTNGrUqJvaj3Hjxl31j55169apdevWio6Olp+fn4oUKaJGjRppzJgxNu1KlCghi8Wi7t27Z1tG1n4+Y8YM67TJkydfdtsuW7bsml4jALgaMqX93YqZUrpwgLNDhw6KiYmRn5+foqKiVKdOHfXv3z/H9rNnz1azZs0UGRkpHx8fhYeHq06dOnrnnXeUmJho0zbr/3mLxSIPDw+FhoaqcuXK6ty5s/78889c+5SSkqKRI0eqZs2aCgkJkZ+fn8qWLatu3bpp69atdn399uZKn82c+nr27FkNGDDgpublAwcOaMCAAVd1IDwzM1OffPKJatasqfDwcAUFBals2bJq27atTR68+HfTqlWrsi2nffv2CgwMtJlWr169XLNm+fLlr/l1AgCunSv9/+oqyL45Z98jR47Iy8tLbdq0yXUZSUlJypcvnx566CGb6Tt27NCzzz6rUqVKyc/PT8HBwapdu7ZGjx6tc+fO2aX/x48f1yOPPKJ8+fJp7Nixmjp1qgICAjR06NCbWlBzrZlx9uzZqlu3riIiIuTv769SpUrpkUce0U8//WRtk3UBhsVi0ddff51tGVkXsRw7dsw6rX379rnmNz8/v2t+nQBuHi9HdwA3zi+//KLMzEyNHj1apUuXviHrePXVV/Xyyy/fkGU7ox9//FFjx469qjAXHR2tc+fOydvb2y592LFjh3bv3q2JEyeqY8eOdllmXvTo0UM1atRQRkaGjh49qiVLlqh///5699139dVXX6l+/fo3bN3nzp2Tl9fVfV1NnDhRmZmZN6hHF64evtgnn3yi+fPnZ5teoUKFG9YHezl37pyWLl2qV155Rd26dbNOnzZtmtavX69evXrdtL6MGzdOBQoUUPv27fPUfsmSJbrnnntUvHhxderUSVFRUdq7d6+WLVum0aNH53gSfOLEierXr58KFy6cp3UMGjRIJUuWzDb9Rn2vAoCzIVPa362YKbdv364aNWooX758evrpp1WiRAkdPHhQq1ev1ltvvaWBAwda22ZmZuqZZ57R5MmTVblyZXXt2lXFihVTUlKSli5dqldffVU//vijfv75Z5t1xMXF6fnnn5d04SDipk2bNH36dE2cOFG9e/fWu+++a9P+2LFjuu+++7Rq1So98MADeuKJJxQYGKgtW7boiy++0Icffqi0tLQb/t7kRZ06dXTu3Dn5+PhYp+X22Zw3b54junhZOfX12LFj1u1+syrcDxw4oIEDB6pEiRKKi4vL03N69OihsWPHqnnz5nryySfl5eWlLVu2aM6cOSpVqpRq1aqV7TkDBgzQ7Nmz87T8okWLatiwYdmmh4SE5On5AAD7IvvaH9k35+wbERGhRo0a6bvvvtPZs2fl7++fbTnffPONUlJSbE6e//DDD3r44Yfl6+urtm3bqlKlSkpLS9Pvv/+uF154QRs2bLDLBR0rVqxQUlKSBg8erIYNG1qnDx06VK1bt1aLFi2uex15cfbs2avOjG+//bZeeOEF1a1bV/369ZO/v7+2b9+uBQsW6IsvvtB9992X7TmDBg3SQw89lKfRHHx9ffXRRx9lm+7p6Zmn/gFwLE6Mu7EjR45I0g0dps7Ly+uqT1jeKtLT05WZmSkfHx+7Xi12I7ZrcnKyAgICLtvm7rvvVuvWrW2mrV27Vvfee69atWqljRs3qlChQnbr08Wu5f2zV3DOzaVXcy5btkzz58+/7FWeknINuo6UVfV/M4a0zMzMVFpamt0+E0OGDFFISIhWrFiRrf9Zn5WLVaxYUVu2bNGbb76p9957L0/raNKkiapXr26P7gKASyJTOpa7ZMqRI0fqzJkzWrNmTbbqnEv/zx4+fLgmT56s3r1765133rE5ONWzZ08dPHhQn3zySbZ1FClSJFsWe+utt/TEE09o5MiRKlOmjJ577jnrvPbt2+uvv/7SjBkz1KpVK5vnDR48WK+88kreXvhN4OHhkW3757YNLz55fr3sld1uxvdIlrz8tsmrw4cPa9y4cerUqVO2A8yjRo3KcfSsuLg4ff/991q9erVuv/32K64jJCTkir8hAAA3D9nXsW617Pvkk0/qp59+0qxZs/TYY49lW860adMUEhKipk2bSpJ27typxx57TNHR0Vq4cKHNsdiEhARt375dP/zwgz1e3k3NbykpKfLx8ZGHx/UPcJyenq7BgwerUaNGOV4wmtPxwri4OK1Zs0YzZ87MVp2fkytV+gNwcgY3xb59+8zTTz9tChUqZHx8fEyJEiVMly5dTGpqqrXNjh07TOvWrU1YWJjJly+fqVmzpvn+++9tlrNo0SIjyXz55ZfmjTfeMEWKFDG+vr6mfv36Ztu2bdZ20dHRRpLNo3///sYYY/Pvi0VHR5t27dpZ/05LSzMDBgwwpUuXNr6+viY8PNzUrl3bzJs3z9qmf//+5tLd6Pz582bQoEGmVKlSxsfHx0RHR5t+/fqZlJSUbOtr2rSp+e2330yNGjWMr6+vKVmypJkyZcrVvr1GkklISDBfffWVqVChgvHz8zO1atUyf//9tzHGmAkTJpiYmBjj6+tr6tata3bu3Gnz/F9//dW0bt3aFCtWzPj4+JiiRYuaXr16mbNnz1rbtGvXLtt7mvXad+7caSSZESNGmJEjR5pSpUoZDw8P89dff1nnTZo0yRhjzOHDh02BAgVM3bp1TWZmpnX527ZtM/7+/uaRRx7J9XXm1Ie6deta5//888/mrrvuMv7+/iYkJMQ8+OCDZuPGjTbLyNpmGzZsMI8//rgJDQ01cXFxua4za5+bPn16jvOnTZtmJJn/+7//s5m+b98+06FDBxMREWF8fHxMbGys+fjjj7M9/9y5c6Z///6mTJkyxtfX10RFRZmWLVua7du3W9tcus8mJiaanj17mujoaOPj42MKFixoGjZsaFatWmXzXkVHR9us68yZM6ZPnz6maNGixsfHx5QtW9aMGDHCZjtkrS8hIcHMnDnTVKxY0dr/OXPm5Po+JSQkZPss1K1b11SsWNGsXLnS3H333SZfvnymZ8+exhhjUlJSzOuvv25iYmKs+9wLL7yQ7XNijDFTp041t99+u/Hz8zNhYWHm0UcfNXv27Mm1L1l27dplnnvuOVO2bFnj5+dnwsPDTevWrW32/6z94eJHdHS0qVu3bo7Ts+S1/1nv5aeffmpiY2ONl5eXmTlzZo79zel76+L9OyflypUz9erVu+J7kbX8pk2bmqefftr4+fmZ/fv3W+fltJ9PmjTJSDIrVqzI0/IB4GYgU5IpXTVTNm7c2JQoUeKy778xxiQnJ5vQ0FBTsWJFk56efsX2WbL2g5wkJSWZ8PBwU6RIEet7tWzZMiPJdOrUKU/Lz2kf/d///mfuueceU7BgQePj42MqVKhgxo0bl+25K1asMPfee6/Jnz+/8fPzMyVKlDAdOnSwafP555+b22+/3QQGBpqgoCBTqVIlM2rUKOv8rM/sokWLrK83t89m3bp1s2WoG5HdjDHm22+/Nffff7/1O6lUqVJm0KBBNtsup77m9jm4+Dtl06ZNplWrViYsLMz4+vqaatWqme+++85m/Vl57ZdffjHPPfecKViwoAkNDc2xr1nv4aWPrM9UTpYuXWokmcmTJ+fa5tLlf/zxxyYsLMw0a9bMZn67du1MQECAzbSs3wsAgJyRfcm+7p59z5w5YwICArLlhqzX7OnpaZ555hnrtC5duhhJ5o8//rjisnOTl+2W03HB3Lblxft/Xo4HZ30eP//8c/PKK6+YwoULG4vFYk6ePJmtr1n7weUy46UOHjxoJJkBAwZc8b3IWv6bb75pypYta6pWrWqzf2Vt96NHj1qn5ZTpALgWLk27CQ4cOKA77rhDp06dUufOnVW+fHnt379fM2bM0NmzZ+Xj46PDhw/rzjvv1NmzZ9WjRw/lz59fU6ZM0YMPPqgZM2aoZcuWNst888035eHhob59++r06dMaPny4nnzySev980aNGqVPPvlEM2fO1Pjx4xUYGKgqVapcVb8HDBigYcOGqWPHjrrjjjuUmJiolStXavXq1WrUqFGuz+vYsaOmTJmi1q1b6/nnn9eff/6pYcOGadOmTZo5c6ZN2+3bt6t169Z65pln1K5dO/3vf/9T+/btVa1aNVWsWPGq+vvbb79p1qxZSkhIkCQNGzZMDzzwgF588UWNGzdOXbt21cmTJzV8+HA9/fTTWrhwofW506dP19mzZ/Xcc88pf/78Wr58ucaMGaN9+/Zp+vTpkqRnn31WBw4cyHG47CyTJk1SSkqKOnfuLF9fX4WHh2cbzjsiIkLjx4/Xww8/rDFjxqhHjx7KzMxU+/btFRQUpHHjxuX6Gp999lkVKVJEQ4cOtQ5tHhkZKUlasGCBmjRpolKlSmnAgAE6d+6cxowZo9q1a2v16tUqUaKEzbIefvhhlSlTRkOHDpUx5qre64tlbb958+ZpyJAhki5UVtSqVUsWi0XdunVTwYIFNWfOHD3zzDNKTEy0Ds2dkZGhBx54QD///LMee+wx9ezZU0lJSZo/f77Wr1+vmJiYHNfZpUsXzZgxQ926dVNsbKyOHz+u33//XZs2bcq1KsMYowcffFCLFi3SM888o7i4OM2dO1cvvPCC9u/fr5EjR9q0//333/XNN9+oa9euCgoK0nvvvadWrVppz549yp8/f57fn+PHj6tJkyZ67LHH1KZNG0VGRiozM1MPPvigfv/9d3Xu3FkVKlTQunXrNHLkSG3dutXmPj1DhgzRa6+9pkceeUQdO3bU0aNHNWbMGNWpU0d//fXXZa/aXLFihZYsWaLHHntMRYsW1a5duzR+/HjVq1dPGzdulL+/vx566CGFhoaqd+/eevzxx3X//fcrMDBQAQEBOn36tPbt22d9b7LuiXg1/ZekhQsX6quvvlK3bt1UoECBbPtillGjRql79+4KDAy0Vmhl7d+5iY6O1tKlS7V+/XpVqlTp8hvjX6+88oo++eSTPFeNnz592uZeQtKFe8xfzX4AAPZApiRTXszVMmV0dLQWLFighQsXXvYWPL///rtOnTqlvn372m0owsDAQLVs2VIff/yxNm7cqIoVK2rWrFmSpKeeeuqalzt+/HhVrFhRDz74oLy8vDR79mx17dpVmZmZ1v3nyJEjuvfee1WwYEG9/PLLCg0N1a5du/TNN99YlzN//nw9/vjjatCggd566y1J0qZNm/THH3+oZ8+eOa77aj6bNyq7SdLkyZMVGBioPn36KDAwUAsXLtTrr7+uxMREjRgxIte+Vq5cWbVq1dJzzz2nli1bWitzsl7Dhg0bVLt2bRUpUkQvv/yyAgIC9NVXX6lFixb6+uuvs32Xde3aVQULFtTrr7+u5OTkHPtaoUIFDRo0SK+//ro6d+6su+++W5J055135vr6siq8pk+frocffjhPIz8FBwerd+/eev311/NUNZ6RkZEta0pSvnz57Fb5DgCuiOxL9r2Yu2bfgIAANW/eXDNmzNCJEycUHh5unffll18qIyNDTz75pHXa7NmzVapUqcvmlyvJy3Z75ZVXVK5cOX344YfWWwzGxMSoYcOG1n27c+fOkmQ9fpvX48FZBg8eLB8fH/Xt21epqak5jnpUsGBBjR8/PtfMmJOIiAjly5dPs2fPVvfu3W3e09x4enrq1VdfVdu2bfNcNZ5TfvPx8VFwcPAVnwvAwRx7Xv7W0LZtW+Ph4ZFj1WHWFUi9evUyksxvv/1mnZeUlGRKlixpSpQoYTIyMowx/11RVaFCBZurI0ePHm0kmXXr1lmn5XRFkzF5v8KxatWquVZdXLqOLGvWrDGSTMeOHW3a9e3b10gyCxcutFmfJPPrr79apx05csT4+vqa559//rLrvZQk4+vra3Pl4gcffGAkmaioKJOYmGid3q9fPyPJpu3FV8RlGTZsmLFYLGb37t3WaTlVBRvz39VlwcHB5siRIznOu7QS4fHHHzf+/v5m69atZsSIEUaS+fbbb6/4WnOr4I6LizMRERHm+PHj1mlr1641Hh4epm3bttZpWdvs8ccfv+K6Lre+i1WtWtWEhYVZ/37mmWdMoUKFzLFjx2zaPfbYYyYkJMT6fv/vf/8zksy7776bbZkXX5136T4bEhJiEhISLtvvSyvGv/32WyPJvPHGGzbtWrdubSwWS7YKdR8fH5tpa9euNZLMmDFjclxfbhXjksyECRNspk+dOtV4eHjYfN6NuXAlri666nPXrl3G09PTDBkyxKbdunXrjJeXV7bpl8ppv86qevnkk0+s0y6+QvdiTZs2zVZ1fzX9N+bCe+nh4WE2bNhw2b5mqVix4hWrxC82b9484+npaTw9PU18fLx58cUXzdy5c01aWlq2thdXknXo0MH4+fmZAwcOGGMuXzGe08PX1zfPfQQAeyFTkildOVOuX7/e5MuXz0gycXFxpmfPnubbb781ycnJNu2y9sFLX0N6ero5evSozePivHi5inFjjBk5cqSRZK04btmypZGUY2VKTnKq7Mppezdu3NiUKlXK+vfMmTONdPkRaHr27GmCg4MvWyF/acX4xX269LN5acX4jcxuOb0Hzz77rPH397epcMupr0ePHs31e6RBgwamcuXKNsvIzMw0d955pylTpox1WlZeu+uuu/I0wsCKFSuuWCV+qbZt2xpJJiwszLRs2dK8/fbbZtOmTdnaXfyZOnXqlAkLCzMPPvigdX5uFeO55c1nn302z30EAHdE9iX73grZ1xhjfvjhByPJfPDBBzbTa9WqZYoUKWLdj0+fPm0kmebNm+epD7nJ63bLbSTFgIAAm30+S16PB2dti1KlSuXYl0tdLjPm5vXXXzeSTEBAgGnSpIkZMmSIzUijWS4+Jpqenm7KlCljUzWeW8V4bvmtcePGee4jAMe5/ps24LIyMzP17bffqlmzZjneozbrfnk//vij7rjjDt11113WeYGBgercubN27dqljRs32jyvQ4cONldRZV3t/s8//9it76GhodqwYYO2bduW5+f8+OOPkqQ+ffrYTH/++eclKds9TmJjY619ly5cBVauXLlreh0NGjSwuYqvZs2akqRWrVopKCgo2/SL15EvXz7rv5OTk3Xs2DHdeeedMsbor7/+ynMfWrVqpYIFC+ap7fvvv6+QkBC1bt1ar732mp566ik1b948z+u62MGDB7VmzRq1b9/e5iq4KlWqqFGjRtbtcrEuXbpc07pyEhgYqKSkJEkXKrO//vprNWvWTMYYHTt2zPpo3LixTp8+rdWrV0uSvv76axUoUEDdu3fPtsyL7yV5qdDQUP355586cOBAnvv4448/ytPTUz169LCZ/vzzz8sYozlz5thMb9iwoU3FepUqVRQcHHzV+6avr686dOhgM2369OmqUKGCypcvb/P+ZF1BumjRIknSN998o8zMTD3yyCM27aKiolSmTBlru9xcvF+fP39ex48fV+nSpRUaGmrdBtcir/3PUrduXcXGxl7z+i6nUaNGWrp0qR588EGtXbtWw4cPV+PGjVWkSBFrJVhOXn31VaWnp+vNN9+84jrGjh2r+fPn2zwu3V8A4EYjU15ApszOVTJlxYoVtWbNGrVp00a7du3S6NGj1aJFC0VGRmrixInWdomJiZL+G6kmy7p161SwYEGbx/Hjx/P82rKWl5VZs9Zz8Ta9Whdv76wRZurWrat//vlHp0+flvTfPRm///57nT9/PsflhIaGKjk5WfPnz7/mvlzOjcxuF78HSUlJOnbsmO6++26dPXtWmzdvvqb+njhxQgsXLtQjjzxiXeaxY8d0/PhxNW7cWNu2bdP+/fttntOpUye7jTBwqUmTJun9999XyZIlNXPmTPXt21cVKlRQgwYNsvUjS0hIiHr16qVZs2Zd8bNfokSJbFlz/vz52aqqAOBWQva9gOybnbtlX0nW0YWmTZtmnbZz504tW7ZMjz/+uPW+2/bIr5L9ttvFruZ4cJZ27drZ9MWeBg4cqGnTpum2227T3Llz9corr6hatWq6/fbbtWnTphyfk1U1vnbt2mwjKl3Kz88vx/yWl+OMAByPE+M32NGjR5WYmHjFIX53796tcuXKZZteoUIF6/yLFS9e3ObvsLAwSdLJkyevp7s2Bg0apFOnTqls2bKqXLmyXnjhBf3999+Xfc7u3bvl4eGh0qVL20yPiopSaGjoFV+HdOG1XMvruHRZISEhkqRixYrlOP3idezZs8caggIDA1WwYEHVrVtXkqwHtfKiZMmSeW4bHh6u9957T3///bdCQkLyNKRzbrLe19z2oWPHjmUbUvBq+nolZ86csYayo0eP6tSpU/rwww+zHbzMOkF85MgRSdKOHTtUrlw5eXld3V0dhg8frvXr16tYsWK64447NGDAgCuG/927d6tw4cLZwmNeP2PSte2bRYoUyTYU0LZt27Rhw4Zs70/ZsmUl/ff+bNu2TcYYlSlTJlvbTZs2Wdvl5ty5c3r99ddVrFgx+fr6qkCBAipYsKBOnTp1Vfv1pfLa/yzXu69lZGTo0KFDNo+0tDTr/Bo1auibb77RyZMntXz5cvXr109JSUlq3bp1th/BWUqVKqWnnnpKH374oQ4ePHjZ9d9xxx1q2LChzeOee+65rtcEAFeLTHkBmTI7V8qUZcuW1dSpU3Xs2DH9/fffGjp0qLy8vNS5c2ctWLBA0n8H+s6cOWPz3NKlS1sPOF3L8OdZy8taftYQh1knyq/FH3/8oYYNGyogIEChoaEqWLCg/u///k/Sf9u7bt26atWqlQYOHKgCBQqoefPmmjRpklJTU63L6dq1q8qWLasmTZqoaNGievrpp/XTTz9dc78udSOz24YNG9SyZUuFhIQoODhYBQsWVJs2bSRd3T5/se3bt8sYo9deey1bn/v373/dfc7JmTNnbLLm0aNHrfM8PDyUkJCgVatW6dixY/ruu+/UpEkTLVy4UI899liuy+zZs6dCQ0M1YMCAy647ICAgW9Zs2LChypcvf12vCQBcGdn3ArJvdu6WfSXJy8tLjz76qH777TfrRXdZJ8kvHkbdHvlVst92u9jVHA/Ocr357dy5c9mOF17s8ccf12+//aaTJ09q3rx5euKJJ/TXX3+pWbNmSklJyXGZTz75pEqXLq1BgwZddqh8T0/PHPNbXFzcdb0mADcH9xh3UbldDX+5L+wrycjIsPm7Tp062rFjh7777jvNmzdPH330kUaOHKkJEyaoY8eOl13W5ap9L2bP15Hbsq60joyMDDVq1EgnTpzQSy+9pPLlyysgIED79+9X+/bts93T5nKu9iq3uXPnSroQKvft23fZ+0Xbm72uyDt//ry2bt1q/bGS9X61adNG7dq1y/E5V3t/pks98sgjuvvuuzVz5kzNmzdPI0aM0FtvvaVvvvlGTZo0ua5lZ7HXvpnT+5yZmanKlSvr3XffzfE5WT8+MjMzZbFYNGfOnBz7c2kl1aW6d++uSZMmqVevXoqPj1dISIgsFosee+yxq9qvr7X/Wa53X9u7d2+2sLxo0SLVq1fPZpqPj49q1KihGjVqqGzZsurQoYOmT59uPYB6qVdeeUVTp07VW2+9pRYtWlxXHwHAVZEp874sMmXOruX/eU9PT1WuXFmVK1dWfHy87rnnHn322Wc2JwPXr19vU/0TGBiohg0bSrpwH/KrtX79ekmyHnDOWs+6detsKq7yaseOHWrQoIHKly+vd999V8WKFZOPj49+/PFHjRw50rq9LRaLZsyYoWXLlmn27NmaO3eunn76ab3zzjtatmyZAgMDFRERoTVr1mju3LmaM2eO5syZo0mTJqlt27aaMmXKVfftUjcqu506dUp169ZVcHCwBg0apJiYGPn5+Wn16tV66aWXrjlvZj2vb9++aty4cY5tLj1xcL158+2339bAgQOtf0dHR2vXrl3Z2uXPn18PPvigHnzwQdWrV0+LFy/W7t27rfciv1hW1fiAAQOuufoKAGBfZN+8L4vsmzN7Z98sbdq00fvvv6/PP/9cffv21eeff67Y2FibE63BwcEqXLiwNddeC3tut4tdy/Hg681vX375ZbZROnP6DAQHB6tRo0Zq1KiRvL29NWXKFP3555/WiwEullU13r59e3333XfX1T8AzosT4zdYwYIFFRwcfMX/sKKjo7Vly5Zs07OGn8vph/a1CgsL06lTp2ympaWl5Vg1GR4erg4dOqhDhw46c+aM6tSpowEDBuQa5KKjo5WZmalt27ZZr86UpMOHD+vUqVN2fR32sm7dOm3dulVTpkxR27ZtrdNzGsowrwE1L3766Sd99NFHevHFF/XZZ5+pXbt2+vPPP6+6elr6b//IbR8qUKCAAgICrrvPOZkxY4bOnTtnPWhVsGBBBQUFKSMjwybg5SQmJkZ//vmnzp8/L29v76tab6FChdS1a1d17dpVR44c0e23364hQ4bkemI8OjpaCxYsUFJSkk3V+I34jF1JTEyM1q5dqwYNGlx2n4qJiZExRiVLlrRW9FyNGTNmqF27dnrnnXes01JSUrJ9/nOTW9/y2v9rkdPyoqKisn0eq1atetnlZA21drlq8JiYGLVp00YffPCBdUgwAHBWZMoLyJTZuXqmvPT/7LvvvlshISH64osv1K9fP+vQkdfjzJkzmjlzpooVK2bdn5o1a6Zhw4bp008/vaYT47Nnz1ZqaqpmzZplU2mV261uatWqpVq1amnIkCGaNm2annzySX3xxRfWz4CPj4+aNWumZs2aKTMzU127dtUHH3yg1157LdtJ4Kt1o7LbL7/8ouPHj+ubb75RnTp1rNN37tyZp+fn1pdSpUpJkry9va/4e+Jq5bbOtm3b2gzDm5cDtdWrV9fixYt18ODBXL+TevXqpVGjRmngwIE39aA9ALg6su8FZN/s3C37ZqlZs6ZiYmI0bdo0NWrUSBs2bNCQIUOyPf+BBx7Qhx9+qKVLlyo+Pv6q13812y03OW3PqzkefLVy238aN2581bciql69uqZMmXLZ44Vt2rTRG2+8oYEDB+rBBx+8quUDcA0MpX6DeXh4qEWLFpo9e7ZWrlyZbX7WVUz333+/li9frqVLl1rnJScn68MPP1SJEiXsen/emJgY/frrrzbTPvzww2xXOF56z77AwECVLl3aZti/S91///2SpFGjRtlMz6pOaNq06bV2+4bJugLy4ivKjDEaPXp0trZZYSivJxZzc+rUKXXs2FF33HGHhg4dqo8++kirV6/W0KFDr2l5hQoVUlxcnKZMmWLTt/Xr12vevHnW7WJva9euVa9evRQWFqaEhARJF97PVq1a6euvv87xB8zFwxK2atVKx44d0/vvv5+tXW5XuWZkZGQb1iciIkKFCxe+4r6ZkZGRbV0jR46UxWKxW6V5XjzyyCPav39/tnsKSReGAcoapumhhx6Sp6enBg4cmO39MMZc8b6anp6e2Z43ZsyYbJ/13AQEBOQ4hFJe+38tAgICsn2+/Pz8sg1NlDXc2aJFi3LcV7LuA5XTcFgXe/XVV3X+/HkNHz78mvsMADcDmfICMqUtV8qUv/32W4732L70/2x/f3+9+OKLWr9+vV5++eUc/5+/mmqoc+fO6amnntKJEyf0yiuvWA+sxcfH67777tNHH32U4z0E09LS1Ldv31yXm9P2Pn36tCZNmmTT7uTJk9n6m1X5k/UZuPQz4uHhYa2oudznJK9uVHbL6T1IS0vTuHHj8vR8f39/Sdk/BxEREapXr54++OCDHA9aXvx74mrl9tkrVaqUTdasXbu2JOnQoUM53ponLS1NP//8c47D3l4sq2r8u+++05o1a6653wBwqyH7XkD2teWO2fdiTz75pP766y/1799fFotFTzzxRLY2L774ogICAtSxY0cdPnw42/wdO3bkuA2yXM12y01Ox+6u5njw1cotMxYqVCjb8UJJOnv2rM13wsXmzJkj6fLHC7OqxtesWaNZs2Zdc78BOC8qxm+CoUOHat68eapbt646d+6sChUq6ODBg5o+fbp+//13hYaG6uWXX9bnn3+uJk2aqEePHgoPD9eUKVO0c+dOff3113aplMjSsWNHdenSRa1atVKjRo20du1azZ07VwUKFLBpFxsbq3r16qlatWoKDw/XypUrNWPGDHXr1i3XZVetWlXt2rXThx9+aB1ab/ny5ZoyZYpatGjhlPflLV++vGJiYtS3b1/t379fwcHB+vrrr3O8L0+1atUkST169FDjxo3l6el52fvK5aZnz546fvy4FixYIE9PT913333q2LGj3njjDTVv3vyK1bA5GTFihJo0aaL4+Hg988wzOnfunMaMGaOQkJAr3tcuL3777TelpKQoIyNDx48f1x9//KFZs2YpJCREM2fOVFRUlLXtm2++qUWLFqlmzZrq1KmTYmNjdeLECa1evVoLFizQiRMnJF2ozPjkk0/Up08fLV++XHfffbeSk5O1YMECde3a1Wb4zCxJSUkqWrSoWrdurapVqyowMFALFizQihUrbCqjL9WsWTPdc889euWVV7Rr1y5VrVpV8+bN03fffadevXopJibmut+jvHrqqaf01VdfqUuXLlq0aJFq166tjIwMbd68WV999ZXmzp2r6tWrKyYmRm+88Yb69eunXbt2qUWLFgoKCtLOnTs1c+ZMde7c+bIHbB944AFNnTpVISEhio2N1dKlS7VgwQLlz58/T/2sVq2avvzyS/Xp00c1atRQYGCgmjVrluf+X4tq1app/PjxeuONN1S6dGlFRESofv36ubbv3r27zp49q5YtW6p8+fJKS0vTkiVL9OWXX6pEiRLZhlS6VFbV+OWGKZ0zZ471avOL3XnnndaKJgC4GciUZMpLuVKmfOutt7Rq1So99NBD1pO+q1ev1ieffKLw8HD16tXL2vbll1/Wpk2bNGLECM2bN0+tWrVS0aJFdfLkSa1evVrTp09XRESE/Pz8bNaxf/9+ffrpp5IuVIlv3LhR06dP16FDh/T888/r2WeftWn/ySef6N5779VDDz2kZs2aqUGDBgoICNC2bdv0xRdf6ODBg3r77bdzfD333nuvtcr72Wef1ZkzZzRx4kRFRETYnMydMmWKxo0bp5YtWyomJkZJSUmaOHGigoODrQdbO3bsqBMnTqh+/foqWrSodu/erTFjxiguLs6mauxa3ajsdueddyosLEzt2rVTjx49ZLFYNHXq1DxfuJAvXz7Fxsbqyy+/VNmyZRUeHq5KlSqpUqVKGjt2rO666y5VrlxZnTp1UqlSpXT48GEtXbpU+/bt09q1a6+6v9KF7BcaGqoJEyYoKChIAQEBqlmzZq73uNy3b5/uuOMO1a9fXw0aNFBUVJSOHDmizz//3HqR8KXfeZfq2bOnRo4cqbVr1+ZYdXb69GnrfnuprPu1A8CtiOxL9r2Uu2bfLG3atNGgQYP03XffqXbt2ipRokS2NllV5Y8++qgqVKigtm3bqlKlStbjYdOnT1f79u1z7dfVbLfcVKtWTQsWLNC7776rwoULq2TJkqpZs2aejwdfrctlxpycPXtWd955p2rVqqX77rtPxYoV06lTp/Ttt9/qt99+U4sWLXTbbbdddp1PPvmkBg8enOuFjenp6bnmt5YtW96wkVsB2InBTbF7927Ttm1bU7BgQePr62tKlSplEhISTGpqqrXNjh07TOvWrU1oaKjx8/Mzd9xxh/n+++9tlrNo0SIjyUyfPt1m+s6dO40kM2nSJOu0/v37G0nm6NGjNm0zMjLMSy+9ZAoUKGD8/f1N48aNzfbt2010dLRp166dtd0bb7xh7rjjDhMaGmry5ctnypcvb4YMGWLS0tKyreNi58+fNwMHDjQlS5Y03t7eplixYqZfv34mJSXFpl10dLRp2rRptveqbt26pm7dupd9Py8lySQkJOT4nowYMcJmek7v4caNG03Dhg1NYGCgKVCggOnUqZNZu3Zttvc0PT3ddO/e3RQsWNBYLBbra89tXRfPy1rOd999ZySZd955x6ZdYmKiiY6ONlWrVrV5jy+V2z5gjDELFiwwtWvXNvny5TPBwcGmWbNmZuPGjTZtctsvrrS+rIe3t7cpWLCgqVOnjhkyZIg5cuRIjs87fPiwSUhIMMWKFTPe3t4mKirKNGjQwHz44Yc27c6ePWteeeUV6/4SFRVlWrdubXbs2GFtI8n079/fGGNMamqqeeGFF0zVqlVNUFCQCQgIMFWrVjXjxo2zWW67du1MdHS0zbSkpCTTu3dvU7hwYePt7W3KlCljRowYYTIzM23a5bQ/GWOyfUYulpCQkO2zULduXVOxYsUc26elpZm33nrLVKxY0fj6+pqwsDBTrVo1M3DgQHP69Gmbtl9//bW56667TEBAgAkICDDly5c3CQkJZsuWLTkuO8vJkydNhw4dTIECBUxgYKBp3Lix2bx5c7bXkdv+e+bMGfPEE0+Y0NBQI8nm/cxr/3N7L3Nz6NAh07RpUxMUFGQkXfG7YM6cOebpp5825cuXN4GBgcbHx8eULl3adO/e3Rw+fNimbW7fOdu2bTOenp7ZPleTJk2y2fcvfVz83QAANwuZkkzpqpnyjz/+MAkJCaZSpUomJCTEeHt7m+LFi5v27dvb5L6LzZw509x///2mYMGCxsvLy4SGhpq77rrLjBgxwpw6dcqmbXR0tPX/aIvFYoKDg03FihVNp06dzJ9//plrv86ePWvefvttU6NGDWuWKFOmjOnevbvZvn17ttd7sVmzZpkqVaoYPz8/U6JECfPWW2+Z//3vf0aS2blzpzHGmNWrV5vHH3/cFC9e3Pj6+pqIiAjzwAMPmJUrV1qXM2PGDHPvvfeaiIgI4+PjY4oXL26effZZc/DgQWubrO21aNGibH26dBvktO/fqOz2xx9/mFq1apl8+fKZwoULmxdffNHMnTs3z31dsmSJqVatmvHx8bHJ/MZc+C5r27atiYqKMt7e3qZIkSLmgQceMDNmzLC2ycprK1asyHOfv/vuOxMbG2u8vLyumOkSExPN6NGjTePGjU3RokWNt7e3CQoKMvHx8WbixIk2vyMu95nKev0BAQE20+vWrXvZvAkAtzqyL9n3Vsq+xhhTo0YNIynbcc5Lbd261XTq1MmUKFHC+Pj4mKCgIFO7dm0zZsyYbPvMpfK63XLLWZs3bzZ16tQx+fLlM5Js9v+8HA++3LbIzeUy46XOnz9vJk6caFq0aGGio6ONr6+v8ff3N7fddpsZMWKEzffH5fbBi48LXrzd27Vrd9n8lvU7AIDzshhzFePQAQAAAAAAAAAAAADgYrjHOAAAAAAAAAAAAADArXGPcTi1Q4cOXXZ+vnz5FBIScpN6AwAAAFdEpgQAAMCtguwLAEDuGEodTs1isVx2frt27TR58uSb0xkAAAC4JDIlAAAAbhVkXwAAckfFOJza/PnzLzu/cOHCN6knAAAAcFVkSgAAANwqyL4AAOSOinEAAAAAAAAAAAAAgFvzcHQHAAAAAAAAAAAAAAC4kTgxDgAAAAAAAAAAAABwa05zj/G6Dy1xdBdwi/tmkKN7AEjH8xV1dBcAlY0p7pD1/uBd7qatq+n5LTdtXXCc1VuPO7oLgMoufNvRXQB03w/3OboLuMX9Pruuw9Z9szIm+fLWkDJvkqO7AOhEdDVHdwHQI31POroLgMMyJscwXRsV4wAAAAAAAAAAAAAAt+Y0FeMAAODWZvG2OLoLAAAAcDNkTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1hlIHAABOwcOLYYgAAABgX2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdg8eZ6PQAAANgXGRMAAAD2RL50bWw9AAAAAAAAAAAAAIBbo2IcAAA4Be7PAwAAAHsjYwIAAMCeyJeujYpxAAAAAAAAAAAAAIBbo2IcAAA4BYs3V1sCAADAvsiYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE7B4snVlgAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU/DgaksAAADYGRkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClYPLjaEgAAAPZFxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3RsU4AABwChZPrtcDAACAfZExAQAAYE/kS9fG1gMAAAAAAAAAAAAAuDVOjAMAAAAAAAAAAAAA3BpDqQMAAKfg4WlxdBcAAADgZsiYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE7B4sHVlgAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU+D+PAAAALA3MiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU7BwtSUAAADsjIwJAAAAeyJfujYqxgEAAAAAAAAAAAAAbo2KcQAA4BQsHlyvBwAAAPsiYwIAAMCeyJeuja0HAAAAAAAAAAAAAHBrVIwDAACnYPHg/jwAAACwLzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDUqxgEAgFPw8ORqSwAAANgXGRMAAAD2RL50bVSMAwAAAAAAAAAAAADcGhXjAADAKXB/HgAAANgbGRMAAAD2RL50bVSMAwAAAAAAAA7y5ptvymKxqFevXtZpKSkpSkhIUP78+RUYGKhWrVrp8OHDNs/bs2ePmjZtKn9/f0VEROiFF15Qenr6Te49AAAA4DqoGAcAAE7B4sH1egAAALAvZ8+YK1as0AcffKAqVarYTO/du7d++OEHTZ8+XSEhIerWrZseeugh/fHHH5KkjIwMNW3aVFFRUVqyZIkOHjyotm3bytvbW0OHDnXESwEAALglOHu+xOWx9QAAAAAAAICb7MyZM3ryySc1ceJEhYWFWaefPn1aH3/8sd59913Vr19f1apV06RJk7RkyRItW7ZMkjRv3jxt3LhRn376qeLi4tSkSRMNHjxYY8eOVVpamqNeEgAAAJwAIxLljhPjAADAKVg8LDftAQAAgFuDM+fLhIQENW3aVA0bNrSZvmrVKp0/f95mevny5VW8eHEtXbpUkrR06VJVrlxZkZGR1jaNGzdWYmKiNmzYcE39AQAAwJU5+zHMy41INHv2bE2fPl2LFy/WgQMH9NBDD1nnZ41IlJaWpiVLlmjKlCmaPHmyXn/99et6v5wNJ8YBAAAAAACA65CamqrExESbR2pqaq7tv/jiC61evVrDhg3LNu/QoUPy8fFRaGiozfTIyEgdOnTI2ubik+JZ87PmAQAA4NbDiERXxolxAADgFDw8LTftcTXGjx+vKlWqKDg4WMHBwYqPj9ecOXOs8xmGCAAAwHndrHw5bNgwhYSE2DxyOuktSXv37lXPnj312Wefyc/P7ya/IwAAALgeN/MY5tVefMmIRFfGiXEAAIDLKFq0qN58802tWrVKK1euVP369dW8eXNrIGQYIgAAAPTr10+nT5+2efTr1y/HtqtWrdKRI0d0++23y8vLS15eXlq8eLHee+89eXl5KTIyUmlpaTp16pTN8w4fPqyoqChJUlRUVLaLMbP+zmoDAAAA13Y1F18yIlHeeDm6AwAAAM6sWbNmNn8PGTJE48eP17Jly1S0aFF9/PHHmjZtmurXry9JmjRpkipUqKBly5apVq1a1mGIFixYoMjISMXFxWnw4MF66aWXNGDAAPn4+DjiZQEAAMCOfH195evrm6e2DRo00Lp162ymdejQQeXLl9dLL72kYsWKydvbWz///LNatWolSdqyZYv27Nmj+Ph4SVJ8fLyGDBmiI0eOKCIiQpI0f/58BQcHKzY21o6vDAAAAI7Sr18/9enTx2ZaTpkza0Si+fPnMyLRFXBiHAAAOAWLx9UNcX49UlNTsw07lJeDmRkZGZo+fbqSk5MVHx9/xWGIatWqleswRM8995w2bNig2267zb4vDgAAAFY3M2PmVVBQkCpVqmQzLSAgQPnz57dOf+aZZ9SnTx+Fh4crODhY3bt3V3x8vGrVqiVJuvfeexUbG6unnnpKw4cP16FDh/Tqq68qISEhzyfoAQAAcPVuZr7M68WXF49IlCUjI0O//vqr3n//fc2dO9c6ItHFVeOXjki0fPlym+W644hEDKUOAABuOVczDJEkrVu3ToGBgfL19VWXLl00c+ZMxcbGMgwRAAAAboiRI0fqgQceUKtWrVSnTh1FRUXpm2++sc739PTU999/L09PT8XHx6tNmzZq27atBg0a5MBeAwAAwBGyRiRas2aN9VG9enU9+eST1n9njUiUJacRidatW6cjR45Y27jjiERUjAMAAKdg8bh51+vldRiiLOXKldOaNWt0+vRpzZgxQ+3atdPixYtvdDcBAABwnW5mxrwev/zyi83ffn5+Gjt2rMaOHZvrc6Kjo/Xjjz/e4J4BAADgYs6YLxmRKO84MQ4AAG45V3MPSEny8fFR6dKlJUnVqlXTihUrNHr0aD366KMMQwQAAAAAAADAqY0cOVIeHh5q1aqVUlNT1bhxY40bN846P2tEoueee07x8fEKCAhQu3bt3G5EIk6MAwAAp+CM93/MTWZmplJTU1WtWjXrMEStWrWSlPMwREOGDNGRI0cUEREhyT2HIQIAAHBGrpQxAQAA4PxcJV8yIlHOODEOAABwGf369VOTJk1UvHhxJSUladq0afrll180d+5chYSEMAwRAAAAAAAAALgATowDAACn4KxXWx45ckRt27bVwYMHFRISoipVqmju3Llq1KiRJIYhAgAAcGbOmjEBAADgmsiXro0T4wAAAJfx8ccfX3Y+wxABAAAAAAAAgPPjxDgAAHAKXG0JAAAAeyNjAgAAwJ7Il67Nw9EdAAAAAAAAAAAAAADgRqJiHAAAOAWLB9frAQAAwL7ImAAAALAn8qVrY+sBAAAAAAAAAAAAANwaFeMAAMApeHhyfx4AAADYFxkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClYPLjaEgAAAPZFxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3RsU4AABwChYPrtcDAACAfZExAQAAYE/kS9fG1gMAAAAAAAAAAAAAuDUqxgEAgFPg/jwAAACwNzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDVOjAMAAAAAAAAAAAAA3BpDqQMAAKfAMEQAAACwNzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDUqxgEAgFOweHC9HgAAAOyLjAkAAAB7Il+6NrYeAAAAAAAAAAAAAMCtUTEOAACcAvfnAQAAgL2RMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtUTEOAACcAvfnAQAAgL2RMQEAAGBP5EvXxtYDAAAAAAAAAAAAALg1KsYBAIBzsHB/HgAAANgZGRMAAAD2RL50aVSMAwAAAAAAAAAAAADcGhXjAADAKVg8uNoSAAAA9kXGBAAAgD2RL10bFeMAAAAAAAAAAAAAALdGxbgTyOfnoWeeKK67a+ZXWLCXtu1M1pj/7dLm7Wes8zu3idZdNcMVEuilg0dS9fUPBzVr3uHLLrdefH49/XgxRUX4af/Bc5owdbf+XH3Kps3TjxXTA40iFejvqXWbk/Tuh/9o/8GUG/VS4QQ++eZ7/bJslfbsPyQfH29VLldaXZ96WNFFCkmSEpPO6KMvv9XytRt06NhxhQUH6e47blfnx1oqMMBfknQ66YwGjPpAO3bv0+mkMwoLCdLdNW5TlydbK8A/X67rTkw6o3c//ky/r1wjD4tF9WpVV6+nn5B/Pj9rm+279uqdj6Zq0/adCg0OUuv7G6pNi/tv7JuCm276l59ryZLftX/fXvn4+Kp8hVi1f7qjihYtZm2TlpamjydO0G+//qLz58/rttur67mEHgoLC7O2aXZ/o2zLfuGl/1Oduvfkuu6kpER9MH6slv+5TB4eFt1Z+251erar8uX7b9/dufMfTRg3Rtu2blFISKgeaNZcrR5+1E6vHrmxeHC9HnAtNq3/S99/M03/7NiiUyeOqc//DVON+LrW+adOntDnk8fp7zXLdfZMkspXilP7Z/uoUOH/vnMH9UvQpvV/2Sy3wX0t1DHhxVzXa4zRjM8+0sJ5s5ScnKRyFaro6a4v2Cz3TFKiJn/wrlYv/10WDw/dcWc9tevUS375/O34DsAZTF/7j2b8/Y8OJp6VJJXKH6xONcurdskoSdKQBav1556jOnbmnPL5eKlqofzqfncllQwPsi5j+KK1WnvguHYcT1TJ8CB93qbBFdebmp6hkb+u07wt+5SWkaH46Ei9XD9O+QP+y5cHE89q2MK/tHLvMfl7e+mB2OLqdldFefH/zi3rofsL6/GHiik8zEc7dp7RyA+2a9O2pFzb31O7gDq2KamoCD/tO3BW4yfv1LJVJ2zaPPNkCTW7N0pBAV5atylRb4/bpn0Hz93ol4I8IGMCV+/jeUv189ot2nn4hHy9vRRXsoh6Na+nEpH5rW32Hj2pd75dqDX/7FNaeoZqVyill1s3Uv7gAGubiXOX6LcNO7Rl32F5e3nq9+G9r7huY4zG/fibvlmyVknnUhVXsoheebSxoiPCrW1OJ5/TmzPma/H67fKwWNSgajm91Lqh/H197PtGwKE+mz5Tvy39U3v275evj48qli+nzu2eVPGiRaxt3hn7gVavXadjJ04on5+fKpYvp2fbt7Fpc8+DD2db9mt9e6l+ndq5rjsxKUnvffg/LV2+ShYPi+rE11T3Th1sjh3t2Llboz/4SJu37VBoSLBaNm2ix1s1t9Orh6shX95ayJeuja3nBF5MKK3qVUI1ZPQ2dei9VivWntY7/WNVIPxCmEtoX0J33BaqIaO2qW2PNZrx/UH17FRKd9YIy3WZFcsF6bU+ZfXjz0fU6fm1+m35CQ15qbxKFv/vIOTjLYvooaaF9M6EHery8jqlpGbq7ddi5ePNMBDu7K8NW9Tqvgb6cNirGt2/r9IzMtRr0Ds6l5IqSTp68pSOnTilbm0f1acj39Ar3Z7Rn3+t09Bxk6zLsFgsurvGbXrr5R76Yswwvdqto1b8vVHDP5hy2XUPGP2hdu7dr9Gv99WI/+ulNRu36K0Jk63zk8+eU6/BbyuyYH79b/gAJbR9VB9/+Z2+nffLjXgr4EDr1/+tpg88qBHvvqfBQ95URka6Xn/lZaWk/BfuPvpwvJYvX6aX+r2mYW+9oxMnjmvYGwOyLatn77765NMvrY9a8bn/sJGkt4e/qT17dmnwkDf12oA3tH7933r/vZHW+WfPJuv1V19WRESkRr43Th2e6aRp06bqpzk/2O31A4A9paakqHjJ0nq6y/PZ5hlj9O6Ql3Tk8H71feVNDRs9WQULRmnoqz1svnMlqX7jBzX+k9nWxxMdEi673tlff6qfvp+uZ7q+oMFvfyRfPz+9+XpvpaWlWtu8//YA7duzU/83eLReeG2ENq9fo4nvv2WfFw6nEhmYT93vqqRPn6ivqU/coxrFCqrPrKXacSxRklQhIkwD7q2mGe0a6f2WtWVklPDN78rINDbLaV4xWveWLZrn9b6z+G/9+s9Bvdn0Dk18uI6OJqfohdnLrPMzMo16frtE6RlGkx6tq4GNq2n2xt2asGSjfV44XE79uwqqW8cYTfp8l57ptUrbd57Ru4MqKzTEO8f2lcoHq/8Lsfp+3kE93XOVflt2XMNeqWjz2/rJVsXU+oEienvcNnXu+5fOpWTo3UGV+W0NwGWt3L5Hj959u6Y+/5Q+SHhU6RmZ6jL2S51NTZMknU1NU5dxX8oiiyZ2f1xTerfR+fQMdf9ghjIv+r/9fHqGGsWV08N33ZbndU9a8Kc+X7xKrz7aWJ8+31b5fL313LgvlXo+3dqm35TZ2nHwmCYkPKb3nm2t1Tv2atDnP9nvDYBTWLt+g1o0bayxI4ZqxKDXlJ6Rrhf7v6FzKf8VdZWNKaUXe3TVlLGjNHzgq5KMXnh9sDIyMmyW9VLPrvp6yofWx121alx23UPeeU+79uzViEGvadhrL+vvDZv09tgPrPOTz57VC/0HK7JgQX0w8i11af+Upnz+lWb/NN+u7wFcA/kScC2cGHcwHx8P1amVXxOm7tbfGxO1/1CKJn+5V/sPpah540hJUsXywZr7y1Gt2ZCoQ0dTNXv+Ye3YlawKpQNzXW7rBwpp+V8n9cV3B7R7/zn97/O92rozWS2bRFnbPPxAIU2dsU9/rDipf3af1dD3til/uI/uuiM81+XC9Y187Xk1rX+XShUvojIliuvVbs/o8LHj2rxjlyQppnhRDX2xm+6qEaeiURGqXjlWzz7RSn+sXKP0f0NlcGCAHrqvviqULqlCEQVUvUqsHrqvvtZu2prrenftO6Blf63Ty891UMWyMapaoaz6dGyjBX8s19ETJyVJc39dqvPpGXql6zMqVbyIGt1VUw/f31BfzJ57w98X3FwDBw9Tw0aNFR1dQiVLxahXnxd09OgRbd+2TZKUnJys+fN+UsdOXVQ17jaVLlNWPXv31aZNG7V5s+2B7ICAQIWFh1sfPj65XyG+d89urV61Qt179FG58hVUsWIlPdulm3779RcdP35MkvTLooVKP5+uHr2eV3R0CdWpe4+aPdhC3878+sa9IZB04f48N+sBuJO46vF69KlnbarEsxw6sFfbtmzQ08+9oJiysSpcNFpPd31BaWmpWrLY9qCNj6+fQsPyWx/+/gHZlpfFGKM5s75Sy0faq3qtOoouWVpde7+ukyeOaeWyXyVJ+/fu0trVy9Sp+8sqXa6iylesqnbP9tHS3xboxPGj9n0T4HB1YgrprpJRKh4WqOiwICXUrih/by+tO3Sh6uGhKiV1e9ECKhwSoAqRYep6Z0UdTjqnA4nJ1mW8eE9VPRIXoyIheRtRICn1vL5bv0t96lTRHcUjVCEyTP3vraa1B09o3cEL6122+7B2nkjU4Puqq1xEqGqXjNJz8bH6au0/Op+Raf83Ak7vsRZFNXvuQf3482Ht2ntWI8ZtU0pqph5oFJVj+4cfLKI/V5/Q5zP3afe+s/ros13auuOMWj1QxKbNJ1/t1u9/HteOXcl6Y+Rm5Q/31d21Ctysl4XLIF8CV29810fVvFYVlS5UUOWKRmpQm6Y6eDJRm/YekiSt+We/Dhw/rcFtmqpM4QiVKRyhwU811ca9B7V8627rcro2vVtP1b9DZQoXzNN6jTH67JcV6tT4Tt1TpazKFonQG089oKOnz2jh3xeOOf1z6Jj+2PSP+j/RRFVKFNbtMcX0cutG+mn1Rh05nXt1JlzP8IGv6r4G96hk8WIqXbKEXu6ZoMNHj2nr9n+sbZrd10hVK8UqKjJCZWNK6eknH9eRY8d16Ijt743AgACFh4VZH5c7drR77z4tX71GL3R7TrHlyqhybAX16Py0Fv22RMeOX8iYC375Tenp6Xqxx3MqWbyY6teprYeaNdH0776/MW8GnBr58tbDMUzXdtUnxo8dO6bhw4erZcuWio+PV3x8vFq2bKkRI0bo6FEOcF0tTw/Jy9OitDTbgzKpaZmqXCFYkrRhc6Jq1wi3VpDfVilYxQrn04q1p3NdbsWyQVr1t+38FX+dUsVyF4YqLBTpq/xhPlq19pR1fvLZDG3almRtg1tD8tkL1WLBQbkf/D5z9qwC/P3k5emZ4/yjJ05q8Z+rFFexXK7LWL9lu4IC/FWhdEnrtOpVYuVhsWjjtguBdv3WHYqrUFbe3v/d5aFmXCXtOXBIiWeSsy0T7iM5+cL2DQq68P2zfdtWpaenq2rc7dY2xYoVV8GCEdq8aZPNcyeMH6MnHmulPr26af68n2SMbeXZxTZv3qSAwECVKfvfvhp32+2yWCzaumXzhTabNqpipcry9v7vqs7bb6+u/fv26kwSP7KBG4F8eeOcP39ekmwO/Hh4eMjL20dbNv5t0/aPX+ap0xNN9ELCk/p8ynilpuR+e50jhw/o1MnjqhRX3TrNPyBQMWVjtW3zeknS1s3rFRAQpJgyFaxtKsdVl8XioR1bqdZ1ZxmZRnO37NW59AxVKZT9ottz59M1a8NuFQn2V1TQtQ+rv+nwSaVnGtUs/t/B9pLhQYoKyqe/Dx6XJP198IRKFwixGVo9vkSkktPSteN44jWvG67Jy8uisqWDtHLtSes0Y6SVa06qYrngHJ9TqXywVq45aTPtz79OqFL5C+0LR/qpQLivVlzUJvlshjZuTbS2AeAYZEz7OfPvKIPB/94+Ly09XRaL5OP133EiXy8veVgs+uufvde8nv3HT+tYYrJqlithnRaUz0+VSxTW3zv3S5LW7tyvoHy+qli8kLVNzXIl5GGxaN2uA9e8bji/5OQLt+wJDsq5WOxcSop++nmRCkVGKKJAfpt5oyd8pOZPPq3nnn9ZP85feNljRxs2b1VgQIDKlYmxTqsWV0UWi0Wbtl4o6NiwZauqVIy1OXZU47Y47d1/QElnzlzza4TrIV8Crueq7jG+YsUKNW7cWP7+/mrYsKHKli0rSTp8+LDee+89vfnmm5o7d66qV69+hSUhy7mUTK3fnKi2DxfV7n1ndfL0eTW4q4Aqlg3S/kMXDkaO/min+j4Xo68/qq709ExlGunt8Tv098bcD+SEh3rr5KnzNtNOnj6v8FDvf+dfODh64vQlbU6dV3gY9+O5VWRmZmrUpM9VpXwZxRTPecjKU4lJmjR9th5sWC/bvNffnaDfVvyl1LQ03VU9Tv2eezrXdR0/laiwENv/uL08PRUUGKDjJ0//2+a0CkfYXvUWHnrhOSdOnVZwYO4n7+G6MjMzNfGD8aoQW1HRJS5cOHHy5El5eXkrMND2x05oWJhOnfzvfjtPtmmnKlXj5Ovnp79Wr9T4se/p3LlzerB5yxzXdfLkCYWGhNpM8/T0VFBQsE6ePGltExlVyKZN6L/3NT958oQCg7h46Ebh/jy3JvLljVW4aLQKFIzU51MmqGO3F+Xnm08/fveFThw7olMnj1nb1a7bSAUiohQWXlB7dm3X55PH6eD+Perzf8NyXO7pf7+LQ0JtT3qGhIZbv6dPnzyu4FDbW/94enopMChIp04et+fLhJPYduy0Onzxi9LSM5XPx0tvN6ulUvn/y39frd2h935br3PnMxQdFqixre6St+e1f/cfP5sqb08PBfnZ/n7J7++n48kXDuAfT05RuL+vzfysv48n537xB9xTSLC3vDwtOnHS9nfwiVPnFV0054s0wkN9dPJUms20k6fOW39TZ/1+zvb7+1Qav62dBBnz1kTGtJ/MTKPhXy9QXKmi1srvKiWKKJ+Pj0bN+kXdm9WVMUajZ/2ijEyjo4nXXthwLPHCCcX8lxRv5A8K0LF/l3s8MVnhl8z38vRQsH8+Hb+OdcO5ZWZm6v2PJqtShXIqGV3cZt63P87VB5OnKiUlVcWKFNaIQa/ZnLDu8MSjuq1KJfn5+mrlmrUaNeEjnUtJUatm9+e4rhMnTyks1PYYpqenp4KDAnXi5ClJ0smTpxQVGWHTJiw0xPr8oMDcR3qFeyFf3prIl67tqk6Md+/eXQ8//LAmTJggi8W2hN8Yoy5duqh79+5aunTpZZeTmpqq1NRUm2mZGWny8Lw1P9RDRm/TS91K65uPayg9w2jbP2f08+/HVC7mQsh7qGkhxZYNUr+hm3ToaKqqxgarV6dSOnYiLVtVOHA13pn4qf7Zs08ThvxfjvOTz55T36GjVLJYYXV8tHm2+T07PK6nH2muvQcPacKnM/Te5M/1Que2N7rbcDMTxo3Rnt279NbbI6/c+BKPPdHG+u+YmNJKSUnRzK+n53piHIDzuZH5Mi0tVT4+vrk849bg5eWl3v83TB++N0ydHr9PHh6eqhRXXXHV4m2qJBrc18L67+IlYhQall9DXu2hwwf3KbJQ3u/3jFtbibAgfd6mgc6knteCbfvVf+5KTXy4jvXkeJPyxVWreKSOJado6qqtevmH5frfo3Xl65XzqEQAAFwre2TMnPKlSTsvX5+c7xnrroZOn6cdB49qcq//fn+HB/lrxNMtNOSruZq2eKU8LBbdVy1WFYpFysPCsK+wv9ETPtLOPXs15s3B2eY1rHuXqsdV0fETJ/XVt7M0cPi7ev+tN6yjZrV9rLW1bZmYkjqXkqIvZ87K9cQ4AMC9XdVlDWvXrlXv3r2zBUpJslgs6t27t9asWXPF5QwbNkwhISE2jz1bp15NV9zKgcOp6vnaBjV+fJke7rxSXV5aJy8viw4cTpWPj4c6PVFcYyfv0pKVF+4FPnPOIS3845gebV4412WeOHVeYaG2QT0sxFsn/r3K6MS/VySFh1zSJtRbJ07aXq0E9/TOxKn6Y9UavT/wJUXkzz7EZfK5c+r9xjvy9/PTsBe7y8sr+3U0+cNCVKJoId1d4za92KWdZs5dpGP/XjmZrW1osE6eth3lID0jQ0lnkpU/LOTfNiE6ccq2Tdbf4f9edQn3MmHcGK1Y/qeGvDlCBQr8NwxqWFiY0tPP68wlw0+dOnlSoWHZ99cs5cpV0LFjR3X+fM7fY2Fh4Tp1+pTNtIyMDCUlJSrs36rwsLBwnTppO5xR1t9hl1k3rh/357k13ch8OemDUfbvsAsqVbq83nxvij7+Yp7GfzJL/QaOVFLSaUVE5Z4lS5erKEk6dHBfjvND/v0+PH3qhM3006dOWL+nQ8LyK/GU7fdpRka6ziQlKTTMdmhDuAdvTw8VCw1Uhcgwdb+rksoWCNHnf223zg/y9VbxsEDdXrSAhj9QS7tOJGnR9msf8jS/v6/OZ2QqKcX2//3jZ1OUP+DCRTH5A/x04qztSY2svy8eXh23htOJ55WeYRQeZvs7ODzUW8dz+R184lSawkJtL+IPC/W2/qbO+v2c7fd3qA+/rZ0E+fLWZI+MmVO+HPHlDzeox85p6Ffz9Ov67ZrY/QlFhtlW0N5ZoaR+6N9Fi4b20C/Dempo22Y6cuqMiuYPveb1FQi+UGV7PMm28vt4UrIKBF8oIMofHKATl8xPz8hU4tlzyh/MSIPuaPSEj7R05WqNfKO/ChbI/jsiMCBARQsXUtVKsRrw0vPau++Aflu6PNflVShbRkePHVfa+fM5zg8PC9XJS45PZmRkKDHpjMLDQiVJYWGhOnnKtmAt6++sNrg1kC9vTRzDdG1XdWI8KipKy5fn/p/K8uXLFRkZecXl9OvXT6dPn7Z5FC/71NV0xS2lpGbqxMnzCgzwVI24UP2x/IS8PC3y9vaQybS970lmprnsFZgbtiapWmXbE4nVq4Zow5YL98c9eDhVx0+m6fYqodb5/vk8VaFMkLUN3JMxRu9MnKrFy1drzIAXVTiyYLY2yWfPqdegd+Tt5aXh/Xrk6WrozH/30fPn03OcX6lcaSUln9XmHbus01at26RMYxRbptSFNmVjtGbThXtLZ1nx9wYVLxzFMOpuxhijCePGaOnSPzRk2HBFXTJ0eekyZeXl5aW1a/6yTtu3b6+OHj2i8hUqXLo4q3/+2a7AwCB5e+c8Akn58hWUfOaMtm/bap22du1fMsaobLnyF9pUiNWG9ets9sM1f61SkaLFGEYduAFuZL7s8GwvO/bU9fkHBCo4JEwHD+zVP9s3q3rNu3Ntu/ufC/fOCw0rkOP8iMjCCg3Lr/VrV1qnnT2brB1bN6pM+UqSpLLlKyk5OUn/bN9sbbNh7SoZk6mYsrH2eElwcpmS0jIyc5xnjJG5zPy8qBAZJi8Pi5bv/e8+sbtOJOlQ0jlVKXThoGmVQuHafuy0Tpz9b9j0P3cfUYCPl0qF8//6rSY93Wjr9iRVq/LfbR4sFqla1TBt2JLzrcrWb05U9aq2t4WoERem9ZsvtD9wOEXHTqTatPHP56nYssHWNgBuPntkzJzy5QuPNrV3V52SMUZDv5qnhX9v1cTuj6togdBc24YF+ivY309/btmlE2eSVa9y6Wteb5H8ISoQHKA/t+yyTjtzLlXrdh1QlZJFJElVSxZR0rlUbdxzyNpm+dbdyjRGlUvkfuEnXI8xRqMnfKTfly3Xu2/0V6GoK/8uNP8+73x6zie9JWnHzl0KCgyQj3fOxzsrli+rM8nJ2rJ9h3Xa6r/XyxijCmXLXGhTrqz+3rDR5tjRyjV/q1iRwgyjfoshXwKu56qGUu/bt686d+6sVatWqUGDBtYAefjwYf3888+aOHGi3n777Ssux9fXV76+tsNa3qrDqEtSjbhQWSzSnv3nVLSQn7q0LaE9+8/px4VHlJFh9Nf60+rSroRS0/7RoaOpiqsYrMZ1C2rs5F3WZfxfj9I6ejxNEz/bI0ma8f1BvTe4oh55sLCWrTqp+ncVULmYQL094R/rc6Z/f1BtWxfVvoPndOhwqp5+vJiOn0jT78tPXNpFuJG3J07V/N+W6a2Xe8g/Xz7r/b0D/fPJ19fn35PibyslNU39e3ZW8tkUJf97IDE0OEienh5asmqtTpxOVIXSJeXv56d/9u7X2E++UpXyZVTo33uEb9z2jwa9N1FjBryogvnDVKJoYdW6rbLeHD9JLz7bTukZGXr3o0/VsPYdKhh+4T/5e++upf9N/05Dx01Smxb365+9+/TVD/PVo/3jjnmzcMOMHzdGv/6yUK+8PlD58vnr5IkL3zv+AQHy9fVVQECAGt17nz6eOEFBQUHy9/fXBxPGqnyFWJUvf+FkyvI/l+rkyZMqX76CvH18tOav1Zr+5Rdq2eq/IbK2btmsd98ZriFDhyt/gQIqVjxat1eroTHvjVRCt55KT0/XB+Pe19116il//gv7bt169fX5tKl6b9Q7avXwo9qza5dmffetOnbucvPfqFsMV0Hemm5kvvTxyf1giDtJOXfWprL76OGD2vXPVgUGBqtARJSW/b5QwSGhyl8wUnt37dCUiaNUo2YdVbm9piTp8MF9+mPxfMVVj1dQUIh279quqR+NVvmKcYou+d+Bzee7PKbH2j2nGvF1ZbFY1OTBR/Ttl1MUVbiYIiILa/qnHyosvICq16ojSSpSrISq3l5LE8e8qWcSXlRGeromffCu4u9uqPD82S/Mg2sb8/t61S4RpaigfEo+n66fNu/Vqr1H9f5DtbXvVLLmbd2n+OgIhebz1ZEz5zR5xRb5eXnqrpL/HeDce+qMzqal63hyqlLTM7TlyClJUqn8wfL29NCRM+fUZcZvGnRfdVWKCleQr7eaVyqhdxf/rWA/HwX6eGn4orWqUihclQtdGLmgVnSkSoYH67WfVqrn3ZV0LDlV45Zs1CNVS8mHIdxvSV98u0+v9C6vzduTtGlrkh5pXkT5/Dz0w4ILJ1he7V1OR4+n6YNPdkqSps/ar/eHVdVjLYpqycrjanh3hMqXDtLw9/+70HL6rP1q92hx7T1wTgcPp6hjmxI6fiJVvy075pDXCFtkzFuTPTJmTvky5RYZRn3oV/M0Z9VGjerUSgF+PtZ7fwf6+crv3/fg22V/q1RkfoUF+mvtrv0aPmOB2tSroRKR/1X0HjxxWqfPpujgyURlZBpt3ndYklS8YJj8fS8cC24++EP1eLCuGlQtJ4vFoifr1dDEuUsUHRGuIvlDNPb731QwJFD1q1y4T3ypqAKqXaGUBn4+R68+2ljpmZkaNn2e7rs9VhEhXPTmTkZN+Eg///q73njlRfnn89OJf0fzC/D3l6+vrw4cOqxFvy1R9duqKDQkWEePndDnX8+Ur6+Pala7XZK0ZPlKnTx1WrHlysjH21sr1/ytz6bP1CMtm1nXs2nrNg0b+b7eeeN1FcyfX9HFiuqO2+P0zvsfqHfXTkpPz9B7H3yse+6+UwX+HXWzQd27NOWL6Ro+Zrweb9VCO3fv0Tezf1TXZ9rd/DcKDke+vPWQL13bVZ0YT0hIUIECBTRy5EiNGzdOGRkZkiRPT09Vq1ZNkydP1iOPPHJDOurOAv091alNtArm91HSmXQtXnpcH03bo4yMCxW4g97dqs5tovVqrzIKDvTSoaOp+mjaHn0397B1GREFfJV5UbHFhi1JGjxym555org6PVlc+w6m6JW3NmvnnrPWNp/P3K98vh7q2yVGgQFeWrcpUS8M3qi087bV6XAvM+cukiQlvP6WzfRXEp5R0/p3acs/u7Vh24ULKB5JeMmmzdfjR6hQRAH5+vho1oLFem/S50pLT1dk/nDVrVlNTz3035XTKalp2nPgkNL//Z6QpAE9O+udjz5VjwEjZPGwqF6taur99JPW+YEB/hr1Wl+989FUPf3iAIUEBanDww+qxb317P02wMHm/DBbkvR/L/W1md6zd181bNRYktSx83OyWCwaNmSQzp8/r9urVdNzXXtY23p6eunH72fp44kTZIxRocKF9UynZ9X4vv/uEZWamqr9+/YqPeO/K3j7vviyJox7X6/+34uyWCy6s/bd6twlwTo/ICBAg954UxPGjVHvHl0VHByix554Uvc1uTUqA4CbjXx5/f7ZvlmD/6+b9e+pH78nSapT/3491/tVnTpxTFM/fk+nT51QWFh+3V2/iR56tIO1vZeXt9atWaE5s75UakqK8heI0B133qOWj7a3Wc+B/Xt0Nvm/W1w0a9VGqSkp+uj9t3Q2+YzKxVbRywPftbmve7e+AzRpwjsa8moPWSwW3XFnPbXv3PsGvRNwpJNnU/X63JU6lpyiQB9vlSkQrPcfqq1a0ZE6euac1uw/ps//2q7ElDTl9/fTbUUL6H+P1lW4/3/DmQ+ev1qr9v13oOeJzxZKkmY/3ViFQwKUnpGp3SfPKOX8f/ny+bpV5GGx6MXZy5SWkan4EpF6uX6cdb6nh0WjW9ypYT//pfZfLFY+b089EButLncyasGtauHvRxUa4q2OT5ZQeJiPtv9zRs/3X6eT/952LLKgny4esG395kQNfHuTOrUpqc5tS2rfgXPqN2SDzW/rz77eKz8/T73YreyF39YbT+v5/uv4bQ04EBnz+nz1+4XR2555b5rN9EFP3q/mtapIknYdPqH3Zi3W6bPnVDg8RB0b36mn7qlh037cD79p1vL11r8ffWuSJOmjHo+rRpnoC8s5ckJnzv1325MODWvqXFqaBn3+k5LOpei2UkU1ruuj8vX+7zD2sHbNNGz6fHV+/wt5WCxqEFdWL7duZMd3AM5g1px5kqTe/zfAZvpLPbvqvgb3yMfbW+s2btLXs35QUvIZhYWGqkrFChrz1hsK+/eWjF6envr2h5809uPJMsaoSKEoPfdMOz1wbwPr8lJT07R3/wFlpP+XMV95vodGf/Cxnn9tkDwsFt0dX0s9Ov/3GyowIEAjBr6m0R98pGd7v6SQ4CC1fay1mt3HfngrIl8CrsVijLmmT9L58+d17NiFgxYFChSQdy5Dj+RV3YeWXNfzgev1zSBH9wCQjucr6uguACobU9wh6z3Sr+1NW1fEsE9u2rqQd/bOl6u3HrdHt4DrUnbhlUc8AG60+364z9FdwC3u99l1Hbbum5UxyZfOy54ZM2XeJHt1C7hmJ6KrOboLgB7pe9LRXQAcljE5hunarqpi/GLe3t4qVKjQlRsCAADkhYeHo3sAByNfAgAAuyNj3vLImAAAwK7Ily6NrQcAAAAAAAAAAAAAcGvXXDEOAABgTxaLxdFdAAAAgJshYwIAAMCeyJeujYpxAAAAAAAAAAAAAIBbo2IcAAA4BQv35wEAAICdkTEBAABgT+RL18bWAwAAAAAAAAAAAAC4NSrGAQCAU7B4cH8eAAAA2BcZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMA5cH8eAAAA2BsZEwAAAPZEvnRpbD0AAAAAAADgJhk/fryqVKmi4OBgBQcHKz4+XnPmzLHOr1evniwWi82jS5cuNsvYs2ePmjZtKn9/f0VEROiFF15Qenr6zX4pAAAAgEvhxDgAAHAKFg/LTXsAAADg1uCM+bJo0aJ68803tWrVKq1cuVL169dX8+bNtWHDBmubTp066eDBg9bH8OHDrfMyMjLUtGlTpaWlacmSJZoyZYomT56s119/3W7vGwAAAHLmrMcwufgybxhKHQAAAAAAALhJmjVrZvP3kCFDNH78eC1btkwVK1aUJPn7+ysqKirH58+bN08bN27UggULFBkZqbi4OA0ePFgvvfSSBgwYIB8fnxv+GgAAAOBcsi6+LFOmjIwxmjJlipo3b66//vrLmjE7deqkQYMGWZ/j7+9v/XfWxZdRUVFasmSJDh48qLZt28rb21tDhw696a/nRqFiHAAAOAWLxeOmPQAAAHBrcPZ8mZGRoS+++ELJycmKj4+3Tv/ss89UoEABVapUSf369dPZs2et85YuXarKlSsrMjLSOq1x48ZKTEy0qToHAACA/TnrMcxmzZrp/vvvV5kyZVS2bFkNGTJEgYGBWrZsmbVN1sWXWY/g4GDrvKyLLz/99FPFxcWpSZMmGjx4sMaOHau0tDS7vX+OxpFhAAAAAAAA4DqkpqYqMTHR5pGamppr+3Xr1ikwMFC+vr7q0qWLZs6cqdjYWEnSE088oU8//VSLFi1Sv379NHXqVLVp08b63EOHDtmcFJdk/fvQoUM34NUBAADAlXDxZe4YSh0AADgH7v0NAAAAe7tJGXPYsGEaOHCgzbT+/ftrwIABObYvV66c1qxZo9OnT2vGjBlq166dFi9erNjYWHXu3NnarnLlyipUqJAaNGigHTt2KCYm5ka+DAAAAFzJTTyGmZqamu1iS19fX/n6+ubYft26dYqPj1dKSooCAwOzXXwZHR2twoUL6++//9ZLL72kLVu26JtvvpF061x8yYlxAAAAAAAA4Dr069dPffr0sZmW2wFLSfLx8VHp0qUlSdWqVdOKFSs0evRoffDBB9na1qxZU5K0fft2xcTEKCoqSsuXL7dpc/jwYUnK9b7kAAAAcD1cfGl/nBgHAABOweLBHV4AAABgXzcrY16ucicvMjMzcx16fc2aNZKkQoUKSZLi4+M1ZMgQHTlyRBEREZKk+fPnKzg42FoRBAAAgBvjZh7D5OJL++PEOAAAAAAAAHCT9OvXT02aNFHx4sWVlJSkadOm6ZdfftHcuXO1Y8cOTZs2Tffff7/y58+vv//+W71791adOnVUpUoVSdK9996r2NhYPfXUUxo+fLgOHTqkV199VQkJCdd1ch4AAADOhYsv7Y8T4wAAwClYuMc4AAAA7MwZM+aRI0fUtm1bHTx4UCEhIapSpYrmzp2rRo0aae/evVqwYIFGjRql5ORkFStWTK1atdKrr75qfb6np6e+//57Pffcc4qPj1dAQIDatWunQYMGOfBVAQAA3BqcMV9KXHyZV5wYBwAAAAAAAG6Sjz/+ONd5xYoV0+LFi6+4jOjoaP3444/27BYAAABcGBdf5g0nxgEAgHOwcI9xAAAA2BkZEwAAAPbkpPmSiy/zxjm3HgAAAAAAAAAAAAAAdsKJcQAAAAAAAAAAAACAW2ModQAA4BQsHhZHdwEAAABuhowJAAAAeyJfujYqxgEAAAAAAAAAAAAAbo2KcQAA4Bw8uF4PAAAAdkbGBAAAgD2RL10aWw8AAAAAAAAAAAAA4NaoGAcAAE7BYuH+PAAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAc+D+PAAAALA3MiYAAADsiXzp0th6AAAAAAAAAAAAAAC3RsU4AABwChYP7s8DAAAA+yJjAgAAwJ7Il66NinEAAAAAAAAAAAAAgFujYhwAADgHC9frAQAAwM7ImAAAALAn8qVLY+sBAAAAAAAAAAAAANwaFeMAAMA5cH8eAAAA2BsZEwAAAPZEvnRpVIwDAAAAAAAAAAAAANwaFeMAAMApWLg/DwAAAOyMjAkAAAB7Il+6NrYeAAAAAAAAAAAAAMCtUTEOAACcA/fnAQAAgL2RMQEAAGBP5EuXRsU4AAAAAAAAAAAAAMCtUTEOAACcgsWD6/UAAABgX2RMAAAA2BP50rWx9QAAAAAAAAAAAAAAbo0T4wAAAAAAAAAAAAAAt8ZQ6gAAwDlYLI7uAQAAANwNGRMAAAD2RL50aVSMAwAAAAAAAAAAAADcGhXjAADAOXhwvR4AAADsjIwJAAAAeyJfujS2HgAAAAAAAAAAAADArVExDgAAnAP35wEAAIC9kTEBAABgT+RLl0bFOAAAAAAAAAAAAADArVExDgAAnIKF+/MAAADAzsiYAAAAsCfypWtj6wEAAAAAAAAAAAAA3BoV4wAAwDlYuF4PAAAAdkbGBAAAgD2RL10aWw8AAAAAAAAAAAAA4NaoGAcAAM7Bw+LoHgAAAMDdkDEBAABgT+RLl0bFOAAAAAAAAAAAAADArVExDgAAnIKF+/MAAADAzsiYAAAAsCfypWtj6wEAAAAAAAAAAAAA3BoV4wAAwDlwfx4AAADYGxkTAAAA9kS+dGlUjAMAAAAAAAAAAAAA3BoV4wAAwDlwfx4AAADYGxkTAAAA9kS+dGlsPQAAAAAAAAAAAACAW6NiHAAAOAcL9+cBAACAnZExAQAAYE/kS5dGxTgAAAAAAAAAAAAAwK1RMQ4AAJyDB9frAQAAwM7ImAAAALAn8qVLY+sBAAAAAAAAAAAAANwaJ8YBAAAAAAAAAAAAAG6NodQBAIBzsHC9HgAAAOyMjAkAAAB7Il+6NLYeAAAAAAAAAAAAAMCtUTEOAACcg4fF0T0AAACAuyFjAgAAwJ7Ily6NinEAAAAAAAAAAAAAgFvjxDgAAHAOFo+b97gKw4YNU40aNRQUFKSIiAi1aNFCW7ZssWlTr149WSwWm0eXLl1s2uzZs0dNmzaVv7+/IiIi9MILLyg9Pf263zYAAABchhPmy/Hjx6tKlSoKDg5WcHCw4uPjNWfOHOv8lJQUJSQkKH/+/AoMDFSrVq10+PBhm2WQLQEAABzESY9hkjHzhhPjAAAAl7F48WIlJCRo2bJlmj9/vs6fP697771XycnJNu06deqkgwcPWh/Dhw+3zsvIyFDTpk2VlpamJUuWaMqUKZo8ebJef/31m/1yAAAA4GBFixbVm2++qVWrVmnlypWqX7++mjdvrg0bNkiSevfurdmzZ2v69OlavHixDhw4oIceesj6fLIlAAAALkXGzBuLMcY4uhOSVPehJY7uAm5x3wxydA8A6Xi+oo7uAqCyMcUdst6UWWNv2rr8Hky45ucePXpUERERWrx4serUqSPpQsV4XFycRo0aleNz5syZowceeEAHDhxQZGSkJGnChAl66aWXdPToUfn4+Fxzf5C71VuPO7oLgMoufNvRXQB03w/3OboLuMX9Pruuw9Z9szLm9eRLSQoPD9eIESPUunVrFSxYUNOmTVPr1q0lSZs3b1aFChW0dOlS1apVi2zpQCnzJjm6C4BORFdzdBcAPdL3pKO7ADgsY7rKMUyJjJkTKsYBAMAtJzU1VYmJiTaP1NTUPD339OnTki4Ey4t99tlnKlCggCpVqqR+/frp7Nmz1nlLly5V5cqVraFSkho3bqzExETrVZsAAABwXdeaLzMyMvTFF18oOTlZ8fHxWrVqlc6fP6+GDRta25QvX17FixfX0qVLJZEtAQAAcHlkzNxxYhwAADgHD4+b9hg2bJhCQkJsHsOGDbtiFzMzM9WrVy/Vrl1blSpVsk5/4okn9Omnn2rRokXq16+fpk6dqjZt2ljnHzp0yCZUSrL+fejQITu9gQAAAMjGSfPlunXrFBgYKF9fX3Xp0kUzZ85UbGysDh06JB8fH4WGhtq0j4yMtOZGsiUAAIAD3cRjmFd78SUZ88q8HN0BAACAm61fv37q06ePzTRfX98rPi8hIUHr16/X77//bjO9c+fO1n9XrlxZhQoVUoMGDbRjxw7FxMTYp9MAAABwWlebL8uVK6c1a9bo9OnTmjFjhtq1a6fFixff6G4CAADAhQwbNkwDBw60mda/f38NGDAgx/ZkzCvjxDgAAHAOFstNW5Wvr2+eToRfrFu3bvr+++/166+/qmjRopdtW7NmTUnS9u3bFRMTo6ioKC1fvtymzeHDhyVJUVFRV9UPAAAAXIWblDGvNl/6+PiodOnSkqRq1appxYoVGj16tB599FGlpaXp1KlTNhU9hw8ftuZGsiUAAIAD3cRjmFd78SUZ88oYSh0AAOAyjDHq1q2bZs6cqYULF6pkyZJXfM6aNWskSYUKFZIkxcfHa926dTpy5Ii1zfz58xUcHKzY2Ngb0m8AAAC4jszMTKWmpqpatWry9vbWzz//bJ23ZcsW7dmzR/Hx8ZLIlgAAALcKX19fBQcH2zyu5mJMMmZ2VIwDAADnYHHO6/USEhI0bdo0fffddwoKCrLeUyckJET58uXTjh07NG3aNN1///3Knz+//v77b/Xu3Vt16tRRlSpVJEn33nuvYmNj9dRTT2n48OE6dOiQXn31VSUkJFx15ToAAACughNmzH79+qlJkyYqXry4kpKSNG3aNP3yyy+aO3euQkJC9Mwzz6hPnz4KDw9XcHCwunfvrvj4eNWqVUsS2RIAAMChnDBfSmTMvOLEOAAAwGWMHz9eklSvXj2b6ZMmTVL79u3l4+OjBQsWaNSoUUpOTlaxYsXUqlUrvfrqq9a2np6e+v777/Xcc88pPj5eAQEBateunQYNGnQzXwoAAACcwJEjR9S2bVsdPHhQISEhqlKliubOnatGjRpJkkaOHCkPDw+1atVKqampaty4scaNG2d9PtkSAAAAlyJj5o3FGGMc3QlJqvvQEkd3Abe4b9zrsw0XdTzf5e9bDNwMZWOKO2S9KT99dNPW5Xdfx5u2LjjO6q3HHd0FQGUXvu3oLgC674f7HN0F3OJ+n13XYeu+WRmTfHlrSJk3ydFdAHQiupqjuwDokb4nHd0FwGEZk2OYrs056/0BAAAAAAAAAAAAALAThlIHAADOwWJxdA8AAADgbsiYAAAAsCfypUtzmhPjj3S609FdwC0u3/L+ju4CoG3PfuHoLgAqe36Lo7sA2EXsps8d3QVAP3f/xtFdAKT7GEodAOwi5ayjewDor0oPO7oLgHTfh47uAQBcE6c5MQ4AAG5xFu7wAgAAADsjYwIAAMCeyJcuja0HAAAAAAAAAAAAAHBrVIwDAADnwP15AAAAYG9kTAAAANgT+dKlUTEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1hlIHAADOwYPr9QAAAGBnZEwAAADYE/nSpbH1AAAAAAAAAAAAAABujYpxAADgFIzF4uguAAAAwM2QMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtUTEOAACcg4Xr9QAAAGBnZEwAAADYE/nSpbH1AAAAAAAAAAAAAABujYpxAADgHLjaEgAAAPZGxgQAAIA9kS9dGlsPAAAAAAAAAAAAAODWqBgHAABOwVgsju4CAAAA3AwZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMA5cH8eAPh/9u47Oqpqb+P4M+m9k0Yv0quUEIqCRJqCKBa4qIgIFlARRS++KMUSu1gotis2VPQKCnoRBGnSg3QIvZNAEtJ7Zt4/AoMDCXXIlHw/a521nHP2nNkzGcOTs89vbwCAtZExAQAAYE3kS4fGTw8AAAAAAAAAAAAA4NSoGAcAAPaB9XkAAABgbWRMAAAAWBP50qFRMQ4AAAAAAAAAAAAAcGpUjAMAAPvgwv16AAAAsDIyJgAAAKyJfOnQ+OkBAAAAAAAAAAAAAJwaFeMAAMAumFifBwAAAFZGxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwDwbu1wMAAICVkTEBAABgTeRLh8ZPDwAAAAAAAAAAAADg1KgYBwAAdsHE3ZYAAACwMjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoD4wAAAAAAAAAAAAAAp8ZU6gAAwD4YDLbuAQAAAJwNGRMAAADWRL50aFSMAwAAAAAAAAAAAACcGhXjAADALpgM3K8HAAAA6yJjAgAAwJrIl46Nnx4AAAAAAAAAAAAAwKlRMQ4AAOwD6/MAAADA2siYAAAAsCbypUOjYhwAAAAAAAAAAAAA4NSoGAcAAPaB9XkAAABgbWRMAAAAWBP50qHx0wMAAAAAAAAAAAAAODUqxgEAgF0wsT4PAAAArIyMCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAfWJ8HAAAA1kbGBAAAgDWRLx0aPz0AAAAAAAAAAAAAgFOjYhwAANgFk1ifBwAAANZFxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwCybW5wEAAICVkTEBAABgTeRLx8ZPDwAAAAAAAAAAAADg1KgYBwAA9oG7LQEAAGBtZEwAAABYE/nSofHTAwAAAAAAAAAAAAA4NSrGAQCAXTAZDLbuAgAAAJwMGRMAAADWRL50bFSMAwAAAAAAABUkPj5ebdu2lb+/v8LDw9WvXz8lJiZatOnSpYsMBoPF9sgjj1i0OXTokG655Rb5+PgoPDxcY8aMUXFxcUW+FQAAANgJMualoWIcAAAAAAAAqCBLly7ViBEj1LZtWxUXF+v5559X9+7dtX37dvn6+prbDRs2TJMmTTI/9vHxMf93SUmJbrnlFkVGRmrlypU6fvy47r//frm7u+vVV1+t0PcDAAAA2yNjXhoGxgEAgF0wGZjIBgAAANZljxlz/vz5Fo9nzJih8PBwJSQk6IYbbjDv9/HxUWRkZJnnWLBggbZv364//vhDERERatmypV566SU999xzmjBhgjw8PK7pewAAAKis7DFfSmTMS2WfPz0AAAAAAADAQRQUFCgzM9NiKygouKTnZmRkSJJCQkIs9n/zzTcKCwtT06ZNNXbsWOXm5pqPrVq1Ss2aNVNERIR5X48ePZSZmalt27ZZ4R0BAADAkZExy0bFOAAAsA8Gg617AAAAAGdTQRkzPj5eEydOtNg3fvx4TZgw4YLPMxqNGjVqlDp27KimTZua9//rX/9SzZo1FR0drc2bN+u5555TYmKifvrpJ0lSUlKSxQVLSebHSUlJVnhHAAAAKFMFXsMsKCg472ZLT09PeXp6XvB5ZMzyMTAOAAAAAAAAXIWxY8dq9OjRFvsudsFSkkaMGKGtW7dqxYoVFvuHDx9u/u9mzZopKipK3bp10969e1W3bl3rdBoAAAB27UpvviRjlo+BcQAAYBfsdX0eAAAAOK6KypiXUrlzrpEjR2revHlatmyZqlWrdsG2MTExkqQ9e/aobt26ioyM1Nq1ay3aJCcnS1K5a0YCAADg6lXkNcwrufmSjHlhXIEGAAAAAAAAKojJZNLIkSM1e/ZsLV68WLVr177oczZu3ChJioqKkiTFxsZqy5YtOnHihLnNwoULFRAQoMaNG1+TfgMAAKBieXp6KiAgwGIrb2CcjHlpqBgHAAB2wSTWGAcAAIB12WPGHDFihGbOnKmff/5Z/v7+5vUaAwMD5e3trb1792rmzJnq3bu3QkNDtXnzZj311FO64YYb1Lx5c0lS9+7d1bhxY91333164403lJSUpHHjxmnEiBGXXbkOAACAS2eP+VIiY14qKsYBAAAAAACACjJt2jRlZGSoS5cuioqKMm/ff/+9JMnDw0N//PGHunfvroYNG+rpp59W//79NXfuXPM5XF1dNW/ePLm6uio2Nlb33nuv7r//fk2aNMlWbwsAAAA2RMa8NFSMAwAAu8Aa4wAAALA2e8yYJpPpgserV6+upUuXXvQ8NWvW1G+//WatbgEAAOAS2GO+lMiYl8o+f3oAAAAAAAAAAAAAAFgJFeMAAMA+GOxzfR4AAAA4MDImAAAArIl86dCoGAcAAAAAAAAAAAAAODUqxgEAgF0wcb8eAAAArIyMCQAAAGsiXzo2fnoAAAAAAAAAAAAAAKdGxTgAALALJtbnAQAAgJWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsgsnA/XoAAACwLjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoV4wAAwC6YxPo8AAAAsC4yJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdYH0eAAAAWBsZEwAAANZEvnRs/PQAAAAAAAAAAAAAAE6NgXEAAAAAAAAAAAAAgFNjKnUAAGAXTAaDrbsAAAAAJ0PGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALJnG3JQAAAKyLjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF0wG7tcDAACAdZExAQAAYE3kS8fGTw8AAAAAAAAAAAAA4NSoGAcAAHaB9XkAAABgbWRMAAAAWBP50rFRMQ4AAAAAAAAAAAAAcGpUjAMAALvA+jwAAACwNjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoV4xXs6N51Slj8mU4e3qqczJO65cEpqts8znx84Tf/1o51sy2eU6NhJ/V75DNJ0pHda/TTlPvLPPc9o39QRI3mZR4rLirQ8p9f0+4Nv6mkuFA1GnZS17vGy8c/zNwm69Qx/fnDBB3ZvUbunj5q1LafOtz6tFxc+Zo4k89WbdfiXUd0IC1Tnm6ualE1TE/e2EK1QgMs2m06mqIpyzZry/FUuRoMqh8erKl33ygv99Lvw5P/XaZdyelKy81XgJeHYmpF6IkbWyrc37vc1y4oLtE7i//W7zsOqbDEqNjakXq+exuF+nqZ2xzPzNGrv6/X+kMn5O3hpj5Na+vxG5vLzYX7eJxJjYcHqubDA+Vds6okKXv7bu1+eapO/r5M7sGBqj/+cYXFdZJ3jSgVnkxT0i9/aNf491ScmS1J8m/eQHXHDFdIx9byCAtW3oGjOvjJdzrwwZcXfF334EA1ee8Fhd/SVTIalTR7gbY99YpKcnLNbfybNVDT919UYJtmKjyZpgNTvta+tz+9dh8GzFifB7gys1Zt0axVW3TsVKYkqW5EqB6Oa6tODWtJkgqKivX2vBWav2m3CotL1KF+Df3f7V0U6u8jSUrPydPYbxdo9/FUpefmKcTPR12a1NYTPTvIz8uj3NfNyM3Xa3OWaumO/XIxGNStWT0917ezfDzPPmfX8RS9OnuJth05oWBfbw3s2FxDurS+Zp8F7EPdMcPU8NVntP/9L7T96VclSU2nTlTYTR3kFR2u4uxcnVr1t3Y+/5ZyEveZnxfatb0aTHxS/k0bqDgnV0e/mqPEF96VqaSk3Ndy8fRQozf/rei7e8vF00MnF6zQ1scnqvBEqrmNV/UoNftwgkK7xKg4O1dHvpqjxP97+4LnhXO7o3e0Bt5RXSHBHtq7P1vvfrRHO3Znldu+a8cwPXRvbUWGe+nIsVxNm7FfqxPSLNoMHVRLfbpHyt/XTVt2ZOqtqbt15HjetX4ruARkTODyzVq5+fx8eXM7y3w5d7llvryjqzlfJh47qf/8maC/9x9Tek6eokMCdFf7ZhrUueUFX9ecL7fvO5svb7vBMl8eS9Grc5Zo2+Hk0/myhYZ0JV9WBmVlzH9qO/cThfe8Qev7P6bkXxaZ919JFuT6ES4X+bJyIV86NkY8K1hRQa6qRDdQk5j++vU/I8tsU7NhZ8X9K9782NXtbPiLqt1KQyetsGi/+rf3dHj3KoVXb1bu6y6f/ar2b1+qXg9Mlqe3v5b8+JJ+/c9I3fXkd5Iko7FEv3z8sHz8w3TXk98pJ/OEFnzznFxc3dXh1tFX85ZhZzYcPqF7rq+nJpGhKjYZ9eHSzXp01hL9NLS3vD1KfyVsOpqikbOWakhsIz0X11quLgbtOpEuF8PZX/hta0RoaPvGCvPz1omsPL37598aM2eFvrjv5nJf+61Ff2vF3mN6o19H+Xm667WFCXp69grNuLf05pASo1FP/LBMob5emnFvnE5m5+mFX9fIzcWgx29scW0/GFSo/CNJpRfD9xyUwWBQtfv6qc1PU7S87e2SwSDPqHDteO51Ze/YI+8aVdV0ygR5RYVrw4AnJUmB1zdV4ck0bRw8RnlHjisk9no1mzZJppISHZz6Tbmv2/LLt+QZVUVrew2Rwd1dLT55Vc2mTdLG+5+RJLn5+6rdb58pdfEqbRkxXv5N66vFJ6+qKCNThz+dVSGfDQBcrvBAPz3Zq4NqhAXJJJPmJuzUk1/8qu+fHKB6kaF6c+5yLd95QG/e21P+Xp6Kn7NUo7/8TV+MuFOS5GIwqGuTOhrZo72C/bx1OCVDr85Zopdz/9Rr/+pR7uuO/fZ3pWTmavqwfiouMWr8rD806b9nn5OdX6hHPvlZMddV17g7ump3Uqom/LBI/l6eurN90wr5bFDxAts0U41hA5S5eafF/owN23Rs5lzlHT4u95BA1X/hccX89pkWX9dNMhrl37yB2s79RHvip2vjkOfkFR2hZlMmyuDqoh3PvVHu6zV++3mF97pRGwaMUlFmlpq+94Ja//ChVt04sLSBi4va/vKRCpJStPKGAfKMDFeLz1+XqahIiS+8ey0/CtipmzpV0ciH6uqtKbu0fVeW7u5bVe9MaqaBj6xTekbRee2bNgzQ+DGN9dEX+7RyXZpuvjFc8f/XRA+OStD+Q6UXxwf1r647b62qVybv1PHkfD00qJbemdRM9z62ToVFpop+iwBw1cKD/PRk745n8+X6HXpyxjx9P2pgab78ZbmW79yvN+/rVZovZy/R6C9+1Rcj75IkbT9yQiF+3np1YHdFBvlr44Hjeum/i+XiYtDAjuVf3xk783elZOZo+vDbT+fLhZr042K9NqinJCk7v0CPfDLHMl/O+kP+3uRLZ1dexjyj9pODJVMZ/+ZeYRbk+hEuB/kScCyUYFawWo1vVOwtT6lu8/IHD13dPOQbUMW8efkEln/MN0j7ti5S43Z3yGAo+y6VgrwsbVvzX3Xu929Vrx+r8OpNFfevV3V8/986fmCjJOnQzhVKS9qjHve9qSrVGpX2s/eT2rziG5UUF1r1M4BtTbm7i/o2q6O6VQLVIDxYE2+JUVJmrrYnn70j7e1Ff2tA6+v0YPvGqlslULVCA9S9UQ15uLma29zbtoGaVw1TdKCvWlYL05D2jbXlWKqKSoxlvm5WQaHmbN6n0Te1UruaEWocGaKJvWO06WiKNh9NkSSt2p+kfamZeqVPrBpEBKtT3Wg91rmZZm3YoyIqepzKiV//1Mn5y5S756Bydh9Q4ouTVZydq+CYlsretlsb7nlCJ379U7n7Dit1yWolvjhZ4bfeJINr6XfwyIz/avvoV5S2fJ3y9h/R0Zm/6PAXPymyX/dyX9OvYR2F97xBWx4ep/S1m3XqrwRtG/Wyou+5RZ5R4ZKk6H/1lYuHuzY99Lyyt+/R8Vm/af+HX6nOk0Mq5HOp7EwGlwrbAGfSpXFtdW5USzWrBKlWlWA93jNWPh7u2nwoSVl5BZq9brueubWzYupVV+Nq4Zp0dzdtPHhcmw8mSZICfLx0d2wzNakeoejgAMVcV113xzbXhv3Hyn3Nfclp+ivxkMbfeZOa14jU9bWj9e9+N2r+pl06kVE6u8dvfyeqqKREk+7qpnqRoerVsr4Gdmyur5b/XSGfCyqeq6+PWn7xpjY/Mk5FpzIsjh3+dJbSVqxX3sGjyvx7uxLHT5Z3jWj51CqdPSb6rt7K2pKoPa9MUe7eQ0pbvk47xr6pmo8Okqufb5mv5xbgp+pD+mv7mNeUumS1Mjds06aHnldIh+sVFFN60b3KzZ3k36ieNg4eo8xNO3Xy92XaNeE91Xx0kAzu7tf2A4FdGtCvmub+fly/LUrWgcO5enPqbuUXGHXrzZFltr+rb1Wt2ZCmb2cf0cEjufr0mwPatTdb/W+tatHmy1kHtWJNqvYeyNHL7+5UaIinOrcPK/OcqFjkS+DydWlcxzJf9upwTr7cpmf6/CNf3hN3Ol8elyTd3q6JnrvtRrWpW03VQgN1a+uGuq1NIy3asrfc1yzNlwc1/q5uZ/Plbefkyw2n8+XdcWfzZacW+moZ+dKZXShjSlJAi4aqPepBbR72/HnHriQLcv0Il4t8WflwDdOx8anaoSN71uqTcbH68pUe+nPWeOXlnCq37f6ti5Wfk65GMf3LbXPi8FYZS4pUo34H876QiLryD45W0umB8aQDGxUaVd9iavUaDTupMD9bqUl7rv5NwW5lF5TetRZ4eqrUtJx8bTmeqhBfLw3+aqG6fTBbQ2cu0t9HTpZ7joy8Av1v+wG1qBomd9eyf63sSDqlYqNR7WtFmPfVDg1QZICPNh8rnepy87FU1asSaDG1eofakcouLNLelMyrfq+wUy4uirq7t1x9fXRqddl/zLoH+qk4M/vC01wF+qsoLb3c40HtW6noVIYyEraa96UsWimT0aigdqXLUAS3b6m05etlKjp7N2fKghXya1hHbkEB550TAOxNidGo/23cpbzCIrWoGaXtR0+ouMSomOuqm9vUDg9RVJC/Np2+cHmuExnZWrx1r1rXqVrmcUnadChJ/t6ealL97L/rMfWqy8Vg0JbDyaVtDh5X6zrRcv/HjXUd6tfUgZPpyszNv9q3CjvU9IMXdeJ/S5W6eNUF27n6eKva4DuUu++w8g6X3qDh4ukhY36BRbuSvHy5ensp8PomZZ4n8PqmcvHwUMqileZ9OYn7lHvwqILbt5RU+m975tZdFlOrn1ywQu6B/vJvUu9K3iYcmJubQfXr+Wv9prN/Y5tM0vqNp9SkQdlZr2nDAK3faPk3+Zq/09S0YWn76AgvhYV4at0/2uTklmj7rkxzGwBwZJb5MvIf+bKGuc3ZfJlU7nmy8gsV6ONZ7vFNB4+fny+vq1GaLw+dyZdJal2n6jn5soYOnDxFvnRiF8qYLt5eavnl29r2xCQVJKecd/xKsiDXj3A5yJeA42EqdTtTs1Fn1W1xswJCqikj5bBW/vqOfvlomO4a9b1cXFzPa79t9Y+q0bCT/IPKvvtIknKzUuTi6i5PH8tfmj7+ocrNLB3szMlKsRgULz1e+vhMGzgfo8mktxb9rZZVw1SvSpAk6Uh66V24H63Yqqe6tlSDiGDN27pfD3/3p354sJdqhvibn//eko36bsNu5ReVqFl0qN6/84ZyXys1J0/uri7yP2et0lBfL6Xm5JnbhPp4WRwPOT1InpKdJ0UEX/V7hv3wb1pfHZZ/JxcvT5Vk5yrhzhHK3nH+3ePuocGq9/xjOvzp9+WeKzi2laLu6qV1fR8ut41nRJgKTliu1WMqKVFRWoY8I6uY2+QeOGLRpuBE6R9WXpFhyk7nBo1rifV5gCu3+3iK7pvyowqLi+Xj4a53779FdSNClHjspNxdXRTgbXkRMsTfWynZuRb7nvtmvpZs36/8omLd2Ki2Jtx5U7mvl5qVoxBfb4t9bq4uCvD2UmpW6XlTsnJVNcQyf55ZdzIlK1cB5/ybD8cWdXdvBbRqrL/a31lum5qP/EsN45+Rm5+vsnfu05peQ8wXE08uWKHaTwxW9D236NgP/5NnZJiuGzdCkuQVVaXM83lGhqmkoFDFGZZr9xWeSJVnRBVzm8JzLpKeuWha2mbHFb1fOKbAAHe5uRqUdspySsu09CLVrOZT5nNCgjx0Kt1yFrVT6UUKCSr9uyYk2MO8z7JNofkYbIuMCVyZ3cdTdN+HP5zNl4NvVd2IUCUeSyknX/ooJSu3zHNtPHBcCzbt1gcP9in39VKzchXiV16+zJEkpWTlqGpIoEUb8qVzu1jGbPz2WJ1a/beS5y4q8/iVZEGuH+FykC8rJ/KlY7N6xfjhw4f14IMPXrBNQUGBMjMzLbaiooILPqeyqH/9LarTtJvCohuobvM49R32kZIPbdHRPWvPa5uVnqRDO1eoyQUuPgEXEr8gQXtOpuu1vmdnEzCeXqKkf8u6uq15HTWMCNYz3a5XrRB//bxln8Xz72/XSN890EPT7u4iV4NBL8xbLVNZ6/kAZchO3K/lbfrpr4536+BH36rFf16XX6O6Fm3c/H3V9pePlL1jr3ZN+rDM8/g1uU6t/ztVu1+aopQ//qqIrgOoYFeaLwuKzl/Ly1nVqhKsWaMG6OuRd+uu2GZ6YdZC7U1Ou/gT/2FM38767sl79N7gW3Q4LUNvzVtxjXoLZ+NVLVJN3vk/bbx/jIwF5S/DdHTmL1re9nat6jpIObsP6PpvJ8vFs/TCTsoff2nHv99Q0ykT1Stni7ps/10n/7dUkmQylr1UDwAAV4p8eXG1qgRr1lMD9fXj95Tmy+8XaG9y6sWfeI7dSakaNWOuHr65nTo0qHkNegpndbGMGX7rTQrr0l7bR79qg94BAByV1QfG09LS9MUXX1ywTXx8vAIDAy22Bd/HW7srTiEwrLq8fIOVfvLgecd2rPmvvHyDVLtp+dU8Umnlt7GkSAW5lneq5Walyieg9C43X/8w5WalnHO89PGZNnAury1M0PK9R/XJwJsUEXD27rUqfqV319YJs7wDt3ZogJIyLe/8DfbxVM2QALWvHanX+nbQin3HzdOinyvU11tFJUZl5VsG2dScfIWerjgL9fVW6jlTX6XllD4OO+euYTg+U1GRcvceUuaGbUoc946yNu9UrcfvNx939fNVu18/VUlWjhLuHCFTcfF55/BrVFftf5+hw59+rz3x0y74egXJKfIMD7HYZ3B1lXtIoAqSTv6jjeXsGWce5yedPyUXrMtkMFTYBsdypfnyzR8XVlAPbc/dzVU1woLUuFq4nuzVQfWjwvTNio0K9fdRUYlRmXmWN6GmZeUpzM/y7vUwf1/VDg9RlyZ19MIdXTVr1RadzMwp8/VC/X2VdnrGlzOKS4zKzMs3V+2E+fso7Zyq9DPV5GH+Zd85D8cUeH0TeUaEqdPan9Qrb5t65W1T6I0xqjXyPvXK2ya5lP7ZWZyZrdw9B5W2Yr0S7nlCvg3qKLLfzebz7J88QwvC2mhxna5aGNneXPmTu/9Ima9bkJQiV08PuQX6W+z3CA9VQfJJcxuPiHP+bT/9+EwbVB4ZmUUqLjEpJNhyTdGQIHelnir7po609EIFB1lW5gQHuSvtdJVP2unnBQe5n9PGw3wMtkW+RFmuPF8uqKAe2p5FvuzdUfWjquib5ZsukC9zz8t4e5NTNfyjn9Q/pqmGx7W74OuF+vsoLbu8fOkrqTSvki8rj4tlzCpxHeRTt4a6p6wzH5ek1rM+UPs/vpR0ZVmQ60e4HOTLyolrmI7tsqdS/+WXXy54fN++fRc8Lkljx47V6NGjLfb9Z0n5a8xUZlnpScrPTZdvoOXgtMlk0va1P6lh235ydXUv59mlwqs3lYuruw7vXqV6LXpIkk4l71PWqWOKrNVSkhRZq6XWLZxeOljuHypJOpy4Uh5efgqJZO09Z2IymfT6Hxu0eNcRfTLwJlUN8rM4Hh3oqyp+3jqQankjxcG0LHWsE1XueY0qrRQvKmcN6EaRwXJzcdGag8mKa1C6zumB1EwlZeaqeXTpd655dKg+W7VdaTn55inUVx9Ikp+Hu+qEsn6K03NxMVeNufn7qt1vn8lYUKh1tz9a5p3Bfo3rqf2CL3TkqzlKfHHyRU+fvvpvuQcHKuD6JsrcUPrHUmjX9jK4uCh97WZJ0qnVG9Vg0igZ3NzMA/FhcR2UvXOfipkGC7hmrlW+NC347Kr65ciMJqmouESNq4bLzdVFa/ccVlyz0kx34MQpHU/PUoua5f+7fmYGmMLisv9db1EjUll5Bdp+5IQaVwuXJK3de0RGk0nNTq8L2aJmlD6Yv0pFJSVydy1dEmj17kOqVSWIaS6dTMri1Vra8laLfS0+jVd24j7tffMTqYyKb4NBMhgM5n/7/6ng+AlJUvQ9tyrv0DFlnP53+1wZG7bKWFiosJtilTS7dKDCt35t+dSsqlOrN0oq/be93thH5FElRIUnS2dRCIvroKKMLGVv33PF7xmOqbjYpF17stS6ebCWry69oddgkFq3CNZPvx4t8zlbd2aqTYtg/fDL2eNtWwZr687SbHgsOV8paQVq0yJYe/aX3kzk4+2qxvUDNOe3Y9f4HQEozzXLlwv/c1X9cmRGk8kyX+4+rLjm5+bLs0s97klK1bCPflLf1o30eK8O5Z3WrEXNqPPz5Z7Dpfmyxpl8GVlGvjysWlWCyZdO6GIZsyjllA5+Yrns3o0b52n7M/FKnvenpCvLglw/wuUgXwKO57IHxvv16yeDwXDB6ZINF7mLwdPTU56elgPh7hce23UahQU5yjh5yPw4M+2ITh7ZIS/fQHn6BGrt/A9Vt0UP+fqHKSP1sFb88qaCwmqqRsPOFuc5snu1MlOPlDmNenZ6smZPHaybB72hyJrN5entryYx/bV8zmvy9AmUp5eflvz3ZUXWaqWo0wPjNRp2UkhkPS34+ll17DtGuZknteq3yWreaZDc3Fi3wpnEL0zQ/7Yf1Lt3dJavh1vp2t2S/Dzd5eXuJoPBoMHtGmr6iq2qHx6sBhFBmrtlvw6kZenNfh0lSVuOpWrb8VS1qlZF/l4eOpKeranLt6h6kJ+aR5feHXkiK1cPf/enXrqlvZpGh8rf00P9mtfR24v/VqCXh3w93fX6wgQ1jw5V86qlz4mtHak6oQEaN2+1nuzaQqnZ+ZqyfIvuvr6ePNxcbfOB4Zpo8PJonZy/THmHj8vN31fRA25V6I3ttLb30NJB8f/9R64+3to4eIzcA/ykgNIbOApOpklGo/yaXKf2C77QyYUrtH/y5+a7fU0lJSpMOSVJCmzbTC3/84ZW9xisgmMnlL1zn07MX6bm01/SlhHj5eLuribvvaBj3/9qvgB/7Nu5um7cCDX/5BXtffMT+Te5TrUev1/bn2FWk4pgMnEXZGV1rfJlfiUJmO/9b6U6NaipyCB/5RYU6reNu7R+3xFNG3qb/L09dXvbxnpr7goFeHvJz8tDr/28VC1qRqr56QuXy3ccUGp2rppUj5CPh7v2Jqfq3V//UstaUeY1wrccStK47xfq4+G3KyLQT3UiQtSxQQ1N/HGxxt3RRcVGo+LnLFXPFvUVHlj6O7tXy/qavnCtJvywSEO6tNaepFR9s2KTxvTpXO57gWMqyc5R9rbdlvtyclWUmq7sbbvlXbuaou/qrZN//KXCk2nyrhapumOGqyQvXydOT5cuSXVGD9XJBctlMhoV2a+76j47TBsGjjIPrHtGh6v9719o44PPKmPdFhVnZuvw5/9Vozf/raK0DBVlZavp5HE6tWqD0tdskiSdXLhCWTv2qOWMN7Rj7JvyjKiiBhNH6eC0b2QsrDzT4eKs7+Yc0f891VA792Rpx64s3X1bVXl7uejXP5IkSeOeaqCTqYX66Mv9kqQffjmqD+NbaEC/alq5PlVxncPVsJ6/3vhwl/mcP/xyVIPvqaHDx/J0PDlfD91bS6lpBVq+mooxe0DGrJzIl1fnvd/+UqeGtc7my78TS/PlQ/1O58smemvucgX4eMrPy1OvzVlyOl+W3ni5OylVw6b/pA4Naui+G1op5fQsRC4uBoWcnrVoy6EkjftuoT5++J/5sqYm/rhI4+7oquKSMvJlqwal+XLWIg3pejpfLt+oMX1vsM0HhWvqYhlTOrte+D/lHTqmvNPrf19KFuT6Ea4W+bLyIV86tsseGI+KitLUqVN12223lXl848aNat269VV3zFmdOLRVP005O1Xw8jml/1g2anu7ut41QSnHdmnHujkqyMuSb0C4ajTsqNjeT543OL1t9Y+Kqt1KIRGW6/FKkrGkSKdO7Fdx4dnphzrf/rzk4qLfPn9CJcWFqtmwk7rcOd583MXFVX2GTdefP0zQD5PvkZuHtxq1u13tez1h7Y8ANvbD36V3Qw77drHF/om926lvszqSpEFtG6igpERvL96gjPxC1a8SpGn3dFH14NJpKr3cXbV41xFNX7FVeUXFCvPzVofaURp2W2PzAHax0agDaVnK/8f01890ayUXg/TMnL9UWFKiDrWjNPbms78vXF1c9N6dN+jVBev1wFd/yMvdTX2a1tKjnZtd088EFc8zPFQtPn9dnlHhKs7IUtaWRK3tPVQpi1Yq5IZ2Co5pKUnqmviHxfMW17tJeQePKuqOHvIMD1W1Qbep2qCz/x7lHjiiP6/rJkly9faWX8M6cvnHhYuN9z+jJu+9oPa/fyGT0aik2Qu0bdTL5uPFmdla23uomr7/ojqt+UmFKae0++WpOvzprGv4aQAgX16dtOw8jft+oU5m5sjPy1P1o0I1behtiq1fQ5I0pk9nuRgMevqr31RYXKIODWro/27vYn6+p7ubflq7TW/NXa7C4hJFBPmrW9M6erBrG3Ob/KJiHTiZruKSs5W/8QN7KH7OUg3/eI5cXAzq1rSu/n3b2YuS/t6emj7sNr06e4kGvv+9gny99HBcO93Zvuk1/0xgX4z5hQrp1Ea1nxgs9+AAFSSnKm3Feq28YaC5ckeSqvS8QfXGPiIXTw9lbt6p9XeM0Mnfl5mPu7i7y69hHbl6n11iZ/vTr6qR0ajrZ70vF08PpSxYoa2PT/zHixu1/rZH1PTDCeq4/HsV5+Tp6FeztWvC+xXy3mF/Fq84qaBAdz00qJZCgj20Z1+2nh6/RafSSy+OR1TxkvEf42hbd2Zq4ls7NOze2hp+f20dOZansa9s0/5DZ6fy/ea/h+Xl5apnR9aXn6+btmzP0NPjt6iwqPwBOQDXFvny6qRl52ncdwv+kS/DNO2hfmfzZd/OcjFIT395Jl/WtMiXf2zerVM5efp1Q6J+3ZBo3h8d7K//PT9E0pl8ecoyX/6rh+JnL9Hwj2fLxWBQt2b1ysiX/fTqnCUa+N53pfnyZvIlLuASsiDXj3C1yJeAYzGYLnTrZBn69u2rli1batKkSWUe37Rpk1q1aiVjGdPlXciU/11Wc8Dqhhwff/FGwDX258Pf2boLgG4pSrx4o2tg996DFfZa19WtWWGvhYu7Vvky/+cPrdE94KosuvMDW3cBUHzPj23dBVRyK+beaLPXrqiMSb60L9csX/4yxRrdA67Kov7c4AfbI1/CHtgqY3IN07FddsX4mDFjlJOTU+7xevXq6c8//7yqTgEAAKDyIF8CAADAmsiXAAAAKMtlD4x37nzhNQF9fX114422uxMYAAAAjoV8CQAAAGsiXwIAAKAslz0wDgAAcC2YZLB1FwAAAOBkyJgAAACwJvKlY3OxdQcAAAAAAAAAAAAAALiWqBgHAAB2gbstAQAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7wN2WAAAAsDYyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBd4G5LAAAAWBsZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAumEzcbQkAAADrImMCAADAmsiXjo2KcQAAgAuIj49X27Zt5e/vr/DwcPXr10+JiYkWbfLz8zVixAiFhobKz89P/fv3V3JyskWbQ4cO6ZZbbpGPj4/Cw8M1ZswYFRcXV+RbAQAAAAAAAIBKi4FxAABgF0wyVNh2OZYuXaoRI0Zo9erVWrhwoYqKitS9e3fl5OSY2zz11FOaO3eufvjhBy1dulTHjh3THXfcYT5eUlKiW265RYWFhVq5cqW++OILzZgxQy+++KLVPj8AAACczx7zJQAAAByXvV7DxKVhKnUAAIALmD9/vsXjGTNmKDw8XAkJCbrhhhuUkZGhzz77TDNnztRNN90kSfr888/VqFEjrV69Wu3bt9eCBQu0fft2/fHHH4qIiFDLli310ksv6bnnntOECRPk4eFhi7cGAAAAAAAAAJUGFeMAAMAuVOTdlgUFBcrMzLTYCgoKLqmfGRkZkqSQkBBJUkJCgoqKihQXF2du07BhQ9WoUUOrVq2SJK1atUrNmjVTRESEuU2PHj2UmZmpbdu2WesjBAAAwDmo5gEAAIA1UTHu2BgYBwAAlU58fLwCAwMttvj4+Is+z2g0atSoUerYsaOaNm0qSUpKSpKHh4eCgoIs2kZERCgpKcnc5p+D4meOnzkGAACAyiM+Pl5t27aVv7+/wsPD1a9fPyUmJlq0yc/P14gRIxQaGio/Pz/1799fycnJFm0OHTqkW265RT4+PgoPD9eYMWNUXFxckW8FAAAAdoKMeWkYGAcAAHahIu+2HDt2rDIyMiy2sWPHXrSPI0aM0NatW/Xdd99VwCcCAACAq2WP1TxLly7ViBEjtHr1ai1cuFBFRUXq3r27cnJyzG2eeuopzZ07Vz/88IOWLl2qY8eO6Y477jAfLykp0S233KLCwkKtXLlSX3zxhWbMmKEXX3zRap8dAAAAzmevFeNkzEvDGuMAAKDS8fT0lKen52U9Z+TIkZo3b56WLVumatWqmfdHRkaqsLBQ6enpFlXjycnJioyMNLdZu3atxfnO3I15pg0AAAAqh/nz51s8njFjhsLDw5WQkKAbbrhBGRkZ+uyzzzRz5kzddNNNkqTPP/9cjRo10urVq9W+fXstWLBA27dv1x9//KGIiAi1bNlSL730kp577jlNmDBBHh4etnhrAAAAsBEy5qWhYhwAANgFk8lQYdvl9cukkSNHavbs2Vq8eLFq165tcbx169Zyd3fXokWLzPsSExN16NAhxcbGSpJiY2O1ZcsWnThxwtxm4cKFCggIUOPGja/iUwMAAMCFVFS+LCgoUGZmpsVWUFBwSX3MyMiQJIWEhEiSEhISVFRUpLi4OHObhg0bqkaNGlq1apUkadWqVWrWrJnFcj09evRQZmamtm3bZq2PDwAAAOew12uY5yJjlo2BcQAAgAsYMWKEvv76a82cOVP+/v5KSkpSUlKS8vLyJEmBgYEaOnSoRo8erT///FMJCQkaMmSIYmNj1b59e0lS9+7d1bhxY913333atGmTfv/9d40bN04jRoy47Mp1AAAA2J/4+HgFBgZabPHx8Rd9ntFo1KhRo9SxY0c1bdpUkpSUlCQPDw+L2YgkKSIiQklJSeY2/7xgeeb4mWMAAABwfFd68yUZs3xMpQ4AAOyC8TLXzako06ZNkyR16dLFYv/nn3+uBx54QJL07rvvysXFRf3791dBQYF69OihqVOnmtu6urpq3rx5evTRRxUbGytfX18NHjxYkyZNqqi3AQAAUClVVMYcO3asRo8ebbHvUm6AHDFihLZu3aoVK1Zcq64BAADAiiryGmZ8fLwmTpxosW/8+PGaMGHCBZ9HxiwfA+MAAAAXYDKZLtrGy8tLU6ZM0ZQpU8ptU7NmTf3222/W7BoAAADshKen52XPBDRy5EjNmzdPy5YtU7Vq1cz7IyMjVVhYqPT0dIuKnuTkZEVGRprbrF271uJ8ycnJ5mMAAABwfFdy8yUZ88KYSh0AAAAAAACoICaTSSNHjtTs2bO1ePFi1a5d2+J469at5e7urkWLFpn3JSYm6tChQ4qNjZUkxcbGasuWLTpx4oS5zcKFCxUQEKDGjRtXzBsBAADANeXp6amAgACLrbyBcTLmpaFiHAAA2AWTnU6lDgAAAMdljxlzxIgRmjlzpn7++Wf5+/ub12sMDAyUt7e3AgMDNXToUI0ePVohISEKCAjQ448/rtjYWLVv316S1L17dzVu3Fj33Xef3njjDSUlJWncuHEaMWLEZVeuAwAA4NLZY76UyJiXioFxAAAAAAAAoIJMmzZNktSlSxeL/Z9//rkeeOABSdK7774rFxcX9e/fXwUFBerRo4emTp1qbuvq6qp58+bp0UcfVWxsrHx9fTV48GBNmjSpot4GAAAA7AgZ89IwMA4AAOyCyWSfd1sCAADAcdljxjSZTBdt4+XlpSlTpmjKlCnltqlZs6Z+++03a3YNAAAAF2GP+VIiY14q1hgHAAAAAAAAAAAAADg1KsYBAIBdsNf1eQAAAOC4yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsFe1+cBAACA4yJjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgF1ucBAACAtZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOwC6/MAAADA2siYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbBaOsOAAAAwOmQMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsAuvzAAAAwNrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wSTutgQAAIB1kTEBAABgTeRLx0bFOAAAAAAAAAAAAADAqVExDgAA7ALr8wAAAMDayJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdoH1eQAAAGBtZEwAAABYE/nSsVExDgAAAAAAAAAAAABwagyMAwAAAAAAAAAAAACcGlOpAwAAu2A02boHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YJLB1l0AAACAkyFjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFk4m7LQEAAGBdZEwAAABYE/nSsVExDgAAAAAAAAAAAABwalSMAwAAu2Ay2boHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YBTr8wAAAMC6yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsFk4m5LAAAAWBcZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAumEy27gEAAACcDRkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC6YxPo8AAAAsC4yJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMLI+DwAAAKyMjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF0wm1ucBAACAdZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOyCifV5AAAAYGVkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAAAAAAAAAAAAJwaU6kDAAC7YJTB1l0AAACAkyFjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFk8nWPQAAAICzIWMCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWTifV5AAAAYF1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YGR9HgAAAFgZGRMAAADWRL50bFSMAwAAAAAAABVo2bJl6tOnj6Kjo2UwGDRnzhyL4w888IAMBoPF1rNnT4s2aWlpGjRokAICAhQUFKShQ4cqOzu7At8FAAAA7AX58tIwMA4AAOyCyVRxGwAAACoHe82XOTk5atGihaZMmVJum549e+r48ePm7dtvv7U4PmjQIG3btk0LFy7UvHnztGzZMg0fPvzyOwMAAIBLZq/XMMmXl4ap1AEAAAAAAIAK1KtXL/Xq1euCbTw9PRUZGVnmsR07dmj+/Plat26d2rRpI0n64IMP1Lt3b7311luKjo62ep8BAABgv8iXl4aKcQAAYBdMMlTYBgAAgMqhovJlQUGBMjMzLbaCgoKr6vuSJUsUHh6uBg0a6NFHH1Vqaqr52KpVqxQUFGS+aClJcXFxcnFx0Zo1a67qdQEAAFA+R76GSb5kYBwAAAAAAAC4KvHx8QoMDLTY4uPjr/h8PXv21JdffqlFixbp9ddf19KlS9WrVy+VlJRIkpKSkhQeHm7xHDc3N4WEhCgpKemq3gsAAADsgzVvviRflmIqdQAAYBeMrP0NAAAAK6uojDl27FiNHj3aYp+np+cVn2/AgAHm/27WrJmaN2+uunXrasmSJerWrdsVnxcAAABXpyKvYcbHx2vixIkW+8aPH68JEyZc9rnIl6WoGAcAAAAAAACugqenpwICAiy2qxkYP1edOnUUFhamPXv2SJIiIyN14sQJizbFxcVKS0srd91IAAAAOJaxY8cqIyPDYhs7dqxVzl1Z8yUV4wAAwC6YqBgHAACAlTlLxjxy5IhSU1MVFRUlSYqNjVV6eroSEhLUunVrSdLixYtlNBoVExNjy64CAAA4tYrMl56enla92fIKjtp7AAEAAElEQVSfKmu+ZGAcAAAAAAAAqEDZ2dnm6hxJ2r9/vzZu3KiQkBCFhIRo4sSJ6t+/vyIjI7V37149++yzqlevnnr06CFJatSokXr27Klhw4Zp+vTpKioq0siRIzVgwABFR0fb6m0BAADARsiXl8ZuBsa/nbrU1l1AJXe03/O27gKgp//uYesuADbjLNU8sB8b6g+2dRcAdV0SZesuAIp/zdY9AGzHXjPm+vXr1bVrV/PjM+uTDx48WNOmTdPmzZv1xRdfKD09XdHR0erevbteeukli4qhb775RiNHjlS3bt3k4uKi/v376/3336/w91KZrKr9oK27AOimBUG27gKg+Hds3QPAdsiXjs1uBsYBAAAAAACAyqBLly4yXeCq6u+//37Rc4SEhGjmzJnW7BYAAAAcFPny0jAwDgAA7ILRZLB1FwAAAOBkyJgAAACwJvKlY3OxdQcAAAAAAAAAAAAAALiWGBgHAAAAAAAAAAAAADg1plIHAAB24QJL4AAAAABXhIwJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2KcQAAYBe42xIAAADWRsYEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAtG7rYEAACAlZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOyCyWSwdRcAAADgZMiYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbBxPo8AAAAsDIyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMHK3JQAAAKyMjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF1ifBwAAANZGxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwC9xtCQAAAGsjYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBSN3WwIAAMDKyJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdoH1eQAAAGBtZEwAAABYE/nSsVExDgAAAAAAAAAAAABwalSMAwAAu2A02roHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAAAAAAAAAAAAJwaU6kDAAC7YDLZugcAAABwNmRMAAAAWBP50rFRMQ4AAAAAAAAAAAAAcGpUjAMAALvA3ZYAAACwNjImAAAArIl86dioGAcAAAAAAAAAAAAAODUqxgEAgF0wcrclAAAArIyMCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAXTBW6QI+hAl8LAAAAtlJxGZN8CQAAUBlwDdOxUTEOAAAAAAAAAAAAAHBqVIwDAAC7UKE3WwIAAKBSIGMCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWj0dY9AAAAgLMhYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBdbnAQAAgLWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsgpG7LQEAAGBlZEwAAABYE/nSsVExDgAAAAAAAAAAAABwagyMAwAAu2AyVdx2OZYtW6Y+ffooOjpaBoNBc+bMsTj+wAMPyGAwWGw9e/a0aJOWlqZBgwYpICBAQUFBGjp0qLKzs6/yEwMAAMDF2GO+BAAAgOOy12uYuDQMjAMAAFxATk6OWrRooSlTppTbpmfPnjp+/Lh5+/bbby2ODxo0SNu2bdPChQs1b948LVu2TMOHD7/WXQcAAAAAAAAAnMYa4wAAwC6YKnSBHsMlt+zVq5d69ep1wTaenp6KjIws89iOHTs0f/58rVu3Tm3atJEkffDBB+rdu7feeustRUdHX3q3AQAAcFkqLmNeer4EAACA47LXa5i4NFSMAwCASqegoECZmZkWW0FBwRWfb8mSJQoPD1eDBg306KOPKjU11Xxs1apVCgoKMg+KS1JcXJxcXFy0Zs2aq3ofAAAAAAAAAIBLw8A4AACwC0ZTxW3x8fEKDAy02OLj46+o3z179tSXX36pRYsW6fXXX9fSpUvVq1cvlZSUSJKSkpIUHh5u8Rw3NzeFhIQoKSnpqj83AAAAlK+i8iUAAAAqh4q8hgnrYyp1AABQ6YwdO1ajR4+22Ofp6XlF5xowYID5v5s1a6bmzZurbt26WrJkibp163ZV/QQAAAAAAAAAWAcV4wAAoNLx9PRUQECAxXalA+PnqlOnjsLCwrRnzx5JUmRkpE6cOGHRpri4WGlpaeWuSw4AAAAAAAAAsC4qxgEAgF0wOcn0QEeOHFFqaqqioqIkSbGxsUpPT1dCQoJat24tSVq8eLGMRqNiYmJs2VUAAACn5ywZEwAAAPaBfOnYqBgHAAC4gOzsbG3cuFEbN26UJO3fv18bN27UoUOHlJ2drTFjxmj16tU6cOCAFi1apNtuu0316tVTjx49JEmNGjVSz549NWzYMK1du1Z//fWXRo4cqQEDBig6OtqG7wwAAAC2smzZMvXp00fR0dEyGAyaM2eOxXGTyaQXX3xRUVFR8vb2VlxcnHbv3m3RJi0tTYMGDVJAQICCgoI0dOhQZWdnV+C7AAAAgL0gX14aBsYBAIBdMBpNFbZdjvXr16tVq1Zq1aqVJGn06NFq1aqVXnzxRbm6umrz5s3q27ev6tevr6FDh6p169Zavny5xdTs33zzjRo2bKhu3bqpd+/e6tSpkz7++GOrfn4AAAA4nz3mS0nKyclRixYtNGXKlDKPv/HGG3r//fc1ffp0rVmzRr6+vurRo4fy8/PNbQYNGqRt27Zp4cKFmjdvnpYtW6bhw4df8WcFAACAi7PXa5jky0vDVOoAAAAX0KVLF5kuMEfS77//ftFzhISEaObMmdbsFgAAABxYr1691KtXrzKPmUwmTZ48WePGjdNtt90mSfryyy8VERGhOXPmaMCAAdqxY4fmz5+vdevWqU2bNpKkDz74QL1799Zbb73FzEQAAACVDPny0lAxDgAA7ILJVHEbAAAAKoeKypcFBQXKzMy02AoKCq6oz/v371dSUpLi4uLM+wIDAxUTE6NVq1ZJklatWqWgoCDzRUtJiouLk4uLi9asWXN1HxoAAADKVZHXMK2VMcmXZzEwDgAAAAAAAFyF+Ph4BQYGWmzx8fFXdK6kpCRJUkREhMX+iIgI87GkpCSFh4dbHHdzc1NISIi5DQAAABybtTIm+fIsplIHAAB2gUpuAAAAWFtFZcyxY8dq9OjRFvs8PT0r5sUBAABQYSryGiYZ0/oYGAcAAAAAAACugqenp9UuUkZGRkqSkpOTFRUVZd6fnJysli1bmtucOHHC4nnFxcVKS0szPx8AAACOzVoZk3x5FlOpAwAAu2A0mSpsAwAAQOXgiPmydu3aioyM1KJFi8z7MjMztWbNGsXGxkqSYmNjlZ6eroSEBHObxYsXy2g0KiYmxqr9AQAAwFmOeA2TfHkWFeMAAAAAAABABcrOztaePXvMj/fv36+NGzcqJCRENWrU0KhRo/Tyyy/ruuuuU+3atfXCCy8oOjpa/fr1kyQ1atRIPXv21LBhwzR9+nQVFRVp5MiRGjBggKKjo230rgAAAGAr5MtLw8A4AACwCyajrXsAAAAAZ2OvGXP9+vXq2rWr+fGZtSMHDx6sGTNm6Nlnn1VOTo6GDx+u9PR0derUSfPnz5eXl5f5Od98841Gjhypbt26ycXFRf3799f7779f4e8FAACgMiFfOjYGxgEAAAAAAIAK1KVLF5kuMD2mwWDQpEmTNGnSpHLbhISEaObMmdeiewAAAHAw5MtLw8A4AACwCxcKbgAAAMCVIGMCAADAmsiXjs3F1h0AAAAAAAAAAAAAAOBaomIcAADYBaOdrs8DAAAAx0XGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALrM8DAAAAayNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFIzdbAgAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUGBgHAAAAAAAAAAAAADg1plIHAAB2wcQ8RAAAALAyMiYAAACsiXzp2KgYBwAAAAAAAAAAAAA4NSrGAQCAXTBxsyUAAACsjIwJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2KcQAAYBeMrM8DAAAAKyNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFEwv0AAAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wWS0dQ8AAADgbMiYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbByPo8AAAAsDIyJgAAAKyJfOnYGBi3A97erho2qJZuiA1TcKC7du3L1nuf7NXO3VmSpOdHNVDvbpEWz1mTkKanJ2y54Hnv6B2tgXdUV0iwh/buz9a7H+3RjtPnlCQPd4NGDq2rbp3D5e7uorV/p+ntabt1Kr3I+m8SdqVWpEGdm7mqaqiLAnwN+uqPIu04eHb+j26tXNW8josCfQ0qMUpHU0xakFCsIyfP/sKPDjWoR1s3VQszyGSSth4w6rc1xSosvvBrx13vqjYNXOXtIR1MNunnlcVKzTx7Xm8PqU+smxrWcJHJJG07YNS81Rc/LxzLlz/N05LVCTp0NEkeHu5q1qCeHrvvLtWsGiVJyszK1qffz9HaTduUlJKq4AB/dW53vYYPuF1+vj6SpIysbE2Y/JH2HjyijKxsBQf6q3PbVnpk0J3y9fEu97Uzs7L1zmffaMX6jXIxGNSlfRuNevBf8vH2MrfZc+Cw3v70K+3Ys19BAf66s3ec7u3X+9p+KABwhRK3bdD/Zn+lg3t3KP1Uih7/91u6vn0X8/H8vFz98NUH+nvNUmVnZahKeLTibr1HXXveKUnKzsrQnG8/0raNq5Wakiz/gCBdH9NFt//rUfn4+pX7uiaTSXO+/UhLF85Wbk62rmvYQvc98m9FRtcwt8nOytA3n7ypjeuWy2AwqE3sTfrXQ8/Iy9vnmn0esI3Pfl2ixQnbdOD4SXl6uKtFvRp68s6eqhVVRZJ0LOWUbnn2zTKf+8ajA3Vz22aSpFYPPn/e8fiH71HPmBblvnZGdq5enzlXyzbulMFgULfWTfTsv26Vj5enuc2uw8f12te/aNv+owr299WAuFg90OuGq3nLcGAX+1v5XF07humhe2srMtxLR47latqM/VqdkGbRZuigWurTPVL+vm7asiNTb03drSPH8671WwGAa2b39gQt+PkLHdq3QxmnTuqRZ99Ry3Y3mY8/cmfLMp93x32j1P22ByRJU197UocPJCorI00+vgFq1DxGt9/7pIJCwst93aLCAv34xdta/9fvKi4uVOMWHTRw2PMKCAo1t0k7eVwzP3lFiVvXy8vLW+279FG/QU/I1ZVL3c7ks/krtOjvnTqQlCJPDze1qFNdo27vplqRYeY2KRnZevenhVq9Y59y8gtVKyJUD/XqrLjrG513vsKiYt37+mfadSRZ3/3fcDWsHnlemzMKior19o8L9Pv6bSosLlaHxnX1/MDeCg04+/fR8bQMvTLzV61PPCBvLw/1ad9CT/TrJjdXJumtjMiXgOMgLdiBfz9eX3Vq+uqld3YqJa1APbpEaPJLzXXvY+uUklYoSVqdkKZXJ+80P6eo6MJ3pNzUqYpGPlRXb03Zpe27snR336p6Z1IzDXxkndIzSge+H3+onjq0DdELr29XTk6xnnrkOr0ytokee27jNXuvsA8ebgYlpZmUsKtY98a5n3c8JcOkX1YVKy3LJHdXgzo2ddWDPd319g+FysmX/H2kB3u5a8s+o+auKpanu3RrezfdeYObZi4ufwT7huauim3sqh+XFetUlklxrV01pIe7Jv9UqOKS0jZ3d3GXv4/0n/lFcnWR+nd20+2d3PT9EkbGncnf2xLVv2c3NapXWyXGEk3/5r8aNeltzXzvFXl7eerkqXSlpKVr5P33qFb1aCWdTNGbH32plLR0vTpmhCTJYDCoc9tWGj7wDgUF+Oto0gm99clXysz+QhOfeqTc157w3sdKPZWu9158RsUlJXrlw8/0+vQZ5ufk5OZp1EtvqU3zxhozfLD2HjqiV6f8R34+PurXvUtFfDyVlom7LYErUpCfp+q1r1PnuL768LUx5x3/7j/vaseWdRo+apLCwqO1deNqffXR6woKqaJW7W5UetpJpaed1D0PjFJ09TpKOXlcX06PV3raSY147o1yX/e32V9o4bzv9NCTE1Qloqp+mjlN70x8XK98MEvuHqUDkh+/+4LS01L0zMQpKiku1mcfTNSMqa/okadfuWafB2xjQ+J+3XNTezWpXU3FJUZ9+NMCPfrO5/rp5VHy9vRQREigFr471uI5/126Vl/+b7k6NqtvsX/ig/3V4R/7/H28dCHPfzxLKRlZmvb0gyouKdH4//xXL30xW/EPD5AkZefl67G3P1dM43r6v/v7afeRJE38/Cf5e3upf5d2VvoE4Cgu5W/lf2raMEDjxzTWR1/s08p1abr5xnDF/18TPTgqQfsP5UqSBvWvrjtvrapXJu/U8eR8PTSolt6Z1Ez3PrZOhRf52x3XHhkTuDIF+XmqVqu+OtzUTx+9Ofq8469/8ofF421/r9BX0yaqVfs48776Tdqo5x1DFRgcpvTUE/rvl+/o47ee0bOvflnu6/4w4y1t2bBcw55+U94+fvrus9c0/c3RevaVLyRJxpISfRj/uAKCQvXsKzOUcSpFMz58Qa6ubuo36AkrvXvYg4RdB3XPjW3UpFa0SoxGfTBnsR59/xv9NP5ReXt6SJLGzZijrNx8TX50gIL9fPS/dVv07Cc/aubYh9SwRpTF+d796Q9VCfTXriPJF33tt374Xcu37Nabw+6Un7enXvvufxo9fZa+ePZBSVKJ0ajHP/xWoQG+mvHsg0rJyNILM36Wm6uLnujXzfofBuwa+bLyIV86Nm5fsjEPDxfd2KGKpn6+T5u2Zejo8Xz959uDOno8T7f3jja3KywyKi29yLxl5Vx4kHBAv2qa+/tx/bYoWQcO5+rNqbuVX2DUrTeX3gnn6+OqW2+O1Aef7tWGzelK3JutV9/bqeaNA9Wkgf81fc+wvV1HjFqYUKLt/6gS/6dN+4zae8ykU1nSiXSTfltTLC8PgyKDDZKkhtVdZDRKv6wsVkqGSUdTTJrzV7Ga1nZVyAW+Ph2auOrPjSXacciopFMm/bC0WP4+UuOapb+KqgQa1KC6i2avKK1OP5hs0txVxWpWx0X+FJY5lXdfeFq33NRJdWpU1XW1amjcyKFKTknVzr0HJEl1a1TTq8+OVKe2LVUtMlxtmjXWw//qr7/Wb1RxSeldFAF+vrqj501qVK+2osLD1KZ5Y93R8yZt2rGr3Nc9cOSYVv+9Rf9+dIia1K+rFo3qa/RD9+qPv9bqZNopSdLvy1apqLhE//fYUNWpUVU3d4rRXb3j9N3c36/55wIAV6J5647qP+gxtW7ftczjexI3qWPXW9WwWRuFRUSrS487VL3Wddq3e5skqVrNehr57zfVst0NCo+qpsbN26r/oMe0cd1ylZSUnTlNJpMWzv1Wfe4equtjuqh6res07MlJOpV2UhvWLJEkHTu8X1s2rNSQkeNUt35T1W/cUvcOG6O1KxboVNrJa/JZwHamjB6ivp1aq27VCDWoEaWJD/ZXUmq6th84KklydXFRWKC/xfbnhu26uW0zi8puSfL38bZo5+l+/o2cZ+w7dkIrt+7Siw/crmZ1q6tV/Vp6blAf/b52i06cypQk/bZ6o4pKSjThwTtUt2qEesa00IBusfp6wYpr94HAbl3sb+Vz3dW3qtZsSNO3s4/o4JFcffrNAe3am63+t1a1aPPlrINasSZVew/k6OV3dyo0xFOd24eVeU4AcARNr++k2waOVKuYm8o8HhgcZrFtWrdE9Zu0VZWIauY2cX3uU536zRVaJVp1G7ZUj9sf1P7dW1RSXPZslXk5Wfpr8WzdOfhpNWzWTjXrNtbgERO1L3GT9u3aLEnavmmVjh/ZpwefeFXVazdU0+s7qe89j2nJ77NUXMQsmM5k6hODdFuHlqoXHa4G1SI1afBtOp6Woe2HjpvbbNp3WAO7tlOz2lVVrUqwhvW+Qf4+XhZtJGnF1t1avWOfRve/+aKvm5WXr9l//a2n7+yudg1rq3HNaE0cfJs27TuizfuOSJJWbd+rfcdP6tUHb1fD6pHq1PQ6Pda3i2YtWa+iM9U/qDTIl4BjYWDcxlxdDXJzNaiw0HKAsqDQqOaNA82PWzUN0tyvYjVzWls9/eh1CvAvv9jfzc2g+vX8tX7TKfM+k0lav/GUmjQIkCQ1qOcvd3cXizaHjuQp6US+mjQMsNbbgxNwdZHaNnBVXoFJx9NK74Ryc5WKS6R/3hdVVFz6qFZk2b9Wgv2lAB+D9h47+10vKJKOnDSpRnjpgHuNcIPyCkoH2s/Ye8wkk0mqXoVfV84sJ7d0GqAAf99y22Tn5srXx0turq5lHj+ZdkpL1ySoZZMG5Z5ja+Ie+fv6qFG92uZ9bZo3lovBoO2795W22bVXLRvVl7v72d+zMS2b6tCxJGVm51zW+8LlMRpNFbYBlUm9Bi3097plOpV6QiaTSTu2rFfysUNq2rJ9uc/Jzc2Wl49vudNRnkw+qoxTqWrS/Gy1rY+vn+rWb6o9iaXL/exJ3CwfX3/VrtfY3KZxi3YyGFy0b9dWK7072KvsvAJJUqBv2cubbD9wVImHjqvfDW3OOxb/9S/q+sTLuvelqZqzfP0F78bfvPeQ/H281KT22YvwMY3rysVg0NZ9h0vb7Dms6+vXkrvb2e9zh6bX6UBSijJzmIqwMrmUv5XP1bRhgNZvPGWxb83faWp6+u/m6AgvhYV4at0/2uTklmj7rkxzG9gW+RK49jLTU7Vlwwp17Nav3DY5WRlau/w31WnQQq5uZd/0dnDfDpUUF6tR8xjzvsiqtRUSFqV9iZskSft2bVbVGvUsplZv3LKD8nOzdezwXuu8Idglc778x/J5LepU1+8J25SRkyej0aT567aqoKhYberXMrdJzczWpK/n6eUh/eTlUf4Nl2fsOHhcxSVGxTSqY95XOzJMUSGB2nR6YHzzviOqVzXcYmr1Do3rKju/QHuPnbjatwoHQr6snLiG6dgueyr1vLw8JSQkKCQkRI0bN7Y4lp+fr1mzZun++++3WgedXV5eibbsyNADA2rqwJFcnUovVNwN4WrSIEBHT68XsSYhTUtXpuh4cr6qRnlp+H219daEZnpkzN8yllHwGxjgLjdXg9JOWd4lmZZepJrVSstuQ4M9VFhkVHZOyTltChUa5HFt3iwcSoPqLhrQ1U3ublJWbunU5rml+VN7j5nUO0bq3MxVK7eVyN1N6tm29NeJv7ehzPOd2Z+dZ/nLPDvPJL/Tx/x8DOcdN5qkvALJv/wlo+HgjEajJn/+rZo3vE51a1Qrs016ZpY+/2Gu+sZ1Oe/Yi+9M1/J1f6ugsFCd2rTU2EcfLPe1UtMzFRxoGSDdXF3l7+er1FMZp9tkKDrc8u7LkKDS56SlZyjAr/zBewBXhnx5bQ0aPkYzpr6i0UN7y9XVVQaDix4Y8X9q0OT6MttnZaZr7qxP1aX77eWeMyM9VZIsLkhKUkBgiDJOlR7LPJWqgMBgi+Ourm7y9Q8wt4FzMhqNeuvbeWpZr6bqVSu7SmLO8vWqHVVFLevVtNj/aL84tWtUV14e7lq1bbfiv/pFufmF+tfNHco8T2pGtkL8/Sz2ubm6KsDXWymZpWv6pWZmqWqY5Xcx5PRFzJSMLAWUM3gP53MpfyufKyTIQ6fSCy32nUovUsjpv5tDgj3M+yzbFJqPAbANMmbFWbXkF3l5+6hVzPlTSP/01WQtmf+dCgvyVbt+c40Y+36558lMT5Gbm7t8fC3/bvcPClHm6fyZmZ6igMBzMmhQiPkYnJPRaNKbP/yulnWrq17Vs2vUvzHsTj336Y+68ek35ebiIi8Pd73zyN2qEV76nTCZTHrxi5911w2t1aRmtI6mpF/0tVIys+Xu5qqAc5bzCfH3VWpm9uk2OQoNsLw+ZM6Xp9ugciBfAo7nsgbGd+3ape7du+vQoUMyGAzq1KmTvvvuO0VFla7XkZGRoSFDhlw0VBYUFKigoMBin7GkUC6ulfN/6pfe2amxTzbQz1/EqrjEpF17s/THshNqUK/0H9NFy89ONbnvYI727s/RrE9j1KppkBI2p9uo13B2+44b9cHsQvl6GdS2gasG3uSuab+UrjF+It2kH5cWq3eMm7q3cZXJJK3cVqKsXJO4hwmX6+1Pvta+Q0c0/ZXnyzyek5unZ16drNrVo/XQPbedd/zJIQP14N236fDxJE3/+ke9P+NbjRnOxQ1HxPI8ldO1zJeFhYXy8PAs5xmVxx+/fq99iVv05PPvKDQ8SonbNujrj95QUEgVNWkRY9E2Lzdbk196UtHV6+i2AQ/bqMdwdPFf/6I9R5P1+diyv0P5hUX63+pNGtbn/On/h/c9O11rw5rRyiso1Jfzl5c7MA4AF0PGrJyskTHLzpdG8mUZVi7+We0695Z7GZ9N99sGq2O325V68ph+/eEjzfhgnEaM/UAGQ9mFFUBZ4r/7TXuOntCMMUMs9k/95U9l5ebro1H3KsjPR39uTNSzn/yoz595QNdVjdC3f65VTn6hHuzZyUY9B+CMyJeO7bLmJn7uuefUtGlTnThxQomJifL391fHjh116NChy3rR+Ph4BQYGWmxH9nxzWedwJseS8vX42E2Ku3O5+g9ZreFP/y03N4OOJeWX3T45X6cyClUtuuzKhozMIhWXmBQSbDk1TEiQu1JPld6JlHqqUB7uLvLzdT2njYdSz7lbCZVTUbGUliUdPmnSTyuKZTSa1Kb+2e/Lpn1GxX9bqNe/LdTLXxdq0d8l8vWS0jLL/lch63QluN85FeV+3merxLNzTecddzFI3p5SFrNcOqW3P/lKfyVs1IcTn1N4aMh5x3Py8vTUy2/Lx8tL8c8+Lje38+/nCg0OVK1qUerctpWefWSwZv/+p1JOpZf5eqFBATqVkWmxr7ikRFnZOQoNDjzdJlBp6ZZtzjwOCQoUAOu6lvnyq4/fvka9dhyFBfn679dTNODB0WrZ7gZVr3Wd4m65R2073az5c762aJuXl6O3Jz4hL29fPf7vN8v8nXtG4OlK8TOVO2dkZqQpMLj0WEBwqDIzLKeHKykpVk5WprkNnM9rX/+i5ZsS9cmzDykipOx/N/9Yv1X5hUW6tUOri56vWZ3qSj6VocKiste7Dw30U1qWZVVOcUmJMnPyFBbgX9omwN9c3XNG2unHYYH+F+0DnMel/K18rrT0QgWfM6tacJC70k7/3Zx2+nnBQe7ntPEwHwNQ8ayRMcvKlzM/ffMa9tox7d6+QcnHDqhTt7JnG/ILCFZEdE01bhGrh556XVs3rND+0+uFnysgKEzFxUXKzbH8mzwrPc08U1FAUJgyM87JoOlp5mNwPvHf/k/LtuzWp6PvV0Tw2dkEDp9M03dL1mnC/X0V07COGlSL1CO33qgmNaP1/ZL1kqS1iQe0ed8RtRv5ilo/9pL6vviBJGlQ/CcaN2NOma8XFuCnouISZeZaXptPy8oxT50eFuCr1EzL5fbM+TLAcjYjODfyJeB4LmtgfOXKlYqPj1dYWJjq1aunuXPnqkePHurcubP27dt3yecZO3asMjIyLLZq9QZdduedTX6BUamnCuXv66Z2rUK0Yk3ZU0xWCfVQoL+7UtLK/iVYXGzSrj1Zat387HSBBoPUukWwtiWWBsvEPVkqKjKqdYuzbapX9VZkuJe27cw875yAwWCQWxlLO2fnS4XFUvPaLioukfYcK2N+f0mnsqTMXJPqRp/9tePpLlWrYtChE6UD44dOmOTtaVB06NnB8TrRBhkM0uGTZZ8XjslkMuntT77S0rUb9MGEZxUdUeW8Njm5eRo16W25u7npjbFPyPMS1oE6s+5KUTkXz5s2qKesnFzt3HvAvC9hyw4ZTSY1vq507aim9etq445dKi4+e451m7epRnQk06hfYyajqcI22I9rmS/vG/70Ney5YygpKVZJcfF5FTkuLi4y/WNNnrzcbL09YaTc3Nz0xP+9U2a1zz9ViaiqwOBQbd+8zuIce3dtVb0GzSRJ9Ro0V25Olg7s2WFus2PzeplMRtWp39Qabw92xGQy6bWvf9HiDdv10bNDVbXK+Te8nTFn+Xrd2LKhebrJC0k8dFwBvt7ycC/7Ro3mdWsoKzdf2w8cNe9bt2OfjCaTmtapXtqmXnVt2HVARcVnl5FavX2PakWGMY16JXMpfyufa+vOTLVpYTkVf9uWwdp6+u/mY8n5SkkrsGjj4+2qxvUDzG1gW+TLyskaGbOsfPmvh8Zc4547nr8Wz1aNOo1VrVaDi7Y9kz+Lisq+plmzTiO5urlp55a15n1JRw8oLeW46jRoIUmqU7+5jh7ao8yMNHObHZtXycvHT1HV65x3Tjguk8mk+G//p8Ubd+rjUfedtzROfmHpNNMu5/2tY5DxdDnnc/f01KxxD+v7/yvdPhj5L0nS6w/dqcdvu0llaVQzSm6uLlq7c79534GkFB1Py1CLOqVLADavU017jp5Q2j8Gx1ft2Cc/L0/ViTr/GhecF/mycuIapmO7rIHxvLw8i8oRg8GgadOmqU+fPrrxxhu1a9euSzqPp6enAgICLLbKOo26JLVrFayY64MVFeGlNi2D9f6rLXToSK5+/SNJ3l4uemxIHTVp4K/IcE+1bh6k18Y11dHjeVq74WwAnPxyc91xS7T58XdzjqhPjyj1vClCNav56JnHrpO3l4t+/SNJkpSTW6J5C5P0+NC6atUsSA3q+un5Jxtoy44MbUvMqvDPABXLw02KCjEoKqQ0OIb4lf53oK/k7iZ1b+2q6lUMCvKTokMNuqOzmwJ8pC37z15Ab9/IRdGhBoUGGNS+kYv6dHDT7+tLlP+Pv22e6u+uxjXP/ppZua1EXVu6qmENF0UEG3TXjW7KypW2Hyw978kMkxIPG3V7JzdVCzOoRrhBfWPdtGWfUVm5FfPZoGK89clX+n3ZKk0c9bB8vL2VeipDqacyVFBQ+gUqHRR/S/n5BRr72IPKyc03tykpKf2+rEzYpHmLl2vvoSM6fiJFfyVs0psff6nmDa9T1Ok1wrfv3qcBj4/VydTSisVa1aLVvlUzvTbtc23fvU+bd+7WO59+rbiO7VQlpDRsdu/cXu5urnp16ufad+io/vhrjWb9ulAD+vSwwScFOL9rmS8ryzSX+Xm5OrQvUYf2JUqSTp44qkP7EpV6MknePn5q0OR6zfriPe3csl4nk49qxaK5WrnkN13fvnQa67zcbL01YaQK8vP04MgXlZ+brYxTKco4lSJjydmBxLEj+ith9Z+SSn9ON/cZqLk/fKa/1y7V4QN79Mnk8QoOqaLrY7pIkqKr11az6zvo86kva9+urdq9Y6O+/uQNtevUXcEhXCxyNvFf/6JfV23Uqw/fLV8vT6VkZCklI8t8wfKMQ8mp2rDrgG6/oe1551i6cYd+WrZOe44k6VByqmb9uVqf/bpEA7rFmtts3XdYtz//jk6cypAk1YkOV4em9fXSjNnauu+wNu4+qNe++UU92jVT+OmKol4xLeXu6qqJn/+kvUeT9fvazZq5cKXu7c6UmpXRxf5WHvdUAz18f21z+x9+OaqY64M1oF811ajmrQcH1lTDev7677yjFm0G31NDHduFqk5NX40b3VCpaQVavpq1bgFbsUbGrMz5UirNmIf379Th/TslSSnJR3V4/06lnTxubpOXm60NqxaWWS2+f9cW/fm/73R4/06lnjymnVvW6tPJ/1aVyOrmQe5Tqcka/0Q/7d+9RZLk7euvjjfdrh9nvK3Eret0cO92fTnlRdWp31x16jeXJDVuEauoanU04/3/05EDidq2caV++XaKuvS4W+7ulff6sjN69dv/6de1mxU/9PbT+TJbKRnZ5nxZKzJM1auE6OVvftWW/Ud1+GSavly4Sqt37FPXFqU3akSFBKpe1XDzVjO8dOaBalWCzdXnyacy1W/8FG3ZX/pvu7+3l27v2Epv/7hA6xL3a/vBY3rxy1/UvE41NT89MB7buK7qRFXR/82YrcQjSVq5bY+m/PKn7u7SptwbOuG8yJeAY7ms39INGzbU+vXr1ahRI4v9H374oSSpb9++1utZJeLn66aH76+tKmGeyswq0tKVKfr4q/0qKTGpxNWgurV81eumCPn5uiklrVDr/k7TJ98cUFHx2btFqkZ6KyjgbDXl4hUnFRTorocG1VJIsIf27MvW0+O36FT62QtTH3y6RyZTXb0ytrHc3V20dkOa3p62u0LfO2yjaphBw245+8fCLe1LfxUk7CrRzyuLVSXIoFbXucvXS8rNl46kGPXxr0U6kX72O1etiovirneRh7t0Mt2kOX8Va+Mey6ruKkEu8vI4e0F92eYSebhJt3d0k5eHdDDZpM9/L9I/inc0a0mR+nZw09Be7jJJ2nrAqHmryq7+heOa/XvpwMqIF1+32P9/I4bqlps6KXHfQW3bXXoX/90jnrNo899pbyoqPEyeHh765Y+lev/zb1VYXKyI0BDdGNNa991xi7ltfkGhDh1LUvE/BnYmPDlcb3/6tZ6Y8KYMLgZ1ad9aTz14dtYSP18fTX7hGb396Vd68NkJCvT315C7+qpf9y7W/hhwDiML9FRK5Murd2DPdr3+wiPmx9/9511JUseut+qhJyfo0Wde1Y9fTdFH776gnOxMhVaJVP9Bj6prz/6SpIN7d2rfrq2SpOce7Wdx7jc/+kVhEaU3XyYdPai8nLPTUfe+fbAK8/M1Y+qrys3JUv1GLTX6xfctqs2HP/WSvv74Db354mMyuBjUOvYmDaLSyin98OcaSdKw1z+12D/xwf7q26m1+fHPK9YrIjhAsU3qnXcON1dXzVq8Wm9/+6tMkqqHh+rpAb11xz8G0fMLi3QgKUXFJWdz56vD79Zr3/yih9/8TC4uBnVr3VTP/utW83F/Hy9NfXqIXvv6F/1r4hQF+ftoeN+b1L9LO2u9fTiQi/2tHFHFS/8szNi6M1MT39qhYffW1vD7a+vIsTyNfWWb9h86e+fuN/89LC8vVz07sr78fN20ZXuGnh6/RYVFZBt7QMasnMiYV+/g3m16d8Iw8+Mfvyhdpqh9lz56YORLkqT1f82XySS17dTzvOd7eHpp45pFmvf9NBUU5CkwOExNWnZUr/4PmQewS0qKlXzsgAoLzk5ZfdcDz8hgMOijt55WcVGhGrfooIHDnjcfd3F11Yix72vmx6/o9ecHy9PLW+1v7KM+Ax67Jp8DbOeHZaXToT/0zpcW+yfe31e3dSi98fHDkQP1/pxFenLqd8otKFSNKiF6aXA/dW523SW/TnGJUQeSUy1u6Hzmrh4yGAx6+qMfVFhcog6N6+r5gb3Nx11dXPT+iAF6ZeZvGvz6f+Tt6aE+7ZvrsT5dr/JdwxGRLysf8qVjM5hMl/4TjI+P1/Lly/Xbb7+Vefyxxx7T9OnTZTRe/pTHnfosveznANZ0Q7/2tu4CoKdjEmzdBUChTTvY5HUfn1xx00F9MCrg4o1QIa5lvly5g1lwYHst0xbYuguAur/GmquwrRVzb7TZa1dUxiRf2pdrlTH/3JJnje4BV6V9yk+27gKgm9+pZusuADbLmFzDdGyXNZX62LFjyw2UkjR16tQrumgJAACAyol8CQAAAGsjYwIAAKAsLHgBAADsgsnINEQAAACwLjImAAAArIl86dguq2IcAAAAAAAAAAAAAABHQ8U4AACwC9xtCQAAAGsjYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBW62BAAAgLWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsAuvzAAAAwNrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wWTibksAAABYFxkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC4YWZ8HAAAAVkbGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALrM8DAAAAayNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFE+vzAAAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2gbstAQAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAC7YDSZKmwDAABA5WCP+XLChAkyGAwWW8OGDc3H8/PzNWLECIWGhsrPz0/9+/dXcnKytT8aAAAAXAF7vYZJxrw0DIwDAAAAAAAAFahJkyY6fvy4eVuxYoX52FNPPaW5c+fqhx9+0NKlS3Xs2DHdcccdNuwtAAAAHAEZ8+JYYxwAANgF1ucBAACAtdlrxnRzc1NkZOR5+zMyMvTZZ59p5syZuummmyRJn3/+uRo1aqTVq1erffv2Fd1VAAAA/IO95kuJjHkpqBgHAAAAAAAArkJBQYEyMzMttoKCgnLb7969W9HR0apTp44GDRqkQ4cOSZISEhJUVFSkuLg4c9uGDRuqRo0aWrVq1TV/HwAAALAfZEzrY2AcAAAAAAAAuArx8fEKDAy02OLj48tsGxMToxkzZmj+/PmaNm2a9u/fr86dOysrK0tJSUny8PBQUFCQxXMiIiKUlJRUAe8EAAAA9oKMaX1MpQ4AAOyCyWS/0xABAADAMVVUxhw7dqxGjx5tsc/T07PMtr169TL/d/PmzRUTE6OaNWtq1qxZ8vb2vqb9BAAAwNWpyGuYZEzro2IcAAAAAAAAuAqenp4KCAiw2Mq7aHmuoKAg1a9fX3v27FFkZKQKCwuVnp5u0SY5ObnM9SIBAADgvMiY1sfAOAAAsAtGo6nCNgAAAFQOjpAvs7OztXfvXkVFRal169Zyd3fXokWLzMcTExN16NAhxcbGXu3HAQAAgKvkKNcwyZhlYyp1AAAAAAAAoII888wz6tOnj2rWrKljx45p/PjxcnV11cCBAxUYGKihQ4dq9OjRCgkJUUBAgB5//HHFxsaqffv2tu46AAAA7BQZ89IwMA4AAOyCiUpuAAAAWJk9ZswjR45o4MCBSk1NVZUqVdSpUyetXr1aVapUkSS9++67cnFxUf/+/VVQUKAePXpo6tSpNu41AAAAJPvMlxIZ81IxMA4AAAAAAABUkO++++6Cx728vDRlyhRNmTKlgnoEAAAAR0fGvDQMjAMAALtgMtnn3ZYAAABwXGRMAAAAWBP50rG52LoDAAAAAAAAAAAAAABcS1SMAwAAu2AyGm3dBQAAADgZMiYAAACsiXzp2KgYBwAAAAAAAAAAAAA4NSrGAQCAXTAaWZ8HAAAA1kXGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALJhN3WwIAAMC6yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsHE+jwAAACwMjImAAAArIl86dioGAcAAAAAAAAAAAAAODUqxgEAgF3gbksAAABYGxkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC4YTUZbdwEAAABOhowJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2BcQAAAAAAAAAAAACAU2MqdQAAYBdMRpOtuwAAAAAnQ8YEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAvcbQkAAABrI2MCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWTibstAQAAYF1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YDQabd0FAAAAOBkyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMBlZnwcAAADWRcYEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAsmE+vzAAAAwLrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2gfV5AAAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7wN2WAAAAsDYyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMJqMtu4CAAAAnAwZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAusD4PAAAArI2MCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAXTEbW5wEAAIB1kTEBAABgTeRLx0bFOAAAAAAAAAAAAADAqTEwDgAAAAAAAAAAAABwagyMAwAAu2AymipsuxzLli1Tnz59FB0dLYPBoDlz5lj222TSiy++qKioKHl7eysuLk67d++2aJOWlqZBgwYpICBAQUFBGjp0qLKzs6/2IwMAAMBF2GO+BAAAgOOy12uYuDQMjAMAAFxATk6OWrRooSlTppR5/I033tD777+v6dOna82aNfL19VWPHj2Un59vbjNo0CBt27ZNCxcu1Lx587Rs2TINHz68ot4CAAAAAAAAAFR6brbuAAAAgCSZTEZbd6FMvXr1Uq9evco8ZjKZNHnyZI0bN0633XabJOnLL79URESE5syZowEDBmjHjh2aP3++1q1bpzZt2kiSPvjgA/Xu3VtvvfWWoqOjK+y9AAAAVDb2mjEBAADgmMiXjo2KcQAAUOkUFBQoMzPTYisoKLjs8+zfv19JSUmKi4sz7wsMDFRMTIxWrVolSVq1apWCgoLMg+KSFBcXJxcXF61Zs+bq3wwAAAAAAAAA4KIYGAcAAHbBaDRV2BYfH6/AwECLLT4+/rL7nJSUJEmKiIiw2B8REWE+lpSUpPDwcIvjbm5uCgkJMbcBAADAtVFR+RIAAACVQ0Vew4T1MZU6AACodMaOHavRo0db7PP09LRRbwAAAAAAAAAA1xoD4wAAwC6YjBW3Po+np6dVBsIjIyMlScnJyYqKijLvT05OVsuWLc1tTpw4YfG84uJipaWlmZ8PAACAa6MiMyYAAACcH/nSsTGVOgAAwBWqXbu2IiMjtWjRIvO+zMxMrVmzRrGxsZKk2NhYpaenKyEhwdxm8eLFMhqNiomJqfA+AwAAAAAAAEBlRMU4AACwCyY7XTcnOztbe/bsMT/ev3+/Nm7cqJCQENWoUUOjRo3Syy+/rOuuu061a9fWCy+8oOjoaPXr10+S1KhRI/Xs2VPDhg3T9OnTVVRUpJEjR2rAgAGKjo620bsCAACoHOw1YwIAAMAxkS8dGwPjAAAAF7B+/Xp17drV/PjM2uSDBw/WjBkz9OyzzyonJ0fDhw9Xenq6OnXqpPnz58vLy8v8nG+++UYjR45Ut27d5OLiov79++v999+v8PcCAAAAAAAAAJUVA+MAAMAumEz2uT5Ply5dZDKVfyeowWDQpEmTNGnSpHLbhISEaObMmdeiewAAALgAe82YAAAAcEzkS8fGGuMAAAAAAAAAAAAAAKfGwDgAALALJqOpwjYAAABUDvacL6dMmaJatWrJy8tLMTExWrt2rZXfPQAAAKzNnq9hki8vjoFxAAAAAAAAoAJ9//33Gj16tMaPH68NGzaoRYsW6tGjh06cOGHrrgEAAMABkS8vDQPjAADALpiMxgrbAAAAUDnYa7585513NGzYMA0ZMkSNGzfW9OnT5ePjo//85z/X4FMAAACAtdjrNUzy5aVhYBwAAAAAAAC4CgUFBcrMzLTYCgoKymxbWFiohIQExcXFmfe5uLgoLi5Oq1atqqguAwAAwM5dasYkX146N1t34IwVc2+0dRccWkFBgeLj4zV27Fh5enraujuohPgOWksHW3fAofE9dGxkAVhbh0b+tu6CQ+N3qrX0t3UHHBrfQ+tYMdfWPXBcfAcdX0VlzAkTJmjixIkW+8aPH68JEyac1zYlJUUlJSWKiIiw2B8REaGdO3dey27iKnVt5m3rLjg0fqdayyBbd8Ch8T20jhVdbd0Dx8b30LFV5DXMS82Y5MtLZzCZTJe/ejvsTmZmpgIDA5WRkaGAgABbdweVEN9B2AO+hwBgPfxOhT3gewhb4zuIS1VQUHBe9Y6np2eZF7uPHTumqlWrauXKlYqNjTXvf/bZZ7V06VKtWbPmmvcXsAV+p8Ie8D2EPeB7iEt1qRmTfHnp7KZiHAAAAAAAAHBE5Q2ClyUsLEyurq5KTk622J+cnKzIyMhr0T0AAAA4oEvNmOTLS8ca4wAAAAAAAEAF8fDwUOvWrbVo0SLzPqPRqEWLFllU+AAAAACXgnx56agYBwAAAAAAACrQ6NGjNXjwYLVp00bt2rXT5MmTlZOToyFDhti6awAAAHBA5MtLw8C4k/D09NT48eMvedouwNr4DsIe8D0EAOvhdyrsAd9D2BrfQVwr99xzj06ePKkXX3xRSUlJatmypebPn6+IiAhbdw24ZvidCnvA9xD2gO8hrgXy5aUxmEwmk607AQAAAAAAAAAAAADAtcIa4wAAAAAAAAAAAAAAp8bAOAAAAAAAAAAAAADAqTEwDgAAAAAAAAAAAABwagyMAwAAAAAAAAAAAACcGgPjTmDKlCmqVauWvLy8FBMTo7Vr19q6S6hEli1bpj59+ig6OloGg0Fz5syxdZdQCcXHx6tt27by9/dXeHi4+vXrp8TERFt3CwAcFvkStkbGhK2RLwHA+siYsCXyJWyNfAnYBwbGHdz333+v0aNHa/z48dqwYYNatGihHj166MSJE7buGiqJnJwctWjRQlOmTLF1V1CJLV26VCNGjNDq1au1cOFCFRUVqXv37srJybF11wDA4ZAvYQ/ImLA18iUAWBcZE7ZGvoStkS8B+2AwmUwmW3cCVy4mJkZt27bVhx9+KEkyGo2qXr26Hn/8cf373/+2ce9Q2RgMBs2ePVv9+vWzdVdQyZ08eVLh4eFaunSpbrjhBlt3BwAcCvkS9oaMCXtAvgSAq0PGhD0hX8IekC8B26Bi3IEVFhYqISFBcXFx5n0uLi6Ki4vTqlWrbNgzALCtjIwMSVJISIiNewIAjoV8CQBlI18CwJUjYwLA+ciXgG0wMO7AUlJSVFJSooiICIv9ERERSkpKslGvAMC2jEajRo0apY4dO6pp06a27g4AOBTyJQCcj3wJAFeHjAkAlsiXgO242boDAABY04gRI7R161atWLHC1l0BAACAEyBfAgAAwJrIl4DtMDDuwMLCwuTq6qrk5GSL/cnJyYqMjLRRrwDAdkaOHKl58+Zp2bJlqlatmq27AwAOh3wJAJbIlwBw9ciYAHAW+RKwLaZSd2AeHh5q3bq1Fi1aZN5nNBq1aNEixcbG2rBnAFCxTCaTRo4cqdmzZ2vx4sWqXbu2rbsEAA6JfAkApciXAGA9ZEwAIF8C9oKKcQc3evRoDR48WG3atFG7du00efJk5eTkaMiQIbbuGiqJ7Oxs7dmzx/x4//792rhxo0JCQlSjRg0b9gyVyYgRIzRz5kz9/PPP8vf3N69RFhgYKG9vbxv3DgAcC/kS9oCMCVsjXwKAdZExYWvkS9ga+RKwDwaTyWSydSdwdT788EO9+eabSkpKUsuWLfX+++8rJibG1t1CJbFkyRL9P3v3HR1F9bBx/NlNL6SSQg29N0WlCSiKiDQRQUGlKAKKigVUfhZABFRUbIANaYq+gqKiKM0GUqVJ70VagEA66ff9I2ZhSQIJLLC7fD/n5ByYuTNzZ6fsszP3ztx88835hvfq1UtTpky5/BXCVclisRQ4fPLkyerdu/flrQwAuAHyJa40MiauNPIlADgeGRNXEvkSVxr5EnAO3BgHAAAAAAAAAAAAALg13jEOAAAAAAAAAAAAAHBr3BgHAAAAAAAAAAAAALg1bowDAAAAAAAAAAAAANwaN8YBAAAAAAAAAAAAAG6NG+MAAAAAAAAAAAAAALfGjXEAAAAAAAAAAAAAgFvjxjgAAAAAAAAAAAAAwK1xYxwAAAAAAAAAAAAA4Na4MQ4AAAAAAAAAAAAAcGvcGAcAAAAAAAAAAAAAuDVujAMAAAAAAAAAAAAA3Bo3xgEAAAAAAAAAAAAAbo0b4wAAAAAAAAAAAAAAt8aNcQAAAAAAAAAAAACAW+PGOAAAAAAAAAAAAADArXFjHAAAAAAAAAAAAADg1rgxDgAAAAAAAAAAAABwa9wYd7Dp06erRo0a8vLyUkhIiMPnP3z4cFksFofP153s3btXFotFU6ZMcdg8V61apaZNmyogIEAWi0Xr1q1z2LydkcVi0fDhw4s1Te/evVWhQoVLUh93tGPHDt12220KDg6WxWLRd999d6Wr5DRuuukm3XTTTVe6GpdchQoV1Lt37ytdDQBOikx55ZEpr6wrvY/+/vvvslgs+v333+2GF3RsOmt2udTnEVd1KY5tZ1TYPgwAzor8e+WRf53DL7/8ogYNGsjX11cWi0Xx8fFXukpO40KuWbuaqyWrAlcSN8YdaOvWrerdu7cqV66sTz75RB9//PGVrpLLmzt37hX/ssvMzFTXrl114sQJjRs3TtOnT1dMTMwlW17eBYy8Px8fH0VFRemmm27S6NGjdezYsUu2bGd25mdyrj9XufDTq1cvbdiwQaNGjdL06dN13XXXacaMGXrnnXcuaz1ycnI0bdo0NWrUSGFhYSpRooSqVaumnj17avny5Ze1LpfSoUOHNHz48EJ/gM2ZM0ctW7ZUZGSk/P39ValSJXXr1k2//PLL5a0oAIhMeSlcjZlSyr2o0qdPH1WuXFm+vr6Kjo5WixYtNGzYsALLz5kzRx06dFBUVJS8vb0VFhamFi1a6K233lJiYqJd2QoVKtjyl9VqVUhIiOrWrat+/fppxYoVhdYpLS1N48aNU6NGjRQcHCxfX19Vq1ZNjz32mLZv3+7Q9Xc0Vzo2C6pramqqhg8fftnz8rFjxzRo0CDVqFFDfn5+ioyM1A033KDnnntOycnJl7Uul9K5zjPJyckaNmyY6tSpo4CAAIWHh6tBgwYaNGiQDh06dHkrCgBOyJW+Y10F+bfg/Hv06FF5enrq/vvvL3QeSUlJ8vPz01133WU3fNeuXerfv78qVaokX19fBQUFqVmzZnr33Xd16tQph9Q/Li5O3bp1k5+fn8aPH6/p06crICBAo0ePvuydaq6W/LJ06VINHz68wAYIGRkZevfdd3XNNdcoKChIISEhql27tvr166etW7de/soCcAjPK10Bd/L7778rJydH7777rqpUqXJJlvHiiy/q+eefvyTzdkZz587V+PHjixXkYmJidOrUKXl5eTmkDrt27dK+ffv0ySefqG/fvg6ZZ1E88cQTuv7665Wdna1jx45p6dKlGjZsmN5++219/fXXatWq1SVb9qlTp+TpWbzTwyeffKKcnJxLVKPclsNnmjZtmhYsWJBveM2aNS9ZHRzl1KlTWrZsmV544QU99thjtuEzZszQxo0b9eSTT162ujzxxBMaP368OnXqpPvuu0+enp7atm2bfv75Z1WqVEmNGze+bHW5lA4dOqQRI0aoQoUKatCggd24N998U0OGDFHLli01dOhQ+fv7a+fOnVq4cKG++uor3X777Vem0gCuWmRKx7saM+XOnTt1/fXXy8/PTw8++KAqVKigw4cPa82aNXr99dc1YsQIW9mcnBw99NBDmjJliurWratHH31U5cqVU1JSkpYtW6YXX3xRc+fO1aJFi+yW0aBBAz3zzDOSci8gbtmyRTNnztQnn3yip556Sm+//bZd+ePHj+v222/X6tWr1b59e/Xo0UOBgYHatm2bvvrqK3388cfKyMi45J9NUbRo0UKnTp2St7e3bVhhx+b8+fOvRBXPqaC6Hj9+3LbdL1cP9xMnTui6665TYmKiHnzwQdWoUUNxcXH6559/NHHiRD3yyCMKDAy8LHW51Ao7z2RmZqpFixbaunWrevXqpccff1zJycnatGmTZsyYoc6dO6t06dJXptIA4CTIv45H/i04/0ZGRqp169b6/vvvlZqaKn9//3zz+fbbb5WWlmZ38/ynn35S165d5ePjo549e6pOnTrKyMjQkiVLNGTIEG3atMkhDTpWrVqlpKQkjRw5Urfeeqtt+OjRo3X33XfrzjvvvOhlFMXVlF+WLl2qESNGqHfv3vmeVtGlSxf9/PPP6t69ux5++GFlZmZq69at+vHHH9W0aVPVqFHjylQawEXhxrgDHT16VJIu6WPqPD09i33D8mqRlZWlnJwceXt7y9fX12HzvRTbNSUlRQEBAecs07x5c9199912w9avX6/bbrtNXbp00ebNm1WqVCmH1elMF/L5OSo0F+bslpzLly/XggULztnCU1KhIfdKyuv1fzkeaZmTk6OMjIwCt2lsbKwmTJighx9+OF94f+edd9zi6QR554VzjR85cqRat25d4EXtvOPf2Z15/gPg+siUV5a7ZMpx48YpOTlZ69aty9cz5+zvtzfeeENTpkzRU089pbfeesvuMaODBg3S4cOHNW3atHzLKFOmTL4s9vrrr6tHjx4aN26cqlatqkceecQ2rnfv3lq7dq1mzZqlLl262E03cuRIvfDCC0Vb8cvAarXm2/6FbUNHfv+eK7sVx+U4j+Q51344adIk7d+/X3/99ZeaNm1qNy4xMdEtssv5ftt99913Wrt2rb744gv16NHDblxaWprTNAY5n6L8hgWAC0X+vbKutvx733336ZdfftEPP/yge++9N998ZsyYoeDgYLVr106StGfPHt17772KiYnRr7/+anc9duDAgdq5c6d++uknR6zeZc1waWlp8vb2ltWa/6HC7pJfzuV82WbVqlX68ccfNWrUKP3vf/+zG/fBBx+4zCPuyXBAAYybOnDggHnwwQdNqVKljLe3t6lQoYIZMGCASU9Pt5XZtWuXufvuu01oaKjx8/MzjRo1Mj/++KPdfH777Tcjyfzf//2fefXVV02ZMmWMj4+PadWqldmxY4etXExMjJFk9zds2DBjjLH795liYmJMr169bP/PyMgww4cPN1WqVDE+Pj4mLCzMNGvWzMyfP99WZtiwYebszZaZmWleeeUVU6lSJePt7W1iYmLM0KFDTVpaWr7ltWvXzixevNhcf/31xsfHx1SsWNFMnTq1uB+vkWQGDhxovv76a1OzZk3j6+trGjdubP755x9jjDEffvihqVy5svHx8TEtW7Y0e/bssZv+zz//NHfffbcpV66c8fb2NmXLljVPPvmkSU1NtZXp1atXvs80b9337NljJJmxY8eacePGmUqVKhmr1WrWrl1rGzd58mRjjDGxsbGmZMmSpmXLliYnJ8c2/x07dhh/f3/TrVu3QtezoDq0bNnSNn7RokXmxhtvNP7+/iY4ONh07NjRbN682W4eedts06ZNpnv37iYkJMQ0aNCg0GXm7XMzZ84scPyMGTOMJPO///3PbviBAwdMnz59TGRkpPH29ja1atUykyZNyjf9qVOnzLBhw0zVqlWNj4+PiY6ONp07dzY7d+60lTl7n01MTDSDBg0yMTExxtvb20RERJhbb73VrF692u6ziomJsVtWcnKyefrpp03ZsmWNt7e3qVatmhk7dqzddshb3sCBA83s2bNN7dq1bfX/+eefC/2cBg4cmO9YaNmypaldu7b5+++/TfPmzY2fn58ZNGiQMcaYtLQ08/LLL5vKlSvb9rkhQ4bkO06MMWb69Onm2muvNb6+viY0NNTcc889Zv/+/YXWJc/evXvNI488YqpVq2Z8fX1NWFiYufvuu+32/7z94cy/mJgY07JlywKH5ylq/fM+y88//9zUqlXLeHp6mtmzZxdY32XLlhlJZsqUKeddt7i4OPPMM8+YOnXqmICAAFOiRAlz++23m3Xr1tmVK+o5M89HH31kKlWqZHx9fc31119v/vzzT9OyZUu74yw9Pd289NJL5tprrzVBQUHG39/f3HjjjebXX3+1m1dh54Vx48YVeC6ZPHmyOXz4sJFkhg8fft7PwJiiHT9jx441TZo0MWFhYcbX19dce+21BR7PZ38HGGPMyZMnzaBBg2zHTOXKlc1rr71msrOzz7uea9euLdI6ACgeMiWZ0lUzZZs2bUyFChXO+fkbY0xKSooJCQkxtWvXNllZWectnydvPyhIUlKSCQsLM2XKlLF9VsuXLzeSzMMPP1yk+Re0j3722Wfm5ptvNhEREcbb29vUrFnTTJgwId+0q1atMrfddpsJDw83vr6+pkKFCqZPnz52Zb788ktz7bXXmsDAQFOiRAlTp04d884779jG5x2zv/32m219Czs2z84uxlya7GaMMd9995254447bOekSpUqmVdeecVu2xVU18KOgzPPKVu2bDFdunQxoaGhxsfHxzRs2NB8//33dsufPHmykWR+//1388gjj5iIiAgTEhJSaH379+9vPDw87LJMYYpyPBuTezwFBASYAwcOmE6dOpmAgABTsmRJ88wzz+Tbh0+ePGl69eplgoKCTHBwsOnZs6dZu3at3bFtjDHr1683vXr1MhUrVjQ+Pj4mKirK9OnTxxw/ftxufoUdh+c6z4wZM8ZIMnv37j3vZ2BM7nbo2rWrKVmypPH19TXVqlWz++1XlN8cxuTfh/MsX77ctGnTxgQFBRk/Pz/TokULs2TJkiKtJ4CrA/mX/Ovu+Tc5OdkEBASYDh065BsXGxtrPDw8zEMPPWQbNmDAACPJ/PXXX+edd2GKst0KujZY2LY8c/8vyjXhvOPxyy+/NC+88IIpXbq0sVgs5uTJkwXWtzj5pbg5aseOHaZXr14mODjYBAUFmd69e5uUlBS7smlpaebJJ580JUuWNIGBgaZDhw7m33//zXdOKGouKizDFnSdVpLZs2eP+fLLL23TFMX5zp1FvbZ69nGY51JkdeBq5ZbN5A4dOqQbbrhB8fHx6tevn2rUqKGDBw9q1qxZSk1Nlbe3t2JjY9W0aVOlpqbqiSeeUHh4uKZOnaqOHTtq1qxZ6ty5s908X3vtNVmtVg0ePFgJCQl64403dN9999nen/fOO+9o2rRpmj17tiZOnKjAwEDVq1evWPUePny4xowZo759++qGG25QYmKi/v77b61Zs0atW7cudLq+fftq6tSpuvvuu/XMM89oxYoVGjNmjLZs2aLZs2fbld25c6fuvvtuPfTQQ+rVq5c+++wz9e7dWw0bNlTt2rWLVd/Fixfrhx9+0MCBAyVJY8aMUfv27fXss89qwoQJevTRR3Xy5Em98cYbevDBB/Xrr7/app05c6ZSU1P1yCOPKDw8XCtXrtT777+vAwcOaObMmZKk/v3769ChQwU+LjvP5MmTlZaWpn79+snHx0dhYWH5eodGRkZq4sSJ6tq1q95//3098cQTysnJUe/evVWiRAlNmDCh0HXs37+/ypQpo9GjR9sebR4VFSVJWrhwodq2batKlSpp+PDhOnXqlN5//301a9ZMa9asUYUKFezm1bVrV1WtWlWjR4+WMaZYn/WZ8rbf/PnzNWrUKEm5PX8bN24si8Wixx57TBEREfr555/10EMPKTEx0fZo7uzsbLVv316LFi3Svffeq0GDBikpKUkLFizQxo0bVbly5QKXOWDAAM2aNUuPPfaYatWqpbi4OC1ZskRbtmzRtddeW+A0xhh17NhRv/32mx566CE1aNBA8+bN05AhQ3Tw4EGNGzfOrvySJUv07bff6tFHH1WJEiX03nvvqUuXLtq/f7/Cw8OL/PnExcWpbdu2uvfee3X//fcrKipKOTk56tixo5YsWaJ+/fqpZs2a2rBhg8aNG6ft27fbvaNn1KhReumll9StWzf17dtXx44d0/vvv68WLVpo7dq152yxuWrVKi1dulT33nuvypYtq71792rixIm66aabtHnzZvn7++uuu+5SSEiInnrqKXXv3l133HGHAgMDFRAQoISEBB04cMD22eQ9VrI49ZekX3/9VV9//bUee+wxlSxZMt++mCev9ezMmTPVtWvXc/as3717t7777jt17dpVFStWVGxsrD766CO1bNlSmzdvzvf4pPOdM6XcHkT9+/dX06ZN9eSTT2r37t3q2LGjwsLCVK5cOVu5xMREffrpp7bHFiUlJWnSpElq06aNVq5cme/R6GefFzp37qykpCS9/PLL6tevn5o3by5Jatq0qSIjI+Xn56c5c+bo8ccfV1hYWKGfQVGPn3fffVcdO3bUfffdp4yMDH311Vfq2rWrfvzxR1tr44KkpqaqZcuWOnjwoPr376/y5ctr6dKlGjp0qA4fPpzv/fMFnf8AOBaZkkx5JlfLlDExMVq4cKF+/fXXc76CZ8mSJYqPj9fgwYPl4eFRaLniCAwMVOfOnTVp0iRt3rxZtWvX1g8//CBJeuCBBy54vhMnTlTt2rXVsWNHeXp6as6cOXr00UeVk5Nj23+OHj2q2267TREREXr++ecVEhKivXv36ttvv7XNZ8GCBerevbtuueUWvf7665KkLVu26K+//tKgQYMKXHZxjs1Lld0kacqUKQoMDNTTTz+twMBA/frrr3r55ZeVmJiosWPHFlrXunXrqnHjxnrkkUfUuXNn2zsz89Zh06ZNatasmcqUKaPnn39eAQEB+vrrr3XnnXfqm2++yXcue/TRRxUREaGXX35ZKSkphdY3JiZG2dnZmj59unr16lVoOalox3Oe7OxstWnTRo0aNdKbb76phQsX6q233lLlypVtTykwxqhTp05asmSJBgwYoJo1a2r27NkF1mPBggXavXu3+vTpo+joaNvjUDdt2qTly5fbPUVByn8cXnPNNYWeZ/Iy97Rp0/Tiiy/mm9eZ/vnnHzVv3lxeXl7q16+fKlSooF27dmnOnDm2335F+c1RmF9//VVt27ZVw4YNNWzYMFmtVk2ePFmtWrXS4sWLdcMNN5xzPQG4P/Iv+fdM7pp/AwIC1KlTJ82aNUsnTpywu57yf//3f8rOztZ9991nGzZnzhxVqlQp39NviqMo2+2FF15Q9erV9fHHH+uVV15RxYoVVblyZd166622fbtfv36SZLsGVdRrwnlGjhwpb29vDR48WOnp6YU+vac4+aW4Oapbt26qWLGixowZozVr1ujTTz9VZGSkLZdLucfm559/rh49eqhp06b69ddfC7ymVtxcdHaGbdu2rbZv364vv/xS48aNU8mSJSVJERERts/giy++ULNmzc75xIminDuLe231TJcqqwNXrSt4U/6S6dmzp7FarWbVqlX5xuW1bnvyySeNJLN48WLbuKSkJFOxYkVToUIFW4v2vNZUNWvWtGsZ+e677xpJZsOGDbZheS2Mjh07ZrdMFbF1Y/369QvtdXH2MvKsW7fOSDJ9+/a1Kzd48GAjya5HZV4LzD///NM27OjRo8bHx8c888wz51zu2SQZHx8fu9ZXH330kZFkoqOjTWJiom340KFDbS2t8pzd6t+Y3JZoFovF7Nu3zzasoF7BxpxuORUUFGSOHj1a4LizW1V1797d+Pv7m+3bt5uxY8caSea7774777oW1oO7QYMGJjIy0sTFxdmGrV+/3litVtOzZ0/bsLxt1r179/Mu61zLO1P9+vVNaGio7f8PPfSQKVWqVL6WePfee68JDg62fd6fffaZkWTefvvtfPM8s+Xn2ftscHCwGThw4DnrfXaP8e+++85IMq+++qpdubvvvttYLJZ8PdS9vb3thq1fv95IMu+//36Byyusx7gk8+GHH9oNnz59urFarXbHuzG5rXB1RovPvXv3Gg8PDzNq1Ci7chs2bDCenp75hp+toP06r1f2tGnTbMPObJ17pnbt2uXrdV+c+huT+1larVazadOmc9Y1T8+ePY0kExoaajp37mzefPNNs2XLlnzl0tLS8vX02bNnj/Hx8TGvvPKKbVhRz5kZGRkmMjLSNGjQwK7cxx9/nK8VcVZWll0ZY3J7/0RFRZkHH3zQrj6FnRdWrVpV4HnBGGNefvllI8kEBASYtm3bmlGjRtk9DSFPUY+fs/eDjIwMU6dOHdOqVSu74Wd/B4wcOdIEBASY7du325V7/vnnjYeHh+2pBedaTwCORaYkU7pypty4caPx8/MzkkyDBg3MoEGDzHfffZevN0bePnj2OmRlZZljx47Z/Z35fXeuHuPGGNsTW/J6MXTu3NlIKrRXytkK6tVV0PZu06aNqVSpku3/s2fPNpIKPG7zDBo0yAQFBZ2zh3xBvW0LOzbP7jF+KbNbQZ9B//79jb+/v13vtoLqeuzYsULPI7fccoupW7eu3TxycnJM06ZNTdWqVW3D8nqh3HjjjUV6wsCRI0dMRESEkWRq1KhhBgwYYGbMmGHi4+OLtG4FHc95PafOzKDGGHPNNdeYhg0b2v6f93vkjTfesA3LysoyzZs3z3dsF7TsvF5CZ57rznUcFnaeSU1NNdWrVzdS7hOhevfubSZNmmRiY2PzlW3RooUpUaKE3foac+6saUzBvznO3odzcnJM1apVTZs2bfLNr2LFiqZ169ZFWk8A7o38S/69GvKvMcb89NNPRpL56KOP7IY3btzYlClTxrYfJyQkGEmmU6dORapDYYq63fKy1tnHYEBAQL6nDhpT9GvCeduiUqVKBdaloPoWNb8UN0edeS3PmNzfCeHh4bb/5x2bjz76qF25Hj165DsnFDUXnSvD5u3TZ/cyz8nJsV1rjoqKMt27dzfjx4/Pl9OMKdq5s6jXVgs6Di9VVgeuVvlfIOHicnJy9N1336lDhw667rrr8o3Pa6E0d+5c3XDDDbrxxhtt4wIDA9WvXz/t3btXmzdvtpuuT58+di2o8noc7t6922F1DwkJ0aZNm7Rjx44iTzN37lxJ0tNPP203/JlnnpGkfO83qVWrlq3uUm7rp+rVq1/Qetxyyy12LfgaNWokSerSpYtKlCiRb/iZy/Dz87P9OyUlRcePH1fTpk1ljNHatWuLXIcuXbooIiKiSGU/+OADBQcH6+6779ZLL72kBx54QJ06dSryss50+PBhrVu3Tr1797ZrVVivXj21bt3atl3ONGDAgAtaVkECAwOVlJQkKbcnxDfffKMOHTrIGKPjx4/b/tq0aaOEhAStWbNGkvTNN9+oZMmSevzxx/PN81wt/0JCQrRixQodOnSoyHWcO3euPDw89MQTT9gNf+aZZ2SM0c8//2w3/NZbb7XrsV6vXj0FBQUVe9/08fFRnz597IbNnDlTNWvWVI0aNew+n7zWo7/99psk6dtvv1VOTo66detmVy46OlpVq1a1lSvMmft1Zmam4uLiVKVKFYWEhNi2wYUoav3ztGzZUrVq1SrSvCdPnqwPPvhAFStW1OzZszV48GDVrFlTt9xyiw4ePGgr5+PjY3vnUHZ2tuLi4hQYGKjq1asXuG7nO2f+/fffOnr0qAYMGGBXrnfv3goODrabl4eHh61MTk6OTpw4oaysLF133XUFLrs45wVJGjFihGbMmKFrrrlG8+bN0wsvvKCGDRvq2muv1ZYtW2zlinr8nLkfnDx5UgkJCWrevPl594GZM2eqefPmCg0NtdvOt956q7Kzs/Xnn39e1HoCKB4yZS4yZX6ukilr166tdevW6f7779fevXv17rvv6s4771RUVJQ++eQTW7nExERJp59Uk2fDhg2KiIiw+4uLiyvyuuXNLy+z5i3nzG1aXGdu74SEBB0/flwtW7bU7t27lZCQIOn0+xh//PFHZWZmFjifkJAQpaSkaMGCBRdcl3O5lNntzM8gKSlJx48fV/PmzZWamqqtW7deUH1PnDihX3/9Vd26dbPN8/jx44qLi1ObNm20Y8cOu1woSQ8//HCRnjAQFRWl9evXa8CAATp58qQ+/PBD9ejRQ5GRkRo5cqRdr6/iHs9nHwvNmze3Oz/MnTtXnp6edu+59/DwKDDLnbnstLQ0HT9+XI0bN5akAjNccX7b+fn5acWKFRoyZIik3F7/Dz30kEqVKqXHH39c6enpkqRjx47pzz//1IMPPqjy5cvbzaOwrFmc3xzr1q3Tjh071KNHD8XFxdm2c0pKim655Rb9+eef+XoKOvI3LADnR/7NRf7Nz93yryTbE4ZmzJhhG7Znzx4tX75c3bt3t10Dc0SGlRy33c5UnGvCeXr16mVXl3PVtyj55ex1u5Ac1bx5c8XFxdk+67x94Oxrymf3fj972UXJRUXNsFLuOW/evHl69dVXFRoaqi+//FIDBw5UTEyM7rnnHts7xot67izutdU8lzKrA1crt7sxfuzYMSUmJqpOnTrnLLdv3z5Vr1493/CaNWvaxp/p7B+moaGhknJvejjKK6+8ovj4eFWrVk1169bVkCFD9M8//5xzmn379slqtapKlSp2w6OjoxUSEnLe9ZBy1+VC1uPseeXdzDrzEchnDj9zGfv377cFoMDAQEVERKhly5aSZLuoVRQVK1YsctmwsDC99957+ueffxQcHKz33nuvyNOeLe9zLWwfyrvAcKF1PZ/k5GRbIDt27Jji4+P18ccf57t4mXeD+OjRo5KkXbt2qXr16ud89EtB3njjDW3cuFHlypXTDTfcoOHDh583+O/bt0+lS5fOFxyLeoxJF7ZvlilTJt9jgHbs2KFNmzbl+3yqVasm6fTns2PHDhljVLVq1Xxlt2zZYitXmFOnTunll19WuXLl5OPjo5IlSyoiIkLx8fHF2q/PVtT65ynOvma1WjVw4ECtXr1ax48f1/fff6+2bdvq119/1b333msrl5OTo3Hjxqlq1ap26/bPP/8UuG7nO2fmbf+qVavalfPy8lKlSpXyzW/q1KmqV6+efH19FR4eroiICP30008FLvtCjrXu3btr8eLFOnnypObPn68ePXpo7dq16tChg9LS0iQV/fj58ccf1bhxY/n6+iosLEwRERGaOHHiefeBHTt26Jdffsm3nW+99VZJF7edARQfmTIXmTI/V8qU1apV0/Tp03X8+HH9888/Gj16tDw9PdWvXz8tXLhQ0umLfMnJyXbTVqlSRQsWLNCCBQsu6PHnefPLm39QUJCk0zfKL8Rff/2lW2+9VQEBAQoJCVFERIT+97//STq9vVu2bKkuXbpoxIgRKlmypDp16qTJkyfbXbx79NFHVa1aNbVt21Zly5bVgw8+qF9++eWC63W2S5ndNm3apM6dOys4OFhBQUGKiIjQ/fffL6l4+/yZdu7cKWOMXnrppXx1HjZs2EXXuVSpUpo4caIOHz6sbdu26b333rM92nHSpEm2csU5nn19ffNdzD/7HLRv3z6VKlUqX6OPgo63EydOaNCgQYqKipKfn58iIiJs6+iIvBkcHKw33nhDe/fu1d69ezVp0iRVr15dH3zwgUaOHCnp9E2P833vXOhvjrybRb169cq3nT/99FOlp6fnm568CVxdyL+5yL/5uVv+lSRPT0/dc889Wrx4se2mYt5N8jMfo+6IDCs5brudqTjXhPMU57MsSn6Rip+jinLN0Gq15nvlZ0H7THFzUXGzjY+Pj1544QVt2bJFhw4d0pdffqnGjRvbXoMkFf3cWdxrq3kudVYHrkZu+Y7xS6GwFjZntnAvruzsbLv/t2jRQrt27dL333+v+fPn69NPP9W4ceP04Ycfqm/fvuec17l6+57JketR2LzOt4zs7Gy1bt1aJ06c0HPPPacaNWooICBABw8eVO/evfO1Uj+XorRwO9O8efMk5X7RHjhw4Jzvi3a04ta1MJmZmdq+fbvtyzbv87r//vsLfW9fcd/NdLZu3bqpefPmmj17tubPn6+xY8fq9ddf17fffqu2bdte1LzzOGrfLOhzzsnJUd26dfX2228XOE3eD4+cnBxZLBb9/PPPBdbn7ItqZ3v88cc1efJkPfnkk2rSpImCg4NlsVh07733Fmu/vtD657nQfS08PFwdO3ZUx44dddNNN+mPP/7Qvn37FBMTo9GjR+ull17Sgw8+qJEjRyosLExWq1VPPvlkgevmyHPN559/rt69e+vOO+/UkCFDFBkZKQ8PD40ZM0a7du3KV/5ijrWgoCC1bt1arVu3lpeXl6ZOnaoVK1bYfqycz+LFi9WxY0e1aNFCEyZMUKlSpeTl5aXJkyfbtUIuSE5Ojlq3bq1nn322wPF5F9PzOOqcAuDyIlMWfV5kyoJdyPnfw8NDdevWVd26ddWkSRPdfPPN+uKLL3TrrbeqRo0akqSNGzfa9fwJDAy0Nc5asmRJsZe5ceNGSbJdbM5bzoYNG+x6WxXVrl27dMstt6hGjRp6++23Va5cOXl7e2vu3LkaN26cbXtbLBbNmjVLy5cv15w5czRv3jw9+OCDeuutt7R8+XIFBgYqMjJS69at07x58/Tzzz/r559/1uTJk9WzZ09NnTq12HU726XKbvHx8WrZsqWCgoL0yiuvqHLlyvL19dWaNWv03HPPXXDezJtu8ODBatOmTYFlzr5pcCH7ocViUbVq1VStWjW1a9dOVatW1RdffKG+ffsW+3h2dA+Ybt26aenSpRoyZIgaNGigwMBA5eTk6Pbbby/wc72YHBYTE6MHH3xQnTt3VqVKlfTFF1/o1VdfLfL0F/qbI2/c2LFj1aBBgwLLnP17h7wJwBHIv0WfF/m3YI7Ov3nuv/9+ffDBB/ryyy81ePBgffnll6pVq5bd92RQUJBKly5ty7YXwpHb7UwXck34Qr/bz5VfipujHHksFTcXXUy2KVWqlO6991516dJFtWvX1tdff60pU6YUefriXlvNc7myOnA1cbsb4xEREQoKCjrvl1VMTIy2bduWb3je4+diYmIcVqfQ0FDbozXyZGRk6PDhw/nKhoWFqU+fPurTp4+Sk5PVokULDR8+vNAQFxMTo5ycHO3YscPWMlOSYmNjFR8f79D1cJQNGzZo+/btmjp1qnr27GkbXtCjDIsaTovil19+0aeffqpnn31WX3zxhXr16qUVK1YUu/e0dHr/KGwfKlmypAICAi66zgWZNWuWTp06ZfsijIiIUIkSJZSdnW0X7gpSuXJlrVixQpmZmfLy8irWckuVKqVHH31Ujz76qI4ePaprr71Wo0aNKvTGeExMjBYuXKikpCS7XuOX4hg7n8qVK2v9+vW65ZZbzrlPVa5cWcYYVaxYMd9NyKKYNWuWevXqpbfeess2LC0tLd/xX5jC6lbU+jvSddddpz/++EOHDx9WTEyMZs2apZtvvtmuV4+Ue4G2ZMmSxZ5/3vbfsWOH7bGiUm7Djz179qh+/fq2YbNmzVKlSpX07bff2q1/XqvIoriQz+26667T1KlTbefqohw/33zzjXx9fTVv3jz5+PjYhk+ePPm8y6tcubKSk5PPexwDuDzIlLnIlPm5eqbMe7xf3n7TvHlzBQcH66uvvtLQoUNtj/e7GMnJyZo9e7bKlStn2586dOigMWPG6PPPP7+gG+Nz5sxRenq6fvjhB7teJoW96qZx48Zq3LixRo0apRkzZui+++7TV199ZTsGvL291aFDB3Xo0EE5OTl69NFH9dFHH+mll17Kd2GpuC5Vdvv9998VFxenb7/9Vi1atLAN37NnT5GmL6wueU/r8fLyumw5pFKlSgoNDbXth8U5nosqJiZGixYtUnJyst0N37OPt5MnT2rRokUaMWKEXn75Zdvw4jyOVyr+eSY0NFSVK1e2fc/kbYfzfe9c6G+OvF5XQUFB5E0ABSL/5iL/5udu+TdPo0aNVLlyZc2YMUOtW7fWpk2bNGrUqHzTt2/fXh9//LGWLVumJk2aFHv5jsg5BW3P4lwTdpSz84ujctSZ8o7NvCc35ilon7nYa7FS8Y8VLy8v1atXTzt27NDx48cVGRlZpHPnhV5bvRJZHXB3bvcodavVqjvvvFNz5szR33//nW98XsujO+64QytXrtSyZcts41JSUvTxxx+rQoUKRX7HW1FUrlw537thP/7443ytG89+Z19gYKCqVKli99i/s91xxx2SpHfeecdueF7vhHbt2l1otS+ZvFZhZ7YCM8bo3XffzVc2LwgV58usIPHx8erbt69uuOEGjR49Wp9++qnWrFmj0aNHX9D8SpUqpQYNGmjq1Kl2ddu4caPmz59v2y6Otn79ej355JMKDQ3VwIEDJeV+nl26dNE333xT4BfwsWPHbP/u0qWLjh8/rg8++CBfucJa5WVnZ+d7nEtkZKRKly593n0zOzs737LGjRsni8XisJ7mRdGtWzcdPHgw3/uEpNxH7uQ9oumuu+6Sh4eHRowYke/zMMac972aHh4e+aZ7//338x3rhQkICCjw0TlFrX9xHTlyJN+7v6TcH5mLFi2ye6RYQes2c+bMfO+wKarrrrtOERER+vDDD5WRkWEbPmXKlHzHe0HnjBUrVtidv8+nsHNJampqofP5+eefJZ1+VFNRjh8PDw9ZLBa7bb5371599913561jt27dtGzZMlsr7DPFx8crKyvrvPMA4DhkylxkSnuulCkXL15c4Du2897Zl/f95u/vr2effVYbN27U888/X2AmLE7vjVOnTumBBx7QiRMn9MILL9guNDVp0kS33367Pv300wK/FzMyMjR48OBC51vQ9k5ISMjX+OzkyZP56pvX6yfvGDj7GLFarbbeNOc6TorqUmW3gj6DjIwMTZgwoUjT+/v7S8p/HERGRuqmm27SRx99VOCNhjN/TxTXihUrClzflStXKi4uzrYfFud4Lqo77rhDWVlZmjhxom1Ydna23n//fbtyBS1byn8+PJ/CzjPr16/X8ePH85Xft2+fNm/ebPsMIiIi1KJFC3322Wfav3+/Xdkz63ahvzkaNmyoypUr680338z36gTp4rYzAPdA/s1F/rXnjvn3TPfdd5/Wrl2rYcOGyWKxqEePHvnKPPvsswoICFDfvn0VGxubb/yuXbvOmVkckXMCAgIKvF5W1GvCxVXU/OKoHHWmvGvGZz+yv6B5Xuy1WKnwY2XHjh35MlleuWXLlik0NFQRERFFPnde6LXVS5nVgauV2/UYl3IfSzF//ny1bNlS/fr1U82aNXX48GHNnDlTS5YsUUhIiJ5//nl9+eWXatu2rZ544gmFhYVp6tSp2rNnj7755huH9JTI07dvXw0YMEBdunRR69attX79es2bNy9fS6BatWrppptuUsOGDRUWFqa///5bs2bNsr2voiD169dXr1699PHHH9serbdy5UpNnTpVd955p26++WaHrYej1KhRQ5UrV9bgwYN18OBBBQUF6ZtvvinwnTwNGzaUJD3xxBNq06aNPDw87N57XFSDBg1SXFycFi5cKA8PD91+++3q27evXn31VXXq1Mmud2pRjR07Vm3btlWTJk300EMP6dSpU3r//fcVHBys4cOHF3t+Z1u8eLHS0tKUnZ2tuLg4/fXXX/rhhx8UHBys2bNnKzo62lb2tdde02+//aZGjRrp4YcfVq1atXTixAmtWbNGCxcu1IkTJyRJPXv21LRp0/T0009r5cqVat68uVJSUrRw4UI9+uijdo/PzJOUlKSyZcvq7rvvVv369RUYGKiFCxdq1apVdq3xztahQwfdfPPNeuGFF7R3717Vr19f8+fP1/fff68nn3wy33tiLqUHHnhAX3/9tQYMGKDffvtNzZo1U3Z2trZu3aqvv/5a8+bN03XXXafKlSvr1Vdf1dChQ7V3717deeedKlGihPbs2aPZs2erX79+57xg2759e02fPl3BwcGqVauWli1bpoULFyo8PLxI9WzYsKH+7//+T08//bSuv/56BQYGqkOHDkWuf3EdOHBAN9xwg1q1aqVbbrlF0dHROnr0qL788ktbI4y881T79u31yiuvqE+fPmratKk2bNigL774osD3gReFl5eXXn31VfXv31+tWrXSPffcoz179mjy5Mn55tm+fXt9++236ty5s9q1a6c9e/boww8/VK1atQq8qFeQypUrKyQkRB9++KFKlCihgIAANWrUSCVKlFDTpk3VuHFj3X777SpXrpzi4+P13XffafHixbrzzjt1zTXXSCra8dOuXTu9/fbbuv3229WjRw8dPXpU48ePV5UqVc77frMhQ4bohx9+UPv27dW7d281bNhQKSkp2rBhg2bNmqW9e/deUO98ABeOTEmmPJsrZcrXX39dq1ev1l133WW76btmzRpNmzZNYWFhevLJJ21ln3/+eW3ZskVjx47V/Pnz1aVLF5UtW1YnT57UmjVrNHPmTEVGRsrX19duGQcPHtTnn38uKbeX+ObNmzVz5kwdOXJEzzzzjPr3729Xftq0abrtttt01113qUOHDrrlllsUEBCgHTt26KuvvtLhw4f15ptvFrg+t912m62Xd//+/ZWcnKxPPvlEkZGRdheIpk6dqgkTJqhz586qXLmykpKS9MknnygoKMh2obVv3746ceKEWrVqpbJly2rfvn16//331aBBA7seYxfqUmW3pk2bKjQ0VL169dITTzwhi8Wi6dOnF7nhgp+fn2rVqqX/+7//U7Vq1RQWFqY6deqoTp06Gj9+vG688UbVrVtXDz/8sCpVqqTY2FgtW7ZMBw4c0Pr164tdX0maPn26vvjiC3Xu3FkNGzaUt7e3tmzZos8++0y+vr62d8QX53guqg4dOqhZs2Z6/vnntXfvXtWqVUvffvttvoaoQUFBatGihd544w1lZmaqTJkymj9/fpF74ucp7DyzYMECDRs2TB07dlTjxo0VGBio3bt367PPPlN6errdcf7ee+/pxhtv1LXXXqt+/fqpYsWK2rt3r3766SetW7dO0oX/5rBarfr000/Vtm1b1a5dW3369FGZMmV08OBB/fbbbwoKCtKcOXOKtc4A3A/5l/x7NnfNv3nuv/9+vfLKK/r+++/VrFkzVahQIV+ZvF7l99xzj2rWrKmePXuqTp06ysjI0NKlSzVz5kz17t270Ho5Iuc0bNhQCxcu1Ntvv63SpUurYsWKatSoUZGvCRdXUfOLo3LUmRo0aKDu3btrwoQJSkhIUNOmTbVo0SLt3LkzX9mLvRYrnT5WXnjhBd17773y8vJShw4dtH79evXo0UNt27ZV8+bNFRYWpoMHD2rq1Kk6dOiQ3nnnHVvDgKKcOy/m2uqlyurAVcu4qX379pmePXuaiIgI4+PjYypVqmQGDhxo0tPTbWV27dpl7r77bhMSEmJ8fX3NDTfcYH788Ue7+fz2229Gkpk5c6bd8D179hhJZvLkybZhw4YNM5LMsWPH7MpmZ2eb5557zpQsWdL4+/ubNm3amJ07d5qYmBjTq1cvW7lXX33V3HDDDSYkJMT4+fmZGjVqmFGjRpmMjIx8yzhTZmamGTFihKlYsaLx8vIy5cqVM0OHDjVpaWl25WJiYky7du3yfVYtW7Y0LVu2POfneTZJZuDAgQV+JmPHjrUbXtBnuHnzZnPrrbeawMBAU7JkSfPwww+b9evX5/tMs7KyzOOPP24iIiKMxWKxrXthyzpzXN58vv/+eyPJvPXWW3blEhMTTUxMjKlfv77dZ3y2wvYBY4xZuHChadasmfHz8zNBQUGmQ4cOZvPmzXZlCtsvzre8vD8vLy8TERFhWrRoYUaNGmWOHj1a4HSxsbFm4MCBply5csbLy8tER0ebW265xXz88cd25VJTU80LL7xg21+io6PN3XffbXbt2mUrI8kMGzbMGGNMenq6GTJkiKlfv74pUaKECQgIMPXr1zcTJkywm2+vXr1MTEyM3bCkpCTz1FNPmdKlSxsvLy9TtWpVM3bsWJOTk2NXrqD9yRiT7xg508CBA/MdCy1btjS1a9cusHxGRoZ5/fXXTe3atY2Pj48JDQ01DRs2NCNGjDAJCQl2Zb/55htz4403moCAABMQEGBq1KhhBg4caLZt21bgvPOcPHnS9OnTx5QsWdIEBgaaNm3amK1bt+Zbj8L23+TkZNOjRw8TEhJiJNl9nkWtf2GfZUESExPNu+++a9q0aWPKli1rvLy8TIkSJUyTJk3MJ598Yred0tLSzDPPPGNKlSpl/Pz8TLNmzcyyZcvynT+Kc840xpgJEyaYihUrGh8fH3PdddeZP//8M988c3JyzOjRo01MTIzx8fEx11xzjfnxxx/z7XPnOi8Yk3suqFWrlvH09LTVJTMz03zyySfmzjvvtM3f39/fXHPNNWbs2LF23xnGFO34mTRpkqlatarx8fExNWrUMJMnTy7w3F3Q/p2UlGSGDh1qqlSpYry9vU3JkiVN06ZNzZtvvmk7T51vPQE4FpmSTOmqmfKvv/4yAwcONHXq1DHBwcHGy8vLlC9f3vTu3dvue+tMs2fPNnfccYeJiIgwnp6eJiQkxNx4441m7NixJj4+3q5sTEyMLa9aLBYTFBRkateubR5++GGzYsWKQuuVmppq3nzzTXP99debwMBA4+3tbapWrWoef/xxs3Pnznzre6YffvjB1KtXz/j6+poKFSqY119/3Xz22WdGktmzZ48xxpg1a9aY7t27m/LlyxsfHx8TGRlp2rdvb/7++2/bfGbNmmVuu+02ExkZaby9vU358uVN//79zeHDh21l8rbXb7/9lq9OZ2+Dgvb9S5HdjMndro0bNzZ+fn6mdOnS5tlnnzXz5s0rcl2XLl1qGjZsaLy9ve0yvzG557KePXua6Oho4+XlZcqUKWPat29vZs2aZSszefJkI8msWrWqSPX9559/zJAhQ8y1115rwsLCjKenpylVqpTp2rWrWbNmjV3Zoh7PvXr1MgEBAfmWVdA+ExcXZx544AETFBRkgoODzQMPPGDWrl2bb54HDhwwnTt3NiEhISY4ONh07drVHDp0KN9ndK7jsLDzzO7du83LL79sGjdubCIjI42np6eJiIgw7dq1M7/++mu++WzcuNFWF19fX1O9enXz0ksv2cYX9TdHQfuwMcasXbvW3HXXXSY8PNz4+PiYmJgY061bN7No0aIirScA90f+Jf9eTfnXGGOuv/56Iynftc6zbd++3Tz88MOmQoUKxtvb25QoUcI0a9bMvP/++/n2mbMVdbsVlrW2bt1qWrRoYfz8/Iwku/2/KNeEz7UtClKc/HKxOSpvnfPyvDHGnDp1yjzxxBMmPDzcBAQEmA4dOph///033zyLmovOl2FHjhxpypQpY6xWq60usbGx5rXXXjMtW7Y0pUqVMp6eniY0NNS0atXKLh/nOd+5s6jXVgu7hnopsjpwtbIYU4zn4gEAAAAAAAAAAAAA4GLc7h3jAAAAAAAAAAAAAACcyS3fMY4Ld+TIkXOO9/PzU3Bw8GWqDQAAAFwRmRIAAABXE/IvAACugUepw47FYjnn+F69emnKlCmXpzIAAABwSWRKAAAAXE3IvwAAuAZ6jMPOggULzjm+dOnSl6kmAAAAcFVkSgAAAFxNyL8AALgGeowDAAAAAAAAAAAAANya9UpXAAAAAAAAAAAAAACAS4kb4wAAAAAAAAAAAAAAt+Y07xjf82DHK10FXOX6JA690lUAlJWecaWrAGjJnJZXZLk/eVW/bMtql7ntsi0LV86O++640lUA1CfxuStdBQC44q5UvpQuX8YkX14dyJdwBuRLAMjFNUxcCHqMAwAAAAAAAAAAAADcmtP0GAcAAFc3i5flSlcBAAAAboaMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaN8YBAAAAAAAAAAAAAG6NR6kDAACnYPXkMUQAAABwLDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7B4kV7PQAAADgWGRMAAACORL50bWw9AAAAAAAAAAAAAIBbo8c4AABwCryfBwAAAI5GxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKVi8aG0JAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUeD8PAAAAHI2MCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBT4P08AAAAcDQyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOgffzAAAAwNHImAAAAHAk8qVro8c4AAAAAAAAAAAAAMCt0WMcAAA4BYsHrS0BAADgWGRMAAAAOBL50rXRYxwAAAAAAAAAAAAA4NboMQ4AAJyCldaWAAAAcDAyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKltSUAAAAci4wJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFOweNBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODWuDEOAAAAAAAAAAAAAHBrPEodAAA4BauH5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAU7BYaW0JAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUeD8PAAAAHI2MCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBTsNDaEgAAAA5GxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKVistNcDAACAY5ExAQAA4EjkS9fG1gMAAAAAAAAAAAAAuDV6jAMAAKdgsfJ+HgAAADgWGRMAAACORL50bfQYBwAAAAAAAAAAAAC4NXqMAwAAp2D1oLUlAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBT4P08AAAAcDQyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKlvR4AAAAci4wJAAAARyJfuja2HgAAAAAAAAAAAADArdFjHAAAOAXezwMAAABHI2MCAADAkciXro0e4wAAAAAAAAAAAAAAt0aPcQAA4BSsHrS2BAAAgGORMQEAAOBI5EvXRo9xAAAAAAAAAAAAAIBb48Y4AAAAAAAAAAAAAMCt8Sh1AADgFCxWHkMEAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAULFba6wEAAMCxyJgAAABwJPKla2PrAQAAAAAAAAAAAADcGj3GAQCAU+D9PAAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAToHWlgAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAToHWlgAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAATsFipb0eAAAAHIuMCQAAAEciX7o2th4AAAAAAAAAAAAAwK3RYxwAADgFqwfv5wEAAIBjkTEBAADgSORL10aPcQAAAAAAAAAAAACAW6PHOAAAcAoWK60tAQAA4FhkTAAAADgS+dK10WMcAAAAAAAAAAAAAODW6DEOAACcgsVKez0AAAA4FhkTAAAAjkS+dG1sPQAAAAAAAAAAAACAW6PHOAAAcAq8nwcAAACORsYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0b4wAAAAAAAAAAAAAAt8aj1AEAgFPgMUQAAABwNDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7BYqW9HgAAAByLjAkAAABHIl+6NrYeAAAAAAAAAAAAAMCt0WMcAAA4Bd7PAwAAAEcjYwIAAMCRyJeujR7jAAAAAAAAAAAAAAC3xo1xAADgFCxW62X7K47hw4fLYrHY/dWoUcM2Pi0tTQMHDlR4eLgCAwPVpUsXxcbG2s1j//79ateunfz9/RUZGakhQ4YoKyvLIZ8bAAAACueM+RIAAACuy1mvYaJoeJQ6AADAedSuXVsLFy60/d/T83SEeuqpp/TTTz9p5syZCg4O1mOPPaa77rpLf/31lyQpOztb7dq1U3R0tJYuXarDhw+rZ8+e8vLy0ujRoy/7ugAAAAAAAADA1Ygb4wAAwDlYnPf9PJ6enoqOjs43PCEhQZMmTdKMGTPUqlUrSdLkyZNVs2ZNLV++XI0bN9b8+fO1efNmLVy4UFFRUWrQoIFGjhyp5557TsOHD5e3t/flXh0AAICrhxNnTAAAALgg8qVLox8+AADAeezYsUOlS5dWpUqVdN9992n//v2SpNWrVyszM1O33nqrrWyNGjVUvnx5LVu2TJK0bNky1a1bV1FRUbYybdq0UWJiojZt2nR5VwQAAABXHK/qAQAAgKORMYuGHuMAAMApWKyXr7Vlenq60tPT7Yb5+PjIx8cnX9lGjRppypQpql69ug4fPqwRI0aoefPm2rhxo44cOSJvb2+FhITYTRMVFaUjR45Iko4cOWJ3UzxvfN44AAAAXDqXM2MWB6/qAQAAcE3Omi8lMmZRcGMcAABcdcaMGaMRI0bYDRs2bJiGDx+er2zbtm1t/65Xr54aNWqkmJgYff311/Lz87vUVQUAAIAb4lU9AAAAcDQy5vlxY/wyCunUXaGdutsNyzh8QAdfeFSSVKJlGwU0aiGfmMqy+vlr38DuyjmVkm8+fvWuU0jHe+RdtoJMZqbStm3U0Q/O3Voj5M4eKtHiNln9A5S+c4uOT5uorKOHbeOtAYEK79FP/g1ukDE5Sl29THEzPpFJT3PAmsPZ1atZQvd2Kq1qlQJVMsxbL76+VUtWnbQr0+eecmp/a6QC/T21cVui3v54jw4eOff+ceftUbq3Y2mFhXhr574UvTdpr7buTLaN9/ay6JFeFdSqWbi8Pa1auT5e73yyRycTMi/JesI13XVHaXW/q5zCQr21a0+yxn20U1t2JBVa/uZmJdX3/oqKjvTVgUOpmjhlj5avPmFX5qH7KqjDbdEqEeCpDVsS9eaEHTpw+NSlXhWch8V6+d7wMnToUD399NN2wwrqLV6QkJAQVatWTTt37lTr1q2VkZGh+Ph4u17jsbGxthAaHR2tlStX2s0j7zFFBQVVoLjC7rpP4V3usxuWcehf7RvSPzfjdblf/nWvlWfJCGUnJihl9TLFzZyunFOpdtOUaHGrQtt2lld0GeWcSlXyyiU6NmVCocu1eHmp5H0Pq0TjFrJ4eSn1nzU6Onm8shPjbWU8wyMU2Weg/GrVU05ampIWL9Tx/5si5eQ48iOAC+F7Hc6A/fDqcrkyZnGeSCSdflWPr6+vmjRpojFjxqh8+fLnfVVP48aNC31VzyOPPKJNmzbpmmuuuTQriauGI/Jl1S/m5pvv4fdfU/LyPwtdrjUgUBG9HlHAtY2knBwlr/pLx6Z9ZHd90rtcBUX2flQ+laopOylBCfPn6OSPsxyw1nBF9WsHq8dd5VS9cqBKhvto6KiNWrw87pzTXFMnWI/1rayK5QN09Fi6pn69Tz8vsn+UcHGzAkC+vLpczmuYZEzH4x3jl1nGgX3a/2RP29/hMc/Zxlm8fXRq4xrF/zSz0On9GzZRRN+nlLxkkQ4OG6TDY55Tyoo/zrnM4LZ3KejW9oqbNlGHXh2inPR0RT8zQhZPL1uZiH7PyKtMeR1562XFvjtSvtVqq2SvgRe/wnAJvr4e2rU3Ve98uqfA8d3vLK0ud0Tr7Y9365H/bdCp9ByNfammvL0Kf2TIzU3D9WivCpoy84AefvYf7dqbqrEv1lRI0On2OAN7V1DThqEa/tZ2DRq2SSVDvfXKkGoOXz+4rlY3RuixvpU1+cu9eujJ1dq5J1lvv1JXIcFeBZavUyNIw4bU0o/zD+vBQau1eHmcxrxQWxXL+9vK3NelnO5uX0ZvTtihfoPX6lRatt5+pe4592e4Hx8fHwUFBdn9FfXGeHJysnbt2qVSpUqpYcOG8vLy0qJFi2zjt23bpv3796tJkyaSpCZNmmjDhg06evSorcyCBQsUFBSkWrVqOXbFcNVK/3evdj96n+3v3xFDJEmeoeHyDA3X8Rmfav9zjyj2o3Hyr3edIvs9aTd9SNvOKtm1p07Oman9zw3QwTH/U+o/q8+5zJL391PANTfo8HtjdGDkc/IIDVOpp148XcBiVekhuZnz3xGDFfvR2yrRorXC737A0asPF8H3OpwB+yEulTFjxig4ONjub8yYMQWWzXtVzy+//KKJEydqz549at68uZKSknhVD5zGxeZLSTry0dt280hZveycy4we+Kx8ypbXwTEv6NCbw+VXo46i+j5hG2/181OZ519V5vGj+vfFJ3R8xiSF3dVDQTff7tB1h+vw8/XI/S7/cEeRypeK8tUbw+pq7T/x6vPEan39wwE993h13XBNqK1McbMCQL7EpUTGdDxujF9mJidb2Ynxtr+c5NOthhIX/KCEud8ofde2gie2WhXe/WGdmDlFSb//oqzYQ8o89K9SVv11zmUGte6o+DlfK3XdCmUe2Ktjn46TR0iY/K9tLEnyKlVW/nUb6viUD5S+e7vSd2xR3BcfK+CG5vIICXPYusN5rVwbr0lf/aslK08UOP7udqU0/ZsD+mvVSe3el6ox7+9UyVBv3XhD4ftH1w6l9NPCo/rlt2Pad+CU3v54t9LSc3RHq0hJUoC/h+5oFakJU/dq7cZEbd+dotfH71TdGkGqVTXwkqwnXM+9d5bVnHmHNXdRrPb+m6qxE3YoLT1H7VsX3Mu2a8cyWrHmhL6cfUD7DqTq0y/2avuuZHVpX8auzLSv92nJijjt2puiV8dtVXiYj5o3Lnm5VguFsFgtl+2vOAYPHqw//vhDe/fu1dKlS9W5c2d5eHioe/fuCg4O1kMPPaSnn35av/32m1avXq0+ffqoSZMmatw493v2tttuU61atfTAAw9o/fr1mjdvnl588UUNHDiwyDfjgfPKyVZ2wknbX05yoqTcRpmH3x2llLUrlXn0iE5tXq+4r6cq4JpG0n8tnK3+gQrv+oCOfPiWkpb+rsyjR5Tx716lrFlR6OKsfv4Kvuk2Hf/iE53avF7pe3cq9qNx8qtWS75VqkuS/OtdK+8y5XRkwlhl7Nut1PV/68Ss6Qpu3V7y4MFVVyO+1+EM2A+vPpcrXw4dOlQJCQl2f0OHDi2wTm3btlXXrl1Vr149tWnTRnPnzlV8fLy+/vrry/zpAOdwEfnSNouUFLt5mMzCnxDoVbqcAupfp9hP3lP6rm1K275Zx6Z+qMDGLWzXJ0s0vVkWTy/FfvyOMg7uV/LyPxU/7weF3tH50n0OcGrLV5/QJ5/v1Z/n6SWe587bS+lwbJo++Gy39h1I1bc/HdLvfx3TPZ3K2soUNysA5Murz+W8hknGdLxi3xg/fvy43njjDXXu3FlNmjRRkyZN1LlzZ40dO1bHjh27FHV0K15RpVXu7ckq+/rHinj4aXmEFf1E5h1TWZ5hJSWTo9LD3lG5t6co6qlh8ipTvtBpPCOi5BkSprTN623DzKlUpe/eLp/KuRctfSrXUHZKsjL27rSVObV5nWSMfCrRe/dqVyrSR+Gh3lr9T4JtWEpqtjbvSFataiUKnMbT06LqlQK1+p942zBjpNUb4lWreu401SoFyMvLajff/YfSdORYuq0Mrm6enhZVq1JCf68//Vh/Y6S/151U7epBBU5Tp0aQ/l5n/xqAFWtPqE6N3PKlo3xVMsxHq84ok5Karc3bE21lgLMdOHBA3bt3V/Xq1dWtWzeFh4dr+fLlioiIkCSNGzdO7du3V5cuXdSiRQtFR0fr22+/tU3v4eGhH3/8UR4eHmrSpInuv/9+9ezZU6+88sqVWiWnQ768eF5RZVTxg+mqMG6Soh4dIs/wiELLWv0Dch9z+d/jzP3rXiNZrPIMDVfMGx+qwvvTFP340NzcWQifilVl8fRS6sZ1tmGZhw8o8/hR+VapKUnyrVJDGf/utXu0eso/q+XhHyCfsoXnV7gnvtfhDNgPcSldzBOJznxVT3R0tO1VPWc6+1U9ea/mOXN83jjkImNenIvJl3kiez+iSh9+qXKvjFNQy9bnXJ5f1RrKTklS+p7TPX9TN66VjLE1vPStWlOntm6UsrNOl9mwRt6ly8nqTycLnF/tAr7XV645odr/fWdfSFbA1Y18iUuNjOl4xboxvmrVKlWrVk3vvfeegoOD1aJFC7Vo0ULBwcF67733VKNGDf3999+Xqq4uL333Nh2b9K6OvD1CcdMmyjMiSqWff00WX78iTe8VkbvjhXbsrvgf/0+x745UTkqySj07WtaAgsOfR1DuY2DOvCCZ93+P4NxxHsGhyk6yH6+cHOWkJNmmx9UrLDT3kS8n4u1b9Z5MyFBYSMGPgwku4SkPD4tOnPWu8JPxmbZpwkK8lZGZo+TU7ELL4OoWHOQlTw+LTpy0349OxGcqPNS7wGnCQrx1Mj7DbljuPpVbPuy/6U6evT/HZ9jG4cqxWK2X7a84vvrqKx06dEjp6ek6cOCAvvrqK1WuXNk23tfXV+PHj9eJEyeUkpKib7/9Nl9YjImJ0dy5c5Wamqpjx47pzTfflKcnPWYl8qUjpO3aptiP3tbB11/S0c/GyysiSmVfHltgxrQGBimsc3cl/vqzbZhXZLQsVovCOt2jY9M/1pF3R8kjMFBlho4qtGe3Z0iocjIzlZOaYjc8O+GkPEJCbWWyEuLPGp/7f55KdPXhex3OgP3w6uSM+fJsvKrH8ciYF+di86Ukxc2crsPvv6aDY15Q8sq/FNF7oILbdCx0mR7BocpOSLAfmJOj7OQkeeZdwwwJVXaC/c2kvP/nZVDgXMJDvXXirO/1E/GZCgzwlLe39YKyAq5u5Murk7NewzwbGbNgxboi+/jjj6tr16768MMPZbHYP4bUGKMBAwbo8ccf17Jl535fTEEvi0/PzpaPh0dxquNyTm1YY/t35oG9St+9XeXGfqqA629U8uIF55/Bf595/E8zlfrfO3mOffauyr81WQHXNVPSH/MuSb0BAAAulUuZLzOys+Xt5vlSklLXn76om/HvXqXt2qYK705RiUbNlfjHfNs4q5+fygwZoYyD+xX37RenZ2CxyOLppWPTPlTqhrWSpCMfvK6KE76Qf616Sj0jwwIAgIs3ePBgdejQQTExMTp06JCGDRtW4Kt6wsLCFBQUpMcff7zQV/W88cYbOnLkCK/qOYsjMib5MtcF5UtJJ7770vbv9H27ZfHxVWi7LkqY98OlXwEAAK5CZMyiKVZzg/Xr1+upp57KFyglyWKx6KmnntK6devOO5+CXhY/8Z+d553O3eScSlFm7CF5RZYqUvm8FpAZh/afHpiVpcxjRwp9nFF24n+tJoNC7IZ7BIXY5pedcFIeJezHy2qVNaCEbXpcvfJau53dizs02DtfL/I8CUlZys42Cgs+a5oQL9s0J+Iz5O1lVaC/R6FlcHVLSMxUVraxPbUgT1iIl+JOZhQ4zYn4DIWG2LeczN2ncsuf+G+60LP35xBv2zhcOc76jnFcWpcyX364afclqLHzy0lNUebhg/KKLm0bZvH1U+lnRyonLVWHx42Usk8/sSU7/r+MefB0xsxOSlR2UqI8SxacMbPiT8rq5SWrf4DdcI/gUNv8suJPyjM45KzxIf8t88QFrx9cE9/rcAbsh1cnZ8yXvKrn0nNExiRfnlbcfFmQtF3b5BUeIUshT87KTjgpj+Bg+4FWqzwCSygr7xpm/EnbEzDz5P0/L4MC5xJ3MsPWKzdPWIiXklOylJGRc0FZAVc38uXVyVmvYZIxi6ZYN8ajo6O1cuXKQsevXLlSUVFR551PQS+Lf6ReleJUxS1YfHzlGRGt7ISiXRhM37tTOZkZ8ooue3qgh4e8wqOUFVfwu5GyjsUqK/6EfGvVP71cXz/5VKqm9F3bcue7a6s8AgLlHXP6sbB+NetJFovSd2+/gDWDOzl8NF1xJzN0bd3TP078/TxUq2qgNm9PKnCarCyjbbuT7aaxWKSGdYO1eVvuNNt3pygzM8euTLnSvoqO8LGVwdUtK8to+84kNax3+kevxSI1rB+qTdsSC5xm49ZEXVff/kfy9Q1CtXFrbvlDsWk6fiLdroy/n4dqVQuylQFweV3KfDmgdiVHVtVlWHx85RVVSln/3Xy2+vmpzPOvymRl6dBbr8hk2jdAO7V9syTJq9TpjGkNCJRHiSBlHT+qgqTv2SGTlSn/2g1sw7xKlZFXyUil7dwiSUrbuVXe5SrII+iMDFHnGmWnptjdhMfVge91OAP2QzgLXtVz6TkiY5IvTytuviyIT0wlZScnyWRlFTj+1I6t8ggoIZ8Kp68R+9euL1ksStuZew0zbccW+dWoI53Ra9+/zjXKOPSvclKTL2YVcZXYtDVRDeuH2A27/ppQbfrvO/tCsgKubuRLOBMyZtEUa20GDx6sfv36afXq1brllltsATI2NlaLFi3SJ598ojfffPO88/Hx8cnX7T7uKngMUVi3Pkpdt1JZccfkERKm0Dt7SCZHySv+lJTbi9sjOFSe//Ug9yobI5N2SlknjiknJVkm7ZSSfv9FoZ26K/vEMWXFHVPw7Z0lSSmrltiWU2bUBJ38ZppS1yyXJCUu+EEh7bspK/aQMo/FKrTzfcqOP2Ebn3n4gFI3rFbJ3o/p+LQJsnh4Kvy+/kpZuZjePFcJP1+rykT72v4fHeWrKhX8lZicpaPHMzTrp8N6oEtZHTicpsNH0/XQveV0/GSGlqw8vX+8NayWlqw4odm/HJEkzZxzWEMfq6Jtu1K0ZWey7m5XSr4+Hvr5t9xGHCmp2Zr761E92ruCEpOzlHoqW088VFEbtyVp8w5+zCDXV98d0AtP1dDWnUnasj1J3TqVkZ+vVT8tzN3PXnyquo7FZeijaXskSTN/OKgPxtTXvXeW1dK/43Rr80jVqFJCb3xwupHPzB8Oqtc95fXvoVM6HJumvvdXUNyJdC1efvyKrCNOoyf31elS5sur4TGXklSyx0NKWbNCmcePyjM0XOFd7pfJyVHy0t9l9fNT6edHyerto8MTxsrq5y/5+UuSshMTJJOjzCMHlfz3MkU80F9HJ72vnFOpCr+ntzIOHVDq5n8kSR6h4Sr7v9E6MvEtpe/erpxTqUr4fb5K3v+wslOSlJOaqoheA3Rq+2bbhcvUf9Yo4+C/inpksI5/+Zk8g0MV3rWnEhb8WOgFUbg3vtfhDNgPrz5kzKuTIzIm+fLC82XANTfIIzhUaTu3ymRmyL/ONQrreI9Ozv3GtgyfStUU/cgzOjD6f8o+GafMQ/8qZf3fiuz7hI5+9oEsnp6K6PWokpf/abs+mbT0d4Xd1UNRDz+pk3NmyrtcBYW06aRjn398RT4nXHl+vlaVKeVn+3+pKF9VqRigpOQsxR5LV/+eFRUR7q1Xx+X+Rvnul8O6q30ZPdK7kn5aeFgN64Xq5hsj9eyIDbZ5nC8rAGcjX159yJeurVg3xgcOHKiSJUtq3LhxmjBhgrL/e0SOh4eHGjZsqClTpqhbt26XpKLuwCM0XBEDBssjIEjZSQlK27FZh14dopyk3FY+JW5uq9BO3W3lSw99TZJ0bNI7Sv7rV0nSia8nS9nZiuj7tCze3krfvV2Hx76gnNQU23TepcrmhtL/JPz8rSw+vgrvNVBW/wCl79isI28Pl8k63Zrz2MdvKfy+/io1ZKSUY5SyepniZhAqrxbVKwfqnRG1bf9/rHcFSdIvvx3Va+N36cvvDsnXx0OD+1dSYICnNmxN1LOvblFGprFNUybKR8FBp08pvy2NU0iQl/rcW05hIV7auTdFz47aopMJp/e78VP2KsdIrwyuLi8vi1atj9c7n+y59CsMl/HrkmMKCfZS3/sqKCzUWzt3J+uZYRt08r/H7UdF+Crn9G6ojVsTNeLNLXr4/orq17OiDhw6paGjNmnP/lRbmS+++Ve+vh569rFqufvz5gQ9M2yD3f4M4PIhX148z7CSin7sOVkD/8uY2zbpwLCnlJ2UKL+adeVXpYYkqcK4z+ym2zOot61HeOyHb6rk/f1UeshwKcfo1NYNOvT6S7ZHYlo8PORdupysZ1wcPv75x5IxKjXoBVk8vZS6YbWOTp5wegEmR4feHK7IPgNVbvhbyklPV9LihYqbNf3SfiBwWnyvwxmwHwJXBzLmxbnYfGmysxXcur0i7n9YsliUGXtIx774RIm//WIra/XxkXfpcrKc0djgyPg3FNn7UZX932gZY5S88i8dm/ahbXzOqVQdfO1FRfZ+VOVefU/ZyYk6MXuG3XxxdalRpYTeH9PA9v8n+uY+cWDuoiMa/c42hYd5KyridGegw7FpenbEBj3et7K6diyjY8fT9fr727Ry7elH8Z8vKwBnI18CrsVijLmgIykzM1PHj+e2TilZsqS8vLzOM8W57Xmw40VND1ysPolDr3QVAGWl854YXHlL5rS8Iss9OrTnZVtW5Jhpl21ZKDpH58sd993hiGoBF6VP4nNXugoAcMVdqXwpXb6MSb50Xo7MmORLOAPyJQDk4homLsQFPxjey8tLpUqVcmRdAADA1cxqvdI1wBVGvgQAAA5HxrzqkTEBAIBDkS9dGlsPAAAAAAAAAAAAAODWLrjHOAAAgCNZLJYrXQUAAAC4GTImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7Bwvt5AAAA4GBkTAAAADgS+dK1sfUAAAAAAAAAAAAAAG6NHuMAAMApWKy8nwcAAACORcYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0e4wAAwDnwfh4AAAA4GhkTAAAAjkS+dGlsPQAAAAAAAAAAAACAW6PHOAAAcAq8nwcAAACORsYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0e4wAAwClYLLTXAwAAgGORMQEAAOBI5EvXxtYDAAAAAAAAAAAAALg1eowDAADnwPt5AAAA4GhkTAAAADgS+dKl0WMcAAAAAAAAAAAAAODW6DEOAACcgsVKez0AAAA4FhkTAAAAjkS+dG1sPQAAAAAAAAAAAACAW6PHOAAAcAoW3s8DAAAAByNjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAcLLTXAwAAgIORMQEAAOBI5EuXxtYDAAAAAAAAAAAAALg1bowDAAAAAAAAAAAAANwaj1IHAABOwWK1XOkqAAAAwM2QMQEAAOBI5EvXRo9xAAAAAAAAAAAAAIBbo8c4AABwDlba6wEAAMDByJgAAABwJPKlS2PrAQAAAAAAAAAAAADcGj3GAQCAU7BYeD8PAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBz4P08AAAAcDQyJgAAAByJfOnS2HoAAAAAAAAAAAAAALdGj3EAAOAULFbezwMAAADHImMCAADAkciXro0e4wAAAAAAAAAAAAAAt0aPcQAA4BwstNcDAACAg5ExAQAA4EjkS5fG1gMAAAAAAAAAAAAAuDV6jAMAAOfA+3kAAADgaGRMAAAAOBL50qXRYxwAAAAAAAAAAAAA4NboMQ4AAJyChffzAAAAwMHImAAAAHAk8qVrY+sBAAAAAAAAAAAAANwaPcYBAIBz4P08AAAAcDQyJgAAAByJfOnS6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKlvR4AAAAci4wJAAAARyJfuja2HgAAAAAAAAAAAADArXFjHAAAAAAAAAAAAADg1niUOgAAcA4Wy5WuAQAAANwNGRMAAACORL50afQYBwAAAAAAAAAAAAC4NXqMAwAA52ClvR4AAAAcjIwJAAAARyJfujS2HgAAAAAAAAAAAADArdFjHAAAOAfezwMAAABHI2MCAADAkciXLo0e4wAAAAAAAAAAAAAAt0aPcQAA4BQsvJ8HAAAADkbGBAAAgCORL10bWw8AAAAAAAAAAAAA4NboMQ4AAJyDhfZ6AAAAcDAyJgAAAByJfOnS2HoAAAAAAAAAAAAAALdGj3EAAOAcrJYrXQMAAAC4GzImAAAAHIl86dLoMQ4AAAAAAAAAAAAAcGv0GAcAAE7Bwvt5AAAA4GBkTAAAADgS+dK1sfUAAAAAAAAAAAAAAG6NHuMAAMA58H4eAAAAOBoZEwAAAI5EvnRp9BgHAAAAAAAAAAAAALg1eowDAADnwPt5AAAA4GhkTAAAADgS+dKlsfUAAAAAAAAAAAAAAG6NHuMAAMA5WHg/DwAAAByMjAkAAABHIl+6NHqMAwAAAAAAAAAAAADcGj3GAQCAc7DSXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1rgxDgAAAAAAAAAAAABwazxKHQAAOAcL7fUAAADgYGRMAAAAOBL50qWx9QAAAAAAAAAAAAAAbo0e4wAAwDlYLVe6BgAAAHA3ZEwAAAA4EvnSpdFjHAAAAAAAAAAAAADg1ugxDgAAnAPv5wEAAICjkTEBAADgSORLl8bWAwAAAAAAAAAAAAC4NXqMAwAA52Dh/TwAAABwMDImAAAAHIl86dLoMQ4AAFAMr732miwWi5588knbsLS0NA0cOFDh4eEKDAxUly5dFBsbazfd/v371a5dO/n7+ysyMlJDhgxRVlbWZa49AAAAAAAAAFyd6DEOAACcg9X52+utWrVKH330kerVq2c3/KmnntJPP/2kmTNnKjg4WI899pjuuusu/fXXX5Kk7OxstWvXTtHR0Vq6dKkOHz6snj17ysvLS6NHj74SqwIAAHB1cIGMCQAAABdCvnRpbD0AAIAiSE5O1n333adPPvlEoaGhtuEJCQmaNGmS3n77bbVq1UoNGzbU5MmTtXTpUi1fvlySNH/+fG3evFmff/65GjRooLZt22rkyJEaP368MjIyrtQqAQAAwAnwRCIAAAA4EvmycNwYBwAAzsFiuXx/F2DgwIFq166dbr31Vrvhq1evVmZmpt3wGjVqqHz58lq2bJkkadmyZapbt66ioqJsZdq0aaPExERt2rTpguoDAACAInDifCmd+4lEc+bM0cyZM/XHH3/o0KFDuuuuu2zj855IlJGRoaVLl2rq1KmaMmWKXn755QuuCwAAAIrAya9hki/PjRvjAADgqpOenq7ExES7v/T09ELLf/XVV1qzZo3GjBmTb9yRI0fk7e2tkJAQu+FRUVE6cuSIrcyZN8XzxueNAwAAwNWHJxIBAADAkciX58eNcQAA4Bws1sv2N2bMGAUHB9v9FXTTW5L+/fdfDRo0SF988YV8fX0v84cCAACAi3KZ8mVxG15KPJEIAADAJV3Ga5jFzZjky/PjxjgAALjqDB06VAkJCXZ/Q4cOLbDs6tWrdfToUV177bXy9PSUp6en/vjjD7333nvy9PRUVFSUMjIyFB8fbzddbGysoqOjJUnR0dH53tmT9/+8MgAAAHBdxWl4KfFEIgAAAJxfcTIm+bJoPK90BQAAACRJ1svXXs/Hx0c+Pj5FKnvLLbdow4YNdsP69OmjGjVq6LnnnlO5cuXk5eWlRYsWqUuXLpKkbdu2af/+/WrSpIkkqUmTJho1apSOHj2qyMhISdKCBQsUFBSkWrVqOXDNAAAAYOcyZcyhQ4fq6aefthtWWN7MeyLRggULeCIRAACAq7mM1zCLmjHJl0XHjXEAAIBzKFGihOrUqWM3LCAgQOHh4bbhDz30kJ5++mmFhYUpKChIjz/+uJo0aaLGjRtLkm677TbVqlVLDzzwgN544w0dOXJEL774ogYOHFjkG/QAAABwXsVpeHnmE4nyZGdn688//9QHH3ygefPm2Z5IdGavnrOfSLRy5Uq7+fJEIgAAAPdS1IxJviw6HqUOAACcg8Vy+f4cbNy4cWrfvr26dOmiFi1aKDo6Wt9++61tvIeHh3788Ud5eHioSZMmuv/++9WzZ0+98sorDq8LAAAAzuCE+TLviUTr1q2z/V133XW67777bP/OeyJRnoKeSLRhwwYdPXrUVoYnEgEAAFwGTngNk3xZdE7TY7zXyWevdBVwlXvux95XugqAts7ceqWrAKAIfv/9d7v/+/r6avz48Ro/fnyh08TExGju3LmXuGY40+RWs690FQANHVDvSlcB0IRe31zpKgA4A08kcl1PeL12pasAaOgvXa90FQCt+HTD+QsBuGzIl0XnNDfGAQDAVc7Cg2wAAADgYC6aMceNGyer1aouXbooPT1dbdq00YQJE2zj855I9Mgjj6hJkyYKCAhQr169eCIRAADApUa+dGncGAcAAAAAAACuIJ5IBAAAAEciXxaMG+MAAMA5XIJ3fwMAAOAqR8YEAACAI5EvXZpr9vcHAAAAAAAAAAAAAKCIuDEOAAAAAAAAAAAAAHBrPEodAAA4Byvt9QAAAOBgZEwAAAA4EvnSpbH1AAAAAAAAAAAAAABujR7jAADAKRiL5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAc7DQXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1ugxDgAAnAOtLQEAAOBoZEwAAAA4EvnSpbH1AAAAAAAAAAAAAABujR7jAADAKRiL5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAc+D9PAAAAHA0MiYAAAAciXzp0th6AAAAAAAAAAAAAAC3Ro9xAADgHHg/DwAAAByNjAkAAABHIl+6NHqMAwAAAAAAAAAAAADcGj3GAQCAc7DSXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1ugxDgAAnILh/TwAAABwMDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAM7BQns9AAAAOBgZEwAAAI5EvnRpbD0AAAAAAAAAAAAAgFujxzgAAHAKhtaWAAAAcDAyJgAAAByJfOna2HoAAAAAAAAAAAAAALfGjXEAAAAAAAAAAAAAgFvjUeoAAMA5WCxXugYAAABwN2RMAAAAOBL50qXRYxwAAAAAAAAAAAAA4NboMQ4AAJyCsdBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODW6DEOAACcA+/nAQAAgKORMQEAAOBI5EuXRo9xAAAAAAAAAAAAAIBbo8c4AABwDryfBwAAAI5GxgQAAIAjkS9dGlsPAAAAAAAAAAAAAODW6DEOAACcguH9PAAAAHAwMiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAzoH38wAAAMDRyJgAAABwJPKlS2PrAQAAAAAAAAAAAADcGj3GAQCAUzDi/TwAAABwLDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7B8H4eAAAAOBgZEwAAAI5EvnRtbD0AAAAAAAAAAAAAgFujxzgAAHAOtLYEAACAo5ExAQAA4EjkS5fG1gMAAAAAAAAAAAAAuDV6jAMAAKdgLJYrXQUAAAC4GTImAAAAHIl86droMQ4AAAAAAAAAAAAAcGvcGAcAAAAAAAAAAAAAuDUepQ4AAJyCsdBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODW6DEOAACcg8VypWsAAAAAd0PGBAAAgCORL10aPcYBAAAAAAAAAAAAAG6NHuMAAMAp8H4eAAAAOBoZEwAAAI5EvnRtbD0AAAAAAAAAAAAAgFujxzgAAHAKRryfBwAAAI5FxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKfB+HgAAADgaGRMAAACORL50bWw9AAAAAAAAAAAAAIBbo8c4AABwDhbezwMAAAAHI2MCAADAkciXLo0e4wAAAAAAAAAAAAAAt0aPcQAA4BQM7fUAAADgYGRMAAAAOBL50rWx9QAAAAAAAAAAAAAAbo0e4wAAwCkY3s8DAAAAByNjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUjIX2egAAAHAsMiYAAAAciXzp2th6AAAAAAAAAAAAAAC3Ro9xAADgFIx4Pw8AAAAci4wJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFPg/TwAAABwNDImAAAAHIl86drYegAAAAAAAAAAAAAAt8aNcQAAAAAAAAAAAACAW+NR6gAAwCkYi+VKVwEAAABuhowJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFMworUlAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBTMBba6wEAAMCxyJgAAABwJPKla2PrAQAAAAAAAAAAAADcGj3GAQCAU+D9PAAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa9wYBwAATsFYrJftrzgmTpyoevXqKSgoSEFBQWrSpIl+/vln2/i0tDQNHDhQ4eHhCgwMVJcuXRQbG2s3j/3796tdu3by9/dXZGSkhgwZoqysLId8bgAAACicM+ZLAAAAuC5nvYaJouFTBQAAOIeyZcvqtdde0+rVq/X333+rVatW6tSpkzZt2iRJeuqppzRnzhzNnDlTf/zxhw4dOqS77rrLNn12drbatWunjIwMLV26VFOnTtWUKVP08ssvX6lVAgAAwBVEw0sAAAA4GhmzaHjHuJPpc0959bm3vN2wfQdS9cDjawqd5qam4Xqoe4yiI3118PApfThtr5avOWlX5sHu5dXh1mgFBnhow9Ykvf3RTh04nHZJ1gHOrepLj6nay4/bDUveult/1G0rSfKvVE41X39Ooc0ayurjrWPzFmvTkyOVcTTOVr7K8wMUeUdLBdWvqZyMTM2PuL5Iy6427AmVe6irvEKCdHLpGm14bLhSd+6zjfcKDVbtd19SZLubpZwcHZk9X5ueGqXslFQHrDmczeHdq7T+z0k6fmCTUpOO6baeH6hC7VsLLLv422HasuL/1KT9UNVt3stu3P4tv2v1ogk6cXibPLx8VKri9WrTa3yhyzXGaPWC97Vl5UxlnEpUdIVrdWPnYQouWcFWJi01Xku/f1X7tvwmi8WqinVuU9OO/5OXT4BD1h0Fc9b383To0MHu/6NGjdLEiRO1fPlylS1bVpMmTdKMGTPUqlUrSdLkyZNVs2ZNLV++XI0bN9b8+fO1efNmLVy4UFFRUWrQoIFGjhyp5557TsOHD5e3t/eVWC24kQrRFjWv66Ey4VYFBVg0fWGmtuzLsY2vHWPVDTU9VCbcIn9fi96fnaHDJ0y++ZSLtOi2hp4qF2FRjpEOnzCa/EumsrILX3bjmlY1r+upQD/pyAmjOcuydOD46Xl7ekh33OCpepWs8vCQdhzI0Q9Ls5RMDHU7jsiYeazeXmq6dKaC69fU4us6KXH91kKXa/XxVs2xz6t0tzty5zt/iTY+PsJuvr7lSqnuB8MVflMjZSWn6sD077Tthbdkss+xc8Mt3HFTmO64KUxR4V6SpH2H0vXlnKNavTFZgQEeur9jpK6pHaiIMC8lJGVp+bokTf8uVqmncs453/s7RapN81AF+Htoy85Ujf/8kA4dzbCNDwzw0IDupdSofgnlGGnp6kR99NVhpaWfe764NJwxY+Y1vKxataqMMZo6dao6deqktWvXqnbt2nrqqaf0008/aebMmQoODtZjjz2mu+66S3/99Zek0w0vo6OjtXTpUh0+fFg9e/aUl5eXRo8efYXXDu6qW7sINWsYrLKlfJSRabR5Z4o++/qIDh5JlyRFlvTS1DdrFjjtqPH7tGRVQqHzfqBzlG5vGaYAfw9t3pGiD6Yd1KFY+/Pqo/eXVqMGQcox0l9/J+jDLw5xXnVz5Es4g5goi26s7aFS4RYF+Vs049dMbf039zev1SLdco2HqpW1KDTQorRMaffhHC1Yna2kU6fn0aKuVdXKWhUdZlF2jjTmy8wiLbtVAw81rGqVr7e0/6jRnOVZOpF0eryft3RHIw9VL2uVkbR5X45+XpmtDPe6h+mUnDFfSmTMoqLHuBPavT9Fd/ZZYft77H//FFq2TvUSevnpGvppUaz6PrNWi1fEadTzNVWxvL+tTI/OZdSlXWm99dFO9X9uvdLSs/Xmy3Xk7eWcBy8uvaSN27WwbDPb39KbekiSPPz9dMPczyRjtOK2XlrWsrus3l66/rsPJcvp/cXi7aXD3/yifR99WeRlVhr8sCo89oA2Dhyuv5p1U1bKKTX6aZKsPqdvCDWY9qYCa1XRyrZ9tOrOAQq78TrVnfiK41YcTiUz45TCS9VQszvP3Wt2z8YFOrp/vfyDIvON271hnn77v+dU/bq71OXJ79TpkRmq0qD9Oee3/o9PtfGv6WreebjufOxreXr7ae6kvsrKTLeV+e3LIToZu1Pt+n6m23t/qMN7/taf39K7152kp6crMTHR7i89Pf2802VnZ+urr75SSkqKmjRpotWrVyszM1O33nq6UUeNGjVUvnx5LVu2TJK0bNky1a1bV1FRUbYybdq0UWJioq3XOXAxvD0tOnLC6IdlBf/69fKS9h3J0S+rCv91XC7Soj5tvLTjYI4m/JCpCT9kavnmbJn8989t6la06o5Gnlq0Nkvjv8/U4RNGfW73UoDv6TLtGnmqRnmrZvyaqU9+ylRQgEX33ep1oasKJ3exGTNPjdeeVfqho0VaZq23/qeodjdrzb1PatktD8i3dKQazvzgdAGrVdf/8JEs3l5a2uJerX/weZXt2VnVhj/hkHWGczt+MlNTvjmiQSN3adCru/TP1mS99Fh5lS/to/BgT4WFeGrSzCN6dNhOjZt8UA1rB2pQrzLnnOfdt5dUh1vCNf7zQ3p69C6lpedo5FMV5OV5el8e0resYkr76MW392rEe/tUu5q/Hu9Z+lKvLlxIhw4ddMcdd6hq1aqqVq2aRo0apcDAQC1fvlwJCQmaNGmS3n77bbVq1UoNGzbU5MmTtXTpUi1fvlySbA0vP//8czVo0EBt27bVyJEjNX78eGVkZJxn6cCFqVsjUHN+jdNTI3fqf2N3y9PDolGDK8rHO/f8dzwuUz0Gbbb7m/7tEaWeytbf/yQVOt+ud0SoY+uSen/qQT35yk6lpefo1WcqyuuM65bP9i+n8mV89b+xuzV83B7VqRagJ3qf+3wN90C+xJXm7SkdOWn004r8v6e9PKXS4Rb9vj5HE3/M1Fe/ZalkkEU9Wtn3R/WwWrRpX45WbSt6Y54b61jVqKZVc5Zn6eO5WcrIknq29pLnGXf07m7uqcgQi6YtyNIXi7JUIcqqjk08Lnhd4frImEXDjXEnlJ1tdCI+0/aXkFT4Rcy725fWyrUn9dV3B7XvwClN+nK/tu9O1l13lLKV6dq+jKbP/FdLVp7Q7n2pGvXudoWHeevGRuGXY3XghHKys5Uee9z2lxmX+4SB0KbXyr9CGa1/6HklbdyupI3btf7B5xTcsI7Cb25sm37HK+9rz7tTlbRxe5GXWfGJnto5eqJi5yxS0oZtWt/nWfmUjlRUp9ybSYE1Kiny9hba0P9Fxa/8Ryf/Wq1NT76q0ve0k0+p/DdE4frK12ih69s8qYp1WhdaJiUhVku/f1U33ztWVg/7UJmTnaVlP4xWozuGqFbjexUSUVGhUVVUuX7bQudnjNGGJdN0TasBqlD7FoWXqq6bu72u1MSj2rtpoSTpZOwu/bt9sVrcPVKR5esrumJDNev0onatn6uUxNhC542LdznfzzNmzBgFBwfb/Y0ZM6bQum3YsEGBgYHy8fHRgAEDNHv2bNWqVUtHjhyRt7e3QkJC7MpHRUXpyJEjkqQjR47Y3RTPG583DrhY2w/ktkjfvK/gH9nrdubo13XZ2nmo8B/h7Rp5aummbP35T7aOxhsdTzDasCdH2ef43X5jHQ+t2pajNTtydDTe6Pu/cn+sN6yW+0Pcx0tqWM2quSuytPuw0aE4o2/+zFJMlFXlImig6Y4uNmNKUkSbFoq4tZm2PPf6eZfnGRSocn26aPOQ1xT3+3Ilrtmk9X3/p7Cm1yqkUf3c+bW+USVqVtG6XkOUuH6rjs37U9uHv6uYR+6TxYtGGu5u5fok/b0hWYeOZuhQbIamzT6qtPQc1ajkr32H0jV64r9auT5JR45l6J+tKZo2O1aN6peQ9RxXSjrdGq7/+/Golq9L0t4D6XrrswMKC/FUk2uCJEnlSvnourol9O7Ug9q255Q270zVRzMOq8X1wQoL5qF9V4Kzv/+RhpdwFS+9tUcLl5zU/kPp2vNvmt7+9F9FlfRW1Qq5nXNyjHQyIcvur2nDYC1elXDOnt133lZSX/0Qq+VrE7X3QJre/ORfhYd6qem1p8+r19cL0rufHdC23ae0aUeqJn5xUC0bhSgshPOquyNf4krbcdBo0dpsbdmfv9V4eqY0dUGWNu3LUVyidOC40Y8rslWmpFXBZzx08rf12Vq2OUexJ8/R8vwsTWp66M9/srX1X6PYk0bfLslSCX+pRvnczFEyWKpa1qrvl2brwHGj/Udzb97XqWhVCb+LXm2chyu8Y5yMWThujDuhsqX89O2k6/XVxOv00pPVFFnSp9CytauX0Or18XbDVq6LV+1queGxVJSPwsO89fcZZVJSs7VlR5LqVA+6FNWHCwioEqNb9i3WzdsWqsG0N+VbLrchhdXHW8YY5aSfbv2Tk5Yuk5OjsGYNL3h5fhXLyrdUpI7/utQ2LCsxWfEr1yu08TWSpJDG1yjzZIISVm+0lTm+aKlMTo5Cbqh3wcuG6zI5Ofrt/55VvZYPKSy6ar7xxw9tVkpirCwWi755t7Omv9pcP096WCeOFN5gI+nEAZ1KOqYyVZvahnn7lVBkuXo6un+dJCl2/zp5+wUpomxdW5kyVZrIYrHq6P7Cn+AB1zJ06FAlJCTY/Q0dOrTQ8tWrV9e6deu0YsUKPfLII+rVq5c2b958GWsMXDoBvlL5SKtS0oz6t/fS/3p46+E7vBQTVfjNaw+rVLqkxe5mu5G061COykfmTlempEWeHvZljiUYnUw2Kh/JzxB3dLEZ0zsyXHU/HKl1fZ5Vdur5n7cffG0dWb29dXzR6YyZsm23UvcdVGjjBpKk0MYNlLhxu92jL4/NXyKv4BIqUbvKxa4yXIjVIrW4Pli+3lZt2VXwq5r8/T2UmpajnELu30SX9FJYiJfWbUmxDUs9laNtu0+pRuXcK5A1KvkpOSVbO/ed3ofXbkmWMVL1SlyldGfFfSIRDS/h6vz9chtDJqUU3KGnSoyfKsf4ad6fJwqdR3SEt8JCvLR2c7JtWOqpHG3blaoalXPvKtWs4q+klCzt2Hv6ucRrN+WeV2tU8s83T7gX8iVcja+3lGOM0i6ic21ooFTC36Jdh07fSE/PlA4eM7ZG5uUirDqVntsAPc/uw0bGSGVpiO5WyJiOxxUpJ7N5R5LGvL9dg1/ZpLc+2qlSUb76YFRd+fkW/AiMsBBvnYi3P8uejM9QWGhu67TwkNzHVJ9MsC9zIj5DYSG0YLsaxa/8R+sfGqqV7ftqw2PD5V+hjJr89oU8AgMUv2KdslNOqcaYIbL6+crD308133hOVk9P+ZSKuOBl+kbnTpsea/+On/TYOPlElZQk+USVVPpR+x9LJjtbmScS5BN94cuG61r3xyeyWD1Up9kDBY5PjPtXkrR64Xhd02qAbu89Ud7+QZrzUU+lpcYXOE1q0jFJkn+g/RMz/AJLKjXpuCTpVNIx+QWE2Y23enjKxy9Yp/4rg0vDyHLZ/nx8fBQUFGT35+NTeEM0b29vValSRQ0bNtSYMWNUv359vfvuu4qOjlZGRobi4+PtysfGxio6OlqSFB0drdjY2Hzj88YBV1pYidwfzbdc46lV27I1eV6mDsbl6KG2XgoPKvgHtb9v7uPgkk/Zt3hPPmVUwi93mhJ+FmVl578gkHzKKJBrmG7HERmz/qTXtP/jr+waSp6LT3RJZadnKCvB/vGsGUfj5BMVYSuTEWv//Z3+3//zysC9xZTx0awPauq7D2tr4AOl9eqE/fr3cP4LSUGBHurePkK/nOMGTuh/Pb5PJtrfBIpPzFJosNd/ZbwUf9ZT33JypKSUbFsZXF6XK18W94lENLyEK7NYpP49SmvT9hTtO1jwxfk2LUK1/2CatuwsuDGSdMZ5NcH+vHkyMcs2LjTYUwmJ9u9tPn1epce4OyNfwtV4WqXbGnpow54cpRftNeIFCvzvN3Vy2lm/t9OMAv9rZ1nCT0o5q61HjpFOpZ+eHpfO5byGScZ0PIffGP/333/14IMPnrNMQS0ccrLd5/n0F2PFmpP6fWmcdu9L1ap18Xp25CYFBniqVbOSV7pqcBPH5v2pI9/8oqQN23R8wRKt7NBPXiFBKt21rTKOn9Saewcpst3Nuj1+rW6L+1ueIUFKWLMx95sVuEyOHdiojUum66ZuY2Qp4N1QkiST25Xnmlb9ValuG0WUraObuuaW3/3PL5extrga5eTkKD09XQ0bNpSXl5cWLVpkG7dt2zbt379fTZo0kSQ1adJEGzZs0NGjp99ntmDBAgUFBalWrVqXve6u6ELzZVbm+d8bj9Ov4Fu5NVtrduTocJzR3BXZOpZg1LAa7WhRNBebMSs89oA8SwRo5+sfXeE1gbs5eCRDj7+yS0+P3qW5v5/Q0w+WVblS9o3h/HytGv5EjPYfStcXPxTt/aPA2Yr7RCIaXl5ZXL+8OAMfKKMKZX312sT9BY739rLopiahmre48MZGwPmQL+FKrBap2025jXV+XJ59ntJA0ZExHc/hV7pOnDihqVOnnrNMQS0c/t3+uaOr4haSU7P176FTKlPKt8DxuT2/ve2GhYZ468TJ3CZJcf/1Jg8Nti/z/+3dd3hUVf7H8c9Mei+EhNBBepEmJYKgiCJWlF0bCiKii4Cr6KqsBRVXXLBgAbGDP2XtWBBRRIpKkyq9BkJJIaSH9Lm/PwYnjoQml8zMzfv1PPM85s6ZOyfDOPnMPed7jrPS/AymLcEyynPzVbhjj0LPaShJyvzhFy1qdYnm1z1f8+v00PrbHlRQ3QQd2b3vLz9HcZqzSjcowb1KNyihlmtGZUl6poLi3at0bX5+CoiNUsnRx6PmSEteraLCw5o1sa/eHNdWb45rq4Lsg1r+zX8169m+kqTQSOcs3Jj4ymWq/PwDFRHbQAU5qVWeNzTC+ZgjBe6rFxQVZCo0wjkBKSSitooK3b+8OyrKVVKUq5AIJimdTYbNVm230zFu3DgtWbJEe/bs0YYNGzRu3DgtWrRIgwcPVlRUlIYPH66xY8dq4cKFWr16tYYNG6akpCT16OHc1+zSSy9VmzZtdOutt2r9+vX67rvv9Oijj2rUqFEnrFJHpb+aL5fNnVRNPfRt+UecF44yctwnwR3KMRQdVvX/L0eKpQqHccxM9PAQm/KPVpHnFxny97Mp2D2GKjzEpoLjFw7BIk43Y9a6sIdienTUgMINGlC0SRdu/V6S1HP5Z+rwzrNVPkdJWqb8ggLlHxXhdjwwvpZK0g+52gQmuP/9/n3Fot/bwNrKKwylZpRq595izfw8Xcn7inVNv8rvJSFBdk24t7GKih16emqKKk5wHfP3isaYSPcKxehIf2Xnlh1tU6boCPf77XYpIszP1QbVq7ry5emuSPRnTLysXn81X+7a8HY19dB7jbylrrp1iNBDz+5SZnbVn2u9ukYpKNCmBb9kn/Bcrs/VP1V+x0T6u+7Lzi1XVKT7SpqVn6tVL+MOayJfwlv9PigeHebcc/xMqsUluVZmCw/+0/ftYJsKju4qkV/k3Bbtz/0ICdIxK7vBfNV5DZOMab7TXm/mq6++OuH9u3fvPuk5xo0bp7Fjx7odu/yWVafblRohJNiuenWC9f3iqmekbtqWr87nRuuTOQddx7p2iNam7XmSpNT0Eh3OKlWXc6O1c49zH7TQED+1bh6hL+ZVPXCEmsUvLFShTRuo5AP34FZ22PnlpdaFPRQUX0vpc378y89RlLxfxakZqnVRkvLWb5Uk+UeEKbpbB+19/X+SpJzlaxUQE6XIzm2Vt2aT87kv6iGb3a6clezrXNM073y16jVPcjs29+071LzzNWp53rWSpLh67eTnH6icQ8mq08S5f5SjokwF2QcUEVO3yvNGxNZXSERtHdy5THF1W0uSSosLlLHvN7XucZMkKaFhR5UW5enQ/o2qXb+dJOngruUyDIfiG7LffU2UkZGhIUOGKDU1VVFRUTr33HP13Xff6ZJLLpEkvfjii7Lb7Ro0aJBKSkrUv39/TZs2zfV4Pz8/zZkzRyNHjlRSUpLCwsI0dOhQPfXUU576lbzO2cqXT886o27VGNkFUm6hobgo9y/dcVE2bd9X9Ua7FQ7pYKahZol2bdnrbGOTdE5du5Ztdo4qHcg0VF5h6Jy6dm3a43CdMybcppSM42zgC8s43Yy56b6ntW38FFe74MR4df/2Ha29+T7lrFxf5XPkrtkoR2mp4vomKW2280JnWIsmCm1UT9nL10mSspevU7Nx/1Bg7ViVHnJOfIvrd77KcvNVsHmnmb8yfITNJgX4Oz/vQoLtmnBfY5WVG3rq1b0qKz/xRcS0zDJl5ZSpQ+sw7d5X7DpHy6YhmrvI+f7aurtI4WF+atYo2LXPeIdW4bLZpG27i457btQs48aN04ABA9SwYUPl5+dr1qxZWrRokb777ju3iZexsbGKjIzUmDFjjjvxctKkSUpLS2Pi5Z+crXz591Hbz6hfvm7kLXV1fpcoPfTsLqVnHn/kp3/vWK1Ym6fc/BNXTaYdKlVWTpk6tgnX7hTnZ2ZosF0tzwnVNwudE9q37DyiiDB/NWsUop17nZ+jHVs7P1e37ma2ZU1CvoQ3+n1QvFaE9O535SoyYeG67ALnBPamiTalZTvzaVCAVK+2TSu3Ob9L7zvkUEiQvxJjbUrNcrZpkmiTzSbtP8TAeE1Fxjw1pz0wPnDgQNlsNhnG8f/nOu6yt0cFBQUd8yLa/QKP07pmuXtoY/2yKkvpGSWKiw3UsBsbyuGQfvjJ+Qf/3/e0UGZWid54f68k6dM5B/Xy0+11w9X1tGx1li7uVVstzwnX5Ncq/wh/MueAhvy9gfanFik1vVjDb26kw1ml+nnF4Sr7AGtr/d8HlT5noYpSDiq4bryaPz5GRoVDBz+cI0mqP/Q6FWzdpdJDWYrp0UltXvi3kl+aocLtya5zBDdIVGBslIIb1JXNz0+RHVpJkgp3pqii0PmlpM+Gb7X10eeV/uUPkqTkl99T83+PVOHOvSras18tnvinSg5muO4v2LpbGfOW6NzpE7Rh1HjZAwLU9qXHdPCjb1SSynKGVlRWUqjcw5XLruVl7VfmwS0KDolSeExdBYfFuLW3+/krNDxO0bWbSpICg8PVuvuNWj3/FYVH11F4TF2tX/yOJKlp+8tcj/vouQHqdtlYNWl3iWw2m9r3GqI1P05XZFxjRcbU06/fv6zQyHg1bttPkhSTcI4atLhASz57XBdc94QcFeX65csJOqfD5QqLTDjLr0rNZhjeuQfS22+fuCokODhYU6dO1dSpU4/bplGjRpo7d67ZXbOMs5Uv/QNqxlLqgf5y2ws8NtymxFibjpQYyi2UQgKl6HCbIkKdbX4fAM8vMlyzzX/aUKF+nf2UlmXo4GGHOjf3U+0om2YtqLyYOXxAgDbtqdDyLc4v4j9vrNDfevtrf6Zd+w8Z6tnOT4H+0prtzseUlEmrtzt0eXd/FZWUqbhUuirJX3vTHdrHF3XLOdOMWbzPfdJuxdFlBY7sTlHxAefSbUF149Xju5lad/uDyv11g8rzCrTv3c/UevLDKsvKVVl+gdpNeVTZy9YoZ4XzYueh+T8rf8tOdZwxSVvGTVZQQm21fPJe7X3tAzlKqd61uqHXJWjVhnwdyipTSLBdF3aPVvuWYXpsyh6FBNv19H2NFRRk13NvpSg02E+hR6tucvPLXTtJTZ/QXDM/T9Oytc69Rr/84bBuvCJeB9NLlZZZqlsHJigrp1zL1jonp+9LLdGqDfkaM6Sepr5/UH5+No28OVFLfs1VFpWNHuGNGZOJl2cf1y/NN+rWurowKUZPvbRHRcUOV5V34ZEKlZZVvs6J8YFq1yJMj7+YXOV53pjYQjM+SdPSNc7PzS++z9SNV8XrQFqp0jNLdet1CTqcXea6f19qiX79LU//HFZfr8zcL38/m0beWk+LV+QoK4fPVSsjX8IbBPpLsRGVfy9iImyqEyMVlRrKPyLdcKG/6tay6f0F5bLbpPCjebKo1DmhXJKiwqSQQJuiw5wD6XVinOfLyjdUevRjbMzAAP2wplxbUpyfp8u2VKjPuX46nG8oO1+6uJOf8o9IW1OcJ83MlXbsd+ia8/309fIK+dmkK7r5a2OyQ/nMxTzrvDFfSmTMU3XaA+OJiYmaNm2arrnmmirvX7dunbp06XLGHaupatcK0vixLRUZEaCc3DJt2JKnfzy8Xrl5zk/IhNpBbqF+47Z8PfXiNt1xcyONuKWR9qcW6ZFntyg5pXLG5KzZBxQc7KcHRjZTeJi/NmzJ0wMTNrqFVtQcwfXqqNP7LyigVrRKD2Up+5fVWtrrepVmOmdXhrVoopZPj1VgbJSO7Dmgnc9OV/KUGW7naPHEPWow5DrXzxes+lKStOziW5W1ZKUkKbxVUwX8Ydmh3c+9Kf+wELV/7SkFREcq+5fVWnnlHXKUVK6GsG7IA2r70mPq8d1MGQ6H0mZ/r033Pn22Xgp42KH9GzXnjaGun5fPcS5j1aLLQF14fdVLWv1Zjyv+JbvdTws/ekjlZcWKb9BBV4yYoaDQKFeb3EPJKi3Od/3coc8dKi8t0k+fPa7S4jzVadxFA25/U/4BlRc8Lrppsn75coK+eeM2yWZXk/aXqufVj5zhbwzgeMiXZ6ZenE0jrqi8SHtFD2fEX729Qp/9VK7Wjez6W+8A1/039XX+94I15Vqw1jmIvXRThfz9pMu7+ys0SErNMvTOvDJlVX58KjbCprA/LOW2IdmhsOBy9evir4gQKfWwoXe/K1NBceVjvllRLsPw180XB8jfLu044NCXS7mAaUVmZMyTsQcEKLxVU/mFhLiObb7/GbV2ONT545dlDwpU5vc/a+OYJysf5HBo1TX/ULtXn1DPnz5SeWGRDvzfbG1/4mUzfm14uegIf90/vL5io/xVWOTQnv3FemzKHq3bXKj2LcPU6pxQSdLbE1u4PW7YQ9uUcdh5YbtBYpDCQiqX8P10XqaCg+waM6SuwkL9tHnHET02ZY9btfnkt/Zr5M2J+s/9jWU4pF/W5On1/7FiGyox8fLsI1+a78qLnUtFTxp3jtvx59/apx9+rlwy/dILYpWZXaY1GwuqPE+DxGCFhlZ+rn4y95CCg+y6Z1g9hYf6adP2Qj32fLLK/nDdctLr+3T3LXU18cGmMgzpl1W5eu2Dg1WdHhZCvoQ3qFvLptsvq/w+PaCr8/v22p0VWriuQq0bOncrHnV1gNvj3plXpj3pzs+xvh391KlZ5efe3Ufb/rFN7SibggJskpw//7zRoUB/m65O8ldwoJSSbuj/fihT+R8WX/v0p3Jd0d1Pt13qL8OQNu91aO5K9jevyciYp8ZmnGjqZBWuvvpqdezY8bgzBNavX69OnTrJ4Ti95RF7X/vzabUHzPbQnOGe7gKgrZ9s9XQXAN0/0DOzHnfs2lttz9X8nEbV9lw4ubOVL//9ds2oGId36/kPtuGA500b+pmnu4Aa7pu32nnsuasrY5IvvcvZypcDbmOrN3je6A/+7ukuAFrx1gZPdwHQU0M9s5IL1zB922lXjP/rX/9SYWHhce9v1qyZFi5ceEadAgAAQM1BvgQAAICZyJcAAACoymkPjF9wwQUnvD8sLEx9+vT5yx0CAABAzUK+BAAAgJnIlwAAAKjKaQ+MAwAAnA2GPLOEOwAAAKyLjAkAAAAzkS99m93THQAAAAAAAAAAAAAA4GyiYhwAAHgFZlsCAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCsw2xIAAABmI2MCAADATORL30bFOAAAAAAAAAAAAADA0qgYBwAAXoHZlgAAADAbGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCobBbEsAAACYi4wJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAX25wEAAIDZyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNCrGAQCAV2C2JQAAAMxGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8ArMtAQAAYDYyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVDIPZlgAAADAXGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCg725wEAAIDJyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNAbGAQAAAAAAAAAAAACWxlLqAADAKxgsQwQAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2AYzLYEAACAuciYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdgfx4AAACYjYwJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAX25wEAAIDZyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNCrGAQCAV2B/HgAAAJiNjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLo2IcAAB4BfbnAQAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcHi6AwAAALAcMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewRCzLQEAAGAuMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABegf15AAAAYDYyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKWxlDoAAPAKDsPTPQAAAIDVkDEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2DI5ukuAAAAwGLImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXMAxmWwIAAMBcZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKxiGp3sAAAAAqyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7BIfbnAQAAgLnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXMAxmWwIAAMBcZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKxiGp3sAAAAAqyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7BEPvzAAAAwFxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArONifBwAAACYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTDYnwcAAADmImMCAADATORL30bFOAAAAAAAAAAAAADA0qgYBwAAXsFgfx4AAACYjIwJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS2NgHAAAAAAAAAAAAABgaSylDgAAvIJDNk93AQAAABZDxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8gmF4ugcAAACwGjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg/15AAAAYC4yJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVHOzPAwAAAJORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpDIwDAACvYBjVdzsdEydOVNeuXRUREaH4+HgNHDhQ27Ztc2tTXFysUaNGqVatWgoPD9egQYOUnp7u1iYlJUVXXHGFQkNDFR8fr3/9618qLy8/05cNAAAAJ+CN+RIAAAC+y1uvYeLUMDAOAABwAosXL9aoUaO0fPlyzZ8/X2VlZbr00ktVWFjoanPffffp66+/1ieffKLFixfr4MGDuu6661z3V1RU6IorrlBpaamWLl2qmTNnasaMGXr88cc98SsBAADAg5h4CQAAALORMU8NA+MAAMArGLJV2+10zJs3T7fddpvatm2rDh06aMaMGUpJSdHq1aslSbm5uXr77bf1wgsvqG/fvurSpYveffddLV26VMuXL5ckff/999q8ebPef/99dezYUQMGDNCECRM0depUlZaWmv5aAgAAwMkb8yUTLwEAAHyXt17DJGOeGn9PdwAAAMCX5ObmSpJiY2MlSatXr1ZZWZn69evnatOqVSs1bNhQy5YtU48ePbRs2TK1b99eCQkJrjb9+/fXyJEjtWnTJnXq1Kl6fwkAAAB4zLx589x+njFjhuLj47V69Wr17t3bNfFy1qxZ6tu3ryTp3XffVevWrbV8+XL16NHDNfHyhx9+UEJCgjp27KgJEybooYce0hNPPKHAwEBP/GoAAADwEDLmqaFiHAAAeAWHUX23kpIS5eXlud1KSkpO3keHQ/fee6969uypdu3aSZLS0tIUGBio6Ohot7YJCQlKS0tztfnjoPjv9/9+HwAAAM6O6sqXZ+J0J15KOu7Ey7y8PG3atOnMOgQAAIDjqs5rmGeCjFk1BsYBAECNM3HiREVFRbndJk6ceNLHjRo1Shs3btSHH35YDb0EAACAr2DiJQAAAMxGxjQfA+MAAMArGEb13caNG6fc3Fy327hx407Yv9GjR2vOnDlauHCh6tev7zpep04dlZaWKicnx619enq66tSp42qTnp5+zP2/3wcAAICzo7ryJRMvAQAAaobqvIZJxjQfA+MAAKDGCQoKUmRkpNstKCioyraGYWj06NGaPXu2fvzxRzVp0sTt/i5duiggIEALFixwHdu2bZtSUlKUlJQkSUpKStKGDRuUkZHhajN//nxFRkaqTZs2Z+E3BAAAQHVi4iUAAADMRsY0n7+nO/A7R3mFp7uAGm79+5s93QVAw1uu8XQXAEldPPKsxhnum3O2jBo1SrNmzdKXX36piIgI17JBUVFRCgkJUVRUlIYPH66xY8cqNjZWkZGRGjNmjJKSktSjRw9J0qWXXqo2bdro1ltv1aRJk5SWlqZHH31Uo0aNOu6APM7cqkX8bYfnPT77Xk93AdC0LzzdA8BzqitjBgUFnXKuMwxDY8aM0ezZs7Vo0aITTrwcNGiQpKonXv7nP/9RRkaG4uPjJTHxsjrkH872dBcA1d6w0tNdANQxz2uGloBqV53XMMmY5uPTCwAA4ARee+01SdKFF17odvzdd9/VbbfdJkl68cUXZbfbNWjQIJWUlKh///6aNm2aq62fn5/mzJmjkSNHKikpSWFhYRo6dKieeuqp6vo1AAAA4CWYeAkAAACzkTFPDQPjAADAKzgMm6e7UCXjFKaBBgcHa+rUqZo6depx2zRq1Ehz5841s2sAAAA4CW/MmEy8BAAA8F3emC8lMuapYmAcAAAAAAAAqCZMvAQAAIDZyJinxu7pDgAAAAAAAAAAAAAAcDZRMQ4AALzCKUxqBAAAAE4LGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCsy2BAAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcDDbEgAAACYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTBsnu4CAAAALIaMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFg/15AAAAYDIyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVHMy2BAAAgMnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXYH8eAAAAmI2MCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFZlsCAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCs4mG0JAAAAk5ExAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK/A/jwAAAAwGxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AoOh6d7AAAAAKshYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSGBgHAAAAAAAAAAAAAFgaS6kDAACvYBie7gEAAACshowJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAVmWwIAAMBsZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKziYbQkAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2BU6wY9tmp8LgAAAHhK9WVM8iUAAEBNwDVM30bFOAAAAAAAAAAAAADA0qgYBwAAXqFaJ1sCAACgRiBjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7B4fB0DwAAAGA1ZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAK7A/DwAAAMxGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8goPZlgAAADAZGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCuzPAwAAALORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYFTrBj22anwuAAAAeEr1ZUzyJQAAQE3ANUzfRsU4AAAAAAAAAAAAAMDSqBgHAABeoVonWwIAAKBGIGMCAADATORL30bFOAAAAAAAAAAAAADA0hgYBwAAAAAAAAAAAABYGkupAwAAr2CwDBEAAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvILDwXRLAAAAmIuMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgF9ucBAACA2ciYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdgtiUAAADMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvIKD6ZYAAAAwGRkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AqGw9M9AAAAgNWQMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYLA/DwAAAExGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8goP9eQAAAGAyMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewcFkSwAAAJiMjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpLKUOAAC8gsE6RAAAADAZGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCgaTLQEAAGAyMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFRzszwMAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2CwQQ8AAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvILh8HQPAAAAYDVkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArONifBwAAACYjYwIAAMBM5EvfxsC4l7ru8rq66boGio0J1K7kAr34+k5t2ZF/3PYX9YzTHbc0UZ34YO0/eESvzUjW8tVZbm2GD26sqy6to4gwf23Ykqfnpu3Q/tSis/2rwAs1qC31aGlXnVgpIsSmT3+u0PYDlfdf0NamNg1tigiVKhxSWpa0eINDB7OOPZefXbqtn10JMTa99V2FMnKO/7x+dqlfR5taN7TJ3y7tTpO+W+1QYUllm8hQ6bIudjWKl0rLpQ17DC38zRB/a6zli2/n64t5PygtI1OS1KRhPQ29/jr16NJRefkFeud/n+rXdRuUnpmp6MhIXdD9PA2/+e8KDwuVJOXm5WvCi1O1a0+K8vILFB0VqV7du+jOW25QWGjocZ83L79AU96coaW/rpXdZlPvpG66544hCg0JdrXZtSdFL77+rrbu3K2oyAgNuqK/br7uqrP7gsCrLVmyRJMnT9bq1auVmpqq2bNna+DAga77DcPQ+PHj9eabbyonJ0c9e/bUa6+9pubNm7vaZGVlacyYMfr6669lt9s1aNAgvfTSSwoPD/fAbwSru/GqBPU8L0oNEoNVWubQ5h2FeuvDg9qfVvkH9/KLaumipBg1axyqsBA/XXvXbyo8UnHSc1/VL05/vzxesVEB2r2vSFPf269tu4+47g8IsOmum+vpwu4xCgiwadWGfL0yY59y8srPyu8K7/T2gl/18txfNPiCjnpw4IWSpJKycj3/1RLNW7ddpeUVOr9lIz0y6CLVighzPa7D/VOOOdeztwzQgE4tj/tcuUeK9eznC7V4c7LsNunic5vroYF9FBoU6Gqz/eAhPfP5Qm3al66YsBDd1KujhvU9z7TfF97r8gtjdfmFsUqoFSBJ2nuwRP/7OkOrNxZIki7rHaM+3aPVrGGwQkP8dP2YzSosOvm6iFdcFKtB/eMUE+Wv5H3Fmv6/VG1PrvxuHeBv0x3X11HvblEK8LdpzaYCTfvgoHLyTv45CwC+okPbKN18XQO1PCdccbWCNO4/G/XT8sMnfEyndlEafcc5atIwTBmHSjTz4736dkG6W5vTvSYK6/rq0xlatWyhUvfvVUBQkJq3aq8bh4xRYv1Grjb/eeQf2rpxjdvj+va/VsPuHidJys/L0WsvPK59e3aqID9XkVEx6ty9j66/daRCQo//fbwgP1fvvfGc1v76s+x2m85Luki33nG/gkMqrzml7Nmhma9PUvKOLYqIjNYlV16vK68bYvKrAE9b9NUb2rhqvg6l7lZAQLAaNe+ky268X7UTm7jalJWWaO6s/2r9irmqKCtT8/Y9dc1tjysiKk6SVJifrY9ee1Bp+7bpSEGOwiNrqXXnvup//X0KDjn++/BIQY6+eu8/2rp2oWx2u9qdd4muvPXfCgqu/A6VmrJNX82coP3JGxQWEaukSwarz5V3nL0XBLAAllL3Qn171dboO87Ru//bo+H3rtbO5AK98FR7RUcFVNm+XatIjf9XG835PlW3/3O1flp+WBMfaasmDSv/UA8e1EB/u7Kenpu2Q3c+sFZFxRV64an2CgywVdevBS8S4Cdl5Bj6bnXVF30O50vfrXHorXkO/d8Ch3KPGLqxj12hQce27dvBpvxTnF9xSSebmtW1afZSh95f6FB4iHRdr8qPIZtNuv4Cu/zs0swFDn29wqFzG9vUux3vU6upXStWd916o958/mm9+dzT6ty+rf498Xklp+xXZla2MrOydfdtN2vmS5M07p5/aMXa9frvq2+4Hm+329SrWxdNfOQBfTDtef37nn9o9fqNev61d074vBNenKo9KQf0wpPj9OyjD2j95i16btpbrvsLjxzR/U9MVEJ8nN58/j+6+7ab9e6Hn+mr7xactdcClQzDqLbb6SgsLFSHDh00derUKu+fNGmSXn75ZU2fPl0rVqxQWFiY+vfvr+LiYlebwYMHa9OmTZo/f77mzJmjJUuW6M477zyj1ws4nvatwvXVD5n655Pb9fB/d8nPz6aJDzVTcFDl39ygQLtW/ZavD79KP8GZ3PXpHq27bq6n92en6e7Html3SpGeefAcRUdWzrX9x+B66tExSk+/mqwH/rNDtaIDNP6fTU5wVljNxpQ0fbp8g1okxrkdn/zlYi3enKzJQ67QO3f/TYfyCjR2xpxjHv/UDZdowfgRrlvfduec8PnGffCtdqUf1vS7rtXLw6/Rmt0H9NQnlX+3C4pL9I83ZisxJlL/u+9m3XfVBZr+/XJ9umyDOb8wvFpmdplmfJamf07YpX8+vUu/bS3QY6MbqmFd5xeboEC71mzM18dzD53yOS/oGqkR19fRrK8zdM9Tu5S8r1gT7m2sqAg/V5sRN9ZRtw4Rmjh9nx6enKzY6AA9cndD038/nBpvzJeSc/LlVVddpbp168pms+mLL744pt+PP/64EhMTFRISon79+mnHjh1ubbKysjR48GBFRkYqOjpaw4cPV0FBwZm8XMApCwn2c16znL7j5I0lJSYEa9L49lr7W46G3bNaH3+1Xw+NaalunWJcbU73miisbevGNep3+d81fvLbeujJV1RRXqH/PjFGxcXuFyIvvHSgXpkx13W78bYxrvvsdrs6d++t+x55TpNf+1R3/vNxbVq/Uu++9uwJn/u1Fx7XgX279dCTr2jsoy9o26Z1emfaM677i44UaNL4MYqrnainXpipG2+7R7P/96Z+/G62uS8CPG731l+V1O9m3T3+Qw1/6G1VVJTpnf8OV2lx5QTxbz6YqC3rFmnw6Cm685H3lJeToQ9eusd1v91uV5vOfTXkvmm6f/K3+tudz2jXpmX64t0nTvjcH732oDIO7NTtD72toWNfU/K2VZr9znjX/cVFBXpn0h2Kjqur0U99qgE3PqAFs6dq5Y8fm/46wJ23XsMkX54aBsa90I0D6+vr71I1d0G69uw7osnTdqi4xKErL6lTZfu/X11PK9Zk6X+z92vv/iN664M92r6rQIOurOfW5r2P9+rnFYe1a0+hnn5xq2rFBumCHnFVnhPWtjtNWrzRcKsS/6PNKYb2pEs5hVJmnvTDWkPBgTbFR7m3a1pHalLHph/Xn7yqIihA6tDEpgXrHNqbIaVlS9+sdKhBnE11aznbNEmQ4iKlr5Y7lJFT2c8uzWyy82llKT27dVHSeZ3UoG6iGtRL1IhbblBIcLA2bduhpo0a6OmH71PPbl1ULzFBXc5tqxGDr9fSX9eovMJZZRMRHq6BAy5Rq2ZNVSe+trp0aKeBAy7R+s1bj/uce/Yd0Io16/Xg6BFq06KZzm3TSveOuE0Lfl6mzKxsSdL8xb+orLxcD4++S00a1tfFF5yvQVf218dfza2W1wXeacCAAXr66ad17bXXHnOfYRiaMmWKHn30UV1zzTU699xz9d577+ngwYOu8LllyxbNmzdPb731lrp3765evXrplVde0YcffqiDBw9W82+DmuCRybs0/6cs7T1QrN0pRXrujRQlxAWqeeMQV5vZ3x3SR3PStWVn4Smfd9CAeH276LC+/ylLKQeL9dK7+1RS4lD/3s4/5KEhdl3Wp5Zen3VA6zYXaMeeIj3/5l61bRGuVuccfzUPWMeRklKN+2Cexv+9nyL/MKMyv6hEs1du0gNX91b35g3UpkGCnrrhUq3bk6rf9qa6nSMiJEhxkWGuW1DA8Rc5252epV+27tX46y/RuY0S1blpPT187YWat26bMnKdX9znrtmqsvIKPXXDJWpWp5YGdGqpm3p11P8tXnPc88I6Vq7P16oNBTqYUaqD6aV6b3aGikscatXU+Zn05Q+H9cm3mdq6+9RXUrv2kjjN+ylbP/ySo32pJXr1/YMqLnXo0l7OgZ3QELsu7RWjtz5O029bC7Vzb7GmvLtfbZqFqWXTkJOcHTUJky/h65avztKb7+/RkpNUif9u4GWJSk0v1qvv7Nbe/Uf0+TcHteiXQ7rhmvquNqd7TRTW9uATL6v3xVeqfsNz1KhJC935z8d1+FCa9uza4tYuKChY0TFxrtsfK8HDwiPVb8Df1LR5G8XFJ6pth266eMDftG3TuuM+74F9yfptzTINH/WImrVsp5ZtOmrInQ9o+U/zlX3YOZnul8XzVF5erhFjHlP9hucoqfeluvTKGzTvy1ln5bWA59z+4Jvq0vtaJdRvrsRGrfS3Oycq53CqDuzZJEkqPpKvVYs/1xU3P6Rz2vZQvSZt9bcRz2jvjrVK2blOkhQSFqUe/W5S/abtFBNXT83aJqn7xTdpz7bVx33ejAO7tP23n3Td8Alq2KyDGrfsoquGPKrfls9VXnaGJGndL1+rorxMg0Y8rYT6zdUh6Qqdf+kt+nnejLP9ssBLkS9PDUNNXsbf36YWzSK0an2265hhSKvWZatty8gqH9OuVaRWrct2O7ZibZbatXK2r5sQrLjYIP36hzaFRyq0eXueqw1wPHa71Okcm4pLDaXnVB4PC5Iu72rXV8sdKjuF1VHrxEh+fjYl/6Ew7XC+lFtoqF4tZ0V4/TibDuXKbWn13WnOQfnavFUtq6LCoQU/LVVxcYnatWpeZZvCI0UKDQ2Rv59flfdnZmVrybJf1bFd6+M+z6ZtOxQeFqpWzZq6jnXp0E52m02bt+90tenQppUC/nARvlunc5VyIFX5FpsZ540cDqPabmZJTk5WWlqa+vXr5zoWFRWl7t27a9myZZKkZcuWKTo6WuedV7lsb79+/WS327VixQrT+gIcT1iIM/LnF/71JXz9/Wxq3jhUazdVLmNpGNLaTflq3cw5wNSiSagC/O1a84c2+1JLlJ5ZqjbNw445J6znmc8XqnebJurRwr0ydvP+DJVXONS9RQPXsSYJsUqMidD6PanHnKPPY9N185T/afaKTSecIb9+T6oiQoLUtkGC61j35g1lt9m0ISXtaJs0dWlaTwH+lRni/FaNtOdQtvKOFB9zTliX3Sb17hql4EC7tuw6cvIHVMHfz6ZmjUK0bnNlLjQMad2WAtdge7NGIQrwt7u12Z9WqozDpWrNJCGP8NZ8yeRL1DRtq7h+uXJNltoevTb5V66JomYpOuL82xoW7l65s3TxPI285RI9POZGffTeVJWUHD/jZR8+pFXLF6pVu87HbbNz2waFhkWoafM2rmNtO3SVzWbXru0bnW22blDLth3lH1C5mkH7Tj2UemCvCgvy/tLvB99QXOT8vhsS5nwfHkjepIqKMjVrm+RqE1+3qaJrJSplx7oqz5GXnaFNq+arSauux32elJ3rFBwaqfpN27mONWubJJvNrn271rvaNGl5nvz9K7eRat6+lw6lJquoMPcv/444OW+9hkm+PDWnvcd4UVGRVq9erdjYWLVp08btvuLiYn388ccaMoS9NP6qqMgA+fvZlJVd5nY8K6dMjepX/SU6NjpQ2Tmlbseyc8oUG+38QIyNCXQdc29T6roP+LNmidLAJLsC/KWCIul/ix0q+sPb7Mrudq3dZSgtW4o6hes7YcE2lVcYKnF/G6qwWAoP/r2N8+c/3//7fbCWXXtSdPfD41VaWqaQ4GA9/fB9atyg/jHtcvLyNPPj2br60r7H3Pfk86/o5xWrVVJaqvO7dtaDo0Yc9/mysnMUE+X+5cnfz08REeHKys6RJB3OzlViQm23NrHRUa77ItgP2jJKSkpUUlLidiwoKEhBQVXsGXECaWnOgZeEhAS34wkJCa770tLSFB8f73a/v7+/YmNjXW1qOvLl2WOzSf+4pb42bivQnv1/fRAwMsJPfn42Zef+KU/mlatBXecf6ZioAJWWOY7Zqzw7t0wxLH9ped+u3aYt+zM0696bjrnvcH6hAvz8FBniHuhiw0OVmV+5asHdlyWpW7MGCg7w17Lte/XM5z/qSGmpBl/QqcrnPJxfqNhw9yDq72dXZGiwDh89b2Z+oerFul9Mr3X0MZn5RxQZSsi0ukb1gvT8uKYKDLCrqMShp6elaF9qyckfWIXIcOdnYU6e+8zgnLxyNajjzBAxkf4qK3Mcs1d5dl65YiJP+xIMfIhZ+VI6+eTLG2+88aSTL6u6IFrTkDG9S62YQGX96fplVk6ZwsP8FRhoV0S4/2lfE0XN4XA49P5bL6hF6w5q0Khyq52k3v0VV7uOYmJrK2XPTn303qtKO7BX/xw3ye3xU597VGtWLFZpaYk6db1Aw0c/ctznys0+rMioGLdjfn7+CouIVE6Oc4WE3Jws1U6o69YmKjpWkpSTfVhh4UzmsCKHw6E5709UoxadVadBC0lSfm6m/PwDFBLm/m8eHhWn/NxMt2P/m3q/tqz5UWWlxWrd6SJdN3zCcZ8rPzdT4ZGxbsf8/PwVEhal/JxMV5vY2u7XUsOjnCu65edkugbv4dvMypjky0qnVTG+fft2tW7dWr1791b79u3Vp08fpaZWzvDPzc3VsGHDTnqekpIS5eXlud0cFaUnfRyA6rM3Q3r7e4dmLnBoV5qha5Mq9xg/r7lNgf7S0i3mVV2i5mlYr67efnGipk96StcM6KdnXp6uPfv2u7UpPHJED02YrMYN6mnYjYOOOcfo22/VWy/8R8/8+34dTEvX1Hfer67u4ywwjOq7TZw4UVFRUW63iRMnevolqJHIl2fX6KH11bh+sJ6ZusfTXYGFpWXna9IXizVx8GUnXPr8ZO66pLs6Namr1vXjdXvfrrrtovM0c+HxlxcETsWBtFKNeWqXxj6zS3MXZWns7fXVIPH0Byrhu3wxXzL58syZkTHJl4D3mPn6JO1P2a1RDzztdrxv/2t1buckNWjcTD0vvEx33Tteq5YvUnqq+/WlwcPv1YQX/0/3/fs5ZaTt16x3plRj72EVX818Sun7d+imUc//pcdfOfhhjZ7wmW69b6oOZ6Tom1kn3use3ssXr2GSLyud1sD4Qw89pHbt2ikjI0Pbtm1TRESEevbsqZSUlNN60qr+Iffv/OC0zmFVuXllKq8wFBvjXlUTGx2gw9lVh++snFLFRLtXfsdEB7hmYWYdfVxMdMCf2gS67gP+rKxCyi6QDh6W5v5qyGFIHZo6lzxvFG9TvVrSQ3+z6+G/2zXyCudHye2X2HVlN1uV5yssNuTvZ1PQnwrGwoKlguLf2xxbGf77z3+uJIfvCwjwV/3EOmrZrKnuuvVGNWvcUJ98Pc91/5GiIj3w5H8VGuKsJvf3P/ZCe62YaDWqX0+9unXRAyOH64t5P7j2C/+z2JhoZee6LyNUXlGh/PwCxcZEHz1flLJz3NtkHf25VgyzLK1k3Lhxys3NdbuNGzfutM9Tp45zr7v09HS34+np6a776tSpo4yMDLf7y8vLlZWV5WpTk53NfJm88Z2z1GvfMGpIffXoGKUHJ+5U5p8qb05XXn6FKiqMYyq/YyL9lXV0VaLs3DIFBtgVFuq+7UVMVMAxleawls3705VVcEQ3vjhLnf/1kjr/6yWt2nVAs35ep87/ekm1wkNVVlGhvCL3QJdVcERxEcdfZr99wzpKzy1QaXnV+/bUighTVoH7ktjlFQ7lHSlWraPnjYsIU1a+e5vDRx8TF0H1WU1QXmEoNaNUO/cWa+bn6UreV6xr+tX6S+fKK3B+Fkb/qfI7OtJf2bnO92l2XrkCAuyubSx+FxPpr+y8U9iDCj7LrHwJc5iRMbl+aa7D2aWu1S1/FxsdoILCcpWWOv7SNVHUDDNfn6x1v/6scU9PU2xcwgnbntPCuex0euo+t+PRMXGqW7+xOnfvrWF3j9OCbz9TTlZmVadQVEwt5eW6X1uqqChXYX6eoqOdGSIqOla5R6vHf5ebk3X0uf5azoB3+3LmBG1dt1gjxs1UVGzltZyIqDhVlJepqNB9Cf2C3ExFRMW5HYuIrq34uk3VpnNfXTvsSa1Y8KHyctyvF/3xvAV5WW7HKirKVVSYq4jouMo2ue7vw99//r0NfB8Z03ynNTC+dOlSTZw4UXFxcWrWrJm+/vpr9e/fXxdccIF27959yuep6h+yfrPBp915KyovN7R9Z766nFu5XIvNJnXpEKNN26ren2Tj1jyd18F9eZeuHWO0cauz/cH0YmVmlbi1CQ3xU5sWka42wMnYbJL/0U+M+Wsdevv7yttHS5zLBM5e5tDiDVVXkadlSxUVhhr/Ib/GRkhRYTYdOOx8zP5MQ7Wj5KpMl6QmCc79zTN5q1qewzBUdnTD+sIjR3T/ExMV4O+viY88oKDAk2/74Di6B2nZcTa9b9uyuQoKj2jbzsq/V2t+2ySHYahNi2auNus3b1X5Hy7Ar1q3QQ3rJbKMejUwHEa13YKCghQZGel2+yvLXDZp0kR16tTRggULXMfy8vK0YsUKJSU595dKSkpSTk6OVq+urHr88ccf5XA41L179zN/4Xzc2cyXTdrdfhZ77t1GDamvnl2i9K+JO5V26MwvJJZXGNqx54g6tolwHbPZpI5tI7Rlp3OQcXvyEZWVO9SpTeXnZf06QUqIC9TmHYXHnBPW0b15Q336wC36aOxg161tgwRd3rmVPho7WG0aJMjfz66VOyovUO7JyFJqdr46NE487nm3HTykyJAgBVYxOU6SOjROVH5RiTbvq5yctHLnPjkMQ+0b1jnapo5W7z6gsorKJf6Xb09R49oxLKNeQ9lsUoB/1ZN5T6a8wtDOvUXq2Lryc85mkzq2CtfW3c7Pwp17i1RW7lCHP7SplxCo+FqBf3lvc5wZX8uXEpMvzWBGxuT6pbk2bc1Tlw7Rbse6dorRpqPXJv/KNVFYm2EYmvn6ZK1evkjjnp6m+IR6J31MSvJ2SVJ07PEHBQ3DeR2zrKzq70nNWrbXkcJ8Je/c4jq2+bdVMgyHa+C9Wav22rZpndv1o43rVyqxXiOWUbcYwzD05cwJ2rz6B90x7l3FxrsvXV6vSVv5+QVo1+blrmOHUpOVczhVDZt3PMF5ne/DirKqJ5E3bNZRxUfydCB5k+vYrs0rZBgONTing6tN8rZVqiivPMfOjUtVO7EJy6ifZb54DZN8Wem0BsaLiorcKvZsNptee+01XXXVVerTp4+2b99+Suep6h/S7sde17/78Iv9uqp/oi7rm6BG9UP1wN3NFRJs1zc/OJcqePS+lrprSBNX+0++OqDunWN048D6alg/RLff1EitmkXoszkH3NoMvaGhenarpaaNwvTo2FY6nFWin5ZXPTMO1hbgL8VHO2+Sc3A6PlqKDJUC/KQ+7W2qW8v5c50Y6YquNkWESFv2OQce845Ih3Irb1n5zvNkF0j5Rc7/Dg+R7hpgV+LRrVBKyqT1yYb6dbSrUbzzvFd2s2t/pqGDRye2JadLmXnS1d3tio+WmtRx9mX1TkMV7lv0wce9/n8fat2mLUpNP6Rde1KcP2/cokv69Dw6KP6siopL9NDoO1V4pEiHs3N0ODtHFUffCMtWrdXcBYu0e+8+paYf0rJVa/X8a++ofesWrj3CN2/fqVtG3a9Dh52zKxs3qKfunTto0rS3tHn7Tm3Ysk1T3pyhi3slKS7W+cW7X++eCvD3139ffUPJKfu14Odl+nTOd7r+6ss980LBKxQUFGjdunVat26dJOeePOvWrVNKSopsNpvuvfdePf300/rqq6+0YcMGDRkyRHXr1tXAgQMlSa1bt9Zll12mESNGaOXKlfrll180evRo3Xjjjapbt+7xn7iGIF+ab8zQ+rr4/BhNfG2vioorFBPlr5gofwUGVA4ExUT5q2nDENVNcH6ZalI/WE0bhigirLLa+78PN9PV/SovKH32bYYuv7CWLukVqwZ1g3TPbQ0UHGTXd0ucf8iPFDk0b/Fh3TW4vjq0DlfzxiG6/86G2rSjQFsZDLK0sOBANU+Mc7uFBPorOjRYzRPjFBESpGu7tdVzXy3Ryp37tHlfuh7/cL46NErUuY2cA+OLNu3W58s3akdqplIyc/Tx0vV6a8FK3dSro+t5NqSk6ZpnZyo9t0CS1DQhVj1bNdKTn/ygDSlpWpt8UBM/X6jLOrZUfJRzUHJAp1YK8PfTEx/9oJ1phzVv7TZ98NNa3dqnc7W/Tqh+Q69LUNvmoYqvFaBG9YI09LoEtW8ZpoUrciQ5q7ibNghWYrzz70Xj+sFq2iBY4X/4LPzP/Y115UWV+zvOnp+p/r1jdPH50WqQGKRRt9RVcJBd839xVpYdKXLo+5+zNeKGOjq3ZZiaNQrWfcPqa8vOI9q2u6j6fnn4NCZfnjkzMib58sRCgu1q1iRMzZo4V2lJTAhWsyZhSqjtzJd3DWmiR+9r6Wr/xbxU1a0TopG3NVXD+iG69vK6uqhXvD76snLJ65NdE0XNMvP1SVq6+FuNvH+CgkNClZOdqZzsTJWWOFchSk/dry8+elvJO7foUPpBrVmxRK9PeUIt23ZSw8bNJUnrVv2iJT98rX17d+lQ+kGtW/Wz3p32X7Vo3cG1R/iu7Zv04N1/V9Zh52BQvQZNdG7nJL099Rnt2r5J27es13tvTFaPCy5RTC3nNafze18mf39/vfXKBO1P2aXlP83Xd19/qMuuudkDrxTOpi9nPqV1S7/WDSMnKyg4TPk5h5Sfc0hlpc73YXBohM7rc52++eBZ7dq8QgeSN+nTN/6ths06qmGzjpKkresWa9WSz5W2b7uyDx3Q1nWL9MW7T6pRi86Kqe2c8LFv12964cHLlZvlHLSMr3eOWpx7gT5/+zHt2/Wb9mxfo6/em6Bze1yuyBjnUtcdz79Sfv4B+uytR5W+f4d+Wz5Xv3z3f+p12W3V/jrB+5EvK53WBnCtWrXSqlWr1Lp1a7fjr776qiTp6quvNq9nNdiPPx9SdFSA7hjcWLExgdq5u0D3j9+g7KPLVCbUDpbjD0W5G7fm6cnntmjELU1055Am2n+wSOP+s0nJKZUXID/4bJ+Cg/304OgWCg/z14bNubp//AaVlrFHdE2UGCPd0rfyYs8lnZxzZH5LdujbVYbiIm06t7FNIUFSUamUmiX934+O06ra9rNJtSJtCvjDaqrz1xoyDOm68+3y85OS06R5qytHvA1D+vgnhy7rYtfQi+0qK5d+22NoyUbep1aTnZOnZ6a8psPZOQoLC9U5jRroufEPq2vH9lq7YbM2b98pSbpp5H1uj/vo9ZeUmFBbQUGB+vr7hXr17fdVWl6m+Lha6t2jqwZfV/l3qKSkVCkHUlVeXlkh9th9ozTljRm67/FnZLfb1Cepm+65Y6jr/vCwUD3/xDi9+Pq7GnH/I4qKjNDQG67V1f0vPsuvCKTKqn9vs2rVKl100UWun8eOHStJGjp0qGbMmKEHH3xQhYWFuvPOO5WTk6NevXpp3rx5Cg6urET84IMPNHr0aF188cWy2+0aNGiQXn755Wr/XbwR+dJ8V/VzXqx5/pHmbscnv7FX839yTha6sm+cbr2uslL3hcdaHNMmMT5QURGVXxcWr8hRVIS/hgxKVEyUv3anFOmRybuU84elgad/cECGIT12TxMFBti06rd8vTLTfRlD1Ez/uqaP7Dab7p8xR6UVFTq/ZSM9cl1f1/0BfnZ9+Mt6Tf5qsQxDahgXpQeu7q1B3du72hSXlmnPoWyV/6H6e+LgAZr4+ULdOf0z2W02Xdy+mR6+9kLX/REhQZp+57V65vOFuunFWYoOC9Fdl3TX35Iqzwvrio7w1/3D6ys2yl+FRQ7t2V+sx6bs0brNzlUsBlwYq8FXV+6hN+mhppKkF9/Zrx+W5kiSEmsHKvIPn4U//ZqnqPA03XJNvGIi/bV7X7Een7JHOXmV78s3P0yT4ZD+fXcDBfjbtWZTvqa9X7m3MaqXt2bMgoIC7dy50/Xz75MvY2Nj1bBhQ9fky+bNm6tJkyZ67LHHjjv5cvr06SorK2Py5R+QMc++Vs0i9MrEjq6f77nDuRLb3AVpembKNtWKDVRC7crvRKnpxXrwyQ0ac8c5+vvV9XQos0T/fWWbVq6tXLL6ZNdEUbMs+PYzSdIzj/zD7fiIex5X74uvlL9/gDauX6nvvv6fSoqLFRuXoPOSLtLA6ytXDgsMDNLC77/QB++8qLKyMtWKi9d5PS7SlYMqrwWVlhQr9cBeVfyh+nvk2Kf03huT9exjo2Sz29Q1qa9uHXG/6/7QsHA9+OQrmvn6JD0+dqjCI6N17Q3D1bf/tWfr5YCHrFjwoSTpzWeGuh3/24hn1KW389/7isHjZLPZ9cHL/1R5WalanNtT1wx93NU2IDBYvy78RN988KzKy0oVVauO2p13ifpcOcLVpqy0WIdSk+WoqHwf3jBykr5672m99eww2Wx2tet6qa669d+u+4NDI3T7g2/pq5kT9Orjf1NoeIwuvnakuvW9/qy8FqhEvvRtNsM49X/BiRMn6qefftLcuXOrvP/uu+/W9OnT5XCcfmlnr6sWn/ZjADNdfksvT3cB0PBz13m6C4ASWnfxyPOOmVJ9y+O9ci9Lm3mLs5kvL7117Zl2DzhjX92w/OSNgLNs0BcXeLoLqOG+eaudx567ujLmbq+wfAAADdxJREFU6ebLRYsWuU2+/N3vky8Nw9D48eP1xhtvuCZfTps2TS1atHC1zcrK0ujRo/X111+7Tb4MZxuos5YxuX4Jb/DC5I6e7gKg/XkRJ28EnGXXdTutRbFN463XMMmXp+a0BsbPJoIlPI2BcXgDBsbhDRgYh1UwMA5vwMA4vAED4/A0BsZhFVy/hDdgYBzegIFxeAMGxvFXnNZS6gAAAGeL4fCKuXoAAACwEDImAAAAzES+9G2emU4BAAAAAAAAAAAAAEA1oWIcAAB4BWZbAgAAwGxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArMNkSAAAAZiNjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF6B/XkAAABgNjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg9mWAAAAMBcZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJZGxTgAAPAKDvbnAQAAgMnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXYH8eAAAAmI2MCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFg/15AAAAYDIyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVmG0JAAAAs5ExAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK/gMJhtCQAAAHORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvwP48AAAAMBsZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJbGwDgAAAAAAAAAAAAAwNJYSh0AAHgFw2AZIgAAAJiLjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLo2IcAAB4BYeD2ZYAAAAwFxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AoGsy0BAABgMjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg9mWAAAAMBcZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJZGxTgAAPAKhsPh6S4AAADAYsiYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdwONifBwAAAOYiYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTCYbQkAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2CwPw8AAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvAKzLQEAAGA2MiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFRyGw9NdAAAAgMWQMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNpdQBAIBXMByGp7sAAAAAiyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF6B2ZYAAAAwGxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AqGwWxLAAAAmIuMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFh8Ph6S4AAADAYsiYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFcwHOzPAwAAAHORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYBjszwMAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr8D+PAAAADAbGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCsy2BAAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcBgOT3cBAAAAFkPGBAAAgJnIl76NinEAAAAAAAAAAAAAgKVRMQ4AALwC+/MAAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCsYDvbnAQAAgLnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0BsYBAAAAAAAAAAAAAJbGUuoAAMArGA7D010AAACAxZAxAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK9gGA5PdwEAAAAWQ8YEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvIKD/XkAAABgMjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMB/vzAAAAwFxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArGOzPAwAAAJORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYBjszwMAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaQyMAwAAr2A4jGq7/RVTp05V48aNFRwcrO7du2vlypUmvwIAAAAwG/kSAAAAZvLma5jky5NjYBwAAOAkPvroI40dO1bjx4/XmjVr1KFDB/Xv318ZGRme7hoAAAB8EPkSAAAAZiJfnhoGxgEAgFcwHI5qu52uF154QSNGjNCwYcPUpk0bTZ8+XaGhoXrnnXfOwisBAAAAs5AvAQAAYCZvvYZJvjw1DIwDAIAap6SkRHl5eW63kpKSKtuWlpZq9erV6tevn+uY3W5Xv379tGzZsurqMgAAALwY+RIAAABmO9WMSb48df6e7sDvfv66j6e74NNKSko0ceJEjRs3TkFBQZ7uDmog3oNm6eLpDvg03oe+rTqzwBNPPKEnn3zS7dj48eP1xBNPHNM2MzNTFRUVSkhIcDuekJCgrVu3ns1u4gx9/3+dPN0Fn8Znqll4H54J3ofm+OZKT/fAd/Ee9H3VlTHJlzUD1y/PDJ+p8Aa8D83RzdMd8HG8D32bN17DJF+eOpthGKe/ezu8Tl5enqKiopSbm6vIyEhPdwc1EO9BeAPehzhVJSUlx8yuDAoKqvLLyMGDB1WvXj0tXbpUSUlJruMPPvigFi9erBUrVpz1/gKewGcqvAHvQ3ga70GcKvIlcHJ8psIb8D6EN+B9iFN1qhmTfHnqvKZiHAAAoLoc7yJlVeLi4uTn56f09HS34+np6apTp87Z6B4AAAB8DPkSAAAAZjvVjEm+PHXsMQ4AAHACgYGB6tKlixYsWOA65nA4tGDBArcZmAAAAMCpIF8CAADATOTLU0fFOAAAwEmMHTtWQ4cO1Xnnnadu3bppypQpKiws1LBhwzzdNQAAAPgg8iUAAADMRL48NQyMW0RQUJDGjx9/yst2AWbjPQhvwPsQZ8sNN9ygQ4cO6fHHH1daWpo6duyoefPmKSEhwdNdA84aPlPhDXgfwtN4D+JsIV+iJuIzFd6A9yG8Ae9DnA3ky1NjMwzD8HQnAAAAAAAAAAAAAAA4W9hjHAAAAAAAAAAAAABgaQyMAwAAAAAAAAAAAAAsjYFxAAAAAAAAAAAAAIClMTAOAAAAAAAAAAAAALA0BsYtYOrUqWrcuLGCg4PVvXt3rVy50tNdQg2yZMkSXXXVVapbt65sNpu++OILT3cJNdDEiRPVtWtXRUREKD4+XgMHDtS2bds83S0A8FnkS3gaGROeRr4EAPORMeFJ5Et4GvkS8A4MjPu4jz76SGPHjtX48eO1Zs0adejQQf3791dGRoanu4YaorCwUB06dNDUqVM93RXUYIsXL9aoUaO0fPlyzZ8/X2VlZbr00ktVWFjo6a4BgM8hX8IbkDHhaeRLADAXGROeRr6Ep5EvAe9gMwzD8HQn8Nd1795dXbt21auvvipJcjgcatCggcaMGaOHH37Yw71DTWOz2TR79mwNHDjQ011BDXfo0CHFx8dr8eLF6t27t6e7AwA+hXwJb0PGhDcgXwLAmSFjwpuQL+ENyJeAZ1Ax7sNKS0u1evVq9evXz3XMbrerX79+WrZsmQd7BgCelZubK0mKjY31cE8AwLeQLwGgauRLAPjryJgAcCzyJeAZDIz7sMzMTFVUVCghIcHteEJCgtLS0jzUKwDwLIfDoXvvvVc9e/ZUu3btPN0dAPAp5EsAOBb5EgDODBkTANyRLwHP8fd0BwAAMNOoUaO0ceNG/fzzz57uCgAAACyAfAkAAAAzkS8Bz2Fg3IfFxcXJz89P6enpbsfT09NVp04dD/UKADxn9OjRmjNnjpYsWaL69et7ujsA4HPIlwDgjnwJAGeOjAkAlciXgGexlLoPCwwMVJcuXbRgwQLXMYfDoQULFigpKcmDPQOA6mUYhkaPHq3Zs2frxx9/VJMmTTzdJQDwSeRLAHAiXwKAeciYAEC+BLwFFeM+buzYsRo6dKjOO+88devWTVOmTFFhYaGGDRvm6a6hhigoKNDOnTtdPycnJ2vdunWKjY1Vw4YNPdgz1CSjRo3SrFmz9OWXXyoiIsK1R1lUVJRCQkI83DsA8C3kS3gDMiY8jXwJAOYiY8LTyJfwNPIl4B1shmEYnu4Ezsyrr76qyZMnKy0tTR07dtTLL7+s7t27e7pbqCEWLVqkiy666JjjQ4cO1YwZM6q/Q6iRbDZblcffffdd3XbbbdXbGQCwAPIlPI2MCU8jXwKA+ciY8CTyJTyNfAl4BwbGAQAAAAAAAAAAAACWxh7jAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKUxMA4AAAAAAAAAAAAAsDQGxgEAAAAAAAAAAAAAlsbAOAAAAAAAAAAAAADA0hgYBwAAAAAAAAAAAABYGgPjAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKX9P0TaTDuStkpZAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "labels = ['get_dummies', 'LabelEncoder', 'PCA', 't-SNE', 'SandartScaler']\n",
+ "y_preds_dtc = [y_pred_dtc_gd, y_pred_dtc_lbe, y_pred_dtc_pca, y_pred_dtc_tsne, y_pred_dtc_scal]\n",
+ "accuracy_dct = list(map(lambda x: accuracy_score(Y_test, x), y_preds_dtc))\n",
+ "\n",
+ "y_preds_sgdc = [ y_pred_sgdc_lbe, y_pred_sgdc_pca, y_pred_sgdc_tsne, y_pred_sgdc_scal]\n",
+ "accuracy_sgdc = list(map(lambda x: accuracy_score(Y_test, x), y_preds_sgdc))\n",
+ "\n",
+ "y_preds_svc = [ y_pred_svc_lbe, y_pred_svc_pca, y_pred_svc_tsne, y_pred_svc_scal]\n",
+ "accuracy_svc = list(map(lambda x: accuracy_score(Y_test, x), y_preds_svc))\n",
+ "\n",
+ "\n",
+ "plt.plot(labels, accuracy_dct)\n",
+ "plt.title('accuracy score for DecisionTree.')\n",
+ "plt.show()\n",
+ "\n",
+ "\n",
+ "plt.plot(labels[1:], accuracy_sgdc)\n",
+ "plt.title('accuracy score for SGDClassifier.')\n",
+ "plt.show()\n",
+ "\n",
+ "plt.plot(labels[1:], accuracy_svc)\n",
+ "plt.title('accuracy score for SVC.')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "fV3XMnjYsjFS",
+ "outputId": "afefdeb9-c18f-476f-e1d1-523d4c52f2be"
+ },
+ "execution_count": 249,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnUUlEQVR4nO3dd3zTdf4H8FeSZnQk3buF0hY6GC0UypAhCoIiS0TQO5bAKY7DQz3lVEBFuTsXd+qJ+hPxXHBsTjkEqygqsjeFMlra0t3SPZN8fn+kiYQOWmj7TZrX8/HIA/rN95vvO6P5vvtZb5kQQoCIiIjIAcilDoCIiIioozDxISIiIofBxIeIiIgcBhMfIiIichhMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiSZw7dw533HEH3N3dIZPJsGXLFqlDaldhYWGYPXt2q45ZtmwZZDJZ+wRE5KCY+BCRJGbNmoUTJ07glVdewaeffor+/fu327nS0tIgk8ksN6VSCR8fHwwZMgR/+ctfkJ6e3m7ntmVhYWFWr0tTtzVr1kgdKlGbkbFWFxF1tKqqKri4uOC5557D8uXL2/18aWlp6NatG+6//37cddddMBqNuHLlCg4cOIBNmzZBJpPho48+wvTp09sthpqaGsjlciiVyhYfo9frodfrodFo2iWmLVu2oLy83PLz9u3b8eWXX+Ktt96Cj4+PZfuQIUMQHh7eLjEQdTQnqQMgsmUVFRVwdXWVOgyb0havSX5+PgDAw8OjDSIyaUlc/fr1w+9//3urbZcuXcIdd9yBWbNmISYmBnFxcW0W09XUanWrj3FycoKTU/t9TU+aNMnq55ycHHz55ZeYNGkSwsLCmjyOvxdkz9jVRR3q0qVLeOSRRxAVFQVnZ2d4e3tj6tSpSEtLa7BvcXEx/vSnPyEsLAxqtRohISGYOXMmCgoKLPtUV1dj2bJl6NGjBzQaDQIDA3HPPffgwoULAIDdu3dDJpNh9+7dVo9t7vq4ugl/9uzZcHNzw4ULF3DXXXdBq9Xid7/7HQBgz549mDp1Krp06QK1Wo3Q0FD86U9/QlVVVYO4z5w5g/vuuw++vr5wdnZGVFQUnnvuOQDA999/D5lMhs2bNzc47osvvoBMJsPevXubfP3q6urw4osvonv37tBoNPD29sbQoUOxa9euFsdgduTIEdx5553Q6XRwc3PD7bffjl9//dVqnzVr1kAmk+GHH37AI488Aj8/P4SEhFju/9///odhw4bB1dUVWq0W48aNw6lTp5qMHzCNW+natSsA4Omnn4ZMJrO6yLZFXK3RtWtXrFmzBrW1tfj73/9udV9xcTGeeOIJhIaGQq1WIzIyEn/7299gNBqt9jMajfjHP/6B3r17Q6PRwNfXF2PHjsXBgwct+1w7xqcl72VjY3z0ej1efvllREREQK1WIywsDH/5y19QU1NjtV9YWBjuvvtu/PTTT0hMTIRGo0F4eDj+/e9/t+r1ae73wmg0YuXKlejZsyc0Gg38/f3x0EMP4cqVKw0e50Y+K0TtgS0+1KEOHDiAX375BdOnT0dISAjS0tLw3nvv4dZbb8Xp06fh4uICACgvL8ewYcOQnJyMBx98EP369UNBQQG2bduGzMxM+Pj4wGAw4O6770ZSUhKmT5+OhQsXoqysDLt27cLJkycRERHR6vj0ej3GjBmDoUOH4vXXX7fEs379elRWVmLBggXw9vbG/v378fbbbyMzMxPr16+3HH/8+HEMGzYMSqUSf/jDHxAWFoYLFy7gv//9L1555RXceuutCA0Nxeeff47Jkydbnfvzzz9HREQEBg8e3GR8y5Ytw4oVKzBv3jwkJiaitLQUBw8exOHDhzF69OgWxQAAp06dwrBhw6DT6fDnP/8ZSqUS77//Pm699Vb88MMPGDhwoNV5H3nkEfj6+mLJkiWoqKgAAHz66aeYNWsWxowZg7/97W+orKzEe++9h6FDh+LIkSNNthjcc8898PDwwJ/+9CdL15Obm1ubxXUjBg8ejIiICKuko7KyEiNGjMDly5fx0EMPoUuXLvjll1+wePFiZGdnY+XKlZZ9586dizVr1uDOO+/EvHnzoNfrsWfPHvz6669Njl1qyXvZmHnz5uGTTz7BvffeiyeffBL79u3DihUrkJyc3CChPn/+PO69917MnTsXs2bNwurVqzF79mwkJCSgZ8+eLX59mvq9eOihh7BmzRrMmTMHf/zjH5Gamop33nkHR44cwc8//2zp1rvRzwpRuxBEHaiysrLBtr179woA4t///rdl25IlSwQAsWnTpgb7G41GIYQQq1evFgDEm2++2eQ+33//vQAgvv/+e6v7U1NTBQDx8ccfW7bNmjVLABDPPvtsi+JesWKFkMlk4tKlS5Ztw4cPF1qt1mrb1fEIIcTixYuFWq0WxcXFlm15eXnCyclJLF26tMF5rhYXFyfGjRvX7D4tiWHSpElCpVKJCxcuWLZlZWUJrVYrhg8fbtn28ccfCwBi6NChQq/XW7aXlZUJDw8PMX/+fKtz5OTkCHd39wbbr2V+/V977TWr7TcbV2vPd7WJEycKAKKkpEQIIcTLL78sXF1dRUpKitV+zz77rFAoFCI9PV0IIcR3330nAIg//vGPDR7z6te8a9euYtasWZafW/JeLl26VFz9NX306FEBQMybN89qv6eeekoAEN99953V+QCIH3/80bItLy9PqNVq8eSTTzZ6vtdee00AEKmpqZZtTf1e7NmzRwAQn3/+udX2HTt2WG2/2c8KUVtjVxd1KGdnZ8v/6+rqUFhYiMjISHh4eODw4cOW+zZu3Ii4uLgGrSIALE3/GzduhI+PDx5//PEm97kRCxYsaDbuiooKFBQUYMiQIRBC4MiRIwBM41Z+/PFHPPjgg+jSpUuT8cycORM1NTXYsGGDZdu6deug1+sbjD+5loeHB06dOoVz5841en9LYjAYDNi5cycmTZpkNWA1MDAQDzzwAH766SeUlpZaHTt//nwoFArLz7t27UJxcTHuv/9+FBQUWG4KhQIDBw7E999/3+zzaExbxHUzzK1OZWVlAEytfMOGDYOnp6fVcxw1ahQMBgN+/PFHAKbPoUwmw9KlSxs8ZnOfw+u9l43Zvn07AGDRokVW25988kkAwNdff221PTY2FsOGDbP87Ovri6ioKFy8eLHF5zS79vdi/fr1cHd3x+jRo61en4SEBLi5uVk+A+3xWSG6Gezqog5VVVWFFStW4OOPP8bly5chrppUWFJSYvn/hQsXMGXKlGYf68KFC4iKimrTwZ9OTk6NjhVJT0/HkiVLsG3btgbjF8xxmy8mvXr1avYc0dHRGDBgAD7//HPMnTsXgKmba9CgQYiMjGz22JdeegkTJ05Ejx490KtXL4wdOxYzZsxAnz59WhxDfn4+KisrERUV1eC+mJgYGI1GZGRkWHWFdOvWzWo/88X6tttua/QcOp2u2efRXnHdDPPsJq1WC8D0HI8fPw5fX99G98/LywNg+hwGBQXBy8urVee73nvZmEuXLkEulzf4nAQEBMDDwwOXLl2y2n5t8gsAnp6ejY7BaU5jvxfnzp1DSUkJ/Pz8Gj3G/Pq0x2eF6GYw8aEO9fjjj+Pjjz/GE088gcGDB1sWr5s+fXqDAaNtoam/uA0GQ6Pb1Wo15HJ5g31Hjx6NoqIiPPPMM4iOjoarqysuX76M2bNn31DcM2fOxMKFC5GZmYmamhr8+uuveOedd6573PDhw3HhwgVs3boVO3fuxP/93//hrbfewqpVqzBv3rxWx9FSV7d4AbA8508//RQBAQEN9m/PmUjNxXUzTp48CT8/P8uF2Gg0YvTo0fjzn//c6P49evS4qfPdzHvZ0hbNplrDRCtXMWns98JoNMLPzw+ff/55o8eYE0Zb+awQmfETRx1qw4YNmDVrFt544w3LturqahQXF1vtFxERgZMnTzb7WBEREdi3bx/q6uqaXBvF09MTABo8/rV/GTfnxIkTSElJwSeffIKZM2datl87k8rcPXO9uAFg+vTpWLRoEb788ktUVVVBqVRi2rRpLYrHy8sLc+bMwZw5c1BeXo7hw4dj2bJlmDdvXoti8PX1hYuLC86ePdvgvjNnzkAulyM0NLTZGMwDx/38/DBq1KgWxX09bRHXjdq7dy8uXLhg1dUYERGB8vLy6z6/iIgIfPPNNygqKmp1q09z72VjunbtCqPRiHPnziEmJsayPTc3F8XFxZbZch0hIiIC3377LW655ZZmE9D2+KwQ3QyO8aEOpVAoGvy1+fbbbzdogZkyZQqOHTvW6LRv8/FTpkxBQUFBoy0l5n26du0KhUJhGY9h9q9//atVMV/9mOb//+Mf/7Daz9fXF8OHD8fq1asbrAR87XP28fHBnXfeic8++wyff/45xo4da7VgXFMKCwutfnZzc0NkZKRlKnNLYlAoFLjjjjuwdetWq2UEcnNz8cUXX2Do0KHX7X4YM2YMdDodXn31VdTV1TW437xOT2u0RVw34tKlS5g9ezZUKhWefvppy/b77rsPe/fuxTfffNPgmOLiYuj1egCmz6EQAi+++GKD/ZprWbnee9mYu+66CwCsZpQBwJtvvgkAGDduXJPHtrX77rsPBoMBL7/8coP79Hq95Y+N1nxWSkpKcObMGatub6K2xhYf6lB33303Pv30U7i7uyM2NhZ79+7Ft99+C29vb6v9nn76aWzYsAFTp07Fgw8+iISEBBQVFWHbtm1YtWoV4uLiMHPmTPz73//GokWLsH//fgwbNgwVFRX49ttv8cgjj2DixIlwd3fH1KlT8fbbb0MmkyEiIgJfffWVZfxBS0RHRyMiIgJPPfUULl++DJ1Oh40bNzY6TuKf//wnhg4din79+uEPf/gDunXrhrS0NHz99dc4evSo1b4zZ87EvffeCwCNXjwaExsbi1tvvRUJCQnw8vLCwYMHsWHDBjz22GOtimH58uXYtWsXhg4dikceeQROTk54//33UVNT02Atm8bodDq89957mDFjBvr164fp06fD19cX6enp+Prrr3HLLbe0qOvuWjcb1/UcPnwYn332GYxGI4qLi3HgwAHL4ORPP/3UanzN008/jW3btuHuu++2TAGvqKjAiRMnsGHDBqSlpcHHxwcjR47EjBkz8M9//hPnzp3D2LFjYTQasWfPHowcOdLqvblaS97La8XFxWHWrFn44IMPUFxcjBEjRmD//v345JNPMGnSJIwcOfKmX6OWGjFiBB566CGsWLECR48exR133AGlUolz585h/fr1+Mc//oF77723VZ+VzZs3Y86cOfj4449bXdeMqMWkmUxGjurKlStizpw5wsfHR7i5uYkxY8aIM2fONJjqK4QQhYWF4rHHHhPBwcFCpVKJkJAQMWvWLFFQUGDZp7KyUjz33HOiW7duQqlUioCAAHHvvfdaTYfOz88XU6ZMES4uLsLT01M89NBD4uTJk41OZ3d1dW007tOnT4tRo0YJNzc34ePjI+bPny+OHTvW4DGEEOLkyZNi8uTJwsPDQ2g0GhEVFSVeeOGFBo9ZU1MjPD09hbu7u6iqqmrR67d8+XKRmJgoPDw8hLOzs4iOjhavvPKKqK2tbXUMhw8fFmPGjBFubm7CxcVFjBw5Uvzyyy9W+5injR84cKDReL7//nsxZswY4e7uLjQajYiIiBCzZ88WBw8ebPZ5NDe9vC3iaup85puTk5Pw8vISAwcOFIsXL24w9d+srKxMLF68WERGRgqVSiV8fHzEkCFDxOuvv271muv1evHaa6+J6OhooVKphK+vr7jzzjvFoUOHLPtc+xlvyXt57XR2IYSoq6sTL774ouUzHxoaKhYvXiyqq6ut9uvatWuj0+VHjBghRowY0ejzbWo6e1O/F0II8cEHH4iEhATh7OwstFqt6N27t/jzn/8ssrKyrPZryWfF/L5e+ztF1JZYq4tIInq9HkFBQRg/fjw++ugjqcMhInIIHONDJJEtW7YgPz/fasA0ERG1L7b4EHWwffv24fjx43j55Zfh4+NjtXAjERG1L7b4EHWw9957DwsWLICfn1+rC0YSEdHNYYsPEREROQy2+BAREZHDYOJDREREDsMuFjA0Go3IysqCVqu9qarbRERE1HGEECgrK0NQUFCDem9SsYvEJysrq91q9BAREVH7ysjIQEhIiNRhALCTxEer1QIwvXDtUauHiIiI2l5paSlCQ0Mt13FbYBeJj7l7S6fTMfEhIiKyM7Y0TMU2OtyIiIiIOgATHyIiInIYTHyIiIjIYTDxISIiIofBxIeIiIgcBhMfIiIichhMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiIiKHYRdFStvLiu3JSCusQEygDjGBOsQG6hDi6WxTxdSIiIio7Th04rP7bD7O5pbhm1O5lm1ajRNiAnSIDdIhJlCLmEAdevhroVEqJIyUiIiI2oJMCCGkDuJ6SktL4e7ujpKSEuh0ujZ73H0XC3EyqxSns0qRnF2Kc3llqDM0fDkUchnCfVxNrUJBuvoWIi38tJo2i4WIiKizaa/r981w6MTnWrV6Iy7klyM525QInc4uRXJ2GYoqahvd38dNjZhALWKvSojCfVzhpODQKSIiIiY+N0jKF04IgbyyGpzOMidCpn9TCyrQ2CuncpKjh78bYgN1lrFDMYE6uDsrOzRuIiIiqTHxuUG2+MJV1RpwNrfM0k2WnF2KMzllKK/RN7p/sIezpasstn7sUKinC+RyDqQmIqLOyRav30x82pDRKJBxpbK+Vei3pOhycVWj+7upnRAdoLUaOxTlr4WzigOpiYjI/tni9ZuJTwcoqaxDck6p1dihlNxy1OqNDfaVy4Bu9QOpf2sh0sFPq+Y0eyIisiu2eP1m4iMRvcGIiwUVllYh8/ihgvLGB1J7uaosA6nNSVGknxuUHEhNREQ2yhav30x8bExeWTWSs63HDl0sqIDB2PBtUinkiPRzu6qrzJQYebioJIiciIjImi1ev5n42IHqOgNScsvqE6HfkqKyJgZSB7lrrLrKYgJ16OrFgdRERNSxbPH6zcTHTgkhkHmlytJFZu4uyyhqfCC1i0phGUhtToiiA7RwUTn04t1ERNSObPH6zcSnkymrrsOZnIbT7GsaGUgtkwFh3q4Nxg4Fums4kJqIiG6aLV6/mfg4AL3BiLTCCqsp9snZpcgrq2l0fw8XJWICdFZjh7r7aaFy4kBqIiJqOVu8fjPxcWAF5TWWJMg8duh8fnmjA6md5DJE+v22IrV57JCXKwdSExFR42zx+s3Eh6zU6A04l1tuPXYoqxSl1Y0PpPbXqa26yWKDdAjzdoWCA6mJiByeLV6/mfjQdQkhkFVSjeSr6pUlZ5cirbCy0f01SjmiAkylOcxJUXSgDm5qDqQmInIktnj9ZuJDN6y8Ro+zOdblOc7mlKGqztDo/l29XRqMHQr2cOZAaiKiTsoWr99MfKhNGYwClworrmoZMiVFOaXVje6v0zj91k1WnxBF+rlBo2S9MiIie2eL128mPtQhiipqcaZ+raHT9QnR+bwy1BkafvwUchkifF2txg7FBOrgq1VLEDkREd0oW7x+M/EhydTqjTifV25Vqyw5uxRXKusa3d9Xq65Pgkxjh2IDdejm4won1isjIrJJtnj9ZuJDNkUIgZzS6gblOVILK9DYJ1XtJEfPIB0GhntjYDcv9A/z4iBqIqJWWP1TKoxCYGJ8cJu3rNvi9ZuJD9mFylo9zuaUWY0dSs4uRWWt9UBqhVyGXsHuGNTNC4PCvdE/zBNajVKiqImIbJveYMTgv36H/LIafDSrP26P8W/Tx7fF6zf/NCa74KJyQt8unujbxdOyzWgUuFRUiUOXrmDfxUL8mlqIjKIqHMsoxrGMYrz/40XIZUDPIHcMCvfCwG7eGNDNC+7OTISIiADglwuFyC+rgaeLEsN7+EodTodg4kN2Sy6XoZuPK7r5uOLehBAAQFZxFfalFuLXC0XYl1qItMJKnLhcghOXS/DhnlTIZEBsoA4Du3ljULgXErt5wcOFq08TkWPacuQyAODuPkFQOsh4SXZ1UaeWU1JtSoQuFmHfxUJcLKiwul8mA6L8tRgUbk6EvFmGg4gcQmWtHgOWf4uKWgM2LhiChK6e1z+olWzx+s0WH+rUAtw1mBgfjInxwQCAvNJq/JpqSoL2pRbhfF45zuSU4UxOGdb8kgbAlAgNDDeNEUrs5gUfN06jJ6LOZ9fpXFTUGtDFywX9unhIHU6HYeJDDsVPp8GEuCBMiAsCAOSX1WB/ahF+vViIfamFSMktx9ncMpzNLcO/914CAET6uVnGCA0M94KfViPlUyAiahPmbq5J8UEOtYI+u7qIrlJYbkqE9tUnQ2dyyhrsE+7rahkjNCjcG/46JkJEZF8Kymsw8NUkGIwCSU+OQISvW7ucxxav32zxIbqKt5sad/YOxJ29AwEAVypqsT+tvkXoYhGSc0pxMb8CF/Mr8OX+dABAmLcLBoWbWoMGdvNGkIezlE+BiOi6vj6eDYNRoE+Ie7slPbaKiQ9RMzxdVRjTMwBjegYAAEoq67A/rcgyff50lqlKfVphJdYeyAAAdPFywcD6dYQGhnshxNNFyqdARNTAZks3V7DEkXQ8Jj5EreDuosToWH+MjjUt8lVaXYeDaUWWWWMnLpcgvagS6UWVWH8oEwAQ7OFsSYIGh3sjxJMV6YlIOqkFFTiaUQyFXIbx9eMdHQkTH6KboNMocVu0P26LNiVCZdV1OHjpCvZdNHWPnbhcgsvFVdh4OBMbD5sSoSB3DQbWT58f2M0bXb1dmAgRUYfZetTU2nNLpI9DFn9m4kPUhrQaJUZG+WFklB8AoKJGj0OXrtTPGivCsYxiZJVUY/ORy5amZn+d2tQiVD9gupuPKxMhImoXQgjLbK7JfR2vtQdg4kPUrlzVThjew9eyFHxlrR6HLxXXL6pYiKMZxcgtrcHWo1nYejQLgKkKvXmM0KBwL0T4ujERIqI2cTSjGGmFlXBWKnBHbIDU4UiCiQ9RB3JROWFodx8M7e4DAKiuM+Bw+hXLGKEjGcXIL6vBV8ez8dXxbACAj5vKsobQoHBvdPdjIkREN8b8B9YdPf3hqnbMFMAxnzWRjdAoFRgS4YMhEb8lQkczii1jhA6nX0FBeS2+PpGNr0+YEiEvVxUSw7xMY4TCvRHlr4VczkSIiJpXZzDiv8dMic+kvo43m8vshhKfd999F6+99hpycnIQFxeHt99+G4mJiU3uv3LlSrz33ntIT0+Hj48P7r33XqxYsQIaDRd+I7qaRqmo7+LyxkJ0R43egOOZJfj1gmmM0MFLRSiqqMWOUznYcSoHAODhokRimCkJGtjNCzGBOiiYCBHRNX46V4DCilp4u6owLNJH6nAk0+rEZ926dVi0aBFWrVqFgQMHYuXKlRgzZgzOnj0LPz+/Bvt/8cUXePbZZ7F69WoMGTIEKSkpmD17NmQyGd588802eRJEnZXaSYEBYV4YEOaFxwHU6o04cbkYv9a3CB26dAXFlXXYeToXO0/nAgB0GickmtcR6uaN2CAmQkQEbKmfzTU+LghODlKJvTGtLlkxcOBADBgwAO+88w4AwGg0IjQ0FI8//jieffbZBvs/9thjSE5ORlJSkmXbk08+iX379uGnn35q0TltcclrIltQZzDixOUS7LtYhH2phTiQWoSKWoPVPlq1EwZ088LAbqZWoV5BOof+0iNyROU1evRfvgvVdUZsefQWxId6dMh5bfH63aoWn9raWhw6dAiLFy+2bJPL5Rg1ahT27t3b6DFDhgzBZ599hv379yMxMREXL17E9u3bMWPGjCbPU1NTg5qaGsvPpaWlrQmTyGEoFXL06+KJfl08seDWCOgNRpzKKq2fNVaEA6lFKKvR47szefjuTB4AwE3thISunpZFFXsHu0PJRIioU9t5KgfVdUZ083FFXIi71OFIqlWJT0FBAQwGA/z9/a22+/v748yZM40e88ADD6CgoABDhw6FEAJ6vR4PP/ww/vKXvzR5nhUrVuDFF19sTWhEBMBJIUdcqAfiQj3wh+ERMBgFTl+VCO1PLURptR4/pOTjh5R8AICLSmFJhAaFe6F3sAdUTkyEiDqTLfWzuSbFBzv8rNB2n9W1e/duvPrqq/jXv/6FgQMH4vz581i4cCFefvllvPDCC40es3jxYixatMjyc2lpKUJDQ9s7VKJORyGXoXeIO3qHuGPesHAYjAJnckots8b2pxWhuLIOe84VYM+5AgCARik3JULdvDEw3Btxoe5QOykkfiZEdKPyyqrx0znTHzoT4x1z0cKrtSrx8fHxgUKhQG5urtX23NxcBAQ0vhDSCy+8gBkzZmDevHkAgN69e6OiogJ/+MMf8Nxzz0Eub/iXpVqthlrteMtoE7U3hVyGnkHu6BnkjgeHdoPRKHA2twz76leW3pdqmjX28/lC/Hy+EACgdjJ1p5nXEYoP9YBGyUSIyF7891g2jALo28UDYT6uUocjuVYlPiqVCgkJCUhKSsKkSZMAmAY3JyUl4bHHHmv0mMrKygbJjUJh+tJs5bhqImpjcrkMMYE6xATqMPsWUyJ0Pr/cVGKjfsB0QXkt9l4sxN6LhQDOQeUkR3yoh6lrrJsX+nX1ZCJEZMPMtbkmO/DaPVdrdVfXokWLMGvWLPTv3x+JiYlYuXIlKioqMGfOHADAzJkzERwcjBUrVgAAxo8fjzfffBN9+/a1dHW98MILGD9+vCUBIiLbIJfL0MNfix7+WswcHAYhBC7kl5tWlk41dY/ll9Vgf2oR9qcW4Z8AlAoZ4kM96muNeaNfVw+4qLg2KpEtOJ9XjuOZJVDIZRjXO1DqcGxCq7+dpk2bhvz8fCxZsgQ5OTmIj4/Hjh07LAOe09PTrVp4nn/+echkMjz//PO4fPkyfH19MX78eLzyyitt9yyIqF3IZDJE+mkR6afF7wd1hRACqQUV9YmQqVUop7QaB9Ku4EDaFbzz/Xk4yWXoE+JeP2vMG/27ejrs0vhEUjO39ozo4QtvNw4hAW5gHR8p2OI6AERk6q6+VFhpSYJ+vViIrJJqq30Uchl6B7ubxgh180b/ME9oNUqJIiZyHEIIDH/te2QUVeGf9/fFhLiOH9hsi9dvJj5E1GaEEMi8UoW9V40RyrxSZbWPXAb0Cq5vEermhf5hXnB3ZiJE1NYOXSrClPf2wlWlwMHnR8NZ1fHDS2zx+s32ZyJqMzKZDKFeLgj1csF9/U1LUGReqbS0Bu1LLUJ6USWOZ5bgeGYJPvjxIuQyYOHtPbBwVHeJoyfqXDYfMXVzjekVIEnSY6uY+BBRuwrxdEFIggumJIQAALKKq6y6xtIKK7Hqhwt4cGgYu8CI2kit3oivj2cD4Gyua3F5ViLqUEEezpjcNwR/ndIH3z91K8J9XVFVZ8B/j2VLHRpRp/FjSj6uVNbBV6vGkAjHrcTeGCY+RCQZmUyG6QNMXWLrDqRLHA1R57G5fjbXhLggKOSOXaLiWkx8iEhS9/QLgVIhw7HMEpzOYkFioptVVl2Hb0+bKiywm6shJj5EJCkfNzVGx5rWAWOrD9HN23EyBzV6IyJ8XdEzyDZmUtkSJj5EJLnpA7oAMM1Cqa4zSBwNkX3bclWJCkevxN4YJj5EJLmhkT4I9nBGabUe/zvJQc5ENyq3tBq/XDAVGJ4Yz26uxjDxISLJyeUyTKsf5Lx2f4bE0RDZr21HsyAE0L+rJ0K9XKQOxyYx8SEimzC1fwjkMmBfahEu5pdLHQ6RXTIvWjiJg5qbxMSHiGxCoLszbo3yAwCsO8hWH6LWSsktw+nsUigVrMTeHCY+RGQzzN1dGw9lolZvlDgaIvuy5Yi5ErsfPF1VEkdju5j4EJHNuC3aD75aNQrKa/HdmVypwyGyG0ajwNajWQC4ds/1MPEhIpuhVMhxb31Nry85yJmoxQ5euoLLxVXQqp1we4yf1OHYNCY+RGRTptVXdf/xXD4uF1dJHA2RfTAPah7bKwAaJSuxN4eJDxHZlDAfVwwO94YQwH8OsNWH6Hpq9AZ8fZzdXC3FxIeIbM70RFOrz/qDGTAYhcTRENm23WfzUVqtR4BOg4Hh3lKHY/OY+BCRzRnTMwDuzkpklVTjx3P5UodDZNPMs7kmxLMSe0sw8SEim6NRKixN9us4yJmoSSVVdUhKzgMATGKJihZh4kNENsnc3fVtci7yy2okjobINu04mY1agxFR/lrEBGqlDscuMPEhIpsUHaBDfKgH9EaBjYczpQ6HyCaZZ3NN7BvESuwtxMSHiGzW/fWtPusOZEAIDnImulpWcRV+vVgEgJXYW4OJDxHZrLv7BMFVpUBqQQX2pRZJHQ6RTdl2zDSFfWA3LwR7OEscjf1g4kNENstV7YQJ8UEATK0+RPSbLazEfkOY+BCRTZs2oAsAYPuJbJRU1kkcDZFtSM4uxZmcMqgUctzVi5XYW4OJDxHZtLgQd0QHaFGjN2LL0ctSh0NkE8y/C7dF+8HdRSlxNPaFiQ8R2TSZTIbpA0yDnL/cn85BzuTwjEaBrUdM43sm9Q2SOBr7w8SHiGze5L4hUDnJcSanDMczS6QOh0hSv6YWIqe0GjqNE26NYiX21mLiQ0Q2z91Fibt6BQAA1h5IlzgaImmZW3vG9QlkJfYbwMSHiOzC9ETTIOdtR7NQUaOXOBoiaVTXGbD9RDYArt1zo5j4EJFdGNjNC2HeLqioNeCr41lSh0Mkie/O5KGsRo8gdw0Sw7ykDscuMfEhIrsgk8ksU9vXck0fclC/lagIhpyV2G8IEx8ishtTEoLhJJfhSHoxzuaUSR0OUYcqrqzF7rOsxH6zmPgQkd3w02pwe4xpFgsHOZOj+fpENuoMAjGBOkQFsBL7jWLiQ0R2xTzIefORy6iuM0gcDVHHMZeomMy1e24KEx8isivDu/siyF2D4so6fHMqR+pwiDpERlElDqRdgUwGTIhjN9fNYOJDRHZFIZdhan/TSs4sXEqOwlyJfXC4NwLcNRJHY9+Y+BCR3ZnaPwQyGfDLhUJcKqyQOhyidiWEsMzmYiX2m8fEh4jsToinC4Z39wXAVh/q/E5lleJ8XjnUTnKMrV/BnG4cEx8iskvmwqXrD2WizmCUOBqi9mMe1Dwqxh86DSux3ywmPkRkl26P8YePmwr5ZTX4/kye1OEQtQuDUVjG97Cbq20w8SEiu6RykmNKvxAAXMmZOq+9FwqRV1YDDxclRvTwlTqcToGJDxHZrWn13V27z+Yhu6RK4miI2p55UPO43oFQOfGS3Rb4KhKR3Qr3dUNiNy8YBbD+YKbU4RC1qapaA3acNFVin8xurjbDxIeI7Jp5kPO6AxkwGoXE0RC1nW+Tc1FRa0CIpzMSunpKHU6nwcSHiOzaXb0DodU44XJxFX46XyB1OERtxjyba1J8MGQyVmJvK0x8iMiuaZQKSzcA1/ShzqKoohY/pOQDACaxNlebYuJDRHZv+gBT4dKdp3NQWF4jcTREN+/r41nQGwV6B7sj0o+V2NsSEx8isnuxQTr0CXFHnUFg0+HLUodDdNPMs7kmxrO1p60x8SGiTsHc6rP2QDqE4CBnsl+XCitwOL0YchkwIY6JT1tj4kNEncL4uEA4KxW4kF+Bg5euSB0O0Q3betS0UvMtkT7w07ESe1tj4kNEnYJWo8T4uEAAwNr9HORM9kkIYTWbi9oeEx8i6jSm1Xd3fX0iCyVVdRJHQ9R6xzNLcLGgAhqlHGNYib1d3FDi8+677yIsLAwajQYDBw7E/v37m9z31ltvhUwma3AbN27cDQdNRNSYfl080MPfDdV1RkthRyJ7suWoqbXnjtgAuKmdJI6mc2p14rNu3TosWrQIS5cuxeHDhxEXF4cxY8YgL6/x6sibNm1Cdna25Xby5EkoFApMnTr1poMnIrqaTCaztPqs3Z8ucTREraM3GPFfSyV2DmpuL61OfN58803Mnz8fc+bMQWxsLFatWgUXFxesXr260f29vLwQEBBgue3atQsuLi7NJj41NTUoLS21uhERtcQ9fYOhUshxKqsUJy+XSB0OUYv9dL4ABeW18HJVYVh3VmJvL61KfGpra3Ho0CGMGjXqtweQyzFq1Cjs3bu3RY/x0UcfYfr06XB1dW1ynxUrVsDd3d1yCw0NbU2YROTAPF1VlrERX7LVh+yIeTbX+D6BUCo4BLe9tOqVLSgogMFggL+/v9V2f39/5OTkXPf4/fv34+TJk5g3b16z+y1evBglJSWWW0YGZ2gQUcuZC5duO5qFylq9xNEQXV9FjR47TpquoxNZib1ddWhK+dFHH6F3795ITExsdj+1Wg2dTmd1IyJqqcHh3uji5YKyGj2+Pp4tdThE17XrdC6q6gzo6u2CvqEeUofTqbUq8fHx8YFCoUBubq7V9tzcXAQEND/trqKiAmvXrsXcuXNbHyURUSvI5TJMq2/1YeFSsgfm2VysxN7+WpX4qFQqJCQkICkpybLNaDQiKSkJgwcPbvbY9evXo6amBr///e9vLFIiola4NyEECrkMBy9dwfm8MqnDIWpSflkN9pwrAABMYjdXu2t1V9eiRYvw4Ycf4pNPPkFycjIWLFiAiooKzJkzBwAwc+ZMLF68uMFxH330ESZNmgRvb++bj5qI6Dr8dRqMjPIDwJWcybZ9dTwLBqNAXKgHuvk0PfGH2karV0eaNm0a8vPzsWTJEuTk5CA+Ph47duywDHhOT0+HXG6dT509exY//fQTdu7c2TZRExG1wP2Jofg2ORebjlzG02OjoHZSSB0SUQNb6mdzTWYl9g4hE3ZQxri0tBTu7u4oKSnhQGciajG9wYhb/vYdcktr8M4DfXF3H15YyLZczC/HbW/8AIVchn1/uR0+bmqpQ2pTtnj95kIBRNRpOSnkuK8/BzmT7TK39gzr7tPpkh5bxcSHiDo1c+Kz51wBMooqJY6G6DdCCGytn801mYOaOwwTHyLq1EK9XDCsuw8A4D8H2epDtuNIRjEuFVbCRaXA6Fj/6x9AbYKJDxF1euY1ff5zMAN6g1HiaIhMthwxtfaM6RkAFxUrsXcUJj5E1OmNjvWHl6sKuaU1+CElX+pwiFBnMOKr+lXFuXZPx2LiQ0SdntpJgXvqLy5fck0fsgF7zuWjqKIWPm4q3BLB9e06EhMfInII0xNN3V3fn81Dbmm1xNGQo9t8pL4Se1wQnFiJvUPx1SYihxDpp0X/rp4wGAU2HMqUOhxyYOU1euw6barEztlcHY+JDxE5jKsLlxqNNr92K3VS35zMQXWdEeE+rugd7C51OA6HiQ8ROYxxfQKhVTshvagSey8WSh0OOShLJfa+rMQuBSY+ROQwXFROmFBfD2ktV3ImCeSVVuPn8/WV2OPZzSUFJj5E5FDuT+wCwNTdcKWiVuJoyNFsO5YFowD6dfFAF28XqcNxSEx8iMih9Ap2R88gHWoNRmyqX0COqKNsYYkKyTHxISKHM72+1WfdgXQIwUHO1DHO55Xh5OVSOMllGNcnSOpwHBYTHyJyOBPjg6BRypGSW47D6cVSh0MOYkv92j23RvnCy1UlcTSOi4kPETkcnUaJcb1Nf3GvO5AucTTkCIQQlm6uiRzULCkmPkTkkMwrOf/3WDbKquskjoY6u0OXriDzShXc1E4YFcNK7FJi4kNEDql/V09E+Lqiqs6A/x7Lljoc6uQ21w+kH9srAM4qhcTRODYmPkTkkGQyGaYPMA1yXsvuLmpHtfqrKrGzm0tyTHyIyGHd0y8YSoUMxzNLcCqrROpwqJPafTYPJVV18NOqMZiV2CXHxIeIHJa3mxp3xAYAMNXvImoPW4+aZnNNjA+CQs4SFVJj4kNEDs1cuHTzkcuorjNIHA11NqXVddiVnAuAs7lsBRMfInJoQyN9EOzhjLJqPbaf4CBnals7TuSgVm9Edz839AzSSR0OgYkPETk4uVxmafVh4VJqa6zEbnuY+BCRw5vaPwRyGbA/tQgX88ulDoc6ieySKuy9WAjANL6HbAMTHyJyeIHuzrg1yg8ABzlT29l2NAtCAIlhXgjxZCV2W8HEh4gIwPT67q6NhzNRqzdKHA11BlvqZ3NNYiV2m8LEh4gIwMhoP/hq1Sgor0VS/Swcoht1JqcUydmlUCpkuKt3gNTh0FWY+BARAVAq5JiaEAKAg5zp5pkrsY+M8oOHCyux2xImPkRE9cyzu348l4/MK5USR0P2ymgU2FY/m2syu7lsDhMfIqJ6Xb1dMSTCG0IA6w9mSh0O2an9aUXIKqmGVuOEkdF+UodD12DiQ0R0FXOrz/qDGTAYhcTRkD3aUl+J/a5egdAoWYnd1jDxISK6ypieAfBwUSKrpBo/nsuXOhyyM9V1BnxdvwI4Z3PZJiY+RERX0SgVlnEZa/enSxwN2ZvdZ/NQVq1HoLsGA7t5SR0ONYKJDxHRNaYP6AIASErOQ15ZtcTRkD3ZXN/NNSE+CHJWYrdJTHyIiK4RFaBF3y4e0BsFNh66LHU4ZCdKKuvw/RlT9yhnc9kuJj5ERI0wr+S87kA6hOAgZ7q+7SezUWswIjpAi+gAVmK3VUx8iIgacXefILiqFEgrrMS+1CKpwyE7YO7m4qBm28bEh4ioEa5qJ0yor6jNQc50PZeLq7A/tQgyGTAhjpXYbRkTHyKiJpgHOW8/mYOSyjqJoyFbtrV+peaB3bwQ5OEscTTUHCY+RERN6BPijugALWr1Rmw+wpWcqXFCCMuihRzUbPuY+BARNUEmk+H+RFOrz9oDGRzkTI1Kzi5DSm45VE5yjO0VKHU4dB1MfIiImjEpPhhqJznO5JThWGaJ1OGQDdpS3811e7Qf3J2VEkdD18PEh4ioGe4uStzV2/RX/LoDHORM1gxGYRnfw9lc9oGJDxHRdZgLl247moWKGr3E0ZAt2XexELmlNXB3VuLWKF+pw6EWYOJDRHQdA7t5oZuPKypqDfjqeJbU4ZANMa/dc1fvQKidWIndHjDxISK6DplMZmn1+XJ/hsTRkK2orjPgfydzAHA2lz1h4kNE1AJT+oXASS7D0YxinMkplTocsgFJyXkor9Ej2MMZ/bt6Sh0OtRATHyKiFvDVqjEqxh8AsJatPoTfurkmshK7XWHiQ0TUQtMSTd1dm49cRnWdQeJoSEpXKmqx+2weAHZz2RsmPkRELTS8uy+C3DUoqarDN6dypA6HJPT1iWzojQI9g3To7q+VOhxqBSY+REQtpJDLMLW/qdWH3V2OzVyiYlI8W3vsDRMfIqJWuG9AKGQyYO/FQqQVVEgdDkkgo6gSBy9dMVVij2cldntzQ4nPu+++i7CwMGg0GgwcOBD79+9vdv/i4mI8+uijCAwMhFqtRo8ePbB9+/YbCpiISErBHs4Y3t20UN26g2z1cUTmlZpvifCBv04jcTTUWq1OfNatW4dFixZh6dKlOHz4MOLi4jBmzBjk5eU1un9tbS1Gjx6NtLQ0bNiwAWfPnsWHH36I4GA2DxKRfbq/fpDzhkOZqDMYJY6GOpIQwmo2F9mfVic+b775JubPn485c+YgNjYWq1atgouLC1avXt3o/qtXr0ZRURG2bNmCW265BWFhYRgxYgTi4uJuOngiIincFu0PHzcV8stq8N2Zxv/oo87p5OVSXMivgNpJjrG9AqQOh25AqxKf2tpaHDp0CKNGjfrtAeRyjBo1Cnv37m30mG3btmHw4MF49NFH4e/vj169euHVV1+FwdD0VNCamhqUlpZa3YiIbIXKSY4pCSEAgHUH2N3lSMyV2EfH+kOrYSV2e9SqxKegoAAGgwH+/v5W2/39/ZGT0/jUzosXL2LDhg0wGAzYvn07XnjhBbzxxhtYvnx5k+dZsWIF3N3dLbfQ0NDWhElE1O6m1c/u2n02D9klVRJHQx1BbzBi2zFTrTau3WO/2n1Wl9FohJ+fHz744AMkJCRg2rRpeO6557Bq1aomj1m8eDFKSkost4wM/kVFRLYl3NcNA7t5wSiA9QczpQ6HOsAvFwqRX1YDTxclhvdgJXZ71arEx8fHBwqFArm5uVbbc3NzERDQeF9nYGAgevToAYXit6q1MTExyMnJQW1tbaPHqNVq6HQ6qxsRka2ZXj/Ied2BDBiNQuJoqL2Zu7nu7hMEpYKrwdirVr1zKpUKCQkJSEpKsmwzGo1ISkrC4MGDGz3mlltuwfnz52E0/jbzISUlBYGBgVCpVDcYNhGR9O7sFQidxgmXi6vw0/kCqcOhdlRZq8c39ZXYJ7Gby661OmVdtGgRPvzwQ3zyySdITk7GggULUFFRgTlz5gAAZs6cicWLF1v2X7BgAYqKirBw4UKkpKTg66+/xquvvopHH3207Z4FEZEENEqFZazH2gPpEkdD7WnX6VxU1BrQxcsF/bp4SB0O3QSn1h4wbdo05OfnY8mSJcjJyUF8fDx27NhhGfCcnp4Oufy3fCo0NBTffPMN/vSnP6FPnz4IDg7GwoUL8cwzz7TdsyAiksi0AV3wyd5L2HU6FwXlNfBxU0sdErWDrUdNg5onxQdBJmMldnsmE0LYfMd0aWkp3N3dUVJSwvE+RGRzJr7zE45lluAvd0XjD8MjpA6H2lhheQ0SX02CwSiQ9OQIRPi6SR2S3bDF6zdHZxER3aRpA7oAANYeyIAd/C1JrfTV8WwYjAJ9QtyZ9HQCTHyIiG7ShPgguKgUuJhfgYOXrkgdDrUx82wuVmLvHJj4EBHdJDe1E+7uEwgA+HI/Bzl3JmkFFTiSXgyFXIbxcazN1Rkw8SEiagPTE03dXdtPZKOkqk7iaKitmFt7bon0ga+WA9c7AyY+RERtoG+oB3r4u6G6zoht9RdLsm9CCMtsrsl92drTWTDxISJqAzKZDNOvGuRM9u9YZglSCyrgrFTgjlhWYu8smPgQEbWRyX2DoVLIcSqrFCcyS6QOh27SliOmlrs7evrDVd3qZe/IRjHxISJqI56uKoztZWoZ4ErO9q3OYMR/6yuxs0RF58LEh4ioDU0fYCpcuvVoFipr9RJHQzfqp/MFKKyohberCsMifaQOh9oQEx8iojY0KNwbXbxcUF6jx9fHs6UOh26QuZtrfFwQnFiJvVPhu0lE1Ibkchmm1bf6cJCzfaqo0WPnqVwA7ObqjJj4EBG1sakJIVDIZTh06QrO5ZZJHQ610s7TOaiqM6CbjyviQtylDofaGBMfIqI25qfT4LZoPwBs9bFHm4+YBjVPZCX2TomJDxFROzAPct50OBM1eoPE0VBL5ZVV46dz+QBYm6uzYuJDRNQORvTwRYBOgyuVddh1OlfqcKiFvjqWDaMA+nbxQJiPq9ThUDtg4kNE1A6cFHJM7R8CAFi7n91d9oKV2Ds/Jj5ERO3kvv6hkMlMa8JkFFVKHQ5dx4X8chzPLIFCLsPdfQKlDofaCRMfIqJ2EurlgqH1i9+t4yBnm7e1fu2eET184e3GSuydFRMfIqJ2ZC5cuv5QBvQGo8TRUFOEENhc3801MZ6V2DszJj5ERO1oVKwfvFxVyC2twe6z+VKHQ004nH4FGUVVcFWxEntnx8SHiKgdqZ0UmNLPNFCWa/rYri31a/eM6RUAZ5VC4mioPTHxISJqZ+YSFt+fzUNuabXE0dC1avVGfHW8vhI7Z3N1ekx8iIjaWaSfFv27esJgFNhwKFPqcOgaP6bk40plHXy1agyJ8JY6HGpnTHyIiDrA9ETTIOe1B9JhNAqJo6GrmdfumcBK7A6B7zARUQe4q3cAtGonZBRVYe/FQqnDoXpl1b+trM1uLsfAxIeIqAO4qJwwsa9pmvSX+9MljobMdpzMQY3eiAhfV/QK1kkdDnUAJj5ERB3EvKbPzlO5KKqolTgaAoCtR02Dmif3DWYldgfBxIeIqIP0CnZHr2Adag1GbK5fJZikk1tajZ8vFAAAJrKby2Ew8SEi6kDT6lt91u5PhxAc5CylbUezIATQv6snQr1cpA6HOggTHyKiDjQxPggapRzn8spxOL1Y6nAcmqUSe1+29jgSJj5ERB1Ip1FiXG/TIOe1HOQsmZTcMpzKKoWTXIZxvVmJ3ZEw8SEi6mD3J5pWcv7qeDbKquskjsYxbakfY3VrlB88XVUSR0MdiYkPEVEHS+jqiUg/N1TVGbDtWJbU4Tgco1FYzeYix8LEh4iog8lkMkyvr9+1joVLO9zBS1dwubgKbmon3B7jJ3U41MGY+BARSWBy32AoFTIczyzBqawSqcNxKOalBO7sFQCNkpXYHQ0THyIiCXi7qXFHbAAAtvp0pBq9AdtPZANgN5ejYuJDRCSR6fWDnDcfuYyqWoPE0TiG3WfzUVJVhwCdBgPDWYndETHxISKSyC0RPgjxdEZZtR7/O5ktdTgOwTyba0J8EBRylqhwREx8iIgkIpfLMK2/qdVn7X52d7W3kqo6JJ3JA8BK7I6MiQ8RkYTu7R8CuQzYn1aEC/nlUofTqe04mY1avRFR/lrEBGqlDockwsSHiEhCge7OGBllmlLNQc7tyzyba2LfIFZid2BMfIiIJDatfk2fjYcyUas3ShxN55RVXIV9qUUAWInd0THxISKS2G3RfvDTqlFYUYuk5Fypw+mUth0zVWIf2M0LwR7OUodDEmLiQ0QkMSeFHPcmhAAAvmR3V7swz+ZiJXZi4kNEZAPM3V17zuUj80qlxNF0LsnZpTiTUwaVQo67erESu6Nj4kNEZAO6ertiSIQ3hAD+czBT6nA6lS1HTa09t0X7wd1FKXE0JDUmPkRENmJ6YhcAwPqDGTAYhcTRdA5Go8C2+krsk/oGSRwN2QImPkRENuKOWH94uCiRXVKNH1PypQ6nU9iXWoTskmroNE64NYqV2ImJDxGRzdAoFZbCmWsPpEscTedgHtQ8rk8gK7ETACY+REQ2ZfoAU3dXUnIe8sqqJY7GvlXX/VaJnWv3kBkTHyIiGxIVoEXfLh7QGwU2HrosdTh27fszeSir0SPIXYPEMC+pwyEbwcSHiMjG3F/f6rPuQDqE4CDnG/VbiYpgyFmJneox8SEisjHj+gTCVaVAWmElfr1YJHU4dqm4shbfn2UldmrohhKfd999F2FhYdBoNBg4cCD279/f5L5r1qyBTCazumk0mhsOmIios3NVO2FCPAc534ztJ3JQZxCICdQhKoCV2Ok3rU581q1bh0WLFmHp0qU4fPgw4uLiMGbMGOTl5TV5jE6nQ3Z2tuV26dKlmwqaiKizm16/kvP/TuaguLJW4mjsj3k212Su3UPXaHXi8+abb2L+/PmYM2cOYmNjsWrVKri4uGD16tVNHiOTyRAQEGC5+fv731TQRESdXZ8Qd8QE6lCrN1ou4tQymVcqsT+tCDIZMCGO3VxkrVWJT21tLQ4dOoRRo0b99gByOUaNGoW9e/c2eVx5eTm6du2K0NBQTJw4EadOnWr2PDU1NSgtLbW6ERE5EplMZmn1WXsgg4OcW2Fr/UrNg8O9EeDOoRVkrVWJT0FBAQwGQ4MWG39/f+Tk5DR6TFRUFFavXo2tW7fis88+g9FoxJAhQ5CZ2XQtmhUrVsDd3d1yCw0NbU2YRESdwqT4YKid5DiTU4ZjmSVSh2MXhBCW2VysxE6NafdZXYMHD8bMmTMRHx+PESNGYNOmTfD19cX777/f5DGLFy9GSUmJ5ZaRkdHeYRIR2Rx3FyXu6m2qJr52Pwc5t8SprFKczyuHykmOsb0CpA6HbFCrEh8fHx8oFArk5uZabc/NzUVAQMs+YEqlEn379sX58+eb3EetVkOn01ndiIgckbm7a9uxLJTX6CWOxvaZx0ONjvGHTsNK7NRQqxIflUqFhIQEJCUlWbYZjUYkJSVh8ODBLXoMg8GAEydOIDAwsHWREhE5oMRuXgj3cUVlrQFfHcuSOhybZjAKbDtmrsTObi5qXKu7uhYtWoQPP/wQn3zyCZKTk7FgwQJUVFRgzpw5AICZM2di8eLFlv1feukl7Ny5ExcvXsThw4fx+9//HpcuXcK8efPa7lkQEXVSMpkM064a5ExN23uhEHllNfBwUWJED1+pwyEb5dTaA6ZNm4b8/HwsWbIEOTk5iI+Px44dOywDntPT0yGX/5ZPXblyBfPnz0dOTg48PT2RkJCAX375BbGxsW33LIiIOrF7+oXgtW/O4mhGMc7klCI6gN3/jTEPah7XOxAqJxYmoMbJhB3MkSwtLYW7uztKSko43oeIHNLDnx7CjlM5mD0kDMsm9JQ6HJtTVWvAgFe+RXmNHhseHoz+LEpqE2zx+s2UmIjIDkxPNHV3bT5yGdV1BomjsT3fJueivEaPEE9nJHT1lDocsmFMfIiI7MCw7r4I9nBGSVUdvjnV+Lppjsw8m2tSfDBkMlZip6Yx8SEisgMKuQxT+4cAAL7kmj5Wiipq8UNKPgBgEmtz0XUw8SEishNT+4dCJgN+vViE1IIKqcOxGV8fz4LeKNArWIdIP1Zip+Yx8SEishPBHs6Wadr/Ocip7Wabr+rmIroeJj5ERHbEvJLz+oOZqDMYJY5GeumFlTicXgy5DJgQx24uuj4mPkREduT2GH/4uKlQUF6D787kSR2O5LYcNbX23BLpAz8dK7HT9THxISKyI0qFHFMSTIOcHb1wqRDCajYXUUsw8SEisjPTB3QBAPyQko+s4iqJo5HOicsluFhQAY1SjjGsxE4txMSHiMjOdPNxxcBuXjAK01gfR2Ue1Dw6NgBu6lZXYCIHxcSHiMgO3Z9oavX5z8EMGIw2X3mozekNRvy3vhL7ZK7dQ63AxIeIyA6N7RUAncYJl4ur8NP5AqnD6XA/XyhEQXktvFxVGNadldip5Zj4EBHZIY1Sgcl9TQN61x1wvEHO5kHNd/cJhFLBSxm1HD8tRER2anp9d9eu07koKK+ROJqOU1mrt9Qrm9SXs7modZj4EBHZqZhAHeJC3FFnENh02HEGOe86nYvKWgO6erugb6iH1OGQnWHiQ0Rkx8ytPmsPZEAIxxjkvJmV2OkmMPEhIrJj4+OC4KJS4GJ+BQ6kXZE6nHZXUF6DPedMg7nZzUU3gokPEZEdc1M7YXwf03TutQ4wyPmrY1kwGAXiQj3QzcdV6nDIDjHxISKyc9MSTYVLt5/IRklVncTRtK/NR+vX7onn2j10Y5j4EBHZub6hHojy16K6zoht9UU7O6PUggocyyiGQi7D3azETjeIiQ8RkZ2TyWSYNsDU6vPl/s47yNm8ds+w7j7wcVNLHA3ZKyY+RESdwD39gqFykuN0dilOXi6VOpw2J4TAlvrWrMkc1Ew3gYkPEVEn4OGiwtiepgrlX3bCQc5HMopxqbASLioFRsf6Sx0O2TEmPkREncT0+kHO245mobJWL3E0bWtrfTfXmJ4BcFGxEjvdOCY+RESdxKBu3ujq7YLyGj2+Op4tdThtps5gxH/rnw/X7qGbxcSHiKiTkMtluK+/qdVn3YEMiaNpO3vO5aOoohY+bircEuEtdThk55j4EBF1IlMTQqCQy3Do0hWk5JZJHU6b2HLEtHbP+LggOLESO90kfoKIiDoRP50Gt0X7AegcrT7lNXrsPG2qxM7ZXNQWmPgQEXUy99cPct50OBM1eoPE0dycb07moLrOiHAfV/QOdpc6HOoEmPgQEXUyw7v7IkCnwZXKOuw8lSt1ODfFvHbPpL6sxE5tg4kPEVEn46SQ477+IQDsu3BpXmk1fj5fX4k9nt1c1DaY+BARdUJT+4dCJgN+Pl+I9MJKqcO5IduOZcEogH5dPNDF20XqcKiTYOJDRNQJhXq5YGikDwDgPwftc5DzVnMldg5qpjbExIeIqJOaPqALAGD9oQzoDUaJo2md83llOHG5BE5yGcb1YSV2ajtMfIiIOqnRsf7wclUht7QGu8/mSx1Oq5jX7hnRwxderiqJo6HOhIkPEVEnpXKSY0o/UzeRPQ1yvroSO0tUUFtj4kNE1IlNq+/u+u5MHnJKqiWOpmUOXbqCzCtVcFM7YVQMK7FT22LiQ0TUiUX6uWFAmCeMAthwyD4GOW++qhK7s0ohcTTU2TDxISLq5MytPusOZsBoFBJH07xavRFfnzBVYudsLmoPTHyIiDq5cb0DoVU7IaOoCr9cKJQ6nGb9kJKP4so6+GnVGMxK7NQOmPgQEXVyzioFJvY1TQm39UHOW+q7uSbEBUEhZ4kKantMfIiIHIB5TZ+dp3JRVFErcTSNK62uw7fJptpinM1F7YWJDxGRA+gV7I5ewTrUGozYdDhT6nAateNkDmr0RnT3c0PPIJ3U4VAnxcSHiMhBmFt91h7IgBC2N8jZ3M3FSuzUnpj4EBE5iAnxQXBWKnA+rxyH069IHY6VnJJq7L1oGng9IY4lKqj9MPEhInIQOo0S4/oEAgDW7retNX22HbsMIYDEMC+EerESO7UfJj5ERA5k+oBQAMBXx7NRVl0ncTS/2Vxfm8s8+4yovTDxISJyIAldPRHp54aqOgO2HcuSOhwAwNmcMiRnl0KpkGFc70Cpw6FOjokPEZEDkclkllYfW+nuMhckHRnlBw8XVmKn9sXEh4jIwdzTLwRKhQwnLpfg5OUSSWMxGgW2HmElduo4THyIiByMl6sKd/QMAACsOyBtq8/+tCJklVRDq3bCbdF+ksZCjoGJDxGRAzJ3d205ehlVtQbJ4tha3811V+9AaJSsxE7tj4kPEZEDuiXCByGeziir1mN7fTX0jlZdZ8BXx03n5mwu6ig3lPi8++67CAsLg0ajwcCBA7F///4WHbd27VrIZDJMmjTpRk5LRERtRC6XYVp/U6uPVN1du8/moaxaj0B3DQZ1YyV26hitTnzWrVuHRYsWYenSpTh8+DDi4uIwZswY5OXlNXtcWloannrqKQwbNuyGgyUiorYztX8o5DLTOJvzeeUdfv4t9Wv3TIgPgpyV2KmDtDrxefPNNzF//nzMmTMHsbGxWLVqFVxcXLB69eomjzEYDPjd736HF198EeHh4TcVMBERtY0Adw1GRpkGFP/nYMe2+pRU1uG7M6Y/mCfFczYXdZxWJT61tbU4dOgQRo0a9dsDyOUYNWoU9u7d2+RxL730Evz8/DB37twWnaempgalpaVWNyIianvTE02FSzceykSt3thh591+Mhu1BiOiA7SICWQlduo4rUp8CgoKYDAY4O/vb7Xd398fOTk5jR7z008/4aOPPsKHH37Y4vOsWLEC7u7ulltoaGhrwiQiohYaGeULP60ahRW1+DY5t8POu4Vr95BE2nVWV1lZGWbMmIEPP/wQPj4+LT5u8eLFKCkpsdwyMmxjdVEios7GSSHH1P4hAIC1HTTI+XJxFfalFkEmYyV26nhOrdnZx8cHCoUCubnWfxXk5uYiICCgwf4XLlxAWloaxo8fb9lmNJqaUp2cnHD27FlEREQ0OE6tVkOtVrcmNCIiukH39Q/Fu99fwJ5z+cgoqmz36ujmtXsGdvNCkIdzu56L6FqtavFRqVRISEhAUlKSZZvRaERSUhIGDx7cYP/o6GicOHECR48etdwmTJiAkSNH4ujRo+zCIiKyAV29XXFLpDeEANYfymzXcwkhLN1ck9nNRRJoVYsPACxatAizZs1C//79kZiYiJUrV6KiogJz5swBAMycORPBwcFYsWIFNBoNevXqZXW8h4cHADTYTkRE0pk2oAt+Pl+I9QczsPD27lC00/Ty5OwypOSWQ+Ukx9herMROHa/Vic+0adOQn5+PJUuWICcnB/Hx8dixY4dlwHN6ejrkci4ITURkT8b09IeHixLZJdX4MSUfI9upbpa5Evvt0X5wd1a2yzmImiMTQgipg7ie0tJSuLu7o6SkBDodpz0SEbWHl/57Gqt/TsUdsf74YGb/Nn98g1Hglr9+h5zSarw/IwFjejYcG0qdiy1ev9k0Q0REAIDpiaZxl0ln8pBXVt3mj7/vYiFySqvh7qzErVG+bf74RC3BxIeIiAAAPfy16NfFAwajwIZ2GOS8+chvldjVTqzETtJg4kNERBbTB5hWcl53IANtORKius6AHSdNC91yNhdJiYkPERFZjOsTCDe1Ey4VVmLvxcI2e9yk5DyU1egR7OGM/l092+xxiVqLiQ8REVm4qp0wvn415XVtuJKzuZtrIiuxk8SY+BARkZX76wc5/+9kDoora2/68a5U1OKHFFMldnZzkdSY+BARkZXewe6ICdShVm+0tNTcjK9PZKPOINAzSIfu/to2iJDoxjHxISIiKzKZzNLqs3b/zQ9ytlRij2drD0mPiQ8RETUwMS4Yaic5zuaW4WhG8Q0/TkZRJQ5eumKqxB7PSuwkPSY+RETUgLuLEuN6m2pp3cwgZ3Ml9lsifOCv07RJbEQ3g4kPERE1atoAU3fXtmNZKK/Rt/p4IYTVbC4iW8DEh4iIGpXYzQvhPq6orDXgq2NZrT7+VFYpLuRXQO0kx9herMtFtoGJDxERNUomk1lafb68ge4uc2vP6Fh/aDWsxE62gYkPERE1aUpCCJzkMhzLKEZydmmLjzMYBbbVtxJxNhfZEiY+RETUJB83NUbH+gNo3SDnXy4UIL+sBp4uSgzvwUrsZDuY+BARUbPM3V2bDmeius7QomPM3Vx39wmCyomXGrId/DQSEVGzhnX3RbCHM0qr9ZYK682pqjXgm/r9JvXlbC6yLUx8iIioWQq5DFP7hwAA1h5Iv+7+u5JzUVFrQKiXM/p1YSV2si1MfIiI6Lru6x8KmQz49WIRUgsqmt3XXKJicnwwZDJWYifbwsSHiIiuK8jDGSPqByk3N8i5sLwGP6TkAwAmshI72SAmPkRE1CLTB3QBAGw4lIk6g7HRfb4+kQ2DUaBPiDsifN06MjyiFmHiQ0RELXJ7jB983NQoKK9BUnJeo/tsZiV2snFMfIiIqEWUCjnuTTANcl7XyCDntIIKHEkvhlwG3B0X2NHhEbUIEx8iImox85o+P6TkI6u4yuq+rUdNKzUP7e4LPy0rsZNtYuJDREQt1s3HFYPCvWAUwPqDmZbtQghsOVo/m4tr95ANY+JDREStYh7k/J+DGTAYBQDgWGYJUgsq4KxU4I5YVmIn28XEh4iIWmVsrwC4OytxubgKP50vAPDb2j139PSHq9pJyvCImsXEh4iIWkWjVGBy/Ro9a/eno85gxH/Nldi5dg/ZOCY+RETUauZBzrtO52Lr0SwUVtTC21WFYZE+EkdG1DwmPkRE1GoxgTrEhXpAbxRYuvUkAGB8XBCcFLyskG3jJ5SIiG7I9PpWn4paAwB2c5F9YOJDREQ3ZHxcEFxUCgBAmLcL4kLcJY6I6PqY+BAR0Q1xUzvhnn6mVp6p/UNZiZ3sAuccEhHRDXt+XCxuj/HH8O6+UodC1CJMfIiI6IZplAqMjPKTOgyiFmNXFxERETkMJj5ERETkMJj4EBERkcNg4kNEREQOg4kPEREROQwmPkREROQwmPgQERGRw2DiQ0RERA6DiQ8RERE5DCY+RERE5DCY+BAREZHDYOJDREREDoOJDxERETkMu6jOLoQAAJSWlkocCREREbWU+bptvo7bArtIfMrKygAAoaGhEkdCRERErVVWVgZ3d3epwwAAyIQtpWFNMBqNyMrKglarhUwma7PHLS0tRWhoKDIyMqDT6drscanj8D20f3wP7RvfP/vXnu+hEAJlZWUICgqCXG4bo2vsosVHLpcjJCSk3R5fp9PxF9bO8T20f3wP7RvfP/vXXu+hrbT0mNlG+kVERETUAZj4EBERkcNw6MRHrVZj6dKlUKvVUodCN4jvof3je2jf+P7ZP0d7D+1icDMRERFRW3DoFh8iIiJyLEx8iIiIyGEw8SEiIiKHwcSHiIiIHEanTHzCwsKwcuVKqcNo1O7duyGTyVBcXCx1KG1qzZo18PDwuOnHkclk2LJly00/TntbtmwZ4uPjpQ6DiAizZ8/GpEmTpA7jpnTkddumEp+2unjasiFDhiA7O9vmVrIEbPOXRyaTNXpbu3at1KFRE2bPnm15n1QqFSIjI/HSSy9Br9cDMC1h/8EHH2DgwIFwc3ODh4cH+vfvj5UrV6KystLqsTIzM6FSqdCrVy8pnopDuPXWW/HEE09cd78PP/wQcXFxlvesb9++WLFiheX+ZcuWQSaT4eGHH7Y67ujRo5DJZEhLSwMApKWlNfl7/euvv7blU+tw+fn5WLBgAbp06QK1Wo2AgACMGTMGP//8s9ShtUhT1+DU1FQ88MADCAoKgkajQUhICCZOnIgzZ850fJBtwC5KVnQmKpUKAQEBUodhVz7++GOMHTvWaltnSJDr6uqgVCqlDqNdjB07Fh9//DFqamqwfft2PProo1AqlVi8eDFmzJiBTZs24fnnn8c777wDX19fHDt2DCtXrkRYWJhV8r1mzRrcd999+PHHH7Fv3z4MHDhQuiflwFavXo0nnngC//znPzFixAjU1NTg+PHjOHnypNV+Go0GH330EZ588kl079692cf89ttv0bNnT6tt3t7ebR57R5oyZQpqa2vxySefIDw8HLm5uUhKSkJhYaHUoV1XXV1dk9tHjx6NqKgobNq0CYGBgcjMzMT//vc/m+q5qK2thUqlatnOog2VlpaKBx54QLi4uIiAgADx5ptvihEjRoiFCxcKIYSorq4WTz75pAgKChIuLi4iMTFRfP/990IIIb7//nsBwOq2dOnS654zNzdX3H333UKj0YiwsDDx2Wefia5du4q33npLCCFEamqqACCOHDliOebKlSsCQINz79ixQ8THxwuNRiNGjhwpcnNzxfbt20V0dLTQarXi/vvvFxUVFZbHGTFihHjsscfEwoULhYeHh/Dz8xMffPCBKC8vF7NnzxZubm4iIiJCbN++3XKM+VxXrlyxbNuzZ48YOnSo0Gg0IiQkRDz++OOivLzccv+7774rIiMjhVqtFn5+fmLKlCmtel9aatasWWLixImN3vfGG2+IXr16CRcXFxESEiIWLFggysrKLPd//PHHwt3dXWzevNkS6x133CHS09OtHmfLli2ib9++Qq1Wi27duolly5aJuro6y/0AxObNm5v8+Vrm8+7YsUNER0cLV1dXMWbMGJGVlWW130cffSRiY2OFSqUSAQEB4tFHH7Xcd+nSJTFhwgTh6uoqtFqtmDp1qsjJybE6fsWKFcLPz0+4ubmJBx98UDzzzDMiLi7Oap8PP/xQREdHC7VaLaKiosS7775ruc/8OVy7dq0YPny4UKvV4uOPP27yedmzxj5Ho0ePFoMGDRLr1q0TAMSWLVsaHGc0GkVxcbHVz+Hh4WLHjh3imWeeEfPnz2/v0B3OrFmzGnzvpqamNthv4sSJYvbs2c0+1tKlS0VcXJwYPXq0mDp1qmX7kSNHrB63se/kzsB8Xdm9e3eT+7T0e7S57zO9Xi/+9Kc/CXd3d+Hl5SWefvppMXPmTKvfuf/973/illtusewzbtw4cf78ecv9TX0fNXYNNr9/aWlpzT7/jIwMMX36dOHp6SlcXFxEQkKC+PXXX4UQQpw/f15MmDBB+Pn5CVdXV9G/f3+xa9cuq+Ovvm6bX8+5c+cKHx8fodVqxciRI8XRo0ct95s/bx9++KEICwsTMpms2fiu1qaJz7x580TXrl3Ft99+K06cOCEmT54stFqtJfGZN2+eGDJkiPjxxx/F+fPnxWuvvSbUarVISUkRNTU1YuXKlUKn04ns7GyRnZ1t9YFoyp133ini4uLE3r17xcGDB8WQIUOEs7PzDSU+gwYNEj/99JM4fPiwiIyMFCNGjBB33HGHOHz4sPjxxx+Ft7e3+Otf/2p5nBEjRgitVitefvllkZKSIl5++WWhUCjEnXfeKT744AORkpIiFixYILy9vS0J07WJz/nz54Wrq6t46623REpKivj5559F3759LV8yBw4cEAqFQnzxxRciLS1NHD58WPzjH/+4uTeqCc0lPm+99Zb47rvvRGpqqkhKShJRUVFiwYIFlvs//vhjoVQqRf/+/cUvv/wiDh48KBITE8WQIUMs+/z4449Cp9OJNWvWiAsXLoidO3eKsLAwsWzZMss+N5L4KJVKMWrUKHHgwAFx6NAhERMTIx544AHLPv/617+ERqMRK1euFGfPnhX79++3fD4MBoOIj48XQ4cOFQcPHhS//vqrSEhIECNGjLAcv27dOqFWq8X//d//iTNnzojnnntOaLVaq8Tns88+E4GBgWLjxo3i4sWLYuPGjcLLy0usWbNGCPHb5zAsLMyyz7XJWWfR2OdowoQJol+/fmLChAkiKiqqRY+TlJQkAgIChF6vFydOnBBardbqDwK6ecXFxWLw4MFi/vz5lu9dvV7fYL+HHnpIREdHN3vxM1+IDh06JORyuThw4IAQwnESn7q6OuHm5iaeeOIJUV1d3eg+Lf0ebe777G9/+5vw9PQUGzduFKdPnxZz584VWq3W6nduw4YNYuPGjeLcuXPiyJEjYvz48aJ3797CYDAIIRr/PkpLS2v0GpyZmSnkcrl4/fXXG/1sCCFEWVmZCA8PF8OGDRN79uwR586dE+vWrRO//PKLEEKIo0ePilWrVokTJ06IlJQU8fzzzwuNRiMuXbpkeYxrE59Ro0aJ8ePHiwMHDoiUlBTx5JNPCm9vb1FYWCiEMH3eXF1dxdixY8Xhw4fFsWPHWvxetVniU1paKpRKpVi/fr1lW3FxsXBxcRELFy4Uly5dEgqFQly+fNnquNtvv10sXrxYCPFbtttSZ8+eFQDE/v37LduSk5MFgBtKfL799lvLPitWrBAAxIULFyzbHnroITFmzBjLzyNGjBBDhw61/KzX64Wrq6uYMWOGZVt2drYAIPbu3Wt1LnPiM3fuXPGHP/zB6nnt2bNHyOVyUVVVJTZu3Ch0Op0oLS1t8etyo5pLfK61fv164e3tbfnZ/NeCOcMX4rf3Yt++fUII03v96quvWj3Op59+KgIDAy0/N5b4aDQa4erqanUz/8KYz3v1XzPvvvuu8Pf3t/wcFBQknnvuuUafx86dO4VCobBqmTp16pTV52rw4MHikUcesTpu4MCBVolPRESE+OKLL6z2efnll8XgwYOFEL99DleuXNloHJ3J1Z8jo9Eodu3aJdRqtXjqqadETEyMmDBhQose54EHHhBPPPGE5ee4uLhO20ompatb5ZuSlZUlBg0aJACIHj16iFmzZol169ZZLqRC/Jb4CCHE9OnTxW233SaEaDrxcXZ2bvB7be82bNggPD09hUajEUOGDBGLFy9u9oLc1Pdoc99ngYGB4u9//7vl57q6OhESEtLsd3d+fr4AIE6cOCGEaPr7qKlr8DvvvCNcXFwsLS8vvfSS1bXx/fffF1qt1pKUtETPnj3F22+/bfn56sRnz549QqfTNUggIyIixPvvvy+EMH3elEqlyMvLa/E5zdpscPPFixdRV1eHxMREyzZ3d3dERUUBAE6cOAGDwYAePXrAzc3Ncvvhhx9w4cKFGzpncnIynJyckJCQYNkWHR19w+M/+vTpY/m/v78/XFxcEB4ebrUtLy+vyWMUCgW8vb3Ru3dvq2MANDjO7NixY1izZo3VazJmzBgYjUakpqZi9OjR6Nq1K8LDwzFjxgx8/vnnDQaAdoRvv/0Wt99+O4KDg6HVajFjxgwUFhZaxeLk5IQBAwZYfja/F8nJyZbn+tJLL1k91/nz5yM7O7vZ5/TWW2/h6NGjVregoCDL/S4uLoiIiLD8HBgYaHm98/LykJWVhdtvv73Rx05OTkZoaChCQ0Mt22JjY63iTk5ObjC2ZPDgwZb/V1RU4MKFC5g7d67Vc1u+fHmDz3b//v2bfJ6dyVdffQU3NzdoNBrceeedmDZtGpYtWwbRwgo5xcXF2LRpE37/+99btv3+97/HRx991F4hU72ePXtaPsN33nknANPv1N69e3HixAksXLgQer0es2bNwtixY2E0Ghs8xvLly7Fnzx7s3LmzyfOsW7euwe+1vZsyZQqysrKwbds2jB07Frt370a/fv2wZs0aAC37Hm3u+6ykpATZ2dlW30dOTk4NvlfOnTuH+++/H+Hh4dDpdAgLCwMApKenW+3X0u+jRx99FDk5Ofj8888xePBgrF+/Hj179sSuXbsAmAaw9+3bF15eXo0eX15ejqeeegoxMTHw8PCAm5sbkpOTG8RjduzYMZSXl8Pb29vqOzU1NdXqO7Vr167w9fVt0XO4WocNbi4vL4dCocChQ4egUCis7nNzc2u388rlptzu6i/cpgZxXT3QVCaTNRh4KpPJGvySN7bPtY8DoNEvB8D0ujz00EP44x//2OC+Ll26QKVS4fDhw9i9ezd27tyJJUuWYNmyZThw4ECHDfBNS0vD3XffjQULFuCVV16Bl5cXfvrpJ8ydOxe1tbVwcXFp0eOUl5fjxRdfxD333NPgPo1G0+RxAQEBiIyMbPL+xt4D8/vt7OzcothuRnl5OQDTrJdrE6RrP+uurq7tHo8tGDlyJN577z2oVCoEBQXBycn0VdOjR48WzQT54osvUF1dbfV6CiFgNBqRkpKCHj16tFvsjm779u2W78hrf3969eqFXr164ZFHHsHDDz+MYcOG4YcffsDIkSOt9ouIiMD8+fPx7LPPNpmshoaGNvt7ba80Gg1Gjx6N0aNH44UXXsC8efOwdOlS3HrrrS36Hm3u+6ylxo8fj65du+LDDz9EUFAQjEYjevXqhdraWqv9WvN9pNVqMX78eIwfPx7Lly/HmDFjsHz5cowePfq637NPPfUUdu3ahddffx2RkZFwdnbGvffe2yAes/LycgQGBmL37t0N7rv6unej36dt1uITHh4OpVKJAwcOWLaVlJQgJSUFANC3b18YDAbk5eUhMjLS6mae5aRSqWAwGFp8zujoaOj1ehw6dMiy7ezZs1Yjzc3ZYHZ2tmWbLf1l0a9fP5w+fbrBaxIZGWkZoe7k5IRRo0bh73//O44fP460tDR89913HRbjoUOHYDQa8cYbb2DQoEHo0aMHsrKyGuyn1+tx8OBBy8/m9yImJgaA6bmePXu20edqTlDbmlarRVhYGJKSkhq9PyYmBhkZGcjIyLBsO336NIqLixEbG2vZZ9++fVbHXT3t1t/fH0FBQbh48WKD59WtW7d2eFa2z9XVFZGRkejSpYsl6QGABx54ACkpKdi6dWuDY4QQKCkpAQDLzKCrWwOOHTuGYcOGYfXq1R32PBzBtd+7Xbt2tXx+g4ODmzzO/PtRUVHR6P1LlixBSkqKwy89ERsbi4qKihZ/jzbH3d0dgYGBVt9H114DCwsLcfbsWTz//PO4/fbbERMTgytXrrTo8Vt6DZbJZIiOjra893369MHRo0dRVFTU6P4///wzZs+ejcmTJ6N3794ICAiwLG/QmH79+iEnJwdOTk4NvlN9fHxa9Fya02YtPlqtFrNmzcLTTz8NLy8v+Pn5YenSpZDL5ZDJZOjRowd+97vfYebMmXjjjTfQt29f5OfnIykpCX369MG4ceMQFhaG8vJyJCUlIS4uDi4uLs22JkRFRWHs2LF46KGH8N5778HJyQlPPPGEVfbp7OyMQYMG4a9//Su6deuGvLw8PP/88231tG/aM888g0GDBuGxxx7DvHnz4OrqitOnT2PXrl1455138NVXX+HixYsYPnw4PD09sX37dhiNRksXYlsrKSlpkBj6+Pigrq4Ob7/9NsaPH4+ff/4Zq1atanCsUqnE448/jn/+859wcnLCY489hkGDBlm6P5csWYK7774bXbp0wb333gu5XI5jx47h5MmTWL58eZMxFRcXIycnx2qbVqttcba/bNkyPPzww/Dz88Odd96JsrIy/Pzzz3j88ccxatQo9O7dG7/73e+wcuVK6PV6PPLIIxgxYoSlGXjhwoWYPXs2+vfvj1tuuQWff/45Tp06ZdUN+uKLL+KPf/wj3N3dMXbsWNTU1ODgwYO4cuUKFi1a1KI4HcF9992HzZs34/7778fzzz+PO+64A76+vjhx4gTeeustPP744wgLC8Phw4fx+eefIzo62ur4+++/Hy+99BKWL19ulVDRjQsLC8O+ffuQlpYGNzc3eHl5NfhDZMGCBQgKCsJtt92GkJAQZGdnY/ny5fD19bXq9r2av78/Fi1ahNdee63R+wsLCxv8Xnt4eDTb+mvLCgsLMXXqVDz44IPo06cPtFotDh48iL///e+YOHEiIiMjW/Q9ej0LFy7EX//6V3Tv3h3R0dF48803rf7Y9/T0hLe3Nz744AMEBgYiPT0dzz77bIseu7FrcEpKCpYuXYoZM2YgNjYWKpUKP/zwA1avXo1nnnkGgOn38tVXX8WkSZOwYsUKBAYG4siRIwgKCsLgwYPRvXt3bNq0CePHj4dMJsMLL7zQZC8IAIwaNQqDBw/GpEmT8Pe//92SJH799deYPHnyzQ8ZaPWooGY0Np09MTFRPPvss0IIIWpra8WSJUtEWFiYUCqVIjAwUEyePFkcP37c8hgPP/yw8Pb2bvF09uzsbDFu3DihVqtFly5dxL///e8Go8NPnz4tBg8eLJydnUV8fLzYuXNno4Obr55i3tggr6sH7wnR+KDAa88thPWA3cbOtX//fjF69Gjh5uYmXF1dRZ8+fcQrr7wihDAN8hoxYoTw9PQUzs7Ook+fPmLdunXXfV1uRGNTWwGIuXPnijfffFMEBgYKZ2dnMWbMGPHvf//b6nmYX6+NGzeK8PBwoVarxahRo6xG7QshxI4dOywz73Q6nUhMTBQffPBBo6+V+efGbitWrLA679U2b94srv1or1q1SkRFRVk+d48//rjlvpZMZ3/llVeEj4+PcHNzE7NmzRJ//vOfG0xn//zzz0V8fLxQqVTC09NTDB8+XGzatEkI0XlnsjTmeoPkDQaDeO+998SAAQOEi4uL0Ol0IiEhQfzjH/8QlZWV4rHHHhOxsbGNHpudnS3kcrnYunVrO0XveM6ePSsGDRoknJ2dm5zOvmHDBnHXXXeJwMBAoVKpRFBQkJgyZYrVd/e1349CCFFSUiJ8fHwaHdzc2O3LL79sx2favqqrq8Wzzz4r+vXrJ9zd3YWLi4uIiooSzz//vKisrBRCiBZ/j17t2u+zuro6sXDhQqHT6YSHh4dYtGhRg+nsu3btEjExMUKtVos+ffqI3bt3W323Nvd9dO01OD8/X/zxj38UvXr1Em5ubkKr1YrevXuL119/3Wpwe1pampgyZYrQ6XTCxcVF9O/f3zKxJTU1VYwcOVI4OzuL0NBQ8c477zS4fl577SwtLRWPP/64CAoKEkqlUoSGhorf/e53lokojX3eWkomRCs7D1uhoqICwcHBeOONNzB37tz2Og0RERFRi7RpW/GRI0dw5swZJCYmoqSkBC+99BIAYOLEiW15GiIiIqIb0uad5K+//jrOnj0LlUqFhIQE7Nmz54YHI+3Zs8cynbIx5tk0RERERC3Rrl1dN6uqqgqXL19u8v7OOBWSiIiI2o9NJz5EREREbal9Fk8hIiIiskFMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiIiKH8f8b/daPi2S8lgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxdklEQVR4nO3deVhUZf8G8HtmYIYdZF8FBQFxwdxxX1AsMzM1bXFN37JSy9TyV6mZ5fuWpu2WuWX25qup7SqS5q654YYgKAIiq7LLMjPP74+BSQQUFDgzzP25rrkuOXOWe3CY853nOc9zZEIIASIiIiITIJc6ABEREVFjYeFDREREJoOFDxEREZkMFj5ERERkMlj4EBERkclg4UNEREQmg4UPERERmQwWPkRERGQyWPgQERGRyWDhQ0SN6tKlSxg8eDDs7e0hk8mwfft2qSMZrHXr1kEmkyExMVGS4ycmJkImk2HdunWVlu/YsQMdOnSAhYUFZDIZcnJyMHHiRPj5+UmSk6guWPgQUaOaMGECzp49i/feew8bNmxA586dG/R4mZmZmDlzJoKDg2FpaQlXV1d07doVr7/+OgoKCqqsv3//fjz55JPw8vKCUqmEvb09unXrhkWLFiE9Pb3Suv369YNMJoNMJoNcLoednR2CgoIwbtw4REZG1phJo9Fg7dq16NevHxwdHaFSqeDn54dJkybh+PHj9f47qE/Z2dl48sknYWlpic8//xwbNmyAtbW11LGIak3Ge3URUWO5desWrKys8Oabb2Lx4sUNfrwbN27goYceQl5eHiZPnozg4GBkZ2fjzJkz+PXXX3HmzJlKrRTz58/Hu+++i5YtW2Ls2LFo2bIliouLceLECfz4449wdnZGQkKCfv1+/fohISEBS5YsAQAUFhYiPj4eW7duxeXLl/Hkk0/iu+++g7m5eaXfwRNPPIEdO3agT58+GDZsGBwdHZGYmIj//e9/iIuLQ1JSEry9vbFu3TpMmjQJV65ckaQ1RQiBkpISmJubQ6FQANC19jz88MOIjIxEeHi4ft2ysjJotVqoVKpGz0lUF2ZSByAyRIWFhfwWe4f6+J1kZmYCABwcHOohkc7dcq1evRpJSUk4ePAgevToUem5vLw8KJVK/c+bNm3Cu+++iyeffBIbNmyo9BwALF++HMuXL69yDHt7ezz77LOVlv373//GjBkz8MUXX8DPzw//+c9/9M/NmTMHO3bswPLly/HKK69U2m7BggXVHkMqMpkMFhYWlZZlZGQAqPp/eHtx96CEECguLoalpWW97ZNITxA1gsTERDFt2jQRGBgoLCwshKOjoxg1apS4cuVKlXVv3rwpXnnlFeHr6yuUSqXw8vIS48aNE5mZmfp1bt26JRYsWCBatWolVCqVcHd3FyNGjBDx8fFCCCH27NkjAIg9e/ZU2veVK1cEALF27Vr9sgkTJghra2sRHx8vHn74YWFjYyOGDx8uhBBi3759YtSoUcLHx0colUrh7e0tXnnlFVFUVFQld0xMjBg9erRwdnYWFhYWIjAwUPzf//2fEEKIP//8UwAQW7durbLdxo0bBQBx6NChGn9/paWlYuHChSIgIECoVCrh6OgoevbsKXbt2lXrDBVOnjwphgwZImxtbYW1tbUYMGCAOHz4cKV11q5dKwCIvXv3imnTpgkXFxfh4OCgf/73338XvXr1ElZWVsLGxkY88sgj4ty5czXmF0KIBQsWCACVHr6+vvWa607PP/+8UCgUQqPR3DWbEEIEBgYKZ2dnkZ+ff891K/Tt21e0adOm2ufUarUICQkRVlZWIicnRwghRHJysjAzMxODBg2q1f4rXu/tfyfbt28XjzzyiPDw8BBKpVK0bNlSLFq0SKjV6krbxsXFiSeeeEK4ubkJlUolvLy8xJgxY/RZhBBi165domfPnsLe3l5YW1uLwMBAMW/ePP3zd/699O3bt8r/4YQJE4QQur+j2/8/hRBCo9GI5cuXi5CQEKFSqYSrq6v417/+JW7cuFFpPV9fXzF06FCxY8cO0alTJ6FSqcTy5ctr9Tsiqiu2+FCj+Pvvv3Ho0CGMHTsW3t7eSExMxJdffol+/frhwoULsLKyAgAUFBSgd+/eiImJweTJk9GxY0dkZWXh559/RkpKCpydnaHRaPDoo48iKioKY8eOxcyZM5Gfn4/IyEicO3cO/v7+dc6nVqsRERGBXr16YenSpfo8mzdvRlFREaZNmwYnJyccO3YMn376KVJSUrB582b99mfOnEHv3r1hbm6Of/3rX/Dz80NCQgJ++eUXvPfee+jXrx98fHywceNGjBgxotKxN27cCH9/f4SFhdWYb+HChViyZAmmTJmCrl27Ii8vD8ePH8fJkycxaNCgWmUAgPPnz6N3796ws7PD3LlzYW5ujq+++gr9+vXDX3/9hW7dulU67osvvggXFxfMnz8fhYWFAIANGzZgwoQJiIiIwH/+8x8UFRXhyy+/RK9evXDq1Kkau2SeeOIJODg44NVXX8VTTz2FRx55BDY2NvWWqzq+vr7QaDT6zDWJi4tDXFwcpkyZos/0oBQKBZ566im8/fbbOHDgAIYOHYo//vgDarUa48aNu+/9rlu3DjY2Npg1axZsbGzw559/Yv78+cjLy8OHH34IACgtLUVERARKSkowffp0uLu749q1a/j111+Rk5MDe3t7nD9/Ho8++ijat2+PRYsWQaVSIT4+HgcPHqzx2G+++SaCgoLw9ddfY9GiRWjRosVd/96ef/55fXfdjBkzcOXKFXz22Wc4deoUDh48WKmVKDY2Fk899RSef/55TJ06FUFBQff9OyK6K6krLzIN1bWQHD58WAAQ3377rX7Z/Pnza2wZ0Wq1Qggh1qxZIwCIjz76qMZ16triA0C88cYbtcq9ZMkSIZPJxNWrV/XL+vTpI2xtbSstuz2PEELMmzdPqFSqSt+4MzIyhJmZmViwYEGV49wuNDRUDB069K7r1CbD448/LpRKpUhISNAvS01NFba2tqJPnz76ZRUtDb169arUkpCfny8cHBzE1KlTKx0jLS1N2NvbV1l+p4rf/4cfflhp+YPmqklaWppwcXERAERwcLB44YUXxPfff1/p/0AIIX766ScBQKxYsaLScq1WKzIzMys9ysrK9M/frcVHCCG2bdsmAIiPP/5YCCHEq6++KgCIU6dO3TP77a/39haf6t6Tzz//vLCyshLFxcVCCCFOnTolAIjNmzfXuO/ly5cLAJVaUu9U3d9LRaa///670rp3tvjs379fABAbN26stN6OHTuqLPf19RUAxI4dO2rMQlRfOKqLGsXtffVlZWXIzs5GQEAAHBwccPLkSf1zP/74I0JDQ6u0igC66w0q1nF2dsb06dNrXOd+TJs27a65CwsLkZWVhR49ekAIgVOnTgHQXbeyb98+TJ48Gc2bN68xz/jx41FSUoItW7bol23atAlqtbrKNSJ3cnBwwPnz53Hp0qVqn69NBo1Gg127duHxxx9Hy5Yt9c97eHjg6aefxoEDB5CXl1dp26lTp+ovagWAyMhI5OTk4KmnnkJWVpb+oVAo0K1bN+zZs+eur6M69ZGrJm5uboiOjsYLL7yAmzdvYuXKlXj66afh6uqKd999F6J8bEfF/u9s7cnNzYWLi0ulx+nTp2v92ir2l5+fX+k4tra2td7HnW5/T+bn5yMrKwu9e/dGUVERLl68CEB33REA7Ny5E0VFRdXup+IanZ9++glarfa+89Rk8+bNsLe3x6BBgyq9Vzp16gQbG5sq75UWLVogIiKi3nMQ3YmFDzWKW7duYf78+fDx8YFKpYKzszNcXFyQk5OD3Nxc/XoJCQlo27btXfeVkJCAoKAgmJnVX0+tmZkZvL29qyxPSkrCxIkT4ejoCBsbG7i4uKBv374AoM99+fJlALhn7uDgYHTp0gUbN27UL9u4cSO6d++OgICAu267aNEi5OTkIDAwEO3atcOcOXNw5swZ/fO1yZCZmYmioqJquxBat24NrVaL5OTkSstbtGhR6eeKwmvAgAFVCoJdu3bpL3yti/rIdTceHh748ssvcf36dcTGxuKTTz7Rd5OtXr0awD+FyJ3D221sbBAZGYnIyEjMmTOnri9Nv7+K/dvZ2QH4pxC6H+fPn8eIESNgb28POzs7uLi46AvnivdkixYtMGvWLHzzzTdwdnZGREQEPv/880p/a2PGjEHPnj0xZcoUuLm5YezYsfjf//5Xb0XQpUuXkJubC1dX1yrvlYKCgirvlbr8nxI9CF7jQ41i+vTpWLt2LV555RWEhYXpJ68bO3Zsg3zbrKnlR6PRVLtcpVJBLpdXWXfQoEG4ceMGXn/9dQQHB8Pa2hrXrl3DxIkT7yv3+PHjMXPmTKSkpKCkpARHjhzBZ599ds/t+vTpg4SEBPz000/YtWsXvvnmGyxfvhwrV67ElClT6pyjtu4cVVPxmjds2AB3d/cq69dnMVqXXLUhk8kQGBiIwMBADB06FK1atcLGjRsxZcoUBAcHAwDOnTtXaRszMzP9kO2UlJQ6H7NifxWFbcVxzp49iw4dOtR5fzk5Oejbty/s7OywaNEi+Pv7w8LCAidPnsTrr79e6T25bNkyTJw4Uf+emTFjBpYsWYIjR47A29sblpaW2LdvH/bs2YPffvsNO3bswKZNmzBgwADs2rWrVi1qd6PVauHq6lqp0L+di4tLpZ85gosaCwsfahRbtmzBhAkTsGzZMv2y4uJi5OTkVFrP39+/ysnnTv7+/jh69CjKyspqHELbrFkzAKiy/6tXr9Y689mzZxEXF4f169dj/Pjx+uV3TkxX0T1zr9wAMHbsWMyaNQv//e9/cevWLZibm2PMmDG1yuPo6IhJkyZh0qRJKCgoQJ8+fbBw4UJMmTKlVhlcXFxgZWWF2NjYKs9dvHgRcrkcPj4+d81QcSGrq6trpTlcHkR95Kqrli1bolmzZrh+/ToAICgoCK1atcL27duxYsWKepnKQKPR4Pvvv4eVlRV69eoFAHj44YehUCjw3Xff3dcFznv37kV2dja2bt2KPn366JdfuXKl2vXbtWuHdu3a4a233sKhQ4fQs2dPrFy5Uj+Hklwux8CBAzFw4EB89NFHeP/99/Hmm29iz549D/z/6+/vj927d6Nnz54sasigsKuLGoVCodBfT1Hh008/rdICM3LkSERHR2Pbtm1V9lGx/ciRI5GVlVVtS0nFOr6+vlAoFNi3b1+l57/44os6Zb59nxX//vjjjyut5+Ligj59+mDNmjVISkqqNk8FZ2dnPPzww/juu++wceNGDBkyBM7OzvfMkp2dXelnGxsbBAQEoKSkpNYZFAoFBg8ejJ9++qnSLRDS09Px/fffo1evXvqumJpERETAzs4O77//PsrKyqo8XzFPT13UR66aHD16tNpRX8eOHUN2dnal7rWFCxciKysLU6dOrfa13fl/eTcajQYzZsxATEwMZsyYoc/v4+ODqVOnYteuXfj000+rbKfVarFs2bIaW5eqe0+WlpZWeV/n5eVBrVZXWtauXTvI5XL9e+bGjRtV9l/RClWxzoN48sknodFo8O6771Z5Tq1WV/lScqeKa5aysrIeOAvR7djiQ43i0UcfxYYNG2Bvb4+QkBAcPnwYu3fvhpOTU6X15syZgy1btmD06NGYPHkyOnXqhBs3buDnn3/GypUrERoaivHjx+Pbb7/FrFmzcOzYMfTu3RuFhYXYvXs3XnzxRQwfPhz29vYYPXo0Pv30U8hkMvj7++PXX3+t0zUowcHB8Pf3x+zZs3Ht2jXY2dnhxx9/xM2bN6us+8knn6BXr17o2LEj/vWvf6FFixZITEzEb7/9VuVi2PHjx2PUqFEAUO1JoTohISHo168fOnXqBEdHRxw/fhxbtmzByy+/XKcMixcvRmRkJHr16oUXX3wRZmZm+Oqrr1BSUoIPPvjgnjns7Ozw5ZdfYty4cejYsSPGjh0LFxcXJCUl4bfffkPPnj1r1XV3pwfNVZMNGzbopxDo1KkTlEolYmJisGbNGlhYWOD//u//9Os+/fTTOHfuHJYsWYJjx45h7NixaNGiBQoLC3Hu3Dn897//ha2trb41sUJubi6+++47ALqTdcXMzQkJCRg7dmyV/+Nly5YhISEBM2bMwNatW/Hoo4+iWbNmSEpKwubNm3Hx4kWMHTu22tfTo0cPNGvWDBMmTMCMGTMgk8mwYcOGKkXZn3/+iZdffhmjR49GYGAg1Go1NmzYAIVCgZEjRwLQXTe2b98+DB06FL6+vsjIyMAXX3wBb29vfQvVg+jbty+ef/55LFmyBKdPn8bgwYNhbm6OS5cuYfPmzfj444/1fwfVOXbsGPr3748FCxZg4cKFD5yHSE+awWRkam7evCkmTZoknJ2dhY2NjYiIiBAXL14Uvr6++gnQKmRnZ4uXX35ZeHl56ScNnDBhgsjKytKvU1RUJN58803RokULYW5uLtzd3cWoUaMqDYfOzMwUI0eOFFZWVqJZs2bi+eefF+fOnatxAsPqXLhwQYSHhwsbGxvh7Owspk6dKqKjo6vsQwghzp07J0aMGCEcHByEhYWFCAoKEm+//XaVfZaUlIhmzZoJe3t7cevWrVr9/hYvXiy6du0qHBwchKWlpQgODhbvvfeeKC0trXOGkydPioiICGFjYyOsrKxE//79q0yeWNOQ5Qp79uwRERERwt7eXlhYWAh/f38xceJEcfz48bu+jpqGs9dXrjudOXNGzJkzR3Ts2FE4OjoKMzMz4eHhIUaPHi1OnjxZ7TZ79+4Vo0aNEh4eHsLc3FzY2dmJzp07iwULFojr169XWvfOCf1sbGxEq1atxLPPPltlcsnbqdVq8c0334jevXsLe3t7YW5uLnx9fcWkSZMqDXWvbjj7wYMHRffu3YWlpaXw9PQUc+fOFTt37qw0fcPly5fF5MmThb+/v37C0P79+4vdu3fr9xMVFSWGDx8uPD09hVKpFJ6enuKpp54ScXFx+nUeZDh7ha+//lp06tRJWFpaCltbW9GuXTsxd+5ckZqaql+nYgLD21VMSXGvqR6I6or36iJqZGq1Gp6enhg2bJh+VBERETUOXuND1Mi2b9+OzMzMShdMExFR42CLD1EjOXr0KM6cOYN3330Xzs7OlSZuJCKixsEWH6JG8uWXX2LatGlwdXXFt99+K3UcIiKTxBYfIiIiMhls8SEiIiKTwcKHiIiITIZRTGCo1WqRmpoKW1vbB7r7NhERETUeIQTy8/Ph6elZ5X6IUjGKwic1NbXe79VDREREjSM5ORne3t5SxwBgJIWPra0tAN0v7n7v2UNERESNKy8vDz4+PvrzuCEwisKnonvLzs6OhQ8REZGRMaTLVAyjw42IiIioEbDwISIiIpPBwoeIiIhMBgsfIiIiMhksfIiIiMhksPAhIiIik8HCh4iIiEwGCx8iIiIyGSx8iIiIyGSw8CEiIiKTwcKHiIiITAYLHyIiIjIZLHyI6ll+cRk+3xOP1JxbUkchIqI7sPAhqmcf7IjFhztj8coPpyGEkDoOERHdhoUPUT26WViKzSeSAQDHEm9g36UsiRMREdHtWPgQ1aPvjyWhuEwLmUz389KdsWz1ISIyICx8iOpJiVqDdYcSAQBvPtIaVkoFzl7Lxc7zadIGIyIiPRY+RPXkl+jryMwvgbudBcaH+WFyzxYAgGW74qDRstWHiMgQsPAhqgdCCHyz/zIAYEIPPyjN5JjapyXsLMxwKaMAP0dfkzghEREBLHyI6sXB+GxcTMuHlVKBp7s2BwDYW5rj+b7+AIDlkZdQptFKGZGIiMDCh6herCpv7Xmysw/srcz1yyf19IOzjRJJN4rwv+PJUsUjIqJyLHyIHlBcej7+isuETAb9dT0VrJRmeLFfAADg06h4FJdppIhIRETlWPgQPaDV+68AACJC3NHcyarK8093aw5Pewuk5RXjuyNXGzseERHdhoUP0QPIzC/BttO6C5en9mlR7ToW5grMGNgKAPDF3gQUlKgbLR8REVXGwofoAWw4chWlai06+DigY/NmNa43spM3/JyscKOwFGsPXGnEhEREdDsWPkT3qbhMo++6mtq7JWQV0zVXw1whx6uDAgEAX++/jJyi0kbJSERElbHwIbpPW09ew43CUng5WCKijds91x/W3hPB7rbIL1bjq32XGyEhERHdiYUP0X3QagVWH9AVL5N7tYCZ4t5/SnK5DLPKW33WHUxERn5xg2YkIqKqWPgQ3Ye9cRlIyCyErcoMT3b2rvV2g0LcEOrjgFtlGnyxJ6EBExIRUXVY+BDdh2/Kh7A/1a05bC3M77H2P2QyGeYMDgIAfH80CddybjVIPiIiqh4LH6I6Op+ai0MJ2VDIZZjQw6/O2/cMcEL3lo4o1Wjxye5L9R+QiIhqxMKHqI4qWnuGtvOAl4NlnbeXyWSYE6Fr9dlyMgVXsgrrNR8REdWMhQ9RHaTlFuOX6FQAwJTe1U9YWBudfB0xINgVGq3A8si4+opHRET3wMKHqA7WHUqEWivQtYUj2ns7PNC+XhusG+H1c3QqYq7n1UM6IiK6FxY+RLVUWKLG90f/mbDwQbXxtMfQdh4AgGW72OpDRNQYWPgQ1dLm48nIK1ajhbM1Bga71ss+Xx0UCLkM2B2TjlNJN+tln0REVDMWPkS1oNEKrDmYCEA3YaFcXvPtKeoiwNUGT3TUzQO0dFdsveyTiIhqxsKHqBYiL6Qh6UYRHKzMMapj7ScsrI2ZA1vBXCHDwfhsHErIqtd9ExFRZSx8iGqhYgj7s918YalU1Ou+fRytMLZLcwDA0p2xEELU6/6JiOgfLHyI7uFU0k0cv3oTSoUc48N8G+QY0wcEwMJcjpNJOdgTm9EgxyAiIhY+RPf0zQFda89jHTzhamfRIMdwtbPAhDA/AMCHO+Og1bLVh4ioIbDwIbqL5BtF+OPsdQDAc73uf8LC2nihrz9sVGaIuZ6H389db9BjERGZKhY+RHex7lAitALo3coZrT3sGvRYzayV+uLqo8g4qDXaBj0eEZEpYuFDVIO84jJs+jsZQMO39lSY0rsFHKzMcTmzENtOXWuUYxIRmRIWPkQ12HQsGQUlarRytUHfQJdGOaathTmm9fUHAKzYfQklak2jHJeIyFSw8CGqRplGi7UHdRc1T+ndAjJZ/UxYWBvjw/zgYqvCtZxb+hYnIiKqHyx8iKrxx7k0pOYWw9lGieEdvBr12JZKBWYMCAAAfPpnPG6VstWHiKi+3Ffh8/nnn8PPzw8WFhbo1q0bjh07VuO6/fr1g0wmq/IYOnTofYcmakhCCHyz/zIAYFx3P1iY1++EhbUxpktzeDezRGZ+CdYfTmz04xMRNVV1Lnw2bdqEWbNmYcGCBTh58iRCQ0MRERGBjIzqJ13bunUrrl+/rn+cO3cOCoUCo0ePfuDwRA3h78SbOJOSC5WZHM92by5JBqWZHDMHtgIArPwrAXnFZZLkICJqaupc+Hz00UeYOnUqJk2ahJCQEKxcuRJWVlZYs2ZNtes7OjrC3d1d/4iMjISVlRULHzJYq8pbe57o6A0nG5VkOUY85IWWLtbIKSrD6vJbZhAR0YOpU+FTWlqKEydOIDw8/J8dyOUIDw/H4cOHa7WP1atXY+zYsbC2tq5xnZKSEuTl5VV6EDWGK1mF2B2TDqDxhrDXxEwhx2uDggAAqw9cwY3CUknzEBE1BXUqfLKysqDRaODm5lZpuZubG9LS0u65/bFjx3Du3DlMmTLlrustWbIE9vb2+oePj09dYhLdtzUHrkAIYECwKwJcbaSOg4fbuiPEww4FJWqs/CtB6jhEREavUUd1rV69Gu3atUPXrl3vut68efOQm5urfyQnc0gvNbycolJsPqF7r03pLW1rTwW5XIbZEYEAgPWHEpGeVyxxIiIi41anwsfZ2RkKhQLp6emVlqenp8Pd3f2u2xYWFuKHH37Ac889d8/jqFQq2NnZVXoQNbSNR5NQXKZFiIcdwlo6SR1Hr3+QKzo2d0CJWovP/oyXOg4RkVGrU+GjVCrRqVMnREVF6ZdptVpERUUhLCzsrttu3rwZJSUlePbZZ+8vKVEDKlFrsO5QIgBgap/GnbDwXmQyGeZEBAMA/nssCck3iiRORERkvOrc1TVr1iysWrUK69evR0xMDKZNm4bCwkJMmjQJADB+/HjMmzevynarV6/G448/Dicnw/kmTVThl+jryMwvgZudCkPbeUodp4owfyf0CnCGWiuwYvclqeMQERkts7puMGbMGGRmZmL+/PlIS0tDhw4dsGPHDv0Fz0lJSZDLK9dTsbGxOHDgAHbt2lU/qYnq0e0TFk7s0QJKM8Oc0Hx2RBAOxGdh26kUTOvXEgGutlJHIiIyOjIhhJA6xL3k5eXB3t4eubm5vN6H6t2BS1l4dvVRWCkVOPzGQNhbmUsdqUZTvz2OyAvpGNrOA58/01HqOEREd2WI52/D/GpL1Ii+OaBr7Xmys49BFz0A8NrgQMhkwG9nr+PctVyp4xARGR0WPmTSLqXnY29sJmQyYFJPP6nj3FOwux2Gtdddg7RsV6zEaYiIjA8LHzJp35TfCiIixB2+TjXPJm5IXh0UCIVchj2xmTieeEPqOERERoWFD5mszPwSbDt9DYDhTFhYGy2crTG6kzcA4MOdsTCCy/SIiAwGCx8yWRuOXEWpWosOPg7o5NtM6jh1Mn1gKygVchy9cgMH4rOkjkNEZDRY+JBJKi7T4LsjVwEAU3u3NKgJC2vDy8EST3drDgBYylYfIqJaY+FDJmnryWu4UVgKLwdLRLRxu/cGBuil/gGwNFcgOiUXkRfS770BERGx8CHTo9UKrC4fwj65VwuYKYzzz8DFVqUfibZsVxw0Wrb6EBHdi3F+4hM9gL1xGUjILIStygxPdvaWOs4Deb6PP2wtzBCbno9fz6RKHYeIyOCx8CGTUzGE/aluzWFrYdgTFt6LvZU5/tW7JQBgeWQcyjRaiRMRERk2Fj5kUs6n5uJQQjYUchkm9PCTOk69mNSrBZyslUjMLsKWEylSxyEiMmgsfMikrC5v7RnazgNeDpYSp6kfNiozTOvnDwD4JOoSiss0EiciIjJcLHzIZKTlFuPnaN11MMY0YWFtPNvdF+52FrieW4zvjyZJHYeIyGCx8CGTsf5wItRaga4tHNHe20HqOPXKwlyBGQNbAQC+2BuPwhK1xImIiAwTCx8yCYUlamwsn7BwSq+m1dpTYXRnb/g6WSGroBTrDiVKHYeIyCCx8CGTsOVECvKK1fBzskJ4a+OcsPBezBVyvBKua/X56q8E5N4qkzgREZHhYeFDTZ5GK7D6gO6i5ud6tYBcbly3p6iLx0K90MrVBnnFaqzad1nqOERkBP6Ky8T2U9dM5tY3LHyoyYu8kI6kG0VwsDLHyE7GPWHhvSjkMrw2OAgAsObgFWQVlEiciIgMWe6tMszdEo1XNp3G5uOmMR0GCx9q8r7Zr2v5eKZbc1gpzSRO0/Ai2rihvbc9iko1+GJPgtRxiMiALf71AtLzStDS2RqPdfCUOk6jYOFDTdqppJs4fvUmzBUyTAjzkzpOo5DJ/mn1+e7oVVzPvSVxIiIyRHtiM7D5RApkMuCDUe1hYa6QOlKjYOFDTdo35df2PBbqBVc7C4nTNJ4+rZzRtYUjStVafBIVL3UcIjIwecVlmPfjWQDA5J4t0NnPUeJEjYeFDzVZyTeK8MfZ6wCa3oSF9yKTyTAnQtfq87/jyUjMKpQ4EREZkvd/i0FaXjH8nKwwu7yF2FSw8KEma92hRGgF0CvAGa097KSO0+i6+Dmib6ALNFqBFbvjpI5DRAZiX1wmfvg7ubyLKxSWStPo4qrAwoeapLziMmz6OxmA6bX23K7im9xP0amITcuXOA0RSS2/uAxv/HgGADAhzA9dW5hOF1cFFj7UJG06loyCEjVaudqgb6CL1HEk087bHg+3dYcQwEeRsVLHISKJvf/7RaTmFqO5oxXmDjGtLq4KLHyoyVFrtFh7UHdR85TeLSCTNd0JC2tj1qBAyGTAzvPpiE7OkToOEUnkwKUs/PeY7ibGH4xqbxLTe1SHhQ81Ob+fS0NqbjGcbZQY3sFL6jiSa+VmixHlv4elu9jqQ2SKCkrUeF3fxeWL7i2dJE4kHRY+1KQIIfQTFo7r7mcy81LcyyvhgTCTy7D/UhaOXM6WOg4RNbIlv8fgWs4t+DhaYu6QYKnjSIqFDzUpfyfexJmUXKjM5Hi2e3Op4xiM5k5WGNPFBwCwdGesydyTh4iAg/FZ2HhU18X1n5HtYa0yzS6uCix8qEmpaO15oqM3nGxUEqcxLNMHtILKTI7jV29ib1ym1HGIqBEUlKgxd4uui2tcd1/08HeWOJH0WPhQk3ElqxCRMekAdHdhp8rc7S0wrrsvAGDZLrb6EJmC//xxEddybsG7mSXeeNi0u7gqsPChJmPNgSsQAhgQ7IoAVxup4xikaf38Ya1U4Ny1POw4lyZ1HCJqQIcTsrHhyFUAwAfs4tJj4UNNQk5RKTafKJ+wkK09NXKyUelbw5ZFxkGjZasPUVNUVKrG3B+jAQBPd2uOHgHs4qrAwoeahI1Hk1BcpkWIhx3C/E13mGZtTOnTEvaW5ojPKMD2U9ekjkNEDeCDHbFIvnELXg6WmMcurkpY+JDRK1FrsO5QIgBOWFgbdhbmeKGvPwBgRVQcStVaiRMRUX06cjlb/5n475HtYGthLm0gA8PCh4zeL9HXkZlfAjc7FR5t7yl1HKMwoYcvnG1USL5xC5uOJ0sdh4jqSVHpPxMVPtXVB71bme4te2rCwoeM2u0TFk7o4QelGd/StWGlNMPL/XWtPp/9eQnFZRqJExFRffhwZyyuZhfB094C//dIa6njGCSeJcioHYzPxsW0fFgpFXimq6/UcYzKU92aw8vBEul5Jdhw+KrUcYjoAR27ckPfxbVkZHt2cdWAhQ8ZtW8O6Fp7nuzsA3sr/pHXhcpMgZkDWwEAvtgbj/ziMokTEdH9ulWqwdwt0RACGNPZB30D2cVVExY+ZLQupedjb2wmZDJgUk8/qeMYpSc6eqGlszVuFpVhzYFEqeMQ0X1auisWidlF8LC3wJuPsovrblj4kNFafeAKACAixB2+TtYSpzFOZgo5XhkUCEB3u4+colKJExFRXR1PvIE1B3Wfh+8/0Q527OK6KxY+ZJQy80uwtXwOmim9OWHhg3i0nQeC3W2RX6LGyr8uSx2HiOqguEyDuVvOQAhgVCdv9A9ylTqSwWPhQ0bpuyNXUarWooOPAzr5NpM6jlGTy2WYPTgIALDu0BVk5BVLnIiIauujyDhcziqEm50Kbw8NkTqOUWDhQ0anuEyjv/8MJyysHwNbu6KDjwOKy7T4fE+81HGIqBZOXL2pn85jyRPtOMCjllj4kNHZduoabhSWwsvBEkPauEsdp0mQyWSYE6Fr9fn+WBJSbhZJnIiI7qa4TIM5W6KhFbpBCgOC3aSOZDRY+JBR0Wr/mbBwUk8/mCn4Fq4vPQOc0cPfCWUagU+iLkkdh4juYvnuOFzOLISrrQoLHm0jdRyjwrMGGZW/4jKRkFkIW5UZxnTxkTpOkzO7vNVny4kUJGQWSJyGiKpzKukmVu3TfQF8fwS7uOqKhQ8ZlVXlrT1ju/pwVtIG0LF5MwwMdoVWAMsj46SOQ0R30HVxnYFWACMe8kJ4CLu46oqFDxmN86m5OJSQDYVchok9OYS9obxWPsLr1zPXcSE1T+I0RHS7j6MuIT6jAM42KiwYxlFc94OFDxmN1ft1E3Q90s4DXg6WEqdpukI87fBoew8AwLJdsRKnIaIK0ck5+OqvBADA+yPawsFKKXEi48TCh4xCWm4xfo5OBQBM5YSFDe7VQYGQy4Coixk4mXRT6jhEJq9E/c8orsdCPTGYI1rvGwsfMgrrDydCrRXo6ueI9t4OUsdp8vxdbDCyozcAYOlOtvoQSe3TqHjEpRfA2UaJhY9xFNeDYOFDBq+wRI2Nt01YSI1jZngrmCtkOJSQjYPxWVLHITJZZ1Ny8WV5F9fix9vC0ZpdXA+ChQ8ZvC0nUpBXrIafkxUGtuYIhsbi3cwKT3dtDgD4cGcshBASJyIyPaVqLWZvjoZGK/Boew8MaeshdSSjx8KHDJpGK/R3HX6uVwso5Lw9RWN6aUAALMzlOJ2cg6iYDKnjEJmcz/68hNj0fDhZK/EOu7jqBQsfMmiRF9JxNbsI9pbmGNnJW+o4JsfV1gITe+i6F5fuioVWy1YfosZy7louPt+r6+J69/G2cLJRSZyoaWDhQwZt9QHdhIXPdm8OK6WZxGlM0wt9W8JWZYaLafn47ex1qeMQmYTbu7iGtvPAI+3YxVVfWPiQwTqdnIO/E2/CXCHD+DA/qeOYLAcrJab0bglAN5uzWqOVOBFR0/f5nnhcTMuHo7US7wxnF1d9YuFDBqviZqSPhXrBzc5C4jSmbXIvPzSzMsflrEJsPXlN6jhETdr51Fx8viceALBoeBs4s4urXrHwIYOUcrMIf5xLA6C7qJmkZWthjhf7BQDQTZlfotZInIioaSrTaDFn8xmotQJD2rhjKLu46h0LHzJIaw8mQqMV6BXgjBBPO6njEIBxYb5ws1PhWs4t/PdoktRxiJqkL/cm4ML1PDhYmePdx9tCJuNI1vrGwocMTl5xGTb9nQwAeI4TFhoMC3MFXh7QCgDw2Z4EFJWqJU5E1LTEXM/Dp39eAgC881gbuNiyi6shsPAhg7PpWDIKStRo5WqDfoEuUseh24zp7AMfR0tkFZRg/aGrUschajLKNFrM2RKNMo3A4BA3PBbqKXWkJouFDxkUtUaLtbdNWMhmXsOiNJPjlYGBAICVfyUgr7hM4kRETcNXfyXg3LU82FuaY/EIdnE1JBY+ZFB+P5eG1NxiOFkr8fhDXlLHoWo8/pAXAlxtkHurDN/suyx1HCKjF5uWj4+j/unicrXlKNaGdF+Fz+effw4/Pz9YWFigW7duOHbs2F3Xz8nJwUsvvQQPDw+oVCoEBgbi999/v6/A1HQJIfRD2MeF+cLCXCFxIqqOQi7DrEG6Vp/VB64gu6BE4kRExkut0U1UWKYRCG/thuEd2MXV0Opc+GzatAmzZs3CggULcPLkSYSGhiIiIgIZGdXfx6e0tBSDBg1CYmIitmzZgtjYWKxatQpeXvw2T5X9nXgTZ1JyoTSTY1x3X6nj0F0MaeOOtl52KCzVYGX5XaOJqO6+2ncZZ6/lws7CDO+zi6tR1Lnw+eijjzB16lRMmjQJISEhWLlyJaysrLBmzZpq11+zZg1u3LiB7du3o2fPnvDz80Pfvn0RGhpa4zFKSkqQl5dX6UFNX0Vrz8iOXrwnjYGTy2V4bXAQAGD94atIyy2WOBGR8YlLz8fHu3VdXAsfawNXTtTaKOpU+JSWluLEiRMIDw//ZwdyOcLDw3H48OFqt/n5558RFhaGl156CW5ubmjbti3ef/99aDQ1T4C2ZMkS2Nvb6x8+Pj51iUlG6EpWISJj0gEAz/VqKXEaqo1+gS7o7NsMpWqtfgguEdWOWqPFnM3RKNVoMSDYFSN4TWOjqVPhk5WVBY1GAzc3t0rL3dzckJaWVu02ly9fxpYtW6DRaPD777/j7bffxrJly7B48eIajzNv3jzk5ubqH8nJyXWJSUZo7cErEAIYEOyKAFcbqeNQLchkMsyJ0LX6bPo7GUnZRRInIjIeq/ZfQXRKLmwtzPD+iHbs4mpEDT6qS6vVwtXVFV9//TU6deqEMWPG4M0338TKlStr3EalUsHOzq7Sg5qunKJSbD6eAgCYwttTGJVuLZ3Qu5Uz1FqBFVFxUschMgrxGflYvlv39zL/0RC427OLqzHVqfBxdnaGQqFAenp6peXp6elwd3evdhsPDw8EBgZCofhnhE7r1q2RlpaG0tLS+4hMTc3Go0m4VaZBiIcdwvydpI5DdTS7/Fqfbaeu4VJ6vsRpiAybRiswe/MZlKq16BfkglGdvKWOZHLqVPgolUp06tQJUVFR+mVarRZRUVEICwurdpuePXsiPj4eWq1WvywuLg4eHh5QKpX3GZuailK1FusPJQIApvTmhIXGKNTHAYND3CAE8FEkW32I7mb1gcs4nZwDW5UZljzBLi4p1Lmra9asWVi1ahXWr1+PmJgYTJs2DYWFhZg0aRIAYPz48Zg3b55+/WnTpuHGjRuYOXMm4uLi8Ntvv+H999/HSy+9VH+vgozWL9GpyMgvgZudCo+25/wVxuq1wUGQyYA/zqXhbEqu1HGIDFJ8RgGW7tJ9OXj70RB42FtKnMg0mdV1gzFjxiAzMxPz589HWloaOnTogB07dugveE5KSoJc/k895ePjg507d+LVV19F+/bt4eXlhZkzZ+L111+vv1dBRkkIgVXlQ9gn9PCD0owTiRurIHdbDA/1xPbTqVi6KxbrJ3eVOhKRQdFoBeZuiUapWos+gS4Y3ZldXFKRCSGE1CHuJS8vD/b29sjNzeWFzk3IwfgsPPPNUViaK3Bk3kDYW5lLHYkeQGJWIQZ+9Bc0WoHNL4Shi5+j1JGIDMY3+y9j8W8xsFGZYderfeDpYBqtPYZ4/uZXbJJMRWvPk529WfQ0AX7O1niys27OrQ93xsIIvlMRNYrLmQX4cGcsAOCtoa1NpugxVCx8SBKX0vOxNzYTMhkwmUPYm4wZAwOgNJPj2JUb2H8pS+o4RJLTdXGdQYlai96tnDGmCyfklRoLH5LE6gNXAACDQ9zg62QtcRqqLx72lni2m+4+a0t3sdWHaN2hRBy/ehPWSgVHcRkIFj7U6LIKSrD11DUAwNTevD1FU/Nif39YKRU4k5KLnefT770BUROVmFWID3deBAD839DW8G5mJXEiAlj4kAQ2HL6KUrUWoT4O6OTbTOo4VM+cbVSY3FPXfflRZCw0Wrb6kOnRlndxFZdp0cPfCU93bS51JCrHwocaVXGZBt8duQoAmMoJC5usqX1aws7CDHHpBfg5+prUcYga3beHE3Es8QaslAr8Z2R7ftYZEBY+1Ki2nbqG7MJSeDlYYkib6m9zQsbP3tIcz/f1BwAsj7yEMo32HlsQNR1Xswvxnx26UVzzHmkNH0d2cRkSFj7UaLRaob+oeVJPP5gp+PZryib28IOzjRJJN4r0N6ElauoqurhulWkQ1tIJz7CLy+DwzEON5q+4TMRnFMBWZcYhnSbAWmWGF/sFAAA+ibqE4jKNxImIGt53R6/i6BVdF9cHo9pDLmcXl6Fh4UON5psDugkLx3b1ga0FJyw0BU93aw4Pewuk5RXrr+0iaqqSsovw7z90o7jeeDiYXVwGioUPNYrzqbk4GJ8NhVyGiT05YaGpsDBXYMbAVgCAL/cmoLBELXEiooah1QrM/TEaRaUadGvhqJ/PigwPCx9qFKv3667teaSdB7w4XbtJGdXJG35OVsguLMXag1ekjkPUIDYeS8KRyzdgac4uLkPHwocaXFpuMX6OTgUATOHtKUyOuUKOVwcFAgC+2ncZuUVlEiciql/JN4qw5PcYAMDcIUGcjd7AsfChBrf+cCLUWoGufo4I9XGQOg5JYFh7TwS52SK/WI2v9iVIHYeo3ggh8MbWMygq1aCrnyMmhPlJHYnugYUPNajCEjU2ll/U+lxvtvaYKrlchtcG61p91h5MRGZ+icSJiOrHf48l42B8NizM5fgPu7iMAgsfalBbTqQgr1gNPycrhLd2kzoOSWhQiBtCfRxwq0yDL/bGSx2H6IGl3CzCe79dAADMiQhGC2d2cRkDFj7UYDRagTXlF7NO7tUCCn4TMmkymQyzy1t9Nh5JwrWcWxInIrp/QgjM23oWhaUadPZthok9/KSORLXEwocaTOSFdFzNLoK9pTlGdfKWOg4ZgF4BzujWwhGlGi0+jbokdRyi+7bp72Tsv5QFlZkcH4xqzy92RoSFDzWY1eUTFj7TrTmslGYSpyFDIJPJMCciCACw+UQKrmQVSpyIqO6u5dzC4t90o7jmRAShpYuNxImoLlj4UIM4nZyDvxNvwlwhwwQ2AdNtOvs5on+QCzRagRW746SOQ1QnFV1cBSVqdGzugEmckNXosPChBvHNfl1rz7BQT7jZWUichgzNa4N1rT4/R6fiYlqexGmIam/z8RTsi8uE0kyOD0aFsovLCLHwoXqXcrMIf5xLAwBM6dVS4jRkiNp62WNoOw8IASzbxVYfMg7Xc2/h3V91o7heGxSIAFd2cRkjFj5U79YdTIRGK9AzwAkhnnZSxyED9eqgQMhluovgTyfnSB2H6K4qurjyS9To4OOAKb35pc5YsfChepVXXIYf/k4GAH4w0F0FuNpgxEO60X5Ld8ZKnIbo7n48eQ17Y3VdXEtHcxSXMWPhQ/Xqf38no6BEjVauNugX6CJ1HDJwr4S3grlChgPxWTickC11HKJqpeUW451fzgMAXg0PRICrrcSJ6EGw8KF6o9ZosfZgIgDguV4tIJPxGxHdnY+jFcZ2aQ4AWLorFkIIiRMRVSaEwP9tO4v8YjVCve0xlbfeMXosfKje/HEuDddybsHJWonHH/KSOg4ZiZcHBEBlJseJqzexNzZT6jhElWw7dQ1/XsyAUiHHh6NDYabgadPY8X+Q6oUQQj+EfVyYLyzMFRInImPhZmehn+vpw52x0GrZ6kOGISOvGAt/1nVxzQxvhUA3dnE1BSx8qF4cv3oT0Sm5UJrJMa67r9RxyMi80NcfNiozXLiep58KgUhKFV1cecVqtPOyx/N9OFijqWDhQ/Vi1T5da8/Ijl5wslFJnIaMjaO1Es/10l078VFkLNQarcSJyNT9dDoVu2MyYK6QYSm7uJoU/k/SA0vMKkRkTDoA6E9eRHU1pXcLOFiZIyGzENtOXZM6DpmwjPxiLCjv4poxoBWC3NnF1ZSw8KEHtubgFQgB9A9y4TBPum+2FuZ4oa8/AODjqEsoVbPVhxqfEAJvbTuH3FtlaONphxf6+UsdieoZCx96IDlFpdh8PAUAMJUTFtIDmhDmBxdbFVJu3sKmv5OkjkMm6Jcz17HrQjrM5LouLnN2cTU5/B+lB7LxaBJulWnQ2sMOYf5OUschI2epVGD6gAAAwKd/xuNWqUbiRGRKMvNLsOCncwCA6QNaobUHb7nTFLHwoftWqtZi/aFEAMDU3pywkOrH2C7N4eVgiYz8Enx7OFHqOGQihBB4e/s53CwqQ4iHHV7szy6upoqFD923X6JTkZFfAjc7FR5t7yl1HGoilGZyvBLeCgDw5V8JyC8ukzgRmYLfzl7HjvNpMJPL8OHo9uziasL4P0v3RQiBbw5cAQBM6OEHpRnfSlR/RjzkhZYu1sgpKsPq8vcZUUPJKijB/J90o7he6h+ANp72EieihsSzFd2XQwnZiLmeB0tzBZ7u2lzqONTEmCnkmDUoEADwzf4ruFlYKnEiasoW/HQeNwpLEexui5f6B0gdhxoYCx+6LxW3p3iyszccrJQSp6Gm6JG2HmjtYYeCEjVW/pUgdRxqon47cx2/nb0ORfkoLrZeN338H6Y6i8/Ix57YTMhkwKSenLCQGoZcLsOcCF2rz/rDicjIK5Y4ETU12QUlmF8+iuvFfv5o68UuLlPAwofq7Jv9umsuBoe4wc/ZWuI01JT1D3JFx+YOKC7T4rM98VLHoSZmwc/nkV1YiiA3W7w8gF1cpoKFD9VJVkEJtpbfTmAKJyykBiaTyTA7IggA8N9jSUi+USRxImoqdpy7jl/P6Lq4PhzdHiozhdSRqJGw8KE62XD4KkrVWoT6OKCzbzOp45AJ6OHvjJ4BTijTCHwcdUnqONQE3CwsxVvbdV1cL/RtifbeDtIGokbFwodqrbhMg++OXAUATOnFCQup8cwerGv12XoyBfEZBRKnIWO38JfzyCooRStXG8wY2ErqONTIWPhQrW07dQ3ZhaXwcrDEw23dpY5DJuSh5s0Q3toNWgEsj4yTOg4ZsZ3n0/DT6VTIZcDS0aHs4jJBLHyoVrRaoZ9IblJPP5hxVlNqZK8NDoRMppth99y1XKnjkBHKKSrFm9t0XVzP9/VHqI+DtIFIEjx7Ua38FZeJ+IwC2KjMMKaLj9RxyAS19rDDsPJbo3zEVh+6D+/8cgFZBSUIcLXBTHZxmSwWPlQr3xzQTVg4tosPbC3MJU5DpurVQYFQyGX482IGTly9IXUcMiKRF9Kx7dQ1yGXAh6Paw8KcXVymioUP3dP51FwcjM+GQi7DxJ5+UschE9bC2RqjOnoDAD7cGQshhMSJyBjkFJXi/7adBQBM7d0SDzXniFRTxsKH7qni2p6H27rDu5mVxGnI1M0IbwWlQo4jl2/gYHy21HHICCz69QIy80vQ0sUar5bfA45MFwsfuqv0vGL8Ep0KgBMWkmHwcrDE0910N8b9cBdbfejuomLSsfXkNchkwIejQtnFRSx86O7WH0pEmUagi18zdOAICDIQL/UPgKW5AtHJOdgdkyF1HDJQubfK9F1cU3q1QCdOukpg4UN3UVSqxsajSQDY2kOGxcVWpb/ebNmuWGi1bPWhqhb/egHpeSVo6WyN18onwSRi4UM12nIiBbm3yuDrZIXw1m5SxyGq5Pk+LWFrYYaLafn45Uyq1HHIwOyJzcDmEymQyYAPOIqLbsPCh6qluW3Cwud6tYBCzttTkGFxsFLiX+Utkcsj41Cm0UqciAxFXnEZ5v2o6+Ka3LMFOvs5SpyIDAkLH6rW7ph0XM0ugr2lOUZ18pY6DlG1JvVqAUdrJRKzi/DjiRSp45CBeO/XGKTlFcPPyUp/nzeiCix8qFrf7NdNWPhMt+awUppJnIaoejYqM7zYzx8A8EnUJZSoNRInIqn9FZeJTceTy7u4QmGpZBcXVcbCh6o4nZyDvxNvwlwhw4QeflLHIbqrZ7v7wt3OAqm5xfi+/GJ8Mk15xWV448czAIAJYX7o2oJdXFQVCx+qoqK1Z1ioJ9zsLCROQ3R3FuYKTB8YAAD4fE88ikrVEiciqSz5PQbXc4vR3NEKc4ewi4uqx8KHKkm5WYQ/zqUBAKb04hB2Mg5PdvZBc0crZBWUYu3BRKnjkAT2xWXiv8eSAehGcbGLnmrCwocqWXcwERqtQM8AJ4R42kkdh6hWzBVyvDpId7ftr/5KQO6tMokTUWMqKFFj3lbdKK4JYb7o3tJJ4kRkyFj4kF5+cRl++Fv3jYkTFpKxeSzUC61cbZBXrNZ315JpWPJ7DK7l3IKPoyXmDgmWOg4ZOBY+pLfp72QUlKgR4GqDvq1cpI5DVCcKuQyvDdbdgHL1gSvIKiiROBE1hoPxWfoZ5v8zsj2sVeziortj4UMAALVGq782YkqvFpBzwkIyQhFt3NHOyx5FpRp8uTdB6jjUwApK1Ji7RTeKa1x3X/Twd5Y4ERmD+yp8Pv/8c/j5+cHCwgLdunXDsWPHalx33bp1kMlklR4WFhwpZGj+OJeGazm34GStxOMPeUkdh+i+yGQyzI7QjebZcOQqrufekjgRNaT//HER13JuwbuZJd54mF1cVDt1Lnw2bdqEWbNmYcGCBTh58iRCQ0MRERGBjIya75BsZ2eH69ev6x9Xr159oNBUv4QQ+msixoX58p42ZNT6tHJGVz9HlKq1+PTPeKnjUAM5lJCFDUd055IP2MVFdVDnwuejjz7C1KlTMWnSJISEhGDlypWwsrLCmjVratxGJpPB3d1d/3Bz4w0vDcnxqzcRnZILpZkcz3b3lToO0QO5vdXnf38n42p2ocSJqL4VlqjxevlEhU93a44eAeziotqrU+FTWlqKEydOIDw8/J8dyOUIDw/H4cOHa9yuoKAAvr6+8PHxwfDhw3H+/Pm7HqekpAR5eXmVHtRwKlp7Rnb0grONSuI0RA+uawtH9A10gVorsGL3JanjUD37YMdFJN+4BS8HS8xjFxfVUZ0Kn6ysLGg0miotNm5ubkhLS6t2m6CgIKxZswY//fQTvvvuO2i1WvTo0QMpKTXfUHDJkiWwt7fXP3x8fOoSk+ogMasQuy6kA9DdhZ2oqai4OeX209cQl54vcRqqL0cuZ2P9YV0X179HtoOthbnEicjYNPiorrCwMIwfPx4dOnRA3759sXXrVri4uOCrr76qcZt58+YhNzdX/0hOTm7omCZrzcErEALoH+SCAFdbqeMQ1Zt23vYY0sYdQgDLdsVKHYfqQVHpP6O4nurqg96cdoPuQ50KH2dnZygUCqSnp1danp6eDnd391rtw9zcHA899BDi42u+6FClUsHOzq7Sg+pfTlEpNh/XtbxxwkJqimYNDoRMBuw8n44zKTlSx6EH9MGOWCTdKIKnvQX+75HWUschI1WnwkepVKJTp06IiorSL9NqtYiKikJYWFit9qHRaHD27Fl4eHjULSnVu41Hk3CrTIPWHnbo4c8p3qnpCXSzxYgOuukZlu6KkzgNPYhjV25g/eFEAMCSke3ZxUX3rc5dXbNmzcKqVauwfv16xMTEYNq0aSgsLMSkSZMAAOPHj8e8efP06y9atAi7du3C5cuXcfLkSTz77LO4evUqpkyZUn+vguqsVK3F+kOJAHQTFspknLCQmqZXwgNhJpdhX1wmjl7OljoO3YdbpRrM3RINIYAxnX3QN5BdXHT/6jzxwZgxY5CZmYn58+cjLS0NHTp0wI4dO/QXPCclJUEu/6eeunnzJqZOnYq0tDQ0a9YMnTp1wqFDhxASElJ/r4Lq7JfoVGTkl8DVVoVhoZ5SxyFqMM2drPBkFx98fzQJS3fF4n/Ph7HQNzJLd8UiMbsIHvYWePNRdnHRg5EJIYTUIe4lLy8P9vb2yM3N5fU+9UAIgUc+OYCY63mYExGEl/oHSB2JqEGl5Rajz4d7UKrWYt2kLugX5Cp1JKql44k3MPqrwxACWDupC/rz/86oGOL5m/fqMkGHErIRcz0PluYKPNOtudRxiBqcu70FxpdPzrl0VyyM4PseASgu02DOljMQAhjVyZtFD9ULFj4mqGLCwtGdveFgpZQ4DVHjmNbPH9ZKBc5dy8OOc9XPO0aGZdmuWFzJKoSbnQpvD+XlEVQ/WPiYmPiMfOyJzYRMBkzuyQkLyXQ42agwuXySzmWRcdBo2epjyE5cvYFvDlwBACx5oh3srTiKi+oHCx8Ts7r8g2RQazf4OVtLnIaocU3p3RL2luaIzyjAT6evSR2HanB7F9cTHb0wIJj3d6T6w8LHhGQVlODHk7oP+6l9OGEhmR57S3M831f33l+x+xJK1VqJE1F1lkfG4XJmIVxtVVjwaBup41ATw8LHhHx35CpK1VqEetujs28zqeMQSWJiDz8426iQdKMI/zvO2+EYmlNJN7Gq/DrE90ewi4vqHwsfE1FcpsGG8hv7TendkvOYkMmyUprh5f7+AIBP/7yE4jKNxImoQkUXl1YAIx7yQngIu7io/rHwMRHbT11DdmEpvBws8XDb2t1Xjaipeqpbc3g5WCI9rwTfHbkqdRwq93HUJcRnFMDZRoUFwziKixoGCx8ToNUK/eiIST39YKbgfzuZNpWZAjMG6ibu/GJvAgpK1BInoujkHHz1VwIA4P0RbTnVBjUYngFNwF+XMhGfUQAblRme7OIjdRwigzCyozdaOFvjRmEp1pR/MSBplKg1mL05GloBPBbqicFt2CpNDYeFjwmomLBwbBcf2PGOxkQAADOFHK8OCgQArNp3GTlFpRInMl2fRF3CpYwCONsosfAxjuKihsXCp4m7kJqHg/HZUMhlmNjTT+o4RAbl0XYeCHa3RX6JGl/tuyx1HJN0JiUHK//S/e4XP94Wjtbs4qKGxcKnifvmgO4D5eG27vBuZiVxGiLDIpfL8NrgIADA2oNXkJFfLHEi01Ki1mDO5jPQaAUebe+BIW09pI5EJoCFTxOWnleMX6JTAeiGsBNRVeGtXdHBxwHFZVp8sSdB6jgm5bM/4xGbng8nayXeYRcXNRIWPk3Y+kOJKNMIdPFrhg4+DlLHITJIMpkMcyJ0rT7fH03CtZxbEicyDeeu5eKLvbpC893H28LJRiVxIjIVLHyaqKJSNTYeTQLA1h6ie+kZ4Iywlk4o1Wjxye5LUsdp8krVWszeHA2NVmBoOw880o5dXNR4WPg0UVtOpCD3Vhl8nawQ3pqznxLdy+zyVp8tJ1NwObNA4jRN2+d74nExLR+O1kq8M5xdXNS4WPg0QRqt0M9L8lyvFlDIeXsKonvp5NsMA4NdodEKLGerT4M5n5qLz/fEAwAWDW8DZ3ZxUSNj4dME7Y5JR2J2EewtzTGqk7fUcYiMxqzBunl9folOxYXUPInTND1lGi1mbz4DtVZgSBt3DGUXF0mAhU8TtHq/rrXnmW7NYaU0kzgNkfFo42mPoe11J+OPImMlTtP0fLEnATHX8+BgZY53H2/LmyWTJFj4NDHRyTk4lngD5goZJvTwkzoOkdGZNSgQchmwOyYDJ5NuSh2nybiQmodP/9R1Ib7zWBu42LKLi6TBwqeJqbgZ6bBQT7jZWUichsj4+LvYYGRHXRfxsl1s9akPZRot5myJhlorMDjEDY+FekodiUwYC58m5FrOLfx+9joAYEovDmEnul8zBraCuUKGg/HZOBSfJXUco7dybwLOp+bB3tIci0ewi4ukxcKnCVl74Ao0WoGeAU4I8bSTOg6R0fJxtMJTXZsDAD7cFQshhMSJjNfFtDx8clsXl6stW6JJWix8moj84jL88HcyALb2ENWHl/sHwMJcjlNJOfjzYobUcYySWqPFnM1nUKYRCG/thuEd2MVF0mPh00Rs+jsZBSVqBLjaoG+gi9RxiIyeq52FfoDA0l1x0GrZ6lNXX+27jLPXcmFnYYb32cVFBoKFTxOg1mix9mAiAN2EhXJOWEhUL17o4w9blRlirufht/Lr56h24tLz8XH5RJALH2sDVw62IAPBwqcJ+ONcGq7l3IKTtRIjHvKSOg5Rk9HMWqm/193yyDioNVqJExkHXRdXNEo1WgwIduXnEhkUFj5GTgiBb/ZfBgA8290XFuYKiRMRNS2Te/mhmZU5LmcVYuupa1LHMQqr9l9BdEoubC3M8P6IduziIoPCwsfIHb96E9EpuVCayTEuzFfqOERNjq2FOab18wcAfLz7EkrUGokTGbZL6flYHhkHAJj/aAjc7dnFRYaFhY+Rq2jteeIhL97sj6iBjA/zg6utCtdybuGHY8lSxzFYao0Ws7ecQalGi35BLrxXIBkkFj5GLDGrELsupAPQXdRMRA3DwlyB6QNbAQA+2xOPW6Vs9anO6gNXEJ2cA1uVGZY8wS4uMkwsfIzY2oNXIATQL8gFrdxspY5D1KSN6ewD72aWyMwvwfrDiVLHMTjxGQVYVt7F9fajIfCwt5Q4EVH1WPgYqZyiUvzveAoAYGpvTlhI1NCUZnK8Eh4IAPhybwLyisskTmQ4NFqBOVuiUarWok+gC0Z3ZhcXGS4WPkbq+2NJuFWmQbC7LXr4O0kdh8gkjHjICwGuNsi9VYZv9l+ROo7BWHvwCk4l5cBGZYZ/s4uLDBwLHyNUqtZi/aFEALrWHn7IEDUOhVyGWYN0rT6r91/GjcJSiRNJ73JmAT7cqbuL/VtDW8PTgV1cZNhY+BihX8+kIj2vBK62KgwL5b1viBrTkDbuaONph8JSDVb+lSB1HElptAJzt5xBiVqL3q2cMaaLj9SRiO6JhY+REUJgVXkT+4QeflCa8b+QqDHJ5TLMHhwEAFh/KBHpecUSJ5LOukOJOH71JqyVCvx7ZHu2PpNR4FnTyBxOyEbM9TxYmivwTLfmUschMkn9glzQ2bcZStRafPrnJanjSOJKViE+3HkRAPB/Q1vDi11cZCRY+BiZVeUTFo7u7A0HK6XEaYhMk0wmw+wIXavPD8eSkZRdJHGixqXVCszdEo3iMi16+Dvh6a78EkbGg4WPEYnPyMee2EzIZMDknpywkEhK3Vs6oXcrZ6i1Aiui4qSO06jWH07E34k3YaVU4D/s4iIjw8LHiKw+oLu2Z1BrN/g5W0uchogqrvXZfuoa4jPyJU7TOBKzCvGfHbournmPtIaPo5XEiYjqhoWPkcguKMGPJ3V3hp7CCQuJDEKojwMGh7hBK4CPIpt+q49WKzD3xzMoLtMirKUTnmEXFxkhFj5GYsORqyhVaxHqbY8ufs2kjkNE5V4bHASZDPj9bBrOXcuVOk6D2nDkKo5duQErpQIfjGoPuZxdXGR8WPgYgeIyDTYcvgpA19rD/nQiwxHkbovHyufTWrorVuI0DScpu0jfxfXGw8Hs4iKjxcLHCGw/dQ3ZhaXwcrDEw23dpY5DRHd4NTwQCrkMe2MzcTzxhtRx6p2uiysaRaUadGvhiGe7+Uodiei+sfAxcEIIfFN+UfOknn4wU/C/jMjQ+Dlb48nyG3N+uDMWQgiJE9WvjceScOTyDVias4uLjB/PogZub1wm4jMKYKMyw5OcDp7IYE0f0ApKhRxHr9zAgfgsqePUm+QbRVjyewwAYO6QIPg6cUQpGTcWPgZudfntKcZ28YGdhbnEaYioJp4Olni2u64LqKm0+ggh8PqPZ1BUqkFXP0dMCPOTOhLRA2PhY8AupObhQHwWFHIZJvb0kzoOEd3Di/39YaVU4ExKLnZdSJc6zgP7/lgSDiVkw8Jcjv+wi4uaCBY+BqxiwsKH27rDuxlHUBAZOmcbFSaVf0n5aFccNFrjbfVJuVmE93/TdXHNiQhGC06aSk0ECx8DlZ5XjJ+jOWEhkbH5V29/2FqYITY9H79Ep0od574IIfDGj2dRWKpBZ99mmNjDT+pIRPWGhY+BWn8oEWUagS5+zdDBx0HqOERUS/ZW5nihrz8AYPnuOJRptBInqrsf/k7GgfgsqMzk+GBUeyjYxUVNCAsfA1RUqsbGo0kAgOd6sbWHyNhM7OEHZxslrmYXYcuJFKnj1Mm1nFt4T9/FFYSWLjYSJyKqXyx8DNCWEynIvVUGXycrDApxkzoOEdWRtcoM0/oFAAA+ibqE4jKNxIlqRwiBeVvPoqBEjY7NHTCpZwupIxHVOxY+BkajFVhTflHz5J4t2MRMZKSe6dYcHvYWuJ5brG/BNXSbj6dgX1wmlGZyfDAqlJ8/1CSx8DEwu2PSkZhdBHtLc4wunwmWiIyPhbkCMwa2AgB8sScehSVqiRPd3fXcW3j31wsAgNcGBSLAlV1c1DSx8DEwFRMWPt2tOayUZhKnIaIHMaqTN3ydrJBdWIp1hxKljlOjii6u/BI1Ovg4cCQpNWksfAxIdHIOjiXegLlCxuGjRE2AuUKOV8MDAQAr/0pAblGZxImqt+VECvbG6rq4lo7mKC5q2lj4GJCKm5EOa+8JNzsLidMQUX0YFuqJIDdb5Ber8fX+BKnjVJGWW4xF5V1cr4YHIsDVVuJERA2LhY+BuJZzC7+fvQ4AeK43R1IQNRUKuQyzButafdYeTERWQYnEif4hhMD/bTuL/GI1Qr3tMZWfPWQCWPgYiHUHr0CjFejh74Q2nvZSxyGiejQ4xA2h3vYoKtXgiz2G0+qz9eQ1/HkxA0qFHB+ODoWZgqcEavr4LjcA+cVl+OFYMgBgKi8qJGpyZDIZZkcEAQC+O3IVqTm3JE6kuy3OO7+cBwDMDG+FQDd2cZFpYOFjADb9nYz8EjX8XazRN9BF6jhE1AB6BTijWwtHlGq0+PTPS5JmEULgzW1nkVesRjsvezzfh1+4yHSw8JGYWqPF2oOJAHQ3I5VzNAVRkySTyTCnvNXnf8dTkJhVKFmWn06nYndMBswVMixlFxeZmPt6t3/++efw8/ODhYUFunXrhmPHjtVqux9++AEymQyPP/74/Ry2SdpxPg3Xcm7ByVqJEQ95SR2HiBpQZz9H9AtygUYrsHx3nCQZMvKLseBnXRfXjAGtEOTOLi4yLXUufDZt2oRZs2ZhwYIFOHnyJEJDQxEREYGMjIy7bpeYmIjZs2ejd+/e9x22qRFCYFX5hIXPdveFhblC4kRE1NBmD9a1+vwcnYrYtPxGPbaui+sccm+VoY2nHV7o59+oxycyBHUufD766CNMnToVkyZNQkhICFauXAkrKyusWbOmxm00Gg2eeeYZvPPOO2jZkn3JFU5cvYno5BwozeQYF+YrdRwiagRtvezxSDt3CAEs2xXbqMf+OToVkRfSYSbXdXGZs4uLTFCd3vWlpaU4ceIEwsPD/9mBXI7w8HAcPny4xu0WLVoEV1dXPPfcc7U6TklJCfLy8io9mqJV+y8DAJ54yAvONiqJ0xBRY5k1KBByGbDrQjqik3Ma5ZiZ+SX6Lq7pA1qhtYddoxyXyNDUqfDJysqCRqOBm5tbpeVubm5IS0urdpsDBw5g9erVWLVqVa2Ps2TJEtjb2+sfPj4+dYlpFK5mF2LXhXQAwHO9OGkYkSkJcLXFiId0NyFe2gitPkIIvLX9LHKKyhDiYYcX+7OLi0xXg7Zz5ufnY9y4cVi1ahWcnZ1rvd28efOQm5urfyQnJzdgSmmsOXAFQgD9glzQivNnEJmcV8JbwVwhw/5LWThyObtBj/XrmevYeV7XxfXh6Pbs4iKTVqfbfzs7O0OhUCA9Pb3S8vT0dLi7u1dZPyEhAYmJiRg2bJh+mVar1R3YzAyxsbHw96/6zUOlUkGlarpdP7lFZfjf8RQAwJRevOaJyBT5OFphTBcffHckCUt3xmLzC2GQyep/OousghLM/+kcAOCl/gGcGZ5MXp3KfqVSiU6dOiEqKkq/TKvVIioqCmFhYVXWDw4OxtmzZ3H69Gn947HHHkP//v1x+vTpJtmFVRsbj13FrTINgt1t0TPASeo4RCSR6QNaQWUmx/GrN7E3NrNBjjH/p3O4WVSGYHdbvNQ/oEGOQWRM6tTiAwCzZs3ChAkT0LlzZ3Tt2hUrVqxAYWEhJk2aBAAYP348vLy8sGTJElhYWKBt27aVtndwcACAKstNRalai/WHEgHoJixsiG94RGQc3OwsMKGHH77edxlLd8Wib6BLvU5i+tuZ6/j9bBoU5aO4lGbs4iKqc+EzZswYZGZmYv78+UhLS0OHDh2wY8cO/QXPSUlJkMv5x1WTX8+kIj2vBK62KjwW6il1HCKS2At9/fH90SScT83DjvNpeKSdR73sN/u2Lq4X+/mjrRe7uIgAQCaEEFKHuJe8vDzY29sjNzcXdnbGOwRTCIGhnxzAhet5mBMRxGZnIgIAfBQZh0+iLsHfxRq7Xu0LRT20+rz8/Un8euY6gtxs8fP0nlCZcYJUanyGeP5m00wjOpyQjQvX82BprsAz3ZpLHYeIDMSU3i3gYGWOhMxCbDt17YH398fZ6/j1zHUoykdxsegh+gcLn0b0zQHd7SlGd/aGg5VS4jREZCjsLMzxQl/dCNcVu+NQqtbe975uFJbi7fIurhf6tkR7b4f6iEjUZLDwaSTxGfn482IGZDJgck9OWEhElU0I84OLrQopN29h0/H7n7ts4c/nkVVQilauNpgxsFU9JiRqGlj4NJLVBxIBAINau8HP2VraMERkcCyVCrxcft3fp1GXcKtUU+d97DiXhp+jUyGXAUtHh7KLi6gaLHwaQXZBCbaeLJ+wsDcnLCSi6o3t6gMvB0tk5Jdgw5HEOm17s7AUb23XdXE939cfoT4O9R+QqAlg4dMINhy5ihK1FqHe9uji10zqOERkoFRmCswM13VPfbk3AfnFZbXe9p1fziOroAQBrjaYyS4uohqx8GlgxWUabDh8FQDwHCcsJKJ7eOIhL7R0scbNojKsKe8iv5fIC+nYflrXxfXhqPawMGcXF1FNWPg0sO2nriG7sBReDpZ4pG3V+5kREd3OTCHHrEGBAIBV+y/jZmHpXdfPKSrF/207CwCY2rslHmrOVmWiu2Hh04CEEPoh7BN7+MGMd0Qmolp4pK0HWnvYoaBEjZX7Eu667qJfLyAzvwQtXazxannBREQ145m4Ae2Ny0R8RgFsVGYY09U0b8hKRHUnl8swe7CuiFl/KBEZecXVrhcVk46tJ69BJgM+HBXKLi6iWmDh04BW79e19ozp4gM7C3OJ0xCRMRkQ7IqHmjuguEyLz/fEV3k+t6hM38U1pVcLdPJlFxdRbbDwaSAXUvNwID4Lchkwqaef1HGIyMjIZDLMiQgCAHx/LAnJN4oqPf/ubxeQnleCls7WeG1wkBQRiYwSC58Gsrr82p6H23nAu5mVxGmIyBj18HdGzwAnlGkEPom6pF++52IGtpxIgUwGfMBRXER1wsKnAaTnFePnaN2NBqdywkIiegCzy1tzfjyZgoTMAuTeKsO8rboursk9W6Czn6OU8YiMjpnUAZqibw8nokwj0Nm3GTpw9lQiegAPNW+G8NZu2B2Tjo8i42CtVCAtrxh+Tlb6ooiIao+FTz0rKlXjuyNJAHh7CiKqH68NDkTUxXT8duY6AJR3cYXCUskuLqK6YldXPfvxRApyb5XB18kKg0LcpI5DRE1Aaw87PNreU//zhDA/dG3BLi6i+8HCpx5ptEJ/UfPkni2gkPP2FERUP2YNCoS1UgF/F2vMHcIuLqL7xa6uehQVk47E7CLYWZhhVCdvqeMQURPSwtkaf83tD0tzBayU/Ogmul/866lH35RPWPhMd19Yq/irJaL65WyjkjoCkdFjV1c9iU7OwbHEGzCTyzAhzE/qOERERFQNFj71pOJmpI+FesLd3kLiNERERFQdFj714FrOLfx+VjfM9LneLSROQ0RERDVh4VMP1h28Ao1WoIe/E9p42ksdh4iIiGrAwucB5ReX4YdjyQCAKWztISIiMmgsfB7Qpr+TkV+ihr+LNfoFukodh4iIiO6Chc8DUGu0WHswEQDwXK+WkHPCQiIiIoPGwucB7Difhms5t+BorcQTHb2kjkNERET3wMLnPgkhsKp8wsJnu/vCwpw3CyQiIjJ0LHzu04mrNxGdnAOlmRzjuvtKHYeIiIhqgYXPfaq4PcWIDl5wseU08kRERMaAhc99uJpdiJ0X0gBwCDsREZExYeFzH9YeTIQQQL8gF7Rys5U6DhEREdUSC586yi0qw/+Ol09Y2KulxGmIiIioLlj41NHGY1dRVKpBsLstegY4SR2HiIiI6oCFTx2UqrVYfygRADCld0vIZJywkIiIyJiw8KmDX8+kIj2vBK62KjwW6il1HCIiIqojFj61JITQD2Gf0MMPSjP+6oiIiIwNz961dDghGxeu58HSXIFnujWXOg4RERHdBxY+tfTNAV1rz6hO3nCwUkqchoiIiO4HC59aiM/Ix58XMyCTAZN7ccJCIiIiY8XCpxZWH0gEAIS3dkMLZ2tpwxAREdF9Y+FzD9kFJdh6MgUAMLU3JywkIiIyZix87uG7I0koUWvR3tseXfyaSR2HiIiIHgALn7soLtNgw5FEAJywkIiIqClg4XMXP52+hqyCUnjaW+Dhtu5SxyEiIqIHxMKnBrdPWDipZwuYK/irIiIiMnY8m9fgr7hMXMoogI3KDGO6+kgdh4iIiOoBC58aVLT2jOniAzsLc4nTEBERUX1g4VONmOt5OBCfBbkMmNjDT+o4REREVE9Y+FSjorXn4XYe8HG0kjgNERER1RcWPnfIyCvGz9HXAABTeHsKIiKiJoWFzx3WH05EmUags28zPNScExYSERE1JSx8blNUqsbGo0kAgCm92dpDRETU1LDwuc2PJ1KQU1SG5o5WGBTCCQuJiIiaGhY+5bRagdUHdBc1T+7pB4Wct6cgIiJqalj4lNsdk47E7CLYWZhhdGdOWEhERNQUsfAp9015a8/T3XxhrTKTOA0RERE1BBY+AM6k5ODYlRswk8s4YSEREVETxsIH/0xYOCzUE+72FhKnISIiooZi8oXPtZxb+O3sdQDAc5ywkIiIqEkz+cJn3cEr0GgFwlo6oa2XvdRxiIiIqAGZdOGTX1yGH44lAwCm9mFrDxERUVNn0oXPpr+TkV+ihr+LNfoFukodh4iIiBrYfRU+n3/+Ofz8/GBhYYFu3brh2LFjNa67detWdO7cGQ4ODrC2tkaHDh2wYcOG+w5cX9QaLdYeTAQAPNerJeScsJCIiKjJq3Phs2nTJsyaNQsLFizAyZMnERoaioiICGRkZFS7vqOjI958800cPnwYZ86cwaRJkzBp0iTs3LnzgcM/CIVchvefaIdH2rnjiY5ekmYhIiKixiETQoi6bNCtWzd06dIFn332GQBAq9XCx8cH06dPxxtvvFGrfXTs2BFDhw7Fu+++W6v18/LyYG9vj9zcXNjZ2dUlLhEREUnEEM/fdWrxKS0txYkTJxAeHv7PDuRyhIeH4/Dhw/fcXgiBqKgoxMbGok+fPjWuV1JSgry8vEoPIiIiogdVp8InKysLGo0Gbm5ulZa7ubkhLS2txu1yc3NhY2MDpVKJoUOH4tNPP8WgQYNqXH/JkiWwt7fXP3x8eO8sIiIienCNMqrL1tYWp0+fxt9//4333nsPs2bNwt69e2tcf968ecjNzdU/kpOTGyMmERERNXF1uhuns7MzFAoF0tPTKy1PT0+Hu7t7jdvJ5XIEBAQAADp06ICYmBgsWbIE/fr1q3Z9lUoFlUpVl2hERERE91SnFh+lUolOnTohKipKv0yr1SIqKgphYWG13o9Wq0VJSUldDk1ERET0wOrU4gMAs2bNwoQJE9C5c2d07doVK1asQGFhISZNmgQAGD9+PLy8vLBkyRIAuut1OnfuDH9/f5SUlOD333/Hhg0b8OWXX9bvKyEiIiK6hzoXPmPGjEFmZibmz5+PtLQ0dOjQATt27NBf8JyUlAS5/J+GpMLCQrz44otISUmBpaUlgoOD8d1332HMmDH19yqIiIiIaqHO8/hIwRDnASAiIqK7M8Tzt0nfq4uIiIhMCwsfIiIiMhksfIiIiMhksPAhIiIik8HCh4iIiExGnYezS6Fi4BlvVkpERGQ8Ks7bhjSA3CgKn/z8fADgzUqJiIiMUH5+Puzt7aWOAcBI5vHRarVITU2Fra0tZDJZve03Ly8PPj4+SE5ONpj5Bahp4HuLGgLfV9QQGvJ9JYRAfn4+PD09K01uLCWjaPGRy+Xw9vZusP3b2dnxQ4QaBN9b1BD4vqKG0FDvK0Np6algGOUXERERUSNg4UNEREQmw6QLH5VKhQULFkClUkkdhZoYvreoIfB9RQ3B1N5XRnFxMxEREVF9MOkWHyIiIjItLHyIiIjIZLDwISIiIpPBwoeIiIhMhkEUPuvWrYODg8MD70cmk2H79u0PvJ+GtnDhQnTo0EHqGERE1ARMnDgRjz/+uNQxHoifnx9WrFjRKMeqt8LHEH/xMpms2scPP/wgdTQyMhMnTtS/f5RKJQICArBo0SKo1WoAumnZv/76a3Tr1g02NjZwcHBA586dsWLFChQVFVXaV0pKCpRKJdq2bSvFSyGJ9OvXD6+88so911u1ahVCQ0P176OHHnoIS5Ys0T+/cOFCyGQyvPDCC5W2O336NGQyGRITEwEAiYmJNX4GHjlypD5fGpXLzMzEtGnT0Lx5c6hUKri7uyMiIgIHDx6UOlqt1NQIceXKFTz99NPw9PSEhYUFvL29MXz4cFy8eLHxQ9YDo7hlxYNYu3YthgwZUmlZfbQuSa2srAzm5uZSxzApQ4YMwdq1a1FSUoLff/8dL730EszNzTFv3jyMGzcOW7duxVtvvYXPPvsMLi4uiI6OxooVK+Dn51fpS8G6devw5JNPYt++fTh69Ci6desm3Ysig7JmzRq88sor+OSTT9C3b1+UlJTgzJkzOHfuXKX1LCwssHr1arz22mto1arVXfe5e/dutGnTptIyJyenes9OwMiRI1FaWor169ejZcuWSE9PR1RUFLKzs6WOdk9lZWU1Lh80aBCCgoKwdetWeHh4ICUlBX/88QdycnIaN+RdlJaWQqlU1m5lUU8mTJgghg8fXu1zy5YtE23bthVWVlbC29tbTJs2TeTn5+ufX7t2rbC3txfbtm0TAQEBQqVSicGDB4ukpKRK+9m+fbt46KGHhEqlEi1atBALFy4UZWVl+ucBiG3bttX4850qjrtjxw4RHBwsrK2tRUREhEhNTa203urVq0VISIhQKpXC3d1dvPTSS/rnrl69Kh577DFhbW0tbG1txejRo0VaWlql7ZcsWSJcXV2FjY2NmDx5snj99ddFaGhopXVWrVolgoODhUqlEkFBQeLzzz/XP3flyhUBQPzwww+iT58+QqVSibVr19b4uqj+Vff+HjRokOjevbvYtGmTACC2b99eZTutVitycnIq/dyyZUuxY8cO8frrr4upU6c2dHQyABMmTBAAKj2uXLlSZb3hw4eLiRMn3nVfCxYsEKGhoWLQoEFi9OjR+uWnTp2qtN+Kz41Tp07V4yuhmty8eVMAEHv37q1xndqeC+92TlKr1eLVV18V9vb2wtHRUcyZM0eMHz++0ufTH3/8IXr27KlfZ+jQoSI+Pl7/fE3nlDvfowsWLNC/rxITE+/6+pOTk8XYsWNFs2bNhJWVlejUqZM4cuSIEEKI+Ph48dhjjwlXV1dhbW0tOnfuLCIjIytt7+vrK5YvX17p9/ncc88JZ2dnYWtrK/r37y9Onz6tf77i72DVqlXCz89PyGSyu+a7XaNc4yOXy/HJJ5/g/PnzWL9+Pf7880/MnTu30jpFRUV477338O233+LgwYPIycnB2LFj9c/v378f48ePx8yZM3HhwgV89dVXWLduHd57770HylZUVISlS5diw4YN2LdvH5KSkjB79mz9819++SVeeukl/Otf/8LZs2fx888/IyAgAIDurvHDhw/HjRs38NdffyEyMhKXL1/GmDFj9Nv/73//w8KFC/H+++/j+PHj8PDwwBdffFEpw8aNGzF//ny89957iImJwfvvv4+3334b69evr7TeG2+8gZkzZyImJgYREREP9LrpwVlaWqK0tBQbN25EUFAQhg8fXmUdmUxW6QZ9e/bsQVFREcLDw/Hss8/ihx9+QGFhYWPGJgl8/PHHCAsLw9SpU3H9+nVcv34dPj4+VdZzd3fHkSNHcPXq1Xvu89///jd+/PFHHD9+vCEiUx3Z2NjAxsYG27dvR0lJSbXr1PZceLdz0rJly7Bu3TqsWbMGBw4cwI0bN7Bt27ZK+ygsLMSsWbNw/PhxREVFQS6XY8SIEdBqtZXWu/2c0r9/f6xYsQJ2dnb69+js2bPh4uICuVyOLVu2QKPRVPu6CgoK0LdvX1y7dg0///wzoqOjMXfuXP3xCgoK8MgjjyAqKgqnTp3CkCFDMGzYMCQlJdX4+xw9ejQyMjLwxx9/4MSJE+jYsSMGDhyIGzdu6NeJj4/Hjz/+iK1bt+L06dM17quKWpdI93C3Fp87bd68WTg5Oel/rqg0K6pDIYSIiYkRAMTRo0eFEEIMHDhQvP/++5X2s2HDBuHh4aH/GdW0+FhYWAhra+tKj6tXr1Y67u2V8Oeffy7c3Nz0P3t6eoo333yz2texa9cuoVAoKrVMnT9/XgAQx44dE0IIERYWJl588cVK23Xr1q1Si4+/v7/4/vvvK63z7rvvirCwMCHEP9X5ihUrqs1BDe/297dWqxWRkZFCpVKJ2bNni9atW4vHHnusVvt5+umnxSuvvKL/OTQ0lK13JqJv375i5syZd10nNTVVdO/eXQAQgYGBYsKECWLTpk1Co9Ho16n4piuEEGPHjhUDBgwQQtTc4mNpaVnlM5AaxpYtW0SzZs2EhYWF6NGjh5g3b56Ijo6ucf2azoV3Oyd5eHiIDz74QP9zWVmZ8Pb2vuv5NzMzUwAQZ8+eFULUfE6paHG602effSasrKz0LS+LFi0SCQkJ+ue/+uorYWtrK7Kzs2vMcKc2bdqITz/9VP/z7S0++/fvF3Z2dqK4uLjSNv7+/uKrr74SQuj+DszNzUVGRkatj1mhUVp8du/ejYEDB8LLywu2trYYN24csrOzK130aWZmhi5duuh/Dg4OhoODA2JiYgAA0dHRWLRokb6qtrGx0X97uvPi0dstX74cp0+frvTw9PTUP29lZQV/f3/9zx4eHsjIyAAAZGRkIDU1FQMHDqx23zExMfDx8an0zS0kJKRS7piYmCrXcISFhen/XVhYiISEBDz33HOVXtvixYuRkJBQabvOnTvX+Dqp4f3666+wsbGBhYUFHn74YYwZMwYLFy6EqOVdX3JycrB161Y8++yz+mXPPvssVq9e3VCRyYC1adNG//f+8MMPA9B9/hw+fBhnz57FzJkzoVarMWHCBAwZMqTKt3UAWLx4Mfbv349du3bVeJxNmzZV+QykhjFy5Eikpqbi559/xpAhQ7B371507NgR69atA1C7c+Hdzkm5ubm4fv16pXOKmZlZlXPDpUuX8NRTT6Fly5aws7ODn58fAFRpYantOeWll15CWloaNm7ciLCwMGzevBlt2rRBZGQkAN2F9Q899BAcHR2r3b6goACzZ89G69at4eDgABsbG8TExNTY4hMdHY2CggI4OTlVOi9euXKl0nnR19cXLi4utXoNt2vwi5sTExPx6KOPYtq0aXjvvffg6OiIAwcO4LnnnkNpaSmsrKxqtZ+CggK88847eOKJJ6o8Z2FhUeN27u7u+q6p6tx5gbBMJtOfyCwtLWuV7UEUFBQA0I3kuLNAUigUlX62trZu8DxUs/79++PLL7+EUqmEp6cnzMx0fz6BgYG1Gt3w/fffo7i4uNL/sxACWq0WcXFxCAwMbLDsZHh+//13/QWld37WtG3bFm3btsWLL76IF154Ab1798Zff/2F/v37V1rP398fU6dOxRtvvFFjAe3j43PXz0CqXxYWFhg0aBAGDRqEt99+G1OmTMGCBQvQr1+/Wp0L73ZOqq1hw4bB19cXq1atgqenJ7RaLdq2bYvS0tJK69XlnGJra4thw4Zh2LBhWLx4MSIiIrB48WIMGjTonufK2bNnIzIyEkuXLkVAQAAsLS0xatSoKnkqFBQUwMPDA3v37q3y3O2Dk+73nNjgLT4nTpyAVqvFsmXL0L17dwQGBiI1NbXKemq1ulJfdWxsLHJyctC6dWsAQMeOHREbG4uAgIAqD7m8YV6Gra0t/Pz8EBUVVe3zrVu3RnJyMpKTk/XLLly4gJycHISEhOjXOXr0aKXtbh9K6ubmBk9PT1y+fLnK62rRokUDvCq6X9bW1ggICEDz5s31RQ8APP3004iLi8NPP/1UZRshBHJzcwFAPwrn9m/e0dHR6N27N9asWdNor4OkoVQqK10j4evrq/9b9/LyqnG7is+Smq4Fmz9/PuLi4jhNh4EKCQlBYWFhrc+Fd2Nvbw8PD49K5xS1Wo0TJ07of87OzkZsbCzeeustDBw4EK1bt8bNmzdrtf8736M1kclkCA4O1r8n27dvj9OnT1e6/uZ2Bw8exMSJEzFixAi0a9cO7u7u+mkXqtOxY0ekpaXBzMysynnR2dm5Vq/lbuq1xSc3N7dKM6qzszPKysrw6aefYtiwYTh48CBWrlxZZVtzc3NMnz4dn3zyCczMzPDyyy+je/fu6Nq1KwDdH/ejjz6K5s2bY9SoUZDL5YiOjsa5c+ewePHiGjPl5OQgLS2t0jJbW9taV4oLFy7ECy+8AFdXVzz88MPIz8/HwYMHMX36dISHh6Ndu3Z45plnsGLFCqjVarz44ovo27evvglx5syZmDhxIjp37oyePXti48aNOH/+PFq2bKk/xjvvvIMZM2bA3t4eQ4YMQUlJCY4fP46bN29i1qxZtcpJ0nnyySexbds2PPXUU3jrrbcwePBguLi44OzZs1i+fDmmT58OPz8/nDx5Ehs3bkRwcHCl7Z966iksWrQIixcvrlRQUdPi5+eHo0ePIjExETY2NnB0dKzypW3atGnw9PTEgAED4O3tjevXr2Px4sVwcXGp1EV+Ozc3N8yaNQsffvhhtc9nZ2dX+Qx0cHC4a0s51V12djZGjx6NyZMno3379rC1tcXx48fxwQcfYPjw4QgICKjVufBeZs6ciX//+99o1aoVgoOD8dFHH1UaVt6sWTM4OTnh66+/hoeHB5KSkvDGG2/Uat9+fn4oKChAVFQUQkNDYWVlhbi4OCxYsADjxo1DSEgIlEol/vrrL6xZswavv/46AN1n2Pvvv4/HH38cS5YsgYeHB06dOgVPT0+EhYWhVatW2Lp1K4YNGwaZTIa333672q7bCuHh4QgLC8Pjjz+ODz74QF8k/vbbbxgxYsSDX/ZR56uCalDdcE0A4rnnnhMfffSR8PDwEJaWliIiIkJ8++23AoC4efOmEOKfC6p+/PFH0bJlS6FSqUR4eLj+IuQKO3bsED169BCWlpbCzs5OdO3aVXz99df651HNxc3VPZYsWVLpuLfbtm2buPPXsnLlShEUFCTMzc2Fh4eHmD59uv652gxnf++994Szs7OwsbEREyZMEHPnzq0ynH3jxo2iQ4cOQqlUimbNmok+ffqIrVu3CiE4LNUQ3OvifY1GI7788kvRpUsXYWVlJezs7ESnTp3Exx9/LIqKisTLL78sQkJCqt32+vXrQi6Xi59++qmB0pMhiI2NFd27dxeWlpY1DmffsmWLeOSRR4SHh4dQKpXC09NTjBw5Upw5c0a/zu0XN1fIzc0Vzs7O1V7cXN3jv//9bwO+UtNUXFws3njjDdGxY0dhb28vrKysRFBQkHjrrbdEUVGREELU+lx4uzvPSWVlZWLmzJnCzs5OODg4iFmzZlUZzh4ZGSlat24tVCqVaN++vdi7d2+l8+PdzikvvPCCcHJy0g9nz8zMFDNmzBBt27YVNjY2wtbWVrRr104sXbq00kX3iYmJYuTIkcLOzk5YWVmJzp076wcnXblyRfTv319YWloKHx8f8dlnn1W52P/O4ex5eXli+vTpwtPTU5ibmwsfHx/xzDPP6AcTVfd3UFsyIerYeUhERERkpAziXl1EREREjYGFDxEREZkMFj5ERERkMlj4EBERkclg4UNEREQmg4UPERERmQwWPkRERGQyWPgQERGRyWDhQ0RERCaDhQ8RERGZDBY+REREZDL+H49XQx68fE/hAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGzCAYAAADKathbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABssklEQVR4nO3dd1gU5/o+8HsXWJZepCuCWEBEUDEilqgRBUvURI0ajd38Ysox8VhiihpjSfXk5JycaIxETTTxxBYTjUfD115jBQ2KIsVCR7q03ff3x8LqCiggOLvL/bmuuS6ZnZl9FpedZ2fmvUcmhBAgIiIiIsilLoCIiIhIX7AxIiIiIqrAxoiIiIioAhsjIiIiogpsjIiIiIgqsDEiIiIiqsDGiIiIiKgCGyMiIiKiCmyMiIiIiCqwMSIiqqWrV69i4MCBsLOzg0wmw44dO6QuiYgaGBsjIqJamjRpEmJiYrBs2TJ8//336Nq1a6M+X0ZGBmbNmgU/Pz9YWFjAxcUF3bp1w/z581FQUICysjI4OTmhV69eNW5DCAFPT0906dJFZ35aWhrmzJkDPz8/WFpawsrKCsHBwVi6dClycnIa9XUR6TNTqQsgIjIEd+/exfHjx/Huu+/i9ddfb/Tny87ORteuXZGXl4epU6fCz88PWVlZiI6Oxtdff42ZM2fC29sbo0ePxurVq5GUlAQvL68q2zl06BBu3ryJt956Szvvzz//xODBg1FQUIAJEyYgODgYAHD69Gl89NFHOHToEPbu3dvor5FIH7ExIjIyhYWFsLKykroMvdIQv5OMjAwAgL29fQNUpPGwutauXYvk5GQcPXoUPXr00HksLy8PCoUCADB+/HisWrUKP/74I95+++0q29m0aRPkcjnGjh0LAMjJycFzzz0HExMTnDt3Dn5+fjrLL1u2DGvWrGmIl0dkkHgqjegRkpKS8Oqrr8LX1xcWFhZo1qwZRo8ejcTExCrL5uTk4K233oK3tzfMzc3RokULTJw4EZmZmdpliouLsXjxYrRr1w5KpRLu7u54/vnnER8fDwA4cOAAZDIZDhw4oLPtxMREyGQyrFu3Tjtv8uTJsLa2Rnx8PAYPHgwbGxuMHz8eAHD48GGMHj0aLVu2hLm5OTw9PfHWW2/h7t27Veq+fPkyXnjhBTg7O8PCwgK+vr549913AQD79++HTCbD9u3bq6y3adMmyGQyHD9+vMbfX1lZGT744AO0bdsWSqUSzZo1Q69evbBv375a11Dp3LlzGDRoEGxtbWFtbY3+/fvjxIkTOsusW7cOMpkMBw8exKuvvgoXFxe0aNFC+/jvv/+O3r17w8rKCjY2NhgyZAguXbpUY/0AsHjxYu3RmLlz50Imk8Hb27tB63pQfHw8TExM0L179yqP2draQqlUAgB69uwJb29vbNq0qcpyZWVl2LJlC/r16wcPDw8AwOrVq3Hr1i2sXLmySlMEAK6urnjvvfce+vsgMmY8YkT0CH/++SeOHTuGsWPHokWLFkhMTMTXX3+Nvn374q+//oKlpSUAoKCgAL1790ZsbCymTp2KLl26IDMzEzt37sTNmzfh5OQElUqFoUOHIioqCmPHjsWsWbOQn5+Pffv24eLFi2jdunWd6ysvL0d4eDh69eqFzz77TFvPzz//jKKiIsycORPNmjXDqVOn8K9//Qs3b97Ezz//rF0/OjoavXv3hpmZGV5++WV4e3sjPj4ev/76K5YtW4a+ffvC09MTGzduxHPPPafz3Bs3bkTr1q0RGhpaY32LFy/GihUrMH36dHTr1g15eXk4ffo0zp49iwEDBtSqBgC4dOkSevfuDVtbW8ybNw9mZmZYvXo1+vbti4MHDyIkJETneV999VU4Oztj4cKFKCwsBAB8//33mDRpEsLDw/Hxxx+jqKgIX3/9NXr16oVz587pNDv3e/7552Fvb4+33noL48aNw+DBg2Ftbd1gdVXHy8sLKpVKW3NNZDIZXnzxRSxfvhyXLl1Chw4dtI/t2bMH2dnZ2mYZAHbu3AkLCwuMGjWqxm0SNWmCiB6qqKioyrzjx48LAGLDhg3aeQsXLhQAxLZt26osr1arhRBCREZGCgBi5cqVNS6zf/9+AUDs379f5/GEhAQBQHz33XfaeZMmTRIAxNtvv12rulesWCFkMplISkrSznv66aeFjY2Nzrz76xFCiAULFghzc3ORk5OjnZeeni5MTU3FokWLqjzP/YKCgsSQIUMeukxtahgxYoRQKBQiPj5eO+/27dvCxsZGPP3009p53333nQAgevXqJcrLy7Xz8/Pzhb29vZgxY4bOc6Smpgo7O7sq8x9U+fv/9NNPdeY/bl01SU1NFc7OzgKA8PPzE6+88orYtGmTzv9BpUuXLgkAYsGCBTrzx44dK5RKpcjNzdXOc3BwEEFBQY98fqKmiqfSiB7BwsJC+++ysjJkZWWhTZs2sLe3x9mzZ7WPbd26FUFBQVWOqgCab/WVyzg5OeGNN96ocZn6mDlz5kPrLiwsRGZmJnr06AEhBM6dOwdAc93MoUOHMHXqVLRs2bLGeiZOnIiSkhJs2bJFO2/z5s0oLy/HhAkTHlqbvb09Ll26hKtXr1b7eG1qUKlU2Lt3L0aMGAEfHx/t4+7u7njxxRdx5MgR5OXl6aw7Y8YMmJiYaH/et28fcnJyMG7cOGRmZmonExMThISEYP/+/Q99HdVpiLpq4urqigsXLuCVV17BnTt3sGrVKrz44otwcXHBhx9+CCGEdll/f3907twZP/30k3ZeYWEhdu7ciaFDh8LW1lY7Py8vDzY2NnV+rURNBRsjoke4e/cuFi5cCE9PT5ibm8PJyQnOzs7IyclBbm6udrn4+HgEBAQ8dFvx8fHw9fWFqWnDncU2NTWt9lqV5ORkTJ48GY6OjrC2toazszP69OkDANq6r1+/DgCPrNvPzw9PPfUUNm7cqJ23ceNGdO/eHW3atHnoukuWLEFOTg7atWuHjh07Yu7cuYiOjtY+XpsaMjIyUFRUBF9f3yqPtW/fHmq1Gjdu3NCZ36pVK52fKxuzZ555Bs7OzjrT3r17kZ6e/tDX0Vh1PYy7uzu+/vprpKSk4MqVK/jyyy+1p+HWrl2rs+z48eORkJCAY8eOAQB27NiBoqIindNogOb6pPz8/FrXQNTU8Bojokd444038N133+HNN99EaGioNtxv7NixUKvVDf58NR05UqlU1c43NzeHXC6vsuyAAQOQnZ2N+fPnw8/PD1ZWVrh16xYmT55cr7onTpyIWbNm4ebNmygpKcGJEyfw73//+5HrPf3004iPj8cvv/yCvXv34ttvv8U//vEPrFq1CtOnT69zHbV1/xEzANrX/P3338PNza3K8g3ZrNalrtqQyWRo164d2rVrhyFDhqBt27bYuHGjzu9v3LhxmDdvHjZt2oQePXpg06ZNcHBwwODBg3W25efnh/Pnz6O0tFQ7so2I7mFjRPQIW7ZswaRJk/D5559r5xUXF1cJwWvdujUuXrz40G21bt0aJ0+eRFlZGczMzKpdxsHBAQCqbD8pKanWNcfExCAuLg7r16/HxIkTtfMfHAlWefrnUXUDwNixYzF79mz8+OOPuHv3LszMzDBmzJha1ePo6IgpU6ZgypQpKCgowNNPP43Fixdj+vTptarB2dkZlpaWuHLlSpXHLl++DLlcDk9Pz4fWUHlhu4uLC8LCwmpV96M0RF115ePjAwcHB6SkpOjM9/DwQL9+/fDzzz/j/fffx759+zB58uQqzc+zzz6L48ePY+vWrRg3blyD1kZkDHgqjegRTExMdK7nAIB//etfVY7gjBw5EhcuXKh2WHvl+iNHjkRmZma1R1oql/Hy8oKJiQkOHTqk8/h//vOfOtV8/zYr//3Pf/5TZzlnZ2c8/fTTiIyMRHJycrX1VHJycsKgQYPwww8/YOPGjYiIiICTk9Mja8nKytL52draGm3atEFJSUmtazAxMcHAgQPxyy+/6MQkpKWlYdOmTejVq5fOdTTVCQ8Ph62tLZYvX46ysrIqj1fmFNVFQ9RVk5MnT1Y7au3UqVPIysqq9vTd+PHjkZ6ejv/3//4fysrKqpxGA4BXXnkF7u7u+Pvf/464uLgqj6enp2Pp0qXan1NSUnD58uVqf2dExohHjIgeYejQofj+++9hZ2cHf39/HD9+HH/88QeaNWums9zcuXOxZcsWjB49GlOnTkVwcDCys7Oxc+dOrFq1CkFBQZg4cSI2bNiA2bNn49SpU+jduzcKCwvxxx9/4NVXX8Xw4cNhZ2eH0aNH41//+hdkMhlat26N3377rU7XwPj5+aF169aYM2cObt26BVtbW2zduhV37typsuyXX36JXr16oUuXLnj55ZfRqlUrJCYmYteuXTh//rzOshMnTtQO8/7www9rVYu/vz/69u2L4OBgODo64vTp09iyZYtOenRtali6dCn27duHXr164dVXX4WpqSlWr16NkpISfPLJJ4+sw9bWFl9//TVeeukldOnSBWPHjoWzszOSk5Oxa9cu9OzZs1anBh/0uHXV5Pvvv9dGJAQHB0OhUCA2NhaRkZFQKpV45513qqwzcuRIvPrqq/jll1/g6emJp59+usoyDg4O2L59OwYPHoxOnTrpJF+fPXsWP/74o078woIFC7B+/XokJCTUGGdAZFQkGw9HZCDu3LkjpkyZIpycnIS1tbUIDw8Xly9fFl5eXmLSpEk6y2ZlZYnXX39dNG/eXCgUCtGiRQsxadIkkZmZqV2mqKhIvPvuu6JVq1bCzMxMuLm5iVGjRukM987IyBAjR44UlpaWwsHBQfy///f/xMWLF6sdrm9lZVVt3X/99ZcICwsT1tbWwsnJScyYMUNcuHChyjaEEOLixYviueeeE/b29kKpVApfX1/x/vvvV9lmSUmJcHBwEHZ2duLu3bu1+v0tXbpUdOvWTdjb2wsLCwvh5+cnli1bJkpLS+tcw9mzZ0V4eLiwtrYWlpaWol+/fuLYsWM6y1QOi//zzz+rrWf//v0iPDxc2NnZCaVSKVq3bi0mT54sTp8+/dDXUdNw/Yaq60HR0dFi7ty5okuXLsLR0VGYmpoKd3d3MXr0aHH27Nka1xs9erQAIObNm/fQ7d++fVu89dZbol27dkKpVApLS0sRHBwsli1bpjO8vzISIiEhoVZ1Exk6mRAPHC8nIqpBeXk5PDw88Oyzz1YZFUVEZAx4jRER1dqOHTuQkZGhc0E3EZEx4REjInqkkydPIjo6Gh9++CGcnJx0gi2JiIwJjxgR0SN9/fXXmDlzJlxcXLBhwwapyyEiajQ8YkRERERUgUeMiIiIiCqwMSIiIiKqYBQBj2q1Grdv34aNjc1j3aGciIiInhwhBPLz8+Hh4VHlno9SMYrG6Pbt2w1+PyIiIiJ6Mm7cuIEWLVpIXQYAI2mMbGxsAGh+sfW9LxERERE9WXl5efD09NTux/WBUTRGlafPbG1t2RgREREZGH26DEY/TugRERER6QE2RkREREQV2BgRERERVWBjRERERFSBjRERERFRBTZGRERERBXYGBERERFVYGNEREREVIGNEREREVEFNkZEREREFdgYEREREVVgY0RERERUgY0RERERPdSbP53D9yeSUFymkrqURsfGiIiIiGp0JikbO87fxoe//oX84nKpy2l0bIyIiIioRt8eTgAAjOjsAWcbc4mraXxsjIiIiKhayVlF+N+lVADA9N4+ElfzZLAxIiIiompFHk2AWgBPt3NGO1cbqct5ItgYERERURW5RWX47+kbAIAZvVtJXM2Tw8aIiIiIqvjxz2QUlarg52aDXm2cpC7niWFjRERERDpKy9VYdzQRADCtVyvIZDJpC3qC2BgRERGRjl0xt5GaVwxnG3MM6+QhdTlPFBsjIiIi0hJCaIfoTwr1grmpicQVPVlsjIiIiEjr+PUsXLqdB6WZHONDvKQu54ljY0RERERaayuOFo0KbgEHK4XE1Tx5bIyIiIgIAHAtvQBRl9MhkwFTezadIfr3Y2NEREREADSBjgDQ388VPs7WElcjjXo1Rl999RW8vb2hVCoREhKCU6dO1bhs3759IZPJqkxDhgzRLjN58uQqj0dERNSnNCIiIqqHrIISbD1zE0DTCnR8kGldV9i8eTNmz56NVatWISQkBF988QXCw8Nx5coVuLi4VFl+27ZtKC0t1f6clZWFoKAgjB49Wme5iIgIfPfdd9qfzc2N/0Z1RERE+mLjyWSUlKvRsbkdurVylLocydT5iNHKlSsxY8YMTJkyBf7+/li1ahUsLS0RGRlZ7fKOjo5wc3PTTvv27YOlpWWVxsjc3FxnOQcHh/q9IiIiIqqT4jIVNhxPBABM7920Ah0fVKfGqLS0FGfOnEFYWNi9DcjlCAsLw/Hjx2u1jbVr12Ls2LGwsrLSmX/gwAG4uLjA19cXM2fORFZWVo3bKCkpQV5ens5ERERE9bPz/G1kFpTC3U6JwR3dpS5HUnVqjDIzM6FSqeDq6qoz39XVFampqY9c/9SpU7h48SKmT5+uMz8iIgIbNmxAVFQUPv74Yxw8eBCDBg2CSqWqdjsrVqyAnZ2ddvL09KzLyyAiIqIKQgh8e+Q6AGBKT2+YmTTtcVl1vsbocaxduxYdO3ZEt27ddOaPHTtW+++OHTsiMDAQrVu3xoEDB9C/f/8q21mwYAFmz56t/TkvL4/NERERUT0cupqJuLQCWClMMOapllKXI7k6tYVOTk4wMTFBWlqazvy0tDS4ubk9dN3CwkL89NNPmDZt2iOfx8fHB05OTrh27Vq1j5ubm8PW1lZnIiIiorr79rDmaNGYp1rCzsJM4mqkV6fGSKFQIDg4GFFRUdp5arUaUVFRCA0Nfei6P//8M0pKSjBhwoRHPs/NmzeRlZUFd/emfZ6TiIioMV1OzcPhq5mQyzSn0ageo9Jmz56NNWvWYP369YiNjcXMmTNRWFiIKVOmAAAmTpyIBQsWVFlv7dq1GDFiBJo1a6Yzv6CgAHPnzsWJEyeQmJiIqKgoDB8+HG3atEF4eHg9XxYRERE9SuXNYgcFuMPT0VLiavRDna8xGjNmDDIyMrBw4UKkpqaiU6dO2LNnj/aC7OTkZMjluv3WlStXcOTIEezdu7fK9kxMTBAdHY3169cjJycHHh4eGDhwID788ENmGRERETWS9Lxi/HL+FgBgWhMOdHyQTAghpC7iceXl5cHOzg65ubm83oiIiKgWPvvfFfx7/zUEezlg68wektSgj/vvpj0mj4iIqAm6W6rCDyeTAADTe/Fo0f3YGBERETUxW87eRE5RGTwdLTCww8NHlTc1bIyIiIiaELVaIPKI5qLrqT1bwUTedG//UR02RkRERE1I1OV0JGQWwkZpihe6Mhz5QWyMiIiImpDKQMcXQ1rCyvyJ3gDDILAxIiIiaiJibubiZEI2TOUyTO7hLXU5eomNERERURNRebPYoYHucLezkLga/cTGiIiIqAm4nXMXv0WnAACm9/aRuBr9xcaIiIioCVh/LBEqtUB3H0cENLeTuhy9xcaIiIjIyBWUlGPTqWQAwAweLXooNkZERERG7r9/3kB+cTl8nK3Qz9dF6nL0GhsjIiIiI1auUiPyqCbQcVqvVpAz0PGh2BgREREZsf9dSsPNO3fhYGmGkV1aSF2O3mNjREREZMQqh+i/1N0LSjMTiavRf2yMiIiIjNSZpGycS86BwkSOl0K9pS7HILAxIiIiMlLfHtZcWzSiswecbcwlrsYwsDEiIiIyQslZRfjfpVQADHSsCzZGRERERijyaALUAni6nTPaudpIXY7BYGNERERkZHKLyvDf0zcAADN6t5K4GsPCxoiIiMjI/PhnMopKVfBzs0GvNk5Sl2NQ2BgREREZkdJyNdYdTQSgCXSUyRjoWBdsjIiIiIzI7pgUpOYVw9nGHMM6eUhdjsFhY0RERGQkhBBYc1gT6Dgp1Avmpgx0rCs2RkREREbixPVsXLqdB6WZHONDvKQuxyCxMSIiIjIS31YcLRoV3AIOVgqJqzFMbIyIiIiMQHxGAaIup0MmA6b25BD9+mJjREREZATWHtHc/qO/nyt8nK0lrsZwsTEiIiIycNmFpdh65iYAYDoDHR8LGyMiIiID98OJJJSUq9GxuR1CWjlKXY5BY2NERERkwIrLVNhwPBGA5mgRAx0fDxsjIiIiA7bz/G1kFpTC3U6JwR3dpS7H4LExIiIiMlBCCHx7RDNEf3IPb5iZcLf+uPgbJCIiMlCHrmYiLq0AVgoTjO3WUupyjAIbIyIiIgNVGej4wlOesLMwk7ga48DGiIiIyABdTs3D4auZkDPQsUGxMSIiIjJAaw9rAh0jAtzg6WgpcTXGg40RERGRgUnPL8Yv528DAKb39pG4GuPCxoiIiMjAfH88CaUqNYK9HNClpYPU5RiVejVGX331Fby9vaFUKhESEoJTp07VuGzfvn0hk8mqTEOGDNEuI4TAwoUL4e7uDgsLC4SFheHq1av1KY2IiMio3S1V4YcTSQCA6b14bVFDq3NjtHnzZsyePRuLFi3C2bNnERQUhPDwcKSnp1e7/LZt25CSkqKdLl68CBMTE4wePVq7zCeffIIvv/wSq1atwsmTJ2FlZYXw8HAUFxfX/5UREREZoa1nb+JOURk8HS0wsIOb1OUYnTo3RitXrsSMGTMwZcoU+Pv7Y9WqVbC0tERkZGS1yzs6OsLNzU077du3D5aWltrGSAiBL774Au+99x6GDx+OwMBAbNiwAbdv38aOHTse68UR6SuVWiA9n40/EdWNWi0QeURz0fXUnq1gIuftPxpanRqj0tJSnDlzBmFhYfc2IJcjLCwMx48fr9U21q5di7Fjx8LKygoAkJCQgNTUVJ1t2tnZISQkpMZtlpSUIC8vT2ciMhRCCPztx3PovjwK/3c5TepyiMiARF1Ox/XMQtgoTfFCV0+pyzFKdWqMMjMzoVKp4OrqqjPf1dUVqampj1z/1KlTuHjxIqZPn66dV7leXba5YsUK2NnZaSdPT745yHD8Gp2CXTEpUAvgw99iUaZSS10SERmIykDHF0NawsrcVOJqjNMTHZW2du1adOzYEd26dXus7SxYsAC5ubna6caNGw1UIVHjyi4sxeKdlwAAMhmQkFmITSeTJa6KiAxBzM1cnEzIhqlchsk9vKUux2jVqTFycnKCiYkJ0tJ0D/+npaXBze3hF4AVFhbip59+wrRp03TmV65Xl22am5vD1tZWZyIyBB/8egnZhaXwc7PBwqH+AIAv/ohDXnGZxJURkb6rvFns0EB3uNtZSFyN8apTY6RQKBAcHIyoqCjtPLVajaioKISGhj503Z9//hklJSWYMGGCzvxWrVrBzc1NZ5t5eXk4efLkI7dJZEiiYtPwy/nbkMuAj0cG4qXuXmjjYo07RWX4z/54qcsjIj12O+cufotOAcBAx8ZW51Nps2fPxpo1a7B+/XrExsZi5syZKCwsxJQpUwAAEydOxIIFC6qst3btWowYMQLNmjXTmS+TyfDmm29i6dKl2LlzJ2JiYjBx4kR4eHhgxIgR9XtVRHomr7gM726/CACY0dsHQZ72MDWR453BfgCAyKMJuJFdJGWJRKTH1h9LhEot0N3HEQHN7aQux6jV+cqtMWPGICMjAwsXLkRqaio6deqEPXv2aC+eTk5Ohlyu229duXIFR44cwd69e6vd5rx581BYWIiXX34ZOTk56NWrF/bs2QOlUlmPl0Skf1bsvozUvGJ4N7PEm2HttPP7+bqgR+tmOBafhc/2XsE/x3aWsEoi0kcFJeXYdEpzLeIMHi1qdDIhhJC6iMeVl5cHOzs75Obm8noj0jvH4jPx4pqTAIDNL3dHiI/uUdOLt3Lx7L+PQAjgl9d6IsjTXoIqiUhfRR5JwJLf/oKPsxX+eKsP5EaUXaSP+2/eK42oERWVluPtrTEAgAndW1ZpigAgoLkdnuvcHACwbHcsjOC7ChE1kHKVGpFHNYGO03q1MqqmSF+xMSJqRCv3xiE5uwgedkrMj/Crcbk5A31hbirHqYRs7PuLoY9EpLH3rzTcvHMXDpZmeL5zC6nLaRLYGBE1knPJd7Tf9JY93xE2SrMal/Wwt9BeO/DR75cZ+khEAIA1FYGOL3X3goXCROJqmgY2RkSNoKRchXlboqEWwPOdm6Ofr8sj13mlb2s4WStwnaGPRATgTNIdnEvOgcJEjgmhXlKX02SwMSJqBF/tj8fV9AI4WSvwfkWQ46NYm5tqR6wx9JGIKm//MaKzB1xsOEr7SWFjRNTAYlPy8J/91wAAHwwLgIOVotbrjn3KE62drRj6SNTEJWcV4X+XNPcLndaLQ/SfJDZGRA2oXKXGvC3RKFcLhHdwxeCOD79VzoM0oY/tAWhCH2/eYegjUVMUeTQBagE83c4Zvm42UpfTpLAxImpAa48kIOZWLmyVpvhweABksroPrX3GzwWhPs1QWq7GZ/+70ghVEpE+y71bhv+e1twcfXqvVhJX0/SwMSJqINczCrByXxwA4L2h/nCxrd81ATKZDO8OaQ+ZDNhx/jYu3MhpwCqJSN/9eCoZRaUq+LraoHdbJ6nLaXLYGBE1ALVa4O2tMSgpV6N3WyeMDn68vBGGPhI1TWUqNdYdTQQATOvdql5HnenxsDEiagAbTybhVGI2LBUmWP5cxwb5MGPoI1HTsys6Bal5xXCyNsfwTh5Sl9MksTEieky3cu7io98vAwDmR/jB09GyQbbrYW+B6b011xcw9JHI+Akh8O0RzRD9SaFeMDdloKMU2BgRPQYhBN7ZFoPCUhW6ejngpe4NG8L2Sp97oY8/nmLoI5ExO3E9Gxdv5UFpJsf4Bv4sodpjY0T0GLadvYWDcRlQmMrx8ajABr/Bo43S7L7Qx6sMfSQyYmsrjhaN7NICjnXIP6OGxcaIqJ4y8kuw5Le/AABvhrVFa2frRnmeytDH7MJShj4SGan4jAL8EZsOmQyYxiH6kmJjRFRPi3ZeRO7dMnTwsNXeALYxMPSRyPhFHtHccLq/nyt8GulLFtUOGyOiethzMQW7Y1JhKpfhk1GBMDNp3D8lhj4SGa/swlJsOXMTALQDLkg6bIyI6ii3qAzv7bgEQHNxdAcPu0Z/zgdDH6Nv5jT6cxLRk7HxRBJKytXo2NwOIa0cpS6nyWNjRFRHH+76C5kFJWjtbIXXn2nzxJ5XJ/RxF0MfiYxBcZkK648nAdAcLWKgo/TYGBHVwcG4DGw5cxMyGfDJqCAozZ5szkhl6ONJhj4SGYWdF24js6AE7nZKDO7oLnU5BDZGRLVWUFKOd7bFAAAm9/BGsJfDE6+BoY9ExkMIgbWHNRddT+7h3ejXKlLt8H+BqJY+3XMZt3LuooWDBeaG+0pWxyt9WqOZFUMfiQzd4auZuJKWDyuFCcZ2ayl1OVSBjRFRLfyZmK29DuCj5wNhqTCVrBYbpRneHMDQRyJDt+awJtDxhac8YWdhJnE1VImNEdEjFJepMH9LNABgTFdP9GrrJHFFwLj7Qh+/PsDQRyJDczk1D4evZkIuA6b25BB9fcLGiOgR/hl1FdczC+FiY453hrSXuhwAuqGPa48w9JHI0FReWxQR4NZgN56mhsHGiOghLt7KxTeHNIe7l44I0KvD3Qx9JDJM6fnF+OX8bQDA9EZMzaf6YWNEVIMylRpzt0RDpRYYGuiOgR3cpC5JR2XoI8DQRyJD8v3xJJSq1OjS0h5dWj750a30cGyMiGqw+mA8YlPy4GBphsXDOkhdTrUCmtvheYY+EhmMu6Uq/HBCM5CjMe+xSPXHxoioGlfT8vFl1DUAwKJnO8DJ2lziimo2J/xe6OMfselSl0NED7H17E3cKSqDp6OF3h2FJg02RkQPUKkF5m2NRqlKjWf8XDC8k4fUJT3U/aGPK36PZegjkZ5SqwUij2guup7asxVM5Lz9hz5iY0T0gHXHEnEuOQc25qZY9lyAQdy7SBv6mMHQRyJ99X+X03E9sxA2SlOM7uopdTlUAzZGRPdJzirSjvBaMLg93O0sJK6odhj6SKT/KgMdXwxpCWtz6UJi6eHYGBFVEEJgwfZo3C1TobuPI8Y+ZVjf6MYy9JFIb8XczMXJhGyYymWY3MNb6nLoIdgYEVXY/OcNHL2WBaWZHB+PDITcwM7/m5nIsWDQvdDHWzl3Ja6IiCp9e0RztGhooLvBHIluqtgYEQFIzS3Gsl2xAIA5A33h1cxK4orqp397F3T3cWToI5EeuZ1zF7uiUwAw0NEQsDGiJk8Igfd2XER+STmCPO0xxYDvWySTyfDeEH8AwPZztxj6SKQH1h9LRLlaoLuPIwKa20ldDj0CGyNq8n6NTsEfsWkwM5Hh01GBBj+ElqGPRPqjoKQcmypGik7vxaNFhoCNETVp2YWlWLzzEgDg9X5t0c7VRuKKGsbfGfpIpBf+++cN5BeXw8fJCs/4uUhdDtVCvRqjr776Ct7e3lAqlQgJCcGpU6ceunxOTg5ee+01uLu7w9zcHO3atcPu3bu1jy9evBgymUxn8vPzq09pRHXywa+XkF1YCj83G8zs21rqchpMc3sLTOvF0EciKanUApFHKwIde7UyuAEdTVWdG6PNmzdj9uzZWLRoEc6ePYugoCCEh4cjPb36b6WlpaUYMGAAEhMTsWXLFly5cgVr1qxB8+bNdZbr0KEDUlJStNORI0fq94qIaikqNg2/nL8NuQz4eGQgFKbGdQB1Zt97oY8/MfSR6In736VU3LxzFw6WZhjZpYXU5VAt1XlPsHLlSsyYMQNTpkyBv78/Vq1aBUtLS0RGRla7fGRkJLKzs7Fjxw707NkT3t7e6NOnD4KCgnSWMzU1hZubm3ZycnKq3ysiqoW84jK8u/0iAM2NHIM87aUtqBHcH/r4D4Y+Ej1x31YEOk7o7gULhYnE1VBt1akxKi0txZkzZxAWFnZvA3I5wsLCcPz48WrX2blzJ0JDQ/Haa6/B1dUVAQEBWL58OVQqlc5yV69ehYeHB3x8fDB+/HgkJ9f8DbekpAR5eXk6E1FdrNh9Gal5xfBuZom3KpoHY8TQRyJpnEm6g7PJOVCYyPFSqJfU5VAd1KkxyszMhEqlgqurq858V1dXpKamVrvO9evXsWXLFqhUKuzevRvvv/8+Pv/8cyxdulS7TEhICNatW4c9e/bg66+/RkJCAnr37o38/Pxqt7lixQrY2dlpJ09Pw0ooJmkdi8/U3k/s45GBUJoZ7zc5hj4SSWNtRaDjiM4ecLFRSlwN1UWjX1ShVqvh4uKCb775BsHBwRgzZgzeffddrFq1SrvMoEGDMHr0aAQGBiI8PBy7d+9GTk4O/vvf/1a7zQULFiA3N1c73bhxo7FfBhmJotJyvL01BgAwoXtLhPg0k7iixsfQR6In60Z2EfZc1BwsmMYh+ganTo2Rk5MTTExMkJaWpjM/LS0Nbm5u1a7j7u6Odu3awcTk3rfy9u3bIzU1FaWlpdWuY29vj3bt2uHatWvVPm5ubg5bW1udiag2Vu6NQ3J2ETzslJgf0TRGPspkMrw7+F7oY8zNXIkrIjJukUcToBbA0+2c4etmHBEgTUmdGiOFQoHg4GBERUVp56nVakRFRSE0NLTadXr27Ilr165Brb43XDguLg7u7u5QKBTVrlNQUID4+Hi4u7vXpTyihzqXfEc7dHbZ8x1hozSTuKInp2MLOzxXGfq4+y+GPhI1kty7Zfjvn5qzGNN7GW6KflNW51Nps2fPxpo1a7B+/XrExsZi5syZKCwsxJQpUwAAEydOxIIFC7TLz5w5E9nZ2Zg1axbi4uKwa9cuLF++HK+99pp2mTlz5uDgwYNITEzEsWPH8Nxzz8HExATjxo1rgJdIBJSUqzBvSzTUAni+c3P08216QWtzKkIfT1xn6CNRY/npVDIKS1XwdbVB77YcXW2ITOu6wpgxY5CRkYGFCxciNTUVnTp1wp49e7QXZCcnJ0Muv9dveXp64n//+x/eeustBAYGonnz5pg1axbmz5+vXebmzZsYN24csrKy4OzsjF69euHEiRNwdnZugJdIBHy1Px5X0wvgZK3A+0P9pS5HEpWhj/85EI8Vv8eir68zzEyMK7uJSEplKjXWHUsEAEzr3QoyGQMdDZFMGMEx9by8PNjZ2SE3N5fXG1EVsSl5ePZfR1CuFvjqxS4YEth0T9HmF5eh76cHkFVYig+Hd8BLod5Sl0RkNH45fwuzfjoPJ2tzHH27H8xNjXfEa0PRx/03vy6SUStXqTFvSzTK1QLhHVwxuGP1gwSaChulGd4MawuAoY9EDUkIgTUVgY6TQr3YFBkwNkZk1NYeSUDMrVzYKk3x4fAAHtoGMLZbS/hUhD6uYugjUYM4mZCNi7fyoDSTY3x3BjoaMjZGZLSuZxRg5b44AMD7Q/3hYsuQNUAT+vgOQx+JGlTl7T9GdmkBR6vqR1yTYWBjREZJrRZ4e2sMSsrV6N3WCaOCeQPH+1WGPpYw9JHoscVnFGhHek7jEH2Dx8aIjNLGk0k4lZgNS4UJlj/XkafQHsDQR6KGE3lEk48W1t4FPs7WEldDj4uNERmdWzl38dHvlwEA8yP84OloKXFF+omhj0SPL7uwFFvO3AQATO/N238YAzZGZFSEEHhnWwwKS1Xo6uWAl3gR5EPNCfeFoiL0MYqhj0R1tvFEEkrK1QhobouQVo5Sl0MNgI0RGZVtZ2/hYFwGFKZyfDwqEHI5T6E9TGXoIwAs/z0WZSr1I9YgokrFZSqsP54EAJjR24en7I0EGyMyGhn5JVjy218AgDfD2qI1z/XXyqt9W6OZlQLXMwrx06lkqcshMhg7L9xGZkEJ3O2UGNyx6QbHGhs2RmQ0Fu28iNy7ZejgYYsZPNdfawx9JKo7IQTWHtZcdD25hzdvr2NE+D9JRmHPxRTsjkmFqVyGT0YF8kOqjhj6SFQ3h69m4kpaPqwUJhjbraXU5VAD4t6DDF5uURne23EJAPBKn9bo4GEncUWGx8xEjgUMfSSqtcrbf7zwlCfsLMwkroYaEhsjMngf7voLmQUlaO1shTf6t5G6HIMV1t4FIa00oY+fM/SRqEZXUvNx+Gom5DJgak8GOhobNkZk0A7GZWDLmZuQyYBPRgXxxo2PQSaT4b0hmtDHbQx9JKpR5e0/IgLcmJNmhNgYkcEqKCnHO9tiAGgufgz2cpC4IsPH0Eeih0vPL8Yv528DAKb14iAPY8TGiAzWp3su41bOXbRwsMDccF+pyzEaDH0kqtn3x5NQqlKjS0t7fhkzUmyMyCD9mZitDVb76PlAWCpMJa7IeDD0kah6d0tV+OGE5nOHt/8wXmyMyOAUl6kwf0s0AGBMV0/0auskcUXGZ2bf1nCsDH3884bU5RDpha1nb+JOURk8HS0Q3sFN6nKokbAxIoPzz6iruJ5ZCBcbc7wzpL3U5RglW6UZ3qoIffxiXxzyGfpITZxaLRB5RBPoOKVHK5jwdkNGi40RGZSLt3LxzSHNiJClIwKYH9KIKkMfswpL8TVDH6mJ+7/L6bieWQgbpSleeMpT6nKoEbExIoNRplJj7pZoqNQCQwPdMZCHshsVQx+J7vn2iOYL2YshLWFtzmsajRkbIzIYqw/GIzYlDw6WZvhgWAepy2kSGPpIpDlSfeJ6NkzlMkzu4S11OdTI2BiRQbialo8vo64BABYP64Bm1uYSV9Q0yGQyvFtxHde2c7dw8RZDH6npqQx0HBroDnc7C4mrocbGxoj0nkotMG9rNEpVajzj54JhQR5Sl9SkBLawx4hOmt/50l0MfaSmJSX3Ln6LTgHAIfpNBRsj0nvrjyXiXHIObMxNsey5AMhkHA3ypM2N8GPoIzVJ644lolwt0N3HEQHNeYPqpoCNEem15KwifFpxbcuCwe15GFsiDH2kpqigpBybTiYDAKbz9h9NBhsj0ltCCCzYHo27ZSp093HEWA6RlRRDH6mp+fn0DeQXl8PHyQrP+LlIXQ49IWyMSG9t/vMGjl7LgtJMjo9HBkLOQDVJ2SrN8CZDH6mJUKkFIo9qAh2n9mrFz58mhI0R6aXU3GIs2xULAJgz0BdezawkrogAYNx9oY+rDjL0kYzX3kupuJF9Fw6WZhjZpYXU5dATxMaI9I4QAu/tuIj8knIEedpjSs9WUpdEFe4Pffz2cAJuM/SRjNSaiiH6E7p7wUJhInE19CSxMSK982t0Cv6ITYOZiQyfjgrkPYn0zP2hj58x9JGM0JmkOzibnAOFiRwvhXpJXQ49YWyMSK9kF5Zi8c5LAIDX+7VFO1cbiSuiBzH0kYzd2orbfwzv5AEXG6XE1dCTxsaI9MoHv15CdmEp/NxsMLNva6nLoRow9JGM1Y3sIuy5mAqAgY5NFRsj0htRsWn45fxtyGXAxyMDoTDl21OfzQn31YY+/t9lhj6ScYg8mgC1AHq3dYKvG49YN0Xc85BeyCsuw7vbLwIAZvT2QZCnvbQF0SO1cLDE1IoL45fvjkU5Qx/JwOXeLcN/KzK6ZvBoUZPFxoj0wordl5GaVwzvZpZ4a0A7qcuhWnq1nyb0MT6jED8y9JEM3E+nklFYqoKvqw16t3WSuhySCBsjktyx+Ez8eEoTu//xyEAozTg01lAw9JGMRZlKjXXHEgEA03q34j0ZmzA2RiSpotJyvL01BgAwoXtLhPg0k7giqqtx3VrCx4mhj2TYdsekICW3GE7W5hheMbCAmqZ6NUZfffUVvL29oVQqERISglOnTj10+ZycHLz22mtwd3eHubk52rVrh927dz/WNsk4rNwbh+TsInjYKTE/wk/qcqgezEzkeHuQ5v+OoY9kiIQQ2kDHSaFeMDflUeumrM6N0ebNmzF79mwsWrQIZ8+eRVBQEMLDw5GeXv2olNLSUgwYMACJiYnYsmULrly5gjVr1qB58+b13iYZh3PJd7T3Ilr2fEfYKM0krojqa4C/K7pVhj7uZegjGZaTCdm4eCsPSjM5xndnoGNTV+fGaOXKlZgxYwamTJkCf39/rFq1CpaWloiMjKx2+cjISGRnZ2PHjh3o2bMnvL290adPHwQFBdV7m2T4SspVmLclGmoBPN+5Ofr58s7Vhkwmk+G9itDH7Qx9JAPzbcXRopFdWsDRSiFxNSS1OjVGpaWlOHPmDMLCwu5tQC5HWFgYjh8/Xu06O3fuRGhoKF577TW4uroiICAAy5cvh0qlqvc2S0pKkJeXpzORYflqfzyuphfAyVqB94f6S10ONYDK0EchgGW7Yhn6SAbhekYB/ojVnJ2Y2ov3ZaQ6NkaZmZlQqVRwdXXVme/q6orU1NRq17l+/Tq2bNkClUqF3bt34/3338fnn3+OpUuX1nubK1asgJ2dnXby9PSsy8sgicWm5OE/+68BAJYMD4ADv6EZjcrQx+PXsxj6SAZh7RHN6fyw9i5o7WwtcTWkDxp9VJparYaLiwu++eYbBAcHY8yYMXj33XexatWqem9zwYIFyM3N1U43bjA/xVCUq9SYtyUa5WqB8A6uGBTgJnVJ1IAY+kiGJLuwFFvP3gQATOvFQEfSqFNj5OTkBBMTE6SlpenMT0tLg5tb9Ts4d3d3tGvXDiYm967yb9++PVJTU1FaWlqvbZqbm8PW1lZnIsOw9kgCYm7lwlZpig+HBzArxAi92q81HCzNEJ9RiJ8Y+kh6bOOJJBSXqRHQ3BbdfRylLof0RJ0aI4VCgeDgYERFRWnnqdVqREVFITQ0tNp1evbsiWvXrkGtvvfNMS4uDu7u7lAoFPXaJhmm6xkFWLkvDgDw/lB/uNjyrtXGSBP6qEkv/+IPhj6SfiopV2H98SQAwPRePvySRlp1PpU2e/ZsrFmzBuvXr0dsbCxmzpyJwsJCTJkyBQAwceJELFiwQLv8zJkzkZ2djVmzZiEuLg67du3C8uXL8dprr9V6m2T41GqBt7fGoKRcjd5tnTAquIXUJVEjejFEE/qYWcDQR9JPv5y/jcyCErjbKTEk0F3qckiPmNZ1hTFjxiAjIwMLFy5EamoqOnXqhD179mgvnk5OToZcfq/f8vT0xP/+9z+89dZbCAwMRPPmzTFr1izMnz+/1tskw7fxZBJOJWbDUmGC5c915LczI1cZ+vjy92fw7eEEjA/xgoe9hdRlEQHQBDquPay56HpyD2+YmfAmEHSPTBjBmNq8vDzY2dkhNzeX1xvpoVs5dzFw5UEUlqrwwbAOmNTDW+qS6AkQQmDMNydwKiEbz3dpjpUvdJK6JCIAwKG4DEyMPAUrhQmOLegPOwuGy0pFH/ffbJOpUQkh8M62GBSWqtDVywEvMVW2yZDJZHh3MEMfSf98WzFE/4WnPNkUURVsjKhRbTt7CwfjMqAwlePjUYGQy3kKrSkJ8rTHcIY+kh65kpqPQ3EZkMugjZYguh8bI2o0GfklWPLbXwCAN8PaMjytiZrL0EfSI2uPaG7/ERHgBk9HS4mrIX3ExogazaKdF5F7twwBzW3xcm+GpzVVDH0kfZGeX4wd524DYKAj1YyNETWKPRdTsDsmFaZyGT4eGQhTjvpo0hj6SPrgh+NJKFWp0aWlPYK9HKQuh/QU91bU4HKLyvDejksAgFf6tEYHDzuJKyKpMfSRpHa3VIXvT1QEOvIINj0EGyNqcB/u+guZBSVo7WyFN/q3kboc0hMvhrREq4rQx9UHr0tdDjUx287dxJ2iMng6WiC8A+/RSDVjY0QN6mBcBracuQmZDPhkVBDMTU0evRI1CZWhjwCw5vB1pOTelbgiairU6nuBjlN6tIIJR8fSQ7AxogZTUFKOd7bFANCkyfIcPj1ooL8rurVyREm5Gp/+74rU5VATsf9KOq5nFsJGaYoXnvKUuhzSc2yMqMF8uucybuXcRQsHC8wN95W6HNJDDH0kKaw5rDl1+2K3lrA2r/OdsKiJYWNEDeLPxGztnao/ej4Qlgp++FD1GPpIT9LFW7k4cT0bpnIZJvf0lrocMgBsjOixFZepMH9LNABgTFdP9GrrJHFFpO/mDLwX+rj/CkMfqfF8W3G0aEigO9zteCNjejQ2RvTY/hl1FdczC+Fqa453hrSXuhwyAJ6OlphS8e19+e7LDH2kRpGSexe/RacAAKYz0JFqiY0RPZaLt3LxzSHNN7KlIzryhoxUa6/1awMHSzNcSy9g6CM1inXHElGuFghp5YiOLZinRrXDxojqrUylxtwt0VCpBYYGumOAv6vUJZEBYegjNaaCknJsOpkMAJjBQEeqAzZGVG+rD8YjNiUPDpZm+GBYB6nLIQPE0EdqLD+fvoH84nL4OFnhGT8XqcshA8LGiOrlalo+voy6BgBYPKwDmlmbS1wRGSKGPlJjUKkFIo9qAh2n9moFOQMdqQ7YGFGdqdQC87ZGo1SlxjN+LhgW5CF1SWTABvq7opu3JvTxs//FSV0OGYG9l1JxI/suHCzNMLJLC6nLIQPDxojqbP2xRJxLzoGNuSmWPRcAmYzfxqj+ZDIZ3q0Yzbjt3E2GPtJjqwx0nNDdCxYK3paI6oaNEdVJclaR9lYOCwa3Zy4INYj7Qx+X72boI9XfmaQ7OJucA4WJHC+FekldDhkgNkZUa0IILNgejbtlKnT3ccRY3nOIGlBl6OOxeIY+Uv2tPaI5WjS8kwdcbJQSV0OGiI0R1drmP2/g6LUsKM3k+HhkIC9opAbF0Ed6XDeyi7DnYioAYFrvVhJXQ4aKjRHVSmpuMZbtigWg+Wbv1cxK4orIGL3a917o4+bTDH2kuok8mgC1AHq3dYKfm63U5ZCBYmNEjySEwHs7LiK/pBxBnvaY0pPfxKhx2FmYYVb/tgCAf+yLQ0FJucQVkaHIvVuG/1YkqDPQkR4HGyN6pF+jU/BHbBrMTGT4dFQgTHgKjRrR+O5e2tDHVQfipS6HDMRPp5JRWKqCr6sNevNG1vQY2BjRQ2UXlmLxzksAgNf7tUU7VxuJKyJjx9BHqqsylRrrjiUC0FxbxAgRehxsjOihPvj1ErILS+HnZoOZfVtLXQ41EQx9pLrYHZOClNxiOFmbY3gnBs7S42FjRDWKik3DL+dvQy4DPh4ZCIUp3y70ZMhkMrzD0EeqBSGENtBxUqgXzE0Z6EiPh3s6qlZecRne3X4RgOZCxiBPe2kLoiank6c9hgUx9JEe7mRCNi7eyoPSTI7x3RnoSI+PjRFVa8Xuy0jNK4Z3M0u8NaCd1OVQEzU3/F7o44ErGVKXQ3ro28Oam8WO7NICjlYKiashY8DGiKo4Fp+JH08lA9CcQlOa8dA0SeP+0Mdlu2MZ+kg6rmcUIOpyGgBgai/GiFDDYGNEOopKy/H21hgAwITuLRHi00ziiqipY+gj1STyaAKEAMLau6C1s7XU5ZCRYGNEOlbujUNydhE87JSYH+EndTlEDH2kat0pLMWWMzcBANN6MdCRGg4bI9I6l3wHkUc15+uXPd8RNkoziSsi0ngx5F7o4+qDDH0kYOPJJBSXqRHQ3BbdfRylLoeMCBsjAgCUlKswb0s01AJ4vnNz9PN1kbokIi2FqVx7BJOhj1RSrsL640kAgOm9fBjoSA2KjREBAL7aH4+r6QVwslbg/aH+UpdDVEV4B03oY3EZQx+bup3nbyMjvwRutkoMCXSXuhwyMmyMCLEpefjP/msAgCXDA+DAIa+khxj6SIAm0HHtEc0p/8k9vWFmwt0YNSy+o5q4cpUa87ZEo1wtEN7BFYMC3KQuiahGDH2kI9cycTk1H5YKE4zr1lLqcsgI1asx+uqrr+Dt7Q2lUomQkBCcOnWqxmXXrVsHmUymMymVSp1lJk+eXGWZiIiI+pRGdbT2SAJibuXCVmmKD4cH8Fw96b254b5QmDD0salaUxHo+EJXT9hZcIAINbw6N0abN2/G7NmzsWjRIpw9exZBQUEIDw9Henp6jevY2toiJSVFOyUlJVVZJiIiQmeZH3/8sa6lUR1dzyjAyn2aazXeH+oPF1vlI9Ygkt79oY/LGfrYpFxJzcehuAzIZcDUngx0pMZR58Zo5cqVmDFjBqZMmQJ/f3+sWrUKlpaWiIyMrHEdmUwGNzc37eTq6lplGXNzc51lHBwc6loa1YFaLfD21hiUlKvRu60TRgW3kLokolp7tZ8m9PFqegH+e/qm1OXQE7L2iOZmseEd3NCymaXE1ZCxqlNjVFpaijNnziAsLOzeBuRyhIWF4fjx4zWuV1BQAC8vL3h6emL48OG4dOlSlWUOHDgAFxcX+Pr6YubMmcjKyqpxeyUlJcjLy9OZqG42nkzCqcRsWCpMsPy5jjyFRgbl/tDHlfuuMPSxCUjPL8aOc7cBANN7M9CRGk+dGqPMzEyoVKoqR3xcXV2Rmppa7Tq+vr6IjIzEL7/8gh9++AFqtRo9evTAzZv3vuVFRERgw4YNiIqKwscff4yDBw9i0KBBUKlU1W5zxYoVsLOz006enp51eRlN3q2cu/jo98sAgPkRfvB05DcvMjwMfWxafjiehFKVGp1b2iPYi2cUqPE0+qi00NBQTJw4EZ06dUKfPn2wbds2ODs7Y/Xq1dplxo4di2HDhqFjx44YMWIEfvvtN/z55584cOBAtdtcsGABcnNztdONG7x/Um0JIfDOthgUlqrQ1csBL3X3krokonph6GPTcbdUhe9PaK5NncGjRdTI6tQYOTk5wcTEBGlpaTrz09LS4OZWu2HeZmZm6Ny5M65du1bjMj4+PnBycqpxGXNzc9ja2upMVDvbzt7CwbgMKEzl+HhUIORynkIjwxXewRVPeTuguEyNz/cy9NFYbTt3E3eKytDCwQID/ateo0rUkOrUGCkUCgQHByMqKko7T61WIyoqCqGhobXahkqlQkxMDNzda04rvXnzJrKysh66DNVdRn4Jlvz2FwDgzbC2vBs1GTyZTIZ3h2iS2reevYlLtxn6aGzUaoG1FUP0p/ZsBVMGOlIjq/M7bPbs2VizZg3Wr1+P2NhYzJw5E4WFhZgyZQoAYOLEiViwYIF2+SVLlmDv3r24fv06zp49iwkTJiApKQnTp08HoLkwe+7cuThx4gQSExMRFRWF4cOHo02bNggPD2+gl0kAsGjnReTeLUNAc1u8zMPRZCQY+mjc9l9Jx/XMQtgoTfHCU7yelBqfaV1XGDNmDDIyMrBw4UKkpqaiU6dO2LNnj/aC7OTkZMjl9/qtO3fuYMaMGUhNTYWDgwOCg4Nx7Ngx+PtrvuWZmJggOjoa69evR05ODjw8PDBw4EB8+OGHMDc3b6CXSXsupmB3TCpM5TJ8PDKQ37rIqMwN98Wei6k4ek0T+tjPjzdBNhZrDmuG6L/YrSWszeu8yyKqM5kwgq9XeXl5sLOzQ25uLq83qkZuURn6rzyIzIISvN6vDeaE+0pdElGDW7E7FqsPXUdbF2v8Pqs3m38jcPFWLob+6whM5TIcmtcPHvYWUpdEDUwf99/85GgCPtz1FzILStDa2Qpv9G8jdTlEjeLVfm1gz9BHo/JtxdGiIYHubIroiWFjZOQOxmVgy5mbkMmAT0YFwdzUROqSiBqFbuhjHEMfDVxK7l38Fp0CAJjei9dE0pPDxsiIFZSU451tMQCAyT28GYpGRm+8NvSxBN8w9NGgrTuWiHK1QEgrR3RsYSd1OdSEsDEyYp/uuYxbOXfh6WiBubyuiJqA+0Mfv2Hoo8EqLCnHppPJABjoSE8eGyMj9WdiNtYf1yTFfvR8ICwVHM1BTQNDHw3ff0/fQH5xOXycrPAMRxjSE8bGyAgVl6kwf0s0AGBMV0/0bOMkcUVET45MJsM7g9sDYOijIVKpBSKPVgQ69mrFdH564tgYGaF/Rl3F9cxCuNqa450h7aUuh+iJ69zSAc8y9NEg7b2UihvZd+FgaYaRXVpIXQ41QWyMjMzFW7n45pBmiOvSER1hZ2EmcUVE0pgX7guFiVwT+hiXIXU5VEvfHtEcLZrQ3QsWCo6ipSePjZERKVOpMXdLNFRqgaGB7hjAmy1SE+bpaIkpPb0BAMt3xaJcpZa2IHqks8l3cCbpDhQmcrwU6iV1OdREsTEyIqsPxiM2JQ8Olmb4YFgHqcshkhxDHw1L5c1ih3fygIuNUuJqqKliY2Qkrqbl48uoawCAxcM6oJk17zNHxNBHw3Ejuwi/X9QEOk7r3UriaqgpY2NkBFRqgXlbo1GqUuMZPxcMC/KQuiQivTE+xAvezSwZ+qjnvjuaCLUAerd1gp+bftwzi5omNkZGYP2xRJxLzoGNuSmWPRcAmYzDW4kqKUzleHvQvdDH1NxiiSuiB+XeLcPmPzWBjtMZ6EgSY2Nk4JKzivDp/64AABYMbg93O95okehB4R3ctKGPn+29InU59IDNfyajsFSFdq7WeLotc9dIWmyMDJgQAgu2R+NumQqhPs0wrpun1CUR6SWGPuqvMpUa3x1NBKC5WSyPeJPU2BgZsM1/3sDRa1lQmsnx0ciO/EAhegiGPuqn3TEpSMkthpO1OYZ35vWRJD02RgYqNbcYy3bFAgDmDPSFVzMriSsi0n8MfdQvQgh8WzFEf2KoF8xNGehI0mNjZICEEHhvx0Xkl5QjyNMeU3pyaCtRbXg6WmIyQx/1xqmEbMTcyoW5qRwTujPQkfQDGyMD9Gt0Cv6ITYOZiQyfjgqECW+ySFRrr90X+vjzGYY+SmlNxdGikcEt4GilkLgaIg02RgYmu7AUi3deAgC83q8t2rnaSFwRkWG5P/Tx870MfZTK9YwCRF1OAwBM68Wj3qQ/2BgZmA9+vYTswlL4udlgZt/WUpdDZJAY+ii9yKMJEALo7+eC1s7WUpdDpMXGyIBExabhl/O3IZcBH48MhMKU/31E9cHQR2ndKSzFlorTmAx0JH3DPauByCsuw7vbLwIAZvT2QZCnvbQFERm48A5u6OqlCX38nKGPT9TGk0koLlOjg4ctuvs4Sl0OkQ42RgZixe7LSM0rRisnK7w1oJ3U5RAZPJlMhneHaEIft5y9ib9u50lcUdNQUq7C+uNJADRf8pi/RvqGjZEBOBafiR9Pae4j9NHzHaE0Y9YHUUNg6OOTt/P8bWTkl8DNVokhge5Sl0NUBRsjPVdUWo63t8YAACZ0b4kQn2YSV0RkXCpDH49cy2ToYyMTQmDtEc0Q/ck9vWFmwl0Q6R++K/Xcyr1xSM4ugoedEvMj/KQuh8joMPTxyTlyLROXU/NhqTDBuKdaSl0OUbXYGOmxc8l3EHlU8+1q2fMdYaM0k7giIuP0Wl+GPj4JlYGOL3T1hJ0lP89IP7Ex0lMl5SrM2xINtQCe79wc/XxdpC6JyGjZWZrhb8/cC30sZOhjg7uSmo9DcRmQy4CpvI0R6TE2Rnrqq/3xuJpeACdrBd4f6i91OURGb0L3e6GPqw9dl7oco7P2iOZ3Gt7BDS2bWUpcDVHN2BjpodiUPPxn/zUAwJLhAXDgPYSIGp1O6OOheIY+NqCM/BLsOHcbAAMdSf+xMdIz5So15m2JRrlaILyDKwYFuEldElGTwdDHxvH98USUqtTo3NIewV4OUpdD9FBsjPTM2iMJiLmVC1ulKT4cHsDwM6IniKGPDa+4TIXvT9wLdCTSd2yM9Mj1jAKs3BcHAHh/qD9cbJUSV0TU9HRu6YChge4MfWwgW8/exJ2iMrRwsMBAf1epyyF6JDZGekKtFnh7awxKytXo3dYJo4JbSF0SUZM1P8JPG/p4kKGP9aZW3wt0nNqzFUwZ6EgGgO9SPbHxZBJOJWbDUmGC5c915Ck0IgnphD7uZuhjfe2/ko7rGYWwUZrihac8pS6HqFbYGOmBWzl38dHvlwFovql6OnIoK5HUKkMf49IY+lhf31YEOr7YrSWszU0lroaodtgYSUwIgXe2xaCwVIWuXg54qbuX1CURERj6+Lgu3srF8etZMJXLMKmHt9TlENVavRqjr776Ct7e3lAqlQgJCcGpU6dqXHbdunWQyWQ6k1Kpe1GxEAILFy6Eu7s7LCwsEBYWhqtXr9anNIOz7ewtHIzLgMJUjo9HBUIu5yk0In0xobsXvBj6WC+V1xYNCXSHh72FxNUQ1V6dG6PNmzdj9uzZWLRoEc6ePYugoCCEh4cjPT29xnVsbW2RkpKinZKSknQe/+STT/Dll19i1apVOHnyJKysrBAeHo7iYuMOWMvIL8GS3/4CALwZ1hatna0lroiI7qcwlePtCIY+1lVK7l38eqEi0LEXh+iTYalzY7Ry5UrMmDEDU6ZMgb+/P1atWgVLS0tERkbWuI5MJoObm5t2cnW9N2RTCIEvvvgC7733HoYPH47AwEBs2LABt2/fxo4dO+r1ogzFop0XkXu3DAHNbfEy8z2I9FJEwL3Qx5X7GPpYG+uPJaFcLRDSyhEdW9hJXQ5RndSpMSotLcWZM2cQFhZ2bwNyOcLCwnD8+PEa1ysoKICXlxc8PT0xfPhwXLp0SftYQkICUlNTdbZpZ2eHkJCQGrdZUlKCvLw8ncnQ7LmYgt0xqTCVy/DxyEAOYyXSU/eHPv58hqGPj1JYUo5NJzVnBXj7DzJEddobZ2ZmQqVS6RzxAQBXV1ekpqZWu46vry8iIyPxyy+/4IcffoBarUaPHj1w86ZmlEflenXZ5ooVK2BnZ6edPD0NaxhoblEZ3tuhaQ5f6dMaHTz4jYpInzH0sfZ+Pn0DecXlaOVkhf5+LlKXQ1RnjX6YIjQ0FBMnTkSnTp3Qp08fbNu2Dc7Ozli9enW9t7lgwQLk5uZqpxs3bjRgxY3vw11/IbOgBG1crPFG/zZSl0NEtcDQx0dTqQUijyYCAKb2asXBJGSQ6tQYOTk5wcTEBGlpaTrz09LS4OZWu5udmpmZoXPnzrh2TXP3+Mr16rJNc3Nz2Nra6kyG4mBcBracuQmZDPh4ZCDMTU2kLomIasHT0RKTemjiNBj6WL19f6UiObsI9pZmGNWF6f1kmOrUGCkUCgQHByMqKko7T61WIyoqCqGhobXahkqlQkxMDNzd3QEArVq1gpubm8428/LycPLkyVpv01AUlJTjnW0xAIDJPbx5l2kiA/N6v7ba0MctDH2sYk1FoOOEEC9YKPiljwxTnU+lzZ49G2vWrMH69esRGxuLmTNnorCwEFOmTAEATJw4EQsWLNAuv2TJEuzduxfXr1/H2bNnMWHCBCQlJWH69OkANBc2vvnmm1i6dCl27tyJmJgYTJw4ER4eHhgxYkTDvEo98emey7iVcxeejhaYG+4rdTlEVEc6oY/7GPp4v7PJd3Am6Q4UJnJM7MGgWjJcdc5oHzNmDDIyMrBw4UKkpqaiU6dO2LNnj/bi6eTkZMjl9/qtO3fuYMaMGUhNTYWDgwOCg4Nx7Ngx+Pv7a5eZN28eCgsL8fLLLyMnJwe9evXCnj17qgRBGrI/E7Ox/rhmpMZHzwfCUsF4fCJDNKG7F9YfT0RSVhFWH7qO2QPaSV2SXlhbcbRoWCcPuNgYz2c3NT0yYQTDK/Ly8mBnZ4fc3Fy9vN6ouEyFwf88jOuZhRjT1RMfjwqUuiQiegy/x6Rg5sazUJrJcWBOP7jZNe1G4EZ2Efp8uh9qAex5szf83PTvc5j0kz7uvxme8wT8M+oqrmcWwtXWHO9U5KEQkeGKCHBDMEMftb47mgi1AHq3dWJTRAaPjVEju3grF99U3GNp6YiOsLMwk7giInpcD4Y+xqY03dDHvOIybP4zGQADHck4sDFqRGUqNeZuiYZKLTA00B0D/F0fvRIRGYQuD4Q+NlU/nUpGYakK7Vyt8XRbJ6nLIXpsbIwa0eqD8YhNyYODpRk+GNZB6nKIqIFVhj4evpqJA1dqvpG2sSpTqfFdRaDj9F4+kMkY6EiGj41RI7malo8vozQhlouHdUAza3OJKyKihtbUQx93x6QgJbcYTtYKDOvkIXU5RA2CjVEjUKkF5m2NRqlKjf5+LhgWxA8MImP1er+2sLNoeqGPQgh8WzFEf2KoN5RmDHQk48DGqBGsP5aIc8k5sDE3xdLnAnh4mciI2Vma4W/9m17o46mEbMTcyoW5qRwTujPQkYwHG6MGlpxVhE//pxm+u2Bwe7jbWUhcERE1tpe6e8GrmSUy8ku0o1CNXeXtP0YGt4CjlULiaogaDhujBiSEwILt0bhbpkKoTzOM6+YpdUlE9AQoTOV4O8IPAPDNoetIyyuWuKLGdT2jAFGXNTf+ntarlcTVEDUsNkYNaPOfN3D0WhaUZnJ8NLIjT6ERNSGVoY93y1T4fK9xhz5GHk2AEEB/Pxe0draWuhyiBsXGqIGk5hZj2S5Nlsmcgb7wamYlcUVE9CQ1ldDHO4Wl2ovMGehIxoiNUQMQQuC9HReRX1KOIE97TOnJQ8tETVGXlg4YYuShjxtPJqG4TI0OHrbo7uModTlEDY6NUQP4NToFf8SmwcxEhk9HBcJEzlNoRE3V/PB7oY8H4zKkLqdBlZSrsP54EgBgRm8GOpJxYmP0mLILS7F45yUAmjyTdq42EldERFJq2ey+0MddsVCphcQVNZyd528jI78EbrZKDAl0l7ocokbBxugxffDrJWQXlsLPzQYz+7aWuhwi0gOVoY9X0vLx8+kbUpfTIIQQWHtEM0R/ck9vmJlw90HGie/sxxAVm4Zfzt+GXAZ8MioQClP+OonIOEMfj1zLxOXUfFgqTDDuqZZSl0PUaLgnr6e84jK8u/0iAM259sAW9tIWRER6xdhCHytv//FCV0/YWZpJXA1R42FjVE8rdl9Gal4xWjlZ4a0B7aQuh4j0jMJUjvlGEvoYl5aPg3EZkMuAqRx1S0aOjVE9HIvPxI+nkgEAHz3fkTdPJKJqDbov9HHl3jipy6m3tRVHi8I7uKFlM0uJqyFqXGyM6qiotBxvb40BAEzo3hIhPs0kroiI9NX9oY//PXPDIEMfM/JLsP3cLQDA9N48WkTGj41RHa3cG4fk7CJ42Cm1h8mJiGpi6KGP359IQqlKjc4t7RHsxUBHMn5sjOrgXPIdRB7VHFJe9nxH2Ch5ASIRPdr8cD+YmcgMLvSxuEyFH05oAh2n9+LtP6hpYGNUSyXlKszbEg21AJ7v3Bz9fF2kLomIDETLZpaYFOoNwLBCH7edvYXswlK0cLBAeAdXqcsheiLYGNXSV/vjcTW9AE7WCrw/1F/qcojIwLz+TBtt6OOWM/of+qhWC3x7RBMzMKVnK5gy0JGaCL7TayE2JQ//2X8NALBkeAAcrBQSV0REhsbeUqENffxsr/6HPh6IS8f1jELYmJtizFOeUpdD9MSwMXqEcpUa87ZEo1wtENHBDYM78v5ARFQ/hhT6uOaQ5nrKcSEtYW1uKnE1RE8OG6NHWHskATG3cmGrNMWS4R2kLoeIDJihhD5evJWL49ezYCKXYXIPb6nLIXqi2Bg9REJmIVbu04SyvT/UHy62SokrIiJDNyjADV1a2ut16GPlzWKHdHSHh72FxNUQPVlsjB7CyVqB0V1boE87Z4wKbiF1OURkBDShj5oBHPoY+piaW4xfL9wGwEBHaprYGD2EjdIMS0d0xLeTukImk0ldDhEZiWCve6GPK36/LHU5OtYdS0S5WqBbK0feHJuaJDZGtWDGYapE1MAqQx8PxWXoTehjYUk5Np3UBDrO6M1AR2qauMcnIpKAPoY+/nz6BvKKy9HKyQr9/RhiS00TGyMiIonoU+ijSi0QeTQRADC1VyvI5bx8gJomNkZERBKxt1TgjWfaAAA+lzj0cd9fqUjOLoK9pRlGdeFgE2q62BgREUnopVAvtHS0RHp+CdYcli70cc1hzRD9CSFesFCYSFYHkdTYGBERScjc1ARvD9KEPq4+KE3o49nkOziTdAcKEzkm9vB64s9PpE/YGBERSUzq0Me1FUeLhnXygIsNg2ypaWNjREQkMSlDH29kF+H3iykAGOhIBNSzMfrqq6/g7e0NpVKJkJAQnDp1qlbr/fTTT5DJZBgxYoTO/MmTJ0Mmk+lMERER9SmNiMggBXs5YEjHJx/6+N3RRKgF0LutE/zcbJ/Y8xLpqzo3Rps3b8bs2bOxaNEinD17FkFBQQgPD0d6evpD10tMTMScOXPQu3fvah+PiIhASkqKdvrxxx/rWhoRkUGbF+H7REMf84rLsPnPZADAdAY6EgGoR2O0cuVKzJgxA1OmTIG/vz9WrVoFS0tLREZG1riOSqXC+PHj8cEHH8DHp/o/PnNzc7i5uWknBweHupZGRGTQvJpZaUMfV+xu/NDHn04lo7BUhXau1ni6rVOjPheRoahTY1RaWoozZ84gLCzs3gbkcoSFheH48eM1rrdkyRK4uLhg2rRpNS5z4MABuLi4wNfXFzNnzkRWVlaNy5aUlCAvL09nIiIyBpWhj5dTGzf0sUylxrqKQMfpvXx4P0iiCnVqjDIzM6FSqeDq6qoz39XVFampqdWuc+TIEaxduxZr1qypcbsRERHYsGEDoqKi8PHHH+PgwYMYNGgQVCpVtcuvWLECdnZ22snT07MuL4OISG89qdDH3TEpuJ1bDCdrBYZ18miU5yAyRI06Ki0/Px8vvfQS1qxZAyenmg/Tjh07FsOGDUPHjh0xYsQI/Pbbb/jzzz9x4MCBapdfsGABcnNztdONG9JG6RMRNaTGDn0UQmDtEc0Q/Ymh3lCaMdCRqFKdGiMnJyeYmJggLS1NZ35aWhrc3NyqLB8fH4/ExEQ8++yzMDU1hampKTZs2ICdO3fC1NQU8fHx1T6Pj48PnJyccO3atWofNzc3h62trc5ERGQszE1NMD/iXuhjegOHPp5KyEb0zVyYm8oxPqRlg26byNDVqTFSKBQIDg5GVFSUdp5arUZUVBRCQ0OrLO/n54eYmBicP39eOw0bNgz9+vXD+fPnazwFdvPmTWRlZcHd3b2OL4eIyDgM7nhf6OO+hg19/LbiaNHI4BZoZm3eoNsmMnR1PpU2e/ZsrFmzBuvXr0dsbCxmzpyJwsJCTJkyBQAwceJELFiwAACgVCoREBCgM9nb28PGxgYBAQFQKBQoKCjA3LlzceLECSQmJiIqKgrDhw9HmzZtEB4e3rCvlojIQOiEPp6+gcupDTPIJCGzEH/Eao76T+3JQEeiB5nWdYUxY8YgIyMDCxcuRGpqKjp16oQ9e/ZoL8hOTk6GXF77fsvExATR0dFYv349cnJy4OHhgYEDB+LDDz+EuTm/yRBR01UZ+rgrJgXLd1/GhqndHnubkUcSIATQ388FbVysG6BKIuMiE0I0blDGE5CXlwc7Ozvk5ubyeiMiMipJWYUIW3kQZSqB9VO7oU8753pv605hKUI/ikJxmRqbZoSgR2tmF5G09HH/zXulERHpMa9mVpjYQKGPm04lo7hMjQ4etgj1adZAFRIZFzZGRER67o37Qh+3nrlZr22UlKuw7lgiAM3NYhnoSFQ9NkZERHru/tDHz/ZeQVFp3UMff72Qgoz8ErjZKjGkIwMdiWrCxoiIyADcH/r4zaG6hT4KIfBtRVDkpB7eUJjyo5+oJvzrICIyAI8T+nj0WhYup+bDUmGCF7sx0JHoYdgYEREZiMEd3dC5HqGPlbcVeaGrJ+wszRqrPCKjwMaIiMhAyGQyvDekPYDahz7GpeXjYFwGZDIGOhLVBhsjIiIDEuzliCEd3aEWwIrdlx+5/NrDmtt/hPu7oWUzy8Yuj8jgsTEiIjIw8yJ8YWYiw8G4DByKy6hxuYz8Emw/fwsAMONpHi0iqg02RkREBub+0MflDwl9/P5EEkrL1ejkaY8uLR2eYIVEhouNERGRAXrjmTawVZrWGPpYXKbCDyeSAAAzevsw0JGoltgYEREZIHtLBf7Wvy2A6kMft529hezCUrRwsEB4B1cpSiQySGyMiIgM1P2hj2sOJWjnq9UC3x7RDNGf0rMVTE34UU9UW/xrISIyUDqhj4fitaGPB+LScT2jEDbmphjzlKeUJRIZHDZGREQGrDL0saj0Xuhj5dGjcSEtYW1uKmV5RAaHjRERkQF7MPRx29mbOH49CyZyGSb38Ja2OCIDxMaIiMjABXs5YnBHN6gF8PefLwAAhnR0h4e9hcSVERkeNkZEREZgfoQfzExkEBWRRtN7M9CRqD7YGBERGYH7Qx+7tXJEYAt7SeshMlS8Ko+IyEjMDfdFS0dLDPBnbhFRfbExIiIyEkozE0ziBddEj4Wn0oiIiIgqsDEiIiIiqsDGiIiIiKgCGyMiIiKiCmyMiIiIiCqwMSIiIiKqwMaIiIiIqAIbIyIiIqIKbIyIiIiIKrAxIiIiIqrAxoiIiIioAhsjIiIiogpsjIiIiIgqmEpdQEMQQgAA8vLyJK6EiIiIaqtyv125H9cHRtEY5efnAwA8PT0lroSIiIjqKj8/H3Z2dlKXAQCQCX1q0+pJrVbj9u3bsLGxgUwma9Bt5+XlwdPTEzdu3ICtrW2DbpuaLr6vqLHwvUWNobHeV0II5Ofnw8PDA3K5flzdYxRHjORyOVq0aNGoz2Fra8sPGWpwfF9RY+F7ixpDY7yv9OVIUSX9aM+IiIiI9AAbIyIiIqIKbIwewdzcHIsWLYK5ubnUpZAR4fuKGgvfW9QYmtL7yiguviYiIiJqCDxiRERERFSBjRERERFRBTZGRERERBXYGBERERFVMJjGaN26dbC3t3/s7chkMuzYseOxt9PYFi9ejE6dOkldBhERGYHJkydjxIgRUpfxWLy9vfHFF180+vM80cZIH/9jZDJZtdNPP/0kdWlkYCZPnqx9/ygUCrRp0wZLlixBeXk5AE30/TfffIOQkBBYW1vD3t4eXbt2xRdffIGioiKdbd28eRMKhQIBAQFSvBSSSN++ffHmm28+crk1a9YgKChI+z7q3LkzVqxYoX188eLFkMlkeOWVV3TWO3/+PGQyGRITEwEAiYmJNX4GnjhxoiFfGlXIyMjAzJkz0bJlS5ibm8PNzQ3h4eE4evSo1KXVSk0HKRISEvDiiy/Cw8MDSqUSLVq0wPDhw3H58uUnX+RjMopbgjyu7777DhERETrzGuLolNTKyspgZmYmdRlNSkREBL777juUlJRg9+7deO2112BmZoYFCxbgpZdewrZt2/Dee+/h3//+N5ydnXHhwgV88cUX8Pb21vnSsG7dOrzwwgs4dOgQTp48iZCQEOleFOmVyMhIvPnmm/jyyy/Rp08flJSUIDo6GhcvXtRZTqlUYu3atfj73/+Otm3bPnSbf/zxBzp06KAzr1mzZg1eOwEjR45EaWkp1q9fDx8fH6SlpSEqKgpZWVlSl/ZIZWVlNc4fMGAAfH19sW3bNri7u+PmzZv4/fffkZOT82SLfIjS0lIoFIpHLyieoEmTJonhw4dX+9jnn38uAgIChKWlpWjRooWYOXOmyM/P1z7+3XffCTs7O7F9+3bRpk0bYW5uLgYOHCiSk5N1trNjxw7RuXNnYW5uLlq1aiUWL14sysrKtI8DENu3b6/x5wdVPu+ePXuEn5+fsLKyEuHh4eL27ds6y61du1b4+/sLhUIh3NzcxGuvvaZ9LCkpSQwbNkxYWVkJGxsbMXr0aJGamqqz/ooVK4SLi4uwtrYWU6dOFfPnzxdBQUE6y6xZs0b4+fkJc3Nz4evrK7766ivtYwkJCQKA+Omnn8TTTz8tzM3NxXfffVfj66KGV937e8CAAaJ79+5i8+bNAoDYsWNHlfXUarXIycnR+dnHx0fs2bNHzJ8/X8yYMaOxSyc9MGnSJAFAZ0pISKiy3PDhw8XkyZMfuq1FixaJoKAgMWDAADF69Gjt/HPnzulst/Jz49y5cw34Sqgmd+7cEQDEgQMHalymtvvCh+2TysvLxVtvvSXs7OyEo6OjmDt3rpg4caLO59Pvv/8uevbsqV1myJAh4tq1a9rHa9qnPPgeXbRokfZ9lZiY+NDXf+PGDTF27Fjh4OAgLC0tRXBwsDhx4oQQQohr166JYcOGCRcXF2FlZSW6du0q9u3bp7O+l5eX+Mc//qHz+5w2bZpwcnISNjY2ol+/fuL8+fPaxyv/DtasWSO8vb2FTCZ7aH2V9OYaI7lcji+//BKXLl3C+vXr8X//93+YN2+ezjJFRUVYtmwZNmzYgKNHjyInJwdjx47VPn748GFMnDgRs2bNwl9//YXVq1dj3bp1WLZs2WPVVlRUhM8++wzff/89Dh06hOTkZMyZM0f7+Ndff43XXnsNL7/8MmJiYrBz5060adMGAKBWqzF8+HBkZ2fj4MGD2LdvH65fv44xY8Zo1//vf/+LxYsXY/ny5Th9+jTc3d3xn//8R6eGjRs3YuHChVi2bBliY2OxfPlyvP/++1i/fr3Ocm+//TZmzZqF2NhYhIeHP9brpsdnYWGB0tJSbNy4Eb6+vhg+fHiVZWQymc5NFPfv34+ioiKEhYVhwoQJ+Omnn1BYWPgkyyYJ/POf/0RoaChmzJiBlJQUpKSkwNPTs8pybm5uOHHiBJKSkh65zY8++ghbt27F6dOnG6NkqiNra2tYW1tjx44dKCkpqXaZ2u4LH7ZP+vzzz7Fu3TpERkbiyJEjyM7Oxvbt23W2UVhYiNmzZ+P06dOIioqCXC7Hc889B7VarbPc/fuUfv364YsvvoCtra32PTpnzhw4OztDLpdjy5YtUKlU1b6ugoIC9OnTB7du3cLOnTtx4cIFzJs3T/t8BQUFGDx4MKKionDu3DlERETg2WefRXJyco2/z9GjRyM9PR2///47zpw5gy5duqB///7Izs7WLnPt2jVs3boV27Ztw/nz52vclo5atU8N5GFHjB70888/i2bNmml/ruxUK7tLIYSIjY0VAMTJkyeFEEL0799fLF++XGc733//vXB3d9f+jGqOGCmVSmFlZaUzJSUl6Tzv/Z30V199JVxdXbU/e3h4iHfffbfa17F3715hYmKic2Tr0qVLAoA4deqUEEKI0NBQ8eqrr+qsFxISonPEqHXr1mLTpk06y3z44YciNDRUCHGvu//iiy+qrYMa3/3vb7VaLfbt2yfMzc3FnDlzRPv27cWwYcNqtZ0XX3xRvPnmm9qfg4KCePSviejTp4+YNWvWQ5e5ffu26N69uwAg2rVrJyZNmiQ2b94sVCqVdpnKb8pCCDF27FjxzDPPCCFqPmJkYWFR5TOQGseWLVuEg4ODUCqVokePHmLBggXiwoULNS5f077wYfskd3d38cknn2h/LisrEy1atHjo/jcjI0MAEDExMUKImvcplUesHvTvf/9bWFpaao/cLFmyRMTHx2sfX716tbCxsRFZWVk11vCgDh06iH/961/an+8/YnT48GFha2sriouLddZp3bq1WL16tRBC83dgZmYm0tPTa/2cQujREaM//vgD/fv3R/PmzWFjY4OXXnoJWVlZOhelmpqa4qmnntL+7OfnB3t7e8TGxgIALly4gCVLlmi7cmtra+23rwcvbr3fP/7xD5w/f15n8vDw0D5uaWmJ1q1ba392d3dHeno6ACA9PR23b99G//79q912bGwsPD09db75+fv769QdGxtb5RqS0NBQ7b8LCwsRHx+PadOm6by2pUuXIj4+Xme9rl271vg6qfH99ttvsLa2hlKpxKBBgzBmzBgsXrwYopZ33snJycG2bdswYcIE7bwJEyZg7dq1jVUy6bEOHTpo/94HDRoEQPP5c/z4ccTExGDWrFkoLy/HpEmTEBERUeXbPgAsXboUhw8fxt69e2t8ns2bN1f5DKTGMXLkSNy+fRs7d+5EREQEDhw4gC5dumDdunUAarcvfNg+KTc3FykpKTr7FFNT0yr7hqtXr2LcuHHw8fGBra0tvL29AaDKEZra7lNee+01pKamYuPGjQgNDcXPP/+MDh06YN++fQA0F/537twZjo6O1a5fUFCAOXPmoH379rC3t4e1tTViY2NrPGJ04cIFFBQUoFmzZjr7xYSEBJ39opeXF5ydnWv1GirpxcXXiYmJGDp0KGbOnIlly5bB0dERR44cwbRp01BaWgpLS8tabaegoAAffPABnn/++SqPKZXKGtdzc3PTnvqqzoMXMMtkMu2OzsLCola1PY6CggIAmpEoDzZQJiYmOj9bWVk1ej1Us379+uHrr7+GQqGAh4cHTE01f2Lt2rWr1eiMTZs2obi4WOf/WQgBtVqNuLg4tGvXrtFqJ/2ze/du7QWvD37WBAQEICAgAK+++ipeeeUV9O7dGwcPHkS/fv10lmvdujVmzJiBt99+u8YG29PT86GfgdSwlEolBgwYgAEDBuD999/H9OnTsWjRIvTt27dW+8KH7ZNq69lnn4WXlxfWrFkDDw8PqNVqBAQEoLS0VGe5uuxTbGxs8Oyzz+LZZ5/F0qVLER4ejqVLl2LAgAGP3FfOmTMH+/btw2effYY2bdrAwsICo0aNqlJPpYKCAri7u+PAgQNVHrt/8FR99ol6ccTozJkzUKvV+Pzzz9G9e3e0a9cOt2/frrJceXm5zrnyK1euICcnB+3btwcAdOnSBVeuXEGbNm2qTHJ547xUGxsbeHt7IyoqqtrH27dvjxs3buDGjRvaeX/99RdycnLg7++vXebkyZM6690/VNbV1RUeHh64fv16ldfVqlWrRnhVVF9WVlZo06YNWrZsqW2KAODFF19EXFwcfvnllyrrCCGQm5sLANpRRPd/c79w4QJ69+6NyMjIJ/Y6SBoKhULnGg0vLy/t33rz5s1rXK/ys6Sma9EWLlyIuLg4xpDoKX9/fxQWFtZ6X/gwdnZ2cHd319mnlJeX48yZM9qfs7KycOXKFbz33nvo378/2rdvjzt37tRq+w++R2sik8ng5+enfU8GBgbi/PnzOtf/3O/o0aOYPHkynnvuOXTs2BFubm7aWInqdOnSBampqTA1Na2yX3RycqrVa6nJEz9ilJubW+UwrZOTE8rKyvCvf/0Lzz77LI4ePYpVq1ZVWdfMzAxvvPEGvvzyS5iamuL1119H9+7d0a1bNwCaP/6hQ4eiZcuWGDVqFORyOS5cuICLFy9i6dKlNdaUk5OD1NRUnXk2Nja17jQXL16MV155BS4uLhg0aBDy8/Nx9OhRvPHGGwgLC0PHjh0xfvx4fPHFFygvL8err76KPn36aA9Rzpo1C5MnT0bXrl3Rs2dPbNy4EZcuXYKPj4/2OT744AP87W9/g52dHSIiIlBSUoLTp0/jzp07mD17dq3qJOm88MIL2L59O8aNG4f33nsPAwcOhLOzM2JiYvCPf/wDb7zxBry9vXH27Fls3LgRfn5+OuuPGzcOS5YswdKlS3UaLjIu3t7eOHnyJBITE2FtbQ1HR8cqX+pmzpwJDw8PPPPMM2jRogVSUlKwdOlSODs765yCv5+rqytmz56NTz/9tNrHs7KyqnwG2tvbP/RIO9VdVlYWRo8ejalTpyIwMBA2NjY4ffo0PvnkEwwfPhxt2rSp1b7wUWbNmoWPPvoIbdu2hZ+fH1auXKkzbN7BwQHNmjXDN998A3d3dyQnJ+Ptt9+u1ba9vb1RUFCAqKgoBAUFwdLSEnFxcVi0aBFeeukl+Pv7Q6FQ4ODBg4iMjMT8+fMBaD7Dli9fjhEjRmDFihVwd3fHuXPn4OHhgdDQULRt2xbbtm3Ds88+C5lMhvfff7/aU8OVwsLCEBoaihEjRuCTTz7RNpG7du3Cc88993iXldTpiqTHVN1wVABi2rRpYuXKlcLd3V1YWFiI8PBwsWHDBgFA3LlzRwhx74KvrVu3Ch8fH2Fubi7CwsK0F0lX2rNnj+jRo4ewsLAQtra2olu3buKbb77RPo5qLr6ublqxYoXO895v+/bt4sFf3apVq4Svr68wMzMT7u7u4o033tA+Vpvh+suWLRNOTk7C2tpaTJo0ScybN6/KcP2NGzeKTp06CYVCIRwcHMTTTz8ttm3bJoTgsFt98KjBBSqVSnz99dfiqaeeEpaWlsLW1lYEBweLf/7zn6KoqEi8/vrrwt/fv9p1U1JShFwuF7/88ksjVU/64MqVK6J79+7CwsKixuH6W7ZsEYMHDxbu7u5CoVAIDw8PMXLkSBEdHa1d5v6Lryvl5uYKJyenai++rm768ccfG/GVNk3FxcXi7bffFl26dBF2dnbC0tJS+Pr6ivfee08UFRUJIUSt94X3e3CfVFZWJmbNmiVsbW2Fvb29mD17dpXh+vv27RPt27cX5ubmIjAwUBw4cEBn//iwfcorr7wimjVrph2un5GRIf72t7+JgIAAYW1tLWxsbETHjh3FZ599pjMoIDExUYwcOVLY2toKS0tL0bVrV+3gqYSEBNGvXz9hYWEhPD09xb///e8qgxEeHK6fl5cn3njjDeHh4SHMzMyEp6enGD9+vHawU3V/B7UhE6KOJyaJiIiIjJReXGNEREREpA/YGBERERFVYGNEREREVIGNEREREVEFNkZEREREFdgYEREREVVgY0RERERUgY0RERERUQU2RkREREQV2BgRERERVWBjRERERFTh/wMTlhLULro7WQAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OAA--Zd8McII"
+ },
+ "source": [
+ "# Вывод\n",
+ "\n",
+ "В ходе работы были соединины в один ноутбук методы уменьшения размерности данных, масштабирования данных, перебора гиперпараметров для моделей, изменения представления данных и т.д.\n",
+ "\n",
+ "С решением задачи классификации на выбранном датасате лучше всего справилась модель решающего дерева, с использованием get_dummies для представления данных. Однако модели после применения PCA и LabelEncoder + StandartScaler, показали результаты чуть меньшей точности, но с большой скоростью обучения."
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
From 333e4328265c6ee0e77eee6b38fceaf75ec86c24 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=D0=A1=D0=BE=D1=84=D0=B8=D1=8F=20=D0=A5=D1=80=D0=B8=D1=81?=
=?UTF-8?q?=D0=B0=D0=BD=D0=BA=D0=BE=D0=B2=D0=B0?=
<132402521+sssoneta@users.noreply.github.com>
Date: Sat, 26 Apr 2025 02:54:01 +0300
Subject: [PATCH 2/3] dz10
---
project/15_fake_news_detection.csv | 1001 +++++
project/15_fake_news_detection.ipynb | 1982 ++++++++++
project/cleaned_fake_news.csv | 19 +
project/processed_news_data.csv | 1001 +++++
project/wine_variety_classifier.ipynb | 5095 -------------------------
5 files changed, 4003 insertions(+), 5095 deletions(-)
create mode 100644 project/15_fake_news_detection.csv
create mode 100644 project/15_fake_news_detection.ipynb
create mode 100644 project/cleaned_fake_news.csv
create mode 100644 project/processed_news_data.csv
delete mode 100644 project/wine_variety_classifier.ipynb
diff --git a/project/15_fake_news_detection.csv b/project/15_fake_news_detection.csv
new file mode 100644
index 00000000..5ed5d5a2
--- /dev/null
+++ b/project/15_fake_news_detection.csv
@@ -0,0 +1,1001 @@
+title,text,label
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake
diff --git a/project/15_fake_news_detection.ipynb b/project/15_fake_news_detection.ipynb
new file mode 100644
index 00000000..f9bf462e
--- /dev/null
+++ b/project/15_fake_news_detection.ipynb
@@ -0,0 +1,1982 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "bdf9f4ff-423b-425b-ad11-5d50b3e83bf9",
+ "metadata": {},
+ "source": [
+ "# Задача 10. Сравнение методов классификации"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8993b83b-bc9f-4219-89f6-c1a24523b256",
+ "metadata": {},
+ "source": [
+ "Импорт необходимых библиотек"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "33754548-d468-4d0b-afd9-71217dd0e2ec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.model_selection import train_test_split, GridSearchCV\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.svm import SVC\n",
+ "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
+ "from sklearn.metrics import accuracy_score, classification_report"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7d299573-e193-4c0c-b8bf-e31437aba2a3",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8f22f44e-53f2-4fec-964e-51b1d96414a5",
+ "metadata": {},
+ "source": [
+ "Настройка отображения"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "f5162aca-4568-4dce-aae0-5b29291d41cd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "plt.style.use('ggplot')\n",
+ "pd.set_option('display.max_colwidth', 200)\n",
+ "pd.set_option('display.max_rows', 100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f9530f62-9133-48e6-b6de-6de156ac23fb",
+ "metadata": {},
+ "source": [
+ "## 1. Загрузка данных"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "7efc8f03-b42a-4fa7-a306-75431f93a748",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Данные успешно загружены\n"
+ ]
+ }
+ ],
+ "source": [
+ "try:\n",
+ " df = pd.read_csv('15_fake_news_detection.csv')\n",
+ " print(\"Данные успешно загружены\")\n",
+ "except FileNotFoundError:\n",
+ " print(\"Файл не найден. Проверьте путь к файлу.\")\n",
+ " exit()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9c226f84-f65b-48a5-b37c-92967fd472f8",
+ "metadata": {},
+ "source": [
+ "## 2. Первичный осмотр данных"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "f5c70ad2-5459-4f02-8cda-cbe890afe6df",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== Первичный осмотр данных ===\n",
+ "\n",
+ "Первые 5 строк данных:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " text \n",
+ " label \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Government Announces New Education Reforms \n",
+ " The education ministry has proposed reforms to modernize the curriculum. \n",
+ " real \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " Economy Shows Signs of Recovery \n",
+ " The new study conducted by international researchers shows walking improves heart health. \n",
+ " real \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " Aliens Land in Central Park \n",
+ " Sources claim that extraterrestrial beings were seen stepping out of a spaceship. \n",
+ " fake \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " Aliens Land in Central Park \n",
+ " The celebrity stated that secret documents reveal shocking information about the president. \n",
+ " fake \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " New Study Reveals Health Benefits of Walking \n",
+ " The education ministry has proposed reforms to modernize the curriculum. \n",
+ " real \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " title \\\n",
+ "0 Government Announces New Education Reforms \n",
+ "1 Economy Shows Signs of Recovery \n",
+ "2 Aliens Land in Central Park \n",
+ "3 Aliens Land in Central Park \n",
+ "4 New Study Reveals Health Benefits of Walking \n",
+ "\n",
+ " text \\\n",
+ "0 The education ministry has proposed reforms to modernize the curriculum. \n",
+ "1 The new study conducted by international researchers shows walking improves heart health. \n",
+ "2 Sources claim that extraterrestrial beings were seen stepping out of a spaceship. \n",
+ "3 The celebrity stated that secret documents reveal shocking information about the president. \n",
+ "4 The education ministry has proposed reforms to modernize the curriculum. \n",
+ "\n",
+ " label \n",
+ "0 real \n",
+ "1 real \n",
+ "2 fake \n",
+ "3 fake \n",
+ "4 real "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Информация о структуре данных:\n",
+ "\n",
+ "RangeIndex: 1000 entries, 0 to 999\n",
+ "Data columns (total 3 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 title 1000 non-null object\n",
+ " 1 text 1000 non-null object\n",
+ " 2 label 1000 non-null object\n",
+ "dtypes: object(3)\n",
+ "memory usage: 23.6+ KB\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "None"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Основные статистики:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " title \n",
+ " text \n",
+ " label \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 1000 \n",
+ " 1000 \n",
+ " 1000 \n",
+ " \n",
+ " \n",
+ " unique \n",
+ " 6 \n",
+ " 6 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " top \n",
+ " Economy Shows Signs of Recovery \n",
+ " Recent economic data shows that the GDP is steadily growing over the last two quarters. \n",
+ " real \n",
+ " \n",
+ " \n",
+ " freq \n",
+ " 213 \n",
+ " 183 \n",
+ " 532 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " title \\\n",
+ "count 1000 \n",
+ "unique 6 \n",
+ "top Economy Shows Signs of Recovery \n",
+ "freq 213 \n",
+ "\n",
+ " text \\\n",
+ "count 1000 \n",
+ "unique 6 \n",
+ "top Recent economic data shows that the GDP is steadily growing over the last two quarters. \n",
+ "freq 183 \n",
+ "\n",
+ " label \n",
+ "count 1000 \n",
+ "unique 2 \n",
+ "top real \n",
+ "freq 532 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print(\"\\n=== Первичный осмотр данных ===\")\n",
+ "print(\"\\nПервые 5 строк данных:\")\n",
+ "display(df.head())\n",
+ "\n",
+ "print(\"\\nИнформация о структуре данных:\")\n",
+ "display(df.info())\n",
+ "\n",
+ "print(\"\\nОсновные статистики:\")\n",
+ "display(df.describe(include='object'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4018d0dd-67ca-47a5-a4ae-070ab82fdc45",
+ "metadata": {},
+ "source": [
+ "## 3. Анализ распределения меток"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "a286581e-2b2b-4ba8-93f7-438844634fa5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== Анализ распределения меток ===\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAHbCAYAAADLf1JFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY9ElEQVR4nO3deXxMZ///8fdkT5BMiD2EIGgRaYuqJYRKF19qqdTSKuVuVRddVe1bVe9bS6t69y5Kaq9a2vvWUpTWUksRWwliiz2yIRJJ5vz+6CPzM5KQTIYwfT0fjzyYc5051+dMTk7eueY6Z0yGYRgCAAAAnJBLcRcAAAAA3C6EXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAPKwZ88elS9fXlevXrUuGzRokLp27VqMVQF/4fgsOMLu35jJZLL5cnV1VUBAgCIiIjRv3rziLg8A8vX888/LZDLp2LFjt62P2rVry8PDQ82aNdN7772nHj166LPPPlObNm1uW59AQXF8FpxbcReA4jdy5EhJUmZmpg4cOKDly5frl19+0fbt2/Xxxx8Xc3UAUDw8PDy0bNkyvf7665o6darMZrPeffdd/eMf/yju0gCOz0IwGYZhFHcRKB4mk0mSdOMhsGbNGj366KOSpLi4OFWrVu1OlwYAN/X8889r9uzZOnr0KOcoADfFNAbk0qZNG9WpU0eGYWjbtm3W5bNmzVKXLl0UHBwsb29v+fr6qlmzZpozZ06+20pMTNTQoUNVr149+fj4yM/PT6GhoXrvvfd05coV63qtWrXKNa3ixq/nn3/eZts5b2PGxcXp448/Vp06deTl5aXAwEC98cYbSk1NzbOm+Ph4vfLKKwoODpanp6fKlCmjDh062OzrjWbNmpVvXfn9ok1MTNSQIUNUt25deXt7y8/PT23atNGqVavy7WfUqFGF6ictLU0TJkxQw4YNVaJECZUsWVJNmzbV/Pnzc627bt06mUwmjRo1Ks++83pb+NixY3m+9pK0aNEia23r1q3L1X7gwAE9//zzqlKlijw8PFS+fHn16NFDBw8ezHf/b1bz5s2b1bZtW/n5+alUqVKKjIzU9u3b83xeVlaWpk2bpocffli+vr7y8fFRWFiYpk6dKovFkmt9e45tSapWrVq+368bX2eTyaRWrVoVaL9v9rpL//84ufF1L2gfN36vr127pkaNGslkMun777/Ptf5zzz0nk8mksWPHFqj+/OrYsmWLXFxcZDKZNGvWrAJtS5J2796t1q1by8fHRzVr1tSCBQusbQkJCercubNKlCihoKAgTZ48Od/tzJ8/X61bt5bZbJaXl5fq1q2rcePGKSMjwyH7UK1atTx/Tt966y2ZTCb16NFD2dnZNm2HDh3Sc889p8qVK8vDw0OVKlXSc889p0OHDuXaTl7nh7Jly6pZs2aaO3durvULOtUjr3PDJ598IpPJpC5duuRaf/Xq1XJ1dVX9+vVt5ovm51Z15Pdap6SkaMiQIapdu7a8vLzk7++vyMhIrV69Ot99uP7L19dX9erV0/jx4/OsMyMjQx9++KHq168vHx8f+fr6qkWLFlq0aFG++7J161ZFRUWpcuXK8vT0VMWKFdWuXTvrc272u+LGrxtfj9t9fP6dMY0BecoZ7c0Z/ZWkAQMG6P7771fLli1VsWJFXbx4UStWrNCzzz6rgwcP5vpFePToUbVu3VrHjx/Xgw8+qAEDBshisSg2NlaffPKJXnrpJZUoUcLmOTlTKq6XnJysKVOm5FvrG2+8oV9//VXdunVTx44dtXLlSk2ePFm//fabNmzYIC8vL+u6O3bsULt27ZSYmKjIyEh17txZCQkJWrZsmZo3b66lS5fqiSeeyLevjh07qmHDhtbH+f1iPX78uFq1aqVjx46pRYsWeuyxx3TlyhX997//1WOPPaYvv/xS/fv3z7ef3r172/zSzKuf5ORkRUREaOfOnXrggQfUt29fWSwWrVy5Uj169NC+ffs0bty4fPsoisuXL+vNN9/Mt/2nn35S586dlZmZqf/7v/9TzZo1FR8fryVLluh///uffvnlFz3wwAMF7m/Lli2aMGGC2rZtq4EDB+rw4cNasmSJfv31V61atUotWrSwrpvT58qVK1W7dm316NFDXl5e+uWXX/Tqq69qy5Yt+uabb2y2X9hj+3p+fn4aNGiQ9fGxY8c0e/bsAu/b3cDDw0MLFy5UWFiY+vTpo127dqlKlSqSpK+//lrffPON2rRpo6FDh9rdR3Z2tgYMGJDrnaRbOXTokMLDw5WSkqJOnTopMDBQAwcOVEBAgCSpV69eqlq1qvr27atly5bpjTfe0NWrVzVkyBCb7fTt21dff/21AgMD1aVLF5nNZv3+++8aPny41qxZo59//llubjf/lWjPPrz33nv6+OOP1a1bN33zzTdydXW1tm3btk1t27bVpUuX1KFDB9133306cOCA5syZo+XLl2v16tVq1KhRrm3mnB8Mw9CpU6e0ZMkS9erVS5cvX9aLL75Y4Npu5o033tDatWu1ZMkSTZs2TS+//LIk6ezZs+rVq5e8vLy0aNEieXt7O6S/GyUnJ6tZs2bav3+/GjVqpEGDBikhIUGLFi1Su3bt9MUXX+S5r+Hh4dYQmJycrP/+978aNmyY9u7dazMIcO3aNUVGRmr9+vWqU6eOBg4cqLS0NC1evFhRUVHatWuXPvjgA5ttf/XVVxowYIBcXV3VoUMH1apVS+fPn9f27ds1bdo0devWTQ0bNsz1e2z06NEKCgrK9cer2Wy2/r+4js+/DQN/W5KMvA6Bn3/+2TCZTIbJZDKOHTtmXX748OFc62ZkZBgRERGGm5ubER8fb9PWtGlTQ5LxwQcf5HrehQsXjKtXr1ofh4eH51mLYRjG0aNHDUlG7969bZb37t3bkGSUKVPGps7s7Gyjc+fOhiRjzJgx1uWZmZlGjRo1DE9PT2PdunU22zp16pRRqVIlo0KFCkZ6enquGqZPn25IMmbNmmWzPCgoyAgKCsq1fnh4uGEymYz58+fbLE9KSjJCQ0MNLy8v4+zZs7meN3ToUENSrvry6idn/ydOnGiz/OrVq0ZkZKRhMpmMnTt3Wpf/8ssvhiRj5MiRufq9fntHjx61LsvvtX/rrbcMSUajRo0MScYvv/xibUtMTDTMZrNRpkwZY9++fTbP27Nnj1GiRAkjLCwszxpulFOzJOOzzz6zaVu2bJkhyahZs6aRnZ1tXT5y5EhDkvHKK68YWVlZ1uVZWVlG3759DUnGsmXLbLZV2GM7R+XKlY1q1arlWfONr7MkIzw8vCC7ne/rniNnH69/3QvTR17fa8MwjIULFxqSjObNmxtZWVnG/v37DR8fH6NcuXLGmTNnClR7fnV89tlnNsfM119/XaBt5fwsz54927ps//79hr+/v/X7nOPcuXNGUFCQ4enpafPz9fXXXxuSjE6dOhlpaWk22895LSdPnlzkfbjx53TYsGGGJKNLly5GZmamzboWi8WoU6eOIcmYM2eOTduCBQsMSUbt2rXzPLZv/L7v3r3bkGQ8/vjjNsvz+z7fKL9jNiEhwQgMDDS8vLyMXbt2GdnZ2UabNm0MScbMmTNvus3C1JHXa/2Pf/zDkGT84x//MCwWi3V5bGys4evra3h4eNhsL799uHLlilGlShXD29vbZvkHH3xgfc2u/97kHEOSjI0bN1qX79u3z3BzczP8/f2NvXv35tqHkydP5rv/t/q5vFPH598Z0xigUaNGadSoURo6dKi6du2qxx57TIZhaNCgQQoKCrKuV6NGjVzP9fDw0MCBA5WVlaU1a9ZYl//xxx/avHmzGjZsqMGDB+d6XkBAgM2Ia1G8/vrrNnW6uLjon//8p1xcXDRz5kzr8v/97386cuSIXn31VYWHh9tso1KlSnr33Xd19uxZm/3IkfMWmIeHxy3riYmJ0fr169WlSxc988wzNm1ms1mjR49Wenq6vvvuu1zPzczMlCR5enretI+LFy9qzpw5euihh/Tuu+/atHl5eWnixIkyDOO23FVj7969mjJlijp06JDnKHh0dLSSk5M1evRo3XfffTZt9erVU//+/bVz507t37+/wH3WrFnTOrKUo2PHjgoPD9fhw4f122+/SZIsFos+++wzVahQQZ988onNKJqrq6smTZokk8mU6y3fwhzb18vMzLzl9+pe0q1bN7344ovasGGDBg8erG7duunq1av65ptvVKFCBbu3e+7cOQ0bNkxhYWGFGnlMT0/XDz/8oKCgID333HPW5XXr1lWHDh0k/TVFIEe5cuXUr18/ZWRkaPny5dblU6ZMkZubm2bOnJlrJHL48OEqU6ZMntMAirIPY8eO1bhx4/TUU09p/vz5uUblNm3apAMHDqhp06bq2bOnTVtUVJSaN2+ugwcPasOGDbfsKysrS5KK9D3KS5kyZTR//nxlZmYqKipKw4YN05o1a9SzZ0/16dPHoX1d79q1a5ozZ45KliypCRMm2LzDWKtWLb322mu6du2aoqOjb7kti8Wi7OzsXK/NzJkzZTKZ9PHHH9t8b8qVK6fhw4dLkqZPn25d/sUXXygrK0vDhw/X/fffn6ufwMDAQu9njuI4Pv9umMYAjR49WtJfUxbMZrNatGihF154Qb169bJZ78SJE5o4caLWrFmjEydO5JoDderUKev/f//9d0lSZGSkXFxu799UNwZXSQoODlaVKlV07NgxJScny2w2a/PmzZL+mmKQ17zVnDlyf/75Z64Ql5iYKEny8fG5ZT05/aSkpOTZz4ULF6z93ChnnvGt/hDYtm2bsrOz852DmxOa8+pj3bp1eT5n165dN+0zx8CBA+Xu7q4pU6bkOScsZ/9jYmLy7Cc2NtZa241hOD8tWrTI8zhq1aqV1q9fr507dyo8PFyxsbFKTExUrVq18p3C4e3tnet1Kcyxfb3U1FRVrFixQPsg/TXFIec18fDwUMWKFfXAAw8oNDQ0z/V37dqV52uY1xxpe/u40eTJk7Vp0yZNmjRJkjRkyBC1a9euQM/Nz9tvv63U1FRNmzZNBw4cKPDzDh48qMzMTDVo0KDAz6lfv74kad++fZL+mtceExOjgICAfKcdeXp65vmzcr3C7MPEiRM1YsQISX+FFXd391zr7NixQ5IUERGR5zYiIiK0YcMG7dy5Uy1btrRpmzVrltatWyfDMBQfH6/vvvtOtWvXzjV1I8fkyZNlNptlMpkUEBCg6tWr69FHH82zrhs1b95co0eP1rBhwzRhwgTVqlVL//73v2/5vJvVcSsHDx5UWlqamjVrptKlS+dqj4iI0Lhx47Rz585cbdef35KSkvTDDz/o6tWrmjZtmnWdS5cu6fDhw6pcubLq1KmT5/Yl2Ww/53fa448/fsv6C6M4js+/I8IuCjS/Jy4uTo0bN1ZSUpJatGihdu3ayc/PT66urtY5itdPok9OTpYkVa5c+XaVbVW+fPk8l1eoUEHHjx9XSkqKzGazLl68KEn69ttvb7q9y5cv51p24sQJSX+NAN9KTj8///yzfv7550L1k5CQIOmv0YWC9LFt27abXliXVx/r16/X+vXrb7r9/ERHR+vXX3/VuHHj8r0wL6e2r7766qbbyqu2/Nzseyz99YfF9X0fOnTI+kfcrfou7LGd48qVK0pPT7/l9+p6x48fz7Oudu3a6dtvv5Wvr6/N8piYGMXExBR4+/b0cSMvLy89+eST2rNnj9zc3DRw4MBC9X+j9evXa86cOerXr58efvjhQv0ivnTpkiSpZMmSBX5Ozro5fzgmJSXJMAxduHDhpsfEzRRmH+Lj4/Xee+/pkUce0bZt29S3b19t3bo117tCOcdsfn8s5SzPOZde78Y54Tn3Ws0vSOZ1zUPFihU1d+5ctW7dOt99ydG5c2eNGDFCFotF/fr1K9T341Z15KUor01e57d27drZjLzas/3b9TvtTh+ff1dMY0CBfPzxx7p48aJmzJihdevW6dNPP9XYsWM1atQoRUZG5lo/56Sb34iYI507dy7P5WfPnpX01wVE1/+7fPlyGYaR71deF8nt2LFDJpNJtWrVumU9Of1MmTLlpv18/fXXuZ57+PBheXt75xvubuzjjTfeuGkfv/zyS67njhw5Ms91e/fufdM+k5OT9c477ygkJETvvPPOLWuLiYm5aW236u96hf0ed+rU6aZ9Hz161LqNwh7bOQ4fPixJql69eoH3Izw83FpDRkaGYmJi1KpVK61atUoffvhhrvV79+5d4GPU3j5utGHDBv3zn/9UQECAsrKy1LdvX7sveMnKytLAgQNVpkyZAvV9o5wLWAvzh1HOujmBLOeYCAsLu+kxkd8+FnYfsrOzFRERodWrV2v06NGKiYnRsGHDcq2XU1fOMXyjM2fO2Kx3vV9++cVa88WLFzVt2jTNmTNHbdq0sU5puN7Ro0dlGIYsFovOnj2rsWPH6syZM3r22WfzvDvJ9dLT09W9e3dJkr+/v8aMGVOoO6rkVcetXveivDbXn98uX76sNWvW6MCBA2rZsqX17gf2bP92/U6708fn3xVhFwWS84s9r9vQ5DVK+PDDD0uSVq5cecuTaVHl1X9cXJxOnjypatWqWU9SOTXlzO8sqLNnz2r37t2qX79+gd6Cs7efS5cuad++fQoLC7OZa5qXxo0by8XFpdB9FMWwYcN0/vx5TZ069aZzl+3d/5vZsGFDnsdRztv5YWFhkqQ6depYr2LOmcpxK4U9tnPkTNd46KGHCtTPjTw8PNSgQQPrdIGtW7fatR1H9nHx4kV1795d7u7uWrt2rXr27KlVq1Zp4sSJdvU/efJk7du3TxMmTFCZMmUK/fyQkBC5urpqz549BX7O3r17Jf01r1f6K/Tef//92rdvn3U6UmEUdh8CAgL0ww8/yNvbW4MHD1bz5s01adKkXMdSzjGb35SUnD9Ub3XXktKlS+uFF17QY489pj179tz0tTKZTCpfvryGDRum+vXr69SpUzp9+vRNt//mm28qJiZGQ4YM0YIFC5SWlqaoqKg83+1wlNq1a8vHx0cxMTF5jt4W9LUpUaKEIiIiNGjQIKWlpWnp0qWSpFKlSqlGjRo6depUnrd4y2v7Oee1H3/80a59ys+dPj7/rgi7KJCct6xvPDGvXLnSZhJ/jgcffFCPPPKIdu3alecvyosXLyo9Pd0htU2ZMkXHjx+3PrZYLHrnnXdksVhsLqLo2LGjatSooc8//1wrVqzIc1ubN29WWlqazbKPPvpI2dnZuS4iyc9DDz2kFi1aaMmSJTYXyF1vz549On/+vM2ycePGKTMzU08//fQt+yhXrpx69uyp7du3a+zYsbnu3SlJR44csRnBLIqYmBh98cUXevrpp60fOJKfPn36WC/EyytcWSyWm845zcuhQ4ds5txJf43Qr1+/XjVr1rTeeszNzU2vvvqqzpw5o9deey3Pe2ueOXPG5uK4wh7b0l9zuKdMmSIPDw/rhVL2yvll6+/vX6TtOKKPPn36KD4+Xp988onq16+vL774QjVr1tTw4cO1adOmQvV55swZjR49Wk2aNFG/fv3sqrtEiRJ67LHHdOzYMZsLdP7880/r/YCv/5THhIQETZ8+XW5ubjbflzfffFPXrl1T37598wxPSUlJ1jm0Rd2HEiVKWOf2u7i4KDo6WiVKlNBzzz1nfftckpo1a6batWtrw4YNWrx4sc02Fi9erN9++00hISFq3rz5LftMT0+3jrZefzFXfi5duqSzZ8/KxcXlptNavvvuO33xxRdq1qyZRo8erXbt2undd99VTEyM3njjjVv2Yy8PDw/17NlTly5dsl4sluPIkSP69NNP5e7urmeffbZA28uZCnT9a5PzjsU777xjc/5MSEiw3mqwb9++1uUDBgyQm5ubxo4dm+fFtfHx8QXfwRvcyePz74o5uyiQl19+WV9//bWefvppde3aVZUqVdLevXv1008/qVu3blq4cGGu58yZM0etWrXS+++/r++++06tWrWSYRg6dOiQVq1apQMHDjjkk4+aNWumhg0bKioqSn5+flq5cqViYmL04IMP2typwN3dXUuWLFFkZKSefPJJPfLII2rYsKF8fHx08uRJbdu2TXFxcTpz5ox8fHys91nMmeN75syZXBcL5ZyYRo0apaeeesp6D9558+YpIiJCL7zwgj799FM1adJEZrNZ8fHx2r17t/bu3avNmzerXLlyWrlypYYNG6bt27erUaNGGjBgQIH2e+rUqTp06JBGjBihb775Rs2bN1f58uV1+vRp/fnnn9q2bZvmz59fqLfZ87Nr1y6VLFlSn3zyyS3XLVOmjBYvXqxOnTrp4YcfVps2bXT//ffLZDLp5MmT2rx5c6H/2Hnsscf01ltv6ccff1RoaKj1PrteXl6aOXOmzcVrw4cPV0xMjP7973/rhx9+UEREhCpXrqzz58/r0KFD2rhxo8aPH2+9OK6wx/aQIUM0ffp0JSQk6OOPP77llJPrnT592npxT87Hc8+ePVsuLi43ve9yYdjbx+TJk/XDDz+oS5cueumllyT9NQK2cOFCNW3aVN27d9euXbsKHMpjY2Pl4uKiadOmFSiA5eejjz7S+vXr9dxzz2np0qWqXLmy5s6dq/LlyyspKUlr1qxRZGSkQkJCtHz5cp08eVIjRoywmaPZt29f/fHHH5o2bZpq1KihyMhIVa1aVYmJiTp69Kh+/fVX9enTJ9eFV47Yh+rVq+vTTz9Vnz599Morr1jv8WwymTR79mw9+uijioqKUseOHVWnTh0dPHhQy5YtU6lSpRQdHZ3nhZk5F6hJfwWhH3/8UYcOHVLTpk3zvBBx7ty51lG/8+fPa/78+bpw4YJ69uyZb9g9duyY+vXrJ39/f82bN8/6btO4ceP066+/6osvvlCbNm3yfEfEET788EP99ttvmjp1qrZt26bWrVtb77N76dIlTZ06Nc9z2/UXqF25ckVbt27Vr7/+qtKlS6tbt27W9d5++239+OOPWr58uUJDQ/XEE08oLS1N3377rc6fP693333X5g+N++67T9OmTdNLL72ksLAwdezYUbVq1dLFixe1bds2+fr65jltrCCK8/j82yjcncrgTJTPfXbzs3HjRqN169aG2Ww2SpYsaTRr1sxYunTpTe/fmpCQYLz77rtGSEiI4enpafj5+RmhoaHG+++/b1y5csW6XlHus3vkyBHjX//6l1G7dm3D09PTqFSpkvH6668bKSkpeW7v3LlzxuDBg43777/f8Pb2NkqUKGHUrFnT6NKli/HNN99Y77mYc+/Dgn7deE/D1NRUY/z48cYDDzxglChRwvDy8jKqVatmPPHEE8aXX35pXL582TAMwxg/frwRGhpqjB8/Ptc9FnPkdz/fjIwM47PPPjOaNm1qvfdklSpVjIiICOOTTz4xEhISrOsW5T67koyPPvoo13Pyu+9nznMHDhxo1KxZ0/D09DRKlSpl1K5d2+jVq5exdOnSPGu40fU1b9q0yWjTpo1RqlQpo2TJksajjz5qbN26Nc/nWSwWIzo62oiIiDD8/f0Nd3d3o1KlSkazZs2M8ePHGydOnLBZvzDHdlhYmPHYY48ZK1asuGXN17vxeHFzczMCAwONjh07GuvXr8/12uV1zOe42X12C9LHjd/r7du3Gx4eHkZQUJCRlJSUq78pU6YYkoyOHTvmWc+Ncvp/+eWXc7Xl/FwV5h6gf/zxh9GyZUvDy8vLCA4ONhYsWGDdh+3btxudOnUyvL29jcDAQOOjjz6yuS/r9X744QfjySefNMqWLWu4u7sb5cuXNxo1amQMHTrU+PPPP4u8D/n9nBrG/79f8MKFC22WHzhwwOjVq5dRoUIFw83NzahQoYLRs2dP48CBA7m2kfN9v/7L19fXqF+/vjF27Nhc57yc1+j6r9KlSxsPPvigMWXKFCMjI8MwjNzH7LVr14wmTZoYkozvvvsuVx3Hjh0zzGazYTabb3kP3+vrKMx9dg3jr/uSv/vuu0bNmjUNDw8Pw8/Pz2jbtq2xcuXKXOtef0/unC8vLy+jRo0axosvvmgcOXIk13OuXr1qjB8/3rj//vsNLy8v68/+vHnz8t2XTZs2GZ07d7YeQxUrVjQiIyONb7/9Nt/n5Ld/N7rdx+ffmckw7LzyAChmzz//vGbPnq2jR486ZIT4RrNmzVKfPn0KdHGOyWTS119/ne/Hu8I+69atU+vWrTVy5Mh8P+YYf0+3++cfgPNgzi4AAACcFmEXyEden3Gen5EjR1rn6wIAgLsHF6gB+WjYsGGBAyxvsQMAcHdizi4AAACcFtMYAAAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZ3Y7iJpKQkZWVlFXcZAAAAuIGbm1uBPsKcsHsTWVlZyszMLO4yAAAAYCemMQAAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACn5VbcBSC3qNEzirsEALfJwpEvFHcJAPC3wsguAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACclltxF3C9RYsWafHixTbLKlWqpMmTJ0uSrl27pujoaG3atEmZmZkKDQ1Vv379ZDabresnJCToq6++0r59++Tl5aXw8HD16NFDrq6ud3BPAAAAcDe4q8KuJFWpUkXDhw+3PnZx+f+Dz7Nnz9aOHTv05ptvysfHRzNmzNCkSZM0duxYSZLFYtGECRNkNps1btw4JSUlaerUqXJ1dVWPHj3u+L4AAACgeN110xhcXFxkNputX76+vpKktLQ0rV27Vr1791a9evUUHBysl19+WQcPHlRsbKwkKSYmRvHx8Xr11VdVrVo1hYWFKSoqSitXrlRWVlZx7hYAAACKwV03snv27Fm9+OKLcnd3V0hIiHr06KGAgADFxcUpOztb9evXt65buXJlBQQEKDY2ViEhIYqNjVXVqlVtpjU0bNhQ06dP18mTJ1W9evU8+8zMzFRmZqb1sclkkre3t/X/AOAonFMA4M66q8JurVq19PLLL6tSpUpKSkrS4sWLNWLECE2aNEnJyclyc3NTiRIlbJ7j5+en5ORkSVJycrJN0M1pz2nLz9KlS23mClevXl0TJ05U2bJlHbJfAJCjYsWKxV0CAPyt3FVhNywszPr/oKAga/jdvHmzPDw8blu/nTp1Uvv27a2Pc0ZeLly4wPQHAA515syZ4i4BAJyCm5tbgQYm76qwe6MSJUqoUqVKOnv2rBo0aKCsrCxduXLFZnQ3JSXFOpprNpt1+PBhm22kpKRY2/Lj7u4ud3f3PNsMwyjaTgDAdTinAMCdddddoHa99PR0nT17VmazWcHBwXJ1ddWePXus7adPn1ZCQoJCQkIkSSEhITpx4oQ14ErS7t275e3trcDAwDtePwAAAIrXXTWyGx0drYceekgBAQFKSkrSokWL5OLioubNm8vHx0cRERGKjo5WyZIl5ePjo5kzZyokJMQadkNDQxUYGKipU6eqZ8+eSk5O1oIFCxQZGZnvyC0AAACc110VdhMTEzVlyhRdunRJvr6+qlOnjsaPH2+9/Vjv3r1lMpk0adIkZWVlWT9UIoeLi4vee+89TZ8+XcOGDZOnp6fCw8MVFRVVXLsEAACAYmQymECWrwsXLtjckuxOiRo94473CeDOWDjyheIuAQCcgru7e4EuULur5+wCAAAARUHYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnJZbcRcAAHB+z//6WXGXAOA2mdXy1eIu4aYY2QUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpuRV3AflZtmyZ5s2bpyeeeELPP/+8JOnatWuKjo7Wpk2blJmZqdDQUPXr109ms9n6vISEBH311Vfat2+fvLy8FB4erh49esjV1bV4dgQAAADFxq6wO23atFuuYzKZNGDAAHs2r8OHD+vnn39WUFCQzfLZs2drx44devPNN+Xj46MZM2Zo0qRJGjt2rCTJYrFowoQJMpvNGjdunJKSkjR16lS5urqqR48edtUCAACAe1eBwm5SUpJMJpN1BHX9+vWSpICAgHyfYzKZ7CooPT1dn332mV588UUtWbLEujwtLU1r167V66+/rnr16kmSXn75Zb3xxhuKjY1VSEiIYmJiFB8fr+HDh8tsNqtatWqKiorS3Llz1a1bN7m53bUD2QAAALgNCpT+YmJiNGPGDEVGRqpXr1569NFHtXbtWvn4+Kh79+564IEHHFbQ9OnTFRYWpgYNGtiE3bi4OGVnZ6t+/frWZZUrV1ZAQIA17MbGxqpq1ao20xoaNmyo6dOn6+TJk6pevXqefWZmZiozM9P62GQyydvb2/p/AHAUzikAnM3dfl4rUNht1aqVzGazJkyYoHbt2qlfv35q37695s+fr48++kh169ZVz549VbNmzSIVs3HjRh09elQTJkzI1ZacnCw3NzeVKFHCZrmfn5+Sk5Ot61wfdHPac9rys3TpUi1evNj6uHr16po4caLKli1r344AQD4qVqxY3CUAgEPd7ee1Ar+vX7lyZUlSamqqypUrpwoVKuiNN95QXFyc5s6dq6FDh6pJkybq3r27XTudkJCgWbNmadiwYfLw8Cj084uiU6dOat++vfVxzl8oFy5cUFZW1h2tBYBzO3PmTHGXAAAOVVznNTc3twINTBYo7F64cEFz5syRn5+fqlatatMWHBys4cOHKyYmRvPmzdObb76piIgIPf3007lGWW8mLi5OKSkpGjx4sHWZxWLRn3/+qZ9++klDhw5VVlaWrly5YjO6m5KSYu3HbDbr8OHDNttNSUmxtuXH3d1d7u7uebYZhlHgfQCAW+GcAsDZ3O3ntQKF3QMHDqhEiRIaNWqUPDw8rBeo3ejxxx/Xxo0btXr1av3222+Kjo4ucCH169fXv/71L5tlX3zxhSpVqqSOHTsqICBArq6u2rNnjx5++GFJ0unTp5WQkKCQkBBJUkhIiJYsWaKUlBTr9IXdu3fL29tbgYGBBa4FAAAAzqFAYbdFixZq0aKF9XFBbj2WkZFRqEK8vb1zjRp7enqqVKlS1uURERGKjo5WyZIl5ePjo5kzZyokJMQadkNDQxUYGKipU6eqZ8+eSk5O1oIFCxQZGZnvyC0AAACcl1334po6daqj6yiQ3r17y2QyadKkScrKyrJ+qEQOFxcXvffee5o+fbqGDRsmT09PhYeHKyoqqljqBQAAQPEyGXf7RItidOHCBZtbkt0pUaNn3PE+AdwZC0e+UNwlFIvnf/2suEsAcJvMavlqsfTr7u7uuAvU8pOYmKj9+/crNTVVTZo0UZkyZWSxWJSWliYfHx+5uLgUZfMAAABAkdgVdg3DUHR0tH766SdZLBZJUtWqVVWmTBmlp6dr4MCB6tatm5588kmHFgsAAAAUhl1Dr99//71WrFih//u//9OwYcNs2nx8fNS4cWNt2bLFIQUCAAAA9rIr7K5Zs0bh4eHq0aOHqlWrlqs9KCiIG6cDAACg2NkVdi9evGi93VdePD09lZaWZndRAAAAgCPYFXZ9fX118eLFfNvj4uIUEBBgd1EAAACAI9gVdps0aaKff/5Z586dy9UWExOjdevWqWnTpkUuDgAAACgKu+7G0K1bN+3bt0/vvvuu6tSpI0lavny5Fi5cqNjYWFWvXl2dOnVyaKEAAABAYdk1suvj46Px48erQ4cOSkxMlIeHh/bv36+0tDQ9/fTTGjNmjDw9PR1dKwAAAFAodn+ohIeHh7p06aIuXbo4sh4AAADAYewa2c3Ozr7p3RbS0tKUnZ1td1EAAACAI9gVdr/++msNHz483/bhw4crOjra7qIAAAAAR7Ar7O7atUtNmjTJt/3hhx/Wzp077S4KAAAAcAS7wm5SUpJKly6db7u/v78SExPtLgoAAABwBLvCbsmSJXX69Ol820+dOiVvb2+7iwIAAAAcwa6w27BhQ61evVpHjx7N1RYXF6fVq1crLCysyMUBAAAARWHXrceioqK0a9cuvf/++3rwwQdVpUoVSdLJkyf1xx9/yNfXV1FRUQ4tFAAAACgsu8Ju6dKl9eGHH2ru3Lnavn27tm3bJkny9vZW8+bN1b1795vO6QUAAADuBLs/VMLf31+vvPKKDMNQamqqJMnX11cmk8lhxQEAAABFYXfYzWEymeTn5+eIWgAAAACHsivsLl68uEDrde3a1Z7NAwAAAA5hV9j99ttvC7QeYRcAAADFya6w27BhQ+3atUthYWHq0aOHqlat6ui6AAAAgCKz6z67Q4YM0ciRI3Xp0iUNHjxY06ZN08WLFx1dGwAAAFAkdoVdSbrvvvs0fvx4DRo0SIcOHdLrr7+ub775RpcvX3ZkfQAAAIDdinw3hiZNmqhRo0Zau3atFi9erLVr16pjx4564okn5OHh4YgaAQAAALvYFXb379+fa1mlSpX04osvasWKFZo/f75WrlypL774osgFAgAAAPayK+yOHj36luskJibas2kAAADAYewKuyNHjnR0HQAAAIDD2RV277vvPkfXAQAAADic3XdjAAAAAO52t23Orslk0ogRI+zZPAAAAOAQdt+NoXTp0vLx8XF0PQAAAIDD2H2f3Z49e6p58+aOrAUAAABwKObsAgAAwGkRdgEAAOC0CLsAAABwWnbP2d2xY4eSk5Nvuk779u3t3TwAAABQZHaH3Y0bN2rjxo03XYewCwAAgOJkV9idOnWqo+sAAAAAHM6usFu2bFlH1wEAAAA4HBeoAQAAwGnZPWf3+PHj+vHHH3X06FGlpaXJMAybdpPJpM8++6zIBQIAAAD2smtkd9++fXr//fe1Y8cO+fv76/z58ypfvrz8/f114cIFeXl5qW7duo6uFQAAACgUu0Z2Fy1apHLlymn8+PHKyspS//791alTJ9WrV0+HDh3SBx98oJ49ezq6VgAAAKBQ7BrZjYuLU0REhHx8fOTi8tcmLBaLJKlWrVp69NFHtXDhQsdVCQAAANjBrrDr6uoqb29vSVKJEiXk6uqqlJQUa3u5cuUUHx/vmAoBAAAAO9kVditUqKAzZ85I+utCtMqVK2vr1q3W9h07dshsNjukQAAAAMBedoXdsLAwbdy4UdnZ2ZKkJ598Ulu3btVrr72m1157TX/88Yfatm3r0EIBAACAwrLrArUuXbroiSeesM7XbdWqlVxcXLRlyxa5uLioc+fOatWqlSPrBAAAAArNrrDr5uamUqVK2Sxr2bKlWrZs6ZCiAAAAAEdw6CeonT59WsePH3fkJgEAAAC72TWye/nyZU2bNk379u3Tfffdp0GDBuk///mPNmzYIEmqVq2ahg8frpIlSzq0WAAAAKAw7BrZnT9/vnbt2qWWLVvqxIkT+vjjjxUTE6OBAwfq2WefVXx8vJYtW+bgUgEAAIDCsSvs7tixQ4899pheeOEFvfTSS9q1a5eeeuoptWzZUu3bt1d4eLi2bdvm6FoBAACAQrEr7KampqpKlSqSpKpVq0qSAgMDre3BwcFKTEx0QHkAAACA/ewKuyVKlNDVq1clSe7u7qpZs6Z8fX2t7VlZWXJzs2s6MAAAAOAwdiXSwMBAHT16VJLk4+Oj8ePH27SfOHFClSpVKnp1AAAAQBHYFXb79eunjIyMfNtLly6t0NDQQm931apVWrVqlS5cuCDpr1DdtWtXhYWFSZKuXbum6Ohobdq0SZmZmQoNDVW/fv1sPpo4ISFBX331lfbt2ycvLy+Fh4erR48ecnV1LXQ9AAAAuLfZFXZvNWrbtWtXu4opXbq0evTooYoVK8owDK1fv14fffSRPvroI1WpUkWzZ8/Wjh079Oabb8rHx0czZszQpEmTNHbsWEmSxWLRhAkTZDabNW7cOCUlJWnq1KlydXVVjx497KoJAAAA9y6HfqhEUT300EN64IEHVLFiRVWqVEndu3eXl5eXDh06pLS0NK1du1a9e/dWvXr1FBwcrJdfflkHDx5UbGysJCkmJkbx8fF69dVXVa1aNYWFhSkqKkorV65UVlZWMe8dAAAA7rS7Kuxez2KxaOPGjcrIyFBISIji4uKUnZ2t+vXrW9epXLmyAgICrGE3NjZWVatWtZnW0LBhQ129elUnT57Mt6/MzEylpaVZv3IuvpMkk8l0x78AOK/iOKfcDV8AnNfdfl65626ZcOLECQ0dOlSZmZny8vLS22+/rcDAQB07dkxubm4qUaKEzfp+fn5KTk6WJCUnJ9sE3Zz2nLb8LF26VIsXL7Y+rl69uiZOnKiyZcs6ZJ8AIEfFihWLuwQAcKi7/bx214XdSpUq6Z///KfS0tL0+++/6/PPP9fo0aNva5+dOnVS+/btrY9z/lq4cOEC0x8AONSZM2eKuwQAcKjiOq+5ubkVaGDyrgu7bm5uqlChgqS/PpziyJEjWrFihR555BFlZWXpypUrNqO7KSkp1tFcs9msw4cP22wvJSXF2pYfd3d3ubu759lmGEYR9gYAbHFOAeBs7vbzWpHn7Kanpys+Pl7x8fFKT093RE02LBaLMjMzFRwcLFdXV+3Zs8fadvr0aSUkJCgkJESSFBISohMnTlgDriTt3r1b3t7eNp/wBgAAgL8Hu0d2Dx8+rLlz5+rAgQOyWCySJBcXF9WpU0e9evVSjRo1Cr3NefPmqWHDhgoICFB6ero2bNig/fv3a+jQofLx8VFERISio6NVsmRJ+fj4aObMmQoJCbGG3dDQUAUGBmrq1Knq2bOnkpOTtWDBAkVGRuY7cgsAAADnZVfYPXTokEaNGiU3NzdFRESocuXKkqRTp05p48aNGjlypEaNGqWaNWsWarspKSn6/PPPlZSUJB8fHwUFBWno0KFq0KCBJKl3794ymUyaNGmSsrKyrB8qkcPFxUXvvfeepk+frmHDhsnT01Ph4eGKioqyZzcBAABwjzMZdky0GDt2rM6fP6+xY8fmmgubnJys4cOHq1y5cho+fLij6iwWFy5cUGZm5h3vN2r0jDveJ4A7Y+HIF4q7hGLx/K+fFXcJAG6TWS1fLZZ+3d3dC3SBml1zdg8dOqRHH300z4u+zGaz2rZtq0OHDtmzaQAAAMBh7Aq7JpNJ2dnZ+bZbLBZuIg4AAIBiZ1fYrV27tlauXKkLFy7kaktISNCqVatUp06dIhcHAAAAFIVdF6h1795dI0eO1KBBg9S4cWPrJ2ecPn1a27dvl6urq7p37+7QQgEAAIDCsivsVq9eXR988IHmz5+v7du369q1a5IkDw8PNWzYUM888wz3tQUAAECxs/s+u4GBgXrnnXdksViUmpoqSfL19ZWLS5E/pwIAAABwiCJ/XLCLi4vNXRmys7Pl6upa1M0CAAAARWZ32P3ll1909OhR1atXT40bN9bixYu1fPlyWSwWPfDAAxowYIB8fHwcWSsAAABQKHaF3WXLlmn+/PkymUxauXKlunTpomXLlqlVq1a6du2aNmzYoICAAPXu3dvR9QIAAAAFZlfY/eWXX1S/fn299957WrZsmb777jt17dpVXbp0kSR5eXlp27ZthF0AAAAUK7uuJktISNAjjzwiNzc3tWrVShaLRTVq1LC216xZU4mJiQ4rEgAAALCHXWE3KytLHh4ekiRPT09Jkpvb/x8kdnV1veknrAEAAAB3gt0XqJ06dUr79+9XWlqaJOn48ePW246dOnXKMdUBAAAARWB32F2yZImWLFlifRwdHe2QggAAAABHsSvsjhw50tF1AAAAAA5nV9i97777HF0HAAAA4HB2XaA2evRo7dmzx9G1AAAAAA5lV9jdv3+/UlJSHF0LAAAA4FB2hV0AAADgXmD33RguXbqkhISEm64TEBBg7+YBAACAIrM77M6aNUuzZs266ToLFy60d/MAAABAkdkddtu2batatWo5shYAAADAoewOu3Xr1lXz5s0dWQsAAADgUFygBgAAAKdF2AUAAIDTsmsaAxeeAQAA4F5g18huXFycVq5cmW/7ypUrdezYMXtrAgAAABzCrrC7YMGCm35c8N69e7VgwQK7iwIAAAAcwe6R3Tp16uTbXrduXR05csTuogAAAABHsCvsXr16Va6urvm2m0wmpaWl2V0UAAAA4Ah2hd2KFSsqJiYm3/Zdu3apfPnydhcFAAAAOIJdYTciIkI7d+7U7NmzdeXKFevyK1euaNasWdq1a5ciIiIcViQAAABgD7tuPfb444/r2LFjWrFihX788Uf5+/tLkpKSkmQYhlq0aKEnn3zSoYUCAAAAhWVX2DWZTHr55ZfVsmVLbdmyRefPn5ckNWrUSE2aNNH999/v0CIBAAAAe9gVdnPUq1dP9erVc1QtAAAAgEMVKewmJiZq//79Sk1NVZMmTVSmTBlZLBalpaXJx8dHLi58GjEAAACKj11h1zAMRUdH66effpLFYpEkVa1aVWXKlFF6eroGDhyobt26MW8XAAAAxcquodfvv/9eK1as0P/93/9p2LBhNm0+Pj5q3LixtmzZ4pACAQAAAHvZFXbXrFmj8PBw9ejRQ9WqVcvVHhQUpDNnzhS1NgAAAKBI7Aq7Fy9eVEhISL7tnp6efIIaAAAAip1dYdfX11cXL17Mtz0uLk4BAQF2FwUAAAA4gl1ht0mTJvr555917ty5XG0xMTFat26dmjZtWuTiAAAAgKKw624M3bp10759+/Tuu++qTp06kqTly5dr4cKFio2NVfXq1dWpUyeHFgoAAAAUll0juz4+Pho/frw6dOigxMREeXh4aP/+/UpLS9PTTz+tMWPGyNPT09G1AgAAAIVi94dKeHh4qEuXLurSpYsj6wEAAAAcho84AwAAgNOya2R32rRpt1zHZDJpwIAB9mweAAAAcAi7wu6+fftsHhuGoYsXL8rPz0/u7u6S/gq7AAAAQHGyK+x+/vnnNo9TU1PVv39/vfbaa6pXr55DCgMAAACKyiFzdhnFBQAAwN3IIWE3PT39r425cL0bAAAA7h5FTqeJiYlasGCBTCaTKlWq5IiaAAAAAIewa85uVFRUrmVPP/20zGZzUesBAAAAHMausNulSxeZTCaZTCb5+fkpJCREQUFBjq4NAAAAKBK7wm63bt0cXQcAAADgcFxRBgAAAKdl18ju6NGjb7mOyWTSiBEj7Nk8AAAA4BB2hd39+/dLkoKDg+Xl5ZXnOoZh2F8VAAAA4AB2hd2ePXtq2bJlunjxorp06aJHH33UIffYXbp0qbZu3apTp07Jw8NDISEh6tWrl80tza5du6bo6Ght2rRJmZmZCg0NVb9+/WzuBJGQkKCvvvpK+/btk5eXl8LDw9WjRw+5uroWuUYAAADcO+xKqB06dNDUqVPVsmVLzZkzR2+88YY2b95c5GL279+vyMhIjR8/XsOGDVN2drbGjRtn/dAKSZo9e7b++OMPvfnmmxo9erSSkpI0adIka7vFYtGECROUlZWlcePGaeDAgVq3bp0WLlxY5PoAAABwb7F7ONbHx0e9evXSlClTVLduXX366acaMmSI9u7da3cxQ4cOVatWrVSlShVVq1ZNAwcOVEJCguLi4iRJaWlpWrt2rXr37q169eopODhYL7/8sg4ePKjY2FhJUkxMjOLj4/Xqq6+qWrVqCgsLU1RUlFauXKmsrCy7awMAAMC9p8hzD0qXLq2XXnpJ//rXv1S6dGmNHTtWH3zwgY4dO1bk4tLS0iRJJUuWlCTFxcUpOztb9evXt65TuXJlBQQEWMNubGysqlatajOtoWHDhrp69apOnjyZZz+ZmZlKS0uzfl29etXalnM/4Tv5BcB5Fcc55W74AuC87vbzil1zdhcvXpzn8urVq+vatWuKiYnRnj17NH/+fHs2L+mv6QizZs1S7dq1VbVqVUlScnKy3NzcVKJECZt1/fz8lJycbF3nxk9y8/Pzs7blZenSpTb7VL16dU2cOFFly5a1u34AyEvFihWLuwQAcKi7/bxmV9j99ttvb7mOxWKxZ9NWM2bM0MmTJzVmzJgibacgOnXqpPbt21sf5/y1cOHCBaY+AHCoM2fOFHcJAOBQxXVec3NzK9DApF1h93Zf7DVjxgzt2LFDo0ePVpkyZazLzWazsrKydOXKFZvR3ZSUFOtortls1uHDh222l5KSYm3Li7u7u9zd3fNs4xZqAByJcwoAZ3O3n9fuqk9QMwxDM2bM0NatWzVixAiVK1fOpj04OFiurq7as2ePddnp06eVkJCgkJAQSVJISIhOnDhhDbiStHv3bnl7eyswMPDO7AgAAADuCnaN7CYkJBRovYCAgEJtd8aMGdqwYYPeffddeXt7W+fY+vj4yMPDQz4+PoqIiFB0dLRKliwpHx8fzZw5UyEhIdawGxoaqsDAQE2dOlU9e/ZUcnKyFixYoMjIyHxHbwEAAOCc7Aq7AwcOLNB6hZ3usGrVKknSqFGjbJa//PLLatWqlSSpd+/eMplMmjRpkrKysqwfKpHDxcVF7733nqZPn65hw4bJ09NT4eHhioqKKlQtAAAAuPfZFXYlqU2bNtbRVEdZtGjRLdfx8PBQv379bALujcqWLashQ4Y4sjQAAADcg+wOu/fdd5+aN2/uyFoAAAAAh7qrLlADAAAAHMnukd0tW7bo3Llzcnd3l5eXl8xmsypXrqzKlSs7sj4AAADAbnaH3a1bt2rr1q25lvv7++vpp59WmzZtilQYAAAAUFRF+lAJi8Vi/ZCH5ORkxcfHa+PGjfrPf/4jb29vPfLIIw4tFgAAACiMIs3ZdXFxkYeHh/z9/VW9enW1aNFC7733nkJDQ/W///3PUTUCAAAAdrF7GsPNPPPMM9q7d+/t2DQAAABQYLcl7AYHBys4OPh2bBoAAAAoMLvDblpamv73v/9px44d1o8PDggI0IMPPqgnnnhCPj4+DisSAAAAsIddc3YTExM1ePBgLV68WOnp6apdu7Zq166tjIwMffvttxo8eLCSkpIcXSsAAABQKHaN7M6dO1fJyckaPHiwHnjgAZu2nTt36uOPP9bcuXP1yiuvOKRIAAAAwB52jezu2rVLTzzxRK6gK0lhYWF6/PHHtXPnziIXBwAAABSFXWE3IyNDfn5++babzWZlZGTYXRQAAADgCHaF3cDAQG3cuFFZWVm52rKysrRx40YFBgYWuTgAAACgKOyas9uxY0dNnjxZQ4YMUWRkpCpWrChJOn36tH7++WcdP35cb7zxhkMLBQAAAArLrrDbtGlTZWRkaO7cufrqq69s2nx9fTVgwAA9/PDDDikQAAAAsJfd99lt1aqVWrRooSNHjtjcZ7dGjRpydXV1WIEAAACAvQocdg3DkMlkslnm6uqqkJAQhYSE5Fr/woULKlu2bNErBAAAAOxU4AvUJk2alOcFaTeyWCxavny53nrrrSIVBgAAABRVgcPutm3bNH78eF29ejXfdQ4fPqzBgwdr3rx5ql+/vkMKBAAAAOxV4LDbv39/HThwQCNHjlRKSopN29WrVzVjxgwNHz5cly9f1ltvvaV33nnH4cUCAAAAhVHgObtt27aVr6+vpkyZomHDhmno0KGqUKGCfv/9d82aNUvJycmKjIxU9+7d5eXldTtrBgAAAAqkUHdjaNy4sd5//33985//1PDhw1W9enXFxMSoWrVqeuedd1SjRo3bVScAAABQaIX+BLX7779fo0aNkiTFxMSoefPmmjBhAkEXAAAAdx27Pi64WrVqGjt2rMqVK6fff/9d27Ztc3RdAAAAQJEVeBpDXFxcrmV9+vTRtGnTNHnyZD377LOqU6eOTXtwcHDRKwQAAADsVOCwO2TIkJu2z549O9eyhQsXFr4iAAAAwEEKHHYHDBhwO+sAAAAAHK7AYbdVq1a3sQwAAADA8ey6QA0AAAC4FxB2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnJZbcRdwvf379+v777/X0aNHlZSUpLfffluNGze2thuGoUWLFmnNmjW6cuWK6tSpo379+qlixYrWdS5fvqyZM2fqjz/+kMlkUpMmTdSnTx95eXkVxy4BAACgGN1VI7sZGRmqVq2aXnjhhTzbly9frh9//FH9+/fXBx98IE9PT40fP17Xrl2zrvPpp5/q5MmTGjZsmN577z39+eef+vLLL+/ULgAAAOAucleF3bCwMD3zzDM2o7k5DMPQihUr1LlzZzVq1EhBQUF65ZVXlJSUpG3btkmS4uPjtWvXLr300kuqVauW6tSpo759+2rTpk1KTEy807sDAACAYnZXTWO4mfPnzys5OVkNGjSwLvPx8VHNmjUVGxurZs2aKTY2ViVKlFCNGjWs69SvX18mk0mHDx/OM0RLUmZmpjIzM62PTSaTvL29rf8HAEfhnALA2dzt57V7JuwmJydLkvz8/GyW+/n5WduSk5Pl6+tr0+7q6qqSJUta18nL0qVLtXjxYuvj6tWra+LEiSpbtqxDageAHNdfYwAAzuBuP6/dM2H3durUqZPat29vfZzzF8qFCxeUlZVVXGUBcEJnzpwp7hIAwKGK67zm5uZWoIHJeybsms1mSVJKSor8/f2ty1NSUlStWjXrOqmpqTbPy87O1uXLl63Pz4u7u7vc3d3zbDMMo0h1A8D1OKcAcDZ3+3ntrrpA7WbKlSsns9msPXv2WJelpaXp8OHDCgkJkSSFhIToypUriouLs66zd+9eGYahmjVr3vGaAQAAULzuqpHd9PR0nT171vr4/PnzOnbsmEqWLKmAgAA98cQTWrJkiSpWrKhy5cppwYIF8vf3V6NGjSRJgYGBatiwob788kv1799fWVlZmjlzph555BGVLl26uHYLAAAAxeSuCrtHjhzR6NGjrY+jo6MlSeHh4Ro4cKA6duyojIwMffnll0pLS1OdOnX0/vvvy8PDw/qc1157TTNmzNCYMWOsHyrRt2/fO74vAAAAKH53Vdi9//77tWjRonzbTSaToqKiFBUVle86JUuW1Ouvv347ygMAAMA95p6ZswsAAAAUFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsAgAAwGkRdgEAAOC0CLsAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtAi7AAAAcFqEXQAAADgtwi4AAACcFmEXAAAATouwCwAAAKdF2AUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE7LrbgLuF1++ukn/fDDD0pOTlZQUJD69u2rmjVrFndZAAAAuIOccmR306ZNio6OVteuXTVx4kQFBQVp/PjxSklJKe7SAAAAcAc5Zdj973//qzZt2qh169YKDAxU//795eHhoV9++aW4SwMAAMAd5HTTGLKyshQXF6ennnrKuszFxUX169dXbGxsns/JzMxUZmam9bHJZJK3t7fc3Irn5QmpUqFY+gVw+7m7uxd3CcWipn+l4i4BwG1SXOe1guY0pwu7qampslgsMpvNNsvNZrNOnz6d53OWLl2qxYsXWx83a9ZMr7/+uvz9/W9nqfmaMax/sfQLALfLtMhXi7sEAH9TThd27dGpUye1b9/eZllmZubfdgQGd87Vq1c1atQojRo1St7e3sVdDgAUGec13G2cLuz6+vrKxcVFycnJNsuTk5NzjfbmcHd3J9iiWBiGoaNHj8owjOIuBQAcgvMa7jZOd4Gam5ubgoODtXfvXusyi8WivXv3KiQkpBgrAwAAwJ3mdCO7ktS+fXt9/vnnCg4OVs2aNbVixQplZGSoVatWxV0aAAAA7iCnDLuPPPKIUlNTtWjRIiUnJ6tatWp6//33853GABQXd3d3de3alWk0AJwG5zXcbUwGk2oAAADgpJxuzi4AAACQg7ALAAAAp0XYBQAAgNMi7AL3gPPnz6tbt246duxYcZcC4G/EMAx9+eWX6tOnT4HOQZyrcDdyyrsxAACAotu1a5fWrVunUaNGqXz58ipVqlRxlwQUGmEXuM2ysrLk5saPGoB7z7lz5+Tv76/atWsXdymA3fgNDDjYqFGjVKVKFbm6uuq3335T1apV1adPH82ZM0d//vmnvLy81KBBA/Xu3Vu+vr6S/ho9+e6773Ty5Em5uLgoJCREzz//vCpUqFDMewPg7+rzzz/X+vXrJUndunVT2bJl1b9//0KdqywWi/79738rNjZWw4YNU0BAgLZt26bFixcrPj5e/v7+Cg8PV+fOneXq6nondw9/I4Rd4DZYv3692rVrp7Fjx+rKlSsaM2aMIiIi1Lt3b127dk1z587VJ598opEjR0qS0tPT1b59ewUFBSk9PV0LFy7Uv/71L3300UdycWFqPYA7r0+fPipfvrzWrFmjCRMmyMXFRfv37y/wuSozM1NTpkzRhQsXNGbMGPn6+urPP//U1KlT1adPH9WtW1fnzp3Tl19+KUl6+umni2M38TfAb1HgNqhYsaJ69eqlSpUqaffu3apevbp69OihypUrq3r16howYID27dun06dPS5IefvhhNWnSRBUqVFC1atU0YMAAnThxQvHx8cW8JwD+rnx8fOTt7S0XFxeZzWb5+voW+FyVnp6uDz/8UKmpqRo5cqT1XazFixfrqaeeUqtWrVS+fHk1aNBAUVFRWr16dXHsIv4mGNkFboPq1atb/3/8+HHt3btXzz77bK71zp07p0qVKunMmTNauHChDh8+rEuXLslisUiSEhISVLVq1TtWNwDcTEHPVVOmTFHp0qU1cuRIeXh4WJcfO3ZMBw4c0JIlS6zLLBaLMjMzlZGRIU9Pzzu3M/jbIOwCt4GXl5f1/+np6XrwwQfVq1evXOuZzWZJ0sSJE1W2bFm9+OKL8vf3l2EYeuutt5SVlXWnSgaAWyrouSosLEy//fabYmNjVa9ePevy9PR0devWTU2aNMm1bXd399teP/6eCLvAbVa9enVt2bJFZcuWzfMCjEuXLun06dN68cUXVbduXUnSgQMH7nSZAHBThTlXtWvXTlWqVNHEiRM1ZMgQ3XfffZKk4OBgnT59motvcUcxZxe4zSIjI3X58mVNmTJFhw8f1tmzZ7Vr1y5NmzZNFotFJUqUUKlSpbR69WqdPXtWe/fu1ezZs4u7bACwUdhz1eOPP65nnnlGH374oTUUd+nSRb/++qu+/fZbnTx5UvHx8dq4caMWLFhwp3YDf0OEXeA2K126tMaOHSuLxaLx48fr7bff1uzZs+Xj4yOTySQXFxe9/vrriouL01tvvaXZs2fnOb8XAIqTPeeqJ598Ut26ddOECRN08OBBNWzYUIMHD9bu3bs1ZMgQDR06VP/73/8UEBBwh/YCf0cmwzCM4i4CAAAAuB0Y2QUAAIDTIuwCAADAaRF2AQAA4LQIuwAAAHBahF0AAAA4LcIuAAAAnBZhFwAAAE6LsAsAAACnRdgFAACA0yLsArirrVu3Tt26ddORI0dyta1evVrdunXTRx99JIvFUgzVAQDudoRdAPekrVu3avr06apbt64GDRokFxdOZwCA3PjtAOCes2/fPk2ZMkWBgYEaPHiwPDw8irskAMBdyq24CwCAwjh27Jg++ugjmc1mDR06VD4+Pjbtf/75p3788UcdOnRIKSkp8vPzU5MmTdSjRw9rKP7888+1fv36m/YzdepUlStXTpK0c+dOLV26VEePHpXJZFLdunXVq1cvValSxbp+ftssX768PvvsM+vjlStXauXKlTp79qxKlSqlRo0aqXv37ipRooR1nVGjRunSpUsaOHCgZs6cqaNHj8psNqtjx45q166ddb19+/Zp9OjRGjlypO6//37r8gkTJmjnzp3q2rWrunXrZl2+d+9eLVq0SCdPntSVK1esyyMjI/XCCy/k+1rk9PPmm2/q4Ycftml79tln9fDDD2vgwIHWZefOndPcuXO1Z88eZWZmKigoSF26dNEDDzyQa5s53NzcVLZsWbVq1UpPPfWUTCaTte3o0aOaP3++Dh48KIvFolq1aumZZ55RSEiITS1XrlzRt99+q23btikpKUm+vr6qV6+ennvuOZ08edKmv7zkvF6LFi3S4sWLtWjRImtbenq6Xn31VaWkpOR6vQHc3Qi7AO4ZZ8+e1fjx4+Xu7q6hQ4fK398/1zqbN29WRkaG2rVrp1KlSunw4cP66aeflJiYqDfffFOS9Oijj6p+/frW50ydOlWNGzdW48aNrct8fX0lSb/++qs+//xzhYaGqmfPnsrIyNCqVas0YsQITZw40RqIJcnd3V0vvviiTT3e3t7W/+eEqPr166tdu3Y6ffq0Vq1apSNHjmjs2LFyc/v/p+TLly9rwoQJatq0qZo1a6bNmzdr+vTpcnNzU0RERL6v0f79+7Vz585cy8+fP68PP/xQ/v7+6tKli3X/pk6dmu+27JGcnKxhw4bp2rVrevzxx1WyZEmtX79eEydO1FtvvWXzGktSp06dVLlyZV27dk2bN2/W/Pnz5efnZ93HkydPasSIEfLx8VGHDh3k6uqq1atXa/To0Ro1apRq1aol6a8wOmLECJ06dUqtW7dW9erVdenSJW3fvl2JiYmqXLmyXnnlFWu/a9asUXx8vHr37m1dFhQUlO9+/fDDD0pJSXHkSwXgDiHsArgnpKSkaPLkyUpJSVFoaKgqVaqU53q9evWymdbQtm1bVahQQfPnz1dCQoICAgIUEhJiMyo4depUVa1aVS1btrTZVnp6ur7++mtFRETYhNjw8HANGjRIS5cutVnu4uKSaxs5UlNTtWzZMoWGhmrIkCHWOcaVKlXSzJkz9dtvv6l169bW9ZOSkvTcc8+pffv2kv4K6O+//77mz5+vli1b2gTj682dO1dhYWG5Au/u3bt17do1vfrqq7n23ZGWLVumlJQUjRkzRnXq1JH01/fg7bff1uzZs/XQQw/ZzK9u0KCBdZQ0PDxcvXr1UlxcnDXsLliwQNnZ2RozZozKly9vXW/QoEGaM2eOdbT2+++/18mTJ/X222/bBOouXbrIMAyZTCab782ePXuUkJCQ7/freqmpqfrvf/+b5+sK4O7HnF0A94TPP/9cFy9eVPPmzRUTE6PNmzfnud71QTc9PV2pqakKCQmRYRg6evRoofrcvXu3rly5ombNmik1NdX65eLiolq1amnfvn2F2lZWVpaeeOIJm7DXtm1beXt7a8eOHTbru7q6qm3bttbHbm5uatu2rVJSUhQXF5dnH1u2bNHhw4fVo0ePXG1Xr16VJJUqVarANee1jetfh9TU1Fzr7Ny5UzVr1rQGXUny8vJS27ZtdeHCBcXHx9usn5aWptTUVCUkJGj58uUyDEP16tWTJFksFu3evVuNGjWyBl1J8vf3V7NmzXTgwAGlpaVZ9z0oKCjXyLEkmykR9li8eLF8fHz0+OOPF2k7AIoHI7sA7gmXL1/WoEGD1LhxY8XHx2vWrFkKDQ3NNWc3ISFBCxcu1Pbt223mpUqyBqOCOnPmjCRpzJgxebZfP0XhVhISEiQp14i0m5ubypcvb23P4e/vLy8vL5tlOc+9cOFCrvmqFotF8+fPV4sWLfJ8Oz5n/W+++UY9evSwTmMojC+++OKW6yQkJFinFlyvcuXK1vaqVatal//zn/+0/t9kMqlz587WecGpqanKyMjIcxQ/MDBQhmHo4sWL8vHx0dmzZ9WkSZNC79OtnD9/XqtXr1a/fv3k7u7u8O0DuP0IuwDuCc8++6yaNm0qSfrHP/6hoUOHat68eerXr591HYvForFjx+ry5cvq2LGjKleuLE9PTyUmJmratGkyDKNQfeas/8orr8hsNudqd3V1tX+HHGzt2rW6cOGChg4dmmd77dq11atXLy1evNg6d7mwunbtajNiK0kTJ060a1s5nn32WQUFBSk7O1tHjhzRd999J1dXVz399NNF2q6jzJ8/XxUrVlSrVq30559/Fnc5AOxA2AVwT6hbt671/zVr1lRkZKRWrlypli1bWkctT5w4oTNnzmjgwIEKDw+3rr979267+sx569zPz08NGjQoQvVSQECAJOn06dM2b8lnZWXp/PnzNhfMSX/N2U1PT7cZ3T19+rQkqWzZsjbrZmRk6Ntvv1W7du1ytV2vQ4cOOnv2rLZs2aKBAwfKzc1N48aNK/A+VK1aNdfrcOP9jQMCAqx1Xu/UqVPW9usFBwdb5+yGhYUpMTFRy5cvt15E5+npme/2TCaTypQpI0mqUKGCTp48WeB9KYijR49q06ZNeuedd7iPM3AP46cXwD2pe/fu8vf313/+8x9lZ2dL+v/B6/oRXMMwtGLFCrv6CA0Nlbe3t5YuXaqsrKxc7XnNWc1PgwYN5Obmph9//NGmvrVr1yotLc3mtlySlJ2drdWrV1sfZ2VlafXq1fL19VVwcLDNuj/++KMyMjLUuXPnm9awfft2rV69Wi+++KIeeOCBIgf4vISFhenw4cOKjY21LktPT9eaNWtUtmxZBQYG3vT5165dU3Z2tiwWi1xcXNSgQQNt375d58+ft66TnJysDRs2qE6dOtZpLE2aNNHx48e1devWXNss7Ih+jnnz5ql27dp66KGH7Ho+gLsDI7sA7kne3t7q27ev/vWvf+mHH37QU089pUqVKql8+fL65ptvlJiYKB8fH23ZskWXL1+2qw8fHx/1799fn332mQYPHqxmzZrJ19dXCQkJ2rFjh2rXrn3T+9Nez9fXV0899ZQWL16sDz74QA8++KD11mM1atRQixYtbNb39/fX8uXLdf78eVWqVEmbNm3SsWPH9I9//CPXnRhiYmL0zDPP3PTis+TkZP373/9WREREnhdxOcpTTz2ljRs36oMPPrC59dj58+f11ltv5Roh3b17ty5evGidxvDbb7/poYcesu7jM888o927d2vEiBFq166d9dZjWVlZ6tWrl3U7HTp00O+//66PP/5YrVu3VnBwsC5fvqzt27erf//+qlatWqH3JSYmRmPHji3S6wGg+BF2AdyzGjdurIceekjfffedHnnkEZUrV06DBw/W119/rWXLlsnd3V2NGzfWY489pnfeeceuPpo3by5/f38tW7ZM33//vTIzM1W6dGnVrVvX5lZhBdGtWzf5+vpq5cqVmj17tkqWLKm2bduqe/fuuQJsyZIlrR8qsWbNGpnNZvXt29fmDg05/P399eSTT+bbr2EYmjZtmkqUKKHnn3++UDUXltls1rhx4zR37lz99NNPunbtmoKCgjR48OBco9eStHTpUkl/zX8uXbq0HnvsMZsPwqhSpYrGjBmjefPmadmyZTIMQzVr1tSrr75qcyGcl5eXxowZo0WLFmnr1q1av369/Pz8VK9ePetUh8J66KGHVLt2bbueC+DuYTLsfX8HAHBb5HyC2qRJk4q7FAC45zFnFwAAAE6LsAsAAACnRdgFAACA02LOLgAAAJwWI7sAAABwWoRdAAAAOC3CLgAAAJwWYRcAAABOi7ALAAAAp0XYBQAAgNMi7AIAAMBpEXYBAADgtP4f3Iz47rv0u3wAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Количество записей по категориям:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "label\n",
+ "real 532\n",
+ "fake 468\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print(\"\\n=== Анализ распределения меток ===\")\n",
+ "plt.figure(figsize=(8, 5))\n",
+ "\n",
+ "# Исправленная версия с учетом нового синтаксиса seaborn\n",
+ "sns.countplot(data=df, x='label', hue='label', palette='viridis', legend=False)\n",
+ "\n",
+ "plt.title('Распределение реальных и фейковых новостей')\n",
+ "plt.xlabel('Категория новости')\n",
+ "plt.ylabel('Количество записей')\n",
+ "plt.show()\n",
+ "\n",
+ "label_counts = df['label'].value_counts()\n",
+ "print(\"\\nКоличество записей по категориям:\")\n",
+ "display(label_counts)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36d16d8a-705a-49d2-94cc-e91eb9d88e56",
+ "metadata": {},
+ "source": [
+ "## 4. Проверка на пропущенные значения"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "eeb0e8eb-04f1-4c95-8a46-889c74cb0a9a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== Проверка на пропущенные значения ===\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "title 0\n",
+ "text 0\n",
+ "label 0\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Пропущенных значений не обнаружено.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"\\n=== Проверка на пропущенные значения ===\")\n",
+ "missing_values = df.isnull().sum()\n",
+ "display(missing_values)\n",
+ "\n",
+ "if missing_values.sum() > 0:\n",
+ " print(\"\\nОбнаружены пропущенные значения. Заполняем пустыми строками.\")\n",
+ " df.fillna('', inplace=True)\n",
+ "else:\n",
+ " print(\"\\nПропущенных значений не обнаружено.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6edcf3a2-f622-4b27-a8cc-384160266db5",
+ "metadata": {},
+ "source": [
+ "## 5. Анализ длины текстов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "8419c8a8-8d94-4815-970d-05575ffb6757",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== Анализ длины текстов ===\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIoCAYAAAAV/qraAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRy0lEQVR4nO3deVgW9f7/8dcN3Gwqi+GCS4Ka+0YlnnKNTFs8LlloamV2rGO2HiszSySzoqy01HM6p18uaS6RqJ00SlMr87iUS0qWC2imCLeICwqC9/z+6OL+essi3NzCAM/HdXnJzOczM+97uLmHFzPzGYthGIYAAAAAAECF86joAgAAAAAAwJ8I6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHUCFslgsTv88PT0VEhKiqKgoffLJJxVdHgAAAFCuvCq6AACQpJiYGElSbm6u9u7dqxUrVmjdunXatm2b3nnnnQquDgAAACgfFsMwjIouAkD1ZbFYJEmXfxStXbtWt912myTp4MGDCgsLK+/SAAAAgHLH5e4ATOnWW29Vq1atZBiGtm7d6pg/d+5cDR48WE2bNpWfn58CAgLUtWtXLViwoMh1ZWRkaOLEiWrXrp38/f0VGBiojh076oUXXlBWVpajX69evQpcfn/5v5EjRzqte+TIkbJYLDp48KDeeecdtWrVSr6+vmrUqJGeeeYZnT59utCajhw5oscff1xNmzaVj4+PrrnmGvXv39/ptV5u7ty5RdZV1B8xMjIyNGHCBLVu3Vp+fn4KDAzUrbfeqq+++qrI7UyePLlU2zl37pxef/11derUSTVq1FDNmjV10003adGiRQX6rl+/XhaLRZMnTy502/n7MyUlxTEvJSWl0H0vSUuXLnXUtn79+gLte/fu1ciRI9W4cWN5e3urXr16GjZsmH799dciX39R8uso6t+lNRf2mgr716tXL6e++e/By50+fVqhoaHFvgeL2n5h28n/Hhe2zwp7zYXt+8sV9zqLew+54/2TlpamNm3ayNvbWytWrCiw3JYtWzRkyBA1bNhQPj4+Cg0NVZ8+fbR06VJJxf9sFfV9PnXqlN566y1FRUWpUaNG8vb2Vp06ddS/f39t2rTpivurtPvu8u9hfg0TJkxQy5Yt5evrq+DgYPXt21dr1qwp1fbDwsIK/dkeN26cLBaLhg0bposXLzrm//jjj3rqqafUsWNH1a5dW76+vrruuus0btw4nTx5stSvzV3vi6L+/etf/3Lqv2/fPj3wwANq2LChvL291aBBAz3wwAPat29fgXVf+rMyb948RUREyM/PT3Xr1tWoUaOUmppaYBlXfo4l6YcfftBdd92lOnXqyNPTs9j9c+nn9OrVqwus6+LFiwoPDy/2+ADAvLjcHYBp5Z9dv/SXnTFjxqht27bq0aOHQkNDdeLECa1atUr333+/fv31V02ZMsVpHcnJybrlllt06NAh3XDDDRozZozsdrt+++03vfvuu/r73/+uGjVqOC2Tf+n9pTIzMzVjxowia33mmWf07bffKjo6WgMGDFBiYqKmT5+u7777Tt9//718fX0dfX/66Sf16dNHGRkZ6tu3r+6++27ZbDYtX75c3bp1U0JCgu68884itzVgwAB16tTJMT19+vRC+x06dEi9evVSSkqKunfvrttvv11ZWVn673//q9tvv10ffPCBRo8eXeR2HnzwQadf7grbTmZmpqKiorR9+3Zdf/31GjVqlOx2uxITEzVs2DDt2bNHr776apHbKIuzZ8/qH//4R5HtX375pe6++27l5ubqr3/9q5o3b64jR45o2bJl+uKLL7Ru3Tpdf/31pd5ux44dNXDgQMf08uXLtXPnzisu99RTTykoKMgxHRsbW+Jtvvzyy4WGATMZOHCg0/slJSVF8+bNU8+ePZ0C5qX7wB3vH5vNpltvvVX79u3TkiVLNGDAAKf2//znPxozZow8PT3Vv39/XXfddUpLS9O2bds0e/ZsRUdHq1OnTgV+7mNjY9WkSZMCYSq//l9++UUTJ05Ujx49dNdddyk4OFiHDx/WypUrtXr1an3++ee6/fbbS7z/pILvkUtruVxmZqa6du2qpKQkde7cWU8//bRsNpuWLl2qPn366J///KceffTRUm3/Ui+88ILeeecdRUdH6+OPP5anp6ej7T//+Y8SEhLUs2dP9e7dW3a7XT/++KPeeecdrV69Wps3b1atWrUkle/74vJ15rvxxhsdX2/dulW9e/fWmTNn1L9/f7Vp00Z79+7VggULtGLFCq1Zs0adO3cusI53331XX331lYYMGaLbb79d33//vebMmaP169dr8+bNqlOnzhX3aXE/x7t27dItt9yivLw83XHHHerQoYO8vb0lFf0ZL0menp6aOXOm7rjjDqf5n3/+uVJSUpy+bwAqEQMAKpAko7CPoq+//tqwWCyGxWIxUlJSHPP3799foG9OTo4RFRVleHl5GUeOHHFqu+mmmwxJxmuvvVZgufT0dOP8+fOO6Z49exZai2EYRnJysiHJePDBB53mP/jgg4Yk45prrnGq8+LFi8bdd99tSDJeeeUVx/zc3FyjWbNmho+Pj7F+/Xqndf3xxx9GgwYNjPr16xvZ2dkFavjwww8NScbcuXOd5jdp0sRo0qRJgf49e/Y0LBaLsWjRIqf5J0+eNDp27Gj4+voaqampBZabOHGiIalAfYVtJ//1x8XFOc0/f/680bdvX8NisRjbt293zF+3bp0hyYiJiSmw3UvXl5yc7JhX1L4fN26cIcno3LmzIclYt26doy0jI8MICgoyrrnmGmPPnj1Oy/38889GjRo1jIiIiEJrKMr+/fsNScbIkSOvWPOlhg8fbkhyen8Yxp/v/Z49ezrNK+w9uGPHDsPT09PxOot6Dxa1/cK2ExMTU2CfFaaofV8SV/peG0bZ3z8nTpwwOnbsaHh6ehpLly4tsP49e/YYXl5eRnBwsLF79+4C7b///nuRtRW23y6VmZlppKenF7rO0NBQo1WrVkUuezlXvoePPPKIIcl45JFHDLvd7pj/22+/GQEBAYa3t3eR67vc5T/bL730kiHJGDx4sJGbm1ugf0pKipGXl1dgfv5n1BtvvFHktsrjfVEUu91utGrVypBkLFiwwKlt8eLFhiSjZcuWxsWLFx3z839WrFar8dNPPzkt8/TTTxuSjFGjRjnNd+Xn+LnnnivyNRT22Ztf19133214eHgUODZGRUUZN9xwQ5HHBwDmxuXuAExh8uTJmjx5siZOnKh77rlHt99+uwzD0NNPP60mTZo4+jVr1qzAst7e3ho7dqzy8vK0du1ax/wff/xRmzZtUqdOnTR+/PgCy4WEhDid4S6Lp556yqlODw8PvfXWW/Lw8NBHH33kmP/FF1/owIEDeuKJJ9SzZ0+ndTRo0EDPP/+8UlNTnV5HvvPnz0uS4+xKcXbu3KkNGzZo8ODBGjp0qFNbUFCQYmNjlZ2drc8++6zAsrm5uZIkHx+fYrdx4sQJLViwQDfeeKOef/55pzZfX1/FxcXJMIyrMkr/7t27NWPGDPXv37/Qqw7mz5+vzMxMxcbGqk2bNk5t7dq10+jRo7V9+3YlJSWVeJul2f+XKun+LIxhGHrsscfk6+urt99+u9TLm1lZ3z+ZmZnq06ePdu/erQULFujee+8t0Oef//yn8vLy9PLLL6tt27YF2hs1auRy/YGBgQoJCSl0nffcc4/27t2rw4cPu7z+4ly4cEELFixQzZo19frrrztdbXTdddfpySef1IULFzR//vxSr3vKlCl69dVXNXDgQC1atEheXgUvumzSpEmhZ2hHjRqlgIAAJSYmlnq7+a7m58oPP/ygvXv36qabbtLw4cOd2oYMGaJu3brp119/1ffff19g2fvvv18RERFO8yZPnqzAwEB98sknysnJKXK7Jfk5PnfunCQV+j4tzsiRI1WjRg3Nnj3bMW/Pnj365ptv9Pjjj5dqXQDMg8vdAZhC/uWcFotFQUFB6t69ux5++GGNGDHCqd/hw4cVFxentWvX6vDhw47glO+PP/5wfP2///1PktS3b195eFzdv0leHrglqWnTpmrcuLFSUlKUmZmpoKAgx72qhw4dKvS+7Px7In/55ZcC4TMjI0OS5O/vf8V68rdz6tSpQreTnp7u2M7l8u+jv9IfMLZu3aqLFy8WeY95fjgtbBvr168vdJkdO3YUu818Y8eOldVq1YwZMzR37twC7fmvf+fOnYVu57fffnPUdnmIL0pp9v+lSro/C/PRRx/phx9+UFxcnBo3blxs3+nTpxd6qXRx5s6d67ifNygoSNdee6369u1b6tfoirK8f06fPq2+ffvqxx9/VKdOnRQdHV3oNvI/Ay6/FNhdNm7cqBkzZmjTpk1KS0vThQsXnNr/+OMPXXvttW7f7q+//qpz586pa9euql27doH2qKgovfrqq9q+fXup1hsXF6dJkyZJ+vPSbKvVWmi/3NxcffDBB1q8eLGSkpJ06tQp2e12R/uln8OlVZb3xZX89NNPkv7cP4WJiorS999/r+3bt6tHjx5ObYV9xgcGBqpTp07asGGDfvnlF6fbkC5Vkp/jLl26aNasWXr11VcVFhamjh07lugPgrVq1dKDDz6oOXPmaMqUKfL399fMmTMVEhKioUOHFjn+BwBzI6QDMAWjBA+aOHjwoCIjI3Xy5El1795dffr0UWBgoDw9PR33OV56NiMzM1OS1LBhw6tVtkO9evUKnV+/fn0dOnRIp06dUlBQkE6cOCFJ+vTTT4td39mzZwvMyz8r16BBgyvWk7+dr7/+Wl9//XWptmOz2SRJdevWLdE2tm7dWuyAd4VtY8OGDdqwYUOx6y/K/Pnz9e233zp+mS2utv/85z/Frquw2opSmv1/KZvNJm9v71IH6IyMDL3wwgtq3bq1nnnmmSsGn+LGTCjKvHnzCswLDg7W7NmzC1yB4W5lef+89957stvt6tGjh7799lu99dZbhV4tczU/AxISEnTPPffI19dXt912m5o1a6YaNWrIw8ND69ev14YNG4o9u1oWp06dkiSFhoYW2p4/P//1l8SRI0f0wgsv6Oabb9bWrVs1atQobdmypdCgOGTIECUkJKhp06YaMGCA6tev77hSZPr06WV63WV5X1xJWfZbcZ/xl677ciX9OR4xYoQ2btyof//734qMjCzQfumVWpd7/PHHNWvWLC1cuNAxhsATTzzhtivFAJQ/QjqASuOdd97RiRMnNGfOnAKDOS1atKhA4MgPRWU5q1NSx48fV8uWLQvMzx8kKDAw0On/FStWqH///qXaxk8//SSLxaLrrrvuin3ztzNjxgw9+eSTpdrO/v375efnV+QvpZdv45lnnin1s+xjYmIKPcMzcuTIQoNjvszMTD333HNq0aKFnnvuuSvWtnPnTnXo0KFUtRUl/yxcixYtSrXc/v37XRpdecKECY6BwIo6o3mp5OTkQrdT2CjT+datW+cYaCsjI0Px8fF6/PHHNWrUqFIPelZaZXn/2O12/fOf/9TIkSPVuXNnTZo0SX379i1wJvPSz4BWrVq5o2yHl19+Wd7e3tq2bZtat27t1Pboo4+6/Eeoksjfd0UNQnbs2DGnfiVx8eJFRUVF6b///a+mT5+uF198US+99JLefPNNp37btm1TQkKCevfurdWrVztdDm+32wv0L62yvC9Kum5X9tvx48cLXebyz/jLlfTnOH8U+qFDh+qWW25Ry5YtHX8oK27gOElq2bKlbrvtNs2aNUtnz55Vdna2xowZU+wyAMyNe9IBVBr79++XJA0ePLhAW2G/EP/lL3+RJCUmJjpdink1FLb9gwcP6vfff1dYWJgjLOTX9N1335Vq/ampqdq1a5fat29fojOyrm7nzJkz2rNnjyIiIq44KnBkZKQ8PDxKvY2yeOmll5SWlqaZM2cWeymoq6+/OF999ZU8PDzUtWvXEi+zd+9eZWZmOo0uXRJbtmzRhx9+qGHDhumWW24pbakuqV27th555BHdfvvtOn/+vHbv3n1Vt1eW98/f//53Pfroo/Lx8dGCBQtksVg0YsQIZWdnO/XLfx8U9oiqstq/f7/atGlTIKDb7fZC72l2p5YtW8rf3187d+4s9KzvunXrJKlUTy8ICQnR559/Lj8/P40fP17dunXT22+/XeCzLf9zuH///gXuV9+yZUuBW5BK62p+ruTfU17UoweL22+FfcafOnVKO3bskK+vb4H3gVT6n+O8vDxNmDBBPj4+Wrp0qWOslpJ85j/xxBPauXOnYmNj1b9//6tymwWA8kNIB1Bp5J8lvPwXrMTERH344YcF+t9www26+eabtWPHDsXFxRVoP3HiRIFf6l01Y8YMHTp0yDFtt9v13HPPyW6366GHHnLMHzBggJo1a6ZZs2Zp1apVha5r06ZNjkGE8r355pu6ePFigcGOinLjjTeqe/fuWrZsmdPAdZf6+eeflZaW5jTv1VdfVW5ubqGDcF2ubt26Gj58uLZt26YpU6Y4PUc534EDB5ScnFyimq9k586d+uc//6l7771Xt912W7F9H3roIccAeVu2bCnQbrfbr/iM8EutXLlSe/bsUd++fQsdLKwwdrtdr7zyiiSVaH9e6rHHHlPNmjU1bdq0Ui1XVnl5eY7vV3Bw8FXdVlneP5feitGhQwdNnTpVe/bs0QsvvODUb8yYMfLy8tKUKVMKHSTwyJEjLtcfFhamffv26ejRo455hmFo8uTJpRqQ0BXe3t4aPny4zpw5o5dfftmp7cCBA3rvvfdktVp1//33l3idNWrUcIxF4OHhofnz56tGjRp64IEHnC7lLupzOC0tTWPHjnXtBV3ian6udO3aVS1bttT333+v+Ph4p7b4+Hh99913atGihbp161Zg2Y8//rjAPf6TJ0/WqVOndN999xU6MGRpf45jYmL0v//9T2+99VaprwC68847FRkZqZo1a5b66ikA5sPl7gAqjccee0xz5szRvffeq3vuuUcNGjTQ7t279eWXXyo6OlpLliwpsMyCBQvUq1cvvfjii/rss8/Uq1cvGYahffv26auvvtLevXtduhT5cl27dlWnTp00ZMgQBQYGKjExUTt37tQNN9zgNEKx1WrVsmXL1LdvX9111126+eab1alTJ/n7++v333/X1q1bdfDgQR07dkz+/v7asWOHXnvtNcc97MeOHStwmXj+mbTJkydr4MCBjkt+P/nkE0VFRenhhx/We++9py5duigoKEhHjhzRrl27tHv3bm3atEl169ZVYmKiXnrpJW3btk2dO3cu8aWSM2fO1L59+zRp0iR9/PHH6tatm+rVq6ejR4/ql19+0datW7Vo0SKFh4eXeR/v2LFDNWvW1LvvvnvFvtdcc43i4+M1aNAg/eUvf9Gtt96qtm3bymKx6Pfff9emTZtK9EeazMxMTZo0yXFvu4+PT4H9nz/Y3fTp09WrVy8NHDhQCxcu1NSpU/XLL79owIABTs9VL4kff/xR06dPL/LeWXdZuXKl9u7dK+nPy91XrFih3bt3q1u3bmrbtq1SUlKu6vbd9f75xz/+oS+++ELvvfee+vXrp969e0uS2rRpo9mzZ+vvf/+7IiIiNGDAAF133XU6ceKEtm7dqoCAAMfZ09J65plnHOsdPHiwrFarNm7cqKSkJP31r3/V559/7tJ6S+qNN97Qd999p5kzZ2rr1q265ZZbHJdVnzlzRjNnzizTz114eLjee+89PfTQQ3r88cf18ccfS5I6d+6srl27atmyZbr55pvVrVs3HT9+XKtXr1bLli1LPWZDYa7W54rFYtG8efN02223aciQIRowYIBatWqlX3/9VcuXL1etWrU0f/78QgcaveOOO9S1a1dFR0crNDRU33//vb7//nuFhYXpjTfeKHR7pfk5Xr9+vd544w3169dPTzzxRKlel/TnH1Y2b95c6uUAmFSFPfwNAIyin5NelI0bNxq33HKLERQUZNSsWdPo2rWrkZCQUOxzcm02m/H8888bLVq0MHx8fIzAwECjY8eOxosvvmhkZWU5+pXlOekHDhwwpk2bZrRs2dLw8fExGjRoYDz11FPGqVOnCl3f8ePHjfHjxxtt27Y1/Pz8jBo1ahjNmzc3Bg8ebHz88ceOZxPPmTPHsY9K8m/OnDlO2zl9+rQxdepU4/rrrzdq1Khh+Pr6GmFhYcadd95pfPDBB8bZs2cNwzCMqVOnGh07djSmTp1qnDt3rtCai3rebk5OjvH+++8bN910k+P5zI0bNzaioqKMd99917DZbI6+ZXlOuiTjzTffLLBMcc/8Tk5ONsaOHWs0b97c8PHxMWrVqmW0bNnSGDFihJGQkFBoDZcvX5r9n//+GDNmjBEZGWnMnDmz0OdJG0bxz0nv0KFDgeWu9B505Tnpl/4LCAgw2rdvb0yZMsXxvr3az0k3DPe9fw4fPmwEBQUZDRs2NDIyMpzafvjhB+Puu+826tSpY1itViM0NNTo27ev8emnnxZZV2H77XJz5swxOnbsaPj7+xvXXHONMXDgQGPXrl0lfg59Ple+h4ZhGCdPnjSef/55o3nz5oa3t7cRGBho9O7d20hMTCzRdvMV9yztu+++25BkLFmyxDHvxIkTxpgxY4wmTZoYPj4+RtOmTY0JEyYYWVlZV3wud3m/Lwqzd+9eY8SIEUb9+vUNLy8vo379+sbw4cONvXv3Fuh76fcy//vt6+trhISEGCNHjjSOHj1aYJnS/hzbbDajYcOGRv369Y20tLQC6yvuOelXeo/xnHSgcrIYRgmGVAYAFCp/oLOiBu0qq7lz5+qhhx4q0ej3Foul0EH14LqUlBSFh4c7DbBWlF69eiksLKzQR8IBqJwmT56s2NjYEn0GAIC7cE86AAAAAAAmwT3pAGBinTp1UkxMTIn6xsTEFHgEFcomKChIMTExJbpKYuTIkaV+FjoAAMDlCOkAYGKdOnUqcfAu7LnjKJugoKAS71duMwAAAO7APekAAAAAAJgE96QDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMIlqO7r7yZMnlZeXV9FlAAAAAACqOC8vLwUHB5es71WuxbTy8vKUm5tb0WUAAAAAAODA5e4AAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCa+KLuBSSUlJWrlypZKTk3Xy5Ek9++yzioyMdOpz5MgRLVy4UElJSbLb7WrUqJHGjRunkJCQCqoaAAAAAAD3MFVIz8nJUVhYmKKiojRt2rQC7ampqZo0aZKioqIUHR0tPz8/HTlyRFartQKqBQAAAADAvUwV0iMiIhQREVFk++LFixUREaERI0Y45tWvX788SgMAAAAA4KozVUgvjt1u108//aT+/ftr6tSpSk5OVt26dTVw4MACl8RfKjc3V7m5uY5pi8UiPz8/x9cAAKB6OHnypLKysiq6jGojNzdXGRkZFV0GUC5q167N1b3lqEaNGgoODq7oMq6aShPST58+rezsbK1YsUJDhgzR8OHDtWPHDr399tuKiYlRmzZtCl0uISFB8fHxjunw8HDFxcWpTp065VU6AACoYDabTW/GxenCJX+4BwBUTt5Wq6a9/XaVHZes0oR0u90uSbrxxhvVr18/SVJYWJh+/fVXffXVV0WG9EGDBjn6S/939jw9PV15eXlXuWoAAGAGR44c0YXcXI1oWVv1/CvNrz+VWq7dUEY2v2uheqjt6yWrB1fplofj5/K04NcMJScnO10xbXZeXl4lPlFcaY5SAQEB8vT0VKNGjZzmN2zYUL/++muRy1mt1iIvPTEMw601AgAAc8o/5tfz91Ljmt4VXE310TTAp6JLAFBFGYZRZfNcpXlOupeXl5o1a6ajR486zT927FiVvcwBAAAAAFC9mCqkZ2dnKyUlRSkpKZKktLQ0paSkyGazSZL69++vH374QWvWrFFqaqq+/PJL/fjjj+rbt28FVg0AAAAAgHuY6nL3AwcOKDY21jE9f/58SVLPnj01duxYRUZGavTo0Vq+fLnmzJmjBg0aaNy4cWrVqlVFlQwAAAAAgNuYKqS3bdtWS5cuLbZPVFSUoqKiyqkiAAAAAADKj6kudwcAAAAAoDojpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATMKrogu4VFJSklauXKnk5GSdPHlSzz77rCIjIx3ts2bN0oYNG5yW6dixoyZOnFjepQIAAAAA4HamCuk5OTkKCwtTVFSUpk2bVmifTp066bHHHnNMe3mZ6iUAAAAAAOAyUyXciIgIRUREFNvHy8tLQUFB5VMQAAAAAADlyFQhvSSSkpL0t7/9TTVq1FC7du00dOhQ1apVq8j+ubm5ys3NdUxbLBb5+fk5vq5sTp48qaysrIouo9rIzc1VRkZGRZcBlIvatWvLarVWdBnVRo0aNRQcHFzRZVQblfGYDwAomsViqbKf7ZUqpHfq1EldunRR3bp1lZqaqkWLFum1117T1KlT5eFR+Bh4CQkJio+Pd0yHh4crLi5OderUKa+y3cZmsynuzTeVe+FCRZcCACgjq7e33p42TSEhIRVdSrWQnZ1d0SUAANwoJCREoaGhFV3GVVGpQnrXrl0dX1977bVq0qSJnnjiCe3Zs0ft27cvdJlBgwapX79+jun8v7akp6crLy/v6hbsZkeOHFHuhQsK6tpBXoE1KrqcasG4eFEXz56v6DKAcuFZ008WT8+KLqNayDuVpcyNu5ScnOx0tReuHpvNVtElAADcyGazydfXt6LLKDEvL68SnyiuVCH9cvXq1VOtWrWUmppaZEi3Wq1FXr5pGMbVLM/t8uv1Cqwh6zWBFVxNNVK3ogsAUFUZhlHpjkWVFfsZAKqWqnwMrdTPST9x4oTOnj3LPX0AAAAAgCrBVGfSs7OzlZqa6phOS0tTSkqKatasqZo1a+rTTz9Vly5dFBQUpOPHj2vBggWqX7++OnbsWIFVAwAAAADgHqYK6QcOHFBsbKxjev78+ZKknj17avTo0Tp8+LA2bNigrKws1a5dWx06dNCQIUMYjRgAAAAAUCWYKqS3bdtWS5cuLbJ94sSJ5VgNAAAAAADlq1Lfkw4AAAAAQFVCSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmISpQnpSUpLeeOMNPfroo4qOjtaWLVuK7Pvvf/9b0dHR+uKLL8qxQgAAAAAArh5ThfScnByFhYXp4YcfLrbfli1btG/fPgUHB5dTZQAAAAAAXH1uD+kXL150edmIiAgNHTpUkZGRRfbJyMjQRx99pCeffFJeXl4ubwsAAAAAALNxOeWuW7dOycnJateunSIjIxUfH68VK1bIbrfr+uuv15gxY+Tv7+/OWmW32/X++++rf//+aty4cYmWyc3NVW5urmPaYrHIz8/P8XVlUtnqBQAUz2Kx8NleTtjPAFC1VOVjqEshffny5Vq0aJEsFosSExM1ePBgLV++XL169dKFCxf0/fffKyQkRA8++KBbi12xYoU8PT11xx13lHiZhIQExcfHO6bDw8MVFxenOnXquLW28pCdnV3RJQAA3CgkJEShoaEVXUa1wDEUAKqWqnwMdSmkr1u3Tu3bt9cLL7yg5cuX67PPPtM999yjwYMHS5J8fX21detWt4b0gwcPatWqVYqLiyvVX0wGDRqkfv36Oabzl01PT1deXp7b6isPNputoksAALiRzWaTr69vRZdRLXAMBYCqpbIdQ728vEp8otilkG6z2TRgwAB5eXmpV69e+vTTT9WsWTNHe/PmzfXNN9+4suoi/fLLLzp9+rQee+wxxzy73a758+dr1apVmjVrVqHLWa1WWa3WQtsMw3BrjVdbZasXAFA8wzD4bC8n7GcAqFqq8jHUpZCel5cnb29vSZKPj8+fK7pkEDdPT88yDSBXmB49eqh9+/ZO86ZOnaoePXrolltuceu2AAAAAACoCC4PHPfHH38oKSlJ586dkyQdOnRIHh4ejjZXZGdnKzU11TGdlpamlJQU1axZUyEhIapVq5ZTfy8vLwUFBalBgwYuvgoAAAAAAMzD5ZC+bNkyLVu2zDE9f/78Mhdz4MABxcbGFlhnz549NXbs2DKvHwAAAAAAM3MppMfExLi7DklS27ZttXTp0hL3L+o+dAAAAAAAKiOXQnqbNm3cXQcAAAAAANWey5e75zty5IjS09MlSXXq1FGjRo3KXBQAAAAAANWRyyF969atmj9/vtLS0pzm161bVw8++KBuvPHGMhcHAAAAAEB14lJI/+mnn/T222+rTp06uu+++xxnz48cOaK1a9dq2rRpeuGFF9SpUyd31goAAAAAQJXmUkj/7LPP1KRJE8XGxsrX19cx/8Ybb9Ttt9+uSZMm6dNPPyWkAwAAAABQCh6uLHT48GH17NnTKaDn8/X1Va9evXT48OEyFwcAAAAAQHXiUki3Wq06e/Zske1nz56V1Wp1uSgAAAAAAKojl0J6u3bttGrVKv32228F2vbt26fVq1erffv2ZS4OAAAAAIDqxKV70keMGKGJEyfq5ZdfVvPmzdWgQQNJ0tGjR7V//34FBgZq+PDhbi0UAAAAAICqzqWQXrduXU2bNk0JCQnasWOHfvjhB0l/Pif9zjvv1MCBAxUYGOjWQgEAAAAAqOpcfk56YGCgRo4c6cZSAAAAAACo3ly6Jx0AAAAAALifS2fSY2Njr9jHYrFo0qRJrqweAAAAAIBqyaUz6UlJScrMzCy2j2EYrqwaAAAAAIBqy+V70gcPHqxu3bq5sxYAAAAAAKo17kkHAAAAAMAkXD6TfubMGZ04cUJWq1W+vr7y9vZ2Z10AAAAAAFQ7Lof0uXPnau7cuY5pX19fNWrUSO3atdMdd9yhoKAgN5QHAAAAAED14VJIHzNmjCTJbrcrLy9PWVlZyszM1JEjR/TFF19o7dq1mjJlikJDQ91aLAAAAAAAVZlLIb1Xr15FttlsNk2aNElLlizR008/7WJZAAAAAABUP24fOC4kJEQDBw5Uenq6u1cNAAAAAECV5vI96cXp06eP+vTpczVWDQAAAABAleXSmfSDBw8qMTGxyPbExESlpKS4WhMAAAAAANWSSyF98eLF+vnnn4ts3717txYvXuxyUQAAAAAAVEcun0lv1apVke2tW7fWgQMHXC4KAAAAAIDqyKWQfv78eXl6ehbZbrFYdO7cOZeLAgAAAACgOnIppIeGhmrnzp1Ftu/YsUP16tVzuSgAAAAAAKojl0J6VFSUtm/frnnz5ikrK8sxPysrS3PnztWOHTsUFRXltiIBAAAAAKgOXHoE2x133KGUlBStWrVKq1evVnBwsCTp5MmTMgxD3bt311133eXWQgEAAAAAqOpcCukWi0WPPfaYevTooc2bNystLU2S1LlzZ3Xp0kVt27Z1a5EAAAAAAFQHLoX0fO3atVO7du3cVQsAAAAAANWaS/ekAwAAAAAA9yOkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADCJMo3uLknZ2dmy2WySpJCQEPn6+pa5KAAAAAAAqiOXQ/r+/fu1cOFC7d27V3a7XZLk4eGhVq1aacSIEWrWrJnbigQAAAAAoDpwKaTv27dPkydPlpeXl6KiotSwYUNJ0h9//KGNGzcqJiZGkydPVvPmzd1aLAAAAAAAVZlLIX3x4sWqXbu2pkyZoqCgIKe2e++9Vy+//LIWLVqkl19+2R01AgAAAABQLbg0cNy+fft02223FQjokhQUFKTevXtr3759Za0NAAAAAIBqxaWQbrFYdPHixSLb7Xa7LBaLy0UBAAAAAFAduRTSW7ZsqcTERKWnpxdos9ls+uqrr9SqVasyFwcAAAAAQHXi0j3p9913n2JiYvT0008rMjJSoaGhkqSjR49q27Zt8vT01H333efWQgEAAAAAqOpcCunh4eF67bXXtGjRIm3btk0XLlyQJHl7e6tTp04aOnSoGjVq5NZCAQAAAACo6lx+TnqjRo303HPPyW636/Tp05KkgIAAeXi4dAU9AAAAAADVnsshPZ+Hh4fTKO8XL16Up6dnWVcLAAAAAEC143JIX7dunZKTk9WuXTtFRkYqPj5eK1askN1u1/XXX68xY8bI39/fnbUCAAAAAFCluRTSly9frkWLFslisSgxMVGDBw/W8uXL1atXL124cEHff/+9QkJC9OCDD7q7XgAAAAAAqiyXQvq6devUvn17vfDCC1q+fLk+++wz3XPPPRo8eLAkydfXV1u3biWkAwAAAABQCi6N8maz2XTzzTfLy8tLvXr1kt1uV7NmzRztzZs3V0ZGhtuKBAAAAACgOnAppOfl5cnb21uS5OPjI0ny8vq/k/Kenp66ePGiG8oDAAAAAKD6cHnguD/++ENJSUk6d+6cJOnQoUOOx6/98ccf7qkOAAAAAIBqxOWQvmzZMi1btswxPX/+fLcUBAAAAABAdeVSSI+JiXF3HQAAAAAAVHsuhfQ2bdq4uw4AAAAAAKo9lwaOi42N1c8//+zuWgAAAAAAqNZcCulJSUk6deqUu2sBAAAAAKBacymkAwAAAAAA93N5dPczZ87IZrMV2yckJKRU60xKStLKlSuVnJyskydP6tlnn1VkZKSjfenSpfrhhx904sQJeXl5qWnTpho6dKiuu+46l14DAAAAAABm4nJInzt3rubOnVtsnyVLlpRqnTk5OQoLC1NUVJSmTZtWoL1BgwYaNWqU6tWrpwsXLuiLL77Qq6++qvfff18BAQGl2hYAAAAAAGbjckjv3bu3289gR0REKCIiosj2bt26OU0/8MAD+uabb3To0CG1b9/erbUAAAAAAFDeXA7prVu3LhCay1NeXp7WrFkjf39/NWnSpMh+ubm5ys3NdUxbLBb5+fk5vq5MKlu9AIDiWSwWPtvLCfsZAKqWqnwMdTmkV5Qff/xR06dP14ULFxQUFKSXXnqp2EvdExISFB8f75gODw9XXFyc6tSpUx7lulV2dnZFlwAAcKOQkBCFhoZWdBnVAsdQAKhaqvIxtNKF9LZt2+qtt97S6dOntXbtWr377rt67bXXFBgYWGj/QYMGqV+/fo7p/L+2pKenKy8vr1xqdpcrDdQHAKhcbDabfH19K7qMaoFjKABULZXtGOrl5VXiE8UuhfTSDgjnTr6+vqpfv77q16+vFi1a6Mknn9Q333yjQYMGFdrfarXKarUW2mYYxtUs1e0qW70AgOIZhsFnezlhPwNA1VKVj6EuPSf94MGDSkxMLLI9MTFRKSkprtZUKoZhON1zDgAAAABAZeVSSF+8eLF+/vnnItt3796txYsXl3q92dnZSklJcQT8tLQ0paSkyGazKTs7W5988ol+++03paen6+DBg5o9e7YyMjJ00003ufIyAAAAAAAwFZcudz948KAGDhxYZHvr1q2VkJBQ6vUeOHBAsbGxjun58+dLknr27KnRo0fr6NGjevvtt3XmzBnVqlVLzZo1U2xsrBo3blzqbQEAAAAAYDYuhfTz58/L09OzyHaLxaJz586Ver1t27bV0qVLi2x/9tlnS71OAAAAAAAqC5cudw8NDdXOnTuLbN+xY4fq1avnclEAAAAAAFRHLoX0qKgobd++XfPmzVNWVpZjflZWlubOnasdO3YoKirKbUUCAAAAAFAduHS5+x133KGUlBStWrVKq1evVnBwsCTp5MmTMgxD3bt311133eXWQgEAAAAAqOpcCukWi0WPPfaYevTooc2bNystLU2S1LlzZ3Xp0kVt27Z1a5EAAAAAAFQHLoX0fO3atVO7du3cVQsAAAAAANVamUJ6RkaGkpKSdPr0aXXp0kXXXHON7Ha7zp07J39/f3l4uHTLOwAAAAAA1ZJLId0wDM2fP19ffvml7Ha7JOnaa6/VNddco+zsbI0dO1bR0dHclw4AAAAAQCm4dKp75cqVWrVqlf7617/qpZdecmrz9/dXZGSkNm/e7JYCAQAAAACoLlwK6WvXrlXPnj01bNgwhYWFFWhv0qSJjh07VtbaAAAAAACoVlwK6SdOnFCLFi2KbPfx8dG5c+dcLgoAAAAAgOrIpZAeEBCgEydOFNl+8OBBhYSEuFwUAAAAAADVkUshvUuXLvr66691/PjxAm07d+7U+vXrddNNN5W5OAAAAAAAqhOXRnePjo7Wnj179Pzzz6tVq1aSpBUrVmjJkiX67bffFB4erkGDBrm1UAAAAAAAqjqXzqT7+/tr6tSp6t+/vzIyMuTt7a2kpCSdO3dO9957r1555RX5+Pi4u1YAAAAAAKo0l86kS5K3t7cGDx6swYMHu7MeAAAAAACqLZfOpAMAAAAAAPdz6Uz67Nmzr9jHYrFozJgxrqweAAAAAIBqyaWQvmfPHqdpwzB04sQJBQYGymq1SvozpAMAAAAAgJJzKaTPmjXLafr06dMaPXq0nnzySbVr184thQEAAAAAUN245Z50zpoDAAAAAFB2bgnp2dnZf67Mg3HoAAAAAABwVZlTdUZGhhYvXiyLxaIGDRq4oyYAAAAAAKoll+5JHzJkSIF59957r4KCgspaDwAAAAAA1ZZLIX3w4MGyWCyyWCwKDAxUixYt1KRJE3fXBgAAAABAteJSSI+OjnZ3HQAAAAAAVHuM9AYAAAAAgEm4dCY9Njb2in0sFosmTZrkyuoBAAAAAKiWXArpSUlJkqSmTZvK19e30D6GYbheFQAAAAAA1ZBLIX348OFavny5Tpw4ocGDB+u2227jGekAAAAAAJSRS8m6f//+mjlzpnr06KEFCxbomWee0aZNm9xdGwAAAAAA1YrLp7/9/f01YsQIzZgxQ61bt9Z7772nCRMmaPfu3e6sDwAAAACAaqPM16jXrl1bf//73zVt2jTVrl1bU6ZM0WuvvaaUlBQ3lAcAAAAAQPXh0j3p8fHxhc4PDw/XhQsXtHPnTv38889atGhRmYoDAAAAAKA6cSmkf/rpp1fsY7fbXVk1AAAAAADVlkshfcmSJe6uAwAAAACAao/npgEAAAAAYBIunUm32Wwl6hcSEuLK6gEAAAAAqJZcCuljx44tUT8uiwcAAAAAoORcCumSdOutt6pFixburAUAAAAAgGrN5ZDepk0bdevWzZ21AAAAAABQrTFwHAAAAAAAJuHymfTNmzfr+PHjslqt8vX1VVBQkBo2bKiGDRu6sz4AAAAAAKoNl0P6li1btGXLlgLzg4ODde+99+rWW28tU2EAAAAAAFQ3LoX0/FHb7Xa78vLylJWVpczMTB05ckQbN27Uv//9b/n5+enmm292a7EAAAAAAFRlZbon3cPDQ97e3goODlZ4eLi6d++uF154QR07dtQXX3zhrhoBAAAAAKgWXL7cvThDhw7V7t27r8aqAQAAAACosq5KSG/atKmaNm16NVYNAAAAAECV5XJIP3funL744gv99NNPstlskqSQkBDdcMMNuvPOO+Xv7++2IgEAAAAAqA5cuic9IyND48ePV3x8vLKzs9WyZUu1bNlSOTk5+vTTTzV+/HidPHnS3bUCAAAAAFCluXQmfeHChcrMzNT48eN1/fXXO7Vt375d77zzjhYuXKjHH3/cLUUCAAAAAFAduHQmfceOHbrzzjsLBHRJioiI0B133KHt27eXuTgAAAAAAKoTl0J6Tk6OAgMDi2wPCgpSTk6Oy0UBAAAAAFAduRTSGzVqpI0bNyovL69AW15enjZu3KhGjRqVuTgAAAAAAKoTl+5JHzBggKZPn64JEyaob9++Cg0NlSQdPXpUX3/9tQ4dOqRnnnnGrYUCAAAAAFDVuRTSb7rpJuXk5GjhwoX6z3/+49QWEBCgMWPG6C9/+YtbCgQAAAAAoLpw+TnpvXr1Uvfu3XXgwAGn56Q3a9ZMnp6ebisQAAAAAIDqosQh3TAMWSwWp3menp5q0aKFWrRoUaB/enq66tSpU/YKAQAAAACoJko8cNzbb79d6EBxl7Pb7VqxYoXGjRtXpsIAAAAAAKhuShzSt27dqqlTp+r8+fNF9tm/f7/Gjx+vTz75RO3bt3dLgQAAAAAAVBclvtx99OjR+n//7/8pJiZGEydOdHpO+vnz5/XJJ59ozZo1CgoK0rhx4xQZGVnqYpKSkrRy5UolJyfr5MmTevbZZx3rycvL0+LFi7V9+3alpaXJ399f7du317Bhw1S7du1SbwsAAAAAALMp8Zn03r1765lnntEff/yhl156SampqZKk//3vf3rmmWf09ddfq0+fPnr33XddCuiSlJOTo7CwMD388MMF2i5cuKDk5GQNHjxYcXFxGjdunI4ePao333zTpW0BAAAAAGA2pRrdPTIyUi+++KLeeustvfzyywoPD9fOnTsVFham5557Ts2aNStTMREREYqIiCi0zd/fXy+//LLTvFGjRunFF1+UzWZTSEhImbYNAAAAAEBFK/Uj2Nq2bavJkydr6tSp2rlzp7p166axY8fKw6PEJ+Xd5ty5c7JYLPL39y+yT25urnJzcx3TFotFfn5+jq8rk/x6806dreBKAABlkf85brFYKt2xqLLK389JGdk6fi73Cr3hDnl2Q6cuXKzoMoByEejtKS8PPs/Lw4nsPz9XqvIx1KXnpIeFhWnKlCmaOnWq/ve//ykyMlJdunRxd23FunDhghYuXKiuXbsWG9ITEhIUHx/vmA4PD1dcXFylfDxcdna2JClz488VXAkAwB1CQkIUGhpa0WVUC1arVR4eHlp96HRFlwIAKCMPDw+Fh4dX2aupSxzSDx48WGDeQw89pNmzZ2v69Om6//771apVK6f2pk2blr3CQuTl5endd9+VJP3tb38rtu+gQYPUr18/x3T+X1vS09NL9Eg5M7HZbJKkoK7t5RVYs4KrAQC4Ku/UWWVu/Fk2m02+vr4VXU618cQTTyg9Pb2iy6g28vLydPo0fxRB9RAQECAvL5fOf8IFderUUW5uro4dO1bRpZSYl5dXiU8Ul/idNGHChGLb582bV2DekiVLSrr6EssP6DabTZMmTSr2LLr051/OrVZroW2GYbi9vqspv16vwJqyXhN4hd4AALMzDKPSHYsqs8aNG6tx48YVXQYAwA2q8vGzxCF9zJgxV7OOEskP6KmpqYqJiVGtWrUquiQAAAAAANymxCG9V69eV7GMP2VnZzse7SZJaWlpSklJUc2aNRUUFKR33nlHycnJGj9+vOx2uzIzMyVJNWvW5PISAAAAAEClZ6pke+DAAcXGxjqm58+fL0nq2bOn7r33Xm3btk2S9PzzzzstFxMTo7Zt25ZfoQAAAAAAXAWmCult27bV0qVLi2wvrg0AAAAAgMqu/B9uDgAAAAAACkVIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYhFdFF3CppKQkrVy5UsnJyTp58qSeffZZRUZGOto3b96sr7/+WgcPHtTZs2f15ptvKiwsrOIKBgAAAADAjUx1Jj0nJ0dhYWF6+OGHi2xv1aqVhg8fXs6VAQAAAABw9ZnqTHpERIQiIiKKbO/Ro4ckKS0trbxKAgAAAACg3JgqpF8Nubm5ys3NdUxbLBb5+fk5vq5MKlu9AIDiWSwWPtsBAICTKh/SExISFB8f75gODw9XXFyc6tSpU4FVuSY7O7uiSwAAuFFISIhCQ0MrugwAAGAiVT6kDxo0SP369XNM55+xSE9PV15eXkWV5RKbzVbRJQAA3Mhms8nX17eiywAAAFeZl5dXiU8UV/mQbrVaZbVaC20zDKOcqymbylYvAKB4hmHw2Q4AAJyYanR3AAAAAACqM1OdSc/OzlZqaqpjOi0tTSkpKapZs6ZCQkJ09uxZ2Ww2ZWRkSJKOHj0qSQoKClJQUFBFlAwAAAAAgNuYKqQfOHBAsbGxjun58+dLknr27KmxY8dq27Ztmj17tqN9+vTpkqR77rlH0dHR5VorAAAAAADuZqqQ3rZtWy1durTI9l69eqlXr17lVxAAAAAAAOWIe9IBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCS8KrqASyUlJWnlypVKTk7WyZMn9eyzzyoyMtLRbhiGli5dqrVr1yorK0utWrXS3/72N4WGhlZg1QAAAAAAuIepzqTn5OQoLCxMDz/8cKHtK1as0OrVqzV69Gi99tpr8vHx0dSpU3XhwoVyrhQAAAAAAPczVUiPiIjQ0KFDnc6e5zMMQ6tWrdLdd9+tzp07q0mTJnr88cd18uRJbd26tQKqBQAAAADAvUx1uXtx0tLSlJmZqQ4dOjjm+fv7q3nz5vrtt9/UtWvXQpfLzc1Vbm6uY9piscjPz8/xdWWSX2/eqawKrqT6MC5e1MWz5yu6DKBceNb0k8XTs6LLqBbyP8ctFkulOxYBAICrq9KE9MzMTElSYGCg0/zAwEBHW2ESEhIUHx/vmA4PD1dcXJzq1KlzNcq8qqxWq6ze3srcuKuiSwEAlJHV21vh4eEKCQmp6FIAAICJVJqQ7qpBgwapX79+jun8Mxbp6enKy8urqLJcNv7555WVxZn08pKbm6uMjIyKLgMoF7Vr15bVaq3oMqqNGjVqKDc3V8eOHavoUgAAwFXm5eVV4hPFlSakBwUFSZJOnTql4OBgx/xTp04pLCysyOWsVmuRv3QahuHOEstFUFCQY1+gfBT3/gKAsqiMxyEAAHB1mWrguOLUrVtXQUFB+vnnnx3zzp07p/3796tFixYVWBkAAAAAAO5hqjPp2dnZSk1NdUynpaUpJSVFNWvWVEhIiO68804tW7ZMoaGhqlu3rhYvXqzg4GB17ty5AqsGAAAAAMA9LIaJrrXbs2ePYmNjC8zv2bOnxo4dK8MwtHTpUq1Zs0bnzp1Tq1at9PDDD6tBgwal3lZ6errTqO8AAAAAAFwNVqu1xPekmyqklydCOgAAAACgPJQmpFeae9IBAAAAAKjqCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATMKroguoKF5e1falAwAAAADKUWnyp8UwDOMq1gIAAAAAAEqIy90BmMr58+c1fvx4nT9/vqJLAQCgUuEYClQNhHQApmIYhpKTk8VFPgAAlA7HUKBqIKQDAAAAAGAShHQAAAAAAEyCkA7AVKxWq+655x5ZrdaKLgUAgEqFYyhQNTC6OwAAAAAAJsGZdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6gEopLS1N0dHRSklJqehSAABwO8Mw9MEHH+ihhx4q0fGO4yJQdXhVdAEAAAAAnO3YsUPr16/X5MmTVa9ePdWqVauiSwJQTgjpAMpdXl6evLz4+AEAoCjHjx9XcHCwWrZsWdGlAChn/JYM4KqbPHmyGjduLE9PT3333Xe69tpr9dBDD2nBggX65Zdf5Ovrqw4dOujBBx9UQECApD/PIHz22Wf6/fff5eHhoRYtWmjkyJGqX79+Bb8aAACurlmzZmnDhg2SpOjoaNWpU0ejR48u1XHRbrfrX//6l3777Te99NJLCgkJ0datWxUfH68jR44oODhYPXv21N133y1PT8/yfHkAroCQDqBcbNiwQX369NGUKVOUlZWlV155RVFRUXrwwQd14cIFLVy4UO+++65iYmIkSdnZ2erXr5+aNGmi7OxsLVmyRNOmTdObb74pDw+G0wAAVF0PPfSQ6tWrp7Vr1+r111+Xh4eHkpKSSnxczM3N1YwZM5Senq5XXnlFAQEB+uWXXzRz5kw99NBDat26tY4fP64PPvhAknTvvfdWxMsEUAR+0wVQLkJDQzVixAg1aNBAu3btUnh4uIYNG6aGDRsqPDxcY8aM0Z49e3T06FFJ0l/+8hd16dJF9evXV1hYmMaMGaPDhw/ryJEjFfxKAAC4uvz9/eXn5ycPDw8FBQUpICCgxMfF7OxsvfHGGzp9+rRiYmIcV6jFx8dr4MCB6tWrl+rVq6cOHTpoyJAhWrNmTUW8RADF4Ew6gHIRHh7u+PrQoUPavXu37r///gL9jh8/rgYNGujYsWNasmSJ9u/frzNnzshut0uSbDabrr322nKrGwAAMyjpcXHGjBmqXbu2YmJi5O3t7ZifkpKivXv3atmyZY55drtdubm5ysnJkY+PT/m9GADFIqQDKBe+vr6Or7Ozs3XDDTdoxIgRBfoFBQVJkuLi4lSnTh09+uijCg4OlmEYGjdunPLy8sqrZAAATKOkx8WIiAh99913+u2339SuXTvH/OzsbEVHR6tLly4F1m21Wq96/QBKjpAOoNyFh4dr8+bNqlOnTqGD1Zw5c0ZHjx7Vo48+qtatW0uS9u7dW95lAgBgCqU5Lvbp00eNGzdWXFycJkyYoDZt2kiSmjZtqqNHjzIAK1AJcE86gHLXt29fnT17VjNmzND+/fuVmpqqHTt2aPbs2bLb7apRo4Zq1aqlNWvWKDU1Vbt379a8efMqumwAACpEaY+Ld9xxh4YOHao33njDEeYHDx6sb7/9Vp9++ql+//13HTlyRBs3btTixYvL62UAKCFCOoByV7t2bU2ZMkV2u11Tp07Vs88+q3nz5snf318Wi0UeHh566qmndPDgQY0bN07z5s0r9P51AACqA1eOi3fddZeio6P1+uuv69dff1WnTp00fvx47dq1SxMmTNDEiRP1xRdfKCQkpJxeBYCSshiGYVR0EQAAAAAAgDPpAAAAAACYBiEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAIAKtH79ekVHR+vAgQMF2tasWaPo6Gi9+eabstvtFVAdAAAob4R0AABMaMuWLfrwww/VunVrPf300/Lw4JANAEB1wBEfAACT2bNnj2bMmKFGjRpp/Pjx8vb2ruiSAABAOfGq6AIAAMD/SUlJ0ZtvvqmgoCBNnDhR/v7+jrZffvlFq1ev1r59+3Tq1CkFBgaqS5cuGjZsmCPIz5o1Sxs2bCh2GzNnzlTdunUlSdu3b1dCQoKSk5NlsVjUunVrjRgxQo0bN3b0L2qd9erV0/vvv++YTkxMVGJiolJTU1WrVi117txZ9913n2rUqOHoM3nyZJ05c0Zjx47VRx99pOTkZAUFBWnAgAHq06ePo9+ePXsUGxurmJgYtW3b1jH/9ddf1/bt23XPPfcoOjraMX/37t1aunSpfv/9d2VlZTnm9+3bVw8//HCx+wMAADMhpAMAYBKpqamaOnWqrFarJk6cqODgYKf2TZs2KScnR3369FGtWrW0f/9+ffnll8rIyNA//vEPSdJtt92m9u3bO5aZOXOmIiMjFRkZ6ZgXEBAgSfr22281a9YsdezYUcOHD1dOTo6++uorTZo0SXFxcY4gL0lWq1WPPvqoUz1+fn6Or5cuXar4+Hi1b99effr00dGjR/XVV1/pwIEDmjJliry8/u9XjrNnz+r111/XTTfdpK5du2rTpk368MMP5eXlpaioqCL3T1JSkrZv315gflpamt544w0FBwdr8ODBjtc3c+bMonc2AAAmRUgHAMAETp06penTp+vUqVPq2LGjGjRoUKDPiBEjnC597927t+rXr69FixbJZrMpJCRELVq0UIsWLRx9Zs6cqWuvvVY9evRwWld2drbmzJmjqKgop/Dds2dPPf3000pISHCa7+HhUWAd+U6fPq3ly5erY8eOmjBhguP++QYNGuijjz7Sd999p1tuucXR/+TJk3rggQfUr18/SX/+YeHFF1/UokWL1KNHD6dAf6mFCxcqIiKiQFDftWuXLly4oCeeeKLAawcAoLLhnnQAAExg1qxZOnHihLp166adO3dq06ZNBfpcGtCzs7N1+vRptWjRQoZhKDk5uVTb27Vrl7KystS1a1edPn3a8c/Dw0PXXXed9uzZU6p15eXl6c4773Qa4K53797y8/PTTz/95NTf09NTvXv3dkx7eXmpd+/eOnXqlA4ePFjoNjZv3qz9+/dr2LBhBdrOnz8vSapVq1aJawYAwKw4kw4AgAmcPXtWTz/9tCIjI3XkyBHNnTtXHTt2dLon3WazacmSJdq2bZvTfdeSdO7cuVJt79ixY5KkV155pdD2Sy9lvxKbzSZJBc7+e3l5qV69eo72fMHBwfL19XWal79senq609lwSbLb7Vq0aJG6d++uJk2aFNh+fv+PP/5Yw4YNc1zuDgBAZURIBwDABO6//37ddNNNkqRHHnlEEydO1CeffKK//e1vkv4MqlOmTNHZs2c1YMAANWzYUD4+PsrIyNDs2bNlGEaptpff//HHH1dQUFCBdk9Pz7K9IDf65ptvlJ6erokTJxba3rJlS40YMULx8fGOe/MBAKisCOkAAJhA69atHV83b95cffv2VWJionr06KEWLVro8OHDOnbsmMaOHauePXs6+u7atcul7dWrV0+SFBgYqA4dOpSp9pCQEEnS0aNHHeuVpLy8PKWlpTkNZCf9eU96dna209n0o0ePSpLq1Knj1DcnJ0effvqp+vTpU6DtUv3791dqaqo2b96ssWPHysvLS6+++mqZXhcAABWBe9IBADCh++67T8HBwfr3v/+tixcvOu71vvSMuWEYWrVqlUvr79ixo/z8/JSQkKC8vLwC7adPny7xujp06CAvLy+tXr3aqb5vvvlG586d0/XXX+/U/+LFi1qzZo1jOi8vT2vWrFFAQICaNm3q1Hf16tXKycnR3XffXWwN27Zt05o1a/Too4/q+uuvL/MfHgAAqCicSQcAwIT8/Pw0atQoTZs2TZ9//rn69eunevXq6eOPP1ZGRob8/f21efNmnT171qX1+/v7a/To0Xr//fc1fvx4de3aVQEBAbLZbPrpp5/UsmXLEj9fPCAgQAMHDlR8fLxee+013XDDDY5HsDVr1kzdu3d36h8cHKwVK1YoLS1NDRo00A8//KCUlBQ98sgjBUZ237lzp4YOHVrsoHCZmZn617/+paioKKdHzQEAUBkR0gEAMKnIyEjdeOON+uyzz3TzzTdr/PjxmjNnjpYvXy6r1arIyEjdfvvteu6551xaf7du3RQcHKzly5dr5cqVys3NVe3atdW6dWunR6aVRHR0tAICApSYmKh58+apZs2a6t27t+67774CwbtmzZoaO3asPvroI61du1ZBQUEaNWqU04jv+YKDg3XXXXcVuV3DMDR79mzVqFFDI0eOLFXNAACYkcUo7UgzAAAALpo8ebLOnDmjt99+u6JLAQDAlLgnHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgnvSAQAAAAAwCc6kAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAk/j/v+24efeR8SQAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Статистика длины текста:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " mean \n",
+ " std \n",
+ " min \n",
+ " 25% \n",
+ " 50% \n",
+ " 75% \n",
+ " max \n",
+ " \n",
+ " \n",
+ " label \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " fake \n",
+ " 9.0 \n",
+ " 13.333333 \n",
+ " 2.000000 \n",
+ " 12.0 \n",
+ " 12.0 \n",
+ " 12.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " \n",
+ " \n",
+ " real \n",
+ " 9.0 \n",
+ " 12.333333 \n",
+ " 2.179449 \n",
+ " 10.0 \n",
+ " 10.0 \n",
+ " 12.0 \n",
+ " 15.0 \n",
+ " 15.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count mean std min 25% 50% 75% max\n",
+ "label \n",
+ "fake 9.0 13.333333 2.000000 12.0 12.0 12.0 16.0 16.0\n",
+ "real 9.0 12.333333 2.179449 10.0 10.0 12.0 15.0 15.0"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print(\"\\n=== Анализ длины текстов ===\")\n",
+ "\n",
+ "# Создаем копию DataFrame для безопасного изменения\n",
+ "df_analysis = df_clean.copy()\n",
+ "\n",
+ "# Правильное создание нового столбца\n",
+ "df_analysis.loc[:, 'text_length'] = df_analysis['text'].apply(lambda x: len(str(x).split()))\n",
+ "\n",
+ "# Построение boxplot с учетом новых требований seaborn\n",
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.boxplot(\n",
+ " data=df_analysis, \n",
+ " x='label', \n",
+ " y='text_length', \n",
+ " hue='label', # Добавлено для нового синтаксиса\n",
+ " palette='Set2',\n",
+ " legend=False # Отключаем легенду, так как она избыточна\n",
+ ")\n",
+ "plt.title('Распределение длины текста по категориям')\n",
+ "plt.ylabel('Количество слов')\n",
+ "plt.xlabel('Категория')\n",
+ "plt.show()\n",
+ "\n",
+ "# Статистика длины текста\n",
+ "print(\"\\nСтатистика длины текста:\")\n",
+ "display(df_analysis.groupby('label')['text_length'].describe())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bb5484fd-c283-4580-bfbc-7173c96ea60f",
+ "metadata": {},
+ "source": [
+ "## 6. Анализ заголовков"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "f14db05a-e19d-41a8-b4dc-aa94cbae5b04",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== АНАЛИЗ ЗАГОЛОВКОВ ===\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIoCAYAAADDW3C/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnN0lEQVR4nO3dfVwVdf7//+c5cJALhYMiKmGIImJe4EVqXqWRqambmqVJblqbmVit7WaW5tUWtXbh6q713XbbMjNNwqsuNDNTS3NN17wk8zrzAgW5UFEMOPP7wx/n45EDwhGFocf9dvPmmZn3zLxmOJzheWbmPRbDMAwBAAAAAABTslZ0AQAAAAAAwHMEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgD6DcWSwWl39eXl4KCQlRXFyc5s+fX9HlAQAAAFWKd0UXAKDqmjJliiQpLy9Pe/bs0bJly7RmzRpt2bJFM2bMqODqAAAAgKrBYhiGUdFFAKhaLBaLJOnKj5fVq1frrrvukiQdPHhQDRo0uNGlAQAAAFUOl+IDuGHuvPNOxcTEyDAMbd682Tl+zpw5GjRokBo2bCg/Pz8FBgaqc+fOmjdvXrHLysjI0MSJE9W8eXP5+/srKChIsbGxeu6555STk+Ns17179yK3Blz5b8SIES7LHjFihCwWiw4ePKgZM2YoJiZGvr6+Cg8P19NPP60zZ864reno0aN64okn1LBhQ1WrVk21atXSPffc47KtV5ozZ06xdRX3xUdGRoaef/55NW3aVH5+fgoKCtKdd96pL7/8stj1TJ06tUzrOX/+vF555RW1atVKAQEBql69ujp27KgFCxYUabt27VpZLBZNnTrV7boL9+fhw4ed4w4fPux230tSUlKSs7a1a9cWmb5nzx6NGDFC9evXl4+Pj+rUqaP4+Hj99NNPxW5/cQrrKO7f5TW72yZ3/7p37+7StvA9eKUzZ86oXr16Jb4Hi1u/u/UU/ozd7TN32+xu37szZ84cde3aVXXq1FG1atUUGhqqrl276oMPPijSds2aNXrsscd0yy23KDAwUH5+fmrevLmmTZum3NzcIu1Lel9aLBbt2bPHpf3q1avVu3dv1axZU9WqVVN0dLSee+45ZWdnF1t/gwYNil2+u/dsWdZx5eeLt7e3wsPDNWDAAG3cuNFtLe5+3/785z/LYrEoPj5eBQUFLtP27dunhx56SDfddJN8fHwUFhamhx56SPv27SvV/qxdu7Y6d+6sDz/8sNh9dKXC3+mr/XP3/kxKStLtt9+uoKAg+fn5qUWLFnrllVd08eLFUq+/uPfyd999pxo1auimm27S/v37neOzs7P12muvKS4uTuHh4fLx8VHt2rV1zz33FPk5lHbb3K1/5cqV6tOnj0JCQlStWjU1atRI48aNU1ZWVpFtKOl9d9ttt7m0vXjxov7617+qRYsW8vf3V2BgoLp27aqkpKQiy73893fPnj0aMGCAatasqYCAAHXp0sXtcaDwODNnzpwi0xISEpx1XSkzM1NPP/20GjVqpGrVqpW4fy7/LB0yZEiRZUnSpEmTSvxsB3BtuBQfwA1VeBb/8j8iRo8erWbNmun2229XvXr1dPr0aS1fvly///3v9dNPP+nFF190WcahQ4d0xx136Oeff1bbtm01evRoORwO7d27V3/729/0+OOPKyAgwGWewtsCLpeVlaVZs2YVW+vTTz+tb775RoMHD1b//v21cuVKzZw5U99++63Wr18vX19fZ9utW7eqZ8+eysjIUK9evXTvvfcqPT1dS5cuVZcuXbRkyRL16dOn2HX1799frVq1cg7PnDnTbbuff/5Z3bt31+HDh9W1a1f17t1bOTk5+uyzz9S7d2+9/fbbGjlyZLHrGT58uEuwcLeerKwsxcXF6YcfflCbNm30yCOPyOFwaOXKlYqPj9fu3bv10ksvFbuOa3Hu3Dn96U9/Knb6F198oXvvvVd5eXn63e9+p6ioKB09elSLFy/W559/rjVr1qhNmzZlXm9sbKwGDBjgHF66dKm2b99+1fn++Mc/ym63O4enTZtW6nVOmjRJqampZSmzQuzatUt+fn667777ZLfbdfr0aX322Wd66KGH9PPPP+uFF15wtp0+fbr27NmjTp06qW/fvsrNzdWGDRs0depUrV27Vl999ZW8vLyKrOPK92WhkJAQ5+u3335bo0ePVkBAgO6//36FhoZq7dq1mj59uj799FNt2LDB5WdxuaCgII0dO9Y5fPjwYb3//vtF2nm6jsLPl/z8fP3444/65JNPtHz5cm3dulXNmzcvZs9e8txzz2nGjBkaPHiwPvjgA5f9s3nzZvXo0UNnz57VPffco1tuuUV79uzRvHnztGzZMn311Vdq165dkWUW7k/DMHTs2DEtXrxYw4YN07lz5zRq1KgS67lct27dinyBJBX/+zFhwgS98sorCgkJUXx8vKpXr64VK1ZowoQJWrlypb788kv5+PiUev2X+/7773X33XerRo0aWrNmjaKiopzTfvzxR02cOFG33367+vbtq+DgYB05ckSffPKJVqxYoU8//VS9e/eWdClwX3k8KPwcvPw9Uti20LRp0zR16lTVrFlT/fr1U2hoqHbs2KHXX39dy5cv18aNGxUYGOgy/5Xvu0Lh4eHO17/++qt69eqldevWKSYmRmPGjNH58+eVnJysIUOGaNu2bXr55ZeLLOPQoUPq2LGjWrRooVGjRunEiRNauHCh7r77bs2fP7/YcH25//3vf3r77beLnd6nTx/997//VZMmTTR69Gjne3/t2rVat26d23m8vLy0ZMkSnThxQvXq1XPZzn/961/y8vIq8uUVgHJiAEA5k2S4+3hZtWqVYbFYDIvFYhw+fNg5fv/+/UXaXrx40YiLizO8vb2No0ePukzr2LGjIcl4+eWXi8yXlpZmXLhwwTncrVs3t7UYhmEcOnTIkGQMHz7cZfzw4cMNSUatWrVc6iwoKDDuvfdeQ5Lxl7/8xTk+Ly/PaNSokVGtWjVj7dq1Lss6duyYERYWZtStW9fIzc0tUsM777xjSDLmzJnjMj4iIsKIiIgo0r5bt26GxWIxFixY4DI+MzPTiI2NNXx9fY3U1NQi802cONGQVKQ+d+sp3P7p06e7jL9w4YLRq1cvw2KxGD/88INz/Jo1awxJxpQpU4qs9/LlHTp0yDmuuH3/5z//2ZBktGvXzpBkrFmzxjktIyPDsNvtRq1atYzdu3e7zLdz504jICDAaN26tdsairN//35DkjFixIir1ny5Bx980JDk8v4wjEvv/W7durmMc/ce3LZtm+Hl5eXczuLeg8Wt3916pkyZUmSfuVPcvi+L7Oxsw9/f37jllltcxh84cMBwOBxF2r/wwguGJOOjjz7yqObDhw8bPj4+Ro0aNYwff/zRZdro0aMNScbIkSPdznvTTTcZDRo0cBnn7j3ryTqK+3z5+9//7vZ36Mrft8L9MmjQICMvL8+lrcPhMGJiYgxJxrx581ymffTRR4Yko0mTJkZBQYFzfHH7c8eOHYYk4+677y5Sqzue/E5/9913hiSjfv36xokTJ5zj8/LyjH79+hmSjMTExFKt/8rt+N///mfY7XajTp06RX42hmEYWVlZRlpaWpHxv/zyi1GvXj0jJiamxPUV93lb6OuvvzYkGR07djQyMzNdpr333nuGJGPs2LFlWmahl19+2fmzufw9cPLkSSMiIsKQZGzYsME5vvD3V5LxzDPPuCxr8+bNhre3t2G3243s7OwiNb733nvOcQUFBUa7du2MGjVqGE2aNCnyPt69e7fzPXblscvd+6ywrj59+hjVqlUzJk+e7DLP3LlzDUnOY+jVfucBlB2X4gO4bqZOnaqpU6dq4sSJuu+++9S7d28ZhqGxY8cqIiLC2a5Ro0ZF5vXx8dGYMWOUn5+v1atXO8f/73//08aNG9WqVSuNHz++yHwhISEuZ9KvxR//+EeXOq1Wq1577TVZrVa9++67zvGff/65Dhw4oCeffFLdunVzWUZYWJieffZZpaamumxHoQsXLkhSqc5ibd++XevWrdOgQYP0wAMPuEyz2+3Oy50XLVpUZN68vDxJUrVq1Upcx+nTpzVv3jzdeuutevbZZ12m+fr6avr06TIM47o83WDXrl2aNWuW7rnnHrdXN8ydO1dZWVmaNm2abrnlFpdpzZs318iRI/XDDz8oJSWl1Ossy/6/XGn3pzuGYSghIUG+vr564403yjx/RTIMQ6dOndI777yj8+fPF/ndbdiwodtLep9++mlJly5l9sS8efP066+/6oknnlBMTIzLtMTERNWoUUMffPCB28u98/LySvVzupZ1XCk/P1+SVLdu3WLbvPjii3rppZc0YMAALViwQN7erhdRfvfdd9qzZ486duyoBx980GXakCFD1KVLF/30009av359udRzrQo/E1944QWX9Xh7e+uNN96Q1WrVO++8U+blbt++XXfddZdsNptWr15d5GcjXTozfvnVHYXCw8N13333ac+ePTpy5EiZ113o73//uyTp3//+d5ErNkaMGKFWrVqV6VaHy7377ruyWCyaMWOGy3sgNDRUkyZNkiS3+y0oKEiTJ092GXfrrbfqwQcfVFZWlpYsWVLiev/9739r8+bNmjZtmtv3xfnz5yXJeRl+adWuXVsPPPCA/vWvfzk/JyXpH//4h7p166YWLVqUelkAyoZL8QFcN4WXJVssFtntdnXt2lV/+MMfNGzYMJd2R44c0fTp07V69WodOXLEGbYKHTt2zPn6v//9rySpV69eslqv73eTV4Z06VJwqV+/vg4fPqysrCzZ7XbnPZw///yz23t2C++F/fHHH4sE1oyMDEmSv7//VespXE92drbb9aSlpTnXc6XCfgGu9qXH5s2bVVBQUOz9x4V/qLlbx9q1a93Os23bthLXWWjMmDGy2WyaNWuW23tBC7d/+/btbtezd+9eZ21XBv/ilGX/X660+9Odd999V999952mT5+u+vXrl9h25syZxV5eXpw5c+Y47yO22+26+eab1atXrzJv45WioqJ04MABSZd+p7t166bZs2e7tMnJydGsWbO0ZMkS7d27V2fPnnXpRPPy3+Wy2Lp1qyQpLi6uyLTg4GC1bt1a33zzjfbs2aPY2FiX6YV9GVzPdRS+H/Pz85WSkqJPP/1Ud999twYPHux2XdOnT3eGskmTJslms5WpnsLx69ev1w8//KDbb7/dZVrhe8AwDB09elSLFi1SkyZN9Pzzz5ewB65NSfVGR0crPDxchw4dUnZ2toKCgkq1zF27dmnatGnKyMjQk08+qWbNmhXbdsOGDZo1a5Y2btyoU6dO6ddff3WZfuzYMd18881l2KL/s3HjRtlsNn388cf6+OOPi0z/9ddflZaWptOnT6tWrVqlXu7Zs2e1f/9+3XTTTW6/sCjclz/88EORaW3atFGNGjWKjO/evbvef/99/fDDDxo+fLjb9aanp2vChAlq0aKFnnzySS1btqxIm5iYGAUGBmrVqlX6z3/+o0GDBpX6s+jJJ5/U+++/r+TkZA0dOlSbNm3S5s2blZycrJ07d5ZqGQDKjmAP4Lq5/A/64hw8eFDt27dXZmamunbtqp49eyooKEheXl7O+2AvP0NW2EnRTTfddL3KdqpTp47b8XXr1tXPP/+s7Oxs5z3Hktz+wXe5c+fOFRlXeBYpLCzsqvUUrmfVqlVatWpVmdaTnp4u6dJZoNKsY/PmzSV2+uduHevWrSv2vsurmTt3rr755hu99NJLxXYaWFjbv//97xKX5a624pRl/18uPT1dPj4+ZQ7dGRkZeu6559S0aVM9/fTTVw26JfUBURx3944HBwfrrbfeKnKlR1k89dRTSk9P17Fjx7Rq1SpFRka6fLGRl5enuLg4ff/992revLmGDBmi2rVrO0PrtGnTytSB2uUKO64rLqAXjr+yE7OcnBzl5uZe9X1/LeuQivatEBoaqttuu63IWXjpUiebzz33nDp16qTNmzfrkUce0ffff1/kqpFrqefK94CPj486d+5c5vdrWZSm3iNHjigrK6vUwX7s2LEKDAxUy5Ytne/fTp06FWm3ZMkS3XffffL19dVdd92lRo0aKSAgQFar1Xk/uKfvPenSZ09+fv5V+9A4d+5cmYL9tfyMSzo+Xb5sd5599lllZmZq2bJlbt+jklS9enXNnz9fw4cP16OPPqpHH3202OVdqW3bturYsaNmz56toUOH6h//+IezU0mCPXD9EOwBVKgZM2bo9OnTeu+994r00r1gwYIif6AW/mHq6Zm/sjh58qSaNGlSZHxhh2eFf5wW/r9s2TLdc889ZVrH1q1bZbFY1Lhx46u2LVzPrFmz9NRTT5VpPfv375efn1+xfwxeuY6nn35aM2bMKNM6pkyZ4vZM+ogRI9yGzUJZWVkaN26coqOjNW7cuKvWtn37drVs2bJMtRWn8CxjdHR0mebbv3+/R49rfP7555Wenq6kpCS3Z2mvdOjQIbfrcXe5e6E1a9Y4OzzLyMhQcnKynnjiCT3yyCPODsQ8cfl77uTJk2rVqpV+/PFH51U0y5Yt0/fff68RI0bovffec5n3xIkTZepY8EqFP/vU1FS3Z21PnDjh0q5QYc/pkZGR120d0v99ielwOHTs2DHNmDFDU6ZMUWpqqt566y2XtgUFBYqLi9Nnn32mmTNnasKECXrhhRf06quvFluPOyXVc+V7YMmSJUpISNDmzZu1devWYsPctbi8Xne3V5VUb3GqV6+ulStXym63q3Xr1vr973+v7du3q3r16i7tJk2aJB8fH23ZskVNmzZ1mTZq1CiPv3AsFBQUJIfD4bzCp7xcy8/45MmTbue58vh0pe+++05z5szRQw89pC5dupRYX9++fXXkyBG1a9dOe/bs0Z/+9CcFBASU2HleoSeffFLx8fH64osv9PHHH2vy5MluO84EUH64xx5AhSr8w3vQoEFFprn7w6HwMUErV66Uw+G4rrW5W//Bgwf1yy+/qEGDBs4vGQpr+vbbb8u0/NTUVO3YsUMtWrQo1Zk0T9dz9uxZ7d69W61bt77qH1bt27eX1Wot8zquxQsvvKBTp05p9uzZJd7r7un2l+TLL7+U1WpV586dSz3Pnj17lJWVpVtvvbVM6/r+++/1zjvvKD4+XnfccUdZS/VIzZo19dhjj6l37966cOGCdu3aVS7LrVOnjm677TZt2rTJeTVI4e/yvffeW6T9tQar1q1bS5LbR2RlZWVp27Zt8vX1LRLqCm/fKM3PytN1XM5qtap+/fr629/+pqCgILd9UYSEhOjTTz+Vn5+fxo8fry5duuiNN94oso9Kqke6FN4lXfUpEDVr1tQf/vAH9e7dWzt37rxuZ0xLqnf//v06evSoIiMjy3TVwL/+9S+1a9dOjRs31owZM3Tw4EH98Y9/dLv8W265pcjPxuFwlKoPgqu57bbblJmZqd27d1/zsi5Xo0YNNWrUSMeOHXP7+MKSfsZbt27V2bNni4wv3P+FP4/LFRQUKCEhQUFBQUW+SCrOu+++q5SUFI0fP16vvfaapk6d6vZJCVe67777VK9ePT3wwAOyWCx67LHHSrU+AJ4j2AOoUIVnI909L9hdh0Ft27ZVp06dtG3bNk2fPr3I9NOnT7t9XrYnZs2apZ9//tk57HA4NG7cODkcDj388MPO8f3791ejRo305ptvavny5W6XtXHjRmdnRIVeffVVFRQUFOkYqzi33nqrunbtqsWLF7t03ne5nTt36tSpUy7jXnrpJeXl5en++++/6jpCQ0P14IMPasuWLXrxxRfdPpbowIEDOnToUKlqvprt27fr//2//6f7779fd911V4ltH374YWcngd9//32R6Q6Ho0zPRv7kk0+0e/du9erVy23HW+44HA795S9/kaRS7c/LJSQkqHr16nr99dfLNN+1ys/Pd/68goODyzx/Yd8Nlztw4IC++eYb+fr6Os+eFve7fPDgQbcdXZbFsGHDZLPZ9I9//MPl+eXSpbO1Z86c0bBhw1w6+crIyNCsWbPk4+NTqitpPFlHcQ4cOOA2dElSQECAs78Dq9WquXPnKiAgQA899JDL5dOdO3dWkyZNtH79eiUnJ7ssIzk5Wd9++62io6OvetZVknJzc/XTTz9JKvlqj2vxyCOPSLr0eXP5e6agoEDPPPOMHA6H/vCHP5RpmZffQvHYY4+pX79+evfdd7V06VKXdg0aNNC+fft0/Phx5zjDMDR16tQydaZZnMLOH0eOHOmyjkI5OTnOK1fK6pFHHpFhGBo3bpzL5216errzUa+F+/Zy2dnZzs+iQlu2bNGHH36ooKAgDRw4sMg8/+///T9t375diYmJpbo9ZefOnRo3bpw6dOhQZF1XY7PZNHbsWFWvXl1/+MMfVLt27TLND6DsuBQfQIVKSEjQe++9p/vvv1/33XefwsLCtGvXLn3xxRcaPHiwFi5cWGSeefPmqXv37powYYIWLVqk7t27yzAM7du3T19++aX27Nnj0WXSV+rcubNatWqlIUOGKCgoSCtXrtT27dvVtm1blx7jbTabFi9erF69eqlv377q1KmTWrVqJX9/f/3yyy/avHmzDh48qBMnTsjf39/5XOLCe/JPnDhR5BL2wnsqp06dqgEDBjifcT9//nzFxcXpD3/4g/7+97+rQ4cOstvtOnr0qHbs2KFdu3Zp48aNCg0N1cqVK/XCCy9oy5YtateunUaPHl2q7Z49e7b27dunyZMn64MPPlCXLl1Up04dHT9+XD/++KM2b96sBQsWlOry5qvZtm2bqlevrr/97W9XbVurVi0lJydr4MCBuu2223TnnXeqWbNmslgs+uWXX7Rx48ZSfbGTlZWlyZMnO+/Vr1atWpH9X9jh38yZM9W9e3cNGDBAH374oRITE/Xjjz+qf//+Ls+9L43//e9/mjlzZqk6crsWn3zyifbs2SPpUrhdtmyZdu3apS5duqhZs2Y6fPhwmZZ30003KS4uTlFRUapevboOHTqkTz75RLm5uZo0aZLzPvvf/e53ioqK0owZM7Rz5061bt1aR44c0Weffea8pNdTDRo00MyZMzVmzBi1adNGgwcPVu3atbVu3Tpt3LhRMTExLl/0Pf/883rnnXeUnp6uGTNmXPUWFE/WcbnC94/D4dDx48e1ZMkSORwOPf7441ddb2RkpP7+97/r4Ycf1hNPPKEPPvhA0qUA/v777+uuu+7SkCFD1L9/f8XExOinn37S0qVLVaNGDc2dO9dtJ6KFnedJUmZmplasWKF9+/apY8eORTr+Ky+dOnXSs88+q1dffVXNmzfXfffdp4CAAK1YscL5/ivpVpvS+M9//qMWLVpo5MiRuu2225z3kz/99NN6/PHH1bp1aw0aNEg2m00bNmxQSkqKfve73+nTTz+9pvXeeeed+utf/6rnn39ejRs3Vp8+fRQZGalz587p559/1rp169SlSxd98cUXZV72M888oxUrVmjZsmWKjY1Vnz59dP78eX388cc6deqUnn32Wbdf3tx+++165513tGnTJnXu3Nn5HHuHw6G3335bgYGBReb53//+p7Zt25bqfXnhwgUNHTpUNptN8+fP9+j2jWeffbbI01UAXEcV9Jg9AFWYinmOfXE2bNhg3HHHHYbdbjeqV69udO7c2ViyZEmJz1JOT083nn32WSM6OtqoVq2aERQUZMTGxhoTJkwwcnJynO2u5Tn2Bw4cMF5//XWjSZMmRrVq1YywsDDjj3/8o8vzgS938uRJY/z48UazZs0MPz8/IyAgwIiKijIGDRpkfPDBB85nFBc+U7i0/y5/9rBhGMaZM2eMxMREo02bNkZAQIDh6+trNGjQwOjTp4/x9ttvG+fOnTMMwzASExON2NhYIzEx0Th//rzbmot71vLFixeNf/zjH0bHjh2NwMBAw8fHx6hfv74RFxdn/O1vfzPS09Odba/lOfaSjFdffbXIPCU93/zQoUPGmDFjjKioKKNatWrO5zAPGzbMWLJkidsarpy/LPu/8P0xevRoo3379sbs2bON/Px8t8tWCc+xb9myZZH5rvYe9OQ59pf/CwwMNFq0aGG8+OKLzvdtWZ9jP2bMGKNly5ZGYGCg4eXlZYSEhBg9evQo8kx6wzCMI0eOGPHx8UZYWJjh6+tr3HLLLcb06dONvLy8Emsu7TOtV65cadx1112G3W43fHx8jEaNGhnjxo0r8mzx1q1bG7179zaWL1/udjklvWdLuw7D+L+fbeE/i8Vi1K5d2+jcubMxZ84cw+FwuLQv6dnmhc/3Xrhwocv4PXv2GMOGDTPq1q1reHt7G3Xr1jUefPBBY8+ePUWWUdr3wNV48jtdaMGCBUbnzp2N6tWrG9WqVTNuueUW46WXXjIuXLhQqnVfvh3u3heffPKJ83npl3vvvfeM2NhYw9/f36hVq5YxYMAAY8eOHaV6j5X2mfPffvutcf/99xv16tUzbDabERISYsTGxhpPP/20sXnzZo+WaRiGceHCBSMxMdFo1qyZ4evr6zwOzp8/v0jby39/U1JSjHvuucew2+2Gn5+f0alTJ+OLL74oMk/hMcdisRj//e9/i0x3d5x8/PHHDUnGBx98UKR9Sc+xv9rnSll/5wGUnsUwStFtNQD8hhR29lZcx2XXas6cOXr44YdL9dQAi8XitmNBeO7w4cOKjIx06WCsON27d1eDBg3cPn4PAG60ws+v4cOH87kEwAX32AMAAAAAYGLcYw8AN1irVq00ZcqUUrWdMmWK8/56lA+73a4pU6aU6mqMESNGXNdnfwMAAJQHgj0A3GCtWrUqdVh391x4XBu73V7q/cotEAAAwAy4xx4AAAAAABPjHnsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkav+GWQmZmp/Pz8ii4DAAAAAFDFeXt7Kzg4uHRtr3MtVUp+fr7y8vIqugwAAAAAAJy4FB8AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAm5l3RBVxuzJgxSktLKzK+Z8+eevTRR93Os3HjRi1cuFBpaWmqW7euHnzwQbVp08Y53TAMJSUlafXq1crJyVFMTIweffRR1atX77ptBwAAAAAAN4rFMAyjoosodObMGTkcDufwkSNH9NJLL2nKlClq1qxZkfY//fSTpkyZovj4eLVp00br16/XsmXLNH36dN18882SpKVLl2rp0qUaM2aMQkNDtXDhQh05ckQzZsyQj49PmepLS0tTXl7etW0kAAAAAABXYbPZVLt27VK1rVSX4gcGBsputzv/bd26VXXq1NEtt9zitv3y5cvVqlUr3XPPPQoPD9cDDzyghg0b6osvvpB06Wz98uXLde+996pdu3aKiIjQE088oczMTG3evPlGbhoAAAAAANdFpboU/3L5+fn69ttv1bdvX1ksFrdt9u7dq379+rmMi42NdYb2U6dOKSsrSy1btnRO9/f3V1RUlPbu3avOnTu7XW5eXp7LmXmLxSI/Pz/na7M5c+aMLly4UNFl/Gbk5+crOzu7ossAboigoCB5e1faQ0mV4+fnp8DAwIou4zeFY+iNxTEUvyUcQ2+sqn4MrbTvpO+//145OTnq3r17sW2ysrIUFBTkMi4oKEhZWVnO6YXjimvjzpIlS5ScnOwcjoyM1PTp00t9GURlkpmZqb///e/cQgAAVYDNZtOzzz6r4ODgii7lN+HSMXSW8vLyK7oUAMA1stm89eyz46vsMbTSBvs1a9aoVatWqlmz5g1f98CBA12uBCg8S5+Wlqb8fHMd3E+ePKm8vDxFdegnv8BaFV3Ob4KjIF8XczjbgN+GagFBsnpV2kNJlXLhzGnt3/SZfv75Z+Xm5lZ0Ob8Jl46h+erfrJZCAmwVXc5vQn6Boaxcc/2tBXjK7ustby/zXQ1sRuk5eVq2+7TpjqHe3t6lPrlcKf8aS0tL044dO/TMM8+U2M5utxe5XCs7O1t2u905vXDc5d/MZGdnq0GDBsUu12azyWZzfwCvRH0NlkphvX6BtRQQXLeCq/ntqBESXtElAKiiDMMw3bHIrAr3c0iATfUCq1VwNb8d9Su6AABVVlU+hlaqzvMKrVmzRkFBQS6PrXMnOjpaO3fudBm3Y8cONW7cWJIUGhoqu93u0ub8+fPav3+/oqOjy79wAAAAAABusEoX7B0Oh9auXatu3brJy8vLZdrs2bM1f/5853CfPn20fft2ffrppzp27JiSkpJ04MAB9e7dW9KlS+j79OmjxYsXa8uWLTpy5Ihmz56t4OBgtWvX7oZuFwAAAAAA10OluxR/586dSk9P1x133FFkWnp6ukuv9E2aNNFTTz2ljz76SAsWLFC9evU0btw45zPsJal///66ePGi3n77bZ0/f14xMTGaMGFCmZ9hDwAAAABAZVTpgn1sbKySkpLcTps6dWqRcR07dlTHjh2LXZ7FYtGQIUM0ZMiQ8ioRAAAAAIBKo9Jdig8AAAAAAEqPYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEzMu6ILuFJGRobmzZunbdu26eLFi6pbt64SEhLUqFEjt+3ffPNNrVu3rsj48PBwzZgxQ5KUlJSk5ORkl+lhYWGaOXNmudcPAAAAAMCNVKmC/blz5zRp0iQ1a9ZMEyZMUGBgoE6cOKGAgIBi53n44Yf14IMPOocLCgo0btw43XbbbS7t6tevr0mTJjmHrVYuVgAAAAAAmF+lCvbLli1TrVq1lJCQ4BwXGhpa4jz+/v7y9/d3Dn///ffKycnRHXfc4dLOarXKbreXa70AAAAAAFS0ShXst2zZotjYWM2YMUMpKSmqWbOmevbsqR49epR6GV9//bVatGih2rVru4xPTU3VqFGjZLPZFB0drfj4eIWEhLhdRl5envLy8pzDFotFfn5+ztdmYrZ6AQAls1gsfLbfIOxnAKhaqvIxtFIF+1OnTmnVqlXq27evBg4cqAMHDui9996Tt7e3unfvftX5MzIytG3bNj311FMu4xs3bqyEhASFhYUpMzNTycnJmjx5st544w1nYL/ckiVLXO7Jj4yM1PTp04t8WWAGBQUFFV0CAKAchYSEqF69ehVdxm8Cx1AAqFqq8jG0UgV7h8OhRo0aKT4+XtKlQH3kyBGtWrWqVMF+3bp1CggIUPv27V3Gt27d2vk6IiLCGfQ3btyouLi4IssZOHCg+vXr5xwu/FYnLS1N+fn5nmxahUlPT6/oEgAA5Sg9PV1eXl4VXcZvAsdQAKhazHYM9fb2LvXJ5UoV7IODgxUeHu4yLjw8XJs2bbrqvIZhaM2aNeratau8vUverICAAIWFhSk1NdXtdJvNJpvNVux6zMRs9QIASmYYBp/tNwj7GQCqlqp8DK1UXcM3adJEx48fdxl3/PjxUn1LkZKSotTUVLdn4K+Um5ur1NRUOtMDAAAAAJhepQr2ffv21b59+7R48WKlpqZq/fr1Wr16tXr16uVsM3/+fM2ePbvIvF9//bUaN26sm2++uci0uXPnKiUlRadOndJPP/2k1157TVarVV26dLmu2wMAAAAAwPVWqS7Fj4qK0jPPPKP58+dr0aJFCg0N1fDhw9W1a1dnm8zMzCL3vJ0/f16bNm3SiBEj3C43IyNDs2bN0tmzZxUYGKiYmBglJiYqMDDwem4OAAAAAADXXaUK9pLUtm1btW3bttjpY8aMKTLO399f8+bNK3aesWPHlkdpAAAAAABUOpXqUnwAAAAAAFA2BHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEzMu6ILuFJGRobmzZunbdu26eLFi6pbt64SEhLUqFEjt+13796tadOmFRn/r3/9S3a73Tn8xRdf6NNPP1VWVpYiIiL0yCOPKCoq6nptBgAAAAAAN0SlCvbnzp3TpEmT1KxZM02YMEGBgYE6ceKEAgICrjrvzJkz5e/v7xwODAx0vv7uu+80d+5cjRw5Uo0bN9bnn3+uxMREzZw5U0FBQddlWwAAAAAAuBEqVbBftmyZatWqpYSEBOe40NDQUs0bFBRU7BcAn332me68807dcccdkqSRI0dq69atWrNmjQYMGHDNdQMAAAAAUFEqVbDfsmWLYmNjNWPGDKWkpKhmzZrq2bOnevTocdV5n332WeXl5al+/fq6//77FRMTI0nKz8/XwYMHXQK81WpVixYttHfvXrfLysvLU15ennPYYrHIz8/P+dpMzFYvAKBkFouFz/YbhP0MAFVLVT6GVqpgf+rUKa1atUp9+/bVwIEDdeDAAb333nvy9vZW9+7d3c4THByskSNHqlGjRsrLy9Pq1as1bdo0JSYmqmHDhjpz5owcDofL/faSZLfbdfz4cbfLXLJkiZKTk53DkZGRmj59umrXrl1em3rDFBQUVHQJAIByFBISonr16lV0Gb8JHEMBoGqpysfQShXsHQ6HGjVqpPj4eEmXAvWRI0e0atWqYoN9WFiYwsLCnMNNmjTRyZMn9fnnn+vJJ5/0qI6BAweqX79+zuHCb3XS0tKUn5/v0TIrSnp6ekWXAAAoR+np6fLy8qroMn4TOIYCQNVitmOot7d3qU8uV6pgHxwcrPDwcJdx4eHh2rRpU5mWExUVpT179ki61Ime1WpVVlaWS5usrKwiZ/EL2Ww22Ww2t9MMwyhTLRXNbPUCAEpmGAaf7TcI+xkAqpaqfAytVM+xb9KkSZHL448fP17mS+APHz6s4OBgSZe+5WjYsKF27drlnO5wOLRr1y5FR0dfe9EAAAAAAFSgShXs+/btq3379mnx4sVKTU3V+vXrtXr1avXq1cvZZv78+Zo9e7Zz+PPPP9fmzZuVmpqqI0eOaM6cOdq1a5fLPP369dPq1au1du1aHT16VO+8844uXrxY7OX9AAAAAACYRaW6FD8qKkrPPPOM5s+fr0WLFik0NFTDhw9X165dnW0yMzNd7nnLz8/X3LlzlZGRoWrVqikiIkKTJk1S8+bNnW06deqkM2fOKCkpSVlZWWrQoIEmTJhQ7KX4AAAAAACYRaUK9pLUtm1btW3bttjpY8aMcRnu37+/+vfvf9Xl9u7dW717977m+gAAAAAAqEwq1aX4AAAAAACgbAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYWLkH+4KCgvJeJAAAAAAAKIa3pzOuWbNGhw4dUvPmzdW+fXslJydr2bJlcjgcatOmjUaPHi1/f//yrBUAAAAAAFzBo2C/dOlSLViwQBaLRStXrtSgQYO0dOlSde/eXb/++qvWr1+vkJAQDR8+vLzrBQAAAAAAl/Eo2K9Zs0YtWrTQc889p6VLl2rRokW67777NGjQIEmSr6+vNm/eTLAHAAAAAOA68+ge+/T0dHXq1Ene3t7q3r27HA6HGjVq5JweFRWljIyMcisSAAAAAAC451Gwz8/Pl4+PjySpWrVqkiRv7/87+e/l5UUnegAAAAAA3AAed5537NgxpaSk6Pz585Kkn3/+WVar1TkNAAAAAABcfx4H+8WLF2vx4sXO4blz55ZLQQAAAAAAoPQ8CvZTpkwp7zoAAAAAAIAHPAr2t9xyS3nXAQAAAAAAPODxpfiFjh49qrS0NElS7dq1FR4efs1FAQAAAACA0vE42G/evFlz587VqVOnXMaHhoZq+PDhuvXWW6+5OAAAAAAAUDKPgv3WrVv1xhtvqHbt2ho6dKjzLP3Ro0e1evVqvf7663ruuefUqlWr8qwVAAAAAABcwaNgv2jRIkVERGjatGny9fV1jr/11lvVu3dvTZ48WR9//DHBHgAAAACA68zqyUxHjhxRt27dXEJ9IV9fX3Xv3l1Hjhy55uIAAAAAAEDJPDpjb7PZdO7cuWKnnzt3TjabzaOCMjIyNG/ePG3btk0XL15U3bp1lZCQoEaNGrltv2nTJn355Zc6fPiw8vPzFR4ervvvv9/laoGkpCQlJye7zBcWFqaZM2d6VCMAAAAAAJWFR8G+efPmWr58uVq1aqXo6GiXafv27dOKFSvUsmXLMi/33LlzmjRpkpo1a6YJEyYoMDBQJ06cUEBAQLHz/Pjjj2rZsqWGDh2qgIAArVmzRtOnT9fLL7+syMhIZ7v69etr0qRJzmGr1aOLFQAAAAAAqFQ8CvbDhg3TxIkTNWnSJEVFRSksLEySdPz4ce3fv19BQUF68MEHy7zcZcuWqVatWkpISHCOCw0NLXGeESNGuAzHx8dry5Yt+t///ucS7K1Wq+x2e5lrAgAAAACgMvMo2IeGhur111/XkiVLtG3bNn333XeSLj3Hvk+fPhowYICCgoLKvNwtW7YoNjZWM2bMUEpKimrWrKmePXuqR48epV6Gw+HQhQsXVL16dZfxqampGjVqlGw2m6KjoxUfH6+QkBC3y8jLy1NeXp5z2GKxyM/Pz/naTMxWLwCgZBaLhc/2G4T9DABVS1U+hnr8HPugoKAiZ8uv1alTp7Rq1Sr17dtXAwcO1IEDB/Tee+/J29tb3bt3L9UyPv30U+Xm5qpjx47OcY0bN1ZCQoLCwsKUmZmp5ORkTZ48WW+88YYzsF9uyZIlLvfkR0ZGavr06apdu/Y1b+ONVlBQUNElAADKUUhIiOrVq1fRZfwmcAwFgKqlKh9DPQ7214PD4VCjRo0UHx8v6VKgPnLkiFatWlWqYL9+/XolJydr3LhxLlcMtG7d2vk6IiLCGfQ3btyouLi4IssZOHCg+vXr5xwu/FYnLS1N+fn5nm5ehUhPT6/oEgAA5Sg9PV1eXl4VXcZvAsdQAKhazHYM9fb2LvXJZY+C/bRp067axmKxaPLkyWVabnBwsMLDw13GhYeHa9OmTVedd8OGDfrnP/+pP/3pT1ftuC8gIEBhYWFKTU11O91msxXbq79hGFetpTIxW70AgJIZhsFn+w3CfgaAqqUqH0M96ho+JSVFWVlZJbbxZIc1adJEx48fdxl3/Pjxq35LsX79er311lv64x//qDZt2lx1Pbm5uUpNTaUzPQAAAACA6Xl8Kf6gQYPUpUuX8qxFffv21aRJk7R48WJ16tRJ+/fv1+rVq/XYY48528yfP18ZGRl64oknJF0K9W+++aZGjBihxo0bO79w8PHxkb+/vyRp7ty5uvXWWxUSEqLMzEwlJSXJarWWe/0AAAAAANxoleoe+6ioKD3zzDOaP3++Fi1apNDQUA0fPlxdu3Z1tsnMzHS55+2rr75SQUGB/vOf/+g///mPc3y3bt00ZswYSVJGRoZmzZqls2fPKjAwUDExMUpMTFRgYOCN2zgAAAAAAK4Dj4P92bNndfr0adlsNvn6+srHx6dcCmrbtq3atm1b7PTCsF5o6tSpV13m2LFjr7EqAAAAAAAqJ4+D/Zw5czRnzhznsK+vr8LDw9W8eXPdfffd3L8OAAAAAMAN4FGwHz16tKRLj6fLz89XTk6OsrKydPToUX3++edavXq1XnzxxSr7jEAAAAAAACoLj4J9Sc+UT09P1+TJk7Vw4UIugQcAAAAA4Drz6HF3JQkJCdGAAQOUlpZW3osGAAAAAABXuC694vfs2VM9e/a8HosGAAAAAACX8eiM/cGDB7Vy5cpip69cuVKHDx/2tCYAAAAAAFBKHgX7jz76SDt37ix2+q5du/TRRx95XBQAAAAAACgdj8/Yx8TEFDu9adOmOnDggMdFAQAAAACA0vEo2F+4cEFeXl7FTrdYLDp//rzHRQEAAAAAgNLxKNjXq1dP27dvL3b6tm3bVKdOHY+LAgAAAAAApeNRsI+Li9MPP/yg999/Xzk5Oc7xOTk5mjNnjrZt26a4uLhyKxIAAAAAALjn0ePu7r77bh0+fFjLly/XihUrFBwcLEnKzMyUYRjq2rWr+vbtW66FAgAAAACAojwK9haLRQkJCbr99tu1adMmnTp1SpLUrl07dejQQc2aNSvXIgEAAAAAgHseBftCzZs3V/PmzcurFgAAAAAAUEYe3WMPAAAAAAAqB4I9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABO7pl7xJSk3N1fp6emSpJCQEPn6+l5zUQAAAAAAoHQ8Dvb79+/Xhx9+qD179sjhcEiSrFarYmJiNGzYMDVq1KjcigQAAAAAAO55FOz37dunqVOnytvbW3FxcbrpppskSceOHdOGDRs0ZcoUTZ06VVFRUeVaLAAAAAAAcOVRsP/oo49Us2ZNvfjii7Lb7S7T7r//fk2aNEkLFizQpEmTyqNGAAAAAABQDI86z9u3b5/uuuuuIqFekux2u3r06KF9+/Zda20AAAAAAOAqPAr2FotFBQUFxU53OByyWCweFwUAAAAAAErHo2DfpEkTrVy5UmlpaUWmpaen68svv1RMTMw1FwcAAAAAAErm0T32Q4cO1ZQpUzR27Fi1b99e9erVkyQdP35cW7ZskZeXl4YOHVquhQIAAAAAgKI8CvaRkZF6+eWXtWDBAm3ZskW//vqrJMnHx0etWrXSAw88oPDw8HItFAAAAAAAFOXxc+zDw8M1btw4ORwOnTlzRpIUGBgoq9Wjq/sBAAAAAIAHPA72haxWq0vv+AUFBfLy8rrWxQIAAAAAgFLwONivWbNGhw4dUvPmzdW+fXslJydr2bJlcjgcatOmjUaPHi1/f//yrBUAAAAAAFzBo2C/dOlSLViwQBaLRStXrtSgQYO0dOlSde/eXb/++qvWr1+vkJAQDR8+vLzrBQAAAAAAl/Eo2K9Zs0YtWrTQc889p6VLl2rRokW67777NGjQIEmSr6+vNm/eTLAHAAAAAOA686inu/T0dHXq1Ene3t7q3r27HA6HGjVq5JweFRWljIyMcisSAAAAAAC451Gwz8/Pl4+PjySpWrVqkiRv7/87+e/l5aWCgoJyKA8AAAAAAJTE487zjh07ppSUFJ0/f16S9PPPPzsfdXfs2LHyqQ4AAAAAAJTI42C/ePFiLV682Dk8d+7ccikIAAAAAACUnkfBfsqUKeVdBwAAAAAA8IBHwf6WW24p7zoAAAAAAIAHPOo8b9q0adq5c2d51wIAAAAAAMrIo2CfkpKi7Ozs8q4FAAAAAACUkUfBHgAAAAAAVA4e94p/9uxZpaenl9gmJCSkzMvNyMjQvHnztG3bNl28eFF169ZVQkKCGjVqVOw8u3fv1ty5c/XLL7+oVq1aGjRokLp37+7S5osvvtCnn36qrKwsRURE6JFHHlFUVFSZ6wMAAAAAoDLxONjPmTNHc+bMKbHNwoULy7TMc+fOadKkSWrWrJkmTJigwMBAnThxQgEBAcXOc+rUKf31r3/VXXfdpSeffFK7du3SP//5T9ntdrVq1UqS9N1332nu3LkaOXKkGjdurM8//1yJiYmaOXOmgoKCylQjAAAAAACVicfBvkePHmrcuHF51qJly5apVq1aSkhIcI4LDQ0tcZ4vv/xSoaGheuihhyRJ4eHh2rNnjz7//HNnsP/ss89055136o477pAkjRw5Ulu3btWaNWs0YMCAct0GAAAAAABuJI+DfdOmTdWlS5fyrEVbtmxRbGysZsyYoZSUFNWsWVM9e/ZUjx49ip1n3759atGihcu42NhY59UE+fn5OnjwoEuAt1qtatGihfbu3et2mXl5ecrLy3MOWywW+fn5OV+bidnqBQCUzGKx8Nl+g7CfAaBqqcrHUI+D/fVw6tQprVq1Sn379tXAgQN14MABvffee/L29i5yz3yhrKysIpfTBwUF6cKFC/r111917tw5ORwO2e12lzZ2u13Hjx93u8wlS5YoOTnZORwZGanp06erdu3a17R9FaGgoKCiSwAAlKOQkBDVq1evosv4TeAYCgBVS1U+hlaqYO9wONSoUSPFx8dLuhSojxw5olWrVhUb7K+HgQMHql+/fs7hwm910tLSlJ+ff8PqKA9X6+AQAGAu6enp8vLyqugyfhM4hgJA1WK2Y6i3t3epTy57FOzL2ileaQUHBys8PNxlXHh4uDZt2lTsPHa7XdnZ2S7jsrOz5efnJx8fHwUGBspqtSorK8ulTVZWVpGz+IVsNptsNpvbaYZhXH1DKhGz1QsAKJlhGHy23yDsZwCoWqryMdSj59gfPHhQK1euLHb6ypUrdfjw4TIvt0mTJkUujz9+/HiJ31I0btxYO3fudBm3Y8cORUdHS7r0LUfDhg21a9cu53SHw6Fdu3Y52wAAAAAAYFYeBfuPPvqoSJi+3K5du/TRRx+Vebl9+/bVvn37tHjxYqWmpmr9+vVavXq1evXq5Wwzf/58zZ492zncs2dPnTp1SvPmzdOxY8e0cuVKbdy4UX379nW26devn1avXq21a9fq6NGjeuedd3Tx4sUbenk/AAAAAADXg0eX4l/Zy/yVmjZtqiVLlpR5uVFRUXrmmWc0f/58LVq0SKGhoRo+fLi6du3qbJOZmelyz1toaKiee+45vf/++1q+fLlq1aqlxx9/3PmoO0nq1KmTzpw5o6SkJGVlZalBgwaaMGFCsZfiAwAAAABgFh4F+wsXLpTY6YDFYtH58+c9Kqht27Zq27ZtsdPHjBlTZFyzZs306quvlrjc3r17q3fv3h7VBAAAAABAZeXRpfj16tXT9u3bi52+bds21alTx+OiAAAAAABA6XgU7OPi4vTDDz/o/fffV05OjnN8Tk6O5syZo23btikuLq7cigQAAAAAAO55dCn+3XffrcOHD2v58uVasWKFgoODJV26/90wDHXt2tWl8zoAAAAAAHB9eBTsLRaLEhISdPvtt2vTpk06deqUJKldu3bq0KGDmjVrVq5FAgAAAAAA9zwK9oWaN2+u5s2bl1ctAAAAAACgjK4p2GdkZCglJUVnzpxRhw4dVKtWLTkcDp0/f17+/v6yWj26hR8AAAAAAJSSR8HeMAzNnTtXX3zxhRwOhyTp5ptvVq1atZSbm6sxY8Zo8ODB3GcPAAAAAMB15tEp9U8++UTLly/X7373O73wwgsu0/z9/dW+fXtt2rSpXAoEAAAAAADF8yjYr169Wt26dVN8fLwaNGhQZHpERIROnDhxrbUBAAAAAICr8CjYnz59WtHR0cVOr1atms6fP+9xUQAAAAAAoHQ8CvaBgYE6ffp0sdMPHjyokJAQj4sCAAAAAACl41Gw79Chg1atWqWTJ08WmbZ9+3atXbtWHTt2vObiAAAAAABAyTzqFX/w4MHavXu3nn32WcXExEiSli1bpoULF2rv3r2KjIzUwIEDy7VQAAAAAABQlEdn7P39/ZWYmKh77rlHGRkZ8vHxUUpKis6fP6/7779ff/nLX1StWrXyrhUAAAAAAFzBozP2kuTj46NBgwZp0KBB5VkPAAAAAAAoA4/O2AMAAAAAgMrBozP2b7311lXbWCwWjR492pPFAwAAAACAUvIo2O/evdtl2DAMnT59WkFBQbLZbJIuBXsAAAAAAHB9eRTs33zzTZfhM2fOaOTIkXrqqafUvHnzcikMAAAAAABcXbncY8/ZeQAAAAAAKka5BPvc3NxLC7PSFx8AAAAAADfSNSfxjIwMffTRR7JYLAoLCyuPmgAAAAAAQCl5dI/9kCFDioy7//77Zbfbr7UeAAAAAABQBh4F+0GDBslischisSgoKEjR0dGKiIgo79oAAAAAAMBVeBTsBw8eXN51AAAAAAAAD9DbHQAAAAAAJubRGftp06ZdtY3FYtHkyZM9WTwAAAAAACglj4J9SkqKJKlhw4by9fV128YwDM+rAgAAAAAApeJRsH/wwQe1dOlSnT59WoMGDdJdd93FM+wBAAAAAKgAHqXxe+65R7Nnz9btt9+uefPm6emnn9bGjRvLuzYAAAAAAHAVHp9m9/f317BhwzRr1iw1bdpUf//73/X8889r165d5VkfAAAAAAAowTVfP1+zZk09/vjjev3111WzZk29+OKLevnll3X48OFyKA8AAAAAAJTEo3vsk5OT3Y6PjIzUr7/+qu3bt2vnzp1asGDBNRUHAAAAAABK5lGw//jjj6/axuFweLJoAAAAAABQBh4F+4ULF5Z3HQAAAAAAwAM8ow4AAAAAABPz6Ix9enp6qdqFhIR4sngAAAAAAFBKHgX7MWPGlKodl+wDAAAAAHB9eRTsJenOO+9UdHR0edYCAAAAAADKyONgf8stt6hLly7lWQsAAAAAACgjOs8DAAAAAMDEPD5jv2nTJp08eVI2m02+vr6y2+266aabdNNNN3lcTFJSkpKTk13GhYWFaebMmW7bT506VSkpKUXGt27dWs8//7wk6c0339S6detcpsfGxmrixIke1wkAAAAAQGXhcbD//vvv9f333xcZHxwcrPvvv1933nmnR8utX7++Jk2a5By2Wou/qOCZZ55Rfn6+c/js2bMaN26cOnbs6NKuVatWSkhIcA57e3u82QAAAAAAVCoeJdzC3u4dDofy8/OVk5OjrKwsHT16VBs2bNC//vUv+fn5qVOnTmVettVqld1uL1Xb6tWruwxv2LBB1apV02233eYy3tvbu9TLBAAAAADATK7p1LXVapWPj498fHwUHBysyMhIde3aVS+//LI+//xzj4J9amqqRo0aJZvNpujoaMXHxyskJKRU83799dfq1KmTfH19XcanpKTo0UcfVUBAgJo3b64HHnhANWrUKHY5eXl5ysvLcw5bLBb5+fk5X5uJ2eoFAJTMYrHw2X6DsJ8BoGqpysfQ63JN+gMPPKBdu3aVeb7GjRsrISFBYWFhyszMVHJysiZPnqw33njDGayLs3//fv3yyy8aPXq0y/hWrVqpQ4cOCg0NVWpqqhYsWKCXX35ZiYmJxV7mv2TJEpd7/SMjIzV9+nTVrl27zNtU0QoKCiq6BABAOQoJCVG9evUquozfBI6hAFC1VOVj6HUJ9g0bNlTDhg3LPF/r1q2dryMiIpxBf+PGjYqLiytx3q+//lo333yzoqKiXMZ37tzZ+frmm29WRESEnnzySe3evVstWrRwu6yBAweqX79+zuHCb3XS0tJc7uk3g/T09IouAQBQjtLT0+Xl5VXRZfwmcAwFgKrFbMdQb2/vUp9c9jjYnz9/Xp9//rm2bt3qPPCFhISobdu26tOnj/z9/T1dtFNAQIDCwsKUmppaYrvc3Fxt2LBBQ4YMueoy69Spoxo1aig1NbXYYG+z2WSz2dxOMwzj6oVXImarFwBQMsMw+Gy/QdjPAFC1VOVjqEfPsc/IyND48eOVnJys3NxcNWnSRE2aNNHFixf18ccfa/z48crMzLzm4nJzc5WamnrVju/++9//Kj8/X127dr3qMk+fPq1z584pODj4musDAAAAAKCieXTG/sMPP1RWVpbGjx+vNm3auEz74YcfNGPGDH344Yd64oknyrTcuXPn6tZbb1VISIgyMzOVlJQkq9WqLl26SJJmz56tmjVrKj4+3mW+r7/+Wu3atSvSIV5ubq4+/vhjdejQQXa7XSdPntS8efNUt25dxcbGerDlAAAAAABULh4F+23btqlPnz5FQr106T75u+++W6tXry7zcjMyMjRr1iydPXtWgYGBiomJUWJiogIDAyVduifiyl4Mjx8/rj179uiFF14osjyr1aojR45o3bp1ysnJUc2aNdWyZUsNGTKk2EvtAQAAAAAwE4+C/cWLFxUUFFTsdLvdrosXL5Z5uWPHji1x+tSpU4uMCwsLU1JSktv2Pj4+mjhxYpnrAAAAAADALDy6xz48PFwbNmxw20N8fn6+NmzYoPDw8GsuDgAAAAAAlMyjM/b9+/fXzJkz9fzzz6tXr17OZwEeP35cq1at0s8//6ynn366XAsFAAAAAABFeRTsO3bsqIsXL+rDDz/Uv//9b5dpgYGBGj16tG677bZyKRAAAAAAABTP4+fYd+/eXV27dtWBAwdcnmPfqFEjeXl5lVuBAAAAAACgeKUO9oZhFOmR3svLS9HR0YqOji7SPi0tTbVr1772CgEAAAAAQLFK3XneG2+84bazvCs5HA4tW7ZMf/7zn6+pMAAAAAAAcHWlDvabN29WYmKiLly4UGyb/fv3a/z48Zo/f75atGhRLgUCAAAAAIDilTrYjxw5Unv27NGUKVOUnZ3tMu3ChQv6z3/+o0mTJuncuXP685//rHHjxpV7sQAAAAAAwFWp77Hv0aOHAgMDNWvWLL3wwguaOHGi6tatq//+97+aM2eOsrKy1KtXLw0dOlS+vr7Xs2YAAAAAAPD/K1Ov+O3bt9eECRP02muvadKkSYqMjNT27dvVoEEDjRs3To0aNbpedQIAAAAAADdKfSl+oWbNmmnq1KmSpO3bt6tLly565ZVXCPUAAAAAAFSAMgd7SWrQoIFefPFFhYaG6r///a82b95c3nUBAAAAAIBSKPWl+AcPHiwy7uGHH9Zbb72lmTNn6ve//71iYmJcpjds2PDaKwQAAAAAAMUqdbB//vnnS5z+/vvvFxm3cOHCslcEAAAAAABKrdTBfvTo0dezDgAAAAAA4IFSB/vu3btfxzIAAAAAAIAnPOo8DwAAAAAAVA4EewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATMy7ogu4XFJSkpKTk13GhYWFaebMmW7br127Vm+99ZbLOJvNpg8//NA5bBiGkpKStHr1auXk5CgmJkaPPvqo6tWrV+71AwAAAABwo1WqYC9J9evX16RJk5zDVmvJFxX4+flp1qxZxU5ftmyZVqxYoTFjxig0NFQLFy5UYmKiZsyYIR8fn3KrGwAAAACAilDpLsW3Wq2y2+3Of4GBgSW2t1gsLu3tdrtzmmEYWr58ue699161a9dOEREReuKJJ5SZmanNmzdf5y0BAAAAAOD6q3Rn7FNTUzVq1CjZbDZFR0crPj5eISEhxbbPzc1VQkKCDMNQZGSkhg4dqvr160uSTp06paysLLVs2dLZ3t/fX1FRUdq7d686d+7sdpl5eXnKy8tzDlssFvn5+Tlfm4nZ6gUAlMxisfDZfoOwnwGgaqnKx9BKFewbN26shIQEhYWFKTMzU8nJyZo8ebLeeOMNZ7C+XFhYmEaPHq2IiAidP39en3zyiV544QXNmDFDtWrVUlZWliQpKCjIZb6goCDnNHeWLFnicq9/ZGSkpk+frtq1a5fLdt5IBQUFFV0CAKAchYSE0E/MDcIxFACqlqp8DK1Uwb5169bO1xEREc6gv3HjRsXFxRVpHx0drejoaJfhp59+WqtWrdIDDzzgcR0DBw5Uv379nMOF3+qkpaUpPz/f4+VWhPT09IouAQBQjtLT0+Xl5VXRZfwmcAwFgKrFbMdQb2/vUp9crlTB/koBAQEKCwtTampqqdp7e3srMjLS2b7wfvvs7GwFBwc722VnZ6tBgwbFLsdms8lms7mdZhhG6YqvJMxWLwCgZIZh8Nl+g7CfAaBqqcrH0ErXed7lcnNzlZqa6tIhXkkcDoeOHDniDPGhoaGy2+3auXOns8358+e1f/9+lzP9AAAAAACYVaU6Yz937lzdeuutCgkJUWZmppKSkmS1WtWlSxdJ0uzZs1WzZk3Fx8dLkpKTk9W4cWPVrVtXOTk5+uSTT5SWlqY777xT0qVL6Pv06aPFixerXr16Cg0N1UcffaTg4GC1a9euwrYTAAAAAIDyUqmCfUZGhmbNmqWzZ88qMDBQMTExSkxMdD7yLj093aUXw3Pnzuntt99WVlaWAgIC1LBhQ7300ksKDw93tunfv78uXryot99+W+fPn1dMTIwmTJjAM+wBAAAAAFVCpQr2Y8eOLXH61KlTXYZHjBihESNGlDiPxWLRkCFDNGTIkGsrDgAAAACASqhS32MPAAAAAABKRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAm5l3RBVwuKSlJycnJLuPCwsI0c+ZMt+2/+uorffPNN/rll18kSQ0bNtTQoUMVFRXlbPPmm29q3bp1LvPFxsZq4sSJ5Vs8AAAAAAAVoFIFe0mqX7++Jk2a5By2Wou/qCAlJUWdO3dWkyZNZLPZtGzZMr300kuaMWOGatas6WzXqlUrJSQkOIe9vSvdZgMAAAAA4JFKl3CtVqvsdnup2j711FMuw48//rg2bdqknTt3qlu3bs7x3t7epV4mAAAAAABmUumCfWpqqkaNGiWbzabo6GjFx8crJCSkVPNevHhR+fn5ql69usv4lJQUPfroowoICFDz5s31wAMPqEaNGsUuJy8vT3l5ec5hi8UiPz8/52szMVu9AICSWSwWPttvEPYzAFQtVfkYWqmCfePGjZWQkKCwsDBlZmYqOTlZkydP1htvvOEM1iX58MMPVbNmTbVo0cI5rlWrVurQoYNCQ0OVmpqqBQsW6OWXX1ZiYmKxl/kvWbLE5V7/yMhITZ8+XbVr1772jbzBCgoKKroEAEA5CgkJUb169Sq6jN8EjqEAULVU5WNopQr2rVu3dr6OiIhwBv2NGzcqLi6uxHmXLl2qDRs2aOrUqfLx8XGO79y5s/P1zTffrIiICD355JPavXu3yxcAlxs4cKD69evnHC78VictLU35+fkebVtFSU9Pr+gSAADlKD09XV5eXhVdxm8Cx1AAqFrMdgz19vYu9cnlShXsrxQQEKCwsDClpqaW2O6TTz7R0qVLNWnSJEVERJTYtk6dOqpRo4ZSU1OLDfY2m002m83tNMMwSld8JWG2egEAJTMMg8/2G4T9DABVS1U+hlbq59jn5uYqNTW1xI7vli1bpkWLFmnChAlq1KjRVZd5+vRpnTt3TsHBweVYKQAAAAAAFaNSnbGfO3eubr31VoWEhCgzM1NJSUmyWq3q0qWLJGn27NmqWbOm4uPjJV26/D4pKUlPPfWUQkNDlZWVJUny9fWVr6+vcnNz9fHHH6tDhw6y2+06efKk5s2bp7p16yo2NraiNhMAAAAAgHJTqYJ9RkaGZs2apbNnzyowMFAxMTFKTExUYGCgpEv3RFzei+GqVauUn5+vGTNmuCznvvvu0+DBg2W1WnXkyBGtW7dOOTk5qlmzplq2bKkhQ4YUe6k9AAAAAABmUqmC/dixY0ucPnXqVJfhN998s8T2Pj4+mjhx4jVWBQAAAABA5VWp77EHAAAAAAAlI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBi3hVdwOWSkpKUnJzsMi4sLEwzZ84sdp6NGzdq4cKFSktLU926dfXggw+qTZs2zumGYSgpKUmrV69WTk6OYmJi9Oijj6pevXrXazMAAAAAALhhKlWwl6T69etr0qRJzmGrtfiLCn766SfNmjVL8fHxatOmjdavX6/XXntN06dP18033yxJWrZsmVasWKExY8YoNDRUCxcuVGJiombMmCEfH5/rvj0AAAAAAFxPle5SfKvVKrvd7vwXGBhYbNvly5erVatWuueeexQeHq4HHnhADRs21BdffCHp0tn65cuX695771W7du0UERGhJ554QpmZmdq8efON2iQAAAAAAK6bSnfGPjU1VaNGjZLNZlN0dLTi4+MVEhLitu3evXvVr18/l3GxsbHO0H7q1CllZWWpZcuWzun+/v6KiorS3r171blzZ7fLzcvLU15ennPYYrHIz8/P+dpMCuvNPHFQF86cruBqfhscjgL9euFcRZcB3BA+ftVltXpVdBm/Cbk52ZIufa6b7VhkVoX7eX/6BaXn5F2lNcpDgcPQ2YsFFV0GcEPUqOYlLyuf5zdC1oV8SVX7GFqpgn3jxo2VkJCgsLAwZWZmKjk5WZMnT9Ybb7zhDNaXy8rKUlBQkMu4oKAgZWVlOacXjiuujTtLlixxudc/MjJS06dPV+3atT3bsArk6+srq9Wqo7u+rehSAADXyGq1KiIiQsHBwRVdym/CpWOoResOZld0KQCAa2S1Wqr0MbRSBfvWrVs7X0dERDiD/saNGxUXF3fD6hg4cKDLlQCF3+qkpaUpPz//htVRXoYOHaqMjIyKLuM3o6CgQOfOccYevw3Vq1eXlxdn7G+UmjVrKjc3VydOnKjoUn4zhg6N5xh6A3EMxW8Jx9Aby4zHUG9v71KfXK5Uwf5KAQEBCgsLU2pqqtvpdrtd2dmu36JnZ2fLbrc7pxeOu/ybmezsbDVo0KDY9dpsNtlsNrfTDMMo/QZUEnXq1FGdOnUqugwAQDkw43HIzDiGAkDVUZWPoZWu87zL5ebmKjU11RnQrxQdHa2dO3e6jNuxY4caN24sSQoNDZXdbndpc/78ee3fv1/R0dHXrW4AAAAAAG6UShXs586dq5SUFJ06dUo//fSTXnvtNVmtVnXp0kWSNHv2bM2fP9/Zvk+fPtq+fbs+/fRTHTt2TElJSTpw4IB69+4t6dIl9H369NHixYu1ZcsWHTlyRLNnz1ZwcLDatWtXIdsIAAAAAEB5qlSX4mdkZGjWrFk6e/asAgMDFRMTo8TEROcj79LT0116MWzSpImeeuopffTRR1qwYIHq1auncePGOZ9hL0n9+/fXxYsX9fbbb+v8+fOKiYnRhAkTeIY9AAAAAKBKsBhV+UaDcpaWlubyGDwAAAAAAK4Hm81W6s7zKtWl+AAAAAAAoGwI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMzLuiCzATb292FwAAAADg+itL/rQYhmFcx1oAAAAAAMB1xKX4AEzvwoULGj9+vC5cuFDRpQAAYCocQ4GqgWAPwPQMw9ChQ4fEBUgAAJQNx1CgaiDYAwAAAABgYgR7AAAAAABMjGAPwPRsNpvuu+8+2Wy2ii4FAABT4RgKVA30ig8AAAAAgIlxxh4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgD+A349SpUxo8eLAOHz5c0aUAAFDuDMPQ22+/rYcffrhUxzuOi0DV4V3RBQAAAAC4dtu2bdPatWs1depU1alTRzVq1KjokgDcIAR7AKaQn58vb28+sgAAKM7JkycVHBysJk2aVHQpAG4w/koGUClNnTpV9evXl5eXl7799lvdfPPNevjhhzVv3jz9+OOP8vX1VcuWLTV8+HAFBgZKunSmYtGiRfrll19ktVoVHR2tESNGqG7duhW8NQAAXF9vvvmm1q1bJ0kaPHiwateurZEjR5bpuOhwOPTPf/5Te/fu1QsvvKCQkBBt3rxZycnJOnr0qIKDg9WtWzfde++98vLyupGbB+AqCPYAKq1169apZ8+eevHFF5WTk6O//OUviouL0/Dhw/Xrr7/qww8/1N/+9jdNmTJFkpSbm6t+/fopIiJCubm5WrhwoV5//XW9+uqrslrpUgQAUHU9/PDDqlOnjlavXq1XXnlFVqtVKSkppT4u5uXladasWUpLS9Nf/vIXBQYG6scff9Ts2bP18MMPq2nTpjp58qTefvttSdL9999fEZsJoBj8pQug0qpXr56GDRumsLAw7dixQ5GRkYqPj9dNN92kyMhIjR49Wrt379bx48clSbfddps6dOigunXrqkGDBho9erSOHDmio0ePVvCWAABwffn7+8vPz09Wq1V2u12BgYGlPi7m5ubqr3/9q86cOaMpU6Y4r4RLTk7WgAED1L17d9WpU0ctW7bUkCFD9NVXX1XEJgIoAWfsAVRakZGRztc///yzdu3apd///vdF2p08eVJhYWE6ceKEFi5cqP379+vs2bNyOBySpPT0dN188803rG4AACqD0h4XZ82apZo1a2rKlCny8fFxjj98+LD27NmjxYsXO8c5HA7l5eXp4sWLqlat2o3bGAAlItgDqLR8fX2dr3Nzc9W2bVsNGzasSDu73S5Jmj59umrXrq1Ro0YpODhYhmHoz3/+s/Lz829UyQAAVBqlPS62bt1a3377rfbu3avmzZs7x+fm5mrw4MHq0KFDkWXbbLbrXj+A0iPYAzCFyMhIbdq0SbVr13bbYc/Zs2d1/PhxjRo1Sk2bNpUk7dmz50aXCQBApVCW42LPnj1Vv359TZ8+Xc8//7xuueUWSVLDhg11/PhxOqEFTIB77AGYQq9evXTu3DnNmjVL+/fvV2pqqrZt26a33npLDodDAQEBqlGjhr766iulpqZq165dev/99yu6bAAAKkRZj4t33323HnjgAf31r391fgEwaNAgffPNN/r444/1yy+/6OjRo9qwYYM++uijG7UZAEqJYA/AFGrWrKkXX3xRDodDiYmJeuaZZ/T+++/L399fFotFVqtVf/zjH3Xw4EH9+c9/1vvvv+/2fnwAAH4LPDku9u3bV4MHD9Yrr7yin376Sa1atdL48eO1Y8cOPf/885o4caI+//xzhYSE3KCtAFBaFsMwjIouAgAAAAAAeIYz9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAk1m7dq0GDx6sAwcOFJn21VdfafDgwXr11VflcDgqoDoAAHCjEewBAKgivv/+e73zzjtq2rSpxo4dK6uVwzwAAL8FHPEBAKgCdu/erVmzZik8PFzjx4+Xj49PRZcEAABuEO+KLgAAAFybw4cP69VXX5XdbtfEiRPl7+/vnPbjjz9qxYoV2rdvn7KzsxUUFKQOHTooPj7eGf7ffPNNrVu3rsR1zJ49W6GhoZKkH374QUuWLNGhQ4dksVjUtGlTDRs2TPXr13e2L26ZderU0T/+8Q/n8MqVK7Vy5UqlpqaqRo0aateunYYOHaqAgABnm6lTp+rs2bMaM2aM3n33XR06dEh2u139+/dXz549ne12796tadOmacqUKWrWrJlz/CuvvKIffvhB9913nwYPHuwcv2vXLiUlJemXX35RTk6Oc3yvXr30hz/8ocT9AQBAZUKwBwDAxFJTU5WYmCibzaaJEycqODjYZfrGjRt18eJF9ezZUzVq1ND+/fv1xRdfKCMjQ3/6058kSXfddZdatGjhnGf27Nlq37692rdv7xwXGBgoSfrmm2/05ptvKjY2Vg8++KAuXryoL7/8UpMnT9b06dOd4V+SbDabRo0a5VKPn5+f83VSUpKSk5PVokUL9ezZU8ePH9eXX36pAwcO6MUXX5S39//9mXLu3Dm98sor6tixozp37qyNGzfqnXfekbe3t+Li4ordPykpKfrhhx+KjD916pT++te/Kjg4WIMGDXJu3+zZs4vf2QAAVFIEewAATCo7O1szZ85Udna2YmNjFRYWVqTNsGHDXC7L79Gjh+rWrasFCxYoPT1dISEhio6OVnR0tLPN7NmzdfPNN+v22293WVZubq7ee+89xcXFuQT2bt26aezYsVqyZInLeKvVWmQZhc6cOaOlS5cqNjZWzz//vLM/gLCwML377rv69ttvdccddzjbZ2Zm6qGHHlK/fv0kXfoyYsKECVqwYIFuv/12ly8BLvfhhx+qdevWRcL9jh079Ouvv+rJJ58ssu0AAJgN99gDAGBSb775pk6fPq0uXbpo+/bt2rhxY5E2l4f63NxcnTlzRtHR0TIMQ4cOHSrT+nbs2KGcnBx17txZZ86ccf6zWq1q3Lixdu/eXaZl5efnq0+fPi6d/PXo0UN+fn7aunWrS3svLy/16NHDOezt7a0ePXooOztbBw8edLuOTZs2af/+/YqPjy8y7cKFC5KkGjVqlLpmAAAqK87YAwBgUufOndPYsWPVvn17HT16VHPmzFFsbKzLPfbp6elauHChtmzZ4nIfuSSdP3++TOs7ceKEJOkvf/mL2+mXX2Z/Nenp6ZJU5CoDb29v1alTxzm9UHBwsHx9fV3GFc6blpbmctZdkhwOhxYsWKCuXbsqIiKiyPoL23/wwQeKj493XooPAIAZEewBADCp3//+9+rYsaMk6bHHHtPEiRM1f/58Pfroo5IuhdsXX3xR586dU//+/XXTTTepWrVqysjI0FtvvSXDMMq0vsL2TzzxhOx2e5HpXl5e17ZB5ejrr79WWlqaJk6c6HZ6kyZNNGzYMCUnJzv7GgAAwKwI9gAAmFTTpk2dr6OiotSrVy+tXLlSt99+u6Kjo3XkyBGdOHFCY8aMUbdu3Zxtd+zY4dH66tSpI0kKCgpSy5Ytr6n2kJAQSdLx48edy5Wk/Px8nTp1yqUzP+nSPfa5ubkuZ+2PHz8uSapdu7ZL24sXL+rjjz9Wz549i0y73D333KPU1FRt2rRJY8aMkbe3t1566aVr2i4AACoC99gDAFBFDB06VMHBwfrXv/6lgoIC573rl5+ZNwxDy5cv92j5sbGx8vPz05IlS5Sfn19k+pkzZ0q9rJYtW8rb21srVqxwqe/rr7/W+fPn1aZNG5f2BQUF+uqrr5zD+fn5+uqrrxQYGKiGDRu6tF2xYoUuXryoe++9t8QatmzZoq+++kqjRo1SmzZtrvnLCgAAKgpn7AEAqCL8/Pz0yCOP6PXXX9enn36qfv36qU6dOvrggw+UkZEhf39/bdq0SefOnfNo+f7+/ho5cqT+8Y9/aPz48ercubMCAwOVnp6urVu3qkmTJqV+/ntgYKAGDBig5ORkvfzyy2rbtq3zcXeNGjVS165dXdoHBwdr2bJlOnXqlMLCwvTdd9/p8OHDeuyxx4r0iL99+3Y98MADJXaMl5WVpX/+85+Ki4tzeawfAABmRLAHAKAKad++vW699VYtWrRInTp10vjx4/Xee+9p6dKlstlsat++vXr37q1x48Z5tPwuXbooODhYS5cu1SeffKK8vDzVrFlTTZs2dXk8XWkMHjxYgYGBWrlypd5//31Vr15dPXr00NChQ4uE9erVq2vMmDF69913tXr1atntdj3yyCMuPeUXCg4OVt++fYtdr2EYeuuttxQQEKARI0aUqWYAACoji1HWnnMAAABuoKlTp+rs2bN64403KroUAAAqJe6xBwAAAADAxAj2AAAAAACYGMEeAAAAAAAT4x57AAAAAABMjDP2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxP4/EQuGj+6ZkwkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Статистика длины заголовков:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " mean \n",
+ " std \n",
+ " min \n",
+ " 25% \n",
+ " 50% \n",
+ " 75% \n",
+ " max \n",
+ " \n",
+ " \n",
+ " label \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " fake \n",
+ " 9.0 \n",
+ " 5.666667 \n",
+ " 1.0 \n",
+ " 5.0 \n",
+ " 5.0 \n",
+ " 5.0 \n",
+ " 7.0 \n",
+ " 7.0 \n",
+ " \n",
+ " \n",
+ " real \n",
+ " 9.0 \n",
+ " 5.666667 \n",
+ " 1.0 \n",
+ " 5.0 \n",
+ " 5.0 \n",
+ " 5.0 \n",
+ " 7.0 \n",
+ " 7.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count mean std min 25% 50% 75% max\n",
+ "label \n",
+ "fake 9.0 5.666667 1.0 5.0 5.0 5.0 7.0 7.0\n",
+ "real 9.0 5.666667 1.0 5.0 5.0 5.0 7.0 7.0"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Топ-10 самых частых заголовков:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "title\n",
+ "Government Announces New Education Reforms 3\n",
+ "Economy Shows Signs of Recovery 3\n",
+ "Aliens Land in Central Park 3\n",
+ "New Study Reveals Health Benefits of Walking 3\n",
+ "Cure for Aging Discovered in Remote Village 3\n",
+ "Celebrity Reveals Secret Government Plans 3\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print(\"\\n=== АНАЛИЗ ЗАГОЛОВКОВ ===\")\n",
+ "\n",
+ "# Создаем копию DataFrame для безопасного изменения\n",
+ "df_titles = df_clean.copy()\n",
+ "\n",
+ "# Правильное создание нового столбца с длиной заголовка\n",
+ "df_titles.loc[:, 'title_length'] = df_titles['title'].apply(lambda x: len(str(x).split()))\n",
+ "\n",
+ "# Построение boxplot с учетом новых требований seaborn\n",
+ "plt.figure(figsize=(12, 6))\n",
+ "sns.boxplot(\n",
+ " data=df_titles,\n",
+ " x='label',\n",
+ " y='title_length',\n",
+ " hue='label', # Добавлено согласно новому синтаксису\n",
+ " palette='pastel',\n",
+ " legend=False # Отключаем избыточную легенду\n",
+ ")\n",
+ "plt.title('Распределение длины заголовков по категориям')\n",
+ "plt.ylabel('Количество слов')\n",
+ "plt.xlabel('Категория')\n",
+ "plt.show()\n",
+ "\n",
+ "# Статистика длины заголовков\n",
+ "print(\"\\nСтатистика длины заголовков:\")\n",
+ "display(df_titles.groupby('label')['title_length'].describe())\n",
+ "\n",
+ "# Топ-10 самых частых заголовков\n",
+ "print(\"\\nТоп-10 самых частых заголовков:\")\n",
+ "display(df_titles['title'].value_counts().head(10))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b545b4df-dd17-4b5c-b040-5ce4cfbecf12",
+ "metadata": {},
+ "source": [
+ "## 7. Сохранение результатов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "59a91576-c50d-4dce-88c9-b323322e70bc",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== Сохранение результатов ===\n",
+ "Очищенные данные сохранены в файл 'cleaned_fake_news.csv'\n",
+ "\n",
+ "Анализ завершен!\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"\\n=== Сохранение результатов ===\")\n",
+ "df_clean.to_csv('cleaned_fake_news.csv', index=False)\n",
+ "print(\"Очищенные данные сохранены в файл 'cleaned_fake_news.csv'\")\n",
+ "\n",
+ "print(\"\\nАнализ завершен!\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c85a8264-9c55-40a1-a0cf-a904b5cec409",
+ "metadata": {},
+ "source": [
+ "## Разведочный анализ данных (EDA) новостей"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e592d5aa-a4f2-42ab-89a8-876e4c606fd3",
+ "metadata": {},
+ "source": [
+ "## 1. Распределение классов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "722d54c5-112a-4bd8-8020-a199958f9b86",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAHbCAYAAADLf1JFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIaElEQVR4nO3dd3xUZd7///ekN8gEQgkEUsCA9IgIghoEFZdlVaRpwC9FuBWQxbJK1VBFcHFFQeUWEFi6SLmtUZEi2AAlNCFU6UJIJpSQkGTO74/9ZZYhhSQzIfH4ej4e85A515lzfc7JzPGdK9c5YzEMwxAAAABgQh7lXQAAAABQVgi7AAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtAi7AAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtAi7AIAKp2XLllq1apXj+Y4dO2SxWHTx4sVyrArAH5FXeRcAFMZisTg99/DwUEhIiJo1a6aBAwcqPj6+nCoDUNY6duyoAQMGaN26dfL19dWyZct0xx13qFKlSuVdGoA/GMIuKryEhARJUnZ2tvbt26e1a9dq/fr12rZtm954441yrg5AWUhISFB6erpWrlypzMxMtW3bVm+//XZ5lwXgD8hiGIZR3kUABckb2b3+Lbpu3Trdf//9kqTDhw8rMjLyZpcGAAD+IJiziz+cjh07qmHDhjIMQ1u3bnUsnz9/vrp166bo6Gj5+/urcuXKateunRYtWlTotlJTUzVmzBg1adJEAQEBCg4OVvPmzTVy5EhdvnzZsV779u1lsViKfPTr189p2/369ZPFYtHhw4f1xhtvqGHDhvLz81N4eLiee+45XbhwocCaTpw4oWeeeUbR0dHy9fVV1apV9dBDDznt6/Xmz59faF2F/TKQmpqqUaNG6dZbb5W/v7+Cg4PVsWNHffnll4X2M27cuBL1k5GRoSlTpqhFixYKDAxUUFCQ7rzzTi1dujTfuhs2bJDFYtG4ceMK7DvveB49etSx7OjRowUee0lasWKFo7YNGzbka9+3b5/69eunOnXqyMfHRzVq1FB8fLz2799f6P67o+Zr67vnnnsUHBwsf39/NW3aVFOmTFFWVla+dSMjI52OtY+PjyIiItSnTx/t3bu3wL7XrVunBx98UFWqVJGvr69iYmI0cuRIpaenF7h+cT4LN/oM5D2uPx4lOdaFHbOcnBw1b95cFotF7du3L3Afrpf3/rjRo6D3R0mPX0HyPpfz5893Wp6cnKxatWopODhYP/74o2P51atXNXPmTHXu3FkRERHy9fVVlSpVdN999+nzzz8v1b4V1P+PP/6o7t27q2bNmvLx8VGdOnX01FNP6dSpU/n2oahzX82aNZ3Wtdvteu+999SqVSsFBQUpMDBQrVq10rvvviu73Z5v23k/y1OnTumJJ55Q9erV5e/vr5YtW2rJkiX51i/q8zZt2jRHXde/dzIzM5WQkKBGjRrJ39//hscnb3nr1q3z9SNJc+fOLfS1qJiYxoA/pLzR3mvn9Q4ePFiNGzfWPffco7CwMJ0/f16fffaZnnjiCe3fv18TJ0502saRI0d077336rffflPLli01ePBg2e12JScn61//+peefvppBQYGOr0mb0rFtWw2m2bMmFForc8995w2bdqknj176uGHH1ZiYqLefPNNffvtt9q8ebP8/Pwc6/7888964IEHlJqaqk6dOunRRx9VSkqK1qxZo7vuukurV69W586dC+3r4YcfVosWLRzP33zzzQLX++2339S+fXsdPXpUd999tx588EFdvnxZn3zyiR588EHNnj1bgwYNKrSfvn37OoXbgvqx2Wzq0KGDfvnlF912220aMGCA7Ha7EhMTFR8frz179mjSpEmF9uGKS5cu6fnnny+0/YsvvtCjjz6q7Oxs/e1vf1P9+vV14sQJrVq1Sp9++qnWr1+v2267rUxqk6TRo0drypQpCg0NVXx8vIKCgvT5559r9OjRSkxM1JdffikfHx+n1wQHB+vZZ5+VJGVlZWnHjh1avHixPvnkEyUnJ6t69eqOdWfPnq3BgwcrMDBQPXr0UPXq1bVhwwZNnTpVH3/8sbZs2SKr1epYv7ifhevf/2vWrFFSUpKGDx/utL1rw6i7jvXbb7+tnTt3Fv8gX6N58+Z65JFH8i3fsGGDNm7cmG95SY9fSRw6dEgdOnTQxYsXlZiY6BSoUlNTNXz4cLVt21b333+/qlWrptOnT+vjjz9W586d9f7772vgwIGSJKvVmu/nMX/+fP3222/5ll97Tpg3b57+53/+R76+vnrooYdUp04dHThwQHPmzNHHH3+sH374QXXr1s1Xd0HnvqCgIKfnTzzxhJYsWaI6depo4MCBslgsWr16tYYMGaLNmzdr8eLF+baRlpamtm3bymq1qn///rLZbFqxYoV69+6tkydP6sUXX7zhMT1x4oQmTJhQaHu/fv20fPlyhYeH68knn1RoaKik/1z0uHbt2gJf4+npqZ9++knbtm3T7bff7tT29ttvy9PTU7m5uTesDRWEAVRQkoyC3qJfffWVYbFYDIvFYhw9etSx/ODBg/nWzcrKMjp06GB4eXkZJ06ccGq78847DUnGq6++mu91586dM65cueJ4HhcXV2AthmEYR44cMSQZffv2dVret29fQ5JRtWpVpzpzc3ONRx991JBkTJgwwbE8OzvbqFevnuHr62ts2LDBaVsnT540atWqZdSsWdPIzMzMV8OcOXMMScb8+fOdlkdERBgRERH51o+LizMsFouxdOlSp+VpaWlG8+bNDT8/P+PMmTP5XjdmzBhDUr76Cuonb/+nTp3qtPzKlStGp06dDIvFYvzyyy+O5evXrzckGQkJCfn6vXZ7R44ccSwr7Ni/8MILhiSjVatWhiRj/fr1jrbU1FTDarUaVatWNfbs2eP0ul27dhmBgYFGbGxsgTVcrzQ1f/fdd4Yko06dOsbp06cdy7Ozs40uXboYkozJkyc7baewn+Pzzz9vSDKWL1/uWHb06FHDx8fHqFSpkvHrr786rT948GBDkjFo0CCn5SX5LNxo/65VmmNd0DZPnjxpVKpUyfHzjIuLK7C/6xX2/siTkJCQ7/1RmuNXmA8++MCQZHzwwQeOeurUqWMEBgYa3377bb71MzMzjePHj+dbbrPZjMaNGxshISFGRkZGof0VdZ4yDMPYv3+/4e3tbdSrVy/f+fDrr782PDw8jEceeaRE28yzZMkSQ5IRGxtrXLx40bH80qVLRsuWLQ1JxuLFi51ek3eO79Gjh5Gbm+tYfvjwYSMkJMTw9vY2Dh065Fhe2OetW7duhqenpxEbG5vvvXPhwgXDw8PDCAkJMc6fP+/0uut/PtfW1bZtW6NmzZrG//t//8+pbdOmTYYko1u3bgW+FhUT0xhQ4Y0bN07jxo3TmDFj1L17dz344IMyDEPPPvusIiIiHOvVq1cv32t9fHw0dOhQ5eTkaN26dY7l27dv1/fff68WLVpoxIgR+V4XGhrqNOLqiuHDhzvV6eHhoddff10eHh6aN2+eY/mnn36qQ4cOadiwYYqLi3PaRq1atfTSSy/pzJkzTvuR58qVK5KUbzSwIElJSdq4caO6deumxx57zKnNarVq/PjxyszM1EcffZTvtdnZ2ZIkX1/fIvs4f/68Fi1apNtvv10vvfSSU5ufn5+mTp0qwzAK/FOlq3bv3q0ZM2booYceKnAUfOHChbLZbBo/frwaNWrk1NakSRMNGjRIv/zyS6HTA1yV9zMfO3as05+Bvby8NH36dHl4eGjOnDnF2lZOTo4kOW1n0aJFunr1qp555hk1bNjQaf3JkyerUqVK+ve//+2YLlGWnwV3HesXXnhBly9f1jvvvFOqOkqipMevuI4dO6Z7771X58+f16effqq77ror3zq+vr4KDw/Ptzw4OFgDBgxQWlpakdOZbuTdd99Vdna2ZsyYodq1azu1dezYUQ899JA+/vjjUt3eLe99/dprrzmN+AYGBmrq1KmSVOD72tPTU1OnTpWHx3/jSFRUlP7+978rOztb//73v4vsNzExUR999JGGDh2qZs2a5WvPysqS3W5XWFiYqlSpUuz98fb21lNPPaXly5crJSXFsfztt99WdHR0kX9hQ8XDNAZUeOPHj5f0nykLVqtVd999t5588kn16dPHab1jx45p6tSpWrdunY4dO+YIgHlOnjzp+PcPP/wgSerUqZPTSbYsXB9cJSk6Olp16tTR0aNHZbPZZLVa9f3330v6zxSDguakHThwQJL066+/5jvRpqamSpICAgJuWE9eP+np6QX2c+7cOUc/18ubZ3yj8LN161bl5uYWOr8uLzQX1MeGDRsKfM2OHTuK7DPP0KFD5e3trRkzZhQ4ny5v/5OSkgrsJzk52VHb9QGtMCWp+eeff5YkdejQIV9bTEyMwsPDdeTIEaWnpys4ONjRZrPZHH1cvXpV27dv17p169SvXz/dc889xdp+SEiIYmNjtWnTJu3bt0/Nmzcv08+CO471unXrtGzZMg0ePDjfn5PLQkmPX3GcPHlSHTp00NGjR/W3v/2twHNCnj179uj111/Xpk2bdPr0aWVmZubbVmnl/Tw2btxYYGg+e/ascnNzlZycrJYtW5Zo2z///LM8PDwKnE8dFxcnT09P/fLLL/na6tatq6ioqHzL27dvr/Hjxxf4mjxZWVl65plnVLNmTU2YMEHDhw/Pt05oaKiio6O1d+9eTZkyRYMGDXJMY7iRp556Sq+++qref/99jRo1SidPntTq1av12muvlfn/N+BehF1UeEYxbhhy+PBh3XHHHUpLS9Pdd9+tBx54QMHBwfL09NTRo0e1YMECp5EYm80mSflGN8pCjRo1Clxes2ZN/fbbb0pPT5fVatX58+clSR9++GGR27t06VK+ZceOHZP0nxHgG8nr56uvvtJXX31Von7yRjiunR9aVB9bt24tciSqoD42btxY4DzK4li4cKE2bdqkSZMmFXphXl5t77//fpHbKqi2wpSk5rwLnMLCwgpsDwsL07Fjx2Sz2ZzCbnp6uuMXvzyRkZH5AmBxti/99zNQlp8FV4/11atXNXToUFWrVk2TJ092e30FKenxK46EhAR5eXmpTZs2+vjjj7V8+XL16tUr33o//PCDOnTooJycHMdIa+XKleXh4eGYX1rSEeVr5f08Xn/99SLXK8l7P096erqqVKlS4F+XvLy8FBoaqrNnz+ZrK+r8mLfdwkydOlUHDx7UokWLnD4r11uyZIl69uyp0aNHa/To0TfaFYewsDB1795d7733nl566SW9++678vHx0YABAwqd64uKiV9NYApvvPGGzp8/r7lz52rDhg166623NHHiRI0bN06dOnXKt37exSWujJIU1++//17g8jNnzkiS4ySd99+1a9fKMIxCHwVdKPLzzz/LYrHolltuuWE9ef3MmDGjyH4++OCDfK89ePCg/P39C/0f1PV9PPfcc0X2sX79+nyvTUhIKHDdvn37FtmnzWbTiy++qJiYmCIvasmrLSkpqcjabtRfaWvO6z/v53+906dPO62XJyIiwrHd7OxsHThwQHfeeaeeeeYZTZs2rdTbL8vPgqvHevr06dq/f7+mTZumkJAQt9dXVM0l/fkUxdPTUytXrtQnn3yisLAwDR48uMDjPWnSJF25ckVffvmlPv/8c7355puaMGGCxo0bV+idAUoir+b09PQifx5FjTwXte3U1FTHX22ulZOTo5SUFFWuXDlfW3HPj9c7fPiwpkyZori4OPXu3bvI2lq3bq1Dhw45bln51FNPKSEhQQ8//HCRr5OkYcOG6dixY/rwww/1v//7v4qPj79p70W4D2EXpnDw4EFJUrdu3fK1FTTi1qZNG0n/me9V0C1x3Kmg/g8fPqzjx48rMjLSETbyavr2229LtP0zZ85o586datq0abGuEC9tPxcvXtSePXsUGxsrT0/PIte944475OHhUeI+XDF27FidPXtWM2fOLHLucmn3311iY2MlqcDbXR08eFAnTpxQVFRUkT9LLy8v1a9fX7NmzZIkp6vci9q+zWbTjh075Ofnp1tvvVVS2X4WXDnWx44d06RJk9SuXbsS/eLhqpIev+KYOHGiunTpoqpVq+qDDz6QzWZTv3798v3V6uDBg6pSpUqBUwFK+9eOa5Xlez82NlZ2u12bNm3K17Zp0ybl5uYWeNeNY8eOFXhrvrzjn/fzuN7f//535ebmFnse9xdffKGvvvpKjz/+uN577z2NGzeuwDt0XO/OO+9Uy5Yt9fTTT+vcuXMaNmxYsfpDxULYhSnk/cn6+v9BJSYmFnhRRMuWLdW2bVvt2LHDcfHEtc6fP59vrlxpzZgxQ7/99pvjud1u14svvii73a7+/fs7lj/88MOqV6+eZs2apc8++6zAbX3//ffKyMhwWjZt2jTl5ubecHQjz+233667775bq1atcrpA7lq7du3K9yfHSZMmKTs7Wz169LhhH9WrV1fv3r21bds2TZw4scBb9Bw6dEhHjhwpVs03kpSUpHfffVc9evRwjN4Upn///o4L8X766ad87Xa7vcCg4y4DBgyQ9J/jmTc/WpJyc3P1j3/8Q3a7XU8++WSxtpWUlCTJ+RZ8ffr0kbe3t95++23HL4F5Xn75ZV24cEF9+vRxXGRYlp8FV471888/r6ysLL3zzjv5vjq8LJX0+BXHtdN+OnXqpKFDh+rrr7/Od8vCyMhIpaam5rvF2ty5c5WYmFiKvXH2zDPPyNvbW88995xjvvS1rl69WuognPe+HjVqlNM5KiMjQyNHjpSkAt/Xubm5GjFihNMvWkeOHNFbb70lLy+vfNdmSNInn3yiTz/9VM8++2yx5tWfPn1a/fv3V1RUlN57770S79sLL7ygoKAg/e1vfyvwIjhUfMzZhSkMGTJEH3zwgXr06KHu3burVq1a2r17t7744gv17NlTy5cvz/eaRYsWqX379ho9erQ++ugjtW/fXoZh6MCBA/ryyy+1b98+t3w7W7t27dSiRQv16tVLwcHBSkxMVFJSklq2bOl0pwJvb2+tWrVKnTp10l//+le1bdtWLVq0UEBAgI4fP66tW7fq8OHDOn36tAICArRjxw69+uqrjjm+p0+fzncRUN68wrxRjLz7bS5ZskQdOnTQk08+qbfeekutW7eW1WrViRMntHPnTu3evVvff/+9qlevrsTERI0dO1bbtm1Tq1atNHjw4GLt98yZM3XgwAG98sor+ve//6277rpLNWrU0KlTp/Trr79q69atWrp0aYEXp5TUjh07FBQUpH/96183XLdq1apauXKlunbtqjZt2qhjx45q3LixLBaLjh8/ru+//96tv+xcr23btnrppZc0bdo0NWnSRN27d1dgYKA+//xz7d69W3fddVeB0zCuvUAtNzdXR48e1apVqyRJTz/9tGO9yMhIvfnmmxo6dKhuu+029ezZU9WqVdPGjRv1/fffq2HDhvlCbVl9Flw51tu3b9ezzz5708NFaY5fSU2bNk1ff/21Ro0apfvvv1+NGzeWJD377LNKTEzUXXfdpZ49eyo4OFjbtm3T5s2b1b17d61cudKlfhs2bKh58+ZpwIABaty4sR588EHFxMQoOztbx44d07fffqtq1app3759Jd52fHy81q5dqxUrVqhx48Z65JFHZLFYtGbNGh05ckS9evUq8BfyZs2a6ccff1TLli31wAMPOO6za7PZNG3atALvsrN9+3aFh4frlVdeuWFdhmHoiSeekM1m08cff1zgVIobefzxx/X444+X+HWoQNxyAzOgDKiQ++wWZsuWLca9995rWK1WIygoyGjXrp2xevXqIu+FmpKSYrz00ktGTEyM4evrawQHBxvNmzc3Ro8ebVy+fNmxniv32T106JDxz3/+02jQoIHh6+tr1KpVyxg+fLiRnp5e4PZ+//13Y8SIEUbjxo0Nf39/IzAw0Khfv77RrVs349///reRnZ1tGMZ/7xFZ3Mf194O8cOGCMXnyZOO2224zAgMDDT8/PyMyMtLo3LmzMXv2bOPSpUuGYRjG5MmTjebNmxuTJ08u9B6fhd0HNisry3j77beNO++806hcubLh4+Nj1KlTx+jQoYPxr3/9y0hJSXGs68p9diUZ06ZNy/eagu6jeu1rhw4datSvX9/w9fU1KlWqZDRo0MDo06ePsXr16gJruF5pas6zdOlSo127dkZQUJDh6+trNGrUyJg0aVKB97SNiIhw+ll6eHgYYWFhxn333WesXbu2wL4TExON+++/37BarYaPj49Rr14948UXXzTS0tIKXL+4n4Xi7t+1SnKs87YZFhZW4GdEZXyf3TwlPX4FKew+roZhGNu2bTO8vb2NFi1aGFlZWY7lH3/8sdG6dWsjKCjICA4ONu6//35j48aNRW4rT3Hvibtz506jb9++Rt26dQ0fHx8jJCTEaNy4sfE///M/xrp160q1TcP4zz3EZ82aZbRs2dLw9/c3/P39jdtuu82YOXOm03108+T9LE+ePGn07t3bqFatmuHr62vExsbmuyevYfz38ybJWLFiRb72gt6Pr732miHJmDhxYr71i7rP7o3eY8X5eaDisBhGMS51B1Bi/fr104IFC3TkyBG3jBBfb/78+erfv3+x7lZhsVj0wQcfFPi1ugBQHiwWi+Li4sp02hAgMWcXAAAAJkbYBf6gWrRoUeBtyAqSkJDgmK8LAMCfCReoAX9QLVq0KHaALejbqwAA+DNgzi4AAABMi2kMAAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtLgbQxHS0tKUk5NT3mUAAADgOl5eXgoJCbnxejehlj+snJwcZWdnl3cZAAAAKCWmMQAAAMC0CLsAAAAwLcIuAAAATIuwCwAAANMi7AIAAMC0CLsAAAAwLcIuAAAATIuwCwAAANMi7AIAAMC0CLsAAAAwLcIuAAAATIuwCwAAANMi7AIAAMC0CLsAAAAwLcIuAAAATMurvAtAfr3Gzy3vEgCUkeUJT5Z3CQDwp8LILgAAAEyLsAsAAADTIuwCAADAtAi7AAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtAi7AAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtAi7AAAAMC3CLgAAAEyLsAsAAADTIuwCAADAtAi7AAAAMC3CLgAAAEzLq7wLuNaKFSu0cuVKp2W1atXSm2++KUm6evWqFi5cqO+++07Z2dlq3ry5Bg4cKKvV6lg/JSVF77//vvbs2SM/Pz/FxcUpPj5enp6eN3FPAAAAUBFUqLArSXXq1NHLL7/seO7h8d/B5wULFujnn3/W888/r4CAAM2dO1fTp0/XxIkTJUl2u11TpkyR1WrVpEmTlJaWppkzZ8rT01Px8fE3fV8AAABQvircNAYPDw9ZrVbHo3LlypKkjIwMffPNN+rbt6+aNGmi6OhoDRkyRPv371dycrIkKSkpSSdOnNCwYcMUGRmp2NhY9erVS4mJicrJySnP3QIAAEA5qHAju2fOnNFTTz0lb29vxcTEKD4+XqGhoTp8+LByc3PVtGlTx7q1a9dWaGiokpOTFRMTo+TkZNWtW9dpWkOLFi00Z84cHT9+XFFRUQX2mZ2drezsbMdzi8Uif39/x78BwF04pwDAzVWhwu4tt9yiIUOGqFatWkpLS9PKlSv1yiuvaPr06bLZbPLy8lJgYKDTa4KDg2Wz2SRJNpvNKejmtee1FWb16tVOc4WjoqI0depUVatWzS37BQB5wsLCyrsEAPhTqVBhNzY21vHviIgIR/j9/vvv5ePjU2b9du3aVV26dHE8zxt5OXfuHNMfALjV6dOny7sEADAFLy+vYg1MVqiwe73AwEDVqlVLZ86cUbNmzZSTk6PLly87je6mp6c7RnOtVqsOHjzotI309HRHW2G8vb3l7e1dYJthGK7tBABcg3MKANxcFe4CtWtlZmbqzJkzslqtio6Olqenp3bt2uVoP3XqlFJSUhQTEyNJiomJ0bFjxxwBV5J27twpf39/hYeH3/T6AQAAUL4q1MjuwoULdfvttys0NFRpaWlasWKFPDw8dNdddykgIEAdOnTQwoULFRQUpICAAM2bN08xMTGOsNu8eXOFh4dr5syZ6t27t2w2m5YtW6ZOnToVOnILAAAA86pQYTc1NVUzZszQxYsXVblyZTVs2FCTJ0923H6sb9++slgsmj59unJychxfKpHHw8NDI0eO1Jw5czR27Fj5+voqLi5OvXr1Kq9dAgAAQDmyGEwgK9S5c+ecbkl2s/QaP/em9wng5lie8GR5lwAApuDt7V2sC9Qq9JxdAAAAwBWEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACm5VXeBQAAzK/fprfLuwQAZWT+PcPKu4QiMbILAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLQIuwAAADAtwi4AAABMi7ALAAAA0yLsAgAAwLS8yruAwqxZs0ZLlixR586d1a9fP0nS1atXtXDhQn333XfKzs5W8+bNNXDgQFmtVsfrUlJS9P7772vPnj3y8/NTXFyc4uPj5enpWT47AgAAgHJTIUd2Dx48qK+++koRERFOyxcsWKDt27fr+eef1/jx45WWlqbp06c72u12u6ZMmaKcnBxNmjRJQ4cO1YYNG7R8+fKbvQsAAACoACpc2M3MzNTbb7+tp556SoGBgY7lGRkZ+uabb9S3b181adJE0dHRGjJkiPbv36/k5GRJUlJSkk6cOKFhw4YpMjJSsbGx6tWrlxITE5WTk1NeuwQAAIByUuHC7pw5cxQbG6tmzZo5LT98+LByc3PVtGlTx7LatWsrNDTUEXaTk5NVt25dp2kNLVq00JUrV3T8+PFC+8zOzlZGRobjceXKFUebxWK56Q8A5lUe55SK8ABgXhX9vFKh5uxu2bJFR44c0ZQpU/K12Ww2eXl5OY32SlJwcLBsNptjnWuDbl57XlthVq9erZUrVzqeR0VFaerUqapWrVrpdgQAChEWFlbeJQCAW1X081qFCbspKSmaP3++xo4dKx8fn5vad9euXdWlSxfH87zfFs6dO8f0BwBudfr06fIuAQDcqrzOa15eXsUamKwwYffw4cNKT0/XiBEjHMvsdrt+/fVXffHFFxozZoxycnJ0+fJlp9Hd9PR0x2iu1WrVwYMHnbabnp7uaCuMt7e3vL29C2wzDKOUewQA+XFOAWA2Ff28VmHCbtOmTfXPf/7Tadm7776rWrVq6eGHH1ZoaKg8PT21a9cutWnTRpJ06tQppaSkKCYmRpIUExOjVatWKT093TF9YefOnfL391d4ePjN3SEAAACUuwoTdv39/VW3bl2nZb6+vqpUqZJjeYcOHbRw4UIFBQUpICBA8+bNU0xMjCPsNm/eXOHh4Zo5c6Z69+4tm82mZcuWqVOnToWO3AIAAMC8KkzYLY6+ffvKYrFo+vTpysnJcXypRB4PDw+NHDlSc+bM0dixY+Xr66u4uDj16tWrHKsGAABAebEYFX2iRTk6d+6csrOzb3q/vcbPvel9Arg5lic8Wd4llIt+m94u7xIAlJH59wwrl369vb2LdYFahbvPLgAAAOAuhF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBaXu7aUGZmplJSUiRJoaGh8vPzc9emAQAAgFJxOewePHhQixcv1r59+2S32yVJHh4eatiwofr06aN69eq5XCQAAABQGi6F3QMHDmjcuHHy8vJShw4dVLt2bUnSyZMntWXLFiUkJGjcuHGqX7++W4oFAAAASsKlsLts2TJVqVJFEydOlNVqdWrr0aOHXn75ZS1dulQvv/yyK90AAAAApeLSBWoHDhzQ/fffny/oSpLVatV9992nAwcOuNIFAAAAUGouhV2LxaLc3NxC2+12uywWiytdAAAAAKXmUtht0KCBEhMTde7cuXxtKSkp+vLLL9WwYUNXugAAAABKzaU5u48//rgSEhL07LPP6o477lBYWJgk6dSpU9q2bZs8PT31+OOPu6VQAAAAoKRcCrtRUVF69dVXtXTpUm3btk1Xr16VJPn4+KhFixZ67LHHFB4e7pZCAQAAgJJy+T674eHhevHFF2W323XhwgVJUuXKleXhwZezAQAAoHy57RvUPDw8nO7KkJubK09PT3dtHgAAACgxl8Pu+vXrdeTIETVp0kR33HGHVq5cqbVr18put+u2227T4MGDFRAQ4I5aAQAAgBJxKeyuWbNGS5culcViUWJiorp166Y1a9aoffv2unr1qjZv3qzQ0FD17dvXXfUCAAAAxeZS2F2/fr2aNm2qkSNHas2aNfroo4/UvXt3devWTZLk5+enrVu3EnYBAABQLly6iiwlJUVt27aVl5eX2rdvL7vdrnr16jna69evr9TUVJeLBAAAAErDpbCbk5MjHx8fSZKvr68kycvrv4PFnp6eRX7DGgAAAFCWXL5A7eTJk9q7d68yMjIkSb/99pvjtmMnT550dfMAAABAqbkcdletWqVVq1Y5ni9cuNDVTQIAAABu4VLYTUhIcFcdAAAAgNu5FHYbNWrkrjoAAAAAt3PpArXx48dr165d7qoFAAAAcCuXwu7evXuVnp7urloAAAAAt3Ip7AIAAAAVmct3Y7h48aJSUlKKXCc0NNTVbgAAAIAScznszp8/X/Pnzy9yneXLl7vaDQAAAFBiLofd++67T7fccos7agEAAADcyuWwe+utt+quu+5yRy0AAACAW3GBGgAAAEyLsAsAAADTcmkag7svPPvyyy/15Zdf6ty5c5Kk8PBwde/eXbGxsZKkq1evauHChfruu++UnZ2t5s2ba+DAgbJarY5tpKSk6P3339eePXvk5+enuLg4xcfHy9PT0621AgAAoOJzaWT38OHDSkxMLLQ9MTFRR48eLfb2qlSpovj4eL322muaMmWKmjRpomnTpun48eOSpAULFmj79u16/vnnNX78eKWlpWn69OmO19vtdk2ZMkU5OTmaNGmShg4dqg0bNnA3CAAAgD8pl8LusmXLivy64N27d2vZsmXF3t7tt9+u2267TWFhYapVq5Yef/xx+fn56cCBA8rIyNA333yjvn37qkmTJoqOjtaQIUO0f/9+JScnS5KSkpJ04sQJDRs2TJGRkYqNjVWvXr2UmJionJwcV3YVAAAAf0Auj+w2bNiw0PZbb71Vhw4dKtW27Xa7tmzZoqysLMXExOjw4cPKzc1V06ZNHevUrl1boaGhjrCbnJysunXrOk1raNGiha5cueIYHS5Idna2MjIyHI8rV6442iwWy01/ADCv8jinVIQHAPOq6OcVl+bsXrlypci5sBaLRRkZGSXa5rFjxzRmzBhlZ2fLz89P//jHPxQeHq6jR4/Ky8tLgYGBTusHBwfLZrNJkmw2m1PQzWvPayvM6tWrtXLlSsfzqKgoTZ06VdWqVStR7QBwI2FhYeVdAgC4VUU/r7kUdsPCwpSUlKS//OUvBbbv2LFDNWrUKNE2a9Wqpddff10ZGRn64YcfNGvWLI0fP96VMm+oa9eu6tKli+N53m8L586dY/oDALc6ffp0eZcAAG5VXuc1Ly+vYg1MuhR2O3TooAULFmjBggXq3r27Y9T18uXL+vDDD7Vjxw498cQTJdqml5eXatasKUmKjo7WoUOH9Nlnn6lt27bKycnR5cuXnUZ309PTHaO5VqtVBw8edNpeenq6o60w3t7e8vb2LrDNMIwS1Q8AReGcAsBsKvp5zaWw+5e//EVHjx7VZ599ps8//1whISGSpLS0NBmGobvvvlt//etfXSrQbrcrOztb0dHR8vT01K5du9SmTRtJ0qlTp5SSkqKYmBhJUkxMjFatWqX09HTH9IWdO3fK399f4eHhLtUBAACAPx6Xwq7FYtGQIUN0zz336Mcff9TZs2clSa1atVLr1q3VuHHjEm1vyZIlatGihUJDQ5WZmanNmzdr7969GjNmjAICAtShQwctXLhQQUFBCggI0Lx58xQTE+MIu82bN1d4eLhmzpyp3r17y2azadmyZerUqVOhI7cAAAAwL5fCbp4mTZqoSZMmLm8nPT1ds2bNUlpamgICAhQREaExY8aoWbNmkqS+ffvKYrFo+vTpysnJcXypRB4PDw+NHDlSc+bM0dixY+Xr66u4uDj16tXL5doAAADwx2Mx3DDRIjU1VXv37tWFCxfUunVrVa1aVXa7XRkZGQoICJCHxx/zW4nPnTun7Ozsm95vr/Fzb3qfAG6O5QlPlncJ5aLfprfLuwQAZWT+PcPKpV9vb++yv0DNMAwtXLhQX3zxhex2uySpbt26qlq1qjIzMzV06FD17NnT5Xm7AAAAQGm4NOT6f//3f/rss8/0t7/9TWPHjnVqCwgI0B133KEff/zRpQIBAACA0nIp7K5bt05xcXGKj49XZGRkvvaIiAjuKQkAAIBy41LYPX/+vONOCAXx9fUt8TeoAQAAAO7iUtitXLmyzp8/X2j74cOHFRoa6koXAAAAQKm5FHZbt26tr776Sr///nu+tqSkJG3YsEF33nmnK10AAAAApebS3Rh69uypPXv26KWXXlLDhg0lSWvXrtXy5cuVnJysqKgode3a1S2FAgAAACXl0shuQECAJk+erIceekipqany8fHR3r17lZGRoR49emjChAny9fV1V60AAABAibj8DWo+Pj7q1q2bunXr5o56AAAAALf5Y361GQAAAFAMLo3svvPOOzdcx2KxaPDgwa50AwAAAJSKS2F3z549Ts8Nw9D58+cVHBwsb29vSf8JuwAAAEB5cCnszpo1y+n5hQsXNGjQIP39739XkyZNXCoMAAAAcJVb5+wyigsAAICKxK1hNzMz8z8b9eC6NwAAAJQ/t6XS1NRULVu2TBaLRbVq1XLXZgEAAIBSc2nObq9evfIt69Gjh6xWqyubBQAAANzCpbDbrVs3WSwWWSwWBQcHKyYmRhEREe6qDQAAAHCJS2G3Z8+e7qoDAAAAcDuuJAMAAIBpuTSyO378+BuuY7FY9Morr7jSDQAAAFAqLoXdvXv3SpKio6Pl5+dX4DqGYbjSBQAAAFBqLoXd3r17a82aNTp//ry6deum+++/n3vsAgAAoMJwKZk+9NBDmjlzpu655x4tWrRIzz33nL7//nt31QYAAAC4xOVh2ICAAPXp00czZszQrbfeqrfeekujRo3S7t273VEfAAAAUGpum3NQpUoVPf300/rnP/+pKlWqaOLEiXr11Vd19OhRd3UBAAAAlIhLc3ZXrlxZ4PKoqChdvXpVSUlJ2rVrl5YuXepKNwAAAECpuBR2P/zwwxuuY7fbXekCAAAAKDWXwu7y5cvdVQcAAADgdtwnDAAAAKbl0shuSkpKsdYLDQ11pRsAAACgVFwKu0OHDi3Wekx3AAAAQHlwKexKUseOHRUTE+OOWgAAAAC3cjnsNmrUSHfddZc7agEAAADcigvUAAAAYFouj+z++OOP+v333+Xt7S0/Pz9ZrVbVrl1btWvXdkd9AAAAQKm5HHZ/+ukn/fTTT/mWh4SEqEePHurYsaOrXQAAAACl4pYvlbDb7crJydHly5dls9l04sQJbdmyRf/7v/8rf39/tW3b1i3FAgAAACXhljm7Hh4e8vHxUUhIiKKionT33Xdr5MiRat68uT799FN3dAEAAACUmMvTGIry2GOPaffu3WXZBQAAAFCoMg270dHRio6OLssuAAAAgEK5HHYzMjL06aef6ueff3Z8fXBoaKhatmypzp07KyAgwOUiAQAAgNJwac5uamqqRowYoZUrVyozM1MNGjRQgwYNlJWVpQ8//FAjRoxQWlqau2oFAAAASsSlkd3FixfLZrNpxIgRuu2225zafvnlF73xxhtavHixnnnmGZeKBAAAAErDpZHdHTt2qHPnzvmCriTFxsbqL3/5i3755RdXugAAAABKzaWwm5WVpeDg4ELbrVarsrKyXOkCAAAAKDWXwm54eLi2bNminJycfG05OTnasmWLwsPDXekCAAAAKDWX5uw+/PDDevPNNzVq1Ch16tRJYWFhkqRTp07pq6++0m+//abnnnvOLYUCAAAAJeVS2L3zzjuVlZWlxYsX6/3333dqq1y5sgYPHqw2bdq4VCAAAABQWiUOu4ZhyGKxOJ63b99ed999tw4dOuR0n9169erJ09NT586dU7Vq1dxXMQAAAFBMJZ6zO3369HxzdD09PRUTE6O2bduqbdu2iomJkcVi0dq1a/XCCy+4rVgAAACgJEocdrdu3arJkyfrypUrha5z8OBBjRgxQkuWLFHTpk1dKhAAAAAorRKH3UGDBmnfvn1KSEhQenq6U9uVK1c0d+5cvfzyy7p06ZJeeOEFvfjii24rFgAAACiJEs/Zve+++1S5cmXNmDFDY8eO1ZgxY1SzZk398MMPmj9/vmw2mzp16qTHH39cfn5+ZVEzAAAAUCyluhvDHXfcodGjR+v111/Xyy+/rKioKCUlJSkyMlIvvvii6tWr5+46AQAAgBIr9ZdKNG7cWOPGjZMkJSUl6a677tKUKVMIugAAAKgwXPoGtcjISE2cOFHVq1fXDz/8oK1bt7qrLgAAAMBlJZ7GcPjw4XzL+vfvr3feeUdvvvmmnnjiCTVs2NCpPTo6uvQVAgAAAKVU4rA7atSoItsXLFiQb9ny5cuLte3Vq1frp59+0smTJ+Xj46OYmBj16dNHtWrVcqxz9epVLVy4UN99952ys7PVvHlzDRw4UFar1bFOSkqK3n//fe3Zs0d+fn6Ki4tTfHy8PD09i7eTAAAAMIUSh93BgweXRR2SpL1796pTp06qV6+ecnNztXTpUk2aNElvvPGG484OCxYs0M8//6znn39eAQEBmjt3rqZPn66JEydKkux2u6ZMmSKr1apJkyYpLS1NM2fOlKenp+Lj48usdgAAAFQ8JQ677du3L4My/mPMmDFOz4cOHaqBAwfq8OHDatSokTIyMvTNN99o+PDhatKkiSRpyJAheu6555ScnKyYmBglJSXpxIkTevnll2W1WhUZGalevXpp8eLF6tmzp7y8SnUDCgAAAPwBuXSBWlnLyMiQJAUFBUn6z3zh3Nxcp29lq127tkJDQ5WcnCxJSk5OVt26dZ2mNbRo0UJXrlzR8ePHC+wnOztbGRkZjse13w5nsVhu+gOAeZXHOaUiPACYV0U/r1TYYU673a758+erQYMGqlu3riTJZrPJy8tLgYGBTusGBwfLZrM51rk26Oa157UVZPXq1Vq5cqXjeVRUlKZOnapq1aq5Z2cA4P8XFhZW3iUAgFtV9PNahQ27c+fO1fHjxzVhwoQy76tr167q0qWL43nebwvnzp1TTk5OmfcP4M/j9OnT5V0CALhVeZ3XvLy8ijUwWSHD7ty5c/Xzzz9r/Pjxqlq1qmO51WpVTk6OLl++7DS6m56e7hjNtVqtOnjwoNP20tPTHW0F8fb2lre3d4FthmG4sCcA4IxzCgCzqejntQo1Z9cwDM2dO1c//fSTXnnlFVWvXt2pPTo6Wp6entq1a5dj2alTp5SSkqKYmBhJUkxMjI4dO+YIuJK0c+dO+fv7Kzw8/ObsCAAAACqECjWyO3fuXG3evFkvvfSS/P39HXNsAwIC5OPjo4CAAHXo0EELFy5UUFCQAgICNG/ePMXExDjCbvPmzRUeHq6ZM2eqd+/estlsWrZsmTp16lTo6C0AAADMqUKF3S+//FKSNG7cOKflQ4YMcdzyrG/fvrJYLJo+fbpycnIcXyqRx8PDQyNHjtScOXM0duxY+fr6Ki4uTr169bpZuwEAAIAKokKF3RUrVtxwHR8fHw0cONAp4F6vWrVqN/ymNwAAAJhfhZqzCwAAALgTYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACm5VXeBVxr7969+r//+z8dOXJEaWlp+sc//qE77rjD0W4YhlasWKF169bp8uXLatiwoQYOHKiwsDDHOpcuXdK8efO0fft2WSwWtW7dWv3795efn1957BIAAADKUYUa2c3KylJkZKSefPLJAtvXrl2rzz//XIMGDdKrr74qX19fTZ48WVevXnWs89Zbb+n48eMaO3asRo4cqV9//VWzZ8++WbsAAACACqRChd3Y2Fg99thjTqO5eQzD0GeffaZHH31UrVq1UkREhJ555hmlpaVp69atkqQTJ05ox44devrpp3XLLbeoYcOGGjBggL777julpqbe7N0BAABAOatQ0xiKcvbsWdlsNjVr1syxLCAgQPXr11dycrLatWun5ORkBQYGql69eo51mjZtKovFooMHDxYYoiUpOztb2dnZjucWi0X+/v6OfwOAu3BOAWA2Ff289ocJuzabTZIUHBzstDw4ONjRZrPZVLlyZad2T09PBQUFOdYpyOrVq7Vy5UrH86ioKE2dOlXVqlVzS+0AkOfaawwAwAwq+nntDxN2y1LXrl3VpUsXx/O831DOnTunnJyc8ioLgAmdPn26vEsAALcqr/Oal5dXsQYm/zBh12q1SpLS09MVEhLiWJ6enq7IyEjHOhcuXHB6XW5uri5duuR4fUG8vb3l7e1dYJthGC7VDQDX4pwCwGwq+nmtQl2gVpTq1avLarVq165djmUZGRk6ePCgYmJiJEkxMTG6fPmyDh8+7Fhn9+7dMgxD9evXv+k1AwAAoHxVqJHdzMxMnTlzxvH87NmzOnr0qIKCghQaGqrOnTtr1apVCgsLU/Xq1bVs2TKFhISoVatWkqTw8HC1aNFCs2fP1qBBg5STk6N58+apbdu2qlKlSnntFgAAAMpJhQq7hw4d0vjx4x3PFy5cKEmKi4vT0KFD9fDDDysrK0uzZ89WRkaGGjZsqNGjR8vHx8fxmr///e+aO3euJkyY4PhSiQEDBtz0fQEAAED5q1Bht3HjxlqxYkWh7RaLRb169VKvXr0KXScoKEjDhw8vi/IAAADwB/OHmbMLAAAAlBRhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKZF2AUAAIBpEXYBAABgWoRdAAAAmBZhFwAAAKblVd4FlJUvvvhCH3/8sWw2myIiIjRgwADVr1+/vMsCAADATWTKkd3vvvtOCxcuVPfu3TV16lRFRERo8uTJSk9PL+/SAAAAcBOZMux+8skn6tixo+69916Fh4dr0KBB8vHx0fr168u7NAAAANxEppvGkJOTo8OHD+uRRx5xLPPw8FDTpk2VnJxc4Guys7OVnZ3teG6xWOTv7y8vr/I5PDF1apZLvwDKnre3d3mXUC7qh9Qq7xIAlJHyOq8VN6eZLuxeuHBBdrtdVqvVabnVatWpU6cKfM3q1au1cuVKx/N27dpp+PDhCgkJKctSCzV37KBy6RcAyso7nYaVdwkA/qRMF3ZLo2vXrurSpYvTsuzs7D/tCAxunitXrmjcuHEaN26c/P39y7scAHAZ5zVUNKYLu5UrV5aHh4dsNpvTcpvNlm+0N4+3tzfBFuXCMAwdOXJEhmGUdykA4Bac11DRmO4CNS8vL0VHR2v37t2OZXa7Xbt371ZMTEw5VgYAAICbzXQju5LUpUsXzZo1S9HR0apfv74+++wzZWVlqX379uVdGgAAAG4iU4bdtm3b6sKFC1qxYoVsNpsiIyM1evToQqcxAOXF29tb3bt3ZxoNANPgvIaKxmIwqQYAAAAmZbo5uwAAAEAewi4AAABMi7ALAAAA0yLsAn8AZ8+eVc+ePXX06NHyLgXAn4hhGJo9e7b69+9frHMQ5ypURKa8GwMAAHDdjh07tGHDBo0bN041atRQpUqVyrskoMQIu0AZy8nJkZcXHzUAfzy///67QkJC1KBBg/IuBSg1/g8MuNm4ceNUp04deXp66ttvv1XdunXVv39/LVq0SL/++qv8/PzUrFkz9e3bV5UrV5b0n9GTjz76SMePH5eHh4diYmLUr18/1axZs5z3BsCf1axZs7Rx40ZJUs+ePVWtWjUNGjSoROcqu92u9957T8nJyRo7dqxCQ0O1detWrVy5UidOnFBISIji4uL06KOPytPT82buHv5ECLtAGdi4caMeeOABTZw4UZcvX9aECRPUoUMH9e3bV1evXtXixYv1r3/9SwkJCZKkzMxMdenSRREREcrMzNTy5cv1z3/+U9OmTZOHB1PrAdx8/fv3V40aNbRu3TpNmTJFHh4e2rt3b7HPVdnZ2ZoxY4bOnTunCRMmqHLlyvr11181c+ZM9e/fX7feeqt+//13zZ49W5LUo0eP8thN/Anwf1GgDISFhalPnz6qVauWdu7cqaioKMXHx6t27dqKiorS4MGDtWfPHp06dUqS1KZNG7Vu3Vo1a9ZUZGSkBg8erGPHjunEiRPlvCcA/qwCAgLk7+8vDw8PWa1WVa5cudjnqszMTL322mu6cOGCEhISHH/FWrlypR555BG1b99eNWrUULNmzdSrVy99/fXX5bGL+JNgZBcoA1FRUY5///bbb9q9e7eeeOKJfOv9/vvvqlWrlk6fPq3ly5fr4MGDunjxoux2uyQpJSVFdevWvWl1A0BRinuumjFjhqpUqaKEhAT5+Pg4lh89elT79u3TqlWrHMvsdruys7OVlZUlX1/fm7cz+NMg7AJlwM/Pz/HvzMxMtWzZUn369Mm3ntVqlSRNnTpV1apV01NPPaWQkBAZhqEXXnhBOTk5N6tkALih4p6rYmNj9e233yo5OVlNmjRxLM/MzFTPnj3VunXrfNv29vYu8/rx50TYBcpYVFSUfvzxR1WrVq3ACzAuXryoU6dO6amnntKtt94qSdq3b9/NLhMAilSSc9UDDzygOnXqaOrUqRo1apQaNWokSYqOjtapU6e4+BY3FXN2gTLWqVMnXbp0STNmzNDBgwd15swZ7dixQ++8847sdrsCAwNVqVIlff311zpz5ox2796tBQsWlHfZAOCkpOeqv/zlL3rsscf02muvOUJxt27dtGnTJn344Yc6fvy4Tpw4oS1btmjZsmU3azfwJ0TYBcpYlSpVNHHiRNntdk2ePFn/+Mc/tGDBAgUEBMhiscjDw0PDhw/X4cOH9cILL2jBggUFzu8FgPJUmnPVX//6V/Xs2VNTpkzR/v371aJFC40YMUI7d+7UqFGjNGbMGH366acKDQ29SXuBPyOLYRhGeRcBAAAAlAVGdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBahF0AAACYFmEXAAAApkXYBQAAgGkRdgEAAGBaXuVdAABUND179izWegkJCWrcuHEZVwMAcAVfFwwA19m0aVO+5zt37tQzzzzjtLxZs2ayWq03sTIAQEkxsgsA17nnnnucnh84cEA7d+7MtxwAUPERdgHABXv27NH48ePzTWmYMmWKfvnlF3Xv3t0xLWLFihVauXJlodsaMmSI2rdvX2j7hg0b9M4772jKlCmqV6+eY/mFCxc0cOBAp74k6ciRI1q6dKn2798vu92uW265RY899phiYmLybTOPj4+PatSooc6dO6tjx45O/e/evVsrVqzQkSNH5OnpqUaNGik+Pl7h4eFO66Wmpmr58uXasWOHLl68qJCQELVo0UL9+/fX5s2bnfor6jjMmjVLe/fu1axZsxxtKSkpGj58uLKzszVz5kxVr169yG0BAGEXANxs7969+uWXXwptHzhwoPz8/BzPz549qxUrVri1huPHj+uVV15RQECAHnroIXl6eurrr7/W+PHjNW7cON1yyy1O6/ft21eVKlXSlStXtH79es2ePVvVqlVTs2bNJEk7d+7UlClTVL16dfXo0UNXr17V559/rpdffllTp051hM7U1FSNGjVKGRkZ6tixo2rXrq3U1FT98MMPysrK0q233uo0HWT16tWSpK5duzqWNWjQoND9WrFihbKzs912nACYH2EXANxs8eLFio2NLTTwtmnTRpUrV3Y8P3TokNvD7rJly5Sbm6sJEyaoRo0akqS4uDg9++yzWrRokcaPH++0fqtWrRyBtVmzZho+fLiOHj3qCLuLFi1SUFCQJk+erKCgIMdrXnrpJa1YscIRYJcsWSKbzaZXX33VafS5V69eMgxDgYGBjnok6ZtvvpGUf+pIQY4fP66NGzcWeWwB4HrcegwA3OjHH3/UwYMHFR8fX2Z9ZGRk6MKFC47HpUuXnNrtdrt27typVq1aOQXLkJAQtWvXTvv27VNGRobTay5fvqwLFy7o999/16effioPDw81atRIkpSWlqajR48qLi7OEXQlKSIiQs2aNXMET7vdrq1bt6ply5ZOQTePxWJxab+XLFmi6OhotWnTxqXtAPhzYWQXANzEbrdr6dKluvvuuxUREVFm/UycOLHI9gsXLigrK0u1atXK1xYeHi7DMHT+/HkFBAQ4lo8YMcLxb29vbw0YMED169eXJJ07d06SCtxe7dq1lZSUpMzMTGVmZurKlSuqW7duqfarKPv27dP27dv1yiuvKCUlxe3bB2BehF0AcJNvvvlG586d05gxY8q0nyeffFJhYWGO51euXNH06dNd2uawYcMUHBys7Oxs7d69W3PnzpWPj0+RF8zdTIsXL1bz5s3VpEkTbdiwobzLAfAHQtgFADfIysrShx9+qAceeEDVqlUr077q16+f724M16pcubJ8fX116tSpfK89efKkLBaLqlat6rS8QYMGjjm7LVu21IkTJ7R69Wq1b9/esT8Fbe/UqVOqVKmS/Pz85OPjI39/fx07dszlfbzWTz/9pOTkZE2dOtWt2wXw58CcXQBwg88//1xZWVl69NFHy7sUeXh4qFmzZtq2bZvOnj3rWG6z2bR582Y1bNjQaQpDQa5evaqcnBxJ/5nrGxkZqY0bN+ry5cuOdY4dO6akpCTFxsY6+m3VqpW2b9+uQ4cO5dtmab7DKG9qSLt27RQZGVni1wMAI7sA4AZJSUl67LHHVKlSpfIuRZL02GOPaefOnXrllVf0wAMPOG49lpOToz59+uRbf+vWrapUqZJjGsOvv/6qzp07O9r79OmjKVOmaOzYsbr33nt19epVffHFFwoICHC6t298fLx27typcePGqWPHjgoPD1daWpp++OEHTZgwQYGBgSXaj/Pnz8vLy0ujRo0q/cEA8KdG2AUANwgJCdFf//rX8i7DoU6dOpowYYKWLFmiNWvWyDAM1a9fX8OGDct3j11JWrBggSTJy8tLoaGh6t69u9O9b5s1a6bRo0drxYoVWrFiheNLJXr37u30xQ5VqlTRq6++qmXLlmnz5s26cuWKqlSpohYtWsjX17dU+/LAAw/w5REASs1ilObvSgAAAMAfAHN2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaRF2AQAAYFqEXQAAAJgWYRcAAACmRdgFAACAaf1/YhZiHE4EUIgAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(8,5))\n",
+ "sns.countplot(data=df, x='label', hue='label', palette='viridis', legend=False)\n",
+ "plt.title('Распределение новостей по категориям')\n",
+ "plt.xlabel('Тип новости')\n",
+ "plt.ylabel('Количество')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af559c9-0f52-4cf5-b75a-bb03d125d651",
+ "metadata": {},
+ "source": [
+ "## 2. Анализ длины текстов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "88f6bf44-4b75-4e5c-b284-735bf54e382b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIoCAYAAAAV/qraAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXklEQVR4nO3deVxU9eL/8fewibgAigsuCWrmilKplSmEpS1el1zymverVn7LbPNrZWaKaNqltLTF++127039uuLuvWpWpla2abmTuYGGpuyZIDA45/dHD+YnsQjDwByY1/Px8BHnfM7ynnGa8c1ZxmIYhiEAAAAAAOByHq4OAAAAAAAAfkdJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAFDNWSyWQn88PT0VFBSkqKgorVixwtXxAAAAUA5erg4AAHCO6OhoSZLVatWxY8e0adMm7dy5U/v27dObb77p4nQAAAAoC4thGIarQwAAHGexWCRJf3w737Fjh+655x5J0unTpxUSElLV0QAAAFBOnO4OADVU37591b59exmGob1799rnL168WEOHDlXr1q1Vu3Zt1a9fX7169dKyZctK3FZ6erqmTZumzp07y8/PT/7+/uratateeuklZWVl2ZeLjIwscvr9H/+MHTu20LbHjh0ri8Wi06dP680331T79u3l6+urFi1aaNKkSbp06VKxmZKSkvTUU0+pdevWqlWrlho2bKiBAwcWeqx/tHjx4hJzlfRLjPT0dE2dOlUdOnRQ7dq15e/vr759++rjjz8ucT8zZ84s136ys7P12muvqVu3bqpTp47q1q2r22+/XStXriyy7K5du2SxWDRz5sxi913wfCYmJtrnJSYmFvvcS1JcXJw9265du4qMHzt2TGPHjlXLli3l4+OjJk2aaNSoUfrpp59KfPwlKchR0p9rMxf3mIr7ExkZWWjZgtfgH126dEnBwcGlvgZL2n9x+yn4Oy7uOSvuMRf33P9RaY+ztNeQM14/ycnJ6tixo3x8fLRp06Yi63333Xd66KGH1Lx5c9WqVUvBwcHq16+f4uLiJJX+/1ZJf8+//vqr3njjDUVFRalFixby8fFRo0aNNHDgQH399dfXfb4AoKbidHcAqMEKjq5fW1omTJigTp06qU+fPgoODlZaWpq2bt2qv/zlL/rpp580e/bsQttISEjQXXfdpTNnzuiWW27RhAkTZLPZdPz4cb311lt64oknVKdOnULrFJx6f63MzEwtXLiwxKyTJk3S559/rhEjRmjQoEHavn27FixYoC+++EJffvmlfH197cv+8MMP6tevn9LT09W/f389+OCDSk1N1caNG3XnnXdqw4YNuv/++0vc16BBg9StWzf79IIFC4pd7syZM4qMjFRiYqJ69+6te++9V1lZWfrPf/6je++9V++//77Gjx9f4n7GjBlTqFAVt5/MzExFRUVp//79uvnmm/XII4/IZrNp+/btGjVqlI4ePapXX321xH1UxOXLl/U///M/JY5/9NFHevDBB2W1WvWnP/1Jbdu2VVJSktavX68tW7Zo586duvnmm8u9365du2rw4MH26Y0bN+rgwYPXXe/ZZ59VQECAfTomJqbM+5w+fbouXLhQnphVbvDgwYVeL4mJiVqyZIkiIiIK/ZLg2ufAGa+f1NRU9e3bVydOnNDq1as1aNCgQuMffPCBJkyYIE9PTw0cOFA33nijkpOTtW/fPi1atEgjRoxQt27divx/HxMTo1atWhX5BUVB/h9//FHTpk1Tnz599MADDygwMFBnz57V5s2btW3bNv373//WvffeW+bnDwBqDAMAUK1JMop7O//kk08Mi8ViWCwWIzEx0T7/5MmTRZbNzc01oqKiDC8vLyMpKanQ2O23325IMubOnVtkvZSUFOPKlSv26YiIiGKzGIZhJCQkGJKMMWPGFJo/ZswYQ5LRsGHDQjmvXr1qPPjgg4YkY9asWfb5VqvVaNOmjVGrVi1j165dhbZ17tw5o1mzZkbTpk2NnJycIhn+8Y9/GJKMxYsXF5rfqlUro1WrVkWWj4iIMCwWi7Fy5cpC8zMyMoyuXbsavr6+xoULF4qsN23aNENSkXzF7afg8cfGxhaaf+XKFaN///6GxWIx9u/fb5+/c+dOQ5IRHR1dZL/Xbi8hIcE+r6TnfvLkyYYko3v37oYkY+fOnfax9PR0IyAgwGjYsKFx9OjRQusdPnzYqFOnjhEeHl5shpKcPHnSkGSMHTv2upmv9fDDDxuSCr0+DOP3135EREShecW9Bg8cOGB4enraH2dJr8GS9l/cfqKjo4s8Z8Up6bkvi+v9XRtGxV8/aWlpRteuXQ1PT08jLi6uyPaPHj1qeHl5GYGBgcaRI0eKjP/8888lZivuebtWZmamkZKSUuw2g4ODjfbt25e4LgDUZJzuDgA1xMyZMzVz5kxNmzZNw4YN07333ivDMPTcc8+pVatW9uXatGlTZF0fHx9NnDhR+fn52rFjh33+999/r6+//lrdunXTlClTiqwXFBRU6Ah3RTz77LOFcnp4eOiNN96Qh4eH/vWvf9nnb9myRadOndLTTz+tiIiIQtto1qyZXnzxRV24cKHQ4yhw5coVSb8/3us5ePCgdu/eraFDh2rkyJGFxgICAhQTE6OcnBytW7euyLpWq1WSVKtWrVL3kZaWpmXLlunWW2/Viy++WGjM19dXsbGxMgyjUu7Sf+TIES1cuFADBw4s9qyDpUuXKjMzUzExMerYsWOhsc6dO2v8+PHav3+/4uPjy7zP8jz/1yrr81kcwzD05JNPytfXV/Pnzy/3+mZW0ddPZmam+vXrpyNHjmjZsmUaPnx4kWX+9re/KT8/X9OnT1enTp2KjLdo0cLh/P7+/goKCip2m8OGDdOxY8d09uxZh7cPANUVp7sDQA1RcOqvxWJRQECAevfurUcffVSjR48utNzZs2cVGxurHTt26OzZs/biVODcuXP2n7/55htJUv/+/eXhUbm/1/1j4Zak1q1bq2XLlkpMTFRmZqYCAgLs16qeOXOm2OuyT5w4Ien3U2n/WD7T09MlSX5+ftfNU7CfX3/9tdj9pKSk2PfzRwXX0V/vFxh79+7V1atXS7zGvKCcFrePXbt2FbvOgQMHSt1ngYkTJ8rb21sLFy7U4sWLi4wXPP6DBw8Wu5/jx4/bs/2xxJekPM//tcr6fBbnX//6l7766ivFxsaqZcuWpS67YMGCQqeSl8XixYvt13kHBATohhtuUP/+/cv9GB1RkdfPpUuX1L9/f33//ffq1q2bRowYUew+Ct4D7rvvPucFv8aePXu0cOFCff3110pOTlZeXl6h8XPnzumGG26olH0DgFlR0gGghjDK8GUdp0+fVo8ePZSRkaHevXurX79+8vf3l6enp/3619zcXPvymZmZkqTmzZtXVmy7Jk2aFDu/adOmOnPmjH799VcFBAQoLS1NkrRmzZpSt3f58uUi8wqOyjVr1uy6eQr288knn+iTTz4p135SU1MlSY0bNy7TPvbu3VvqDe+K28fu3bu1e/fuUrdfkqVLl+rzzz/Xq6++WuIN8wqyffDBB6Vuq7hsJSnP83+t1NRU+fj4lLtAp6en66WXXlKHDh00adKkQr+AKk5p90woyZIlS4rMCwwM1KJFi4qcgeFsFXn9vP3227LZbOrTp48+//xzvfHGG8WeLVOZ7wEbNmzQsGHD5Ovrq3vuuUdt2rRRnTp15OHhoV27dmn37t2F3o8AwF1wujsAuJE333xTaWlp+uc//6ldu3bp7bff1uzZszVz5kz179+/yPIFpeh65cYZLl68WOz8gpt9+fv7F/rvpk2bZBhGiX+Ku3ndDz/8IIvFohtvvPG6eQr2s3DhwlL38+GHHxZZ9+TJk6pdu3aJv3j44z4mTZpU6j527txZZN3o6Ohilx0zZkyp+8zMzNQLL7ygdu3a6YUXXrhutoMHD5aa7Xr7u9YPP/wgSWrXrl2Z15F+fz4d+QrBqVOnKjU1Ve+99568vb2vu3xCQkKxj7E0O3futC+Xlpam999/X5cvX9YjjzxiL7iVpSKvH5vNpr/97W/6+OOP1aVLF82YMaPYszAq8z1g+vTp8vHx0b59+7Rx40bNnz9fs2bN0syZM3XTTTc5fX8AUF1Q0gHAjZw8eVKSNHTo0CJjxR2Vve222yRJ27dvl81mq9Rsxe3/9OnT+vnnnxUSEmIvCwWZvvjii3Jt/8KFCzp06JC6dOlSpiOyju7nt99+09GjRxUeHi5PT89Sl+3Ro4c8PDzKvY+KeOWVV5ScnKx333231GvDHX38pfn444/l4eGhXr16lXmdY8eOKTMzU7feemu59vXdd9/pH//4h0aNGqW77rqrvFEd0qBBA/33f/+37r33Xl25ckVHjhyp1P1V5PXzxBNP6PHHH1etWrW0bNkyWSwWjR49Wjk5OYWWK3gdbNu2zSmZr3Xy5El17NhRHTp0KDTfZrPpyy+/dPr+AKC6oKQDgBspOBr5x+923r59u/7xj38UWf6WW27RHXfcoQMHDig2NrbIeFpaWpF/1Dtq4cKFOnPmjH3aZrPphRdekM1m07hx4+zzBw0apDZt2ui9997T1q1bi93W119/rezs7ELzXn/9dV29elUPP/xwmfLceuut6t27t9avX1/oxnXXOnz4sJKTkwvNe/XVV2W1Wou9CdcfNW7cWA8//LD27dun2bNn6+rVq0WWOXXqlBISEsqU+XoOHjyov/3tbxo+fLjuueeeUpcdN26c/QZ53333XZFxm8123e8Iv9bmzZt19OhR9e/fv9ibhRXHZrNp1qxZklSm5/NaTz75pOrWrat58+aVa72Kys/Pt/99BQYGVuq+KvL6ufZSjLCwMM2ZM0dHjx7VSy+9VGi5CRMmyMvLS7Nnzy72JoFJSUkO5w8JCdGJEyd0/vx5+zzDMDRz5sxy3ZAQAGoarkkHADfy5JNP6sMPP9Tw4cM1bNgwNWvWTEeOHNFHH32kESNGaPXq1UXWWbZsmSIjI/Xyyy9r3bp1ioyMlGEYOnHihD7++GMdO3bMoVOR/6hXr17q1q2bHnroIfn7+2v79u06ePCgbrnllkJ3rvb29tb69evVv39/PfDAA7rjjjvUrVs3+fn56eeff9bevXt1+vRp/fLLL/Lz89OBAwc0d+5c+zXsv/zyS5GbbBWcljxz5kwNHjzY/h3qK1asUFRUlB599FG9/fbb6tmzpwICApSUlKRDhw7pyJEj+vrrr9W4cWNt375dr7zyivbt26fu3btrwoQJZXrc7777rk6cOKEZM2bo//7v/3TnnXeqSZMmOn/+vH788Uft3btXK1euVGhoaIWf4wMHDqhu3bp66623rrtsw4YNtXbtWg0ZMkS33Xab+vbtq06dOslisejnn3/W119/XaZf0mRmZmrGjBn2a9tr1apV5PkvOM16wYIFioyM1ODBg7V8+XLNmTNHP/74owYNGlToe9XL4vvvv9eCBQsUHBxcrvXKa/PmzTp27Jik36+B37Rpk44cOaI777xTnTp1UmJiYqXu31mvn//5n//Rli1b9Pbbb2vAgAG6++67JUkdO3bUokWL9MQTTyg8PFyDBg3SjTfeqLS0NO3du1f169cv9nT6spg0aZJ9u0OHDpW3t7f27Nmj+Ph4/elPf9K///1vh7YLANUdJR0A3EhYWJh27typV155RVu2bFF+fr66du2q9evXKyAgoNiSHhoaqh9++EGvv/66Nm7cqHfffVe+vr4KCQnR5MmTr3tztLJ66623tGHDBn3wwQdKTExUw4YN9eyzz2rWrFlF7uodFhamgwcP6s0339R//vMfffjhh/Lw8FBwcLDCw8MVExNjP1p74MCBQjeZW7BgQYkZYmJiFBISYi/pLVq00Pfff6933nlH69at0/Lly3X16lU1bdpUHTt21NNPP60uXbpI+r0UWq1WzZkzR5MmTSrz14XVr19fu3fv1t///netWLFC69atU05Ojpo0aaIbb7xRb7311nWPepfHjBkzynwTsL59++rQoUOaN2+etm/fri+++EI+Pj5q1qyZoqKiir1s4o8yMzP1zjvv2Kc3btyojRs3FrvswoULlZmZqcGDB2vPnj2qV6+e3n33XT3xxBNlynutsLAwPfXUU+Ver7yu/YVH/fr11apVK82ePVvPPPNMpe+7YJ/OeP1YLBYtWbJEYWFhGjt2rA4fPmw/E2D8+PHq3Lmz5s2bp127dmnjxo0KCgpSWFiYHnvsMYezF5xuv2DBAi1ZskS1a9dW79699eGHH2rdunWUdABuy2KU5XbAAABUkrFjx2rJkiVKSEhwyhH5P1q8eLHGjRtXprvfWywWffjhhxo7dqzTc7irxMREhYaGaufOnYqMjCx12cjISIWEhBT7lXAAALgLrkkHAAAAAMAkON0dAFCjdevWrdivYytOdHS0/VR3OEdAQICio6PLdJbE2LFjy/1d6AAA1DSc7g4AcKnKPt0dAACgOqGkAwAAAABgElyTDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAk3PYr2DIyMpSfn+/qGAAAAACAGs7Ly0uBgYFlW7aSs5hWfn6+rFarq2MAAAAAAGDH6e4AAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCS9XB7hWfHy8Nm/erISEBGVkZOj5559Xjx49Ci2TlJSk5cuXKz4+XjabTS1atNDkyZMVFBTkotQAAAAAADiHqUp6bm6uQkJCFBUVpXnz5hUZv3DhgmbMmKGoqCiNGDFCtWvXVlJSkry9vV2QFgAAAAAA5zJVSQ8PD1d4eHiJ46tWrVJ4eLhGjx5tn9e0adOqiAYAAAAAQKUzVUkvjc1m0w8//KCBAwdqzpw5SkhIUOPGjTV48OAip8Rfy2q1ymq12qctFotq165t/xkAALiHjIwMZWVluTqG27BarUpPT3d1DKBKNGjQgLN7q1CdOnUUGBjo6hiVptqU9EuXLiknJ0ebNm3SQw89pIcfflgHDhzQ/PnzFR0drY4dOxa73oYNG7R27Vr7dGhoqGJjY9WoUaOqig4AAFwsNTVVr8fGKu+aX9wDAKonH29vzZs/v8bel6zalHSbzSZJuvXWWzVgwABJUkhIiH766Sd9/PHHJZb0IUOG2JeX/v/R85SUFOXn51dyagAAYAZJSUnKs1o1+qYGauJXbf75U61ZbYbSc/i3FtxDA18veXtwlm5VuJidr2U/pSshIaHQGdNm5+XlVeYDxdXmU6p+/fry9PRUixYtCs1v3ry5fvrppxLX8/b2LvHUE8MwnJoRAACYU8FnfhM/L7Ws6+PiNO6jdf1aro4AoIYyDKPG9rlq8z3pXl5eatOmjc6fP19o/i+//FJjT3MAAAAAALgXU5X0nJwcJSYmKjExUZKUnJysxMREpaamSpIGDhyor776Sp9++qkuXLigjz76SN9//7369+/vwtQAAAAAADiHqU53P3XqlGJiYuzTS5culSRFRERo4sSJ6tGjh8aPH6+NGzfqww8/VLNmzTR58mS1b9/eVZEBAAAAAHAaU5X0Tp06KS4urtRloqKiFBUVVUWJAAAAAACoOqY63R0AAAAAAHdGSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmISXqwNcKz4+Xps3b1ZCQoIyMjL0/PPPq0ePHvbx9957T7t37y60TteuXTVt2rSqjgoAAAAAgNOZqqTn5uYqJCREUVFRmjdvXrHLdOvWTU8++aR92svLVA8BAAAAAACHmarhhoeHKzw8vNRlvLy8FBAQUDWBAAAAAACoQqYq6WURHx+vxx57THXq1FHnzp01cuRI1atXr8TlrVarrFarfdpisah27dr2n6ubjIwMZWVluTqG27BarUpPT3d1DKBKNGjQQN7e3q6O4Tbq1KmjwMBAV8dwG9XxMx8AUDKLxVJj39urVUnv1q2bevbsqcaNG+vChQtauXKl5s6dqzlz5sjDo/h74G3YsEFr1661T4eGhio2NlaNGjWqqthOk5qaqtjXX5c1L8/VUQAAFeTt46P58+YpKCjI1VHcQk5OjqsjAACcKCgoSMHBwa6OUSmqVUnv1auX/ecbbrhBrVq10tNPP62jR4+qS5cuxa4zZMgQDRgwwD5d8NuWlJQU5efnV25gJ0tKSpI1L08BvcLk5V/H1XHcgnH1qq5evuLqGECV8KxbWxZPT1fHcAv5v2Ypc88hJSQkFDrbC5UnNTXV1REAAE6UmpoqX19fV8coMy8vrzIfKK5WJf2PmjRponr16unChQsllnRvb+8ST980DKMy4zldQV4v/zrybujv4jRupLGrAwCoqQzDqHafRdUVzzMA1Cw1+TO0Wn9Pelpami5fvsw1fQAAAACAGsFUR9JzcnJ04cIF+3RycrISExNVt25d1a1bV2vWrFHPnj0VEBCgixcvatmyZWratKm6du3qwtQAAAAAADiHqUr6qVOnFBMTY59eunSpJCkiIkLjx4/X2bNntXv3bmVlZalBgwYKCwvTQw89xN2IAQAAAAA1gqlKeqdOnRQXF1fi+LRp06owDQAAAAAAVataX5MOAAAAAEBNQkkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJiEqUp6fHy8/vrXv+rxxx/XiBEj9N1335W47N///neNGDFCW7ZsqcKEAAAAAABUHlOV9NzcXIWEhOjRRx8tdbnvvvtOJ06cUGBgYBUlAwAAAACg8jm9pF+9etXhdcPDwzVy5Ej16NGjxGXS09P1r3/9S88884y8vLwc3hcAAAAAAGbjcMvduXOnEhIS1LlzZ/Xo0UNr167Vpk2bZLPZdPPNN2vChAny8/NzZlbZbDa98847GjhwoFq2bFmmdaxWq6xWq33aYrGodu3a9p+rk+qWFwBQOovFwnt7FeF5BoCapSZ/hjpU0jdu3KiVK1fKYrFo+/btGjp0qDZu3KjIyEjl5eXpyy+/VFBQkMaMGePUsJs2bZKnp6fuu+++Mq+zYcMGrV271j4dGhqq2NhYNWrUyKnZqkJOTo6rIwAAnCgoKEjBwcGujuEW+AwFgJqlJn+GOlTSd+7cqS5duuill17Sxo0btW7dOg0bNkxDhw6VJPn6+mrv3r1OLemnT5/W1q1bFRsbW67fmAwZMkQDBgywTxesm5KSovz8fKflqwqpqamujgAAcKLU1FT5+vq6OoZb4DMUAGqW6vYZ6uXlVeYDxQ6V9NTUVA0aNEheXl6KjIzUmjVr1KZNG/t427Zt9dlnnzmy6RL9+OOPunTpkp588kn7PJvNpqVLl2rr1q167733il3P29tb3t7exY4ZhuHUjJWtuuUFAJTOMAze26sIzzMA1Cw1+TPUoZKen58vHx8fSVKtWrV+39A1N3Hz9PSs0A3kitOnTx916dKl0Lw5c+aoT58+uuuuu5y6LwAAAAAAXMHhG8edO3dO8fHxys7OliSdOXNGHh4e9jFH5OTk6MKFC/bp5ORkJSYmqm7dugoKClK9evUKLe/l5aWAgAA1a9bMwUcBAAAAAIB5OFzS169fr/Xr19unly5dWuEwp06dUkxMTJFtRkREaOLEiRXePgAAAAAAZuZQSY+OjnZ2DklSp06dFBcXV+blS7oOHQAAAACA6sihkt6xY0dn5wAAAAAAwO05fLp7gaSkJKWkpEiSGjVqpBYtWlQ4FAAAAAAA7sjhkr53714tXbpUycnJheY3btxYY8aM0a233lrhcAAAAAAAuBOHSvoPP/yg+fPnq1GjRvrzn/9sP3qelJSkHTt2aN68eXrppZfUrVs3Z2YFAAAAAKBGc6ikr1u3Tq1atVJMTIx8fX3t82+99Vbde++9mjFjhtasWUNJBwAAAACgHDwcWens2bOKiIgoVNAL+Pr6KjIyUmfPnq1wOAAAAAAA3IlDJd3b21uXL18ucfzy5cvy9vZ2OBQAAAAAAO7IoZLeuXNnbd26VcePHy8yduLECW3btk1dunSpcDgAAAAAANyJQ9ekjx49WtOmTdP06dPVtm1bNWvWTJJ0/vx5nTx5Uv7+/nr44YedGhQAAAAAgJrOoZLeuHFjzZs3Txs2bNCBAwf01VdfSfr9e9Lvv/9+DR48WP7+/k4NCgAAAABATefw96T7+/tr7NixTowCAAAAAIB7c+iadAAAAAAA4HwOHUmPiYm57jIWi0UzZsxwZPMAAAAAALglh46kx8fHKzMzs9RlDMNwZNMAAAAAALgth69JHzp0qO68805nZgEAAAAAwK1xTToAAAAAACbh8JH03377TWlpafL29pavr698fHycmQsAAAAAALfjcElfvHixFi9ebJ/29fVVixYt1LlzZ913330KCAhwQjwAAAAAANyHQyV9woQJkiSbzab8/HxlZWUpMzNTSUlJ2rJli3bs2KHZs2crODjYqWEBAAAAAKjJHCrpkZGRJY6lpqZqxowZWr16tZ577jkHYwEAAAAA4H6cfuO4oKAgDR48WCkpKc7eNAAAAAAANZrD16SXpl+/furXr19lbBoAAAAAgBrLoSPpp0+f1vbt20sc3759uxITEx3NBAAAAACAW3KopK9atUqHDx8ucfzIkSNatWqVw6EAAAAAAHBHDh9Jb9++fYnjHTp00KlTpxwOBQAAAACAO3KopF+5ckWenp4ljlssFmVnZzscCgAAAAAAd+RQSQ8ODtbBgwdLHD9w4ICaNGnicCgAAAAAANyRQyU9KipK+/fv15IlS5SVlWWfn5WVpcWLF+vAgQOKiopyWkgAAAAAANyBQ1/Bdt999ykxMVFbt27Vtm3bFBgYKEnKyMiQYRjq3bu3HnjgAacGBQAAAACgpnOopFssFj355JPq06ePvv32WyUnJ0uSunfvrp49e6pTp05ODQkAAAAAgDtwqKQX6Ny5szp37uysLAAAAAAAuDWHrkkHAAAAAADOR0kHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBIVuru7JOXk5Cg1NVWSFBQUJF9f3wqHAgAAAADAHTlc0k+ePKnly5fr2LFjstlskiQPDw+1b99eo0ePVps2bZwWEgAAAAAAd+BQST9x4oRmzpwpLy8vRUVFqXnz5pKkc+fOac+ePYqOjtbMmTPVtm1bp4YFAAAAAKAmc6ikr1q1Sg0aNNDs2bMVEBBQaGz48OGaPn26Vq5cqenTpzsjIwAAAAAAbsGhG8edOHFC99xzT5GCLkkBAQG6++67deLEiYpmAwAAAADArThU0i0Wi65evVriuM1mk8VicTgUAAAAAADuyKGSftNNN2n79u1KSUkpMpaamqqPP/5Y7du3r3A4AAAAAADciUPXpP/5z39WdHS0nnvuOfXo0UPBwcGSpPPnz2vfvn3y9PTUn//8Z6cGBQAAAACgpnOopIeGhmru3LlauXKl9u3bp7y8PEmSj4+PunXrppEjR6pFixZODQoAAAAAQE3n8Pekt2jRQi+88IJsNpsuXbokSapfv748PBw6gx4AAAAAALfncEkv4OHhUegu71evXpWnp2dFNwsAAAAAgNtxuKTv3LlTCQkJ6ty5s3r06KG1a9dq06ZNstlsuvnmmzVhwgT5+fk5MysAAAAAADWaQyV948aNWrlypSwWi7Zv366hQ4dq48aNioyMVF5enr788ksFBQVpzJgxzs4LAAAAAECN5VBJ37lzp7p06aKXXnpJGzdu1Lp16zRs2DANHTpUkuTr66u9e/dS0gEAAAAAKAeH7vKWmpqqO+64Q15eXoqMjJTNZlObNm3s423btlV6errTQgIAAAAA4A4cKun5+fny8fGRJNWqVUuS5OX1/w/Ke3p66urVq06IBwAAAACA+3D4xnHnzp1TfHy8srOzJUlnzpyxf/3auXPnnJMOAAAAAAA34nBJX79+vdavX2+fXrp0qVMCAQAAAADgrhwq6dHR0c7OAQAAAACA23OopHfs2NHZOQAAAAAAcHsO3TguJiZGhw8fdnYWAAAAAADcmkMlPT4+Xr/++quzswAAAAAA4NYcKukAAAAAAMD5HL67+2+//abU1NRSlwkKCirXNuPj47V582YlJCQoIyNDzz//vHr06GEfj4uL01dffaW0tDR5eXmpdevWGjlypG688UaHHgMAAAAAAGbicElfvHixFi9eXOoyq1evLtc2c3NzFRISoqioKM2bN6/IeLNmzfTII4+oSZMmysvL05YtW/Tqq6/qnXfeUf369cu1LwAAAAAAzMbhkn733Xc7/Qh2eHi4wsPDSxy/8847C03/13/9lz777DOdOXNGXbp0cWoWAAAAAACqmsMlvUOHDkVKc1XKz8/Xp59+Kj8/P7Vq1arE5axWq6xWq33aYrGodu3a9p+rk+qWFwBQOovFwnt7FeF5BoCapSZ/hjpc0l3l+++/14IFC5SXl6eAgAC98sorpZ7qvmHDBq1du9Y+HRoaqtjYWDVq1Kgq4jpVTk6OqyMAAJwoKChIwcHBro7hFvgMBYCapSZ/hla7kt6pUye98cYbunTpknbs2KG33npLc+fOlb+/f7HLDxkyRAMGDLBPF/y2JSUlRfn5+VWS2Vmud6M+AED1kpqaKl9fX1fHcAt8hgJAzVLdPkO9vLzKfKDYoZJe3hvCOZOvr6+aNm2qpk2bql27dnrmmWf02WefaciQIcUu7+3tLW9v72LHDMOozKhOV93yAgBKZxgG7+1VhOcZAGqWmvwZ6tD3pJ8+fVrbt28vcXz79u1KTEx0NFO5GIZR6JpzAAAAAACqK4dK+qpVq3T48OESx48cOaJVq1aVe7s5OTlKTEy0F/zk5GQlJiYqNTVVOTk5WrFihY4fP66UlBSdPn1aixYtUnp6um6//XZHHgYAAAAAAKbi0Onup0+f1uDBg0sc79ChgzZs2FDu7Z46dUoxMTH26aVLl0qSIiIiNH78eJ0/f17z58/Xb7/9pnr16qlNmzaKiYlRy5Yty70vAAAAAADMxqGSfuXKFXl6epY4brFYlJ2dXe7tdurUSXFxcSWOP//88+XeJgAAAAAA1YVDp7sHBwfr4MGDJY4fOHBATZo0cTgUAAAAAADuyKGSHhUVpf3792vJkiXKysqyz8/KytLixYt14MABRUVFOS0kAAAAAADuwKHT3e+77z4lJiZq69at2rZtmwIDAyVJGRkZMgxDvXv31gMPPODUoAAAAAAA1HQOlXSLxaInn3xSffr00bfffqvk5GRJUvfu3dWzZ0916tTJqSEBAAAAAHAHDpX0Ap07d1bnzp2dlQUAAAAAALdWoZKenp6u+Ph4Xbp0ST179lTDhg1ls9mUnZ0tPz8/eXg4dMk7AAAAAABuyaGSbhiGli5dqo8++kg2m02SdMMNN6hhw4bKycnRxIkTNWLECK5LBwAAAACgHBw61L1582Zt3bpVf/rTn/TKK68UGvPz81OPHj307bffOiUgAAAAAADuwqGSvmPHDkVERGjUqFEKCQkpMt6qVSv98ssvFc0GAAAAAIBbcaikp6WlqV27diWO16pVS9nZ2Q6HAgAAAADAHTlU0uvXr6+0tLQSx0+fPq2goCCHQwEAAAAA4I4cKuk9e/bUJ598oosXLxYZO3jwoHbt2qXbb7+9wuEAAAAAAHAnDt3dfcSIETp69KhefPFFtW/fXpK0adMmrV69WsePH1doaKiGDBni1KAAAAAAANR0Dh1J9/Pz05w5czRw4EClp6fLx8dH8fHxys7O1vDhwzVr1izVqlXL2VkBAAAAAKjRHDqSLkk+Pj4aOnSohg4d6sw8AAAAAAC4LYeOpAMAAAAAAOdz6Ej6okWLrruMxWLRhAkTHNk8AAAAAABuyaGSfvTo0ULThmEoLS1N/v7+8vb2lvR7SQcAAAAAAGXnUEl/7733Ck1funRJ48eP1zPPPKPOnTs7JRgAAAAAAO7GKdekc9QcAAAAAICKc0pJz8nJ+X1jHtyHDgAAAAAAR1W4Vaenp2vVqlWyWCxq1qyZMzIBAAAAAOCWHLom/aGHHioyb/jw4QoICKhoHgAAAAAA3JZDJX3o0KGyWCyyWCzy9/dXu3bt1KpVK2dnAwAAAADArThU0keMGOHsHAAAAAAAuD3u9AYAAAAAgEk4dCQ9JibmustYLBbNmDHDkc0DAAAAAOCWHCrp8fHxkqTWrVvL19e32GUMw3A8FQAAAAAAbsihkv7www9r48aNSktL09ChQ3XPPffwHekAAAAAAFSQQ8164MCBevfdd9WnTx8tW7ZMkyZN0tdff+3sbAAAAAAAuBWHD3/7+flp9OjRWrhwoTp06KC3335bU6dO1ZEjR5yZDwAAAAAAt1Hhc9QbNGigJ554QvPmzVODBg00e/ZszZ07V4mJiU6IBwAAAACA+3DomvS1a9cWOz80NFR5eXk6ePCgDh8+rJUrV1YoHAAAAAAA7sShkr5mzZrrLmOz2RzZNAAAAAAAbsuhkr569Wpn5wAAAAAAwO3xvWkAAAAAAJiEQ0fSU1NTy7RcUFCQI5sHAAAAAMAtOVTSJ06cWKblOC0eAAAAAICyc6ikS1Lfvn3Vrl07Z2YBAAAAAMCtOVzSO3bsqDvvvNOZWQAAAAAAcGvcOA4AAAAAAJNw+Ej6t99+q4sXL8rb21u+vr4KCAhQ8+bN1bx5c2fmAwAAAADAbThc0r/77jt99913ReYHBgZq+PDh6tu3b4WCAQAAAADgbhwq6QV3bbfZbMrPz1dWVpYyMzOVlJSkPXv26O9//7tq166tO+64w6lhAQAAAACoySp0TbqHh4d8fHwUGBio0NBQ9e7dWy+99JK6du2qLVu2OCsjAAAAAABuweHT3UszcuRIHTlypDI2DQAAAABAjVUpJb1169Zq3bp1ZWwaAAAAAIAay+GSnp2drS1btuiHH35QamqqJCkoKEi33HKL7r//fvn5+TktJAAAAAAA7sCha9LT09M1ZcoUrV27Vjk5Obrpppt00003KTc3V2vWrNGUKVOUkZHh7KwAAAAAANRoDh1JX758uTIzMzVlyhTdfPPNhcb279+vN998U8uXL9dTTz3llJAAAAAAALgDh46kHzhwQPfff3+Rgi5J4eHhuu+++7R///4KhwMAAAAAwJ04VNJzc3Pl7+9f4nhAQIByc3MdDgUAAAAAgDtyqKS3aNFCe/bsUX5+fpGx/Px87dmzRy1atKhwOAAAAAAA3IlD16QPGjRICxYs0NSpU9W/f38FBwdLks6fP69PPvlEZ86c0aRJk5waFAAAAACAms6hkn777bcrNzdXy5cv1wcffFBorH79+powYYJuu+02pwQEAAAAAMBdOPw96ZGRkerdu7dOnTpV6HvS27RpI09PT6cFBAAAAADAXZS5pBuGIYvFUmiep6en2rVrp3bt2hVZPiUlRY0aNap4QgAAAAAA3ESZbxw3f/78Ym8U90c2m02bNm3S5MmTKxQMAAAAAAB3U+aSvnfvXs2ZM0dXrlwpcZmTJ09qypQpWrFihbp06eKUgAAAAAAAuIsyn+4+fvx4/fOf/1R0dLSmTZtW6HvSr1y5ohUrVujTTz9VQECAJk+erB49epQ7THx8vDZv3qyEhARlZGTo+eeft28nPz9fq1at0v79+5WcnCw/Pz916dJFo0aNUoMGDcq9LwAAAAAAzKbMR9LvvvtuTZo0SefOndMrr7yiCxcuSJK++eYbTZo0SZ988on69eunt956y6GCLkm5ubkKCQnRo48+WmQsLy9PCQkJGjp0qGJjYzV58mSdP39er7/+ukP7AgAAAADAbMp1d/cePXro5Zdf1htvvKHp06crNDRUBw8eVEhIiF544QW1adOmQmHCw8MVHh5e7Jifn5+mT59eaN4jjzyil19+WampqQoKCqrQvgEAAAAAcLVyfwVbp06dNHPmTM2ZM0cHDx7UnXfeqYkTJ8rDo8wH5Z0mOztbFotFfn5+JS5jtVpltVrt0xaLRbVr17b/XJ0U5M3/9bKLkwAAKqLgfdxisVS7z6LqquB5jk/P0cVs63WWhjPk2wz9mnfV1TGAKuHv4ykvD97Pq0Jazu/vKzX5M9Sh70kPCQnR7NmzNWfOHH3zzTfq0aOHevbs6exspcrLy9Py5cvVq1evUkv6hg0btHbtWvt0aGioYmNjq+XXw+Xk5EiSMvccdnESAIAzBAUFKTg42NUx3IK3t7c8PDy07cwlV0cBAFSQh4eHQkNDa+zZ1GUu6adPny4yb9y4cVq0aJEWLFigv/zlL2rfvn2h8datW1c8YTHy8/P11ltvSZIee+yxUpcdMmSIBgwYYJ8u+G1LSkpKmb5SzkxSU1MlSQG9usjLv66L0wAAHJX/62Vl7jms1NRU+fr6ujqO23j66aeVkpLi6hhuIz8/X5cu8UsRuIf69evLy8uh459wQKNGjWS1WvXLL7+4OkqZeXl5lflAcZlfSVOnTi11fMmSJUXmrV69uqybL7OCgp6amqoZM2aUehRd+v03597e3sWOGYbh9HyVqSCvl39deTf0v87SAACzMwyj2n0WVWctW7ZUy5YtXR0DAOAENfnzs8wlfcKECZWZo0wKCvqFCxcUHR2tevXquToSAAAAAABOU+aSHhkZWYkxfpeTk2P/ajdJSk5OVmJiourWrauAgAC9+eabSkhI0JQpU2Sz2ZSZmSlJqlu3LqeXAAAAAACqPVM121OnTikmJsY+vXTpUklSRESEhg8frn379kmSXnzxxULrRUdHq1OnTlUXFAAAAACASmCqkt6pUyfFxcWVOF7aGAAAAAAA1V3Vf7k5AAAAAAAoFiUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASXq4OcK34+Hht3rxZCQkJysjI0PPPP68ePXrYx7/99lt98sknOn36tC5fvqzXX39dISEhrgsMAAAAAIATmepIem5urkJCQvToo4+WON6+fXs9/PDDVZwMAAAAAIDKZ6oj6eHh4QoPDy9xvE+fPpKk5OTkqooEAAAAAECVMVVJrwxWq1VWq9U+bbFYVLt2bfvP1Ul1ywsAKJ3FYuG9HQAAFFLjS/qGDRu0du1a+3RoaKhiY2PVqFEjF6ZyTE5OjqsjAACcKCgoSMHBwa6OAQAATKTGl/QhQ4ZowIAB9umCIxYpKSnKz893VSyHpKamujoCAMCJUlNT5evr6+oYAACgknl5eZX5QHGNL+ne3t7y9vYudswwjCpOUzHVLS8AoHSGYfDeDgAACjHV3d0BAAAAAHBnpjqSnpOTowsXLtink5OTlZiYqLp16yooKEiXL19Wamqq0tPTJUnnz5+XJAUEBCggIMAVkQEAAAAAcBpTlfRTp04pJibGPr106VJJUkREhCZOnKh9+/Zp0aJF9vEFCxZIkoYNG6YRI0ZUaVYAAAAAAJzNVCW9U6dOiouLK3E8MjJSkZGRVRcIAAAAAIAqxDXpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASlHQAAAAAAEyCkg4AAAAAgElQ0gEAAAAAMAlKOgAAAAAAJkFJBwAAAADAJCjpAAAAAACYBCUdAAAAAACToKQDAAAAAGASXq4OcK34+Hht3rxZCQkJysjI0PPPP68ePXrYxw3DUFxcnHbs2KGsrCy1b99ejz32mIKDg12YGgAAAAAA5zDVkfTc3FyFhITo0UcfLXZ806ZN2rZtm8aPH6+5c+eqVq1amjNnjvLy8qo4KQAAAAAAzmeqkh4eHq6RI0cWOnpewDAMbd26VQ8++KC6d++uVq1a6amnnlJGRob27t3rgrQAAAAAADiXqU53L01ycrIyMzMVFhZmn+fn56e2bdvq+PHj6tWrV7HrWa1WWa1W+7TFYlHt2rXtP1cnBXnzf81ycRL3YVy9qquXr7g6BlAlPOvWlsXT09Ux3ELB+7jFYql2n0UAAKByVZuSnpmZKUny9/cvNN/f398+VpwNGzZo7dq19unQ0FDFxsaqUaNGlRGzUnl7e8vbx0eZew65OgoAoIK8fXwUGhqqoKAgV0cBAAAmUm1KuqOGDBmiAQMG2KcLjlikpKQoPz/fVbEcNuXFF5WVxZH0qmK1WpWenu7qGECVaNCggby9vV0dw23UqVNHVqtVv/zyi6ujAACASubl5VXmA8XVpqQHBARIkn799VcFBgba5//6668KCQkpcT1vb+8S/9FpGIYzI1aJgIAA+3OBqlHa6wsAKqI6fg4BAIDKZaobx5WmcePGCggI0OHDh+3zsrOzdfLkSbVr186FyQAAAAAAcA5THUnPycnRhQsX7NPJyclKTExU3bp1FRQUpPvvv1/r169XcHCwGjdurFWrVikwMFDdu3d3YWoAAAAAAJzDYpjoXLujR48qJiamyPyIiAhNnDhRhmEoLi5On376qbKzs9W+fXs9+uijatasWbn3lZKSUuiu7wAAAAAAVAZvb+8yX5NuqpJelSjpAAAAAICqUJ6SXm2uSQcAAAAAoKajpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCS9XB3AVLy+3fegAAAAAgCpUnv5pMQzDqMQsAAAAAACgjDjdHYCpXLlyRVOmTNGVK1dcHQUAgGqFz1CgZqCkAzAVwzCUkJAgTvIBAKB8+AwFagZKOgAAAAAAJkFJBwAAAADAJCjpAEzF29tbw4YNk7e3t6ujAABQrfAZCtQM3N0dAAAAAACT4Eg6AAAAAAAmQUkHAAAAAMAkKOkAAAAAAJgEJR1AtZScnKwRI0YoMTHR1VEAAHA6wzD0/vvva9y4cWX6vONzEag5vFwdAAAAAEBhBw4c0K5duzRz5kw1adJE9erVc3UkAFWEkg6gyuXn58vLi7cfAABKcvHiRQUGBuqmm25ydRQAVYx/JQOodDNnzlTLli3l6empL774QjfccIPGjRunZcuW6ccff5Svr6/CwsI0ZswY1a9fX9LvRxDWrVunn3/+WR4eHmrXrp3Gjh2rpk2buvjRAABQud577z3t3r1bkjRixAg1atRI48ePL9fnos1m0//+7//q+PHjeuWVVxQUFKS9e/dq7dq1SkpKUmBgoCIiIvTggw/K09OzKh8egOugpAOoErt371a/fv00e/ZsZWVladasWYqKitKYMWOUl5en5cuX66233lJ0dLQkKScnRwMGDFCrVq2Uk5Oj1atXa968eXr99dfl4cHtNAAANde4cePUpEkT7dixQ6+99po8PDwUHx9f5s9Fq9WqhQsXKiUlRbNmzVL9+vX1448/6t1339W4cePUoUMHXbx4Ue+//74kafjw4a54mABKwL90AVSJ4OBgjR49Ws2aNdOhQ4cUGhqqUaNGqXnz5goNDdWECRN09OhRnT9/XpJ02223qWfPnmratKlCQkI0YcIEnT17VklJSS5+JAAAVC4/Pz/Vrl1bHh4eCggIUP369cv8uZiTk6O//vWvunTpkqKjo+1nqK1du1aDBw9WZGSkmjRporCwMD300EP69NNPXfEQAZSCI+kAqkRoaKj95zNnzujIkSP6y1/+UmS5ixcvqlmzZvrll1+0evVqnTx5Ur/99ptsNpskKTU1VTfccEOV5QYAwAzK+rm4cOFCNWjQQNHR0fLx8bHPT0xM1LFjx7R+/Xr7PJvNJqvVqtzcXNWqVavqHgyAUlHSAVQJX19f+885OTm65ZZbNHr06CLLBQQESJJiY2PVqFEjPf744woMDJRhGJo8ebLy8/OrKjIAAKZR1s/F8PBwffHFFzp+/Lg6d+5sn5+Tk6MRI0aoZ8+eRbbt7e1d6fkBlB0lHUCVCw0N1bfffqtGjRoVe7Oa3377TefPn9fjjz+uDh06SJKOHTtW1TEBADCF8nwu9uvXTy1btlRsbKymTp2qjh07SpJat26t8+fPcwNWoBrgmnQAVa5///66fPmyFi5cqJMnT+rChQs6cOCAFi1aJJvNpjp16qhevXr69NNPdeHCBR05ckRLlixxdWwAAFyivJ+L9913n0aOHKm//vWv9jI/dOhQff7551qzZo1+/vlnJSUlac+ePVq1alVVPQwAZURJB1DlGjRooNmzZ8tms2nOnDl6/vnntWTJEvn5+cliscjDw0PPPvusTp8+rcmTJ2vJkiXFXr8OAIA7cORz8YEHHtCIESP02muv6aefflK3bt00ZcoUHTp0SFOnTtW0adO0ZcsWBQUFVdGjAFBWFsMwDFeHAAAAAAAAHEkHAAAAAMA0KOkAAAAAAJgEJR0AAAAAAJOgpAMAAAAAYBKUdAAAAAAATIKSDgAAAACASVDSAQAAAAAwCUo6AAAAAAAmQUkHAAAAAMAkvFwdAACAmmjEiBFlWi46OlqdOnWq5DQAAKC6sBiGYbg6BAAANc3nn39eZPrQoUN66qmnCs0PCwtTQEBAFSYDAABmxpF0AAAqQZ8+fQpNnzhxQocOHSoyHwAA4FqUdAAAXOzo0aOKiYkpcur7a6+9pv3792vYsGH20+fj4uK0du3aErf15JNPKjIyssTxXbt2adGiRXrttdfUpk0b+/xLly7pscceK7QvSUpISNDKlSv1008/yWaz6cYbb9TIkSPVrl27Itss4OPjoyZNmuj+++9X3759C+3/yJEjiouLU0JCgjw9PdWxY0eNGjVKLVq0KLRcenq6Vq9erQMHDui3335TYGCgunXrpnHjxunLL78stL/Snof33ntP8fHxeu+99+xjqampevbZZ2W1WvXuu++qcePGpW4LAICqREkHAMCE4uPjtX///hLHH3vsMfn6+tqnk5OTFRcX59QMP//8s2bMmCE/Pz8NHDhQnp6e+vTTTxUTE6OZM2fqxhtvLLT8mDFjVK9ePV25ckU7d+7U+++/r0aNGiksLEySdOjQIb322mtq3Lixhg8frry8PG3btk3Tp09XbGysvSynp6dr6tSpys7OVt++fdW8eXOlp6frm2++UW5urjp06FDosoENGzZIkoYMGWKfd9NNN5X4uOLi4mS1Wp32PAEA4EyUdAAATGj58uUKDw8vsajfdtttql+/vn361KlTTi/pq1at0tWrVzVr1iw1adJEkhQREaHnnntOy5YtU0xMTKHlu3fvbi/aYWFhevbZZ5WYmGgv6cuWLVPdunU1Z84c1a1b177Oiy++qLi4OHvxXrFihTIzMzV37txCR/sfeughGYahOnXq2PNI0meffSap6CUGxfn555+1e/fuUp9bAABcia9gAwDAZL799ludPHlSo0aNqrR9ZGdn69KlS/Y/ly9fLjRus9l06NAhde/evVAhDgwMVK9evXTs2DFlZ2cXWicrK0uXLl3SxYsXtWXLFnl4eKhjx46SpIyMDCUmJioiIsJe0CWpVatWCgsLsxdmm82mvXv36pZbbilU0AtYLJYKPe4VK1aodevWuu222yq0HQAAKgtH0gEAMBGbzaaVK1eqd+/eatWqVaXtZ/bs2aWOX7p0Sbm5uWrWrFmRsRYtWsgwDKWlpcnPz88+f8qUKfafvb299cgjj6ht27aSpJSUFEkqdnvNmzfXwYMHlZOTo5ycHF25ckU33HCDQ4+rNMeOHdP333+vGTNmKDU11enbBwDAGSjpAACYyGeffaaUlBRNmzatUvfz6KOPKjg42D595coVzZ8/v0LbfPrpp+Xv7y+r1aojR47on//8p3x8fEq9kV1VWr58ubp27arOnTtr165dro4DAECxKOkAAJhEbm6u1qxZo379+qlRo0aVuq+2bdsWubv7terXr69atWrp/PnzRdY9d+6cLBaLGjZsWGj+TTfdZL8m/ZZbblFSUpI2bNigyMhI++Mpbnvnz59XvXr15OvrKx8fH9WuXVtnz56t8GO81nfffafjx48rNjbWqdsFAMDZuCYdAACT2LZtm3Jzc/Xggw+6Ooo8PDwUFhamffv2KTk52T4/MzNTX375pdq3b1/oVPfi5OXlKT8/X9Lv17KHhIRo9+7dysrKsi9z9uxZHTx4UOHh4fb9du/eXd9//71OnTpVZJuGYZT7sRRcQtCrVy+FhISUe30AAKoSR9IBADCJgwcPauTIkapXr56ro0iSRo4cqUOHDmnGjBnq16+f/SvY8vPzNXr06CLL7927V/Xq1bOf7v7jjz/q/vvvt4+PHj1ar732ml555RXdddddysvL00cffSQ/P79C380+atQoHTp0SDNnzlTfvn3VokULZWRk6JtvvtGsWbNUp06dcj2OtLQ0eXl5aerUqY4/GQAAVBFKOgAAJhEYGKgHHnjA1THsWrZsqVmzZmnFihXauHGjDMNQ27Zt9fTTTxf5jnRJWrJkiSTJy8tLQUFBGjZsWKHvLg8LC9PLL7+suLg4xcXFydPTUx07dtTDDz9sP01ekho0aKC5c+dq1apV+vLLL3XlyhU1aNBA3bp1U61atRx6LP369Su0DwAAzMpiOHLeGAAAAAAAcDquSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEpR0AAAAAABMgpIOAAAAAIBJUNIBAAAAADAJSjoAAAAAACZBSQcAAAAAwCQo6QAAAAAAmAQlHQAAAAAAk6CkAwAAAABgEv8PGrLTZK4thrQAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " count mean std min 25% 50% 75% max\n",
+ "label \n",
+ "fake 468.0 13.282051 1.868692 12.0 12.0 12.0 16.0 16.0\n",
+ "real 532.0 12.370301 2.071259 10.0 10.0 12.0 15.0 15.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "df['text_length'] = df['text'].apply(lambda x: len(str(x).split()))\n",
+ "plt.figure(figsize=(12,6))\n",
+ "sns.boxplot(data=df, x='label', y='text_length', hue='label', palette='Set2', legend=False)\n",
+ "plt.title('Распределение длины текста')\n",
+ "plt.ylabel('Количество слов')\n",
+ "plt.xlabel('Тип новости')\n",
+ "plt.show()\n",
+ "\n",
+ "print(df.groupby('label')['text_length'].describe())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69955e19-d745-42b9-b967-e2614206ec33",
+ "metadata": {},
+ "source": [
+ "## 3. Анализ заголовков"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "3c48ac92-fe9c-4d49-a39f-9dee77c6b681",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIoCAYAAADDW3C/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdTElEQVR4nO3deVxWdf7//+d1sciibCIqYYgikvuSmVuSlpo6mZlL5Iza5DRi66es1NwyaphJR/to33E+9UnNlXCr0TIztXTMdMqV3BdSQ0HABYSA6/z+8Mf18ZJFuETg4ON+u3mL836/zzmvc7rk+LzOZjEMwxAAAAAAADAla2UXAAAAAAAAnEewBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AFAFWSwWhz8uLi4KDAxUjx49tGTJksouDwAAAFWIa2UXAAAo3pQpUyRJubm5OnjwoNasWaNNmzZp165dmjlzZiVXBwAAgKrAYhiGUdlFAAAcWSwWSdKNv6I3btyohx9+WJJ0/PhxNWzYsKJLAwAAQBXDpfgAYCI9e/ZUZGSkDMPQzp077e3z58/XoEGD1KhRI3l6esrHx0ddunTRokWLil1WWlqaJk6cqBYtWsjLy0u+vr5q3bq13njjDWVmZtrHRUVFFbo14MY/I0eOdFj2yJEjZbFYdPz4cc2cOVORkZHy8PBQSEiIXn75ZV26dKnImk6fPq3nnntOjRo1Uo0aNVS7dm09+uijDtt6o/nz5xdbV3FffKSlpWn8+PG655575OnpKV9fX/Xs2VNfffVVseuZOnVqmdaTlZWld999V23atJG3t7dq1qypTp06aenSpYXGbt68WRaLRVOnTi1y3QX78+TJk/a2kydPFrnvJSk+Pt5e2+bNmwv1Hzx4UCNHjlSDBg3k7u6uunXrKjo6WocOHSp2+4tTUEdxf66vuahtKupPVFSUw9iCz+CNLl26pPr165f4GSxu/UWtp+D/cVH7rKhtLmrfF2X+/Pnq1q2b6tatqxo1aigoKEjdunXTJ598Umjspk2b9Kc//UnNmjWTj4+PPD091aJFC02bNk3Z2dmFxpf0ubRYLDp48KDD+I0bN6pPnz4KCAhQjRo1FBERoTfeeEMXL14stv6GDRsWu/yiPrNlWceNv19cXV0VEhKixx57TNu3by+ylqL+vr3yyiuyWCyKjo5Wfn6+Q9+RI0f0hz/8QXfddZfc3d0VHBysP/zhDzpy5Eip9medOnXUpUsXLV68uNh9BACVjUvxAcBkCs7iXx90xowZo+bNm+uBBx5Q/fr1deHCBa1bt06///3vdejQIU2fPt1hGSdOnNCDDz6oU6dOqX379hozZoxsNpsOHz6sv//97/rzn/8sb29vh3kKbgu4XkZGhmbPnl1srS+//LK+/fZbDRkyRAMGDND69es1a9Ysfffdd9q6das8PDzsY3/88Uf16tVLaWlp6t27tx5//HGlpqZq9erV6tq1q1atWqW+ffsWu64BAwaoTZs29ulZs2YVOe7UqVOKiorSyZMn1a1bN/Xp00eZmZn617/+pT59+mjevHkaPXp0sesZMWKEQ7Aoaj0ZGRnq0aOHfvrpJ7Vr105PP/20bDab1q9fr+joaB04cEBvv/12seu4FVeuXNF//dd/Fdv/5Zdf6vHHH1dubq5+97vfKTw8XKdPn9bKlSu1du1abdq0Se3atSvzelu3bq3HHnvMPr169Wrt2bPnpvO9+OKL8vPzs09Pmzat1OucNGmSkpOTy1Jmpdi/f788PT31xBNPyM/PTxcuXNC//vUv/eEPf9CpU6f05ptv2sfGxcXp4MGD6ty5s/r166fs7Gxt27ZNU6dO1ebNm/X111/LxcWl0Dpu/FwWCAwMtP88b948jRkzRt7e3ho8eLCCgoK0efNmxcXF6fPPP9e2bdsc/l9cz9fXVy+99JJ9+uTJk1qwYEGhcc6uo+D3S15enn7++Wd99tlnWrdunX788Ue1aNGimD17zRtvvKGZM2dqyJAh+uSTTxz2z86dO/XQQw/p8uXLevTRR9WsWTMdPHhQixYt0po1a/T111+rQ4cOhZZZsD8Nw9CZM2e0cuVKDR8+XFeuXNGzzz5bYj0AUCkMAECVI8ko6lf0hg0bDIvFYlgsFuPkyZP29qNHjxYam5OTY/To0cNwdXU1Tp8+7dDXqVMnQ5LxzjvvFJovJSXFuHr1qn26e/fuRdZiGIZx4sQJQ5IxYsQIh/YRI0YYkozatWs71Jmfn288/vjjhiTjrbfesrfn5uYajRs3NmrUqGFs3rzZYVlnzpwxgoODjXr16hnZ2dmFavjwww8NScb8+fMd2kNDQ43Q0NBC47t3725YLBZj6dKlDu3p6elG69atDQ8PDyM5ObnQfBMnTjQkFaqvqPUUbH9cXJxD+9WrV43evXsbFovF+Omnn+ztmzZtMiQZU6ZMKbTe65d34sQJe1tx+/6VV14xJBkdOnQwJBmbNm2y96WlpRl+fn5G7dq1jQMHDjjMt2/fPsPb29to27ZtkTUU5+jRo4YkY+TIkTet+XpPPfWUIcnh82EY1z773bt3d2gr6jO4e/duw8XFxb6dxX0Gi1t/UeuZMmVKoX1WlOL2fVlcvHjR8PLyMpo1a+bQfuzYMcNmsxUa/+abbxqSjGXLljlV88mTJw13d3ejVq1axs8//+zQN2bMGEOSMXr06CLnveuuu4yGDRs6tBX1mXVmHcX9fnn//feL/Dt049+3gv0yaNAgIzc312GszWYzIiMjDUnGokWLHPqWLVtmSDKaNm1q5Ofn29uL25979+41JBmPPPJIoVoBoCrgUnwAqMKmTp2qqVOnauLEiXriiSfUp08fGYahl156SaGhofZxjRs3LjSvu7u7xo4dq7y8PG3cuNHe/p///Efbt29XmzZt9PrrrxeaLzAw0OFM+q148cUXHeq0Wq3629/+JqvVqv/93/+1t69du1bHjh3T888/r+7duzssIzg4WK+99pqSk5MdtqPA1atXJV3b3pvZs2ePtmzZokGDBmnYsGEOfX5+fvbLnVesWFFo3tzcXElSjRo1SlzHhQsXtGjRIt1777167bXXHPo8PDwUFxcnwzBuy9sN9u/fr9mzZ+vRRx8t8uqGhQsXKiMjQ9OmTVOzZs0c+lq0aKHRo0frp59+UmJiYqnXWZb9f73S7s+iGIahmJgYeXh4aMaMGWWevzIZhqHz58/rww8/VFZWVqG/u40aNSrytoOXX35ZkrR+/Xqn1rto0SL99ttveu655xQZGenQFxsbq1q1aumTTz5RTk5OoXlzc3NL9f/pVtZxo7y8PElSvXr1ih0zffp0vf3223rssce0dOlSubo6Xoj673//WwcPHlSnTp301FNPOfQNHTpUXbt21aFDh7R169ZyqQcAKhOX4gNAFVZwWbLFYpGfn5+6deumP/7xjxo+fLjDuKSkJMXFxWnjxo1KSkqyh60CZ86csf/8/fffS5J69+4tq/X2fr97Y0iXrgWXBg0a6OTJk8rIyJCfn5/9XtpTp04Vec9uwb2wP//8c6HAmpaWJkny8vK6aT0F67l48WKR60lJSbGv50YFzwW42ZceO3fuVH5+frH3HxcE2qLWsXnz5iLn2b17d4nrLDB27Fi5ublp9uzZmj9/fqH+gu3fs2dPkes5fPiwvbYbg39xyrL/r1fa/VmU//3f/9W///1vxcXFqUGDBiWOnTVrVrGXlxdn/vz59uce+Pn56e6771bv3r3LvI03Cg8P17FjxyRd+zvdvXt3zZkzx2FMZmamZs+erVWrVunw4cO6fPmyw0M0r/+7XBY//vijJKlHjx6F+vz9/dW2bVt9++23OnjwoFq3bu3QX/Asg9u5joLPY15enhITE/X555/rkUce0ZAhQ4pcV1xcnCZPnizp2i0Zbm5uZaqnoH3r1q366aef9MADDzj0FXwGDMPQ6dOntWLFCjVt2lTjx48vYQ8AQOUh2ANAFWaU4sUlx48f13333af09HR169ZNvXr1kq+vr1xcXOz3wV5/hiwjI0OSdNddd92usu3q1q1bZHu9evV06tQpXbx40X7PsSR9+umnJS7vypUrhdqSkpIkXTuzfzMF69mwYYM2bNhQpvWkpqZKkoKCgkq1jp07d5b40L+i1rFlyxZt2bKlxOUXZ+HChfr222/19ttvF/vQwILa/ud//qfEZRVVW3HKsv+vl5qaKnd39zKH7rS0NL3xxhu655579PLLL9806Jb0DIjiFHXvuL+/vz744INCV3qUxQsvvKDU1FSdOXNGGzZsUFhYmMMXG7m5uerRo4d++OEHtWjRQkOHDlWdOnXsoXXatGmlOttdlIIH1xUX0AvaC34/FMjMzFR2dvZNP/e3sg6p8LMVgoKCdP/99xc6Cy9de8jmG2+8oc6dO2vnzp16+umn9cMPPxS6auRW6rnxM+Du7q4uXbqU+fMKABWFS/EBwORmzpypCxcu6KOPPtLmzZv1/vvva/r06Zo6dap69+5daHzBP0ydPfNXFufOnSuyveCBZ76+vg7/XbNmjQzDKPZPUQ/w+/HHH2WxWNSkSZOb1lOwntmzZ5e4no8//rjQvEePHpWnp2exX1bcuI6XX365xHVs2rSp0LxTpkwpcuyIESNKXGdGRobGjRuniIgIjRs37qa17dmzp8Tabra+6xWcFY2IiCj1PNK1/enM6xrHjx+v1NRUzZ07t8iztDc6ceJEkdtYkk2bNtnHXbhwQfPmzdOVK1f09NNPFxkCS+uFF17QW2+9pY8++kg7d+7Ul19+qUcffdTev2bNGv3www8aOXKk9u3bp3/+85+KjY3V1KlTb/mBbQX/74t72OCvv/7qMK7A0aNHJUlhYWG3bR2S7Ps7Pz9fSUlJio6O1pQpU/TCCy8UGpufn68ePXro66+/1rRp07Rnzx6HBxCWRz03fgY++OADLVq0SD179rRflg8AVQnBHgBMruAf3oMGDSrUV9TZ3/vvv1/StXt1bTbbba2tqPUfP35cv/zyixo2bGj/kqGgpu+++65My09OTtbevXvVsmXLUp1Jc3Y9ly9f1oEDB9S2bdsin0h+vfvuu09Wq7XM67gVb775ps6fP685c+aUeK+7s9tfkq+++kpWq1VdunQp9TwHDx5URkaG7r333jKt64cfftCHH36o6OhoPfjgg2Ut1SkBAQH605/+pD59+ujq1avav39/uSy3bt26uv/++7Vjxw771SAFf5cff/zxQuOdvZKjQNu2bSWpyFf5ZWRkaPfu3fLw8NA999zj0Fdw+0Zp/l85u47rWa1WNWjQQH//+9/l6+tb5LMoAgMD9fnnn8vT01Ovv/66unbtqhkzZhTaRyXVI8n+5drN3gIREBCgP/7xj+rTp4/27dunffv2lTgeACoDwR4ATK7grOeN/3hdv369Pvzww0Lj27dvr86dO2v37t2Ki4sr1H/hwoUi35ftjNmzZ+vUqVP2aZvNpnHjxslms2nUqFH29gEDBqhx48aaO3eu1q1bV+Sytm/frqysLIe2v/71r8rPzy/0YKzi3HvvverWrZtWrlzp8PC+6+3bt0/nz593aHv77beVm5urwYMH33QdQUFBeuqpp7Rr1y5Nnz690Du1JenYsWM6ceJEqWq+mT179uj//b//p8GDB+vhhx8uceyoUaPsDwn84YcfCvXbbLabvsP9ep999pkOHDig3r17O7xWrSQ2m01vvfWWJJVqf14vJiZGNWvW1HvvvVem+W5VXl6e/f+Xv79/mecveHbD9Y4dO6Zvv/1WHh4eqlmzpqTi/y4fP368yAddlsXw4cPl5uam//7v/7Z/gVBg0qRJunTpkoYPH+7wkLy0tDTNnj1b7u7uDlcWlOc6inPs2DFdvny5yD5vb2/78w6sVqsWLlwob29v/eEPf7Bffi9JXbp0UdOmTbV161YlJCQ4LCMhIUHfffedIiIi1LVr15vWk52drUOHDklSkQ83BIDKxj32AGByMTEx+vjjjzV48GA98cQTCg4O1v79+/Xll19qyJAhWr58eaF5Fi1apKioKE2YMEErVqxQVFSUDMPQkSNH9NVXX+ngwYNOXSZ9oy5duqhNmzYaOnSofH19tX79eu3Zs0ft27d3eGK8m5ubVq5cqd69e6tfv37q3Lmz2rRpIy8vL/3yyy/auXOnjh8/rl9//VVeXl7avXu33nnnHfs9+b/++muhh8EVXDI9depUPfbYY/Z33C9ZskQ9evTQH//4R73//vvq2LGj/Pz8dPr0ae3du1f79+/X9u3bFRQUpPXr1+vNN9/Url271KFDB40ZM6ZU2z1nzhwdOXJEkydP1ieffKKuXbuqbt26Onv2rH7++Wft3LlTS5cuLdXlzTeze/du1axZU3//+99vOrZ27dpKSEjQwIEDdf/996tnz55q3ry5LBaLfvnlF23fvr1UX+xkZGRo8uTJ9nv1a9SoUWj/Fzzwb9asWYqKitJjjz2mxYsXKzY2Vj///LMGDBjg8N770vjPf/6jWbNmlepBbrfis88+08GDByVdC7dr1qzR/v371bVrVzVv3lwnT54s0/Luuusu9ejRQ+Hh4apZs6ZOnDihzz77TNnZ2Zo0aZL9Pvvf/e53Cg8P18yZM7Vv3z61bdtWSUlJ+te//qV+/frZn2fgjIYNG2rWrFkaO3as2rVrpyFDhqhOnTrasmWLtm/frsjISIcv+saPH68PP/xQqampmjlz5k1vQXFmHdcr+PzYbDadPXtWq1atks1m05///OebrjcsLEzvv/++Ro0apeeee06ffPKJpGsBfMGCBXr44Yc1dOhQDRgwQJGRkTp06JBWr16tWrVqaeHChUU+RLTg4XmSlJ6eri+++EJHjhxRp06dCj34DwCqhPJ9ex4AoDyomPfYF2fbtm3Ggw8+aPj5+Rk1a9Y0unTpYqxatarE96OnpqYar732mhEREWHUqFHD8PX1NVq3bm1MmDDByMzMtI+7lffYHzt2zHjvvfeMpk2bGjVq1DCCg4ONF1980bh48WKRyzt37pzx+uuvG82bNzc8PT0Nb29vIzw83Bg0aJDxySef2N9T/fHHH9v3UWn+fPzxxw7ruXTpkhEbG2u0a9fO8Pb2Njw8PIyGDRsaffv2NebNm2dcuXLFMAzDiI2NNVq3bm3ExsYaWVlZRdZc1HvsDcMwcnJyjP/+7/82OnXqZPj4+Bju7u5GgwYNjB49ehh///vfjdTUVPvYW3mPvSTjr3/9a6F5Snq/+YkTJ4yxY8ca4eHhRo0aNYxatWoZTZs2NYYPH26sWrWqyBpunL8s+7/g8zFmzBjjvvvuM+bMmWPk5eUVuWyV8B77Vq1aFZrvZp9BZ95jf/0fHx8fo2XLlsb06dPtn9uyvsd+7NixRqtWrQwfHx/DxcXFCAwMNB566KFC76Q3DMNISkoyoqOjjeDgYMPDw8No1qyZERcXZ+Tm5pZY883eY19g/fr1xsMPP2z4+fkZ7u7uRuPGjY1x48YZ6enpDuPatm1r9OnTx1i3bl2RyynpM1vadRjG//2/LfhjsViMOnXqGF26dDHmz59v2Gw2h/HF/X0zDMN4/PHHDUnG8uXLHdoPHjxoDB8+3KhXr57h6upq1KtXz3jqqaeMgwcPFlpGaT8DAFDVWAyjFI9cBgCgDEaOHKkFCxboxIkT5XLm/0bz58/XqFGjSvXWAIvFoo8//lgjR44s9zruVCdPnlRYWJg2bdqkqKioEsdGRUWpYcOGRb5+DwAAlA/usQcAAAAAwMS4xx4AYDpt2rQp8tV3RZkyZYr9/nqUDz8/P02ZMqVUV2OMHDmSd38DAHCbcSk+AKDc3e5L8QEAAPB/CPYAAAAAAJgY99gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDFed1cG6enpysvLq+wyAAAAAADVnKurq/z9/Us39jbXUq3k5eUpNze3sssAAAAAAMCOS/EBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYq6VXcD1xo4dq5SUlELtvXr10jPPPFPkPNu3b9fy5cuVkpKievXq6amnnlK7du3s/YZhKD4+Xhs3blRmZqYiIyP1zDPPqH79+rdtOwAAAAAAqCgWwzCMyi6iwKVLl2Sz2ezTSUlJevvttzVlyhQ1b9680PhDhw5pypQpio6OVrt27bR161atWbNGcXFxuvvuuyVJq1ev1urVqzV27FgFBQVp+fLlSkpK0syZM+Xu7l6m+lJSUpSbm3trGwkAAAAAwE24ubmpTp06pRpbpS7F9/HxkZ+fn/3Pjz/+qLp166pZs2ZFjl+3bp3atGmjRx99VCEhIRo2bJgaNWqkL7/8UtK1s/Xr1q3T448/rg4dOig0NFTPPfec0tPTtXPnzorcNAAAAAAAbosqdSn+9fLy8vTdd9+pX79+slgsRY45fPiw+vfv79DWunVre2g/f/68MjIy1KpVK3u/l5eXwsPDdfjwYXXp0qXI5ebm5jqcmbdYLPL09LT/bDaXLl3S1atXK7uMO0ZeXp4uXrxY2WUAFcLX11eurlX2UFLteHp6ysfHp7LLuKNwDK1YHENxJ+EYWrGq+zG0yn6SfvjhB2VmZioqKqrYMRkZGfL19XVo8/X1VUZGhr2/oK24MUVZtWqVEhIS7NNhYWGKi4sr9WUQVUl6erref/99biEAgGrAzc1Nr732mvz9/Su7lDvCtWPobOXm5lV2KQCAW+Tm5qrXXnu92h5Dq2yw37Rpk9q0aaOAgIAKX/fAgQMdrgQoOEufkpKivDxzHdzPnTun3NxchXfsL0+f2pVdzh3Blp+nnEzONuDOUMPbV1aXKnsoqVauXrqgozv+pVOnTik7O7uyy7kjXDuG5mlA89oK9Har7HLuCHn5hjKyzfVvLcBZfh6ucnUx39XAZpSamas1By6Y7hjq6upa6pPLVfJfYykpKdq7d69effXVEsf5+fkVulzr4sWL8vPzs/cXtF3/zczFixfVsGHDYpfr5uYmN7eiD+BV6FmDpVJQr6dPbXn716vkau4ctQJDKrsEANWUYRimOxaZVcF+DvR2U32fGpVczZ2jQWUXAKDaqs7H0Cr18LwCmzZtkq+vr8Nr64oSERGhffv2ObTt3btXTZo0kSQFBQXJz8/PYUxWVpaOHj2qiIiI8i8cAAAAAIAKVuWCvc1m0+bNm9W9e3e5uLg49M2ZM0dLliyxT/ft21d79uzR559/rjNnzig+Pl7Hjh1Tnz59JF27hL5v375auXKldu3apaSkJM2ZM0f+/v7q0KFDhW4XAAAAAAC3Q5W7FH/fvn1KTU3Vgw8+WKgvNTXV4an0TZs21QsvvKBly5Zp6dKlql+/vsaNG2d/h70kDRgwQDk5OZo3b56ysrIUGRmpCRMmlPkd9gAAAAAAVEVVLti3bt1a8fHxRfZNnTq1UFunTp3UqVOnYpdnsVg0dOhQDR06tLxKBAAAAACgyqhyl+IDAAAAAIDSI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATc63sAm6UlpamRYsWaffu3crJyVG9evUUExOjxo0bFzl+7ty52rJlS6H2kJAQzZw5U5IUHx+vhIQEh/7g4GDNmjWr3OsHAAAAAKAiValgf+XKFU2aNEnNmzfXhAkT5OPjo19//VXe3t7FzjNq1Cg99dRT9un8/HyNGzdO999/v8O4Bg0aaNKkSfZpq5WLFQAAAAAA5lelgv2aNWtUu3ZtxcTE2NuCgoJKnMfLy0teXl726R9++EGZmZl68MEHHcZZrVb5+fmVa70AAAAAAFS2KhXsd+3apdatW2vmzJlKTExUQECAevXqpYceeqjUy/jmm2/UsmVL1alTx6E9OTlZzz77rNzc3BQREaHo6GgFBgYWuYzc3Fzl5ubapy0Wizw9Pe0/m4nZ6gUAlMxisfC7vYKwnwGgeqnOx9AqFezPnz+vDRs2qF+/fho4cKCOHTumjz/+WK6uroqKirrp/Glpadq9e7deeOEFh/YmTZooJiZGwcHBSk9PV0JCgiZPnqwZM2bYA/v1Vq1a5XBPflhYmOLi4gp9WWAG+fn5lV0CAKAcBQYGqn79+pVdxh2BYygAVC/V+RhapYK9zWZT48aNFR0dLelaoE5KStKGDRtKFey3bNkib29v3XfffQ7tbdu2tf8cGhpqD/rbt29Xjx49Ci1n4MCB6t+/v3264FudlJQU5eXlObNplSY1NbWySwAAlKPU1FS5uLhUdhl3BI6hAFC9mO0Y6urqWuqTy1Uq2Pv7+yskJMShLSQkRDt27LjpvIZhaNOmTerWrZtcXUveLG9vbwUHBys5ObnIfjc3N7m5uRW7HjMxW70AgJIZhsHv9grCfgaA6qU6H0Or1KPhmzZtqrNnzzq0nT17tlTfUiQmJio5ObnIM/A3ys7OVnJyMg/TAwAAAACYXpUK9v369dORI0e0cuVKJScna+vWrdq4caN69+5tH7NkyRLNmTOn0LzffPONmjRporvvvrtQ38KFC5WYmKjz58/r0KFD+tvf/iar1aquXbve1u0BAAAAAOB2q1KX4oeHh+vVV1/VkiVLtGLFCgUFBWnEiBHq1q2bfUx6enqhe96ysrK0Y8cOjRw5ssjlpqWlafbs2bp8+bJ8fHwUGRmp2NhY+fj43M7NAQAAAADgtqtSwV6S2rdvr/bt2xfbP3bs2EJtXl5eWrRoUbHzvPTSS+VRGgAAAAAAVU6VuhQfAAAAAACUDcEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATc63sAm6UlpamRYsWaffu3crJyVG9evUUExOjxo0bFzn+wIEDmjZtWqH2f/7zn/Lz87NPf/nll/r888+VkZGh0NBQPf300woPD79dmwEAAAAAQIWoUsH+ypUrmjRpkpo3b64JEybIx8dHv/76q7y9vW8676xZs+Tl5WWf9vHxsf/873//WwsXLtTo0aPVpEkTrV27VrGxsZo1a5Z8fX1vy7YAAAAAAFARqlSwX7NmjWrXrq2YmBh7W1BQUKnm9fX1LfYLgH/961/q2bOnHnzwQUnS6NGj9eOPP2rTpk167LHHbrluAAAAAAAqS5UK9rt27VLr1q01c+ZMJSYmKiAgQL169dJDDz1003lfe+015ebmqkGDBho8eLAiIyMlSXl5eTp+/LhDgLdarWrZsqUOHz5c5LJyc3OVm5trn7ZYLPL09LT/bCZmqxcAUDKLxcLv9grCfgaA6qU6H0OrVLA/f/68NmzYoH79+mngwIE6duyYPv74Y7m6uioqKqrIefz9/TV69Gg1btxYubm52rhxo6ZNm6bY2Fg1atRIly5dks1mc7jfXpL8/Px09uzZIpe5atUqJSQk2KfDwsIUFxenOnXqlNemVpj8/PzKLgEAUI4CAwNVv379yi7jjsAxFACql+p8DK1Swd5ms6lx48aKjo6WdC1QJyUlacOGDcUG++DgYAUHB9unmzZtqnPnzmnt2rV6/vnnnapj4MCB6t+/v3264FudlJQU5eXlObXMypKamlrZJQAAylFqaqpcXFwqu4w7AsdQAKhezHYMdXV1LfXJ5SoV7P39/RUSEuLQFhISoh07dpRpOeHh4Tp48KCkaw/Rs1qtysjIcBiTkZFR6Cx+ATc3N7m5uRXZZxhGmWqpbGarFwBQMsMw+N1eQdjPAFC9VOdjaJV6j33Tpk0LXR5/9uzZMl8Cf/LkSfn7+0u69i1Ho0aNtH//fnu/zWbT/v37FRERcetFAwAAAABQiapUsO/Xr5+OHDmilStXKjk5WVu3btXGjRvVu3dv+5glS5Zozpw59um1a9dq586dSk5OVlJSkubPn6/9+/c7zNO/f39t3LhRmzdv1unTp/Xhhx8qJyen2Mv7AQAAAAAwiyp1KX54eLheffVVLVmyRCtWrFBQUJBGjBihbt262cekp6c73POWl5enhQsXKi0tTTVq1FBoaKgmTZqkFi1a2Md07txZly5dUnx8vDIyMtSwYUNNmDCh2EvxAQAAAAAwiyoV7CWpffv2at++fbH9Y8eOdZgeMGCABgwYcNPl9unTR3369Lnl+gAAAAAAqEqq1KX4AAAAAACgbAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYWLkH+/z8/PJeJAAAAAAAKIarszNu2rRJJ06cUIsWLXTfffcpISFBa9askc1mU7t27TRmzBh5eXmVZ60AAAAAAOAGTgX71atXa+nSpbJYLFq/fr0GDRqk1atXKyoqSr/99pu2bt2qwMBAjRgxorzrBQAAAAAA13Eq2G/atEktW7bUG2+8odWrV2vFihV64oknNGjQIEmSh4eHdu7cSbAHAAAAAOA2c+oe+9TUVHXu3Fmurq6KioqSzWZT48aN7f3h4eFKS0srtyIBAAAAAEDRnAr2eXl5cnd3lyTVqFFDkuTq+n8n/11cXHiIHgAAAAAAFcDph+edOXNGiYmJysrKkiSdOnVKVqvV3gcAAAAAAG4/p4P9ypUrtXLlSvv0woULy6UgAAAAAABQek4F+ylTppR3HQAAAAAAwAlOBftmzZqVdx0AAAAAAMAJTl+KX+D06dNKSUmRJNWpU0chISG3XBQAAAAAACgdp4P9zp07tXDhQp0/f96hPSgoSCNGjNC99957y8UBAAAAAICSORXsf/zxR82YMUN16tTRk08+aT9Lf/r0aW3cuFHvvfee3njjDbVp06Y8awUAAAAAADdwKtivWLFCoaGhmjZtmjw8POzt9957r/r06aPJkyfr008/JdgDAAAAAHCbWZ2ZKSkpSd27d3cI9QU8PDwUFRWlpKSkWy4OAAAAAACUzKkz9m5ubrpy5Uqx/VeuXJGbm5tTBaWlpWnRokXavXu3cnJyVK9ePcXExKhx48ZFjt+xY4e++uornTx5Unl5eQoJCdHgwYMdrhaIj49XQkKCw3zBwcGaNWuWUzUCAAAAAFBVOBXsW7RooXXr1qlNmzaKiIhw6Dty5Ii++OILtWrVqszLvXLliiZNmqTmzZtrwoQJ8vHx0a+//ipvb+9i5/n555/VqlUrPfnkk/L29tamTZsUFxend955R2FhYfZxDRo00KRJk+zTVqtTFysAAAAAAFClOBXshw8frokTJ2rSpEkKDw9XcHCwJOns2bM6evSofH199dRTT5V5uWvWrFHt2rUVExNjbwsKCipxnpEjRzpMR0dHa9euXfrPf/7jEOytVqv8/PzKXBMAAAAAAFWZU8E+KChI7733nlatWqXdu3fr3//+t6Rr77Hv27evHnvsMfn6+pZ5ubt27VLr1q01c+ZMJSYmKiAgQL169dJDDz1U6mXYbDZdvXpVNWvWdGhPTk7Ws88+Kzc3N0VERCg6OlqBgYFFLiM3N1e5ubn2aYvFIk9PT/vPZmK2egEAJbNYLPxuryDsZwCoXqrzMdTp99j7+voWOlt+q86fP68NGzaoX79+GjhwoI4dO6aPP/5Yrq6uioqKKtUyPv/8c2VnZ6tTp072tiZNmigmJkbBwcFKT09XQkKCJk+erBkzZtgD+/VWrVrlcE9+WFiY4uLiVKdOnVvexoqWn59f2SUAAMpRYGCg6tevX9ll3BE4hgJA9VKdj6FOB/vbwWazqXHjxoqOjpZ0LVAnJSVpw4YNpQr2W7duVUJCgsaNG+dwxUDbtm3tP4eGhtqD/vbt29WjR49Cyxk4cKD69+9vny74ViclJUV5eXnObl6lSE1NrewSAADlKDU1VS4uLpVdxh2BYygAVC9mO4a6urqW+uSyU8F+2rRpNx1jsVg0efLkMi3X399fISEhDm0hISHasWPHTefdtm2b/vGPf+i//uu/bvrgPm9vbwUHBys5ObnIfjc3t2Kf6m8Yxk1rqUrMVi8AoGSGYfC7vYKwnwGgeqnOx1CnHg2fmJiojIyMEsc4s8OaNm2qs2fPOrSdPXv2pt9SbN26VR988IFefPFFtWvX7qbryc7OVnJyMg/TAwAAAACYntOX4g8aNEhdu3Ytz1rUr18/TZo0SStXrlTnzp119OhRbdy4UX/605/sY5YsWaK0tDQ999xzkq6F+rlz52rkyJFq0qSJ/QsHd3d3eXl5SZIWLlyoe++9V4GBgUpPT1d8fLysVmu51w8AAAAAQEWrUvfYh4eH69VXX9WSJUu0YsUKBQUFacSIEerWrZt9THp6usM9b19//bXy8/P10Ucf6aOPPrK3d+/eXWPHjpUkpaWlafbs2bp8+bJ8fHwUGRmp2NhY+fj4VNzGAQAAAABwGzgd7C9fvqwLFy7Izc1NHh4ecnd3L5eC2rdvr/bt2xfbXxDWC0ydOvWmy3zppZdusSoAAAAAAKomp4P9/PnzNX/+fPu0h4eHQkJC1KJFCz3yyCPcvw4AAAAAQAVwKtiPGTNG0rXX0+Xl5SkzM1MZGRk6ffq01q5dq40bN2r69OnV9h2BAAAAAABUFU4F+5LeKZ+amqrJkydr+fLlXAIPAAAAAMBt5tTr7koSGBioxx57TCkpKeW9aAAAAAAAcIPb8lT8Xr16qVevXrdj0QAAAAAA4DpOnbE/fvy41q9fX2z/+vXrdfLkSWdrAgAAAAAApeRUsF+2bJn27dtXbP/+/fu1bNkyp4sCAAAAAACl4/QZ+8jIyGL777nnHh07dszpogAAAAAAQOk4FeyvXr0qFxeXYvstFouysrKcLgoAAAAAAJSOU8G+fv362rNnT7H9u3fvVt26dZ0uCgAAAAAAlI5Twb5Hjx766aeftGDBAmVmZtrbMzMzNX/+fO3evVs9evQotyIBAAAAAEDRnHrd3SOPPKKTJ09q3bp1+uKLL+Tv7y9JSk9Pl2EY6tatm/r161euhQIAAAAAgMKcCvYWi0UxMTF64IEHtGPHDp0/f16S1KFDB3Xs2FHNmzcv1yIBAAAAAEDRnAr2BVq0aKEWLVqUVy0AAAAAAKCMnLrHHgAAAAAAVA0EewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmdktPxZek7OxspaamSpICAwPl4eFxy0UBAAAAAIDScTrYHz16VIsXL9bBgwdls9kkSVarVZGRkRo+fLgaN25cbkUCAAAAAICiORXsjxw5oqlTp8rV1VU9evTQXXfdJUk6c+aMtm3bpilTpmjq1KkKDw8v12IBAAAAAIAjp4L9smXLFBAQoOnTp8vPz8+hb/DgwZo0aZKWLl2qSZMmlUeNAAAAAACgGE49PO/IkSN6+OGHC4V6SfLz89NDDz2kI0eO3GptAAAAAADgJpwK9haLRfn5+cX222w2WSwWp4sCAAAAAACl41Swb9q0qdavX6+UlJRCfampqfrqq68UGRl5y8UBAAAAAICSOXWP/ZNPPqkpU6bopZde0n333af69etLks6ePatdu3bJxcVFTz75ZLkWCgAAAAAACnMq2IeFhemdd97R0qVLtWvXLv3222+SJHd3d7Vp00bDhg1TSEhIuRYKAAAAAAAKc/o99iEhIRo3bpxsNpsuXbokSfLx8ZHV6tTV/QAAAAAAwAlOB/sCVqvV4en4+fn5cnFxudXFAgAAAACAUnA62G/atEknTpxQixYtdN999ykhIUFr1qyRzWZTu3btNGbMGHl5eZVnrQAAAAAA4AZOBfvVq1dr6dKlslgsWr9+vQYNGqTVq1crKipKv/32m7Zu3arAwECNGDGivOsFAAAAAADXcSrYb9q0SS1bttQbb7yh1atXa8WKFXriiSc0aNAgSZKHh4d27txJsAcAAAAA4DZz6kl3qamp6ty5s1xdXRUVFSWbzabGjRvb+8PDw5WWllZuRQIAAAAAgKI5Fezz8vLk7u4uSapRo4YkydX1/07+u7i4KD8/vxzKAwAAAAAAJXH64XlnzpxRYmKisrKyJEmnTp2yv+ruzJkz5VMdAAAAAAAokdPBfuXKlVq5cqV9euHCheVSEAAAAAAAKD2ngv2UKVPKuw4AAAAAAOAEp4J9s2bNyrsOAAAAAADgBKcenjdt2jTt27evvGsBAAAAAABl5FSwT0xM1MWLF8u7FgAAAAAAUEZOBXsAAAAAAFA1OP1U/MuXLys1NbXEMYGBgWVeblpamhYtWqTdu3crJydH9erVU0xMjBo3blzsPAcOHNDChQv1yy+/qHbt2ho0aJCioqIcxnz55Zf6/PPPlZGRodDQUD399NMKDw8vc30AAAAAAFQlTgf7+fPna/78+SWOWb58eZmWeeXKFU2aNEnNmzfXhAkT5OPjo19//VXe3t7FznP+/Hn95S9/0cMPP6znn39e+/fv1z/+8Q/5+fmpTZs2kqR///vfWrhwoUaPHq0mTZpo7dq1io2N1axZs+Tr61umGgEAAAAAqEqcDvYPPfSQmjRpUp61aM2aNapdu7ZiYmLsbUFBQSXO89VXXykoKEh/+MMfJEkhISE6ePCg1q5daw/2//rXv9SzZ089+OCDkqTRo0frxx9/1KZNm/TYY4+V6zYAAAAAAFCRnA7299xzj7p27VqetWjXrl1q3bq1Zs6cqcTERAUEBKhXr1566KGHip3nyJEjatmypUNb69at7VcT5OXl6fjx4w4B3mq1qmXLljp8+HCRy8zNzVVubq592mKxyNPT0/6zmZitXgBAySwWC7/bKwj7GQCql+p8DHU62N8O58+f14YNG9SvXz8NHDhQx44d08cffyxXV9dC98wXyMjIKHQ5va+vr65evarffvtNV65ckc1mk5+fn8MYPz8/nT17tshlrlq1SgkJCfbpsLAwxcXFqU6dOre0fZUhPz+/sksAAJSjwMBA1a9fv7LLuCNwDAWA6qU6H0OrVLC32Wxq3LixoqOjJV0L1ElJSdqwYUOxwf52GDhwoPr372+fLvhWJyUlRXl5eRVWR3m42QMOAQDmkpqaKhcXl8ou447AMRQAqhezHUNdXV1LfXLZqWBf1ofilZa/v79CQkIc2kJCQrRjx45i5/Hz89PFixcd2i5evChPT0+5u7vLx8dHVqtVGRkZDmMyMjIKncUv4ObmJjc3tyL7DMO4+YZUIWarFwBQMsMw+N1eQdjPAFC9VOdjqFPvsT9+/LjWr19fbP/69et18uTJMi+3adOmhS6PP3v2bInfUjRp0kT79u1zaNu7d68iIiIkXfuWo1GjRtq/f7+932azaf/+/fYxAAAAAACYlVPBftmyZYXC9PX279+vZcuWlXm5/fr105EjR7Ry5UolJydr69at2rhxo3r37m0fs2TJEs2ZM8c+3atXL50/f16LFi3SmTNntH79em3fvl39+vWzj+nfv782btyozZs36/Tp0/rwww+Vk5NToZf3AwAAAABwOzh1Kf6NT5m/0T333KNVq1aVebnh4eF69dVXtWTJEq1YsUJBQUEaMWKEunXrZh+Tnp7ucM9bUFCQ3njjDS1YsEDr1q1T7dq19ec//9n+qjtJ6ty5sy5duqT4+HhlZGSoYcOGmjBhQrGX4gMAAAAAYBZOBfurV6+W+NABi8WirKwspwpq37692rdvX2z/2LFjC7U1b95cf/3rX0tcbp8+fdSnTx+nagIAAAAAoKpy6lL8+vXra8+ePcX27969W3Xr1nW6KAAAAAAAUDpOBfsePXrop59+0oIFC5SZmWlvz8zM1Pz587V792716NGj3IoEAAAAAABFc+pS/EceeUQnT57UunXr9MUXX8jf31/StfvfDcNQt27dHB5eBwAAAAAAbg+ngr3FYlFMTIweeOAB7dixQ+fPn5ckdejQQR07dlTz5s3LtUgAAAAAAFA0p4J9gRYtWqhFixblVQsAAAAAACijWwr2aWlpSkxM1KVLl9SxY0fVrl1bNptNWVlZ8vLyktXq1C38AAAAAACglJwK9oZhaOHChfryyy9ls9kkSXfffbdq166t7OxsjR07VkOGDOE+ewAAAAAAbjOnTql/9tlnWrdunX73u9/pzTffdOjz8vLSfffdpx07dpRLgQAAAAAAoHhOBfuNGzeqe/fuio6OVsOGDQv1h4aG6tdff73V2gAAAAAAwE04FewvXLigiIiIYvtr1KihrKwsp4sCAAAAAACl41Sw9/Hx0YULF4rtP378uAIDA50uCgAAAAAAlI5Twb5jx47asGGDzp07V6hvz5492rx5szp16nTLxQEAAAAAgJI59VT8IUOG6MCBA3rttdcUGRkpSVqzZo2WL1+uw4cPKywsTAMHDizXQgEAAAAAQGFOnbH38vJSbGysHn30UaWlpcnd3V2JiYnKysrS4MGD9dZbb6lGjRrlXSsAAAAAALiBU2fsJcnd3V2DBg3SoEGDyrMeAAAAAABQBk6dsQcAAAAAAFWDU2fsP/jgg5uOsVgsGjNmjDOLBwAAAAAApeRUsD9w4IDDtGEYunDhgnx9feXm5ibpWrAHAAAAAAC3l1PBfu7cuQ7Tly5d0ujRo/XCCy+oRYsW5VIYAAAAAAC4uXK5x56z8wAAAAAAVI5yCfbZ2dnXFmblWXwAAAAAAFSkW07iaWlpWrZsmSwWi4KDg8ujJgAAAAAAUEpO3WM/dOjQQm2DBw+Wn5/frdYDAAAAAADKwKlgP2jQIFksFlksFvn6+ioiIkKhoaHlXRsAAAAAALgJp4L9kCFDyrsOAAAAAADgBJ52BwAAAACAiTl1xn7atGk3HWOxWDR58mRnFg8AAAAAAErJqWCfmJgoSWrUqJE8PDyKHGMYhvNVAQAAAACAUnEq2D/11FNavXq1Lly4oEGDBunhhx/mHfYAAAAAAFQCp9L4o48+qjlz5uiBBx7QokWL9PLLL2v79u3lXRsAAAAAALgJp0+ze3l5afjw4Zo9e7buuecevf/++xo/frz2799fnvUBAAAAAIAS3PL18wEBAfrzn/+s9957TwEBAZo+fbreeecdnTx5shzKAwAAAAAAJXHqHvuEhIQi28PCwvTbb79pz5492rdvn5YuXXpLxQEAAAAAgJI5Few//fTTm46x2WzOLBoAAAAAAJSBU8F++fLl5V0HAAAAAABwAu+oAwAAAADAxJw6Y5+amlqqcYGBgc4sHgAAAAAAlJJTwX7s2LGlGscl+wAAAAAA3F5OBXtJ6tmzpyIiIsqzFgAAAAAAUEZOB/tmzZqpa9eu5VkLAAAAAAAoIx6eBwAAAACAiTl9xn7Hjh06d+6c3Nzc5OHhIT8/P91111266667nC4mPj5eCQkJDm3BwcGaNWtWkeOnTp2qxMTEQu1t27bV+PHjJUlz587Vli1bHPpbt26tiRMnOl0nAAAAAABVhdPB/ocfftAPP/xQqN3f31+DBw9Wz549nVpugwYNNGnSJPu01Vr8RQWvvvqq8vLy7NOXL1/WuHHj1KlTJ4dxbdq0UUxMjH3a1dXpzQYAAAAAoEpxKuEWPO3eZrMpLy9PmZmZysjI0OnTp7Vt2zb985//lKenpzp37lzmZVutVvn5+ZVqbM2aNR2mt23bpho1auj+++93aHd1dS31MgEAAAAAMJNbOnVttVrl7u4ud3d3+fv7KywsTN26ddM777yjtWvXOhXsk5OT9eyzz8rNzU0RERGKjo5WYGBgqeb95ptv1LlzZ3l4eDi0JyYm6plnnpG3t7datGihYcOGqVatWsUuJzc3V7m5ufZpi8UiT09P+89mYrZ6AQAls1gs/G6vIOxnAKheqvMx9LZckz5s2DDt37+/zPM1adJEMTExCg4OVnp6uhISEjR58mTNmDHDHqyLc/ToUf3yyy8aM2aMQ3ubNm3UsWNHBQUFKTk5WUuXLtU777yj2NjYYi/zX7VqlcO9/mFhYYqLi1OdOnXKvE2VLT8/v7JLAACUo8DAQNWvX7+yy7gjcAwFgOqlOh9Db0uwb9SokRo1alTm+dq2bWv/OTQ01B70t2/frh49epQ47zfffKO7775b4eHhDu1dunSx/3z33XcrNDRUzz//vA4cOKCWLVsWuayBAweqf//+9umCb3VSUlIc7uk3g9TU1MouAQBQjlJTU+Xi4lLZZdwROIYCQPVitmOoq6trqU8uOx3ss7KytHbtWv3444/2A19gYKDat2+vvn37ysvLy9lF23l7eys4OFjJyckljsvOzta2bds0dOjQmy6zbt26qlWrlpKTk4sN9m5ubnJzcyuyzzCMmxdehZitXgBAyQzD4Hd7BWE/A0D1Up2PoU69xz4tLU2vv/66EhISlJ2draZNm6pp06bKycnRp59+qtdff13p6em3XFx2draSk5Nv+uC777//Xnl5eerWrdtNl3nhwgVduXJF/v7+t1wfAAAAAACVzakz9osXL1ZGRoZef/11tWvXzqHvp59+0syZM7V48WI999xzZVruwoULde+99yowMFDp6emKj4+X1WpV165dJUlz5sxRQECAoqOjHeb75ptv1KFDh0IPxMvOztann36qjh07ys/PT+fOndOiRYtUr149tW7d2oktBwAAAACganEq2O/evVt9+/YtFOqla/fJP/LII9q4cWOZl5uWlqbZs2fr8uXL8vHxUWRkpGJjY+Xj4yPp2j0RNz7F8OzZszp48KDefPPNQsuzWq1KSkrSli1blJmZqYCAALVq1UpDhw4t9lJ7AAAAAADMxKlgn5OTI19f32L7/fz8lJOTU+blvvTSSyX2T506tVBbcHCw4uPjixzv7u6uiRMnlrkOAAAAAADMwql77ENCQrRt27YinxCfl5enbdu2KSQk5JaLAwAAAAAAJXPqjP2AAQM0a9YsjR8/Xr1797a/C/Ds2bPasGGDTp06pZdffrlcCwUAAAAAAIU5Few7deqknJwcLV68WP/zP//j0Ofj46MxY8bo/vvvL5cCAQAAAABA8Zx+j31UVJS6deumY8eOObzHvnHjxnJxcSm3AgEAAAAAQPFKHewNwyj0RHoXFxdFREQoIiKi0PiUlBTVqVPn1isEAAAAAADFKvXD82bMmFHkw/JuZLPZtGbNGr3yyiu3VBgAAAAAALi5Ugf7nTt3KjY2VlevXi12zNGjR/X6669ryZIlatmyZbkUCAAAAAAAilfqYD969GgdPHhQU6ZM0cWLFx36rl69qo8++kiTJk3SlStX9Morr2jcuHHlXiwAAAAAAHBU6nvsH3roIfn4+Gj27Nl68803NXHiRNWrV0/ff/+95s+fr4yMDPXu3VtPPvmkPDw8bmfNAAAAAADg/1emp+Lfd999mjBhgv72t79p0qRJCgsL0549e9SwYUONGzdOjRs3vl11AgAAAACAIpT6UvwCzZs319SpUyVJe/bsUdeuXfXuu+8S6gEAAAAAqARlDvaS1LBhQ02fPl1BQUH6/vvvtXPnzvKuCwAAAAAAlEKpL8U/fvx4obZRo0bpgw8+0KxZs/T73/9ekZGRDv2NGjW69QoBAAAAAECxSh3sx48fX2L/ggULCrUtX7687BUBAAAAAIBSK3WwHzNmzO2sAwAAAAAAOKHUwT4qKuo2lgEAAAAAAJzh1MPzAAAAAABA1UCwBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxFwru4DrxcfHKyEhwaEtODhYs2bNKnL85s2b9cEHHzi0ubm5afHixfZpwzAUHx+vjRs3KjMzU5GRkXrmmWdUv379cq8fAAAAAICKVqWCvSQ1aNBAkyZNsk9brSVfVODp6anZs2cX279mzRp98cUXGjt2rIKCgrR8+XLFxsZq5syZcnd3L7e6AQAAAACoDFXuUnyr1So/Pz/7Hx8fnxLHWywWh/F+fn72PsMwtG7dOj3++OPq0KGDQkND9dxzzyk9PV07d+68zVsCAAAAAMDtV+XO2CcnJ+vZZ5+Vm5ubIiIiFB0drcDAwGLHZ2dnKyYmRoZhKCwsTE8++aQaNGggSTp//rwyMjLUqlUr+3gvLy+Fh4fr8OHD6tKlS5HLzM3NVW5urn3aYrHI09PT/rOZmK1eAEDJLBYLv9srCPsZAKqX6nwMrVLBvkmTJoqJiVFwcLDS09OVkJCgyZMna8aMGfZgfb3g4GCNGTNGoaGhysrK0meffaY333xTM2fOVO3atZWRkSFJ8vX1dZjP19fX3leUVatWOdzrHxYWpri4ONWpU6dctrMi5efnV3YJAIByFBgYyHNiKgjHUACoXqrzMbRKBfu2bdvafw4NDbUH/e3bt6tHjx6FxkdERCgiIsJh+uWXX9aGDRs0bNgwp+sYOHCg+vfvb58u+FYnJSVFeXl5Ti+3MqSmplZ2CQCAcpSamioXF5fKLuOOwDEUAKoXsx1DXV1dS31yuUoF+xt5e3srODhYycnJpRrv6uqqsLAw+/iC++0vXrwof39/+7iLFy+qYcOGxS7Hzc1Nbm5uRfYZhlG64qsIs9ULACiZYRj8bq8g7GcAqF6q8zG0yj0873rZ2dlKTk52eCBeSWw2m5KSkuwhPigoSH5+ftq3b599TFZWlo4ePepwph8AAAAAALOqUmfsFy5cqHvvvVeBgYFKT09XfHy8rFarunbtKkmaM2eOAgICFB0dLUlKSEhQkyZNVK9ePWVmZuqzzz5TSkqKevbsKenaJfR9+/bVypUrVb9+fQUFBWnZsmXy9/dXhw4dKm07AQAAAAAoL1Uq2KelpWn27Nm6fPmyfHx8FBkZqdjYWPsr71JTUx2eYnjlyhXNmzdPGRkZ8vb2VqNGjfT2228rJCTEPmbAgAHKycnRvHnzlJWVpcjISE2YMIF32AMAAAAAqoUqFexfeumlEvunTp3qMD1y5EiNHDmyxHksFouGDh2qoUOH3lpxAAAAAABUQVX6HnsAAAAAAFAygj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAx18ou4Hrx8fFKSEhwaAsODtasWbOKHP/111/r22+/1S+//CJJatSokZ588kmFh4fbx8ydO1dbtmxxmK9169aaOHFi+RYPAAAAAEAlqFLBXpIaNGigSZMm2aet1uIvKkhMTFSXLl3UtGlTubm5ac2aNXr77bc1c+ZMBQQE2Me1adNGMTEx9mlX1yq32QAAAAAAOKXKJVyr1So/P79SjX3hhRccpv/85z9rx44d2rdvn7p3725vd3V1LfUyAQAAAAAwkyoX7JOTk/Xss8/Kzc1NERERio6OVmBgYKnmzcnJUV5enmrWrOnQnpiYqGeeeUbe3t5q0aKFhg0bplq1ahW7nNzcXOXm5tqnLRaLPD097T+bidnqBQCUzGKx8Lu9grCfAaB6qc7H0CoV7Js0aaKYmBgFBwcrPT1dCQkJmjx5smbMmGEP1iVZvHixAgIC1LJlS3tbmzZt1LFjRwUFBSk5OVlLly7VO++8o9jY2GIv81+1apXDvf5hYWGKi4tTnTp1bn0jK1h+fn5llwAAKEeBgYGqX79+ZZdxR+AYCgDVS3U+hlapYN+2bVv7z6Ghofagv337dvXo0aPEeVevXq1t27Zp6tSpcnd3t7d36dLF/vPdd9+t0NBQPf/88zpw4IDDFwDXGzhwoPr372+fLvhWJyUlRXl5eU5tW2VJTU2t7BIAAOUoNTVVLi4ulV3GHYFjKABUL2Y7hrq6upb65HKVCvY38vb2VnBwsJKTk0sc99lnn2n16tWaNGmSQkNDSxxbt25d1apVS8nJycUGezc3N7m5uRXZZxhG6YqvIsxWLwCgZIZh8Lu9grCfAaB6qc7H0Cr9Hvvs7GwlJyeX+OC7NWvWaMWKFZowYYIaN25802VeuHBBV65ckb+/fzlWCgAAAABA5ahSZ+wXLlyoe++9V4GBgUpPT1d8fLysVqu6du0qSZozZ44CAgIUHR0t6drl9/Hx8XrhhRcUFBSkjIwMSZKHh4c8PDyUnZ2tTz/9VB07dpSfn5/OnTunRYsWqV69emrdunVlbSYAAAAAAOWmSgX7tLQ0zZ49W5cvX5aPj48iIyMVGxsrHx8fSdfuibj+KYYbNmxQXl6eZs6c6bCcJ554QkOGDJHValVSUpK2bNmizMxMBQQEqFWrVho6dGixl9oDAAAAAGAmVSrYv/TSSyX2T5061WF67ty5JY53d3fXxIkTb7EqAAAAAACqrip9jz0AAAAAACgZwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABNzrewCrhcfH6+EhASHtuDgYM2aNavYebZv367ly5crJSVF9erV01NPPaV27drZ+w3DUHx8vDZu3KjMzExFRkbqmWeeUf369W/XZgAAAAAAUGGqVLCXpAYNGmjSpEn2aau1+IsKDh06pNmzZys6Olrt2rXT1q1b9be//U1xcXG6++67JUlr1qzRF198obFjxyooKEjLly9XbGysZs6cKXd399u+PQAAAAAA3E5V7lJ8q9UqPz8/+x8fH59ix65bt05t2rTRo48+qpCQEA0bNkyNGjXSl19+Kena2fp169bp8ccfV4cOHRQaGqrnnntO6enp2rlzZ0VtEgAAAAAAt02VO2OfnJysZ599Vm5uboqIiFB0dLQCAwOLHHv48GH179/foa1169b20H7+/HllZGSoVatW9n4vLy+Fh4fr8OHD6tKlS5HLzc3NVW5urn3aYrHI09PT/rOZFNSb/utxXb10oZKruTPYbPn67eqVyi4DqBDunjVltbpUdhl3hOzMi5Ku/V4327HIrAr289HUq0rNzL3JaJSHfJuhyzn5lV0GUCFq1XCRi5Xf5xUh42qepOp9DK1Swb5JkyaKiYlRcHCw0tPTlZCQoMmTJ2vGjBn2YH29jIwM+fr6OrT5+voqIyPD3l/QVtyYoqxatcrhXv+wsDDFxcWpTp06zm1YJfLw8JDVatXp/d9VdikAgFtktVoVGhoqf3//yi7ljnDtGGrRluMXK7sUAMAtslot1foYWqWCfdu2be0/h4aG2oP+9u3b1aNHjwqrY+DAgQ5XAhR8q5OSkqK8vLwKq6O8PPnkk0pLS6vsMu4Y+fn5unKFM/a4M9SsWVMuLpyxrygBAQHKzs7Wr7/+Wtml3DGefDKaY2gF4hiKOwnH0IplxmOoq6trqU8uV6lgfyNvb28FBwcrOTm5yH4/Pz9dvOj4LfrFixfl5+dn7y9ou/6bmYsXL6phw4bFrtfNzU1ubm5F9hmGUfoNqCLq1q2runXrVnYZAIByYMbjkJlxDAWA6qM6H0Or3MPzrpedna3k5GR7QL9RRESE9u3b59C2d+9eNWnSRJIUFBQkPz8/hzFZWVk6evSoIiIiblvdAAAAAABUlCoV7BcuXKjExESdP39ehw4d0t/+9jdZrVZ17dpVkjRnzhwtWbLEPr5v377as2ePPv/8c505c0bx8fE6duyY+vTpI+naJfR9+/bVypUrtWvXLiUlJWnOnDny9/dXhw4dKmUbAQAAAAAoT1XqUvy0tDTNnj1bly9flo+PjyIjIxUbG2t/5V1qaqrDUwybNm2qF154QcuWLdPSpUtVv359jRs3zv4Oe0kaMGCAcnJyNG/ePGVlZSkyMlITJkzgHfYAAAAAgGrBYlTnGw3KWUpKisNr8AAAAAAAuB3c3NxK/fC8KnUpPgAAAAAAKBuCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATc63sAszE1ZXdBQAAAAC4/cqSPy2GYRi3sRYAAAAAAHAbcSk+ANO7evWqXn/9dV29erWySwEAwFQ4hgLVA8EegOkZhqETJ06IC5AAACgbjqFA9UCwBwAAAADAxAj2AAAAAACYGMEegOm5ubnpiSeekJubW2WXAgCAqXAMBaoHnooPAAAAAICJccYeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA/gjnH+/HkNGTJEJ0+erOxSAAAod4ZhaN68eRo1alSpjnccF4Hqw7WyCwAAAABw63bv3q3Nmzdr6tSpqlu3rmrVqlXZJQGoIAR7AKaQl5cnV1d+ZQEAUJxz587J399fTZs2rexSAFQw/pUMoEqaOnWqGjRoIBcXF3333Xe6++67NWrUKC1atEg///yzPDw81KpVK40YMUI+Pj6Srp2pWLFihX755RdZrVZFRERo5MiRqlevXiVvDQAAt9fcuXO1ZcsWSdKQIUNUp04djR49ukzHRZvNpn/84x86fPiw3nzzTQUGBmrnzp1KSEjQ6dOn5e/vr+7du+vxxx+Xi4tLRW4egJsg2AOosrZs2aJevXpp+vTpyszM1FtvvaUePXpoxIgR+u2337R48WL9/e9/15QpUyRJ2dnZ6t+/v0JDQ5Wdna3ly5frvffe01//+ldZrTxSBABQfY0aNUp169bVxo0b9e6778pqtSoxMbHUx8Xc3FzNnj1bKSkpeuutt+Tj46Off/5Zc+bM0ahRo3TPPffo3LlzmjdvniRp8ODBlbGZAIrBv3QBVFn169fX8OHDFRwcrL179yosLEzR0dG66667FBYWpjFjxujAgQM6e/asJOn+++9Xx44dVa9ePTVs2FBjxoxRUlKSTp8+XclbAgDA7eXl5SVPT09ZrVb5+fnJx8en1MfF7Oxs/eUvf9GlS5c0ZcoU+5VwCQkJeuyxxxQVFaW6deuqVatWGjp0qL7++uvK2EQAJeCMPYAqKywszP7zqVOntH//fv3+978vNO7cuXMKDg7Wr7/+quXLl+vo0aO6fPmybDabJCk1NVV33313hdUNAEBVUNrj4uzZsxUQEKApU6bI3d3d3n7y5EkdPHhQK1eutLfZbDbl5uYqJydHNWrUqLiNAVAigj2AKsvDw8P+c3Z2ttq3b6/hw4cXGufn5ydJiouLU506dfTss8/K399fhmHolVdeUV5eXkWVDABAlVHa42Lbtm313Xff6fDhw2rRooW9PTs7W0OGDFHHjh0LLdvNze221w+g9Aj2AEwhLCxMO3bsUJ06dYp8YM/ly5d19uxZPfvss7rnnnskSQcPHqzoMgEAqBLKclzs1auXGjRooLi4OI0fP17NmjWTJDVq1Ehnz57lIbSACXCPPQBT6N27t65cuaLZs2fr6NGjSk5O1u7du/XBBx/IZrPJ29tbtWrV0tdff63k5GTt379fCxYsqOyyAQCoFGU9Lj7yyCMaNmyY/vKXv9i/ABg0aJC+/fZbffrpp/rll190+vRpbdu2TcuWLauozQBQSgR7AKYQEBCg6dOny2azKTY2Vq+++qoWLFggLy8vWSwWWa1Wvfjiizp+/LheeeUVLViwoMj78QEAuBM4c1zs16+fhgwZonfffVeHDh1SmzZt9Prrr2vv3r0aP368Jk6cqLVr1yowMLCCtgJAaVkMwzAquwgAAAAAAOAcztgDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBirpVdAAAAuGbIkCGlGjdlyhQ1b978NlcDAADMwmIYhlHZRQAAAOnbb78tNL13714999xzDu2tWrWSn59fBVYGAACqMs7YAwBQRTzwwAMO00eOHNHevXsLtQMAAFyPYA8AgAkdOHBA06ZNK3RZ/rvvvquffvpJTzzxhP3S/vj4eCUkJBS7rJiYGEVFRRXbv3nzZn3wwQd699131bhxY3v7pUuX9MwzzzisS5JOnDihpUuX6tChQ7LZbGrSpImGDRumiIiIQsss4O7urrp166pv377q2bOnw/r379+v+Ph4nThxQi4uLmrWrJmio6MVEhLiMC4tLU3Lly/X7t27dfnyZfn7+6tNmzYaNWqUtm7d6rC+kvbD3LlzlZiYqLlz59r7UlNT9eKLLyo3N1dz5sxRUFBQicsCAKAiEewBAKgmEhMT9dNPPxXb/8wzz8jDw8M+ff78ecXHx5drDb/88osmT54sLy8vPfroo3JxcdHXX3+tadOmaerUqWrSpInD+BEjRqhWrVq6evWqNm3apHnz5qlOnTpq1aqVJGnv3r169913FRQUpMGDB+u3337TF198oUmTJikuLs4esNPS0jR+/HhlZWWpZ8+euuuuu5SWlqbvv/9eOTk5uueeexxuaVi1apUkaeDAgfa2pk2bFrtd8fHxys3NLbf9BABAeSLYAwBQTSxevFht27YtNtzff//98vHxsU8fO3as3IP9smXLlJ+fr7feekt169aVJHXv3l0vvfSSFi1apGnTpjmM79Chgz2ct2rVSi+++KJOnjxpD/aLFi1SzZo1FRsbq5o1a9rnee211xQfH28P60uWLFFGRobeeecdh6sKhg4dKsMw5O3tba9Hkr755htJhW9/KMovv/yiLVu2lLhvAQCoTLzuDgCAamDHjh06evSooqOjb9s6srKydOnSJfufK1euOPTbbDbt3btXHTp0cAjR/v7+6tKliw4ePKisrCyHeTIzM3Xp0iWdO3dOa9euldVqVbNmzSRJ6enpOnnypLp3724P9ZIUGhqqVq1a2UO2zWbTzp071b59e4dQX8BisdzSdi9ZskSNGjXS/ffff0vLAQDgduGMPQAAJmez2bR06VJ169ZNoaGht20906dPL7H/0qVLysnJUXBwcKG+kJAQGYahCxcuyMvLy97++uuv2392c3PT008/rfDwcElSSkqKJBW5vLvuukt79uxRdna2srOzdfXqVd19991ObVdJDh48qP/85z+aPHmyUlNTy335AACUB4I9AAAm98033yglJUUTJ068rev54x//qPr169unr169qhkzZtzSMp9//nn5+voqNzdX+/fv10cffSR3d/cSH+ZXkRYvXqzWrVurRYsW2rx5c2WXAwBAkQj2AACYWE5Ojj799FP16tVLderUua3rCg8PL/RU/Ov5+PioRo0aOnv2bKF5z5w5I4vFotq1azu0N23a1H6Pffv27XX69GmtWrVKUVFR9u0panlnz55VrVq15OHhIXd3d3l6eiopKemWt/F6P/zwgw4fPqy4uLhyXS4AAOWNe+wBADCxL774Qjk5OXr88ccruxRZrVa1atVKu3bt0vnz5+3tGRkZ2rp1qyIjIx0uwy/Kb7/9pry8PEnX7s1v2LChtmzZoszMTPuYpKQk7dmzR23btrWvt0OHDvrPf/6jY8eOFVqmYRhl3paC2xu6dOmihg0blnl+AAAqEmfsAQAwsT179mjYsGGqVatWZZciSRo2bJj27t2ryZMnq1evXvbX3eXl5Wn48OGFxu/cuVO1atWyX4r/888/q2/fvvb+4cOH691339Wbb76pBx98UL/99pu+/PJLeXl5aciQIfZx0dHR2rt3r6ZOnaqePXsqJCRE6enp+v777/XWW2/J29u7TNtx4cIFubq6avz48c7vDAAAKgjBHgAAE/P391e/fv0quwy7Bg0a6K233tKSJUu0evVqGYah8PBwPf/884XeYS9JCxYskCS5uroqMDBQTzzxhMO75Vu1aqUJEyYoPj5e8fHxcnFxUbNmzfTUU0/ZL+GXpICAAL3zzjtatmyZtm7dqqtXryogIEBt2rRRjRo1nNqWXr16OawDAICqymI4c30aAAAAAACoErjHHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJ/X9gxf8mykX+cgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Топ-10 заголовков real:\n",
+ "title\n",
+ "Economy Shows Signs of Recovery 213\n",
+ "Government Announces New Education Reforms 175\n",
+ "New Study Reveals Health Benefits of Walking 144\n",
+ "Name: count, dtype: int64\n",
+ "\n",
+ "Топ-10 заголовков fake:\n",
+ "title\n",
+ "Celebrity Reveals Secret Government Plans 162\n",
+ "Cure for Aging Discovered in Remote Village 157\n",
+ "Aliens Land in Central Park 149\n",
+ "Name: count, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "df['title_length'] = df['title'].apply(lambda x: len(str(x).split()))\n",
+ "plt.figure(figsize=(12,6))\n",
+ "sns.boxplot(data=df, x='label', y='title_length', hue='label', palette='pastel', legend=False)\n",
+ "plt.title('Распределение длины заголовков')\n",
+ "plt.ylabel('Количество слов')\n",
+ "plt.xlabel('Тип новости')\n",
+ "plt.show()\n",
+ "\n",
+ "print(\"Топ-10 заголовков real:\")\n",
+ "print(df[df['label']=='real']['title'].value_counts().head(10))\n",
+ "print(\"\\nТоп-10 заголовков fake:\")\n",
+ "print(df[df['label']=='fake']['title'].value_counts().head(10))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7f605c1b-5ce0-4dc7-b35e-747511ef5ac6",
+ "metadata": {},
+ "source": [
+ "## 4. Анализ ключевых слов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "3af80523-186c-410f-b39b-afeeacc346ee",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAALWCAYAAABm/LnWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACug0lEQVR4nOzdeVxWZf7/8fd9c7PKqqIIiOCKGppZ6jTllpaVS6ThloJak1tmZVbzbQRzsjSnNJeszKXU3JfUsskSajSXylJRcdcEEXHBRMAbOL8//HkngYqI3Hfyej4e92O8z7nOdT7nXNg8eHud65gMwzAEAAAAAADgoMz2LgAAAAAAAOBaCC8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAOCSTyXRDH0ewb98+jR07Vi1btlRgYKBcXFxUvXp19e3bV3v27LnqccePH9eAAQNUrVo1ubm5qV69enrjjTdktVrLsHoAAADHZTIMw7B3EQAA/FlcXFyhbRMnTlRGRoZiY2OL1b6s9ejRQwsXLtQdd9yh++67T97e3tqxY4e+/PJLubu7a+3atWrZsmWBY1JTU9WsWTMdO3ZMkZGRqlOnjhISErRp0yZ17txZK1ascJhwBgAAwF4ILwAAfxmhoaE6cuSIHPX/umbPnq3GjRurSZMmBbYvWLBAPXv2VIMGDZSYmFhgX3R0tD755BO9//77GjhwoCTJMAz16tVLCxYs0Pz589WzZ88yuwYAAABHxGMjAIDbzqxZs9S8eXN5enrK09NTzZs31+zZswu1i4+PL9VHUmJiYgoFF9KlGRl169bVrl27lJ6ebtv++++/a+HChapZs6aeeeYZ23aTyaS33npLkvTRRx8V+/yGYWjWrFm6//775evrKw8PD9WpU0fPPPOMjh49Wqh9aGjoVa+5qPt1M/e1YsWKat68uT755JNiX09cXFyBPsxms6pVq6ZHH31UGzduLHY/rVu3lslkUnZ2tl555RWFhITIzc1N9evX1+TJk68ahq1cuVIPPPCA/Pz85ObmpjvuuEMTJkxQXl5egXYZGRkaN26cWrVqZXtcKDAwUH379tWBAweuWldMTMxV739MTEyBtiaTSa1bty7W9V6+b/Hx8UXuL6qvy/foei7XfPjwYUlSTk6O7rzzTlksFm3YsKFA22vtK07fVzp8+HCR90WSdu7cqaioKFWpUkWurq4KCwvT8OHDderUqUJt//wz7+bmptq1a+uFF17Q6dOnC7XPzc3VO++8o8aNG8vd3V0+Pj5q06aNVq1addXrWLlypR588EFVqlRJbm5uCg0NVZ8+fbRz505Jf9zr632unE124cIF/fOf/1TdunXl6upaqO3le3bq1CkFBwfLy8tL+/fvL1DXtfYBwF+Bxd4FAABQmoYNG6bJkycrKChIAwYMkCQtXbpU/fr107Zt2zRp0qRCx7Rq1arIXwxnz56tI0eOlEpdzs7OkiSL5Y//6/3hhx+Uk5Oj9u3bF/rFsUaNGqpXr542bNigvLw8OTk5XbP//Px8de/eXUuWLFFQUJB69uwpb29vHT58WIsWLdLDDz+skJCQQsf5+Pho+PDhtu+//PKLVq5cWajdzd7X1NRULVmyRNHR0TIMQ9HR0de8nitFR0crNDRUeXl52rdvn5YtW6b169fr559/Vnh4eLH7iYqK0rZt29S1a1db/cOGDdPhw4f1n//8p0DbV199VW+99ZaCgoL0+OOPy8fHR99//71eeuklbd68WYsXL7a13b17t0aNGqU2bdooMjJSFSpU0J49ezR//nytWbNGP//8s2rUqHHVup577jn5+vpKks6ePVvkvXRUrq6u+uyzz9S0aVP17t1bv/76q3x8fCRJI0eO1K+//qq4uDj9/e9/vyXn/9///qeHHnpIFy9eVLdu3RQaGqoffvhBkyZN0urVq7Vp0yZVrly5wDFX/sxfuHBB69ev17vvvqtt27Zp/fr1tnaGYahbt25auXKl6tatqyFDhigzM1MLFy5U586d9c477+j5558v0PeLL76od955RxUrVtRjjz2mKlWq6LffftO6devUtGlT3XHHHYqJiSnw35v4+HglJCTYfs4vu7JNdHS0lixZotq1a2vQoEG2n5cVK1bo119/tbWrVKmSPvnkE7Vv3169evXShg0bbP/tGTBggJKTkzV79mzVrl37Ju46ANiJAQDAX0SNGjWMa/1fV0JCgiHJqF+/vnH27Fnb9tOnTxt169Y1JBnfffedbfv69esNSUZsbGyR/bVq1eqa5yuuzZs3G5KMe+65p8D2KVOmGJKMCRMmFHlcx44dDUnGgQMHrnuOyZMnG5KMBx54wLhw4UKBfRcuXDBOnTpV6JigoCAjNDS0wLZZs2YZkoxZs2bZtpXWfU1MTDQkGY899th1r8cwDCM2NtaQZKxfv77A9qlTpxqSjIkTJxarn8vjWK9evQL1nz171qhXr55hMpmMrVu32rb/97//NSQZDz30kHH+/Hnb9vz8fGPgwIGGJGPJkiUF+inq/n777beG2Ww2nnrqqSLr6t27tyHJOHz4sG3boUOHDElGdHR0gbaSjFatWhXreq92367VV3F/1qOjow1JxqFDhwpsnz59uiHJ6N69u2EYhrFmzRpDknHfffcZubm5xar7an0bRtH3JS8vz6hVq5YhyVi7dm2B9i+99JIhyejfv3+B7TVq1DBq1KhRYFteXp7RvHlzQ5Jx5swZ2/Y5c+bY7lVOTo5t+5EjR4zKlSsbFoulwN/NVatWGZKMiIgIIz09vcA5rFarkZqaWuR1X2+8zp07Z5jNZiMwMLDAz6NhXP2evfLKK4YkY+TIkYZh/PF3pmfPnkWeAwD+CnhsBABw25gzZ46kS9PmL//rryT5+fnZFvks6jGHWykjI0PR0dEym80aP358oX2SCtR6JW9v7wLtrmXatGlycnLS+++/L3d39wL73N3dVbFixULHWK1Wubq6Xrfv0rqvubm5tuNuRkn7+de//lWgfh8fH7322msyDMN2jZI0ZcoUSdKHH36oChUq2LZffpzHZDLps88+K9BPUfe3TZs2atiwodatW1dkPZffJlOcMXB0zzzzjCIjI7Vw4UK99dZbiomJka+vr+bNm3fdWUMltWHDBh04cEAPP/ywHnrooQL7Ro0apYoVK2r+/Pm6ePHiNfsxDEN5eXlyc3Mr8Hfn8s/E+PHj5eLiYtseEhKi559/Xrm5uZo3b55t+7Rp0yRJkyZNUqVKlQqcw2KxqGrVqiW6zpycHOXn5yskJKTAz+O1vP7667rnnns0YcIETZ48WSNGjFBoaKimT59eohoAwBHw2AgA4Laxbds2SSryEZA2bdpIuvRYREkdPny40C/pvr6+BR67uFJWVpYiIyO1Z88evfHGG8Ves+BGnT9/Xrt371bt2rVVp06dYh937tw5VatW7brtSnpf4+Pjbc/tHz9+XIsXL1bdunX16quvFrtG6VIwEh8fr7y8PO3du1fLly9Xhw4dFBUVdUP93H///VfddvkaJWnTpk2qUKGCZs6cWWQ/7u7uhV59Gx8fr4kTJ2rz5s1KT0+3BSySCvzie6Vz585Jktzc3IpV/+HDh23309XVVYGBgbr33nuvOuaX79uNuNy/k5OTqlatqjvuuEP33ntvsY6dMWOGtmzZYhvfhQsXFvmo0vVMnDjR9ljEZWfPni3U7lo/l56enrr77rv13//+V0lJSYqIiCjQ1+XrvHDhgr755hvt3r1b7777boEgadu2bfLw8FCzZs0K9V/Uz/2WLVvk6uqqVq1aFfNKi6dy5cqqUaOGtmzZog8++EA9evS4auB5mbOzsz777DPdeeedGjZsmJycnDRv3jxbIAoAf0WEFwCA28a5c+dkNpvl7+9faF/VqlVlMplsvzCWxOHDhzV69OgC22rUqFFkeJGdna0uXbpo/fr1evXVV/XPf/6zUJvLv4BcbWbF5Vqv94vK5eODgoKuew2XXbhwQdnZ2UXeq6LqKMl9TUhIUEJCgu27s7OzOnXqJA8Pj2LXKanArAjp0i9zTZs2veFXyBb1L9+Xt105BqdPn1Zubm6hsb5SZmam7c+LFy9W9+7d5enpqYceekihoaHy8PCwLXx6tXVTTp06JRcXl+uO72VHjhwpVJPJZFKfPn00c+bMQjMc/nzfiqOoa77nnnv0+eefKyAg4JrHVqxYUS1bttRnn32m4OBgRUZG3vD5JRV7zY/LP3NXm9FwOZj7889mRkZGoeu85557FBwcXKj/6tWrF7vvjIwMBQUFyWwu/YnNc+fOVVRUlAYOHGh7K9H11KxZU40bN9aGDRvUtGnTYodQAOCoeGwEAHDb8Pb2Vn5+vk6ePFloX1pamgzDuKl/eWzdurUMwyjwKerNCFlZWercubO+/vprjRw5UmPHji2yv8v/Yr5v374i9+/bt08uLi7X/dfry7/8JicnF/taLr8F48oFAq+mpPc1NjbWdp/OnTunpUuX6vPPP1fLli2VlZVV7FrXr19v6yctLc12T4t688S1nDhx4qrbrgwQvL29ValSpUJjfeXn0KFDtvZxcXFyc3PTTz/9pMWLF+vtt9/W6NGjbduv5sCBAwoJCSl2CNOqVSvb+bOzs7V582ZFRETok08+KfAYy2VX3rcrP9dyuU1ubq7279+v7t27a+vWrXrttdeuW9/SpUv12WefqVKlSjp27Jj+7//+r1jX9WeHDh265v2+7PLPXFHjKl1aJPbKdpfVqFHD1u/FixeVmJgoX19fderUSWvXri3Qf1paWrH79vX1VWpqqvLz82/gaovnvvvu06FDh3TXXXfJyclJL7/8smJjY9W4ceOrHvPOO+9ow4YNqlSpkrZs2WJ7rAUA/qoILwAAt43Lryktaqr85W133nnnLa0hKytLXbp00ddff60RI0Zo3LhxV23bokULubi46Ouvvy70S+WRI0eUlJSkv//97wXeUFIUT09PNWjQQIcOHbpqEPJnmzZtkiTdfffd121bGvfVy8tLnTp1Ut++fXXw4MFivTqzKP7+/nrppZcUERGhxYsXKzs7u9jHfv/991fdduUrbps3b65Tp04V+14eOHBA9evXL/T4xvHjx3Xw4MEij9m3b59Onz5drPtfFFdXVzVr1sz2+MOPP/5Yon6uxsnJSbVq1dL7779frP6PHTump59+Wv7+/tq2bZtatGihCRMm6JtvvinVuq50rZ/LzMxM/fjjj3J3d1e9evWu2oezs7MaNGhg+3s6d+7cAv1fuHBBW7ZsKXRcUT/3zZo1U05OToHZRqVp0aJF+vnnnzVy5Ei99dZbiouLu+rfu23btumf//yn6tWrpx07digsLEwjRoxQYmLiLakNAMoC4QUA4LZx+fWbo0ePLjSd+/I08Rt5ReeNuvyoyNdff60XXnhBb7/99jXbe3t7q0ePHjp48KA++OAD23bDMGzrBjz99NPFOveQIUOUl5enwYMHF5rVkJ2drdOnT9u+Z2Rk6L333pOzs7M6d+583b5L674ahqGdO3cW63qu5cyZM0pOTr7hx0bGjBlT4PGQjIwM/fvf/5bJZCpQ/7BhwyRJ/fv316lTpwr1k5qaqt27d9u+16hRQ/v37y8wAyA7O1uDBg2yLcp5JcMw9O9//1uSbK9tLanLAcvNLoJ6M/3n5+frySef1JkzZzRr1ixVr15d8+bNk5eXl/r27av09PRbUtvf//531apVS19++WWhRVH//e9/69SpU+rZs+dV1xy50o4dOwptu/wz8eqrrxYYx99++03vvPOOLBaLevfubds+ZMgQSZdefXvl3zfp0iKzV5shUhxHjhzR0KFD1aRJk2s+ziRdCm569uwpSfrss89UrVo1zZ8/X1arVT179ryhwA8AHAlrXgAAbhstW7bUs88+q8mTJ+uOO+5Q165dZRiGli5dqmPHjmnYsGFq2bLlLTv/wIED9fXXXysgIEBeXl62fxW/UkxMTIFHNd566y2tX79egwcP1rp161S7dm0lJCRo06ZN6tSpk3r06FGscw8aNEgJCQlatGiR6tSpo86dO8vb21tHjx7VV199pY8//liPPfaY/v3vf2vKlCk6ceKE3nzzzWIt2FnS+3rlgp3nz59XfHy8fvrpJ4WHhxe5eObVXLnwZHp6ulauXKlTp06pX79+xV7sUpLq1q1rq1+Srf4XXnihwAyIDh066F//+pfGjBmj2rVrq0OHDqpRo4ZOnTql/fv36/vvv9e///1v1a9fX5L07LPP6tlnn1WTJk3UrVs35ebm2mbTNG7cWL/++qut7+XLlys2NlY7duzQww8/fEPhRUpKiu1tETk5Odq+fbs+/fRTeXh4FPgl+mZc7j8vL09HjhzRrFmzJF07RBs7dqwSEhI0dOhQPfroo5IurbcwdepU9enTR/3799fnn39eKvVdyWw2a/bs2XrooYf0yCOP6IknnlCNGjX0ww8/KD4+XrVq1dJbb71V6LgrF+zMzc3V3r17tXLlSjk5OWnAgAG2dn369NGyZcu0cuVKNWrUSB07dlRmZqYWLlyo06dP6z//+Y9q1qxpa//II49oxIgRmjBhgurUqaPIyEhVqVJFycnJ+uabbzRixIirLu57Lfn5+erbt68uXryouXPnytnZ+Zrtn3vuOSUlJWnChAm22SktWrRQbGys/vWvf+mll17S5MmTb7gOALC7W/YSVgAASlmNGjWM4vxf18yZM4177rnH8PDwMDw8PIx77rnHmDlzZqF269evNyQZsbGxRfbTqlWrYp3vz+2v9Vm/fn2h41JSUoz+/fsbVatWNVxcXIw6deoYY8aMMXJycop9bsMwjPz8fGPGjBlGixYtjAoVKhgeHh5GnTp1jIEDBxpHjx611diuXTtj5cqVRfYxa9YsQ5Ixa9asQvtu9L5e+alQoYJRr1494+WXXzbS0tKKdT2xsbGF+vHz8zOaNm1qTJ482bBarcXq5/K4ZGVlGSNHjjSqV69uuLi4GPXq1TPee+89Iz8/v8jjvv76a6NTp06Gv7+/4ezsbAQEBBh/+9vfjDFjxtjup2Fcuu/Tp083GjZsaLi5uRkBAQHGgAEDjLS0tEI/Qy+//LLRtGlT49133y2y/kOHDhmSjOjo6ALb/3wfnJ2djRo1ahi9e/c2duzYUeR9K+pn7XJfrVq1KvIeXf6YzWYjICDAaNeunbFmzRpbu+joaEOScejQIcMwDOOHH34wLBaLcccddxhZWVmFztW7d29DkjFlypQia7nSn/suzn0xDMPYvn270a1bN6Ny5cq2+/Lcc88ZJ0+eLNT28n9DLn+cnJyM4OBgo0uXLsaGDRsKtbdarcaECROMiIgIw9XV1fDy8jJatWp11b8/hmEYS5cuNdq0aWP4+PgYrq6uRmhoqNGnTx9j586dRba/3niNGzfOkGS8++67hfb9+Z4tWbLEkGS0b9++0M91Xl6e0bJlS0OSsWrVqqvWDwCOymQY11m5CQAA4C+sdevWSkhIuO5ilQAAwHGx5gUAAAAAAHBohBcAAAAAAMChEV4AAAAAAACHxpoXAAAAAADAoTHzAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADs1i7wLgeM6cOaPc3Fx7l4Ey4OzsLKvVau8yUIYY8/KF8S5fGO/yhzEvXxjv8qe8jLnFYpGfn9/125VBLfiLyc3NLRd/SSCZzWbGupxhzMsXxrt8YbzLH8a8fGG8yx/GvCDCCxSy8eh3OnU+3d5lAAAAAABKoEOdTvYuodSx5gUAAAAAAHBohBcAAAAAAMChEV4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAoRFe3EJTp07V+PHj7V0GAAAAAAB/aYQXAAAAAADAoRFeAAAAAAAAh2axdwG3g02bNmnx4sVKTU2Vq6urwsLC9NJLL9n2f/7551q9erVyc3N17733KiYmRhbLpVt//vx5zZ49Wz/99JOsVqsaNGigfv36qVq1ajIMQ0899ZSefvpptWjRQpL00ksvKSMjQx9++KEkac+ePXr99dc1a9Ysubi4aPHixVq/fr0yMjLk5eWl5s2bq3///mV/UwAAAAAAKCWEFzfpzJkzmjRpknr37q1mzZopOztbu3fvtu1PTEyUn5+fYmNjlZqaqokTJyo0NFTt2rWTJE2bNk3Hjx/XyJEj5e7urnnz5unNN9/UO++8I4vFovr16ysxMVEtWrTQ+fPnlZycLBcXFyUnJysoKEi7du1SrVq15Orqqk2bNmnNmjUaPny4qlevrrNnz+rw4cNXrd1qtcpqtdq+m0wmubu737J7BQAAAABASRBe3KQzZ84oLy9PzZs3l7+/vyQpJCTEtt/T01MDBgyQ2WxWUFCQmjRpop07d6pdu3Y6fvy4fvzxR40ZM0b16tWTJA0bNkyDBg3S1q1b9be//U0NGzbUunXrJEm7d+9WWFiYfHx8lJiYqKCgICUmJqpBgwaSpPT0dPn6+ioiIkIWi0WVK1dW7dq1r1r78uXLtWTJEtv3sLAwjRs3rtTvEQAAAAAAN4Pw4iaFhoYqIiJCI0aMUOPGjdWoUSO1aNFCnp6ekqTg4GCZzX8sLeLn56ejR49KkpKTk+Xk5KQ6derY9nt5eSkwMFDJycmSpAYNGmj27Nk6d+6cdu3apQYNGsjX11e7du1S27ZttXfvXnXp0kWS1KJFC61Zs0bPPvusGjdurLvuuktNmzaVk5NTkbVHRkaqY8eOtu8mk6l0bw4AAAAAAKWABTtvktls1muvvaZXX31VwcHBWrt2rYYPH660tDRJKhQcmEwmGYZR7P5DQkLk6empXbt2adeuXWrYsKEaNmyoXbt26cCBA8rNzVXdunUlSZUrV9akSZM0YMAAubi4aMaMGYqNjVVubm6RfTs7O8vDw8P24ZERAAAAAIAjIrwoBSaTSeHh4YqKitL48eNlsVi0ZcuW6x4XFBSkvLw87du3z7bt999/V0pKioKDgwv0vXXrVh07dkzh4eEKCQmR1WrV119/rVq1asnNzc12vIuLi+6++271799fcXFx2rt3r22mBwAAAAAAf0WEFzdp3759WrZsmQ4cOKD09HRt3rxZ586dU1BQ0HWPrVatmu6++2598MEH2rNnjw4fPqzJkyerYsWKuvvuu23tGjZsqA0bNig0NFRubm4ym82qX7++/ve//9nWu5Ck+Ph4ffvttzp69KhOnDih7777Ti4uLra1OAAAAAAA+CtizYub5O7urt27d+uLL75QVlaWKleurL59+6pJkybauHHjdY8fPHiwZs+erbfeeku5ubmqX7++Xn31VdurVKVL617k5+cXCCoaNmyoH3/8scA2Dw8PrVy5UnPmzFF+fr5CQkL08ssvy8vLq3QvGgAAAACAMmQybmQBBpQLK39aqlPn0+1dBgAAAACgBDrU6WTvEorN2dm5WE8L8NgIAAAAAABwaIQXAAAAAADAoRFeAAAAAAAAh0Z4AQAAAAAAHBrhBQAAAAAAcGi8bQSFnDx5Ular1d5loAy4uroqJyfH3mWgDDHm5QvjXb4w3uUPY16+MN7lT3kZc942AgAAAAAAbguEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwa4QUAAAAAAHBohBcAAAAAAMChWexdABzPuv3xOvl7ur3LAADAIXS7o4u9SwAAoNxj5gUAAAAAAHBohBcAAAAAAMChEV4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAoRFe3IaGDBmiNWvW2LsMAAAAAABKBeFFKcrNzbV3CQAAAAAA3HYs9i7grywuLk7Vq1eXk5OTvv/+e4WEhKhfv36aO3eudu/eLTc3NzVq1EjR0dHy9vaWJOXn52vVqlVat26dTp06JR8fH7Vv316PP/64JCk9PV2ffPKJtm/fLpPJpPr16ysmJkZVqlSRJE2dOlWZmZkKDw/X6tWrlZubq3vvvVcxMTGyWCyKi4vTyZMnNWfOHM2ZM0eStGjRIvvcIAAAAAAASgHhxU1KSEjQgw8+qDFjxigzM1Ovv/662rZtq+joaF28eFHz5s3Tu+++q9jYWEnS/Pnz9c033yg6Olrh4eE6e/askpOTJV2aufHGG2+obt26ev3112U2m7Vs2TKNHTtWEyZMkMVyabgSExPl5+en2NhYpaamauLEiQoNDVW7du00YsQIvfTSS3rggQfUrl07u90XAAAAAABKC4+N3KRq1arpySefVGBgoLZv366wsDD16tVLQUFBCgsL06BBg5SYmKiUlBRlZWXpyy+/1JNPPqnWrVsrICBA4eHheuCBByRJGzdulGEYGjhwoEJCQhQcHKzBgwcrPT1diYmJtnN6enpqwIABCgoKUtOmTdWkSRPt3LnTts9sNsvd3V2+vr7y9fW9au1Wq1UXLlywfbKysm7pvQIAAAAAoCSYeXGTwsLCbH8+cuSIdu7cqT59+hRqd+LECV24cEFWq1URERFF9nXkyBGlpqaqb9++BbZbrVadOHHC9j04OFhm8x+5k5+fn44ePXrDtS9fvlxLliwpcC3jxo274X4AAAAAALiVCC9ukpubm+3P2dnZatq0qZ588slC7Xx9fZWWlnbNvrKzs1WzZk0NGzas0L7La2ZIkpOTU4F9JpNJhmHcaOmKjIxUx44dC/QDAAAAAICjIbwoRWFhYdq8ebP8/f0LBQySFBAQIBcXF+3YscP2qMifj9+4caO8vb3l4eFR4josFovy8/Ov287Z2VnOzs4lPg8AAAAAAGWBNS9K0UMPPaTz589r0qRJ2r9/v1JTU/XLL79o2rRpys/Pl4uLi7p06aK5c+cqISFBqamp2rt3r7799ltJ0v333y9vb2+9/fbb2r17t9LS0pSYmKiZM2fq1KlTxa7D399fu3fv1unTp3Xu3LlbdbkAAAAAAJQJZl6UoooVK2rMmDGaN2+e3njjDVmtVvn7+6tx48a2RzK6du0qJycnLVq0SKdPn5afn5/at28vSXJ1ddXo0aM1d+5cTZgwQdnZ2apYsaLuuOMOubu7F7uOqKgoffTRR3r22WdltVp5VSoAAAAA4C/NZJRksQTc1j77YbFO/p5u7zIAAHAI3e7oYu8SisXV1VU5OTn2LgNliDEvXxjv8qe8jLmzs7P8/f2v247HRgAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOzWLvAuB42tVuLavVau8yUAbKy+uX8AfGvHxhvAEAwO2CmRcAAAAAAMChEV4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAofG2ERTy+e5vlZpx0t5lAADgEPo1fdzeJQAAUO4x8wIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0Agv/sLi4+MVExNj7zIAAAAAALilLPYuACV37733qkmTJvYuAwAAAACAW4rw4i/MxcVFLi4u9i4DAAAAAIBbqlyEF/n5+Vq5cqXWrVuns2fPKjAwUF27dlWLFi0kSb/99pvmzZun3bt3yzAMhYaGavDgwQoICFB+fr6WLVumdevW6dy5cwoKClLv3r115513SpLS0tI0dOhQvfjii1q7dq327dunatWq6emnn1bdunVtNWzatEmLFi1Samqq/Pz81KFDB3Xq1Mm2f8iQIWrbtq2OHz+uzZs3y8vLS/3791fdunU1ffp07dixQ1WrVtWgQYNUq1YtSZceG5k9e7Zmz55t6+fHH3/U0qVLdfToUbm5uSk8PFwvvfTSrb/JAAAAAADcIuUivFixYoW+//57Pf3006pWrZp2796tyZMny9vbWwEBAYqNjVWDBg00atQoubu7KykpSfn5+ZKkL774QqtWrdI//vEPhYWF6dtvv9W4ceP0zjvvqFq1arZzLFiwQH369FFAQIAWLFigSZMm6b333pOTk5MOHjyod999V0888YTuvfde7d27VzNmzJCXl5dat25t62PNmjXq2bOnunbtqjVr1mjy5MmqV6+e2rRpoyeffFLz5s3TlClT9M4778hkMhW6zp9//lkTJkzQ448/riFDhig3N1fbtm275fcXAAAAAIBb6bYPL6xWq5YvX65//etftpkQVatW1Z49e/T111/L399fHh4eGj58uCyWS7cjMDDQdvyqVavUpUsX/f3vf5ckPfnkk0pMTNSaNWv01FNP2dp16tRJd911lyQpKipKL7zwglJTUxUUFKTVq1crIiJC3bp1s/V/7Ngxff755wXCiyZNmqh9+/aSpG7duum///2vatWqpb/97W+SpC5duui1115TRkaGfH19C13rsmXLdO+99yoqKsq2LTQ09Jr3xmq12r6bTCa5u7tf954CAAAAAFCWbvvwIjU1VTk5ORozZkyB7bm5uQoLC9OFCxcUHh5uCy6udOHCBZ05c0bh4eEFtterV09HjhwpsC0kJMT258vBQkZGhoKCgpScnKy77767UB9r1qxRfn6+zOZLL32pUaOGbb+Pj881+y0qvDh8+LAeeOCBom5DkZYvX64lS5bYvoeFhWncuHHFPh4AAAAAgLJw24cX2dnZkqRXX31VFStWLLDPYrEUWC/iZlwZflx+pMMwjBvqw8nJqVAfV2677Gr93ujinZGRkerYsWOhcwIAAAAA4EjM9i7gVgsODpazs7PS09MVEBBQ4FO5cmXVqFFDe/bsUW5ubqFjPTw85Ofnpz179hTYnpSUpODg4GLXEBQUpKSkpEJ9BAYG2mZdlIYaNWpox44dxW7v7OwsDw8P24dHRgAAAAAAjui2Dy/c3d3VqVMnzZkzR/Hx8UpNTdXBgwf15ZdfKj4+Xh06dFBWVpYmTpyoAwcO6Pjx4/ruu++UkpIiSercubNWrlypjRs3KiUlRfPmzdPhw4f1yCOPFLuGjh07aseOHVqyZIlSUlIUHx+vtWvXFnjbSGno1q2bNmzYoEWLFunYsWM6evSoVqxYUarnAAAAAACgrN32j41IUvfu3eXt7a0VK1boxIkTqlChgsLCwhQZGSkvLy+NGjVKc+fOVVxcnMxms0JDQ1WvXj1J0sMPP6wLFy7ok08+UUZGhoKDg/Xyyy8XeNPI9dSsWVPPP/+8Fi1apKVLl8rPz09RUVEFFussDQ0bNtQLL7ygpUuXasWKFXJ3d1f9+vVL9RwAAAAAAJQ1k3GjCzPgtvfxdwuVmnHS3mUAAOAQ+jV93N4lFIurq6tycnLsXQbKEGNevjDe5U95GXNnZ2f5+/tft91t/9gIAAAAAAD4ayO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA7NYu8C4Hg6128rq9Vq7zJQBsrL65fwB8a8fGG8AQDA7YKZFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwa4QUAAAAAAHBohBcAAAAAAMCh8bYRFLLg13VKOXvS3mUAAOAQnr23m71LAACg3GPmBQAAAAAAcGiEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwa4QUAAAAAAHBohBcAAAAAAMChEV44gLi4OM2ePdveZQAAAAAA4JAIL/5iEhMTFRUVpczMTHuXAgAAAABAmSC8AAAAAAAADs1i7wLKm+zsbM2YMUObN2+Wu7u7OnXqVGD/d999py+++EIpKSlydXXVHXfcoZiYGPn4+CgtLU2jR4+WJPXr10+S1KpVKw0ZMkS//PKLli5dqt9++01ms1l169ZVTEyMAgICyvwaAQAAAAAoTYQXZWzu3LnatWuXRo4cKR8fH82fP1+HDh1SaGioJCk3N1fdu3dXYGCgMjIy9Mknn2jatGl69dVXVblyZb344ov6z3/+o4kTJ8rDw0MuLi6SLoUiHTt2VI0aNZSdna2FCxdqwoQJGj9+vMxmJtgAAAAAAP66+K22DGVnZ+vbb79Vnz59FBERoZCQEA0dOlR5eXm2Nm3btlWTJk1UtWpV1a1bV/369dO2bduUnZ0ts9ksT09PSZKPj498fX3l4eEhSWrRooWaN2+ugIAAhYaGatCgQTp69KiOHTt21XqsVqsuXLhg+2RlZd3aGwAAAAAAQAkw86IMpaamKjc3V3Xq1LFt8/T0VGBgoO37wYMHtWjRIh05ckSZmZkyDEOSlJ6eruDg4Kv2ffz4cS1cuFD79+/X77//rvz8fNtxISEhRR6zfPlyLVmyxPY9LCxM48aNu6lrBAAAAACgtBFeOJDs7Gy98cYbaty4sYYNGyZvb2+lp6frjTfeUG5u7jWPHTdunPz9/fXMM8/Iz89PhmHoxRdfvOZxkZGR6tixo+27yWQqtWsBAAAAAKC08NhIGQoICJCTk5P27dtn23b+/HkdP35ckpSSkqLff/9dvXr1Uv369RUUFKSMjIwCfVgsl/KmyzMrJOn3339XSkqKHn/8cUVERCg4OLhYr1J1dnaWh4eH7ePu7l4alwkAAAAAQKli5kUZcnNzU9u2bTV37lx5eXnJ29tbCxYssM14qFy5siwWi9auXav27dvrt99+09KlSwv04e/vL5PJpJ9++kl33XWXXFxcVKFCBXl5eWndunXy8/NTenq65s2bZ49LBAAAAACg1DHzooz16dNH4eHhGjdunMaMGaPw8HDVrFlTkuTt7a3Bgwfrhx9+0AsvvKAVK1aoT58+BY6vWLGinnjiCc2fP19PP/20Pv74Y5nNZj333HM6ePCgXnzxRc2ZM6fQcQAAAAAA/FWZjMsrQgL/3+R1nynl7El7lwEAgEN49t5u9i6hWFxdXZWTk2PvMlCGGPPyhfEuf8rLmDs7O8vf3/+67Zh5AQAAAAAAHBrhBQAAAAAAcGiEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwa4QUAAAAAAHBoFnsXAMfTo3E7Wa1We5eBMlBeXr+EPzDm5QvjDQAAbhfMvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjbeNoJBZW/+rY2fS7F0GAAAO4ZU23e1dAgAA5R4zLwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjfDiL2rIkCFas2aNvcsAAAAAAOCWI7wAAAAAAAAOjfACAAAAAAA4NIu9C4CUlZWljz76SFu3bpW7u7s6d+6sH3/8UaGhoYqJiVFGRobef/997dixQ76+vurRo0ehPqKiovTUU0/pxx9/VGJiovz8/PTkk0+qRYsWdrgiAAAAAABKD+GFA5gzZ46SkpI0cuRI+fj4aNGiRTp06JBCQ0MlSdOmTdPp06cVGxsri8WiWbNmKSMjo1A/CxcuVK9evRQTE6PvvvtOEydO1IQJExQcHFzkea1Wq6xWq+27yWSSu7v7LblGAAAAAABKisdG7CwrK0sJCQnq06ePIiIiFBISosGDBys/P1+SlJKSom3btumZZ55R3bp1VbNmTQ0cOFAXL14s1FeLFi30wAMPKDAwUD169FCtWrW0du3aq557+fLliomJsX3i4uJu1WUCAAAAAFBizLywsxMnTigvL0+1a9e2bfPw8FBgYKAkKTk5WU5OTqpZs6Ztf1BQkCpUqFCor7p16xb4XqdOHR05cuSq546MjFTHjh1t300mU4mvAwAAAACAW4XwohxzdnaWs7OzvcsAAAAAAOCaeGzEzqpWrSonJyft37/ftu3ChQtKSUmRdGmWRV5eng4ePGjbn5KSoszMzEJ97du3r9D3oKCgW1Q5AAAAAABlg5kXdubu7q5WrVpp7ty58vT0tC3YaTZfypUCAwN155136qOPPtJTTz0lJycnzZ49Wy4uLoX6+uGHH1SzZk2Fh4frf//7n/bv369BgwaV9SUBAAAAAFCqCC8cQHR0tD766CONGzfO9qrUU6dO2QKKwYMHa/r06YqLi5OPj4969OihhQsXFuonKipKGzdu1McffyxfX18999xzV33TCAAAAAAAfxWEFw7A3d1dw4YNs33Pzs7WkiVL1K5dO0mSr6+vXnnllQLHtGzZslA/fn5+eu21125tsQAAAAAAlDHCCwdw6NAhJScnq3bt2rpw4YKWLFkiSbr77rvtXBkAAAAAAPZHeOEgVq1apZSUFFksFtWsWVOvv/66vL297V0WAAAAAAB2R3jhAMLCwjRu3Lib6mPRokWlVA0AAAAAAI6FV6UCAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaKx5gUL63fOgrFarvctAGXB1dVVOTo69y0AZYszLF8YbAADcLph5AQAAAAAAHBrhBQAAAAAAcGiEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwabxtBIe9vWKujp9LsXQYAAA7h9Yd72rsEAADKPWZeAAAAAAAAh0Z4AQAAAAAAHBrhBQAAAAAAcGiEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwa4YUDi4qK0pYtWyRJaWlpioqK0uHDhyVJiYmJioqKUmZmph0rBAAAAADg1rPYu4C/kqlTpyozM1MjR44s83NXrlxZH374oby8vMr83AAAAAAA2BPhxV+E2WyWr6+vvcsAAAAAAKDMEV4UYdOmTVq8eLFSU1Pl6uqqsLAwhYaGKiEhQdKlxzkkKTY2Vg0bNlR6ero++eQTbd++XSaTSfXr11dMTIyqVKkiSdq/f78+++wzHT58WLm5uQoNDVV0dLRq1qxpO+fx48c1ffp07d+/X1WqVFG/fv0K1JSWlqahQ4dq/PjxCg0NLbAvOztbzzzzjAYNGqQWLVrYtm/ZskWTJ0/Whx9+KHd391txqwAAAAAAuOUIL/7kzJkzmjRpknr37q1mzZopOztbu3fvVqtWrZSenq6srCwNHjxYkuTp6anc3Fy98cYbqlu3rl5//XWZzWYtW7ZMY8eO1YQJE2SxWJSdna1WrVqpf//+MgxDq1ev1ptvvqn33ntP7u7uys/P14QJE+Tr66s33nhDFy5c0Jw5c4pds5ubm+69916tX7++QHgRHx+v5s2bXzW4sFqtslqttu8mk4mQAwAAAADgcFiw80/OnDmjvLw8NW/eXFWqVFFISIgeeughubm5ycXFRRaLRb6+vvL19ZXFYtHGjRtlGIYGDhyokJAQBQcHa/DgwUpPT1diYqIk6Y477lDLli0VFBSk4OBg/eMf/9DFixe1a9cuSdKOHTuUkpKiIUOGKDQ0VA0aNFDPnj1vqO4HHnhAv/76q86cOSNJysjI0LZt29S2bdurHrN8+XLFxMTYPnFxcSW7aQAAAAAA3ELMvPiT0NBQRUREaMSIEWrcuLEaNWqkFi1ayNPTs8j2R44cUWpqqvr27Vtgu9Vq1YkTJyRJZ8+e1YIFC7Rr1y5lZGQoPz9fFy9eVHp6uiQpOTlZlSpVUsWKFW3H161b94bqrl27tqpXr66EhAQ99thj+v7771W5cmXVr1//qsdERkaqY8eOtu8mk+mGzgkAAAAAQFkgvPgTs9ms1157TUlJSdq+fbvWrl2rBQsWaOzYsUW2z87OVs2aNTVs2LBC+7y9vSVdekvJ+fPnFRMTI39/fzk7O+v//u//lJubW6q1t23bVl999ZUee+wxrV+/Xm3atLlmIOHs7CxnZ+dSrQEAAAAAgNLGYyNFMJlMCg8PV1RUlMaPHy+LxaItW7bIYrEoPz+/QNuwsDAdP35c3t7eCggIKPDx8PCQJCUlJenhhx/WXXfdperVq8tisej333+39REUFKRTp07ZHvmQpL17995w3ffff79OnjypL774QseOHVOrVq1KeAcAAAAAAHAchBd/sm/fPi1btkwHDhxQenq6Nm/erHPnzikoKEj+/v46evSoUlJSdO7cOeXm5ur++++Xt7e33n77be3evVtpaWlKTEzUzJkzderUKUlStWrV9N133+nYsWPat2+fJk+eLBcXF9s5IyIiVK1aNU2dOlWHDx/W7t27tWDBghuu3dPTU82bN9fcuXPVuHFjVapUqdTuCwAAAAAA9kJ48Sfu7u7avXu33nzzTT333HNasGCB+vbtqyZNmqhdu3YKDAzUK6+8oqeeekpJSUlydXXV6NGjValSJU2YMEHPP/+8pk+fLqvVantzx8CBA5WZmamXX35ZU6ZM0cMPPywfHx/bOc1ms0aMGKGLFy/qn//8p6ZPn64ePXqUqP62bdsqNzdXbdq0KZX7AQAAAACAvZkMwzDsXQRKz3fffac5c+bogw8+kMVSsiVNXl/xqY6eSivlygAA+Gt6/eEbewOYvbi6uionJ8feZaAMMeblC+Nd/pSXMXd2dpa/v/9127Fg520iJydHZ86c0YoVK9SuXbsSBxcAAAAAADgafsO9TaxcuVLLly9X/fr1FRkZae9yAAAAAAAoNYQXt4moqChFRUXZuwwAAAAAAEodC3YCAAAAAACHRngBAAAAAAAcGo+NoJBBf+8gq9Vq7zJQBsrLCsb4A2NevjDeAADgdsHMCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBD41WpKGTit1/ocHqavcsAAMAhvB3Z294lAABQ7jHzAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsHtGjRIr300kv2LgMAAAAAAIfAq1IdUOfOnfXwww/buwwAAAAAABwC4cVNys3NlcVSurfRzc1Nbm5updonAAAAAAB/VYQXf5KVlaWPPvpIW7dulbu7uzp37qwff/xRoaGhiomJ0ZAhQ9SmTRulpqZq69atatasmYYMGaJNmzZp0aJFSk1NlZ+fnzp06KBOnTpJktauXauvv/5a//nPfyRJW7Zs0YQJE/TUU0/pwQcflCSNGTNGderUUY8ePbRo0SJt3bpVb7/9tiRp6tSpyszMVHh4uFavXq3c3Fzde++9iomJsQUnZ86c0fTp07Vz5075+vqqZ8+e+uyzz/TII4/o0UcftcOdBAAAAACgdBBe/MmcOXOUlJSkkSNHysfHR4sWLdKhQ4cUGhpqa7Nq1Sp169ZN3bp1kyQdPHhQ7777rp544gnde++92rt3r2bMmCEvLy+1bt1aDRo00KxZs3Tu3Dl5e3tr165d8vLy0q5du/Tggw8qNzdXe/fuVZcuXa5aV2Jiovz8/BQbG6vU1FRNnDhRoaGhateunSRpypQp+v333xUXFycnJyd98sknysjIuKX3CgAAAACAssCCnVfIyspSQkKC+vTpo4iICIWEhGjw4MHKz88v0O6OO+5Qp06dFBAQoICAAK1evVoRERHq1q2bAgMD1bp1a3Xo0EGff/65JKl69ery9PTUrl27JEm7du1Sp06dbN/379+v3Nxc1atX76q1eXp6asCAAQoKClLTpk3VpEkT7dy5U5KUnJysHTt26JlnnlGdOnVUs2ZNDRw4UBcvXrzm9VqtVl24cMH2ycrKKvG9AwAAAADgViG8uMKJEyeUl5en2rVr27Z5eHgoMDCwQLtatWoV+J6cnFwoeKhXr56OHz+u/Px8mUwm1a9fX4mJicrMzNSxY8f04IMPymq1Kjk5Wbt27VLt2rXl6up61dqCg4NlNv8xXH5+fraZFSkpKXJyclJYWJhtf0BAgCpUqHDN612+fLliYmJsn7i4uGu2BwAAAADAHnhspASuFTJcTYMGDfTNN99o9+7dCgsLk4eHhy3Q2L17t+rXr3/N452cnAp8N5lMMgzjhuu4UmRkpDp27FigTwAAAAAAHA0zL65QtWpVOTk5af/+/bZtFy5cUEpKyjWPCwoKUlJSUoFtSUlJCgwMtM2WaNCggY4dO6ZNmzapQYMGkqSGDRtqx44d2rNnjxo2bFjiugMDA5WXl6fDhw/btqWmpiozM/Oaxzk7O8vDw8P2cXd3L3ENAAAAAADcKoQXV3B3d1erVq00d+5c7dy5U7/99pvef//9Ao9rFKVjx47asWOHlixZopSUFMXHx2vt2rW2t41IUo0aNVShQgX973//swUVDRs21NatW6+73sX1BAUFKSIiQh988IH279+vQ4cO6YMPPpCLiwuzKQAAAAAAf3k8NvIn0dHR+uijjzRu3Djbq1JPnTolFxeXqx5Ts2ZNPf/881q0aJGWLl0qPz8/RUVFqXXr1rY2JpNJ4eHh2rZtm8LDwyVJISEhcnd3V2BgoNzc3G6q7qFDh2r69OmKjY21vSr12LFjcnZ2vql+AQAAAACwN5Nxswsn3Oays7M1cOBA9e3bV23btrV3OcV26tQpDRo0SP/6178UERFxQ8f+38I5OpyedosqAwDgr+XtyN72LqFYXF1dlZOTY+8yUIYY8/KF8S5/ysuYOzs7y9/f/7rtmHnxJ4cOHVJycrJq166tCxcuaMmSJZKku+++286VXdvOnTuVnZ2tkJAQnTlzRnPnzpW/v/91FwIFAAAAAMDREV4UYdWqVUpJSZHFYlHNmjX1+uuvy9vb295lXVNubq4+++wznThxQu7u7qpbt66GDRsmi4UhBgAAAAD8tfGb7Z+EhYVp3Lhx9i7jht15552688477V0GAAAAAACljreNAAAAAAAAh0Z4AQAAAAAAHBrhBQAAAAAAcGiseYFChrd9RFar1d5loAyUl9cv4Q+MefnCeAMAgNsFMy8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQ+NtIyhk3FerdTDthL3LAADAIUzp0dfeJQAAUO4x8wIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOjfACAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQyO8sLO4uDjNnj3b3mUAAAAAAOCwCC/sJDc316H7AwAAAADAUVjsXYAjyM7O1owZM7R582a5u7urU6dO+umnnxQaGqqYmBhFRUVpxIgRatasme2YmJgYxcTEqHXr1pKkuXPnauvWrTp16pR8fX113333qVu3brJYLt3iRYsWaevWrerQoYOWLVum9PR0tWzZUrt27dKuXbv0xRdfSJKmTJmiKlWq6OjRo5o7d652794tNzc3NWrUSNHR0fL29pZ0acZG9erV5eTkpO+//14hISEaNWqUFi9erPXr1ysjI0NeXl5q3ry5+vfvX7Y3FAAAAACAUkR4oUvBw65duzRy5Ej5+Pho/vz5OnTokEJDQ4vdh7u7uwYPHiw/Pz8dPXpUH3zwgdzd3dWlSxdbm9TUVG3evFkjRoyQ2WyWv7+/jh8/rurVq6t79+6SJG9vb2VmZur1119X27ZtFR0drYsXL2revHl69913FRsba+svISFBDz74oMaMGSNJ2rx5s9asWaPhw4erevXqOnv2rA4fPlwq9wgAAAAAAHsp9+FFdna2vv32Wz377LOKiIiQJA0dOlQDBw68oX66du1q+3OVKlWUkpKijRs3FggvcnNzNXToUNvsCUmyWCxydXWVr6+vbdvatWsVFhamXr162bYNGjRIgwYNUkpKigIDAyVJ1apV05NPPmlr8/PPP8vX11cRERGyWCyqXLmyateufdWarVarrFar7bvJZJK7u/sNXTcAAAAAALdauQ8vUlNTlZubqzp16ti2eXp62gKC4tq4caO+/PJLpaamKjs7W/n5+YWCAH9//wLBxdUcOXJEO3fuVJ8+fQrtO3HihK22sLCwAvtatGihNWvW6Nlnn1Xjxo111113qWnTpnJyciryPMuXL9eSJUts38PCwjRu3Ljr1gcAAAAAQFkq9+FFcZhMpkLb8vLybH/eu3ev3nvvPUVFRalx48by8PDQhg0btHr16gLHuLq6Fut82dnZatq0aYFZFZddOUPDzc2twL7KlStr0qRJ2r59u7Zv364ZM2bo888/V1xcnG3tjStFRkaqY8eO17xOAAAAAADsrdyHFwEBAXJyctK+fftUuXJlSdL58+d1/PhxNWjQQNKldSjOnDljO+b48ePKycmxfU9KSpK/v78ef/xx27b09PRind9isSg/P7/AtrCwMG3evFn+/v5XnTVxNS4uLrr77rt19913q0OHDho+fLiOHj2qmjVrFmrr7OwsZ2fnG+ofAAAAAICyVu7DCzc3N7Vt21Zz586Vl5eXvL29tWDBggKzEBo2bKi1a9eqbt26ys/P17x58wqECtWqVVN6ero2bNigWrVq6eeff9aWLVuKdX5/f3/t27dPaWlpcnNzk6enpx566CF98803mjRpkjp37ixPT0+lpqZq48aNGjhwoMzmot9wGx8fr/z8fNWuXVuurq767rvv5OLiIn9//5u7SQAAAAAA2FG5Dy8kqU+fPsrOzta4cePk5uamTp066cKFC7b9ffv21fvvv69Ro0apYsWKiomJ0cGDB2377777bj366KOaOXOmrFar7rrrLnXt2lWLFy++7rk7deqkqVOn6oUXXtDFixdtr0odM2aM5s2bpzfeeENWq1X+/v5q3LjxNR/t8PDw0MqVKzVnzhzl5+crJCREL7/8sry8vG7uBgEAAAAAYEcmwzAMexfhiOLi4hQaGqqYmBh7l1LmRsydpYNpJ+xdBgAADmFKj772LqFYXF1dCzzWitsfY16+MN7lT3kZc2dn52I9LVD08wcAAAAAAAAOgvACAAAAAAA4NNa8uIq4uDh7lwAAAAAAAMTMCwAAAAAA4OAILwAAAAAAgEMjvAAAAAAAAA6NNS9QyMsPdZTVarV3GSgD5eX1S/gDY16+MN4AAOB2wcwLAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NB42wgKGbPqcx04ccLeZQAAcNM+io6xdwkAAKAUMPMCAAAAAAA4NMILAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAIL66QmJioqKgoZWZm2rsUDRkyRGvWrLF3GQAAAAAA2B3hhZ3Fx8crJiam0PY333xT7dq1K/uCAAAAAABwMBZ7F4CieXt727sEAAAAAAAcwm0dXuTn52vlypVat26dzp49q8DAQHXt2lUtWrSQJP3888+aM2eO0tPTVbduXbVq1arA8YsWLdLWrVv19ttv27atWbNGX3zxhaZOnWrb9u2332r16tVKTU2Vp6enmjdvrgEDBkiSVq9erfXr1ystLU2enp5q2rSpnnzySbm5uSkxMVHTpk2TJEVFRUmSunXrpqioKA0ZMkSPPPKIHn30UUlSenq6Zs6cqR07dshsNqtx48bq37+/fH19C9TaqVMnLVy4UOfPn1eTJk30zDPPyN3d/dbcYAAAAAAAysBtHV6sWLFC33//vZ5++mlVq1ZNu3fv1uTJk+Xt7a0qVaroP//5jx566CG1a9dOBw4c0CeffHLD5/jvf/+rOXPmqHfv3rrzzjt14cIFJSUl2fabTCb169dPVapUUVpammbMmKG5c+fqqaeeUr169RQTE6OFCxdq0qRJkiQ3N7dC58jPz9f48ePl5uam0aNHKy8vTx9//LEmTpyouLg4W7sTJ05oy5Ytevnll5WZmal3331XK1asUM+ePW/85gEAAAAA4CBu2/DCarVq+fLl+te//qW6detKkqpWrao9e/bo66+/lr+/v6pWraq+fftKkgIDA3X06FGtXLnyhs6zdOlSderUSY888ohtW+3atW1/vjxzQpKqVKmiHj166KOPPtJTTz0li8UiDw8PmUwm2wyKouzcuVNHjx7VlClTVLlyZUnS0KFD9cILL2j//v228xmGoSFDhthmWrRs2VI7d+685j2yWq227yaTiVkaAAAAAACHc9uGF6mpqcrJydGYMWMKbM/NzVVYWJguXrxYIGSQZAs5iisjI0NnzpzRHXfccdU227dv14oVK5ScnKysrCzl5eXJarUqJydHrq6uxTrPsWPHVKlSJVtwIUnBwcGqUKGCkpOTbdfh7+9fIHzw9fVVRkbGVftdvny5lixZYvseFhamcePGFasmAAAAAADKym0bXmRnZ0uSXn31VVWsWLHAPovFolmzZl23D7O58MtY8vLybH92cXG55vFpaWkaN26c2rdvrx49esjT01N79uzR9OnTlZubW+zworicnJwKfDeZTDIM46rtIyMj1bFjxwLtAQAAAABwNLdteBEcHCxnZ2elp6erQYMGhfYHBQXpp59+KrBt3759Bb57e3vr7NmzMgzD9ov94cOHbfvd3d3l7++vnTt3Fjn74uDBg8rPz1ffvn1tQcgPP/xQoI3FYlF+fv51r+XUqVNKT0+3zb44duyYMjMzFRwcfM1jr8XZ2VnOzs4lPh4AAAAAgLJw24YX7u7u6tSpk+bMmaP8/HyFh4fbFtN0d3fXgw8+qNWrV+vTTz/VAw88oIMHDyo+Pr5AHw0aNNC5c+e0cuVKtWjRQr/88ou2bdsmDw8PW5snnnhCH330kby9vdWkSRNlZWUpKSlJDz/8sAICApSXl6e1a9eqadOmSkpK0tdff13gHP7+/srOztaOHTtUo0YNubq6FpqRERERoZCQEE2ePFnR0dHKz8/XjBkz1KBBA9WqVeuW3UMAAAAAABzBbRteSFL37t3l7e2tFStW6MSJE6pQoYLCwsIUGRmpypUr68UXX9ScOXO0du1a1a5dWz179tT7779vOz44OFgDBgzQ8uXLtXTpUjVv3lydOnXSN998Y2vTunVrWa1WrVmzRp9++qm8vb3VvHlzSVJoaKj69u2rlStXav78+apfv7569eqlKVOm2I6vV6+e2rdvr4kTJ+r333+3vSr1SiaTSSNHjtTMmTMVGxtb4FWpAAAAAADc7kzGtRZFuIazZ8/q22+/1cGDB5WVlVXo0QeTyaRRo0aVSpEoW8NmfqwDJ07YuwwAAG7aR9Ex9i6hzLi6uionJ8feZaAMMeblC+Nd/pSXMXd2dpa/v/9125Vo5sWRI0cUFxenixcv2l4xGhwcrAsXLuj06dOqWrWqKlWqVJKuAQAAAAAACihReDF//ny5ubnp7bfflouLi55++mn169dPd9xxh3744QfNmDFDw4YNK+1aAQAAAABAOVT4XaDFsGfPHrVv316VK1e2vUXj8mMjf/vb33Tffffp008/Lb0qAQAAAABAuVWi8MIwDPn4+EiSPDw8ZDabdf78edv+kJAQHTx4sHQqBAAAAAAA5VqJwosqVaooLS3tUgdms6pUqaIdO3bY9iclJalChQqlUyEAAAAAACjXSrTmRaNGjbRp0yb17NlTktS+fXt9+umnSktLk2EYSkxMVKdOnUq1UAAAAAAAUD6V6FWp58+fV1pamkJCQmSxWGQYhpYtW6bNmzfLbDbrrrvu0uOPPy6LpUTZCOzs5MmTslqt9i4DZaC8vH4Jf2DMyxfGu3xhvMsfxrx8YbzLn/Iy5sV9VWqJwgvc3ggvyo/y8h9E/IExL18Y7/KF8S5/GPPyhfEuf8rLmBc3vCjRmhdXc/bsWaWnp5dmlwAAAAAAoJwr0XMdeXl5Wrp0qQ4ePKhGjRrpkUce0bRp05SQkCBJqlmzpkaOHCk/P79SLRYAAAAAAJQ/JQovPvvsM61atUp+fn769ddfdfToUW3dulU9e/ZUTk6OVq1apQULFmjQoEGlXS8AAAAAAChnShRe/PDDD/rb3/6m4cOHa926dfroo4/Ut29fPfroo5Ikq9WqjRs3lmqhAAAAAACgfCpReHH69Gk1btxYknTXXXdJkqpXr27bX716dZ05c6YUyoM9/GvZSu0/nmrvMgAAuGmf/KO/vUsAAACloEQLdubn58vZ2VmSbP9rNv/RldlsVn5+fimUBwAAAAAAyrsSzbyQpD179igvL0/Z2dmSpO3bt+vUqVOSpKSkpNKpDgAAAAAAlHslDi++/vprff3117bvK1euLJWCAAAAAAAArlSi8GLKlCmlXQcAAAAAAECRShRe+Pv7l3YdAAAAAAAARSrxYyOSlJ2drV27dik9PV2SVLlyZTVo0EBubm6lUhwAAAAAAECJw4svv/xSCxYssC3YeZmbm5t69uypDh063HRxji4xMVGjR4/WrFmzVKFChWIdM3XqVGVmZmrkyJG3uDoAAAAAAG4PJQovEhISNHv2bNWtW1cPP/ywgoKCJEnJycn68ssvNWvWLHl4eKhly5alWqyjqVevnj788EN5eHgU+5h+/frJMIxitSXoAAAAAACghOHF6tWrVb9+fY0aNUpms9m2vUaNGmrRooVef/11rVq16rYPLywWi3x9fW/omBsJOoorNzdXFstNPQEEAAAAAIDDKtFvvCkpKerTp0+B4OIys9msFi1a6NNPP73p4spaXFycQkJCZDablZCQIIvFou7du+u+++7TzJkztWnTJvn4+Kh///5q0qRJocdG4uPjNXv2bA0fPlxz5sxRenq6wsPDNXjwYPn5+UkqPJti06ZNWrx4sVJTU+Xq6qqwsDC99NJL+vzzz5WQkCBJioqKkiTFxsbK399fQ4cO1fDhw/XVV19p//796tOnjz777DMNGjRILVq0sF3Pli1bNHnyZH344Ydyd3cv47sJAAAAAEDpKFF44eHhoZMnT151/8mTJ2/JDIOykJCQoM6dO2vs2LHauHGjZsyYoa1bt+qee+5RZGSk1qxZoylTpmjatGlFHp+Tk6NVq1Zp6NChMplMmjx5sj799FMNGzasUNszZ85o0qRJ6t27t5o1a6bs7Gzt3r1bktS5c2clJycrKytLgwcPliR5enrq9OnTkqR58+apb9++CgsLk7Ozs44cOaL169cXCC/i4+PVvHnzqwYXVqtVVqvV9t1kMhFyAAAAAAAcTonCi7vuuktr165VzZo19fe//73Avo0bN2rt2rW6//77S6XAslajRg117dpVkhQZGakVK1bIy8tL7dq1kyR169ZN//3vf3XkyJEij8/Ly9PTTz+tgIAASVKHDh20ZMmSItueOXNGeXl5at68ue31syEhIbb9Li4uslqtRT6a8uijj6p58+a27w888IBee+01nTlzRn5+fsrIyNC2bdv0r3/966rXunz58gK1hYWFady4cVdtDwAAAACAPZQovOjdu7f27t2r9957T5988omqVasmSTp+/LjOnj2roKAg9erVq1QLLStXhgdms1leXl4Ftvn4+EiSzp07V+QsBVdXV1twIUl+fn46d+5ckecKDQ1VRESERowYocaNG6tRo0Zq0aKFPD09r1tnzZo1C3yvXbu2qlevroSEBD322GP6/vvvVblyZdWvX/+qfURGRqpjx4627yaT6brnBQAAAACgrJUovPD29ta4ceO0bt06bdu2Tenp6ZIu/eLfpUsXtWvXTi4uLqVaaFn588KXJpNJTk5OBb5LUn5+fpHHX9n2squ9XcRsNuu1115TUlKStm/frrVr12rBggUaO3asqlSpcs063dzcCm1r27atvvrqKz322GNav3692rRpc81AwtnZWc7Oztc8DwAAAAAA9lbiV1S4uLjokUce0SOPPFKa9ZQ7JpNJ4eHhCg8PV7du3TR48GBt2bJFHTt2lMViuWpIUpT7779fc+fO1RdffKFjx46pVatWt7ByAAAAAADKBu/XtKN9+/Zpx44daty4sXx8fLRv3z6dO3dOQUFBkiR/f3/9+uuvSklJkaen53UXQfX09FTz5s01d+5cNW7cWJUqVSqLywAAAAAA4JYqUXgxdOjQ67a5/KYNXJ27u7t2796tL774QllZWapcubL69u2rJk2aSJLatWunXbt26ZVXXlF2drbtVanX0rZtW/3vf/9TmzZtyuISAAAAAAC45UzG1RZkuIbu3bsrPDxcVatWvWa7y6/4RNn57rvvNGfOHH3wwQeF1u8oroEfzND+46mlXBkAAGXvk3/0t3cJZcbV1VU5OTn2LgNliDEvXxjv8qe8jLmzs/N1/5FeuonHRtq3b6/77ruvpIejlOXk5OjMmTNasWKF2rVrV+LgAgAAAAAAR8NvuLeJlStXavny5apfv74iIyPtXQ4AAAAAAKWmxOFFcnKy9uzZI4vFIjc3N/n6+srT07M0a8MNiIqKUlRUlL3LAAAAAACg1JU4vFi2bJmWLVtWYJu3t7ciIiLUpUsX1ahR46aLAwAAAAAAKFF4ERsbK0nKy8tTbm6uMjMzdfbsWR07dkzbtm3T1q1bNXr0aNWsWbNUiwUAAAAAAOVPicKLBg0aXHVfVlaWXnvtNS1atEivvPJKiQsDAAAAAACQbsGCne7u7uratas2btxY2l2jjIx5vIusVqu9y0AZKC+vX8IfGPPyhfEGAAC3i1vytpF7771X9957763oGgAAAAAAlDPmkhy0fft2zZ8//6r7P/vsM+3cubPERQEAAAAAAFxWovBi6dKlOnXq1FX3nz59WkuXLi1xUQAAAAAAAJeVKLw4evSo6tSpc9X9tWrV0tGjR0tcFAAAAAAAwGUlCi9yc3OVm5t7zf0sEAYAAAAAAEpDiRbsrF69urZs2aKOHTsW2mcYhjZv3qzg4OCbLg728fKC5dqbkmrvMgAAuGmLnn3K3iUAAIBSUKKZFx06dFBSUpLeeecdHT16VHl5ecrLy9ORI0f0zjvvaO/everQoUNp1woAAAAAAMqhEs28aNmypU6cOKGlS5dq8+bNMpsvZSD5+fkymUzq2rWrWrduXZp1AgAAAACAcqpE4YUkPfHEE7r//vu1ZcsWpaWlSZKqVq2qe+65RwEBAaVWIAAAAAAAKN9KHF5IUkBAgDp37lxatQAAAAAAABRSojUvAAAAAAAAygrhBQAAAAAAcGiEF7exIUOGaM2aNfYuAwAAAACAm0J4AQAAAAAAHBrhxTXk5ubauwQAAAAAAMq9m3rbyF9NXFycqlevLkn67rvvZLFY1L59e3Xv3l0mk0lDhgxRmzZtlJqaqq1bt6pZs2YaMmSINm3apEWLFik1NVV+fn7q0KGDOnXqZOv38nHHjh3TTz/9JA8PD0VGRqpDhw62Nunp6Zo5c6Z27Nghs9msxo0bq3///vL19ZUkHT58WHPmzNGBAwdkMpkUEBCgf/zjH6pVq5Ykac+ePZo/f74OHDggb29v3XPPPerVq5fc3NwkSRkZGXr//fe1Y8cO+fr6qkePHmV0VwEAAAAAuLVKFF6MHj36um1MJpNGjRpVku5vqYSEBLVt21ZvvvmmDhw4oA8//FCVK1dWu3btJEmrVq1St27d1K1bN0nSwYMH9e677+qJJ57Qvffeq71792rGjBny8vJS69atbf2uWrVKkZGRioqK0q+//qrZs2crMDBQjRo1Un5+vsaPHy83NzeNHj1aeXl5+vjjjzVx4kTFxcVJkiZPnqzQ0FA99dRTMpvNOnz4sJycnCRJqampeuONN9SjRw8NGjRI586d08yZMzVz5kwNHjxYkjRt2jSdPn1asbGxslgsmjVrljIyMq55L6xWq6xWq+27yWSSu7t7ad1qAAAAAABKRYnCi127dqlixYry8PAo7XpuuUqVKik6Olomk0mBgYE6evSo1qxZYwsv7rjjjgKzKt577z1FRETYwozAwEAdO3ZMn3/+eYHwol69enrsscdsbZKSkrRmzRo1atRIO3fu1NGjRzVlyhRVrlxZkjR06FC98MIL2r9/v2rXrq309HR16tRJQUFBkqRq1arZ+l6xYoXuv/9+Pfroo7Z9/fr1U2xsrJ566imlp6dr27ZtGjt2rGrXri1JGjhwoJ5//vlr3ovly5dryZIltu9hYWEaN25cSW4rAAAAAAC3TIkfG+ndu7fuu+++0qylTNSpU0cmk8n2vW7dulq9erXy8/MlyfaYxmXJycm6++67C2yrV6+e1qxZo/z8fJnNZls/V6pbt67tTR/Hjh1TpUqVbMGFJAUHB6tChQpKTk5W7dq19eijj+qDDz7Q999/r4iICLVo0UIBAQGSpCNHjujIkSP6/vvvC5zDMAylpaXp+PHjcnJyUs2aNW37goKCVKFChWvei8jISHXs2NH2/cr7AgAAAACAoyhXa14Uh6urq13OGxUVpfvuu08///yzfvnlFy1atEjDhw9Xs2bNlJ2drXbt2umRRx4pdFzlypV1/PjxEp3T2dlZzs7ON1s6AAAAAAC3VLkLL/bv31/g+759+xQQEGCbQfFnQUFBSkpKKrAtKSlJgYGBBY7Zt29fgTZ79+5VcHCwpEuzLE6dOqX09HTb7Itjx44pMzPT1ka69LhJYGCgOnbsqIkTJ2r9+vVq1qyZwsLClJycbJuJUVSNeXl5OnjwoO2xkZSUFGVmZhbnlgAAAAAA4NDK3atS09PTNWfOHKWkpOh///ufvvzyyyJnNFzWsWNH7dixQ0uWLFFKSori4+O1du3aAutiSJfeBrJy5UqlpKRo7dq12rRpkx5++GFJUkREhEJCQjR58mQdPHhQ+/fv15QpU9SgQQPVqlVLFy9e1Mcff6zExESdPHlSe/bs0YEDB2zrX3Tp0kVJSUn6+OOPdfjwYR0/flxbt27Vxx9/LOlS6HHnnXfqo48+0r59+3Tw4EFNnz5dLi4ut+guAgAAAABQdko88+Lnn3/W2bNnr9nmyvUUHEXLli118eJFvfrqqzKbzXrkkUdsi3UWpWbNmnr++ee1aNEiLV26VH5+foqKiiqwWKckderUSQcOHNCSJUvk7u6uvn376s4775R0aS2JkSNHaubMmYqNjS3wqlRJMpvN+v333zVlyhRlZGTIy8tLzZs3V1RUlCSpRo0aiouL04IFCzRq1CgZhqGAgAD97W9/s51/8ODBmj59uuLi4uTj46MePXpo4cKFpXvzAAAAAACwA5NhGMaNHtS9e/ditXO0X57j4uIUGhqqmJiYUu13yJAheuSRR2xvA/mr6z/5Q+1NSbV3GQAA3LRFzz5l7xLKjKurq3JycuxdBsoQY16+MN7lT3kZc2dnZ/n7+1+3XYlmXkyZMqUkhwEAAAAAANywEoUXxUlFAAAAAAAASsNNvW0kOztbu3btUnp6uqRLr+1s0KCB3NzcSqW40hYXF3dL+p06deot6RcAAAAAANxEePHll19qwYIFys7OLrDdzc1NPXv2VIcOHW66OAAAAAAAgBKFFwkJCZo9e7bq1q2rhx9+2PZKz+TkZH355ZeaNWuWPDw81LJly1ItFgAAAAAAlD8letvISy+9pAoVKmjUqFEym80F9uXn5+v1119XZmam3n777VIrFGXn5MmTslqt9i4DZaC8rGCMPzDm5QvjXb4w3uUPY16+MN7lT3kZ8+K+bcR83RZFSElJUYsWLQoFF5JkNpvVokULpaSklKRrAAAAAACAAkoUXnh4eOjkyZNX3X/y5El5eHiUuCgAAAAAAIDLShRe3HXXXVq7dq02bNhQaN/GjRu1du1aNW3a9KaLAwAAAAAAKNGCnb1799bevXv13nvv6ZNPPlG1atUkScePH9fZs2cVFBSkXr16lWqhAAAAAACgfCrRgp2SdPHiRa1bt07btm1Tenq6JKly5cpq0qSJ2rVrJxcXl1ItFGWHBTvLj/KyCBD+wJiXL4x3+cJ4lz+MefnCeJc/5WXMi7tgZ7HDi127dik4OFje3t43XRwcG+FF+VFe/oOIPzDm5QvjXb4w3uUPY16+MN7lT3kZ8+KGF8V+bGT06NF69tlndd99991UYXB8z3+6TEnJx+1dBgAAN23li/+wdwkAAKAUlGjBTgAAAAAAgLJCeAEAAAAAABwa4QUAAAAAAHBoN/Sq1MmTJ2vy5MnFamsymbRgwYISFQUAAAAAAHDZDYUXjRo1UrVq1W5VLQAAAAAAAIXcUHjRqlUr3jZyDYZh6MMPP9SmTZuUmZmp8ePHKzQ01N5lAQAAAADwl3ZD4QWu7ZdfflF8fLzi4uJUtWpVeXl52bskAAAAAAD+8ggviik3N1cWy7Vv14kTJ+Tn56d69eqV+DyGYSg/P19OTk4l7gMAAAAAgNsJ4cVVxMXFqXr16nJyctL333+vkJAQ9evXT3PnztXu3bvl5uamRo0aKTo6Wt7e3po6daoSEhIkSVFRUfL399fUqVNltVr16aefauPGjcrKylLNmjUVHR2t2rVrS5ISExM1evRovfrqq1qwYIGOHj2q1157TYsXL1ZISIjMZrMSEhJksVjUvXt33XfffZo5c6Y2bdokHx8f9e/fX02aNJEknT9/XjNnztSvv/6q7OxsVapUSZGRkWrTpo3d7iMAAAAAADer2OHFwoULb2UdDikhIUEPPvigxowZo8zMTL3++utq27atoqOjdfHiRc2bN0/vvvuuYmNj1a9fP1WtWlXffPON3nzzTZnNl95CO3fuXG3evFlDhgyRv7+/Vq5cqTfeeEOTJ0+Wp6en7Vzz589Xnz59VKVKFdv2hIQEde7cWWPHjtXGjRs1Y8YMbd26Vffcc48iIyO1Zs0aTZkyRdOmTZOrq6sWLlyoY8eO6Z///Ke8vLyUmpqqixcv2uXeAQAAAABQWsz2LsCRVatWTU8++aQCAwO1fft2hYWFqVevXgoKClJYWJgGDRqkxMREpaSkyMPDQ+7u7jKbzfL19ZW3t7eys7P13//+V3369FGTJk0UHBysZ555Ri4uLvr2228LnCsqKkqNGjVSQECALbyoUaOGunbtqmrVqikyMlLOzs7y8vJSu3btVK1aNXXr1k2///67jhw5IklKT09XaGioatWqpSpVqqhRo0a6++67r3p9VqtVFy5csH2ysrJu3c0EAAAAAKCEeGzkGsLCwmx/PnLkiHbu3Kk+ffoUanfixAkFBgYWuT0vL6/AGhgWi0W1a9fWsWPHCrStVatWoeNDQkJsfzabzfLy8iqwzcfHR5J07tw5SdKDDz6o//znPzp06JAaN26se+6555rrbyxfvlxLliwpcL3jxo27ansAAAAAAOyB8OIa3NzcbH/Ozs5W06ZN9eSTTxZq5+vre9PncnV1LbTtzwuEmkymAgt5mkwmSVJ+fr4kqUmTJpo2bZp+/vlnbd++Xa+//roeeugh9e3bt8hzRkZGqmPHjoX6AwAAAADAkfDYSDGFhYXp2LFj8vf3V0BAQIHPlSHHlapWrSqLxaKkpCTbttzcXB04cEDBwcG3pE5vb2+1bt1aw4YNU0xMjL755purtnV2dpaHh4ft4+7ufktqAgAAAADgZhBeFNNDDz2k8+fPa9KkSdq/f79SU1P1yy+/aNq0abaZD3/m5uamBx98UJ9++ql++eUXHTt2TB988IFycnLUtm3bUq9x4cKF2rp1q1JTU/Xbb7/pp59+UlBQUKmfBwAAAACAssRjI8VUsWJFjRkzRvPmzdMbb7whq9Uqf39/NW7c+JqPW/Tq1Uv5+fmaPHmysrOzVbNmTf3f//1fgTeNlBaLxaL58+fr5MmTcnFxUXh4uIYPH17q5wEAAAAAoCyZDMMw7F0EHMuT73ygpOTj9i4DAICbtvLFf9i7hDLj6uqqnJwce5eBMsSYly+Md/lTXsbc2dlZ/v7+123HYyMAAAAAAMChEV4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAoRFeAAAAAAAAh2axdwFwPO/2eVxWq9XeZaAMlJfXL+EPjHn5wngDAIDbBTMvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEPjbSMo5NmZS7Xn2HF7lwEAwE374tVn7F0CAAAoBcy8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wosbFBcXp9mzZ9/y86SlpSkqKkqHDx++5ecCAAAAAMCRWexdAIpWuXJlffjhh/Ly8rJ3KQAAAAAA2BXhRRnLz8+XJJnN1570Yjab5evrWwYVAQAAAADg2G6b8CIuLk4hISEym81KSEiQxWJR9+7ddd9992nmzJnatGmTfHx81L9/fzVp0kSStGvXLn366ac6cuSIPD091apVK/Xo0UNOTk6SpOzsbM2YMUObN2+Wu7u7OnXqVOi8VqtVn332mTZs2KALFy6oevXq6t27txo2bChJio+P1+zZszV06FDNmzdPx48f13vvvafRo0frgQceUGpqqjZt2qQKFSqoa9euateunaRLj40MHTpU48ePV2hoqKZOnaqEhIRC54+NjVXDhg2vWwcAAAAAAH9Vt014IUkJCQnq3Lmzxo4dq40bN2rGjBnaunWr7rnnHkVGRmrNmjWaMmWKpk2bpszMTL355ptq1aqVhg4dquTkZH3wwQdydnZWVFSUJGnu3LnatWuXRo4cKR8fH82fP1+HDh1SaGio7Zwff/yxkpOTNXz4cPn5+WnLli0aO3asJkyYoGrVqkmScnJytHLlSg0cOFBeXl7y8fGRJK1evVrdu3fX448/rk2bNumjjz5SgwYNFBgYWOja+vXrp969e9u+r1ixQhs2bFBQUFCx6wAAAAAA4K/otlqws0aNGuratauqVaumyMhIOTs7y8vLS+3atVO1atXUrVs3/f777zpy5Ii++uorVapUSQMGDFBQUJCaNWumqKgorV69Wvn5+crOzta3336rPn36KCIiQiEhIRo6dKjy8vJs50tPT1d8fLyef/551a9fXwEBAercubPCw8O1fv16W7u8vDwNGDBA9erVU2BgoFxdXSVJTZo00UMPPaSAgAB16dJF3t7e2rlzZ5HX5uHhIV9fX/n6+iopKUlff/21XnzxRfn6+ha7jj+zWq26cOGC7ZOVlVVKIwEAAAAAQOm5rWZehISE2P5sNpvl5eVVYNvlGQ/nzp1TcnKy6tatK5PJZNtfr149ZWdn6/Tp0zp//rxyc3NVp04d235PT88CsyKOHj2q/Px8PffccwXqyM3Nlaenp+27xWJRjRo1CtV75TaTySRfX1+dO3fumtd46NAhTZkyRQMGDFB4ePgN1fFny5cv15IlS2zfw8LCNG7cuGueHwAAAACAsnZbhRcWS8HLMZlMtvUrLn+X/lg082ZlZ2fLbDZr3LhxhRbgdHNzs/3ZxcWlQEhy2ZW1XXat2s6ePavx48erbdu2atu27Q3X8WeRkZHq2LGj7XtRNQIAAAAAYG+3VXhxI4KCgrR582YZhmH7pT0pKUnu7u6qWLGiPD095eTkpH379qly5cqSpPPnz+v48eNq0KCBJCk0NFT5+fnKyMhQ/fr1b2m9Fy9e1Pjx4xUYGKjo6OgC+0pah7Ozs5ydnUu7VAAAAAAAStVttebFjXjooYd06tQpzZw5U8nJydq6dasWLVqkRx99VGazWW5ubmrbtq3mzp2rnTt36ujRo5o2bVqB2QmBgYG67777NGXKFG3evFlpaWnav3+/li9frp9//rlU6/3www916tQp9evXT+fOndPZs2d19uxZ5ebmlmkdAAAAAACUtXI786JixYp69dVX9emnn+qll16Sp6en2rZtq65du9ra9OnTR9nZ2Ro3bpzc3NzUqVMnXbhwoUA/gwcP1rJly/TJJ5/o9OnT8vb2Vp06ddS0adNSrXf37t06c+aMXnjhhQLbL78qtazqAAAAAACgrJkMwzDsXQQcS49x07Xn2HF7lwEAwE374tVn7F1CmXF1dVVOTo69y0AZYszLF8a7/CkvY+7s7Cx/f//rtiu3j40AAAAAAIC/BsILAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NAs9i4Ajmdy/66yWq32LgNloLy8fgl/YMzLF8YbAADcLph5AQAAAAAAHBrhBQAAAAAAcGiEFwAAAAAAwKERXgAAAAAAAIdGeAEAAAAAABwabxtBIYM/WKzdvx23dxkAANy0/8YOsncJAACgFDDzAgAAAAAAODTCCwAAAAAA4NAILwAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC9uUFpamqKionT48OFS63PIkCFas2ZNqfUHAAAAAMDtxGLvAv5qKleurA8//FBeXl72LgUAAAAAgHKB8KII+fn5kiSzueDElNzcXFksFvn6+tqhKgAAAAAAyqfb5rGR/Px8rVy5Us8++6x69eqlQYMGadmyZUpMTFRUVJQyMzNtbQ8fPqyoqCilpaVJkuLj4xUTE6Mff/xRzz//vHr16qX09HQNGTJES5Ys0ZQpUxQdHa0PPvigyMdGfvvtN7311luKjo5W3759NWrUKKWmpkqS4uLiNHv27AK1jh8/XlOnTi3yOorqPzMzU1FRUUpMTJQk2zX98ssvGjlypHr37q3Ro0crIyND27Zt0/PPP6/o6GhNmjRJOTk5pXB3AQAAAACwn9tm5sX8+fP1zTffKDo6WuHh4Tp79qySk5OLfXxOTo5WrlypgQMHysvLSz4+PpKkVatWqVu3burWrVuRx50+fVqxsbFq0KCBRo0aJXd3dyUlJdlmb9xKixcvVv/+/eXq6qp3331X7777rpydnTVs2DBlZ2drwoQJ+vLLL/XYY4/d8loAAAAAALhVbovwIisrS19++aX69++v1q1bS5ICAgIUHh5um61wPXl5eRowYIBCQ0MLbL/jjjvUqVMn2/fLszUuW7t2rTw8PDR8+HBZLJduZ2BgYMkv5gb06NFD4eHhkqS2bdtq/vz5mjx5sqpWrSpJat68uRITE68aXlitVlmtVtt3k8kkd3f3W143AAAAAAA34rYIL5KTk2W1WhUREVHiPiwWi2rUqFFoe61ata553JEjRxQeHm4LLsrSlfX6+PjI1dXVFlxIkq+vrw4cOHDV45cvX64lS5bYvoeFhWncuHG3plgAAAAAAErotggvXFxcrrrPZDJJkgzDsG3Lzc0tso/Lba/k6up6zXM7Oztfc7/JZCpwbunSLI+rubxI6JXHXK29k5NTgfNc+f2yaz2+EhkZqY4dOxboAwAAAAAAR3NbLNgZEBAgFxcX7dixo9A+b29vSdLZs2dt265cDPNm1ahRQ3v27CkyELl8/jNnzti+5+fn67fffrtqf5frvfKY0qz3Ss7OzvLw8LB9eGQEAAAAAOCIbovwwsXFRV26dNHcuXOVkJCg1NRU7d27V99++60CAgJUqVIlLVq0SMePH9fPP/+s1atXl9q5O3TooKysLE2cOFEHDhzQ8ePH9d133yklJUXSpTUztm3bpp9//lnJycn66KOPCrz5pKhrqVOnjlauXKljx45p165dWrBgQanVCwAAAADAX81t8diIJHXt2lVOTk5atGiRTp8+LT8/P7Vv314Wi0XPPfecZsyYoREjRqh27drq0aOH3nnnnVI5r5eXl0aNGqW5c+cqLi5OZrNZoaGhqlevniSpTZs2OnLkiKZMmSInJyc9+uijatiw4TX7HDRokKZPn65XXnlFgYGBevLJJ/Xvf/+7VOoFAAAAAOCvxmT8eUEGlHtP/Huadv923N5lAABw0/4bO8jeJZQZV1dX5eTk2LsMlCHGvHxhvMuf8jLmzs7O8vf3v2672+KxEQAAAAAAcPsivAAAAAAAAA6N8AIAAAAAADg0wgsAAAAAAODQCC8AAAAAAIBDI7wAAAAAAAAOzWLvAuB4pj3zhKxWq73LQBkoL69fwh8Y8/KF8QYAALcLZl4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAoRFeAAAAAAAAh8bbRlDIoCmLtPvIcXuXAQDAdX09drC9SwAAAGWAmRcAAAAAAMChEV4AAAAAAACHRngBAAAAAAAcGuEFAAAAAABwaIQXAAAAAADAoRFeAAAAAAAAh0Z48RcVHx+vmJgYe5cBAAAAAMAtR3hRhqZOnarx48fbuwwAAAAAAP5SCC8AAAAAAIBDs9i7gNvRpk2btHjxYqWmpsrV1VVhYWEKDQ1VQkKCJCkqKkqSFBsbK0kaPXq0Zs2apQoVKkiSDh8+rJEjR2rKlCmqUqWKpEuPiSxcuFC///67GjdurPDwcNv50tLS9Oyzz2rs2LGqVauWbfuaNWu0Zs0aTZkyRWYzORUAAAAA4K+J8KKUnTlzRpMmTVLv3r3VrFkzZWdna/fu3WrVqpXS09OVlZWlwYMHS5I8PT2VlJR03T737dun999/X7169dI999yjX375RYsXL7btr1KliiIiIrR+/foC4UV8fLxat2591eDCarXKarXavptMJrm7u5f00gEAAAAAuCUIL0rZmTNnlJeXp+bNm8vf31+SFBISIklycXGR1WqVr6/vDfX5xRdf6M4771SXLl0kSYGBgdq7d69++eUXW5u2bdvqo48+UnR0tJydnXXw4EEdPXpUL7300lX7Xb58uZYsWWL7HhYWpnHjxt1QbQAAAAAA3GqEF6UsNDRUERERGjFihBo3bqxGjRqpRYsW8vT0LHGfycnJatasWYFtdevWLRBeNGvWTB9//LG2bNmiv//974qPj1fDhg1tj50UJTIyUh07drR9N5lMJa4RAAAAAIBbhYUQSpnZbNZrr72mV199VcHBwVq7dq2GDx+utLS0IttfDgwMw7Bty83NveHzWiwWtWrVSvHx8crNzdWGDRvUpk2bax7j7OwsDw8P24dHRgAAAAAAjojw4hYwmUwKDw9XVFSUxo8fL4vFoi1btshisSg/P79AW29vb0nS2bNnbdsOHz5coE1QUJD27dtXYNvevXsLnbdt27bavn27vvrqK9ujKwAAAAAA/NURXpSyffv2admyZTpw4IDS09O1efNmnTt3TkFBQfL399fRo0eVkpKic+fOKTc3VwEBAapUqZIWLVqk48eP6+eff9bq1asL9Pnwww/rl19+0eeff67jx49r7dq1+vXXXwudOzg4WHXr1tW8efP097//XS4uLmV12QAAAAAA3DKEF6XM3d1du3fv1ptvvqnnnntOCxYsUN++fdWkSRO1a9dOgYGBeuWVV/TUU08pKSlJFotFzz33nFJSUjRixAitXLlSPXr0KNBn3bp19cwzz+jLL7/USy+9pF9//VWPP/54kedv06aNcnNzr/vICAAAAAAAfxUm48rFFvCXt2TJEm3atEkTJkwocR/dYqdq95HjpVgVAAC3xtdjB9u7BIfh6uqqnJwce5eBMsSYly+Md/lTXsbc2dnZ9qbOa2HmxW0iOztbR48e1VdffaUOHTrYuxwAAAAAAEoNr0q9TXz88cfasGGD7rnnHrVt29be5QAAAAAAUGoIL24TQ4YM0ZAhQ+xdBgAAAAAApY7HRgAAAAAAgEMjvAAAAAAAAA6N8AIAAAAAADg01rxAIe8PjZLVarV3GSgD5eX1S/gDY16+MN4AAOB2wcwLAAAAAADg0AgvAAAAAACAQyO8AAAAAAAADo3wAgAAAAAAODTCCwAAAAAA4NB42wgKGfzuQu0+nGLvMgAAuK7/Thhq7xIAAEAZYOYFAAAAAABwaIQXAAAAAADAoRFeAAAAAAAAh0Z4AQAAAAAAHBrhBQAAAAAAcGiEFwAAAAAAwKERXtykIUOGaM2aNfYuo0hTp07V+PHj7V0GAAAAAAA3hfDCwRA4AAAAAABQEOEFAAAAAABwaBZ7F1Ca8vPztWrVKq1bt06nTp2Sj4+P2rdvr8cff1xHjx7VrFmztHfvXrm6uqp58+aKjo6Wm5ubpEszHjIzMxUeHq7Vq1crNzdX9957r2JiYmSxXLpNGRkZev/997Vjxw75+vqqR48eBc6flpamoUOHavz48QoNDZUkZWZmql+/foqNjVXDhg0lSb/99pvmzZun3bt3yzAMhYaGavDgwfruu++UkJAgSYqKipIk23Hp6en65JNPtH37dplMJtWvX18xMTGqUqWK7do//fRTrV+/XmazWW3btpVhGLf8ngMAAAAAcKvdVuHF/Pnz9c033yg6Olrh4eE6e/askpOTlZ2drTfeeEN16tTRm2++qXPnzmn69On6+OOPNWTIENvxiYmJ8vPzU2xsrFJTUzVx4kSFhoaqXbt2kqRp06bp9OnTio2NlcVi0axZs5SRkXFDNV4+vkGDBho1apTc3d2VlJSk/Px8de7cWcnJycrKytLgwYMlSZ6ensrNzdUbb7yhunXr6vXXX5fZbNayZcs0duxYTZgwQRaLRatWrVJ8fLwGDRqkoKAgrV69Wlu3brUFJkWxWq2yWq227yaTSe7u7jd0PQAAAAAA3Gq3TXiRlZWlL7/8Uv3791fr1q0lSQEBAQoPD9e6det08eJFDR061DbTon///ho3bpx69+4tX19fSZeCggEDBshsNisoKEhNmjTRzp071a5dO6WkpGjbtm0aO3asateuLUkaOHCgnn/++Ruqc+3atfLw8NDw4cNtMzoCAwNt+11cXGS1Wm01SdJ3330nwzA0cOBAmUwmSdLgwYMVExOjxMRENW7cWF988YUiIyPVvHlzSdLTTz+tX3/99f+1d+/hNZ35//9fO0eJiCRNIiLNsRRFglb6LUppi6mOS0vacabVOo32Y4xWaQVDSw9oMVwtVUUJrR4oZmhp1bFap4hDEEREhETksCOH/fvDL6u2INEh2bGfj+tyTdZa91rrfa931u7sd9Z9r5vGsnLlSq1YscJYDgsL05QpU26pPwAAAAAA3Gl3TfHi9OnTKigoUOPGja+7LTQ01ChcSFL9+vVlsViUkpJiFAqCgoLk4PDHNCDe3t46efKkcQxHR0eFh4cb2+vUqaPq1avfUpwnTpxQ/fr1jcJFefdJTU1Vnz59rNYXFBTo7Nmzys3NVUZGhlFUkWTEerOhI127dlXnzp2N5ZLCCAAAAAAAtuSuKV64uLj8z8dwdHS0WjaZTLc0b0RJ4ePqfYqKiqzaODs733JcZrNZ4eHhGj58eKltnp6et3y8q2P5M/EAAAAAAFCR7pq3jQQEBMjFxUX79u0rta1OnTpKSkqS2Ww21h08eFAmk8lqyMbN1KlTR0VFRTp27JixLiUlRTk5OcZySSEhIyPDWJeUlGR1nJCQEB08eFCFhYXXPY+Tk5OKi4ut1oWFhenMmTPy9PRUQECA1T93d3e5u7vL29tbiYmJxj7XxgoAAAAAQFV11xQvXFxc1KVLFy1atEibNm1SamqqDh8+rB9++EGtW7eWi4uLZs2apZMnT2r//v369NNP9eijj1rNLXEzgYGBioqK0scff6wjR47o2LFjmjNnjtUTHy4uLqpbt66++eYbJScn68CBA1q6dKnVcTp27Ki8vDxNnz5dR48e1ZkzZ/TTTz8pJSVFkuTn56eTJ08qJSVFWVlZKiwsVOvWreXp6al3331XCQkJSktLU3x8vObPn6/z589Lkjp16qSvv/5aO3bs0OnTp/XJJ58oNzf39lxcAAAAAAAq0V0zbESSnn32WTk6OiouLk4XLlyQt7e3nnjiCbm6umrMmDH69NNPNXr0aKtXpd6KIUOGaM6cOYqNjVXNmjX1/PPPa9myZVZtBg8erDlz5uj1119XYGCgevXqpX/961/G9ho1auitt97SokWLFBsbKwcHB4WGhur++++XJD3++OM6cOCAXn/9dZnNZuNVqePHj9eiRYv03nvvyWw2y8fHR40aNTLeDvL0008rMzNTs2bNkoODgx577DE99NBDFDAAAAAAAFWeyXIrkzrALnR/Y6YSklIqOwwAAMr0n/eGVXYINsPV1VX5+fmVHQYqEDm3L+Tb/thLzp2dneXn51dmu7tm2AgAAAAAALg7UbwAAAAAAAA2jeIFAAAAAACwaRQvAAAAAACATaN4AQAAAAAAbNpd9apU3B6z/+85FRQUVHYYqAD2MoMx/kDO7Qv5BgAAdwuevAAAAAAAADaN4gUAAAAAALBpFC8AAAAAAIBNo3gBAAAAAABsGsULAAAAAABg0yheAAAAAAAAm8arUlHKsKlf6ODxlMoOAwCAMq35cHhlhwAAACoAT14AAAAAAACbRvECAAAAAADYNIoXAAAAAADAplG8AAAAAAAANo3iBQAAAAAAsGk2VbyIjY3VggULKjuM266y+hUTE6MdO3ZU+HkBAAAAALidbKp4MXLkSD333HPlapuWlqaYmBglJSXd2aBuQXx8vGJiYpSTk2O1/lb6BQAAAAAArDlVdgBX8/DwqJTzFhYWysnpzl2KyuoXAAAAAAB3A5sqXsTGxio0NFT9+vXT0KFD1b59e6Wmpmrbtm2qXr26nn32WT3++OOSpGHDhkmSRo0aJUlq2LChYmNjJUkbNmzQqlWrlJaWJj8/P3Xq1EkdOnSQdOWJjWHDhunVV1/VunXrlJiYqIEDByo+Pl45OTmqX7++Vq1apcLCQj3yyCPq16+fUdj46aef9P333yslJUWurq5q1KiR+vXrp5o1ayotLU3jx4+XJPXv31+S1KZNGw0dOtSqX5KUnZ2tBQsWaNeuXSooKFDDhg3Vv39/1a5dW5K0ceNGLViwQK+++qo+++wzpaenq379+hoyZIi8vb0lSYmJifriiy+UlJSkwsJChYaGqm/fvgoPD7/DWQIAAAAAoGLZVPHiWqtWrdJzzz2nZ555Rtu2bdPHH3+shg0bKjAwUJMnT9Ybb7yhN998U/fee69RYPj5558VFxenAQMGKCwsTMePH9fcuXPl6uqqtm3bGsdevHix+vTpo7CwMDk7Oys+Pl7x8fHy9vbWuHHjlJqaqunTpys0NNQomBQWFuq5555TYGCgLl68qIULF2r27NkaPXq0fH199Y9//EPvv/++pk+fLnd3d7m4uFy3X7Nnz9aZM2c0atQoubm5afHixXr77bf1wQcfGP3Iz8/Xd999p2HDhslkMumjjz7S559/ruHDh0uSzGaz2rRpowEDBshisWjVqlV6++239eGHH8rNze0OZgUAAAAAgIplU3NeXKtp06bq0KGDAgIC1KVLF3l6emr//v2SJE9PT0lSjRo15OXlZQzNiIuLU+/evRUdHS1/f39FR0frqaee0vr1662O/dRTTxltSp5m8PDw0AsvvKA6deqoefPmatq0qXE+SWrXrp2aNm2qWrVqqV69eurfv79+//13mc1mOTg4GDHUrFlTXl5ecnd3L9WnM2fO6Ndff9WgQYPUoEEDhYaGavjw4bpw4YJ27txptCsqKtLAgQMVERGh8PBwdezYUfv27TO2N2rUSI8++qjq1KmjoKAgvfTSS7p8+bIOHDhQ7utbUFCg3Nxc419eXl659wUAAAAAoKLY9JMXISEhxs8mk0leXl7Kysq6YXuz2ayzZ89qzpw5mjt3rrG+uLi4VCHhesMrgoKC5ODwRz3H29tbJ0+eNJaPHTumuLg4nThxQjk5ObJYLJKk9PR0BQUFlatPp0+flqOjo+rWrWusq1GjhgIDA3X69GljnaurqwICAqxiubrvmZmZWrp0qQ4cOKCLFy+quLhYly9fVnp6ernikKSVK1dqxYoVxnJYWJimTJlS7v0BAAAAAKgINl28cHR0LLWuuLj4hu3NZrMk6eWXX7YqDkiyKkpIUrVq1co8n8lkMgoUZrNZkyZNUmRkpIYPHy5PT0+lp6dr0qRJKiwsLF+HbsH1+l4SiyTNmjVL2dnZ6tevn/z8/OTs7KwxY8bcUixdu3ZV586djWWTyfS/BQ0AAAAAwB1g08WLmymZG+LqYoaXl5e8vb119uxZtW7d+raeLyUlRZcuXVKPHj3k6+srSTp69GiZMV2rTp06Kioq0pEjR3T//fdLki5duqSUlJRyP70hSYcOHdKLL76oZs2aSbry9MelS5duqU/Ozs5ydna+pX0AAAAAAKhoVbZ4UbNmTbm4uGj37t3y8fGRi4uL3N3dFRMTo08//VTu7u6KiopSYWGhjh49qpycHKunDG6Vr6+vnJyctHbtWj3xxBM6deqUvvzyS6s2fn5+MplM2rVrl5o1ayYXF5dST3jUrl1bDz74oObOnauXXnpJ1apV05IlS+Tj46MHH3yw3PHUrl1bP/30k8LDw5WXl6dFixbdcIJQAAAAAACqMpuesPNmHB0d1b9/f/33v//Vyy+/rKlTp0qS2rdvr0GDBmnjxo0aOXKkxo0bp40bN8rf3/9/Op+np6eGDBmirVu3asSIEfr666/Vu3dvqzY+Pj7q3r27lixZooEDB2revHnXPdaQIUMUHh6ud955R2PHjpXFYtHo0aONJzfKY9CgQcrJydFrr72mmTNnqlOnTqpZs+b/1EcAAAAAAGyRyXL1RAqApOf++aEOHk+p7DAAACjTmg+HV3YINsPV1VX5+fmVHQYqEDm3L+Tb/thLzp2dneXn51dmuyr75AUAAAAAALAPFC8AAAAAAIBNo3gBAAAAAABsGsULAAAAAABg0yheAAAAAAAAm0bxAgAAAAAA2DRelYpSzp07p4KCgsoOAxXAXl6/hD+Qc/tCvu0L+bY/5Ny+kG/7Yy8551WpAAAAAADgrkDxAgAAAAAA2DSKFwAAAAAAwKZRvAAAAAAAADaN4gUAAAAAALBpTpUdAGzP8EmLdfDY6coOAwCAMq2e83+VHQIAAKgAPHkBAAAAAABsGsULAAAAAABg0yheAAAAAAAAm0bxAgAAAAAA2DSKFwAAAAAAwKZRvAAAAAAAADaN4kUF27hxo/r161fZYQAAAAAAUGVQvAAAAAAAADatyhYvCgsLKzuEUiozJlu8HgAAAAAA3A5OlR1AecXGxuree++Vo6Ojfv75ZwUHB6t///5atGiREhISVK1aNTVp0kR9+/aVp6enJGnbtm1avny5UlNT5erqqrCwMP3zn/9UtWrVJEkbNmzQqlWrlJaWJj8/P3Xq1EkdOnQwzrlo0SLt3LlT58+fl5eXl1q1aqVu3brJyenKZYuLi9POnTvVsWNHffXVV0pPT9eyZcuUk5OjxYsXa+fOncrNzVVAQIB69Oih5s2bG8fevXu3PvvsM6Wnp6t+/foaMmSIvL29je03iy0tLU3Dhg3Tq6++qnXr1ikxMVEDBw7UAw88oHnz5unQoUMqLCyUn5+fevXqpWbNmt3x/AAAAAAAcKdUmeKFJG3atElPPvmkJk6cqJycHE2YMEHt2rVT3759dfnyZS1evFjTpk3TuHHjlJGRoRkzZqhnz55q0aKFzGazEhISjGP9/PPPiouL04ABAxQWFqbjx49r7ty5cnV1Vdu2bSVJbm5uRlHh5MmTmjt3rtzc3NSlSxfjOKmpqdq+fbtGjhwpBwcHFRcXa/LkyTKbzfr73/+uWrVqKTk5WQ4Ofzzkkp+fr++++07Dhg2TyWTSRx99pM8//1zDhw8vd2yStHjxYvXp00dhYWFydnbW3LlzVVhYqPHjx8vV1VXJyclGoQYAAAAAgKqqShUvateurV69ekmSvvzyS4WFhalHjx7G9sGDB2vw4MFKSUmR2WxWUVGRoqOj5efnJ0kKDg422sbFxal3796Kjo6WJPn7+ys5OVnr1683CgTPPvus0d7f318pKSnasmWLVfGisLBQw4YNM5722LNnjxITEzVt2jQFBgZKkmrVqmXVj6KiIg0cOFABAQGSpI4dO2rFihW3FJskPfXUU0YbSUpPT1d0dLTRz2vPe62CggIVFBQYyyaTSW5ubjfdBwAAAACAilalihdhYWHGzydOnND+/fvVu3fvUu3Onj2ryMhINW7cWCNHjlRkZKSaNGmihx9+WB4eHjKbzTp79qzmzJmjuXPnGvsVFxfL3d3dWN6yZYvWrFmj1NRUmc1mFRcXl/py7+fnZxQuJCkpKUn33HOPUbi4HldXV6NwIUne3t7KysqSpHLHJknh4eFWy506ddInn3yivXv3qnHjxoqOjlZISMgN41i5cqVV0SQsLExTpky5YXsAAAAAACpDlSpeXD0Ewmw2q3nz5saTGFfz8vKSg4ODxo4dq0OHDmnv3r1au3atli5dqsmTJ8vFxUWS9PLLL6tu3bpW+5YM7zh8+LA+/PBDxcTEKDIyUu7u7vrll1+0atUqq/aurq5WyyXHvhlHR8dS6ywWi9GvsmIrce2QkPbt2ysyMlK//fab9u7dq5UrV6pPnz7q1KnTdePo2rWrOnfubCybTKYyYwcAAAAAoKJVqeLF1cLCwrR9+3b5+fldtxggXfkyXr9+fdWvX1/dunXTkCFDtGPHDnXu3Fne3t46e/asWrdufd19Dx06JD8/Pz3zzDPGuvT09DLjCgkJ0fnz55WSknLTpy9uxMvLq8zYbsbX11dPPvmknnzySS1ZskQbNmy4YfHC2dlZzs7Ot3wOAAAAAAAqUpUtXnTo0EEbNmzQjBkz9Ne//lUeHh5KTU3Vli1bNGjQIB09elT79u1TZGSkatasqSNHjigrK0t16tSRJMXExOjTTz+Vu7u7oqKiVFhYqKNHjyonJ0edO3dW7dq1lZ6erl9++UURERH67bfftGPHjjLjatiwoRo2bKj3339fffv2VUBAgE6fPi2TyaSoqKhy9a2s2G5kwYIFioqKUmBgoLKzsxUfH2/0FwAAAACAqqrKFi98fHw0ceJELV68WJMmTVJBQYH8/PwUGRlpTDyZkJCg77//Xnl5efL19VWfPn3UtGlTSVeGWLi6uurbb7/VokWL5OrqquDgYD311FOSpAcffFBPPfWU5s+fr4KCAjVr1kzPPvusli9fXmZs//jHP7Rw4ULNmDFDZrNZAQEB6tmzZ7n7VlZsN1JcXKx58+bpwoULcnNzU1RUlPr27Vvu8wIAAAAAYItMlpLJFoD/399ena6Dx05XdhgAAJRp9Zz/q+wQbIarq6vy8/MrOwxUIHJuX8i3/bGXnDs7OxtvCL0ZhzJbAAAAAAAAVCKKFwAAAAAAwKZRvAAAAAAAADaN4gUAAAAAALBpFC8AAAAAAIBNo3gBAAAAAABsGq9KRSnnzp1TQUFBZYeBCmAvr1/CH8i5fSHf9oV82x9ybl/It/2xl5zzqlQAAAAAAHBXoHgBAAAAAABsGsULAAAAAABg0yheAAAAAAAAm0bxAgAAAAAA2DSnyg4AtufV2IU6lJhc2WEAAFCmbz/9Z2WHAAAAKgBPXgAAAAAAAJtG8QIAAAAAANg0ihcAAAAAAMCmUbwAAAAAAAA2jeIFAAAAAACwaRQvAAAAAACATbOr4kVsbKwWLFhQ2WEAAAAAAIBb4FTZAVSkkSNHytHRsbLDAAAAAAAAt8CuihceHh4Vfs7CwkI5OdnVZQYAAAAA4Layq2/VsbGxCg0NVb9+/TR06FC1a9dOZ86c0fbt21WjRg0NGDBA9erV05w5c7Rv3z7VqlVLgwcPVkREhCRp48aNWrBggYYMGaJFixbp/PnzatiwoV5++WX5+vpKkuLi4rRz50517NhRX331ldLT07Vs2TKlp6dr/vz52rdvnxwcHBQZGakBAwbIy8tLKSkpevXVVzVt2jTVqVPHiHfVqlVat26dPvroI0nSyZMntWjRIiUkJKhatWpq0qSJ+vbtK09PT0nStm3btHz5cqWmpsrV1VVhYWH65z//qWrVqlXwlQYAAAAA4PaxqzkvrrV69Wrdf//9mjp1qpo1a6aPPvpIM2fOVOvWrTVlyhTVqlVLM2fOlMViMfbJz8/XypUrNWzYME2cOFE5OTmaMWOG1XFTU1O1fft2jRw5UlOnTlVxcbGmTp2q7OxsjR8/XmPHjlVaWpqmT58uSQoMDFRERIR+/vlnq+Ns3rxZLVu2lCTl5ORowoQJCg0N1TvvvKM33nhDFy9e1LRp0yRJGRkZmjFjhh577DFNmzZNsbGxatGixR28egAAAAAAVAy7Ll40bdpUTzzxhGrXrq1u3bopLy9PERER+n//7/8pMDBQXbp00enTp3Xx4kVjn6KiIuMJjfDwcA0dOlSHDh1SYmKi0aawsFDDhg1TWFiYQkJCtH//fp08eVLDhw9XeHi46tatq2HDhunAgQPGfq1atdIvv/xiHCMlJUXHjh1T69atJUlr165VWFiYevTooTp16igsLEyDBw9WfHy8UlJSlJGRoaKiIkVHR8vf31/BwcHq0KHDTZ+6KCgoUG5urvEvLy/vdl9iAAAAAAD+Z3Y1bORaISEhxs81a9aUJAUHBxvrvLy8JEkXL140fnZ0dDSGkUhSnTp1VL16dSUnJ+u+++6TJPn5+RlDOSQpOTlZ99xzjzG0RJKCgoJUvXp1nT59Wvfdd59atmypzz//XIcPH1a9evW0efNmhYWFGcNITpw4of3796t3796l+nH27FlFRkaqcePGGjlypCIjI9WkSRM9/PDDN53nY+XKlVqxYoWxHBYWpilTppR53QAAAAAAqEh2Xby4+s0jJpOp1LoSVw8bKQ9XV9dbjsXLy0uNGjXS5s2bjeLFk08+aWw3m81q3ry5evXqdd19HRwcNHbsWB06dEh79+7V2rVrtXTpUk2ePFn+/v7XPWfXrl3VuXNnY7nkGgAAAAAAYEvsetjIn1FUVKRjx44ZyykpKcrJyVFQUNAN9wkKCtL58+eVnp5urEtOTi61X6tWrbR161YdPnxYZ8+e1SOPPGJsCwsLU3Jysvz8/BQQEGD1r2RoiMlkUv369RUTE6OpU6fKyclJO3bsuGFczs7Ocnd3N/65ubn9qWsCAAAAAMCdRPHiFjk6Omr+/Pk6cuSIjh07plmzZqlu3brGkJHrady4sYKDg/XRRx/p2LFjSkxM1MyZM9WwYUOrISjR0dHKy8vTxx9/rEaNGsnHx8fY1qFDB2VnZ2vGjBlKTExUamqqdu/erdmzZ6u4uFhHjhzRV199paNHjyo9PV3bt29XVlaW1dtLAAAAAACoiux62Mif4erqqi5duujDDz/UhQsXVL9+fQ0ePPim+5hMJo0aNUrz58/XuHHjrF6VejU3Nzc1b95cW7duLXVMHx8fTZw4UYsXL9akSZNUUFAgPz8/RUZGymQyyc3NTQkJCfr++++Vl5cnX19f9enTR02bNr3t1wAAAAAAgIpkstzqhA52bOPGjVqwYIEWLFhQ2aHcUT2Hvq9DicmVHQYAAGX69tN/VnYINsPV1VX5+fmVHQYqEDm3L+Tb/thLzp2dneXn51dmO4aNAAAAAAAAm0bxAgAAAAAA2DTmvLgFbdu2Vdu2bSs7DAAAAAAA7ApPXgAAAAAAAJtG8QIAAAAAANg0ihcAAAAAAMCm8apUlHLu3DkVFBRUdhioAPby+iX8gZzbF/JtX8i3/SHn9oV82x97yTmvSgUAAAAAAHcFihcAAAAAAMCmUbwAAAAAAAA2jeIFAAAAAACwaRQvAAAAAACATXOq7ABge/7vjfk6dCS5ssMAAKBM3ywZXdkhAACACsCTFwAAAAAAwKZRvAAAAAAAADaN4gUAAAAAALBpFC8AAAAAAIBNo3gBAAAAAABsGsULAAAAAABg0yhe3CGxsbFasGBBZYcBAAAAAECVR/HiLpOWlqaYmBglJSVVdigAAAAAANwWFC/uIoWFhZUdAgAAAAAAt51TZQdwNysuLtaiRYu0YcMGOTk56YknnlBMTIwkKScnR59//rl27typwsJChYeHq2/fvgoNDZUkpaamauHChTpy5IjMZrOCgoL0t7/9TU2aNDGOP3ToUD322GNKTU3Vzp071aJFC23atEmSNGrUKElSw4YNFRsbW6H9BgAAAADgdqJ4cQdt2rRJnTt31uTJk3X48GHNnj1b9evXV5MmTfTBBx/IxcVFb7zxhtzd3fXf//5XEydO1IwZM+Th4SGz2aymTZvq+eefl7OzszZt2qQpU6ZoxowZ8vX1Nc7x3XffqVu3burWrZskqUOHDnrjjTf05ptv6t5775WT041TXFBQoIKCAmPZZDLJzc3tzl0QAAAAAAD+BIoXd1BISIi6d+8uSapdu7bWrl2rffv2ycXFRYmJifrkk0/k7OwsSerTp4927typbdu26fHHH1doaKjxFIYkPf/889q5c6d+/fVXdezY0VjfqFEjPf3008ZyWlqaJKlGjRry8vK6aXwrV67UihUrjOWwsDBNmTLlf+02AAAAAAC3FcWLOyg4ONhq2dvbWxcvXlRSUpLMZrMGDBhgtf3y5ctKTU2VJJnNZsXFxen3339XRkaGioqKdPnyZaWnp1vtExER8afj69q1qzp37mwsm0ymP30sAAAAAADuFIoXd9D1hmxYLBaZzWZ5e3tfdy4Kd3d3SdLChQu1b98+9e7dWwEBAXJxcdH7779falJOV1fXPx2fs7Oz8eQHAAAAAAC2iuJFJQgPD1dmZqYcHBzk7+9/3TaHDh1SmzZt1KJFC0lXnsQ4d+5cmccuKZgUFxffvoABAAAAAKhEvCq1EjRu3Fj16tXTu+++qz179igtLU2HDh3SF198oaNHj0q6MkfGjh07lJSUpKSkJM2YMUMWi6XMY9esWVMuLi7avXu3MjMzlZube6e7AwAAAADAHcWTF5XAZDJp9OjR+uKLLzR79mxlZWXJy8tLDRo0UM2aNSVdmcDz3//+t8aOHasaNWqoS5cuysvLK/PYjo6O6t+/v1asWKFly5apQYMGvCoVAAAAAFClmSzl+XM+7EqvgVN06EhyZYcBAECZvlkyurJDsBmurq7Kz8+v7DBQgci5fSHf9sdecu7s7Cw/P78y2zFsBAAAAAAA2DSKFwAAAAAAwKZRvAAAAAAAADaN4gUAAAAAALBpFC8AAAAAAIBNo3gBAAAAAABsGq9KRSnnzp1TQUFBZYeBCmAvr1/CH8i5fSHf9oV82x9ybl/It/2xl5zzqlQAAAAAAHBXcKrsAGB7nJz4tbAXjo6OcnZ2ruwwUIHIuX0h3/aFfNsfcm5fyLf9sZecl/f7J8NGYCgoKLCLmwMAAAAAULUwbASGgoICzZgxQ3l5eZUdCipAXl6eXnvtNfJtR8i5fSHf9oV82x9ybl/It/0h56VRvICVX375RTyMYx8sFouOHz9Ovu0IObcv5Nu+kG/7Q87tC/m2P+S8NIoXAAAAAADAplG8AAAAAAAANo3iBQzOzs7q1q0bk3baCfJtf8i5fSHf9oV82x9ybl/It/0h56XxthEAAAAAAGDTePICAAAAAADYNIoXAAAAAADAplG8AAAAAAAANo3iBQAAAAAAsGlOlR0AbMPatWv13XffKTMzUyEhIRowYIDuu+++yg4Lt0FcXJxWrFhhtS4wMFDTp0+XJF2+fFkLFy7Uli1bVFBQoMjISL344ovy8vKq+GBxyw4cOKBvv/1Wx48fV0ZGhkaOHKkWLVoY2y0Wi+Li4rRhwwbl5OSofv36evHFF1W7dm2jTXZ2tubPn69du3bJZDIpOjpa/fv3V7Vq1SqjS7iJsvI9a9Ysbdq0yWqfyMhIjRkzxlgm31XHypUrtWPHDp0+fVouLi6qV6+eevXqpcDAQKNNeT7D09PT9fHHHys+Pl7VqlVTmzZt1KNHDzk6OlZCr3Az5cl5bGysDhw4YLXf448/rpdeeslYJudVw3/+8x/95z//0blz5yRJQUFB6tatm5o2bSqJ+/tuVFbOub9vjuIFtGXLFi1cuFADBw5U3bp1tXr1ak2aNEnTp09XzZo1Kzs83Ab33nuv3nzzTWPZweGPh64+++wz/fbbbxoxYoTc3d01b948vf/++5o4cWJlhIpblJ+fr9DQULVr107vvfdeqe3ffPON1qxZo6FDh8rf31/Lli3TpEmT9MEHH8jFxUWS9OGHHyojI0Njx45VUVGRZs+erblz5+qVV16p6O6gDGXlW5KioqI0ZMgQY9nJyfo/9eS76jhw4IA6dOigiIgIFRUV6YsvvtC//vUvffDBB0axqazP8OLiYr399tvy8vLSv/71L2VkZGjmzJlydHRUjx49KrN7uI7y5FyS2rdvr+eee85YLvk8l8h5VeLj46MePXqodu3aslgs2rRpk6ZOnaqpU6fq3nvv5f6+C5WVc4n7+6YssHujR4+2fPLJJ8ZyUVGR5aWXXrKsXLmy8oLCbbNs2TLLyJEjr7stJyfH8vzzz1u2bt1qrEtOTrZ0797dcujQoYoKEbdJ9+7dLdu3bzeWi4uLLQMHDrR88803xrqcnBxLjx49LJs3b7ZYLBbLqVOnLN27d7ckJiYabX7//XdLTEyM5fz58xUXPG7Ztfm2WCyWmTNnWqZMmXLDfch31Xbx4kVL9+7dLfHx8RaLpXyf4b/99pslJibGkpGRYbRZt26dpU+fPpaCgoIKjR+37tqcWywWy7hx4yyffvrpDfch51Vbv379LBs2bOD+tiMlObdYuL/LwpwXdq6wsFDHjh1T48aNjXUODg5q3LixDh8+XImR4XZKTU3Vyy+/rGHDhunDDz9Uenq6JOnYsWMqKiqyyn+dOnXk6+tL/u8CaWlpyszMVJMmTYx17u7uuu+++4z8Hj58WNWrV1dERITRpnHjxjKZTEpMTKzwmPG/O3DggF588UW98sor+vjjj3Xp0iVjG/mu2nJzcyVJHh4eksr3GX748GEFBwdbPWYeFRWlvLw8nTp1quKCx59ybc5L/Pzzz3rhhRf0j3/8Q0uWLFF+fr6xjZxXTcXFxfrll1+Un5+vevXqcX/bgWtzXoL7+8YYNmLnsrKyVFxcXGp+Ay8vL6WkpFROULit6tatqyFDhigwMFAZGRlasWKF3nrrLb3//vvKzMyUk5OTqlevbrVPzZo1lZmZWTkB47YpyeG1w7+uzm9mZqY8PT2ttjs6OsrDw4PfgSooKipK0dHR8vf3V2pqqr744gtNnjxZkyZNkoODA/muwoqLi7VgwQLdf//9Cg4OlqRyfYZnZmaW+m98yWcCObdt18u5JLVq1Uq+vr7y8fHRiRMntHjxYqWkpGjkyJGSyHlVc/LkSY0ZM0YFBQWqVq2aRo4cqaCgICUlJXF/36VulHOJ+7ssFC+Au1zJBECSFBISYhQztm7dajWGDkDV17JlS+Pn4OBghYSE6O9//7vi4+Ot/nqHqmfevHk6deqUJkyYUNmhoILcKOePP/648XNwcLC8vb01YcIEpaamKiAgoKLDxP8oMDBQ7777rnJzc7Vt2zbNmjVL48ePr+ywcAfdKOdBQUHc32Vg2Iid8/T0NP4ad7XrVfVwd6hevboCAwOVmpoqLy8vFRYWKicnx6rNxYsXyf9doCSHFy9etFp/dX69vLyUlZVltb2oqEjZ2dn8DtwFatWqpRo1aig1NVUS+a6q5s2bp99++03jxo3TPffcY6wvz2e4l5dXqf/Gl3wmkHPbdaOcX0/J2+Guvs/JedXh5OSkgIAAhYeHq0ePHgoNDdX333/P/X0Xu1HOr4f72xrFCzvn5OSk8PBw7d+/31hXXFys/fv3W429wt3DbDYbhYvw8HA5Ojpq3759xvaUlBSlp6eT/7uAv7+/vLy8rPKbm5urxMREI7/16tVTTk6Ojh07ZrTZv3+/LBYLr0u+C5w/f17Z2dny9vaWRL6rGovFonnz5mnHjh1666235O/vb7W9PJ/h9erV08mTJ62KmHv37pWbm5vxmDJsR1k5v56kpCRJsrrPyXnVVVxcrIKCAu5vO1KS8+vh/rbGsBGoc+fOmjVrlsLDw3Xffffp+++/V35+vtq2bVvZoeE2WLhwoR588EH5+voqIyNDcXFxcnBwUKtWreTu7q527dpp4cKF8vDwkLu7u+bPn6969epRvKgiSopRJdLS0pSUlCQPDw/5+vrqL3/5i7766ivVrl1b/v7+Wrp0qby9vfXQQw9JuvJ+8aioKM2dO1cDBw5UYWGh5s+fr0ceeUQ+Pj6V1S3cwM3y7eHhoeXLlys6OlpeXl46e/asFi1apICAAEVGRkoi31XNvHnztHnzZo0aNUpubm7GX9vc3d3l4uJSrs/wyMhIBQUFaebMmerZs6cyMzO1dOlSdejQQc7OzpXYO1xPWTlPTU3V5s2b1axZM3l4eOjkyZP67LPP1KBBA4WEhEgi51XJkiVLFBUVJV9fX5nNZm3evFkHDhzQmDFjuL/vUjfLOfd32UwWi8VS2UGg8q1du1bffvutMjMzFRoaqv79+6tu3bqVHRZug+nTpyshIUGXLl2Sp6en6tevr+eff94YN3f58mUtXLhQv/zyiwoLCxUZGakXX3zRLh49uxvEx8dfd2xsmzZtNHToUFksFsXFxWn9+vXKzc1V/fr19cILLygwMNBom52drXnz5mnXrl0ymUyKjo7WgAEDVK1atYrsCsrhZvkeOHCg3n33XR0/flw5OTny8fFRkyZN9Nxzz1ndz+S76oiJibnu+iFDhhh/YCjPZ/i5c+f0ySefKD4+Xq6urmrTpo169uwpR0fHCugFbkVZOU9PT9dHH32kU6dOKT8/X/fcc49atGihZ555Ru7u7kZ7cl41/Pvf/9b+/fuVkZEhd3d3hYSEqEuXLsZbwri/7z43yzn3d9koXgAAAAAAAJvGnBcAAAAAAMCmUbwAAAAAAAA2jeIFAAAAAACwaRQvAAAAAACATaN4AQAAAAAAbBrFCwAAAAAAYNMoXgAAAAAAAJtG8QIAAAAAANg0ihcAAFQhs2bNUu/eva+7bejQoXrnnXcqOCIAAIA7j+IFAAAAAACwaRQvAAAAAACATXOq7AAAAED5OTs7q7CwUBaLRSaTqcz23377rXbs2KGUlBTl5+crKChIXbt21cMPP1yq7U8//aQ1a9bo1KlTcnZ2VnBwsJ555hlFRkZq6NChOnfu3A3P4+fnp1mzZkmSzGaz4uLitHXrVl28eFF+fn5q3769nn76aSPmmJiYm8bdsGFDxcbGqrCwUF9++aV+++03paamqri4WGFhYYqJiVGjRo3K7P/VcZtMJnl6eqphw4bq3bu3fH19jXbFxcVau3atNmzYoNTUVFWrVk3h4eF6/vnnFRERUe544+PjNX78eL366qtKSkrSjz/+KLPZrEaNGumFF16wOqckHTlyRHFxcTp8+LCKiooUERGhv/3tb6pfv77RJjY21up/JSktLU3Dhg3TkCFD1LZtW0nSiRMntGrVKiUkJCgjI0Pu7u5q2rSpevfurRo1alid98KFC1q6dKl+//135eTkKCAgQJ07d1a7du2MNiV9kaSpU6cqNDTUav/BgwfLYrFoxIgRVr9P+/fvV1xcnI4fPy5HR0c1bNhQPXr0UFBQUKkYli1bpt27d+vSpUvy9vZWVFSU+vfvr82bN2v27Nk3veYlfZ81a5YOHDhg/P5JUnp6ul555RUVFBRo5syZ8vf3v+mxAAC2j+IFAABViK+vr4qKinT27FkFBASU2X7NmjVq3ry5WrVqpcLCQm3ZskUffPCBXn/9dTVr1sxot3z5ci1fvlz333+/YmJi5OTkpMTERO3fv1+RkZHq27evzGazJOn06dNauXKlunbtqjp16kiSqlWrJkmyWCyaOnWq4uPj9dhjjyk0NFR79uzRokWLdOHCBfXr10+SNGzYMOPcBw8e1Pr169W3b1/jS7aXl5ckKTc3Vz/88INatmyp9u3by2w264cfftCkSZP09ttvW32hvpEGDRqoffv2slgsOnXqlFavXq2MjAxNmDDBaDNnzhxt3LhRTZs2Vfv27VVUVKSEhAQdOXJEERER5Y63xFdffSWTyaQuXbooKytLq1ev1sSJE/Xuu+/KxcVF0pUv+ZMnT1Z4eLi6d+8uk8mkjRs3asKECZowYYLuu+++Mvt2tb179yotLU1t27aVl5eXkpOTtX79eiUnJ2vSpElG4SgzM1NjxoyRJHXo0EGenp7avXu35syZo7y8PD311FNWx3V2dtaPP/6o/v37G+s2btwoJycnFRQUlIrh7bfflr+/v7p3767Lly9rzZo1evPNNzVlyhSjiHDhwgWNHj1aubm5at++verUqaMLFy5o27Ztys/PV4MGDayu+cqVKyVJXbt2Ndbdf//9N7wWcXFxpWIDAFRtFC8AAKhCmjdvrmXLlunjjz9W3759rb40FxcXl2o/Y8YM48uyJHXs2FGvvfaaVq1aZRQvUlNTtWLFCrVo0UIjRoyQg8Mfo0otFoskqUWLFsa6+Ph4rVy5Uk2aNNEDDzxgdb5ff/1V+/fv1/PPP69nnnnGOOcHH3ygNWvWqGPHjgoICNCjjz5qFff69ev10EMPlfoLuYeHh2bNmiUnpz/+L0v79u316quvas2aNRo8eHCZ18zf39/qfBcuXNDOnTuN5f3792vjxo3q1KmT1Rf0p59+2uh/eeMtkZ2drWnTpsnNzU2SFBYWpmnTpmn9+vX6y1/+IovFoo8//lgPPPCA3njjDaOw8MQTT2jEiBFaunSpxo4dK+nKEyPXy+21OnTooKefftpqXd26dTVjxgwdPHhQDRo0kCQtXbpUxcXFeu+994ziy5NPPqnp06dr+fLleuKJJ6x+Z1q0aKHNmzerd+/eRh42bdqk6Ohobd682ep8ixYtkoeHhyZNmiQPDw9J0kMPPaRRo0YpLi7OKEgsWbJEmZmZmjx5siIiIoz9n3vuOVksFlWvXl21atUy1v/www+l8nAjp06d0qZNm9S0aVP9/vvvZbYHAFQNzHkBAEAVEhISon79+ungwYMaOXKkXnzxRePf+fPnS7W/+ktodna2cnNz1aBBAx0/ftxYv2PHDlksFnXr1s2qcCGpXENTrvb777/LwcFBnTp1slrfuXNnWSwW7d69+5aO5+DgYHxhLi4uVnZ2tjG84uo+3ExBQYGysrJ08eJF7d27V/v377cacrJ9+3aZTCZ179691L632v8Sjz76qFG4kKSHH35Y3t7expfppKQknTlzRq1atdKlS5eUlZWlrKwsY4hJQkKCUbCoWbOmLly4UOY5r8715cuXlZWVpbp160qSca0sFou2b9+u5s2by2KxGOfNyspSVFSUcnNzdezYMavjNm/eXNKVwpQkJSQk6Pz583rkkUes2mVkZCgpKUlt2rQxChfSld/ZJk2aGH0vLi7Wzp071bx5c6vCRYk/e81LLFmyROHh4dcdGgUAqLp48gIAgCqmU6dOatOmjZKTk42hHJL00UcflWq7a9cuffXVV0pKSrJ6jP7qL4hnz56VyWQqNSfBn3Hu3Dl5e3tbfXGXZBz7ZvNm3MjGjRu1atUqnT59WkVFRcb68s5jsGXLFm3ZssVYjoiI0KBBg4zls2fPytvb2+oL9/+qdu3aVssmk0kBAQFG/8+cOSNJVvM0XCs3N1ceHh6qV6+etmzZotWrV6tly5ZycHBQTk5OqfbZ2dlavny5tmzZoosXL5Y6liRlZWUpJydH69ev1/r166973qysLKtlJycntW7dWj/++KMefvhh/fjjj4qOji6V45K+BQYGljpmnTp1tGfPHpnNZpnNZuXl5Sk4OPiGff+zDh48qF27dumtt95Senr6bT8+AKDyULwAAKAKcnd3V7169azWXf2Xd+nKX8inTp2qBg0a6IUXXpC3t7ccHR21cePGUo/726qffvpJs2fP1kMPPaS//vWv8vT0lIODg77++mudPXu2XMeIjIw0hlNcuHBB33zzjcaPH6933nmn1DWrKCXDUXr16nXDeTtK5hF5/PHHtWfPHn322Wf67LPPbnjMadOm6dChQ/rrX/+q0NBQVatWTcXFxZo8ebLxFEfJeVu3bq02bdpc9zghISGl1rVr106jRo1SSkqKtm7dqtdee63cfa1IixcvVmRkpBo1aqSNGzdWdjgAgNuI4gUAAHep7du3y9nZWWPGjJGzs7Ox/tovdbVq1ZLFYlFycnK5JsC8GT8/P+3bt095eXlWf5k/ffq0sf1WbNu2TbVq1dLIkSOtnhZZvnx5uY/h5eWlJk2aGMuBgYEaO3asduzYoVatWqlWrVras2ePsrOzb9vTFyVPVpSwWCxKTU01njYomc/B3d3dKrbrcXFx0ejRo5WSkqLz58/LYrHo4sWLVk/aZGdna9++fYqJiVG3bt1uGIenp6fc3NxUXFxc5nmvFhwcbMzb4enpqQceeEAHDhywalOS25SUlFL7p6SkqEaNGqpWrZpcXFzk5uamkydPlvv85bFjxw4dPnxYU6ZMua3HBQDYBua8AADgLuXg4FBqsse0tDSrySqlKxMymkwmrVixotTEkCV/qS+vpk2bGq8dvdrq1atlMpkUFRV1y324No4jR47o8OHDt3Scq12+fFmSVFhYKEmKjo6WxWK5bkHkVvtf4qefflJeXp6xvG3bNmVkZKhp06aSpPDwcNWqVUvfffed1dCfEtcO3ZCuFF0aN26sJk2alHrTxvWuk3Tlul/bLjo6Wtu3b79u8eB65y3x2GOP6cSJE2rbtu1156Xw9vZWaGioNm3aZDWs5eTJk9qzZ4/RdwcHBz300EPatWuXjh49Wuo4f+aaFxcX64svvlDLli3/5wIcAMA28eQFAAB3qWbNmmnVqlWaPHmyWrZsqaysLK1bt04BAQE6ceKE0S4gIEDPPPOMvvzyS40bN04tWrSQs7OzEhMT5ePjox49epT7nM2bN9cDDzygpUuX6ty5cwoJCdGePXv066+/6i9/+Uu5Xu967fF27Nih9957T82aNVNaWpr++9//Kigo6Lpf+q8nLS1NP/30k6Qrw0bWrVsnNzc3Y9LORo0a6dFHH9WaNWuUmpqqyMhIWSwWJSQkqFGjRurYseMtxSxdeUvKW2+9pbZt2+rixYtavXq1AgIC1L59e0lXvsAPGjRIkydP1ogRI9S2bVv5+PjowoULio+Pl5ubm15//fVyn8/d3V0NGjTQt99+q6KiIvn4+GjPnj1KS0sr1bZHjx6Kj4/XmDFj1L59ewUFBSk7O1vHjh3Tvn379Omnn173HO3bt9fDDz8sd3f3G8bRq1cvvf322xo7dqwee+wxXb58WWvXrpW7u7tiYmKsYti7d69iY2ONGDIyMrRt2zZNmDBB1atXL3ffJen8+fNycnLS6NGjb2k/AEDVQfECAIC7VKNGjTRo0CB98803+uyzz+Tv76+ePXsqLS3NqnghXXlFpb+/v9auXaulS5fKxcVFISEh5Xo15dUcHBz02muvadmyZdqyZYt+/PFH+fv7q1evXqVe41kebdu2VWZmptavX689e/YoKChIf//737V169ZSwxZuJCEhQQkJCZKkGjVqKDw8XN27d5evr6/RZsiQIQoODtaPP/6oRYsWyd3dXREREaXmFSmvrl276sSJE/r666+Vl5enxo0b68UXX5Srq6vR5oEHHtCkSZO0YsUKrVu3TmazWV5eXrrvvvv0xBNP3PI5X3nlFc2fP1/r1q2TxWJRkyZN9MYbb+jll1+2aufl5aXJkydrxYoV2r59u9atW6caNWro3nvvVc+ePW94fEdHR3l6et40hpJzxsXFKS4uTo6OjmrYsKF69uxpNcGqj4+PJk+erKVLl2rz5s3Ky8uTj4+PoqKirK7RrXjyySfLPYkrAKDqMVn+7POQAAAAsBIfH6/x48drxIgRvKoTAIDbiDkvAAAAAACATaN4AQAAAAAAbBrFCwAAAAAAYNOY8wIAAAAAANg0nrwAAAAAAAA2jeIFAAAAAACwaRQvAAAAAACATaN4AQAAAAAAbBrFCwAAAAAAYNMoXgAAAAAAAJtG8QIAAAAAANg0ihcAAAAAAMCmUbwAAAAAAAA27f8D0pAnQ3Lw5/cAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABD8AAALWCAYAAABBUjg+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr/0lEQVR4nOz9eXxN5/7//z/3zk52EhGhEhmIRA3hEENbtIagfLRKVWlQNQSnNZ2235Y6epyKqjqpnp5q0eqAmktqqLGlx9BSQydDJOZwiIgoUsOOnWT9/vCz39IESSS2bI/77ZZbrbWuda3XWi633jxd61omwzAMAQAAAAAAuCizswsAAAAAAAAoSYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAB3keXLlys8PFx2u92xr2XLlvrwww+dWBUAAKUb4QcAwKWYTKZC/dwNDhw4oLffflstW7ZUcHCwPDw8VKVKFfXp00dJSUk3PO/kyZMaMGCAgoKC5OnpqVq1amn8+PG5/tKM4mcymdSqVasS679x48Y6ffq0WrZsqVGjRqlDhw7avHmzoqKiSuyaAAC4OouzCwAAoDiNGTMmz773339f58+fz/fY3eCf//ynvvzyS9WtW1edO3eWr6+vdu/erdmzZys+Pl5r1qxRy5Ytc52TmpqqJk2a6Pjx4+rSpYtq1KihjRs3avTo0dq+fbuWLl1614Q7KJxKlSopPj5eI0eO1KRJk1S5cmXNmDFDkZGRzi4NAIBSy2QYhuHsIgAAKElhYWE6evSo7tb/5c2cOVP169dXw4YNc+1fsGCBevbsqTp16ighISHXsb59+2rWrFn66KOPNGjQIEmSYRh69tlntWDBAs2bN089e/a8Y/dwLzGZTIqKitKGDRucXQoAACggXnsBAOD/b8aMGWrSpIl8fHzk4+OjJk2aaObMmXnabdiwoVhfqenXr1+e4EOSevTooZo1a2rv3r1KT0937P/jjz/05Zdfqlq1anrhhRcc+00mk/71r39Jkj799NMCX98wDM2YMUMtWrSQn5+fvL29VaNGDb3wwgs6duxYnvZhYWE3vOf8ntftPNcKFSqoSZMmmjVrVoHvJzY2NlcfZrNZQUFBeuKJJ7Rly5YC9yNJq1atUr169eTl5aWoqCgdOnTIcWzNmjWqXbu249iuXbvy7ePIkSMaOHCgQkNDZbVaFRQUpH79+uno0aN52t7olZoPPvjAcT/JycmO/TNnzsz3uW/btk2+vr4KDw/X//73v1zH0tPT9fLLLys8PFxWq1UBAQGKjo7Wnj178ly3X79+uZ6lxWJR5cqVFR0dnSeQS05OlslkUr9+/fJ9Dje7z82bN8tisahBgwbKzMzM1fZmxwrS9/WujY38gquSHKdHjx7VgAEDFBISIg8PD1WuXFkDBgzI98+XdPXP+NixYxUZGSlvb2+VK1dODRs21D//+U/Z7XbHsy7Iz/XjZdeuXerSpYsCAgLk5uaWq931z2zBggUymUzq0KFDntD4ZscA4G7Gay8AAEh68cUX9eGHHyokJEQDBgyQJH311VeKiYnRr7/+qkmTJuU5JyoqKt+/ZM2cOTPfv9gWhbu7uyTJYvm//2X/+OOPyszMVLt27fKELFWrVlWtWrW0efNmZWdny83N7ab95+TkqHv37oqPj1dISIh69uwpX19fJScna+HChXr88ccVGhqa57xy5crp5Zdfdmz/9ttvWrZsWZ52t/tcU1NTFR8fr759+8owDPXt2/em93O9vn37KiwsTNnZ2Tpw4IAWL16s9evX65dfflFERMQtz1+/fr06d+4sLy8v9erVSxcuXNATTzwh6Wqg0atXL3Xv3l2///674uPj1apVK/38888KDw939LFt2za1b99eFy9eVMeOHVWjRg0lJydr7ty5Wr16tX788UdVq1btpnWkp6crNja2wPe9c+dOPf744/L19dV3332nKlWqOI6dPn1aDz/8sA4dOqRWrVqpR48eOnLkiOLj47Vy5Up98803at68eZ4+X3rpJfn5+clut2v37t2Kj4/Xhg0btHfvXlWsWLHAtd1Is2bNNHr0aI0dO1YjR47U+++/L0k6d+6cevXqJavVqvnz58tqtd72tfJTkuN0//79at68uU6fPq1OnTrpL3/5i/bs2aPp06dr+fLl+uGHH1SzZk1H+7S0NEVFRSkpKUkNGjTQ4MGDlZOTo6SkJMXFxenVV1+Vn59fntf4rj2z6/9cSpKfn58kKSUlRS1atNAff/yhxx57TA0aNJCHh4ckaezYsbnO6dGjh9asWaMvvvhCkyZNcvSZnJysQYMGqVKlSo7gDQBKDQMAABdXtWpV42b/y9u4caMhyahdu7Zx7tw5x/7ff//dqFmzpiHJ2LRpk2P/+vXrDUnGmDFj8u0vKirqptcrqG3bthmSjIceeijX/smTJxuSjHfffTff8zp27GhIMg4dOnTLa3z44YeGJOPRRx81Ll26lOvYpUuXjDNnzuQ5JyQkxAgLC8u1b8aMGYYkY8aMGY59xfVcExISDEnGU089dcv7MQzDGDNmjCHJWL9+fa79U6ZMMSQZ77//foH6iYyMNDw8PIxff/3Vse/f//63IcmwWq3GDz/84Nj/5ZdfGpKMnj17OvZduXLFCAsLM8qWLWv88ssvufr+/vvvDTc3N6Njx4659ksyoqKicu0bNGiQYTabjQYNGhiSjCNHjjiO/fm579271/D39zcCAgKMxMTEPPcUExNjSDJGjRqVa//KlSsNSUb16tWN7Oxsx/6+ffvmuaZhGMaIESMMScbSpUsd+44cOWJIMvr27Zvnun+W331mZWUZzZo1M0wmk7Fq1SrDMAwjOjrakGRMmzbtln3erO9r8hsbJT1OW7dune89XBuPbdq0ybW/a9euhiTj9ddfz1N/amqqYbfb8723qlWrGlWrVs332PXXe/HFF/Mcy++Z/fHHH0b16tUNq9Vq/Prrr0ZWVpbxyCOPGCaTyVizZs0NrwMAdyteewEA3PO++OILSVenxJcrV86xv3z58o5/Xc1v+ntJOn/+vPr27Suz2ax33nknzzFJuWq9nq+vb652NzN16lS5ubnpo48+kpeXV65jXl5eqlChQp5z7HZ7gf4Fvriea1ZWluO821GYfg4cOKBdu3apffv2atCggWP/K6+8Iklq2rSpmjVr5tgfHR2t+++/X0uXLnVcZ8WKFUpOTtaIESPyvNbUvHlzde7cWatWrVJGRsYN69i5c6c+/fRTDRgwQPXr179pzYcPH1bbtm2VnZ2ttWvX5pndcuXKFc2fP1/33XefRo8enetYhw4d1K5dOx08eFCbN2++6XWk4vs9uZ6bm5vmzp2rcuXKqV+/fpowYYIWLlyop59+Ws8//3yxXefPSnKcHjt2TOvXr1edOnX017/+NVf7QYMGKSIiQv/9738dryalpqZq8eLFuv/++/Od7VOpUqVcs8AK49KlS5KkOnXqFKi9j4+P5s+fr5ycHPXs2VN///vftWXLFr388stq3759kWoAAGfitRcAwD3v119/laR8X2Fp3bq1pKuvdRRVcnJynr88+fn55Zmefs3ly5fVpUsXJSUlafz48SX2WdULFy4oMTFR1atXV40aNQp8XkZGhoKCgm7ZrqjPdcOGDY6/+J08eVKLFi1SzZo1NWrUqALXKF39C+uGDRuUnZ2t/fv3a8mSJXrssccUHR19y3P37t0rSapbt26Br1evXj0dOnRIhw8fVs2aNbV161ZJ0r59+/L9i2xqaqpycnK0f/9+Pfjgg/n2+fLLL8vHx0fjx4/XiBEjbnjt48eP69FHH1VKSooGDBiQ75dhkpKSZLPZ1Lp1a3l7e+c53rp1a61du1a//fabWrRokevY+++/73jtZefOnVqzZo369u2b5ytE0tXf02v36+XlpcqVK6tVq1YKCQm5Yf3XVK1aVR9//LF69Oih119/XZUrVy7U+jXXJCcn5/vM81vroyTH6bXzoqKi8rwiYjab1bJlSyUlJem3335TlSpV9NNPP8kwDLVu3drxyltxuTbG/vOf/6hhw4a5Xnu52Tnjxo3T3//+d8drONfWFQKA0obwAwBwz8vIyJDZbJa/v3+eY5UqVZLJZLrpv87fSnJycp536qtWrZpv+GGz2dS5c2etX79eo0aN0uuvv56nzbV/nb7RzI5rtd5oZsg1184vyF9Kr7l06ZJsNlu+zyq/OoryXDdu3KiNGzc6tt3d3dWpU6d8/8J+M9f+Rf+aihUr6oEHHijQOgV//PGHpKv/+l1Q19peu6fff/9dkjR37tybnnfx4sV89y9atEgbNmzQe++9d8vnHRsbKw8PDz344IOaPn26evfuraioqFxtrtVVqVKlfPu4Fmjl93vy5zUvQkNDVa9ePeXk5Mhszj2ReOfOndq5c2eufe7u7nrllVcK9BfnRx99VL6+vsrIyNCzzz6b7+yjWzl69GieP3M3UpLjtLDPvCh/JguqVatW+sc//qEJEyaoSZMmBT6vc+fOev3115WTk6Pnn3/+loEJANyteO0FAHDP8/X1VU5Ojk6fPp3nWFpamgzDcLxKUhStWrWSYRi5fq7/AsM1ly9f1pNPPqm1a9fqtdde09tvv51vf9dmaRw4cCDf4wcOHJCHh0e+C5Ve71o4cuLEiQLfy7WvnYSFhd2ybVGf65gxYxzPKSMjQ1999ZW+/vprtWzZUpcvXy5wrevXr3f0k5aW5nimBfkaSZkyZSRdnR1TUNfaXgtBrt3b8uXL8/z+X//z55BCuhqCjRgxQhERERo2bNgtr+3m5qYlS5Zo6dKljtdGrgU411yr59SpU/n2kZqamqvd9Y4cOSLDMJSTk6Pjx4+rW7duGj58uP7xj3/kaXtt0U/DMHTx4kX997//VaVKlRQXF6cffvjhlvfSv39/ZWRk6L777tP7779fpFlXUVFR+T7rPy8Seu1+S2qcFvaZX1uctDB/Jgvjrbfe0pYtW2Q2m1WnTh2NGTMm32dyjd1u13PPPeeobfTo0Tp+/HiJ1AYAJY3wAwBwz7u2HkN+U+Kv7bt+3YeScPnyZXXu3Flr167V8OHDFRcXd8O2TZs2lYeHh9auXZvnU5NHjx7Vvn371KxZs1uuDeDj46M6deroyJEjNwxS/uzaqxw3ek3jesXxXMuWLatOnTqpT58+Onz4cIHWo8iPv7+/RowYoXr16mnRokWy2Ww3bX9tvYw/f871Zvbs2SMPDw/H11uu/ev6jz/+WOh6J06cqKNHj+r9998v0OsPb731ltq3b6+QkBBNnjxZycnJjvVJromIiJCnp6d27NjhWP/hegX5PTGZTAoJCdG///1vlStXTrNnz75pXd7e3mrdurWjlp9++umm7adMmaLly5frueee07fffitJ6tmzZ771FpeSHKfXztu0aVOeP6uGYWjTpk252j344IMym81av3697HZ70W7oJgzD0OjRo+Xu7q4FCxYoNjb2pl8Sev311/Xzzz/r9ddf1+zZs/X777+rd+/eysnJKfbaAKCkEX4AAO551z5LOXbs2FzT28+fP++YOl+YT6wW1rVXXdauXatXXnlFEydOvGl7X19f9ejRQ4cPH9a0adMc+w3DcKw38OfFFW9k6NChys7O1pAhQ/LMqrDZbI5XN6Srz+ODDz6Qu7u7nnzyyVv2XVzP1TAM7dmzp0D3czNnz57ViRMnCvTaS+3atRUREaFvvvlGu3btcux/7733JF0NgbZs2eLY/9VXX+ngwYPq2LGj47WAzp07KzQ0VO+9957jL7nXs9vt+c6EOHnypP71r3+pY8eOBV5Y8vpXNnr16qWuXbvqs88+06pVqxz7PTw81LNnT6Wnp2vChAm5zl+zZo2++eYbVa9ePddCrjdy5MiRPDNLbuZauHazBVL37Nmj4cOHq1q1apo6daoaNWqk8ePHKykp6Ybr4xSHkhynoaGhat26tRISEjR9+vRcxz755BMlJiaqTZs2js8RV6pUSV27dtWhQ4fyfW0nLS3NsbBqUUyaNEnr1q3TW2+9pXr16t207dq1a/Xvf/9bTZs21ZgxY9SxY0cNHTpUGzZsYN0PAKUSa34AAO55LVu21N/+9jd9+OGHqlu3rrp27SrDMPTVV1/p+PHjevHFF/Nd2LG4DBo0SGvXrlVgYKDKli2b77/E9uvXL9erJv/617+0fv16DRkyROvWrVP16tW1ceNGbd26VZ06dVKPHj0KdO3Bgwdr48aNWrhwoWrUqKEnn3xSvr6+OnbsmL755ht9/vnneuqpp/TWW29p8uTJOnXqlCZMmFCgBU+L+lyvX0jywoUL2rBhg37++WdFRETkWYjzZq4teCpJ6enpWrZsmc6cOaOYmBh5enre8vz33ntPHTt2VIsWLRQdHa0LFy44gpDAwEA9+eST6t69u37//XctWrRIZcuWzfWqktVqVXx8vB5//HFFRUWpTZs2qlevnkwmk44eParvv/9e9913n5KSknJdd//+/fLw8HAELUXx0Ucf6fvvv9fAgQO1Z88ex7oZcXFx2rhxo+P1hyZNmig5OVmLFi2St7e3ZsyYkWcND+n/Fjw1DEMnT57U4sWLHWtA/Nm+ffv08ccfS7o6o2nr1q1atGiRKlWqdMPQzGazqWfPnsrKytK8efNUtmxZSdKrr76qb7/9Vp9++qnat2+vrl27FvmZ3EhJj9OPPvpIzZs311//+lctX75cderUUUJCgr7++mv5+/vro48+ytXv1KlTtWfPHo0fP16rVq1SmzZtZBiG9u/fr2+//VanTp1yvB5TGAkJCRo1apSioqLyzAr6s/T0dPXt21dly5bVvHnzHLPI3n33XW3cuFFjxozRo48+Wqi1QwDA6UrsI7oAANwlqlatahTkf3nTp083HnroIcPb29vw9vY2HnroIWP69Ol52q1fv96QZIwZMybffqKiogp0vT+3v9nP+vXr85yXkpJi9O/f36hUqZLh4eFh1KhRwxg3bpyRmZlZ4GsbhmHk5OQYn332mdG0aVOjTJkyhre3t1GjRg1j0KBBxrFjxxw1tm3b1li2bFm+fcyYMcOQZMyYMSPPscI+1+t/ypQpY9SqVcsYOXKkkZaWVqD7GTNmTJ5+ypcvbzzwwAPGhx9+aNjt9gI/m6VLlxp16tQxrFar0bJlS+PQoUOGJCMqKspYs2aNERERYXh6ehrNmjUzfvrpp3z7OH78uPHSSy8ZNWrUMKxWq+Hr62vUrl3bGDhwoPHdd9/lanut3hEjRuTpp2/fvoYk48iRI459N3vuS5cuNSQZ3bt3z7X/9OnTxosvvmhUrVrVcHd3NypWrGh069bN2L179w2vef2Pv7+/0axZM2P27Nm52h45ciRPW09PT+P+++83Bg0aZCQnJ+e6z6ioKMf20KFDDUnGW2+9laeGlJQUo2LFikb58uUd4/Fm/tz39a6Njfz+PJXkOE1OTjZiYmKMoKAgw2KxGEFBQUZMTEyuZ3K98+fPG//85z+NiIgIw2q1GuXKlTMaNGhgvPHGG8aVK1fyPadq1apG1apV8z2WmZlpNGjQwPD19c33mn9+Zh07djQkGXPmzMnTdvfu3Yanp6dRrVo1IyMjI9/rAcDdyGQYf3oBEQAAADdkMpkUFRWV7xoRAADg7sSaHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwaX3sBAAAoBJZLAwCg9GHmBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXJrF2QXA9Zw9e1ZZWVnOLgOlgLu7u+x2u7PLQCnBeEFhMF5QGIwXFBZjBoXBeClZFotF5cuXv3W7O1AL7jFZWVn84UaBmM1mxgoKjPGCwmC8oDAYLygsxgwKg/FydyD8QLHbcmyTzlxId3YZAAAAAIAieKxGJ2eXUOxY8wMAAAAAALg0wg8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8QB4LFy7UiBEjnF0GAAAAAADFgvDjHpKVleXsEgAAAAAAuOMszi4A0tatW7Vo0SKlpqbKarUqPDxcI0aMkKenp7777jutWLFCaWlp8vf31+OPP6727ds7zj1z5oxmz56tnTt3KisrSyEhIRowYIBq1KihhQsXaseOHXrssce0ePFipaen68svv9TFixc1e/Zs7dixQ1lZWapWrZr69u2rsLAwbdiwQfHx8ZKk6OhoSdKQIUPUqlUrZzwaAAAAAABuG+GHk509e1aTJk1Sr1691LhxY9lsNiUmJkqSvv/+ey1cuFD9+/dXeHi4jhw5omnTpslqtapVq1ay2WyKjY1VhQoVNHLkSPn5+enw4cMyDMPRf2pqqrZt26bhw4fLbL460ee9996Th4eHXn/9dXl7e2vt2rUaN26cJk2apEceeUTHjh3Tzp079c9//lOS5O3tnW/tdrtddrvdsW0ymeTl5VVSjwoAAAAAgCIh/HCys2fPKjs7W02aNJG/v78kKTQ0VNLVtTd69+6tJk2aSJICAgJ0/PhxrVu3Tq1atdIPP/ygjIwMTZgwQT4+PpKkwMDAXP1nZWVp2LBh8vX1lSQlJSXp4MGD+uyzz+Tu7i5J6tOnj3bs2KGtW7eqbdu28vT0lNlslp+f301rX7JkiWOWiCSFh4crLi7u9h8KAAAAAADFiPDDycLCwlSvXj0NHz5c9evXV2RkpJo2bSqLxaJTp07p448/1rRp0xztc3JyHDMxkpOTFRYW5gg+8uPv7+8IPq6dY7PZ1L9//1ztrly5otTU1ELV3qVLF3Xs2NGxbTKZCnU+AAAAAAB3AuGHk5nNZo0ePVr79u3Trl27tGbNGi1YsEAjR46UJL3wwguqUaNGnnMkycPD45b9W63WXNs2m03ly5dXbGxsnrY3er3lRtzd3R2zRwAAAAAAuFsRftwFTCaTIiIiFBERoW7dumnIkCHat2+fypcvr1OnTqlFixb5nhcaGqrvvvtOFy5cuOnsj+tVq1ZN586dk9lsVkBAQL5tLBaLcnJyinw/AAAAAADcTfjUrZMdOHBAixcv1qFDh5Senq5t27YpIyNDISEhio6O1tKlS7Vq1SqlpKTo2LFjWr9+vVasWCFJat68ufz8/DRx4kQlJSXp1KlT2rp1q/bv33/D69WrV081a9bUxIkTtXPnTqWlpWnfvn2aP3++Dh06JOnq2iJpaWlKTk5WRkZGrkVNAQAAAAAobZj54WReXl5KTEzUqlWrdPnyZVWsWFF9+vRRw4YNJV19beXrr7/WnDlzZLVaFRoaqieeeELS1Rkao0eP1qxZszRhwgTl5OSocuXKGjBgwA2vZzKZNGrUKM2fP19Tp05VRkaG/Pz8VLt2bZUrV06S1KRJE23btk1jx47VxYsX+dQtAAAAAKBUMxnXfxcVKAbLfv5KZy6kO7sMAAAAAEARPFajk7NLKDB3d3fHl1NvhtdeAAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEvjay8odqdPn5bdbnd2GSgFrFarMjMznV0GSgnGCwqD8YLCYLygsBgzKAzGS8niay8AAAAAAAAi/AAAAAAAAC6O8AMAAAAAALg0wg8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAuzeLsAuB61h3coNN/pDu7DAAASpVudTs7uwQAAFwWMz8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8cJIpU6bonXfeKXD7hIQERUdH6+LFiyV+LQAAAAAAXAmfur0HxMTEyDAMx3ZsbKzCwsLUr18/5xUFAAAAAMAdQvjhwnJyciRJ3t7eTq4EAAAAAADnIfy4DTk5OVq+fLnWrVunM2fOqFy5cmrXrp2efvpppaena9asWdq1a5dMJpNq166tfv36KSAg4IZ9LVu2TOvWrdO5c+cUHBysrl27qmnTprna7du3T/PmzdPJkycVFhamF154QaGhoZKkDRs2aObMmRo2bJjmzp2rkydP6oMPPtCiRYt08eJFvfbaa5oyZYr27t2rvXv3atWqVZKkyZMna9y4cWrXrp2efPJJx7WSk5P12muv6YMPPlBgYGAJPUUAAAAAAEoW4cdtmDdvnr777jv17dtXEREROnfunE6cOKGsrCyNHz9eNWvW1Jtvvimz2azFixfr7bff1rvvviuLJe9jX7p0qb7//nv99a9/VVBQkBITE/Xhhx/K19dXderUcbSbPXu2YmJi5Ofnp3nz5ikuLk6TJk1y9JmZmally5Zp0KBBKlu2rMqVK5frOjExMTp58qSqVKmi7t27S5J8fX3VunVrbdiwIVf4sX79etWuXZvgAwAAAABQqrHgaRFdvnxZq1ev1nPPPadWrVopMDBQERERevTRR7VlyxYZhqFBgwYpNDRUlStX1pAhQ5Senq6EhIQ8fdntdi1ZskSDBw9WgwYNVKlSJbVq1UotWrTQ2rVrc7V95plnFBkZqdDQUA0bNkznz5/X9u3bHcezs7M1YMAA1apVS8HBwbJarbnO9/b2lsVikdVqlZ+fn/z8/GQ2m9WqVSulpKTo4MGDkqSsrCz98MMPat269Q2fgd1u16VLlxw/ly9fvp1HCgAAAABAiWDmRxGdOHFCdrtd9erVy3Ps6NGjSk1NVZ8+fXLtt9vtOnXqVJ72qampyszM1Lhx43Ltz8rKUnh4eK59NWvWdPzax8dHwcHBOnHihGOfxWJR1apVC30/FSpUUKNGjfTf//5X1atX188//6ysrCw9/PDDNzxnyZIlio+Pd2yHh4crLi6u0NcGAAAAAKAkEX4UkYeHxw2P2Ww2VatWTS+++GKeY76+vvm2l6RRo0apQoUKuY7l94rMreoymUyFOueaNm3aaPLkyerXr5/Wr1+vhx9+OM/Mket16dJFHTt2dGwX9boAAAAAAJQkwo8iCgwMlIeHh3bv3q1HH30017Hw8HBt2bJFvr6+BfrSSuXKleXu7q709PRc63vkZ//+/apYsaIk6cKFCzp58qRCQkIKVbvFYnF8CeZ6jRo1ktVq1bfffqudO3dq7NixN+3H3d1d7u7uhbo2AAAAAAB3GuFHEXl4eKhz586aM2eOLBaLatWqpYyMDB0/flwtWrTQ8uXLNXHiREVHR+u+++7T6dOntW3bNnXu3Fn33Xdfrr68vLzUqVMnffHFF8rJyVFERIQuXbqkffv2ycvLS61atXK0/eqrrxwLmS5YsEBly5ZV48aNC1W7v7+/Dhw4oLS0NHl6esrHx0dms9mx9se8efMUGBiY6xUbAAAAAABKK8KP29C1a1e5ublp4cKF+v3331W+fHm1a9dOVqtVY8eO1Zw5c/Tuu+/KZrOpQoUKqlu3rry8vPLtq3v37vL19dXSpUt16tQplSlTRuHh4erSpUuuds8++6xmzpzp+NTtyJEjC/1qTKdOnTRlyhS98sorunLliiZPnuz4BG+bNm20ZMmSmy50CgAAAABAaWIyDMNwdhG4eyQmJurNN9/URx99JD8/vyL1Mf/HRTr9R3rxFgYAgIvrVrezs0u4Z1mtVmVmZjq7DJQijBkUBuOlZLm7u8vf3/+W7Zj5AUlXv0STkZGhRYsW6eGHHy5y8AEAAAAAwN3G7OwCcHfYvHmzhgwZoosXL+q5555zdjkAAAAAABQbZn5AktSqVatcC6sCAAAAAOAqmPkBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApbHmB4pd2+qtZLfbnV0GSgE++4XCYLygMBgvAADgesz8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC6Nr72g2H2d+F+lnj/t7DIAAChVYh542tklAADgspj5AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB+4oYULF2rEiBHOLgMAAAAAgNtC+HGXmjJlit55551Cn0dgAQAAAABAboQfAAAAAADApVmcXcC9buvWrVq0aJFSU1NltVoVHh6usLAwbdy4UZIUHR0tSRozZoz+8pe/aM6cOdqxY4fOnDkjPz8/NW/eXN26dZPFYtGGDRsUHx+f67whQ4aoVatWunjxombPnq0dO3YoKytL1apVU9++fRUWFuaoZenSpVq5cqUyMzP18MMPy9fX984+DAAAAAAASgDhhxOdPXtWkyZNUq9evdS4cWPZbDYlJiYqKipK6enpunz5soYMGSJJ8vHxkSR5eXlpyJAhKl++vI4dO6Zp06bJy8tLnTt31iOPPKJjx45p586d+uc//ylJ8vb2liS999578vDw0Ouvvy5vb2+tXbtW48aN06RJk+Tj46MtW7Zo0aJFGjBggCIiIrRp0yatXr1aAQEBznk4AAAAAAAUE8IPJzp79qyys7PVpEkT+fv7S5JCQ0MlSR4eHrLb7fLz88t1TteuXR2/DggIUEpKirZs2aLOnTvLw8NDnp6eMpvNuc5LSkrSwYMH9dlnn8nd3V2S1KdPH+3YsUNbt25V27ZttWrVKrVu3Vpt2rSRJPXo0UO7d+/WlStXbli/3W6X3W53bJtMJnl5ed3WMwEAAAAAoLgRfjhRWFiY6tWrp+HDh6t+/fqKjIxU06ZNHbM88rNlyxatXr1aqampstlsysnJuWXgkJycLJvNpv79++faf+XKFaWmpkqSTpw4oXbt2uU6XqNGDSUkJNyw3yVLljhes5Gk8PBwxcXF3bQWAAAAAADuNMIPJzKbzRo9erT27dunXbt2ac2aNVqwYIHefvvtfNvv379fH3zwgaKjo1W/fn15e3tr8+bNWrFixU2vY7PZVL58ecXGxuY5du21mKLo0qWLOnbs6Ng2mUxF7gsAAAAAgJJC+OFkJpNJERERioiIULdu3TRkyBBt375dFotFOTk5udru27dP/v7+evrppx370tPTc7XJ77xq1arp3LlzMpvNN1zDIyQkRAcOHFBUVJRj34EDB25au7u7u+M1GgAAAAAA7lZ86taJDhw4oMWLF+vQoUNKT0/Xtm3blJGRoZCQEPn7++vYsWNKSUlRRkaGsrKyFBQUpPT0dG3evFmpqalatWqVtm/fnqvPgIAApaWlKTk5WRkZGbLb7apXr55q1qypiRMnaufOnUpLS9O+ffs0f/58HTp0SJLUoUMHrV+/XuvXr1dKSooWLlyo48ePO+OxAAAAAABQrJj54UReXl5KTEzUqlWrdPnyZVWsWFF9+vRRw4YNdf/992vv3r36+9//LpvNpjFjxujBBx/UE088oenTp8tut6tRo0bq2rWrFi1a5OizSZMm2rZtm8aOHauLFy86PnU7atQozZ8/X1OnTlVGRob8/PxUu3ZtlStXTpL0yCOPKDU1VXPmzJHdbleTJk3Url077dy501mPBwAAAACAYmEyDMNwdhFwLZ9v+lKp5087uwwAAEqVmAeevnUjlAir1arMzExnl4FShDGDwmC8lCx3d3fH11NvhtdeAAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC7N4uwC4HqerN1Gdrvd2WWgFOCzXygMxgsKg/ECAACux8wPAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NL42guK3YKd65Ry7rSzywAAoFT52yPdnF0CAAAui5kfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+PEnsbGxmjlzprPLAAAAAAAAxYTw4x6VkJCg6OhoXbx40dmlAAAAAABQogg/AAAAAACAS7M4uwBnstls+uyzz7Rt2zZ5eXmpU6dOuY5fuHBBM2fO1M8//yy73a46deooJiZGQUFBjjZJSUlasGCBDh48KHd3d1WvXl0vvfSSfHx8NHToUHXo0EFPPPGEo/2IESP00EMPKTo6WpIUHR2tv/71r/r555+1Z88e+fv7a/DgwfL19dXHH3+sQ4cOqWrVqho2bJgCAwMd/ezYsUPx8fE6fvy4ypcvr6ioKD399NNyc3Nz9PvCCy/ol19+0c6dO1WhQgX16dNHDz74oNLS0jR27FhJUkxMjCQpKipKQ4cO1datW7Vo0SKlpqbKarUqPDxcI0aMkKenZ8n8JgAAAAAAUMLu6fBjzpw52rt3r1577TWVK1dO8+bN05EjRxQWFiZJmjp1qk6ePKnXXntNXl5emjt3riZMmKD33ntPFotFycnJGjdunFq3bq1+/frJzc1NCQkJysnJKVQdX331lfr06aM+ffpo7ty5mjRpkipVqqSnnnpKFStW1EcffaTp06fr9ddflyQlJiZq8uTJiomJUe3atXXq1ClNmzZNkvTMM884+o2Pj1evXr3Uu3dvrV69Wh988IGmTp2qihUr6tVXX9W///1vvf/++/L29paHh4fOnj2rSZMmqVevXmrcuLFsNpsSExOL52EDAAAAAOAk9+xrLzabTf/973/Vu3dv1atXT6GhoRo2bJiys7MlSSdPntRPP/2kQYMGqXbt2goLC9OLL76o33//XTt27JAkLVu2TNWqVdPAgQMVFhamKlWq6LHHHpOvr2+hamnVqpUeeeQRBQcHq3Pnzjp9+rSaN2+uBg0aqHLlyurQoYMSEhIc7ePj4/XUU0+pVatWqlSpkiIjI9W9e3etW7cuV79RUVFq3ry5AgMD1bNnT9lsNh08eFBms1k+Pj6SpHLlysnPz0/e3t46e/assrOz1aRJEwUEBCg0NFTt27e/4awPu92uS5cuOX4uX75cqPsGAAAAAOBOuGdnfqSmpiorK0s1atRw7PPx8VFwcLAk6cSJE3Jzc8t1vGzZsgoODtaJEyckScnJyXr44Ydvu5aqVas6fu3n5ydJCg0NdewrV66cI2jw9vZWcnKykpKStHjxYkebnJwc2e12ZWZmymq15unX09NTXl5eOn/+/A3rCAsLU7169TR8+HDVr19fkZGRatq0qSMo+bMlS5YoPj7esR0eHq64uLjC3TwAAAAAACXsng0/ioOHh8dNj5tMJhmGkWvftZkl17u2Tsf1LJb/+60xmUyS5OjLZrMpOjpaTZo0yXOeu7v7DfvNr57rmc1mjR49Wvv27dOuXbu0Zs0aLViwQG+//bYCAgLytO/SpYs6duyYp04AAAAAAO4m9+xrL4GBgXJzc9OBAwcc+y5cuKCTJ09KkkJCQpSdnZ3r+B9//KGUlBRVrlxZ0tWZFbt3777hNXx9fXXu3DnH9qVLl5SWlnbbtVerVk0pKSkKDAzM82M2F+y39Fq48uf1SUwmkyIiIhQdHa133nlHFotF27dvz7cPd3d3eXt7O368vLxu78YAAAAAACgB92z44enpqTZt2mjOnDnas2ePjh07pqlTpzpmLwQFBenBBx/UtGnTlJSUpOTkZH344YeqUKGCHnzwQUnSU089pUOHDumzzz7T0aNHdeLECX377bfKyMiQJNWtW1ebNm1SYmKijh07pilTphQ4nLiZrl27atOmTVq0aJH+97//6fjx49q8ebMWLFhQ4D78/f1lMpn0888/KyMjQzabTQcOHNDixYt16NAhpaena9u2bcrIyFBISMht1wwAAAAAgLPc06+99O7dWzabTXFxcfL09FSnTp106dIlx/EhQ4Zo5syZ+te//qWsrCzVrl1bo0aNcsyaCA4O1ujRozV//ny9/vrr8vDwUPXq1dWsWTNJV8ORtLQ0/etf/5K3t7e6d+9eLDM/GjRooJEjR+qrr77SsmXL5ObmppCQELVp06bAfVSoUEHPPPOM5s2bp48++kgtW7ZU586dlZiYqFWrVuny5cuqWLGi+vTpo4YNG952zQAAAAAAOIvJuNkiEEARfLhuvlLOnXZ2GQAAlCp/e6Sbs0u4Z1mtVmVmZjq7DJQijBkUBuOlZLm7u8vf3/+W7e7Z114AAAAAAMC9gfADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDSLswuA6+lRv63sdruzy0ApwGe/UBiMFxQG4wUAAFyPmR8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApfG1FxS7GTu+1fGzac4uAwCAUuXvrbs7uwQAAFwWMz8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wA/nasGGD+vXr5+wyAAAAAAC4bYQfAAAAAADApRF+3GWysrKcXQIAAAAAAC7F4uwC7nWxsbGqUqWK3Nzc9P333ys0NFQxMTGaM2eOEhMT5enpqcjISPXt21e+vr5at26dFi1apI8++khm8/9lV++88458fHw0ZMgQSdKOHTsUHx+v48ePq3z58oqKitLTTz8tNzc3SdKKFSu0fv16paWlycfHRw888ICee+45eXp6OuU5AAAAAABQUpj5cRfYuHGjLBaLxo0bp2effVZvvvmmwsLC9K9//Uuvv/66zp8/r//85z+SpKZNm+qPP/5QQkKC4/wLFy7ot99+U4sWLSRJiYmJmjx5sh5//HG99957ev7557VhwwYtXrzYcY7JZFJMTIz+/e9/a+jQodqzZ4/mzJlTqLrtdrsuXbrk+Ll8+XIxPA0AAAAAAIoX4cddICgoSM8995yCg4O1a9cuhYeH69lnn1VISIjCw8M1ePBgJSQkKCUlRT4+PmrQoIF++OEHx/lbt25V2bJl9Ze//EWSFB8fr6eeekqtWrVSpUqVFBkZqe7du2vdunWOc5544gnVrVtXAQEBqlu3rnr06KEff/yxUHUvWbJE/fr1c/zExsYWy/MAAAAAAKA48drLXSA8PNzx66NHj2rPnj3q3bt3nnanTp1ScHCwWrRooWnTpmngwIFyd3fX999/r2bNmjleg0lOTlZSUlKumR45OTmy2+3KzMyU1WrVrl27tHTpUp04cUKXL19WdnZ2ruMF0aVLF3Xs2NGxbTKZivoIAAAAAAAoMYQfd4Hr19mw2WyO9Tf+zM/PT5L0wAMPyDAM/fLLL7r//vuVlJSkvn375uojOjpaTZo0ydOHu7u70tLSFBcXp3bt2qlHjx7y8fFRUlKSPv74Y2VlZRU4/HB3d5e7u3sh7xYAAAAAgDuL8OMuEx4erm3btsnf39+xOOmfeXh4qEmTJvr++++Vmpqq4OBgVatWzXG8WrVqSklJUWBgYL7nHz58WDk5OerTp49jtkhhX3kBAAAAAKC0YM2Pu0z79u114cIFTZo0SQcPHlRqaqp+++03TZ06VTk5OY52zZs316+//qr169erefPmufro2rWrNm3apEWLFul///ufjh8/rs2bN2vBggWSpMDAQGVnZ2vNmjU6deqUNm3apLVr197R+wQAAAAA4E5h5sddpkKFCho3bpzmzp2r8ePHy263y9/fX/Xr18+1pkbdunXl4+OjlJSUPOFHgwYNNHLkSH311VdatmyZ3NzcFBISojZt2kiSwsLC1KdPHy1btkzz5s1T7dq19eyzz2ry5Ml39F4BAAAAALgTTIZhGM4uAq7lnVVzdfxsmrPLAACgVPl76+7OLuGeZbValZmZ6ewyUIowZlAYjJeS5e7uLn9//1u247UXAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEuzOLsAuJ6Yh/6f7Ha7s8tAKcBnv1AYjBcUBuMFAABcj5kfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKXxtRcUu482r9GxM2nOLgMAgFLlzcd7OrsEAABcFjM/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC6N8KOYTZkyRe+8806JXiM2NlYzZ850ag0AAAAAAJQWFmcXgOIXExMjwzCcXQYAAAAAAHcFwg8X5O3t7ewSAAAAAAC4axB+FNHWrVu1aNEipaamymq1Kjw8XCNGjHAc//rrr7VixQplZWXpkUceUb9+/WSxXH3cFy5c0MyZM/Xzzz/LbrerTp06iomJUVBQkOP8pKQkLViwQAcPHpS7u7uqV6+ul156ST4+Pnlq+eWXXzRp0iQNHDhQLVq00JQpU3Tx4kW99tprkq6+JhMaGioPDw999913slgsateunaKjox19nDhxQh9//LEOHz6sgIAAxcTE6K233tLw4cPVuHHjknqMAAAAAACUOMKPIjh79qwmTZqkXr16qXHjxrLZbEpMTHQcT0hIUPny5TVmzBilpqbq/fffV1hYmNq2bStJmjp1qk6ePKnXXntNXl5emjt3riZMmKD33ntPFotFycnJGjdunFq3bq1+/frJzc1NCQkJysnJyVPLDz/8oE8//VQvvviiHnjggRvWvHHjRnXs2FFvv/229u/fr6lTpyoiIkKRkZHKycnRxIkTVbFiRY0fP142m02zZs265XOw2+2y2+2ObZPJJC8vr8I8SgAAAAAAShzhRxGcPXtW2dnZatKkifz9/SVJoaGhjuM+Pj4aMGCAzGazQkJC1LBhQ+3Zs0dt27bVyZMn9dNPP2ncuHGqVauWJOnFF1/U4MGDtWPHDj388MNatmyZqlWrpoEDBzr6rFKlSp461qxZowULFmjkyJGqU6fOTWuuWrWqnnnmGUlSUFCQ1qxZo927dysyMlK7du3SqVOnFBsbKz8/P0lSjx499NZbb920zyVLlig+Pt6xHR4erri4uJueAwAAAADAnUb4UQRhYWGqV6+ehg8frvr16ysyMlJNmzZ1vJJSuXJlmc3/9yGd8uXL69ixY5Kuvl7i5uamGjVqOI6XLVtWwcHBOnHihCQpOTlZDz/88E1r2Lp1q86fP69x48apevXqt6z5+nDmWk3nz5+XJKWkpOi+++5zBB+SCtRnly5d1LFjR8e2yWS65TkAAAAAANxpfOq2CMxms0aPHq1Ro0apcuXKWrNmjV5++WWlpaVJktzc3HK1N5lMhfr6ioeHxy3bhIWFydfXV+vXry9Q39fWG7ne7X4Rxt3dXd7e3o4fXnkBAAAAANyNCD+KyGQyKSIiQtHR0XrnnXdksVi0ffv2W54XEhKi7OxsHThwwLHvjz/+UEpKiipXrizp6isqu3fvvmk/gYGBGjNmjH766SdNnz79tu4lODhYZ86c0blz5xz7Dh06dFt9AgAAAABwtyD8KIIDBw5o8eLFOnTokNLT07Vt2zZlZGQoJCTklucGBQXpwQcf1LRp05SUlKTk5GR9+OGHqlChgh588EFJ0lNPPaVDhw7ps88+09GjR3XixAl9++23ysjIyNVXcHCwxowZo23btmnmzJlFvp/IyEhVqlRJU6ZM0dGjRx1fmpF4lQUAAAAAUPoRfhSBl5eXEhMTNWHCBL300ktasGCB+vTpo4YNGxbo/CFDhqhatWr617/+pdGjR8swDI0aNcrxakpwcLBGjx6to0eP6vXXX9fo0aO1Y8eOPK/TXGv7xhtvaPPmzQX6Qkt+zGazRowYIZvNplGjRmnatGl6+umnJV19tQUAAAAAgNLMZNzuwg9wSUlJSXrjjTf0wQcfKDAwsFDnvrl0to6dSSuhygAAcE1vPt7T2SXcs6xWqzIzM51dBkoRxgwKg/FSstzd3R1fYb0ZvvYCSdL27dvl6empwMBApaamaubMmapVq1ahgw8AAAAAAO42hB+QJF2+fFlz585Venq6ypYtq3r16qlPnz7OLgsAAAAAgNtG+AFJUlRUlKKiopxdBgAAAAAAxY4FTwEAAAAAgEsj/AAAAAAAAC6N115Q7AY3e0x2u93ZZaAUYOVrFAbjBYXBeAEAANdj5gcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApfGpWxS79/+7Ssnpac4uAwCAUmVil17OLgEAAJfFzA8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0u6p8CM2NlYzZ84scPsTJ07oH//4h3r16qURI0aUXGHFbOHChaWqXgAAAAAAStI99anb4cOHy83NrcDtFy5cKKvVqvfff1+enp4lWFnRRUdHa/jw4WrcuLFj35NPPqnHH3/ciVUBAAAAAHD3uKfCDx8fn0K1P3XqlBo1aiR/f/8iXzMrK0sWy519zJ6enndtWAMAAAAAwJ12T4UfsbGxCgsLU79+/TR06FA9+uijSk1N1datW1WmTBl17dpVbdu2lXR1RoUkHT58WPHx8erWrZuio6N17NgxzZgxQ/v375fValWTJk3Ut29fR9gwZcoUXbx4UdWrV9c333wji8WiMWPGaNiwYXr55Ze1Zs0aHTp0SKGhofrb3/6mS5cu6bPPPtOJEydUu3ZtDRs2TL6+vpKkgwcPav78+UpOTlZWVpbCwsLUt29fVatWTZI0dOhQSdK7774rSfL399eUKVO0cOFC7dixQxMnTpQk5eTkaPHixVq3bp0yMjIUEhKiXr16qUGDBpKktLQ0DRs2TK+++qrWrFmjAwcOKCgoSH/9619Vs2bNO/ObAwAAAABACbmn1vz4sxUrVuj+++/XO++8o/bt2+vTTz9VSkqKJOmTTz5RlSpV1LFjR33yySd68sknZbPZNH78eJUpU0YTJkzQK6+8ot27d+vzzz/P1e+ePXuUkpKi0aNH6+9//7tj/6JFi/T0008rLi5OZrNZH3zwgebOnat+/frpzTffVGpqqr788ktHe5vNpqioKL355psaP368goKCNGHCBF2+fFmSNGHCBEnSkCFD9Mknnzi2/2zVqlVavny5evfurXfffVf169dXXFycTp48mavdggUL1KlTJ73zzjsKCgrSpEmTlJ2dffsPGgAAAAAAJ7qnw4+GDRuqffv2CgwMVOfOneXr66s9e/ZIkvz8/GQ2m+Xp6Sk/Pz95enrqhx9+0JUrVzRs2DCFhoaqbt266t+/vzZt2qRz5845+rVarRo0aJCqVKmiKlWqOPZ36tRJDRo0UOXKldWhQwcdPnxYXbt2VUREhMLDw9WmTRslJCQ42tetW1ctW7ZUSEiIKleurOeff15XrlzR3r17JckxQ8Tb21t+fn6O7T9bvny5OnfurGbNmik4OFjPPfecwsLCtHLlylztOnXqpEaNGik4OFjR0dE6ffq0UlNTb/j87Ha7Ll265Pi5FsoAAAAAAHA3uadee/mzqlWrOn5tMpnk5+enjIyMG7Y/ceKEwsLCcq2nERERIcMwlJKSIj8/P0lSaGhovut8hIaGOn5drly5fPedP3/esX3u3DktWLBAe/fu1fnz55WTk6MrV64oPT29wPd46dIlnT17VhEREbn216pVS0ePHr1hfdfu5fz58woJCcm37yVLlig+Pt6xHR4erri4uALXBgAAAADAnXBPhx/5ffklJyfntvu1Wq357r8+EDGZTHlqMJlMMgzDsT1lyhRduHBB/fr1k7+/v9zd3fWPf/xDWVlZt11jQeu7vp4/69Klizp27JjnHAAAAAAA7ib39GsvhRUSEqLk5GTZbDbHvqSkJJlMJgUHBxf79fbt26fHH39cjRo1UpUqVWSxWPTHH3/kauPm5nbTwMbb21vly5dXUlJSnr4rV658W/W5u7vL29vb8ePl5XVb/QEAAAAAUBIIPwqhRYsW8vDw0JQpU3Ts2DHt2bNHM2bMUMuWLR2viRSnoKAgbdq0ScePH9eBAwf04YcfysPDI1ebgIAA7dmzR+fOndOFCxfy7efJJ5/UsmXLtGXLFqWkpGju3LlKTk5Whw4dir1mAAAAAADuNvf0ay+FZbVa9Y9//EMzZszQqFGjcn3qtiQMGjRIn3zyiUaOHKmKFSuqZ8+emj17dq42vXv31qxZs/Tdd9+pQoUKmjJlSp5+Hn/8cV26dEmzZs3S+fPnVblyZY0cOVJBQUElUjcAAAAAAHcTk3GzRR2AIvjHl18oOT3N2WUAAFCqTOzSy9kl3LOsVqsyMzOdXQZKEcYMCoPxUrLc3d3l7+9/y3a89gIAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaRZnFwDX83KbDrLb7c4uA6UAn/1CYTBeUBiMFwAAcD1mfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXxtdeUOzivlmhw2mnnF0GAAClyuQefZxdAgAALouZHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvhxF4uNjdXMmTNv2mbo0KFauXLlnSkIAAAAAIBSyOLsAnBjw4cPl5ub2x2/bmxsrMLCwtSvX787fm0AAAAAAIob4UcJycrKksVye4/Xx8enmKoBAAAAAODeRfhRQLGxsapSpYokadOmTbJYLGrXrp26d+8uk8mkoUOHqnXr1kpNTdWOHTvUuHFjDR06VElJSZo3b54OHTokX19fPfTQQ3r22Wfl6ekpSfrmm2+0cuVKnTlzRt7e3oqIiNCrr77quOb1MzDOnz+vjz76SLt375afn5969OiRp86LFy9q9uzZ2rFjh7KyslStWjX17dtXYWFhkqSFCxdqx44d6tSpk7788ktduHBBDRs21AsvvCAvLy9NmTJFe/fu1d69e7Vq1SpJ0uTJkxUQEFDCTxgAAAAAgJJB+FEIGzduVJs2bTRhwgQdOnRIn3zyiSpWrKi2bdtKkpYvX65u3bqpW7dukqTU1FSNHz9ePXr00ODBg5WRkaHp06dr+vTpGjJkiA4dOqQZM2Zo2LBhqlWrli5cuKDExMQbXn/q1Kn6/fffNWbMGFksFs2YMUPnz5/P1ea9996Th4eHXn/9dXl7e2vt2rUaN26cJk2a5JhJcurUKW3fvl0jR47UxYsX9Z///EdLly5Vz549FRMTo5MnT6pKlSrq3r27JMnX17ckHicAAAAAAHcEC54Wwn333ae+ffsqODhYLVq00GOPPZZrsdG6deuqU6dOCgwMVGBgoJYuXaoWLVroiSeeUFBQkGrVqqWYmBht3LhRV65cUXp6uqxWqx544AH5+/srPDxcHTp0yPfaKSkp+vXXX/XCCy+oZs2aqlatmgYNGqQrV6442iQlJengwYN65ZVXdP/99ysoKEh9+vSRt7e3tm7d6mhnGIaGDh2q0NBQ1a5dWy1bttSePXskSd7e3rJYLLJarfLz85Ofn5/M5vyHid1u16VLlxw/ly9fLo7HDAAAAABAsWLmRyHUqFFDJpPJsV2zZk2tWLFCOTk5kqT7778/V/ujR4/q6NGj+v7773PtNwxDaWlpioyMlL+/v4YNG6YGDRqoQYMGaty4saxWa55rnzhxQm5ubqpWrZpjX0hIiMqUKePYTk5Ols1mU//+/XOde+XKFaWmpjq2/f395eXl5dj28/PLM4OkIJYsWaL4+HjHdnh4uOLi4grdDwAAAAAAJYnwoxj9ObSw2Wxq27ZtvrM5KlasKIvFori4OCUkJGjXrl1auHChFi1apAkTJuQKNQrKZrOpfPnyio2NzXPM29vb8es/f0HGZDLJMIxCX69Lly7q2LFjrn4AAAAAALjbEH4UwsGDB3NtHzhwQIGBgTd8LSQ8PFwnTpxQYGDgDft0c3NTZGSkIiMj1a1bN8XExGjPnj1q0qRJrnYhISHKzs7W4cOHVb16dUlXX4W5ePGio021atV07tw5mc3m21qg1GKxOGaz3Iy7u7vc3d2LfB0AAAAAAO4E1vwohPT0dH3xxRdKSUnRDz/8oNWrV99wjQ5J6ty5s/bt26fPP/9cycnJOnnypHbs2KHPP/9ckvTzzz9r1apVSk5O1unTp7Vp0ybl5OQoODg4T1/BwcFq0KCBPv30Ux04cECHDx/Wxx9/LA8PD0ebevXqqWbNmpo4caJ27typtLQ07du3T/Pnz9ehQ4cKfJ/+/v46cOCA0tLSlJGRUaAgBAAAAACAuxUzPwqhZcuWunLlikaNGiWz2awOHTo4vvSSn6pVqyo2NlYLFizQG2+8IcMwFBgYqIcffliSVKZMGW3fvl2LFi2S3W5XUFCQXnrpJccndf9syJAh+vjjjxUbG6ty5cqpR48e+vLLLx3HTSaTRo0apfnz52vq1KnKyMiQn5+fateurXLlyhX4Pjt16qQpU6bolVde0ZUrV/jULQAAAACgVDMZRVns4R4UGxursLAw9evXz9ml3PWGz5mhw2mnnF0GAAClyuQefZxdwj3LarUqMzPT2WWgFGHMoDAYLyXL3d1d/v7+t2zHay8AAAAAAMClEX4AAAAAAACXxpofBZTf52MBAAAAAMDdj5kfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBprfqDYjWzfUXa73dlloBTgs18oDMYLCoPxAgAArsfMDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC6N8AMAAAAAALg0wg8AAAAAAODS+NoLit245V/r0KlTzi4DAIA8Pu3bz9klAAAAJ2DmBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuGHi8jJyVFOTo6zywAAAAAA4K5jcXYBrmzr1q1atGiRUlNTZbVaFR4erhEjRsjDw0OLFy/WunXrlJGRoZCQEPXq1UsNGjSQJCUkJGjs2LGaMWOGypQpI0lKTk7Wa6+9psmTJysgIEAbNmzQzJkzNWzYMM2dO1cnT57UBx98oPLly+vLL7/U5s2bdf78ed13333q0qWL2rRpI0k6duyY5syZo8TERHl6eioyMlJ9+/aVr6/vTWv29PR0yjMEAAAAAOB2EX6UkLNnz2rSpEnq1auXGjduLJvNpsTEREnSqlWrtHz5cj3//PMKDw/Xf//7X8XFxem9995TUFBQga+RmZmpZcuWadCgQSpbtqzKlSunyZMna//+/YqJiVHVqlWVlpamP/74Q5J08eJFvfnmm2rTpo369u2rK1euaO7cufrPf/6jMWPG3LRmAAAAAABKK8KPEnL27FllZ2erSZMm8vf3lySFhoZKkpYvX67OnTurWbNmkqTnnntOCQkJWrlypQYOHFjga2RnZ2vAgAEKCwuTJKWkpOjHH3/U6NGjFRkZKUmqVKmSo/2aNWsUHh6uZ5991rFv8ODBGjx4sFJSUmSz2W5Yc37sdrvsdrtj22QyycvLq8D1AwAAAABwJxB+lJCwsDDVq1dPw4cPV/369RUZGammTZvKbDbr7NmzioiIyNW+Vq1aOnr0aKGuYbFYVLVqVcd2cnKyzGaz6tSpk2/7o0ePas+ePerdu3eeY6dOnVL9+vXzrdnHxyff/pYsWaL4+HjHdnh4uOLi4gp1DwAAAAAAlDTCjxJiNps1evRo7du3T7t27dKaNWu0YMECjR49+pbnmkwmSZJhGI59WVlZedp5eHg42l7bvhmbzaYHHnhAzz33XJ5jfn5+N6z57bffVkBAQJ5zunTpoo4dO+apGwAAAACAuwlfeylBJpNJERERio6O1jvvvCOLxaI9e/aofPnySkpKytV23759qly5siQ5Fh89d+6c43hycvItrxcaGirDMLR37958j4eHh+v48ePy9/dXYGBgrp9rC5rmV/P27dvz7c/d3V3e3t6OH155AQAAAADcjQg/SsiBAwe0ePFiHTp0SOnp6dq2bZvjyy5PPvmkli1bpi1btiglJUVz585VcnKyOnToIEkKDAzUfffdp4ULF+rkyZP65ZdftGLFilteMyAgQFFRUfroo4+0fft2paWlKSEhQVu2bJEktW/fXhcuXNCkSZN08OBBpaam6rffftPUqVOVk5Nz05oBAAAAACiteO2lhHh5eSkxMVGrVq3S5cuXVbFiRfXp00cNGzZU/fr1denSJc2aNUvnz59X5cqVNXLkSMeXXiwWi1566SV99tlnGj58uKpXr64ePXrovffeu+V1Bw4cqPnz5+vzzz/XH3/8oYoVK6pLly6SpAoVKmjcuHGaO3euxo8fL7vdLn9/f9WvX9+xWOmNagYAAAAAoLQyGdcvLFEI586d03//+18dPnxYly9fVk5OTu6OTSa98cYbxVIkSpcXp3+uQ6dOObsMAADy+LRvP2eXgLuQ1WpVZmams8tAKcKYQWEwXkqWu7u742ulN1OkmR9Hjx5VbGysrly5ouDgYB07dkyVK1fWpUuX9Pvvv6tSpUq67777itI1AAAAAABAsSpS+DFv3jx5enpq4sSJ8vDw0F//+lfFxMSobt26+vHHH/XZZ5/pxRdfLO5aAQAAAAAACq1IC54mJSWpXbt2qlixoszmq11ce+3l4YcfVvPmzTV79uziqxIAAAAAAKCIihR+GIahcuXKSZK8vb1lNpt14cIFx/HQ0FAdPny4eCoEAAAAAAC4DUUKPwICApSWlna1A7NZAQEB2r17t+P4vn37VKZMmeKpEAAAAAAA4DYUac2PyMhIbd26VT179pQktWvXTrNnz1ZaWpoMw1BCQoI6depUrIUCAAAAAAAURZE+dXvhwgWlpaUpNDRUFotFhmFo8eLF2rZtm8xmsxo1aqSnn35aFkuRshWUcqdPn5bdbnd2GSgF+OwXCoPxgsJgvKAwGC8oLMYMCoPxUrIK+qnbIoUfwM0QfqCg+B8BCoPxgsJgvKAwGC8oLMYMCoPxUrIKGn4Uac2PGzl37pzS09OLs0sAAAAAAIDbUqT3UrKzs/XVV1/p8OHDioyMVIcOHTR16lRt3LhRklStWjW99tprKl++fLEWCwAAAAAAUFhFCj/mz5+v5cuXq3z58tq5c6eOHTumHTt2qGfPnsrMzNTy5cu1YMECDR48uLjrBQAAAAAAKJQihR8//vijHn74Yb388stat26dPv30U/Xp00dPPPGEJMlut2vLli3FWigAAAAAAEBRFCn8+P3331W/fn1JUqNGjSRJVapUcRyvUqWKzp49WwzloTT65+JlOngy1dllAACQx6zn+zu7BAAA4ARFWvA0JydH7u7ukuT4r9n8f12ZzWbl5OQUQ3kAAAAAAAC3p0gzPyQpKSlJ2dnZstlskqRdu3bpzJkzkqR9+/YVT3UAAAAAAAC3qcjhx9q1a7V27VrH9rJly4qlIAAAAAAAgOJUpPBj8uTJxV0HAAAAAABAiShS+OHv71/cdQAAAAAAAJSIIr/2Ikk2m0179+5Venq6JKlixYqqU6eOPD09i6U4AAAAAACA21Xk8GP16tVasGCBY8HTazw9PdWzZ0899thjt10c8kpLS9OwYcP0zjvvKCwsrEDnTJkyRRcvXtRrr71WssUBAAAAAHAXKlL4sXHjRs2cOVM1a9bU448/rpCQEEnSiRMntHr1as2YMUPe3t5q2bJlsRaLoomJiZFhGM4uAwAAAAAApyhS+LFixQrVrl1bb7zxhsxms2N/1apV1bRpU7355ptavnw54cddwtvb29klAAAAAADgNEUKP1JSUtS7d+9cwcc1ZrNZTZs21ezZs2+7uHtZTk6Oli9frnXr1unMmTMqV66c2rVrp+bNm+dpN23aNO3Zs0fnzp1TxYoV1b59e3Xo0MHR5s+vvcTGxio0NFRms1kbN26UxWJR9+7d1bx5c02fPl1bt25VuXLl1L9/fzVs2PCO3jcAAAAAAMWtSOGHt7e3Tp8+fcPjp0+fZrbBbZo3b56+++479e3bVxERETp37pxOnDiRp11OTo7uu+8+vfLKKypbtqz27dunTz75RH5+fnrkkUdu2P/GjRv15JNP6u2339aWLVv02WefaceOHXrooYfUpUsXrVy5UpMnT9bUqVNltVrz7cNut8tutzu2TSaTvLy8bv/mAQAAAAAoRkUKPxo1aqQ1a9aoWrVqatasWa5jW7Zs0Zo1a9SiRYtiKfBedPnyZa1evVr9+/dXq1atJEmBgYGKiIhQWlparrYWi0XR0dGO7YCAAO3fv18//vjjTcOPqlWrqmvXrpKkLl26aOnSpSpbtqzatm0rSerWrZu+/fZbHT16VDVr1sy3jyVLlig+Pt6xHR4erri4uCLdMwAAAAAAJaVI4UevXr20f/9+ffDBB5o1a5aCgoIkSSdPntS5c+cUEhKiZ599tlgLvZecOHFCdrtd9erVK1D7NWvWaP369UpPT9eVK1eUlZV1yy/BhIaGOn5tNptVtmzZXPvKlSsnScrIyLhhH126dFHHjh0d2yaTqUD1AgAAAABwJxUp/PD19VVcXJzWrVunX3/9Venp6ZKu/oW6c+fOatu2rTw8PIq10HtJYZ7d5s2bNXv2bPXp00c1a9aUl5eXvv76ax04cOCm51ksuX/rTSaT3Nzccm1LV1+ruRF3d3e5u7sXuFYAAAAAAJyhSOGHdPUv6B06dMi1sCaKR2BgoDw8PLR79249+uijN227b98+1apVS+3bt3fsO3XqVEmXCAAAAABAqVHk8AMlx8PDQ507d9acOXNksVhUq1YtZWRk6Pjx46pbt26utoGBgdq4caN+++03BQQEaNOmTTp48KACAgKcVD0AAAAAAHeXIoUfw4YNu2Ubk8mkDz/8sCjdQ1LXrl3l5uamhQsX6vfff1f58uXVrl27PO3atWun5ORkvf/++zKZTGrWrJnat2+vX3/91QlVAwAAAABw9zEZhmEU9qTu3bsrIiJClSpVumm7IUOGFLkwlF6Dpn2mgydTnV0GAAB5zHq+v7NLwF3IarUqMzPT2WWgFGHMoDAYLyXL3d1d/v7+t2xX5Nde2rVrp+bNmxf1dAAAAAAAgDvC7OwCAAAAAAAASlKRZ36cOHFCSUlJslgs8vT0lJ+fn3x8fIqzNgAAAAAAgNtW5PBj8eLFWrx4ca59vr6+qlevnjp37qyqVavednEAAAAAAAC3q0jhx5gxYyRJ2dnZysrK0sWLF3Xu3DkdP35cv/76q3bs2KGxY8eqWrVqxVosAAAAAABAYRUp/KhTp84Nj12+fFmjR4/WwoUL9fe//73IhQEAAAAAABSHIr/2ciNeXl7q2rWrtmzZUtxdo5QY93Rn2e12Z5eBUoDPfqEwGC8oDMYLAAC4XrGHH5L0yCOP6JFHHimJrgEAAAAAAAqlSJ+63bVrl+bNm3fD4/Pnz9eePXuKXBQAAAAAAEBxKVL48dVXX+nMmTM3PP7777/rq6++KnJRAAAAAAAAxaVI4cexY8dUo0aNGx6///77dezYsSIXBQAAAAAAUFyKFH5kZWUpKyvrpsdZZAwAAAAAANwNirTgaZUqVbR9+3Z17NgxzzHDMLRt2zZVrlz5totD6TRywRLtT0l1dhkAAOSx8G8DnV0CAABwgiLN/Hjssce0b98+vffeezp27Jiys7OVnZ2to0eP6r333tP+/fv12GOPFXetAAAAAAAAhVakmR8tW7bUqVOn9NVXX2nbtm0ym69mKDk5OTKZTOratatatWpVnHUCAAAAAAAUSZHCD0l65pln1KJFC23fvl1paWmSpEqVKumhhx5SYGBgsRUIAAAAAABwO4ocfkhSYGCgnnzyyeKqBQAAAAAAoNgVac0PAAAAAACA0oLwAwAAAAAAuDTCj3vEwoULNWLEiEKdEx0dre3bt5dQRQAAAAAA3BkuE34kJCQoOjpaFy9eLJb+NmzYoH79+hVLXyUlNjZWM2fOLFDbJ598Um+88UbJFgQAAAAAwF3IZcKPgsrKyrqj18vJyVFOTo7T6jAMQ9nZ2fL09FTZsmXvyDUBAAAAALib3NbXXopbTk6Oli1bpnXr1uncuXMKDg5W165d1aRJE7311lsym816/fXXZTKZdOHCBQ0fPlytW7dW69atNXbsWElSTEyMJCkqKkpDhw5VbGysqlSpIjc3N33//fcKDQ3VmDFjtGLFCq1fv15paWny8fHRAw88oOeee06enp5KSEjQ1KlTJV199UOSunXrpujoaNntds2fP1+bN2/WpUuXVKVKFfXq1Ut/+ctfJF2dMTJz5kwNGzZMc+fO1cmTJ/XBBx9o7Nixat26tVJTU7Vjxw41btxYQ4cOVVJSkubNm6dDhw7J19dXDz30kJ599ll5enpKkr755hutXLlSZ86ckbe3tyIiIvTqq69qypQp2rt3r/bu3atVq1ZJkiZPnqzTp09r7NixGjVqlBYsWKBjx45p9OjRSkhI0I4dOzRx4kRJ0sGDBzV//nwlJycrKytLYWFh6tu3r6pVq3bnfsMBAAAAALgDihR+XAsabsZkMhX6NYulS5fq+++/11//+lcFBQUpMTFRH374oXx9fTV06FC9+uqrWr16tTp06KBPPvlEFSpUULdu3WQymfTqq6/q3//+t95//315e3vLw8PD0e/GjRv1//7f/9O4ceNy1RcTE6OAgAClpaXps88+05w5czRw4EDVqlVL/fr105dffqlJkyZJkiOM+Pzzz3XixAm9/PLLKl++vLZv3663335b7777roKCgiRJmZmZWrZsmQYNGqSyZcuqXLlykqTly5erW7du6tatmyQpNTVV48ePV48ePTR48GBlZGRo+vTpmj59uoYMGaJDhw5pxowZGjZsmGrVqqULFy4oMTFR0tWQ5+TJk6pSpYq6d+8uSfL19dXp06clSfPmzVPv3r0VEBAgHx8fJSQk5HrWNptNUVFR6t+/vwzD0IoVKzRhwgR98MEH8vLyKtDvl91ul91uz/VMC3ouAAAAAAB3SpHCj71796pChQry9vYutkLsdruWLFmif/7zn6pZs6YkqVKlSkpKStLatWv10ksv6fnnn9fkyZN17tw5/frrr3rnnXfk5uYmSfLx8ZEklStXTmXKlMnVd1BQkJ577rlc+5544gnHrwMCAtSjRw99+umnGjhwoCwWi7y9vWUymeTn5+dol56erg0bNmjq1KmqUKGCpKtraezcuVPr16/Xs88+K0nKzs7WgAEDFBYWluuadevWVadOnRzbH3/8sVq0aOGoJSgoSDExMRozZowGDhyo9PR0Wa1WPfDAA/Ly8pK/v7/Cw8MlSd7e3rJYLLJarblqvCY6OlqRkZE3fN5169bNtf38888rJiZGe/fu1QMPPHDD8663ZMkSxcfHO7bDw8MVFxdXoHMBAAAAALhTivzaS69evdS8efNiKyQ1NVWZmZm5ZmdIV9fGuPYX/ocffljbt2/X0qVLNXDgQMdMi1u5dv71du3apaVLl+rEiRO6fPmysrOzZbfblZmZKavVmm8/x44dU05Ojl566aU8NV4LXyTJYrGoatWqec6///77c20fPXpUR48e1ffff59rv2EYSktLU2RkpPz9/TVs2DA1aNBADRo0UOPGjW9Y382u9Wfnzp3TggULtHfvXp0/f145OTm6cuWK0tPTb9n3NV26dFHHjh0d2yaTqcDnAgAAAABwp9w1a37YbDZJ0qhRoxyzKq6xWK6WmZmZqcOHD8tsNis1NbXAfV97ZeWatLQ0xcXFqV27durRo4d8fHyUlJSkjz/+WFlZWTcMF2w2m8xms+Li4mQ2514r9vpreHh45BsE/Llfm82mtm3bqkOHDnnaVqxYURaLRXFxcUpISNCuXbu0cOFCLVq0SBMmTMgzu+VW1/qzKVOm6MKFC+rXr5/8/f3l7u6uf/zjH4VaiNXd3V3u7u4Fbg8AAAAAgDPcNeFH5cqV5e7urvT0dNWpUyffNrNmzXIsejphwgQ1atTI8frGtYAkvy+r/Nnhw4eVk5OjPn36OEKMH3/8MVcbi8WSp6+wsDDl5OTo/Pnzql27dqHv8c/Cw8N14sQJBQYG3rCNm5ubIiMjFRkZqW7duikmJkZ79uxRkyZN8q2xoPbt26eBAweqUaNGkq6+0vPHH38UqS8AAAAAAO5md82nbr28vNSpUyd98cUX2rBhg1JTU3X48GGtXr1aGzZs0C+//KL169frb3/7myIjI9WpUyfH7AVJ8vf3l8lk0s8//6yMjAzHTJL8BAYGKjs7W2vWrNGpU6e0adMmrV27Nlcbf39/2Ww27d69WxkZGcrMzFRwcLCaN2+uyZMna9u2bUpLS9PBgwe1ZMkS/fLLL4W+586dO2vfvn36/PPPlZycrJMnT2rHjh36/PPPJUk///yzVq1apeTkZJ0+fVqbNm1STk6OgoODHTUeOHBAaWlpysjIKFQQEhQUpE2bNun48eM6cOCAPvzww1yLxAIAAAAA4CqKPPPjl19+0blz527a5vr1IAqie/fu8vX11dKlS3Xq1CmVKVNG4eHh6tKli/7zn//omWeecXyKNTo6Wrt27dKnn36q/+//+/9UoUIFPfPMM5o3b54++ugjtWzZUkOHDs33OmFhYerTp4+WLVumefPmqXbt2nr22Wc1efJkR5tatWqpXbt2ev/99/XHH384PnU7ZMgQLV68WLNmzdLvv/8uX19f1ahRo8CLhF6vatWqio2N1YIFC/TGG2/IMAwFBgbq4YcfliSVKVNG27dv16JFi2S32xUUFKSXXnpJVapUkSRHAPTKK6/oypUrueq/lUGDBumTTz7RyJEjVbFiRfXs2VOzZ88u9D0AAAAAAHC3MxmGYRT2pGufVr2VL7/8stAFofTr/+En2p9S8DVZAAC4Uxb+baCzS8BdyGq1KjMz09lloBRhzKAwGC8ly93dXf7+/rdsV6SZH4WZYQAAAAAAAOBMRQo/CpKqAAAAAAAA3A1u62svNptNe/fuVXp6uqSrn2etU6dOnk/LAgAAAAAAOEuRw4/Vq1drwYIFeb6q4unpqZ49e+qxxx677eIAAAAAAABuV5HCj40bN2rmzJmqWbOmHn/8cYWEhEiSTpw4odWrV2vGjBny9vZWy5Yti7VYAAAAAACAwirS115GjBihMmXK6I033pDZbM51LCcnR2+++aYuXryoiRMnFluhKD1Onz4tu93u7DJQCrDyNQqD8YLCYLygMBgvKCzGDAqD8VKyCvq1F/MtW+QjJSVFTZs2zRN8SJLZbFbTpk2VkpJSlK4BAAAAAACKVZHCD29vb50+ffqGx0+fPi1vb+8iFwUAAAAAAFBcihR+NGrUSGvWrNHmzZvzHNuyZYvWrFmjBx544LaLAwAAAAAAuF1FWvC0V69e2r9/vz744APNmjVLQUFBkqSTJ0/q3LlzCgkJ0bPPPlushQIAAAAAABRFkRY8laQrV65o3bp1+vXXX5Weni5Jqlixoho2bKi2bdvKw8OjWAtF6cGCpygoFn9CYTBeUBiMFxQG4wWFxZhBYTBeSlZBFzwtcPixd+9eVa5cWb6+vrddHFwb4QcKiv8RoDAYLygMxgsKg/GCwmLMoDAYLyWroOFHgV97GTt2rP72t7+pefPmt1UYXN//N3ux9p046ewyAADIY9mrzzu7BAAA4ARFWvAUAAAAAACgtCD8AAAAAAAALo3wAwAAAAAAuLRCfer2ww8/1IcffligtiaTSQsWLChSUQAAAAAAAMWlUOFHZGSkgoKCSqoWAAAAAACAYleo8CMqKoqvvRSD2NhYhYWFqV+/fkU6f8OGDZo5c6ZmzpxZrHUBAAAAAOCKChV+4O7wyCOPqGHDhs4uAwAAAACAUoHwoxTy8PCQh4eHs8sAAAAAAKBUIPxwkuzsbH3++efatGmTLBaL2rVrp+7du8tkMslut2v+/PnavHmzLl26pCpVqqhXr176y1/+Iinvay8LFy7Ujh071KlTJ3355Ze6cOGCGjZsqBdeeEFeXl6SpMuXL+vTTz/Vjh075OXlpSeffFI//fRTrtdvvvnmG61cuVJnzpyRt7e3IiIi9Oqrrzrj8QAAAAAAUGwKHH58+eWXJVnHPWfjxo1q06aNJkyYoEOHDumTTz5RxYoV1bZtW33++ec6ceKEXn75ZZUvX17bt2/X22+/rXffffeGC86eOnVK27dv18iRI3Xx4kX95z//0dKlS9WzZ09J0hdffKF9+/bptddeU7ly5bRw4UIdOXJEYWFhkqRDhw5pxowZGjZsmGrVqqULFy4oMTHxTj0OAAAAAABKDDM/nOS+++5T3759ZTKZFBwcrGPHjmnlypVq0KCBNmzYoKlTp6pChQqSpCeffFI7d+7U+vXr9eyzz+bbn2EYGjp0qGOmR8uWLbVnzx5JV2d9bNy4US+99JLq1asnSRoyZIheeOEFx/np6emyWq164IEH5OXlJX9/f4WHh9/0Hux2u+x2u2PbZDI5rg8AAAAAwN2C8MNJatSoIZPJ5NiuWbOmVqxYoWPHjiknJ0cvvfRSrvZZWVny8fG5YX/+/v65ggc/Pz+dP39e0tVZIdnZ2apevbrjuLe3t4KDgx3bkZGR8vf317Bhw9SgQQM1aNBAjRs3ltVqveE1lyxZovj4eMd2eHi44uLiCnD3AAAAAADcOYQfdxmbzSaz2ay4uDiZzeZcxzw9PW94npubW65tk8kkwzAKfF0vLy/FxcUpISFBu3bt0sKFC7Vo0SJNmDBBZcqUyfecLl26qGPHjrmuCQAAAADA3cZ86yYoCQcPHsy1feDAAQUGBiosLEw5OTk6f/68AgMDc/34+fkV6VqVKlWSm5tbrmteunRJKSkpudq5ubkpMjJSzz33nCZOnKjTp087Xp3Jj7u7u7y9vR0/vPICAAAAALgbMfPDSdLT0/XFF1+oXbt2Onz4sFavXq0+ffooODhYzZs31+TJk9WnTx+Fh4crIyNDu3fvVtWqVdWoUaNCX8vLy0tRUVGaM2eOfHx8HAueXj+z5Oeff9apU6dUp04dlSlTRr/++qtycnJyvRoDAAAAAEBpRPjhJC1bttSVK1c0atQomc1mdejQQW3btpV0dTHSxYsXa9asWfr999/l6+urGjVq6IEHHijy9fr27atPP/1UcXFxjk/dnjlzRh4eHpKkMmXKaPv27Vq0aJHsdruCgoL00ksvqUqVKsVyvwAAAAAAOIvJKMzCEHAZNptNgwYNUp8+fdSmTZti7fu596Zp34mTxdonAADFYdmrzzu7BNyFrFarMjMznV0GShHGDAqD8VKy3N3d5e/vf8t2zPy4Rxw5ckQnTpxQ9erVdenSJcdXWh588EEnVwYAAAAAQMki/LiHLF++XCkpKbJYLKpWrZrefPNN+fr6OrssAAAAAABKFOHHPSI8PFxxcXHOLgMAAAAAgDuOT90CAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaXzqFsXu9OnTstvtzi4DpQCf/UJhMF5QGIwXFAbjBYXFmEFhMF5KVkE/dcvMDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC6N8AMAAAAAALg0wg8AAAAAAODSLM4uAK7nb9O/UtLxk84uAwCAPFaNesHZJQAAACdg5gcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGkWZxeAgtu6dasWLVqk1NRUWa1WhYeHa8SIEfL09NR3332nFStWKC0tTf7+/nr88cfVvn17x7np6emaNWuWdu3aJZPJpNq1a6tfv34KCAiQJE2ZMkUXL15URESEVqxYoaysLD3yyCPq16+fLBaGCQAAAACg9OJvtaXE2bNnNWnSJPXq1UuNGzeWzWZTYmKiJOn777/XwoUL1b9/f4WHh+vIkSOaNm2arFarWrVqpaysLI0fP141a9bUm2++KbPZrMWLF+vtt9/Wu+++6wg3EhISVL58eY0ZM0apqal6//33FRYWprZt2zrz1gEAAAAAuC2EH6XE2bNnlZ2drSZNmsjf31+SFBoaKklauHChevfurSZNmkiSAgICdPz4ca1bt06tWrXSli1bZBiGBg0aJJPJJEkaMmSI+vXrp4SEBNWvX1+S5OPjowEDBshsNiskJEQNGzbUnj17bhh+2O122e12x7bJZJKXl1eJPQMAAAAAAIqC8KOUCAsLU7169TR8+HDVr19fkZGRatq0qSwWi06dOqWPP/5Y06ZNc7TPycmRt7e3JOno0aNKTU1Vnz59cvVpt9t16tQpx3blypVlNv/fMjDly5fXsWPHbljTkiVLFB8f79gODw9XXFzcbd8rAAAAAADFifCjlDCbzRo9erT27dunXbt2ac2aNVqwYIFGjhwpSXrhhRdUo0aNPOdIks1mU7Vq1fTiiy/m6dfX19fxazc3t1zHTCaTDMO4YU1dunRRx44dc7UHAAAAAOBuQ/hRiphMJkVERCgiIkLdunXTkCFDtG/fPpUvX16nTp1SixYt8j0vPDxcW7Zska+vr2M2SHFwd3eXu7t7sfUHAAAAAEBJ4FO3pcSBAwe0ePFiHTp0SOnp6dq2bZsyMjIUEhKi6OhoLV26VKtWrVJKSoqOHTum9evXa8WKFZKkFi1ayNfXVxMnTlRiYqLS0tKUkJCg6dOn68yZM06+MwAAAAAAShYzP0oJLy8vJSYmatWqVbp8+bIqVqyoPn36qGHDhpIkq9Wqr7/+WnPmzJHValVoaKieeOIJx7GxY8dqzpw5evfdd2Wz2VShQgXVrVuXBUoBAAAAAC7PZNxsUQegCHrEfayk4yedXQYAAHmsGvWCs0vAXchqtSozM9PZZaAUYcygMBgvJcvd3d3xRdSb4bUXAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEvjU7codqdPn5bdbnd2GSgF+OwXCoPxgsJgvKAwGC8oLMYMCoPxUrL41C0AAAAAAIAIPwAAAAAAgIsj/AAAAAAAAC6N8AMAAAAAALg0wg8AAAAAAODSLM4uAK5nyLRFSvzfSWeXAQBAHt+OGezsEgAAgBMw8wMAAAAAALg0wg8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0gg/XNTQoUO1cuVKZ5cBAAAAAIDTWZxdgKuaMmWKLl68qNdee80p158wYYKsVqtTrg0AAAAAwN2E8MNF+fr6OrsEAAAAAADuCoQft2nr1q1atGiRUlNTZbVaFR4errCwMG3cuFGSFB0dLUkaM2aM/vKXvyg9PV2zZs3Srl27ZDKZVLt2bfXr108BAQGS/m/GSHh4uNasWaOsrCw1a9ZM/fv3l8Vy9bcrNjZWVapUkSRt2rRJFotF7dq1U/fu3WUymSRdfe2lQ4cOeuKJJxx1vPDCC/rll1+0c+dOVahQQX369NGDDz7ouJeffvpJs2bN0pkzZ1SzZk1FRUVp6tSpmjFjhsqUKXNnHigAAAAAAMWM8OM2nD17VpMmTVKvXr3UuHFj2Ww2JSYmKioqSunp6bp8+bKGDBkiSfLx8VFWVpbGjx+vmjVr6s0335TZbNbixYv19ttv691333WEG3v27JGHh4diY2N1+vRpTZ06VWXLllXPnj0d1964caPatGmjCRMm6NChQ/rkk09UsWJFtW3b9ob1xsfHq1evXurdu7dWr16tDz74QFOnTpWPj4/S0tL073//Wx06dNCjjz6qI0eOaPbs2SX7AAEAAAAAuANY8PQ2nD17VtnZ2WrSpIkCAgIUGhqq9u3by9PTUx4eHrJYLPLz85Ofn58sFou2bNkiwzA0aNAghYaGqnLlyhoyZIjS09OVkJDg6NdisWjw4MGqUqWKGjVqpOjoaK1evVo5OTmONvfdd5/69u2r4OBgtWjRQo899tgtFziNiopS8+bNFRgYqJ49e8pms+ngwYOSpLVr1yo4OFi9e/dWcHCwmjVrplatWt20P7vdrkuXLjl+Ll++XPSHCQAAAABACWHmx20ICwtTvXr1NHz4cNWvX1+RkZFq2rSpfHx88m1/9OhRpaamqk+fPrn22+12nTp1yrFdtWrVXIuV1qxZUzabTWfOnJG/v78kqUaNGo5XXK61WbFihXJycmQ2559pVa1a1fFrT09PeXl56fz585KklJQU3X///bnaV69e/ab3v2TJEsXHxzu2w8PDFRcXd9NzAAAAAAC40wg/boPZbNbo0aO1b98+7dq1S2vWrNGCBQv09ttv59veZrOpWrVqevHFF/McuxMLlLq5ueXaNplMMgyjyP116dJFHTt2zNUfAAAAAAB3G8KP22QymRQREaGIiAh169ZNQ4YM0fbt22WxWHK9piJdnRmxZcsW+fr6ytvb+4Z9Hj16VFeuXJGHh4ck6cCBA/L09NR9993naHPtdZVrDhw4oMDAwBvO+riV4OBg/frrr7n2/fkaf+bu7i53d/ciXQ8AAAAAgDuFNT9uw4EDB7R48WIdOnRI6enp2rZtmzIyMhQSEiJ/f38dO3ZMKSkpysjIUFZWllq0aCFfX19NnDhRiYmJSktLU0JCgqZPn64zZ844+s3KytJHH32k48eP65dfftHChQv12GOP5Qo20tPT9cUXXyglJUU//PCDVq9erQ4dOhT5Xtq1a6cTJ05ozpw5SklJ0ZYtWxxfrGFGBwAAAACgNGPmx23w8vJSYmKiVq1apcuXL6tixYrq06ePGjZsqPvvv1979+7V3//+d9lsNsenbseOHas5c+bo3Xfflc1mU4UKFVS3bl15eXk5+q1bt66CgoI0ZswY2e12NWvWTM8880yua7ds2VJXrlzRqFGjZDab1aFDh5t+6eVWAgIC9Oqrr2rWrFlavXq1atasqS5duuizzz5zfIUGAAAAAIDSyGTczqIPKHZTpkzRxYsX9dprr92wTWxsrMLCwtSvX78SrWXx4sVau3atPvroo0Kd98xbU5X4v5MlVBUAAEX37ZjBzi4BdyGr1arMzExnl4FShDGDwmC8lCx3d3fHh0Fuhn/Sh8M333yj+++/X2XLltW+ffv09ddf67HHHnN2WQAAAAAA3BbCDzicPHlSixcv1oULF1SxYkV17NhRXbp0cXZZAAAAAADcFl57QbHjtRcAwN2K116QH6ako7AYMygMxkvJKuhrL3ztBQAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEtjzQ8Uu9OnT8tutzu7DJQCvP+IwmC8oDAYLygMxgsKizGDwmC8lCzW/AAAAAAAABDhBwAAAAAAcHGEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFyaxdkFwPUMnrxQiUdPOrsMAADyWPv2EGeXAAAAnICZHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvjhooYOHaqVK1fe8HhaWpqio6OVnJx854oCAAAAAMAJLM4uAM5RsWJFffLJJypbtqyzSwEAAAAAoEQRftyjzGaz/Pz8nF0GAAAAAAAljvDjJrZu3apFixYpNTVVVqtV4eHhGjFihD7//HNdvHhR4eHhWrNmjbKystSsWTP1799fFsvVR/rbb7/pq6++0v/+9z+ZzWbVrFlT/fr1U2BgoKP/M2fOaPbs2dq5c6eysrIUEhKiAQMGqEaNGpKkHTt2KD4+XsePH1f58uUVFRWlp59+Wm5ubjIMQ4sWLdL69et1/vx5lS1bVk2aNFH//v0d/WdmZmrq1KnaunWrypQpo65du6pt27aSrr72MmzYML3zzjsKCwtTQkKCxo4dq7///e+aN2+eTp48qbCwML3wwgsKDQ29g08dAAAAAIDiRfhxA2fPntWkSZPUq1cvNW7cWDabTYmJiY7je/bskYeHh2JjY3X69GlNnTpVZcuWVc+ePSVJNptNHTt2VNWqVWWz2fTll1/q3Xff1TvvvCOz2SybzabY2FhVqFBBI0eOlJ+fnw4fPizDMCRJiYmJmjx5smJiYlS7dm2dOnVK06ZNkyQ988wz2rZtm1auXKmXX35ZVapU0blz5/Ks37FixQp1795dTz/9tLZu3apPP/1UderUUXBw8A3ve/bs2YqJiZGfn5/mzZunuLg4TZo0yRHqXM9ut8tutzu2TSaTvLy8ivzMAQAAAAAoCYQfN3D27FllZ2erSZMm8vf3l6RcMyAsFosGDx4sq9WqKlWqKDo6WnPmzFH37t1lNpvVtGnTXP0NHjxYAwcO1PHjxxUaGqoffvhBGRkZmjBhgnx8fCQp16yQ+Ph4PfXUU2rVqpUkqVKlSurevbvmzp2rZ555Runp6fLz81O9evVksVhUsWJFVa9ePdc1GzZsqPbt20uSOnfurJUrV2rPnj03DT+eeeYZRUZGSpKGDRumQYMGafv27XrkkUfytF2yZIni4+Md2+Hh4YqLi7vlswUAAAAA4E4i/LiBsLAw1atXT8OHD1f9+vUVGRmppk2bOoKKqlWrymq1OtrXrFlTNptNZ86ckb+/v07+/9q787Aq6/z/468D57CDQICIpICKSyqYKX5HS9P2rzaDJZrpuKRTqY39ynJMK7JLHbNpGZeZrtKyMRfcHdfJ3HLIJUtMxC13ERQFERA8eM7vj37cP0+4QIoHD8/HdXHFfZ/P+dzv+/Du4HlxL6dOad68eTp48KAuXLggm80mScrJyVG9evV05MgRRUVFGfP92pEjR7R3714tWrTIWGez2WS1WlVSUqJ27dppxYoVeumllxQXF6d7771XrVu3lru7uzG+fv36xvcmk0mBgYHKz8+/7n7HxsYa3/v5+SkiIkInT5686tjExER17drVYRsAAAAAAFQ3hB/X4ObmpjFjxmjfvn3atWuXVq9erblz52r8+PEVev7EiRMVGhqq559/XkFBQbLb7Xr11VdVWloqSfLw8Lju84uLi5WUlKSEhIRyj1ksFoWEhOjjjz/Wrl27tGvXLn322WdatmyZkpOTjVNUrgxCypSFMLeCxWKRxWK5ZfMBAAAAAFAV3JxdQHVmMpnUpEkTJSUl6b333pPZbNa2bdskSUePHtWlS5eMsQcOHJCXl5fuuusuXbhwQZmZmerevbtatGihyMhIFRYWOsxddvRHQUHBVbcdExOjzMxMhYeHl/tyc/vlx+bh4aH77rtPAwcOVHJysvbv369jx47d1D7v37/f+L6goECnTp1S3bp1b2pOAAAAAACciSM/ruHAgQP66aefFBcXp1q1aunAgQPKz89X3bp1dfToUZWWluof//iHnnrqKZ0+fVopKSl67LHH5ObmJl9fX/n7+2vt2rUKCgpSTk6OvvrqK4f5O3TooMWLF2vSpEl65plnFBQUpMOHDys4OFixsbF66qmnNHHiRIWEhKhdu3YymUw6evSojh8/rl69emnDhg2y2Wxq2LChPD09tWnTJnl4eBjXJ/mtFi5cKH9/f9WqVUtz586Vv7+/2rZte1NzAgAAAADgTIQf1+Dt7a2MjAytXLlSFy9eVEhIiP74xz+qVatWSk1NVfPmzVWnTh29/fbbslqtat++vXr06CHpl1Nmhg8frs8//1yvvvqqIiIiNGDAACUnJxvzm81mjRkzRl9++aUmTJggm82myMhIPffcc5Kk+Ph4jRw5UgsXLtTSpUvl7u6uunXrqnPnzpIkHx8fLV26VDNnzpTNZlO9evU0cuRI+fv739R+9+7dW1988YVxq9uRI0de9U4vAAAAAADcKUz2snurosKmTp2qwsJCvf76684u5ZZJT0/XO++8o88//1y+vr43NdfTb09VxtFTt6gyAABuna/HD3F2CaiGPD09VVJS4uwycAehZ1AZ9EvVslgsFToDgmt+AAAAAAAAl0b4AQAAAAAAXBoXc/gNhg4d6uwSbrl77rlHKSkpzi4DAAAAAIBbjiM/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDRudYtb7syZM7Jarc4uA3cAbvuFyqBfUBn0CyqDfkFl0TOoDPqlanGrWwAAAAAAABF+AAAAAAAAF0f4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKWZnV0AXM+QD+cp40ims8sAANRgGye/6uwSAABANcKRHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvhRBZKTk/XFF1/c9Dzp6elKSkpSYWHhzRf1G9yq/QAAAAAAwJnMzi7AFY0YMULu7u5O2XZycrKioqLUv39/p2wfAAAAAIDqhvCjCvj5+Tm7BAAAAAAA8P8QflSBK4++WLNmjVasWKGzZ8/Kx8dHTZo00auvvipJslqt+te//qXU1FRdvHhRMTEx6tevnxo2bHjVeS9cuKDp06crIyNDhYWFql27thITE9WhQwdJ0tSpU7Vnzx7t2bNHK1eulCRNmTJFYWFhOnbsmGbNmqWMjAx5eXmpZcuW6tevnwICAiRJxcXF+uyzz7R161Z5e3urW7dut+GVAgAAAACg6hF+VKGff/5Zn3/+uYYNG6bGjRuroKBAGRkZxuOzZs3S1q1bNXToUIWGhmrp0qUaN26cJk+efNWjR6xWq2JiYvSHP/xB3t7e+uGHHzRlyhSFh4erYcOGGjBggE6dOqW7775bPXv2lCQFBASosLBQY8eOVefOndWvXz9dunRJX331lT788EO9/fbbRi179uzR66+/rlq1amn27Nk6fPiwoqKirrl/VqtVVqvVWDaZTPL29r5Frx4AAAAAALcG4UcVysnJkaenp1q3bi1vb2+FhoYqOjpa0i9HWvznP//R0KFD1apVK0nS888/r127dmndunV68skny80XHBzssP7xxx9XWlqaUlNT1bBhQ/n4+MhsNsvT01OBgYHGuNWrVys6Olq9e/c21r344ot68cUXlZmZqeDgYK1bt04vvfSSWrRoIUkaNmyYXnjhhevu3+LFi7VgwQJjOTo6WhMnTqz8CwUAAAAAQBUi/KhCLVu2VGhoqIYNG6b4+HjFx8erbdu28vT0VHZ2ti5fvqzGjRsb481msxo2bKgTJ05cdT6bzaZFixbpu+++07lz51RaWqrS0lJ5eHhct46jR49q9+7d6tu3b7nHsrOzdenSJZWWlqpRo0bGej8/P0VERFx33sTERHXt2tVYNplM1x0PAAAAAIAzEH5UIW9vb02cOFHp6enatWuXUlJSNH/+fE2YMOE3zbds2TKtWrVK/fr1U7169eTl5aUvvvhCpaWl131ecXGxWrdurT59+pR7LDAwUFlZWb+pHovFIovF8pueCwAAAADA7eLm7AJcnbu7u1q2bKk+ffpo0qRJOnPmjHbv3q3atWvLbDZr3759xtjS0lL9/PPPioyMvOpce/fu1X333acHHnhAUVFRCgsL06lTpxzGmM1m2Ww2h3XR0dE6ceKEQkNDFR4e7vDl5eWl8PBwubu768CBA8ZzCgoKys0NAAAAAMCdiCM/qtCOHTuUnZ2tZs2aydfXVz/++KNsNpsiIiLk5eWlRx55RP/617/k5+enkJAQLV26VCUlJercufNV56tTp462bNmiffv2ydfXV8uXL1deXp7q1q1rjAkNDdWBAwd0+vRpeXl5yc/PT48++qi++eYbffzxx3ryySfl5+enrKwspaam6oUXXpCXl5c6d+6sWbNmyd/fXwEBAZo7dy6nsQAAAAAAXALhRxXy9fXVtm3bNH/+fFmtVtWpU0fDhw/X3XffLUnq3bu3bDabJk+erOLiYsXExGj06NFXvdOLJD311FPKzs7WuHHj5OnpqS5duqhNmzYqKioyxnTr1k1Tp07VK6+8okuXLhm3un333Xf11Vdfady4cbJarQoNDVVcXJwRcPTt21fFxcWaOHGivLy81K1bN4d5AQAAAAC4U5nsdrvd2UXAtfR4Y4oyjmQ6uwwAQA22cfKrKikpcXYZuEN4enrSL6gUegaVQb9ULYvFotDQ0BuO45ofAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKVxq1vcctP+T09ZrVZnl4E7AFe+RmXQLwAAAPitOPIDAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NK41S1uuWHvzdHew5nOLgMAUIOt++Q1Z5cAAACqEY78AAAAAAAALo3wAwAAAAAAuDTCDwAAAAAA4NIIPwAAAAAAgEsj/AAAAAAAAC6N8KOaS09PV1JSkgoLC685ZsOGDerfv//tKwoAAAAAgDsI4QcAAAAAAHBphB+QJJWWljq7BAAAAAAAqoTZ2QVAstlsWrp0qdauXau8vDxFREToqaeeUrt27a46fsOGDZo3b54uXLiguLg4NWnSpNyY7du3a8GCBTpx4oSCgoLUsWNHde/eXe7u7pKkpKQkDRo0SD/++KN2796tbt266YknntCMGTOUlpam4uJi3XXXXUpMTNSDDz5YpfsPAAAAAEBVIvyoBpYsWaJvv/1WgwcPVp06dZSRkaHJkycrICCg3NgDBw7oH//4h3r37q02bdpo586dmj9/vsOYjIwMTZkyRQMGDFDTpk2VnZ2tTz75RJLUo0cPY9z8+fPVu3dv9e/fX+7u7po3b55OnDihN954Q/7+/srKytKlS5eqducBAAAAAKhihB9OZrVatXjxYr355puKjY2VJNWuXVt79+7V119/rYceeshh/MqVKxUfH6/f//73kqSIiAjt379fO3fuNMYsWLBAf/jDH9SpUydjvp49e+qrr75yCD/at2/vcFRHTk6OoqKi1KBBA0lSWFjYDWu3Wq3Gsslkkre3d+VfBAAAAAAAqhDhh5NlZWWppKRE7777rsP60tJSRUdHlxt/8uRJtW3b1mFdbGysQ/hx5MgR7d27V4sWLTLW2Ww2Wa1WlZSUyNPTU5KMkKPMI488or/97W86fPiw4uLi1KZNGzVu3PiatS9evFgLFiwwlqOjozVx4sQb7zQAAAAAALcR4YeTFRcXS5JGjRql4OBgh8fMZrOys7N/05xJSUlKSEgo95jFYjG+LwtByrRq1UrTpk3TDz/8oF27dmns2LF69NFH9cc//vGq20lMTFTXrl2NZZPJVOlaAQAAAACoaoQfThYZGSmLxaKcnBw1a9as3OO/Dj/q1q2rAwcOOKzbv3+/w3JMTIwyMzMVHh5e6XoCAgLUqVMnderUSV9//bVmzZp1zfDDYrE4hCkAAAAAAFRHhB9O5u3trW7dumnmzJmy2Wxq0qSJioqKtG/fPnl7eys0NNRh/OOPP64333xTy5YtU5s2bZSWlqa0tDSHMU899ZQmTpyokJAQtWvXTiaTSUePHtXx48fVq1eva9Yyb948xcTE6O6775bVatWOHTtUt27dKtlvAAAAAABuF8KPaqBnz54KCAjQkiVLlJ2dLV9fX0VHRysxMVF2u91hbGxsrJ5//nnNnz9fKSkpatGihbp3766FCxcaY+Lj4zVy5EgtXLhQS5culbu7u+rWravOnTtftw6z2azZs2frzJkz8vDwUJMmTfTyyy9XxS4DAAAAAHDbmOy//nQN3KSer/1dew9nOrsMAEANtu6T11RSUuLsMnCH8PT0pF9QKfQMKoN+qVoWi6XcGRNX43YbagEAAAAAAHAawg8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0rjVLW65M2fOyGq1OrsM3AG47Rcqg35BZdAvqAz6BZVFz6Ay6Jeqxa1uAQAAAAAARPgBAAAAAABcHOEHAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl2Z2dgFwPX8e95X2Hjrp7DIAADXY2s//4uwSAABANcKRHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvjhQpKTk/XFF19IkoYOHaoVK1Y4tyAAAAAAAKoBs7MLQNWYMGGCPD09nV0GAAAAAABOR/jhogICApxdAgAAAAAA1QKnvbioK097+fjjj/Xhhx86PF5aWqrnnntOGzdulCTZbDYtXrxYQ4cO1bPPPqvXXntNW7Zsue11AwAAAABwq3HkRw1w//3364MPPlBxcbG8vLwkSWlpaSopKVHbtm0lSUuWLNG3336rwYMHq06dOsrIyNDkyZMVEBCgZs2aObN8AAAAAABuCkd+1ABxcXHy9PTUtm3bjHWbN2/WfffdJ29vb1mtVi1evFgvvvii4uPjVbt2bXXq1En333+/vv7662vOa7VaVVRUZHxdvHjxduwOAAAAAACVwpEfNYC7u7v+53/+R99++60eeOABFRcX6/vvv9fw4cMlSVlZWSopKdG7777r8LzS0lJFR0dfc97FixdrwYIFxnJ0dLQmTpxYNTsBAAAAAMBvRPhRQ9x///1KTk7W+fPntWvXLnl4eCg+Pl6SVFxcLEkaNWqUgoODHZ5nNl+7RRITE9W1a1dj2WQy3frCAQAAAAC4SYQfNUTjxo111113KTU1VTt37lS7du2MYCMyMlIWi0U5OTmVur6HxWKRxWKpqpIBAAAAALglCD9qkA4dOujrr7/WqVOn9Pbbbxvrvb291a1bN82cOVM2m01NmjRRUVGR9u3bJ29vb3Xq1Ml5RQMAAAAAcJMIP2qQDh06aNGiRQoNDVXjxo0dHuvZs6cCAgK0ZMkSZWdny9fXV9HR0UpMTHRStQAAAAAA3Bomu91ud3YRcC3PvPyR9h466ewyAAA12NrP/6KSkhJnl4E7hKenJ/2CSqFnUBn0S9WyWCwKDQ294ThudQsAAAAAAFwa4QcAAAAAAHBphB8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwadzqFrfcmTNnZLVanV0G7gDc9guVQb+gMugXVAb9gsqiZ1AZ9EvV4la3AAAAAAAAIvwAAAAAAAAujvADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASzM7uwC4npeTv9S+gyecXQYAoAZbM3uMs0sAAADVCEd+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4QcAAAAAAHBpZmcXgJu3Z88eLVu2TIcPH1Zubq5GjBihtm3bGo9PnTpVGzdudHhOXFycRo8ebSwXFBRoxowZ2rFjh0wmkxISEjRgwAB5eXndtv0AAAAAAKAqEH64gJKSEkVFRalz5856//33rzomPj5eQ4YMMZbNZscf/d///nfl5uZqzJgxunz5sqZNm6ZPPvlEw4cPr9LaAQAAAACoaoQfLqBVq1Zq1arVdceYzWYFBgZe9bETJ05o586dmjBhgho0aCBJGjhwoCZMmKC+ffsqODj4VpcMAAAAAMBtQ/hRQ+zZs0eDBg2Sr6+vmjdvrl69esnf31+StH//fvn6+hrBhyS1aNFCJpNJBw8edDiFBgAAAACAOw3hRw0QHx+vhIQEhYWFKSsrS3PmzNH48eM1btw4ubm5KS8vTwEBAQ7PcXd3l5+fn/Ly8q45r9VqldVqNZZNJpO8vb2rajcAAAAAAPhNCD9qgPbt2xvf16tXT/Xr19dLL72k9PR0tWjR4jfPu3jxYi1YsMBYjo6O1sSJE2+qVgAAAAAAbjXCjxqodu3a8vf3V1ZWllq0aKHAwEDl5+c7jLl8+bIKCgqueZ0QSUpMTFTXrl2NZZPJVFUlAwAAAADwm7k5uwDcfmfPnlVBQYGCgoIkSbGxsSosLNShQ4eMMbt375bdblfDhg2vOY/FYpGPj4/xxSkvAAAAAIDqiCM/XEBxcbGysrKM5dOnT+vIkSPy8/OTn5+f5s+fr4SEBAUGBio7O1uzZs1SeHi44uLiJEmRkZGKj4/XJ598osGDB6u0tFQzZszQ7373O+70AgAAAAC44xF+uICff/5Z77zzjrH85ZdfSpI6duyowYMH69ixY9q4caMKCwsVHBysli1bqmfPnrJYLMZz/vznP2v69OkaO3asTCaTEhISNHDgwNu+LwAAAAAA3Gomu91ud3YRcC3PDv2b9h084ewyAAA12JrZY1RSUuLsMnCH8PT0pF9QKfQMKoN+qVoWi0WhoaE3HMc1PwAAAAAAgEsj/AAAAAAAAC6N8AMAAAAAALg0wg8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujVvd4pY7c+aMrFars8vAHYDbfqEy6BdUBv2CyqBfUFn0DCqDfqla3OoWAAAAAABAhB8AAAAAAMDFEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaWZnFwDX83/emKF9B044uwwAQA22emGys0sAAADVCEd+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdG+AEAAAAAAFwa4YcTJScn64svvqiW86anpyspKUmFhYW3pigAAAAAAJyE8AMAAAAAALg0wg8XUlpa6uwSAAAAAACodszOLqCms9lsmjVrlr755huZzWY9/PDDSkpKkiQVFhbqX//6l7Zv367S0lLFxMSoX79+ioqKkiSlpKRo+/bteuyxx7Ro0SLl5ORo3rx5kqTLly9r+vTp2rRpkzFvz549ZTKZJEmbNm3SypUrlZmZKU9PTzVv3lz9+/dXrVq1nPI6AAAAAABQVTjyw8k2btwoT09PjR8/Xn369NHChQu1a9cuSdIHH3yg8+fP64033tBf//pXRUdH691331VBQYHx/KysLG3dulUjRozQe++95zCvu7u7JkyYoP79+2vFihX65ptvjMdLS0vVs2dPTZo0Sa+99prOnDmjadOmVap2q9WqoqIi4+vixYs3+WoAAAAAAHDrceSHk9WvX189evSQJNWpU0erV6/WTz/9JA8PDx08eFCfffaZLBaLJOmPf/yjtm/fri1btuihhx6S9EuIMWzYMAUEBDjMe9ddd6lfv34ymUyKiIjQsWPHtGLFCuN5nTt3NsbWrl1bAwYM0KhRo1RcXCwvL68K1b548WItWLDAWI6OjtbEiRN/+4sBAAAAAEAVIPxwsnr16jksBwUF6fz58zpy5IiKi4s1cOBAh8cvXbqkrKwsYzk0NLRc8CFJjRo1Mk5xkaTY2FgtX75cNptNbm5uOnTokFJSUnT06FEVFhbKbrdLknJychQZGVmh2hMTE9W1a1dj+crtAQAAAABQXRB+OJnZXP5HYLfbVVxcrKCgICUnJ5d73MfHx/je09Oz0tssLi7WuHHjFBcXpz//+c8KCAhQTk6Oxo0bV6mLplosFuOoFAAAAAAAqivCj2oqJiZGeXl5cnNzU1hYWKWff/DgQYflAwcOKDw8XG5ubsrMzNSFCxfUu3dvhYSESJJ+/vnnW1I3AAAAAADVDRc8raZatGih2NhYTZo0SWlpaTp9+rT27dunOXPmVCioyMnJ0cyZM5WZmanNmzdr1apVeuKJJyRJISEhMpvNWr16tbKzs/X9999r4cKFVb1LAAAAAAA4BUd+VFMmk0mjRo3SnDlzNG3aNOXn5yswMFBNmzat0O1oH3jgAV26dEmjRo2Sm5ubnnjiCeNipwEBARoyZIjmzJmjVatWKTo6Wn379nW4WwwAAAAAAK7CZC+70iVwi/QZPFH7DpxwdhkAgBps9cJklZSUOLsM3CE8PT3pF1QKPYPKoF+qlsViUWho6A3HcdoLAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKVxq1vccmfOnJHVanV2GbgDcNsvVAb9gsqgX1AZ9Asqi55BZdAvVYtb3QIAAAAAAEgyO7sAuB6zmbZCxbi7u8tisTi7DNwh6BdUBv2CyqBfUFn0DCqDfqlaFf38yWkvuGWsViv/UwMAAAAAqh1Oe8EtY7Va9fHHH+vixYvOLgV3gIsXL2rkyJH0CyqEfkFl0C+oDPoFlUXPoDLol+qD8AO31H//+19xMBEqwm636/Dhw/QLKoR+QWXQL6gM+gWVRc+gMuiX6oPwAwAAAAAAuDTCDwAAAAAA4NIIP3DLWCwWPf3001z0FBVCv6Ay6BdUBv2CyqBfUFn0DCqDfqk+uNsLAAAAAABwaRz5AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKURfgAAAAAAAJdmdnYBcA2rV6/Wv//9b+Xl5al+/foaOHCgGjZs6Oyy4GQpKSlasGCBw7qIiAh99NFHkqRLly7pyy+/VGpqqqxWq+Li4jRo0CAFBgbe/mLhFHv27NGyZct0+PBh5ebmasSIEWrbtq3xuN1uV0pKir755hsVFhaqSZMmGjRokOrUqWOMKSgo0IwZM7Rjxw6ZTCYlJCRowIAB8vLycsYuoQrdqF+mTp2qjRs3OjwnLi5Oo0ePNpbpl5ph8eLF2rZtm06ePCkPDw/FxsaqT58+ioiIMMZU5HdQTk6OPv30U6Wnp8vLy0sdO3ZU79695e7u7oS9QlWqSM8kJydrz549Ds976KGH9Kc//clYpmdqhv/85z/6z3/+ozNnzkiSIiMj9fTTT6tVq1aSeH+prrjbC25aamqqpkyZosGDB6tRo0ZasWKFtmzZoo8++ki1atVydnlwopSUFG3dulVvvvmmsc7NzU0BAQGSpE8//VQ//PCDhg4dKh8fH02fPl1ubm569913nVUybrMff/xR+/btU0xMjN5///1yH2aXLFmiJUuWaOjQoQoLC9O8efN07NgxffDBB/Lw8JAkjR8/Xrm5ufrTn/6ky5cva9q0aWrQoIGGDx/urN1CFblRv0ydOlXnz5/XkCFDjHVms1l+fn7GMv1SM4wbN07t27dXgwYNdPnyZc2ZM0fHjx/XBx98YARdN/odZLPZ9NprrykwMFB9+/ZVbm6upkyZoi5duqh3797O3D1UgYr0THJysurUqaOePXsaz/Pw8JCPj48keqYm+f777+Xm5qY6derIbrdr48aNWrZsmd577z3dfffdvL9UU5z2gpu2fPlydenSRQ8++KAiIyM1ePBgeXh4aP369c4uDdWAm5ubAgMDja+y4KOoqEjr1q1Tv3791Lx5c8XExGjIkCHat2+f9u/f7+Sqcbu0atVKvXr1cvgAW8Zut2vlypXq3r272rRpo/r162vYsGHKzc3V9u3bJUknTpzQzp079cILL6hRo0Zq0qSJBg4cqNTUVJ07d+527w6q2PX6pYzZbHZ4z7ky+KBfao7Ro0erU6dOuvvuuxUVFaWhQ4cqJydHhw4dklSx30FpaWk6ceKEXnrpJUVFRalVq1bq2bOn1qxZo9LSUmfuHqrAjXqmjKenp8N7TFnwIdEzNcl9992ne++9V3Xq1FFERISeeeYZeXl56cCBA7y/VGOEH7gppaWlOnTokFq0aGGsc3NzU4sWLfgAC0lSVlaWnn/+eQ0bNkx///vflZOTI0k6dOiQLl++7NA7devWVUhICL0DSdLp06eVl5enli1bGut8fHzUsGFDo0f2798vX19fNWjQwBjTokULmUwmHTx48LbXDOfbs2ePBg0apOHDh+vTTz/VhQsXjMfol5qrqKhIkowwrCK/g/bv36969eo5HKYeHx+vixcv6vjx47eveDjFr3umzLfffqvnnntOr776qmbPnq2SkhLjMXqmZrLZbPrvf/+rkpISxcbG8v5SjXHND9yU/Px82Wy2ctdoCAwMVGZmpnOKQrXRqFEjDRkyRBEREcrNzdWCBQv01ltv6W9/+5vy8vJkNpvl6+vr8JxatWopLy/POQWjWinrg1+fPndlj+Tl5RlHE5Vxd3eXn58ffVQDxcfHKyEhQWFhYcrKytKcOXM0fvx4jRs3Tm5ubvRLDWWz2fTFF1+ocePGqlevniRV6HdQXl5euX/flL0f0S+u7Wo9I0kdOnRQSEiIgoODdfToUX311VfKzMzUiBEjJNEzNc2xY8c0evRoWa1WeXl5acSIEYqMjNSRI0d4f6mmCD8AVJmyiz5JUv369Y0w5LvvvjOu1wAAt0r79u2N7+vVq6f69evrpZdeUnp6usNf4FCzTJ8+XcePH9fYsWOdXQruENfqmYceesj4vl69egoKCtLYsWOVlZWl8PDw210mnCwiIkKTJk1SUVGRtmzZoqlTp+qdd95xdlm4Dk57wU0JCAgw/pp2paulmYCvr68iIiKUlZWlwMBAlZaWqrCw0GHM+fPn6R1IktEH58+fd1h/ZY8EBgYqPz/f4fHLly+roKCAPoJq164tf39/ZWVlSaJfaqLp06frhx9+0Ntvv6277rrLWF+R30GBgYHl/n1T9n5Ev7iua/XM1ZTd2fDK9xh6puYwm80KDw9XTEyMevfuraioKK1cuZL3l2qM8AM3xWw2KyYmRrt37zbW2Ww27d69W7GxsU6sDNVRcXGxEXzExMTI3d1dP/30k/F4ZmamcnJy6B1IksLCwhQYGOjQI0VFRTp48KDRI7GxsSosLHS4IN3u3btlt9u53TZ09uxZFRQUKCgoSBL9UpPY7XZNnz5d27Zt01tvvaWwsDCHxyvyOyg2NlbHjh1zCGB37dolb29vRUZG3p4dwW1zo565miNHjkiSw3sMPVNz2Ww2Wa1W3l+qMU57wU3r2rWrpk6dqpiYGDVs2FArV65USUmJOnXq5OzS4GRffvml7rvvPoWEhCg3N1cpKSlyc3NThw4d5OPjo86dO+vLL7+Un5+ffHx8NGPGDMXGxhJ+1CBlgViZ06dP68iRI/Lz81NISIieeOIJLVq0SHXq1FFYWJjmzp2roKAgtWnTRpIUGRmp+Ph4ffLJJxo8eLBKS0s1Y8YM/e53v1NwcLCzdgtV5Hr94ufnp/nz5yshIUGBgYHKzs7WrFmzFB4erri4OEn0S00yffp0bd68Wa+//rq8vb2Nv7D6+PgYtya90e+guLg4RUZGasqUKXr22WeVl5enuXPn6tFHH5XFYnHi3qEq3KhnsrKytHnzZt17773y8/PTsWPHNHPmTDVt2lT169eXRM/UJLNnz1Z8fLxCQkJUXFyszZs3a8+ePRo9ejTvL9WYyW63251dBO58q1ev1rJly5SXl6eoqCgNGDBAjRo1cnZZcLKPPvpIGRkZunDhggICAtSkSRP16tXLOC/20qVL+vLLL/Xf//5XpaWliouL06BBgzjcrwZJT0+/6vmxHTt21NChQ2W325WSkqK1a9eqqKhITZo00XPPPaeIiAhjbEFBgaZPn64dO3bIZDIpISFBAwcOlJeX1+3cFdwG1+uXwYMHa9KkSTp8+LAKCwsVHBysli1bqmfPng7vKfRLzZCUlHTV9UOGDDH+OFOR30FnzpzRZ599pvT0dHl6eqpjx4569tln5e7ufhv2ArfTjXomJydHkydP1vHjx1VSUqK77rpLbdu2Vffu3R1ud0vP1Az/+Mc/tHv3buXm5srHx0f169fX73//e+MOdby/VE+EHwAAAAAAwKVxzQ8AAAAAAODSCD8AAAAAAIBLI/wAAAAAAAAujfADAAAAAAC4NMIPAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo3wAwAAAAAAuDTCDwAAapCpU6eqb9++V31s6NCh+utf/3qbKwIAAKh6hB8AAAAAAMClEX4AAAAAAACXZnZ2AQAA4PaxWCwqLS2V3W6XyWS64fhly5Zp27ZtyszMVElJiSIjI5WYmKh27dqVG7tp0yatWrVKx48fl8ViUb169dS9e3fFxcVp6NChOnPmzDW3ExoaqqlTp0qSiouLlZKSou+++07nz59XaGiounTpom7duhk1JyUlXbfuZs2aKTk5WaWlpVq4cKF++OEHZWVlyWazKTo6WklJSWrevPkN9//Kuk0mkwICAtSsWTP17dtXISEhxjibzabVq1frm2++UVZWlry8vBQTE6NevXqpQYMGFa43PT1d77zzjl5++WUdOXJE69evV3FxsZo3b67nnnvOYZuSdODAAaWkpGj//v26fPmyGjRooGeeeUZNmjQxxiQnJzv8V5JOnz6tYcOGaciQIerUqZMk6ejRo1q+fLkyMjKUm5srHx8ftWrVSn379pW/v7/Dds+dO6e5c+fqxx9/VGFhocLDw9W1a1d17tzZGFO2L5L03nvvKSoqyuH5L774oux2u1555RWHftq9e7dSUlJ0+PBhubu7q1mzZurdu7ciIyPL1TBv3jzt3LlTFy5cUFBQkOLj4zVgwABt3rxZ06ZNu+5rXrbvU6dO1Z49e4z+k6ScnBwNHz5cVqtVU6ZMUVhY2HXnAgBUf4QfAADUICEhIbp8+bKys7MVHh5+w/GrVq1S69at1aFDB5WWlio1NVUffPCB/vKXv+jee+81xs2fP1/z589X48aNlZSUJLPZrIMHD2r37t2Ki4tTv379VFxcLEk6efKkFi9erMTERNWtW1eS5OXlJUmy2+167733lJ6ergcffFBRUVFKS0vTrFmzdO7cOfXv31+SNGzYMGPbe/fu1dq1a9WvXz/jQ3pgYKAkqaioSOvWrVP79u3VpUsXFRcXa926dRo3bpwmTJjg8IH8Wpo2baouXbrIbrfr+PHjWrFihXJzczV27FhjzD//+U9t2LBBrVq1UpcuXXT58mVlZGTowIEDatCgQYXrLbNo0SKZTCb9/ve/V35+vlasWKF3331XkyZNkoeHh6RfQoLx48crJiZGPXr0kMlk0oYNGzR27FiNHTtWDRs2vOG+XWnXrl06ffq0OnXqpMDAQJ04cUJr167ViRMnNG7cOCN4ysvL0+jRoyVJjz76qAICArRz507985//1MWLF/W///u/DvNaLBatX79eAwYMMNZt2LBBZrNZVqu1XA0TJkxQWFiYevTooUuXLmnVqlV68803NXHiRCOEOHfunEaNGqWioiJ16dJFdevW1blz57RlyxaVlJSoadOmDq/54sWLJUmJiYnGusaNG1/ztUhJSSlXGwDgzkb4AQBADdK6dWvNmzdPn376qfr16+fwodtms5Ub//HHHxsftiXpscce08iRI7V8+XIj/MjKytKCBQvUtm1bvfLKK3Jz+/9n1drtdklS27ZtjXXp6elavHixWrZsqXvuucdhe99//712796tXr16qXv37sY2P/jgA61atUqPPfaYwsPD9cADDzjUvXbtWrVp06bcX+j9/Pw0depUmc3//588Xbp00csvv6xVq1bpxRdfvOFrFhYW5rC9c+fOafv27cby7t27tWHDBj3++OMOH/C7detm7H9F6y1TUFCgDz/8UN7e3pKk6Ohoffjhh1q7dq2eeOIJ2e12ffrpp7rnnnv0xhtvGMHEww8/rFdeeUVz587VmDFjJP1yxMrVfra/9uijj6pbt24O6xo1aqSPP/5Ye/fuVdOmTSVJc+fOlc1m0/vvv2+EN4888og++ugjzZ8/Xw8//LBDz7Rt21abN29W3759jZ/Dxo0blZCQoM2bNztsb9asWfLz89O4cePk5+cnSWrTpo1ef/11paSkGIHG7NmzlZeXp/Hjx6tBgwbG83v27Cm73S5fX1/Vrl3bWL9u3bpyP4drOX78uDZu3KhWrVrpxx9/vOF4AMCdgWt+AABQg9SvX1/9+/fX3r17NWLECA0aNMj4Onv2bLnxV36ILSgoUFFRkZo2barDhw8b67dt2ya73a6nn37aIfiQVKFTa670448/ys3NTY8//rjD+q5du8put2vnzp2Vms/Nzc34wG2z2VRQUGCcHnLlPlyP1WpVfn6+zp8/r127dmn37t0Op8xs3bpVJpNJPXr0KPfcyu5/mQceeMAIPiSpXbt2CgoKMj6MHzlyRKdOnVKHDh104cIF5efnKz8/3zhFJiMjwwg8atWqpXPnzt1wm1f+rC9duqT8/Hw1atRIkozXym63a+vWrWrdurXsdrux3fz8fMXHx6uoqEiHDh1ymLd169aSfgm2JCkjI0Nnz57V7373O4dxubm5OnLkiDp27GgEH9IvPduyZUtj3202m7Zv367WrVs7BB9lfutrXmb27NmKiYm56qldAIA7F0d+AABQwzz++OPq2LGjTpw4YZyKIkmTJ08uN3bHjh1atGiRjhw54nAawJUfMLOzs2Uymcpdk+G3OHPmjIKCghw++Esy5r7edUOuZcOGDVq+fLlOnjypy5cvG+sreh2H1NRUpaamGssNGjTQCy+8YCxnZ2crKCjI4QP7zapTp47DsslkUnh4uLH/p06dkiSH61T8WlFRkfz8/BQbG6vU1FStWLFC7du3l5ubmwoLC8uNLygo0Pz585Wamqrz58+Xm0uS8vPzVVhYqLVr12rt2rVX3W5+fr7Dstls1v3336/169erXbt2Wr9+vRISEsr9jMv2LSIiotycdevWVVpamoqLi1VcXKyLFy+qXr1619z332rv3r3asWOH3nrrLeXk5Nzy+QEAzkP4AQBADeTj46PY2FiHdVf+5V/65S/07733npo2barnnntOQUFBcnd314YNG8qdrlBdbdq0SdOmTVObNm305JNPKiAgQG5ublqyZImys7MrNEdcXJxxOsi5c+e0dOlSvfPOO/rrX/9a7jW7XcpOp+nTp881r1tSdh2Vhx56SGlpaZo5c6Zmzpx5zTk//PBD7du3T08++aSioqLk5eUlm82m8ePHG0eRlG33/vvvV8eOHa86T/369cut69y5s15//XVlZmbqu+++08iRIyu8r7fTV199pbi4ODVv3lwbNmxwdjkAgFuI8AMAAFzV1q1bZbFYNHr0aFksFmP9rz8U1q5dW3a7XSdOnKjQBUSvJzQ0VD/99JMuXrzocGTAyZMnjccrY8uWLapdu7ZGjBjhcLTK/PnzKzxHYGCgWrZsaSxHRERozJgx2rZtmzp06KDatWsrLS1NBQUFt+zoj7IjO8rY7XZlZWUZRzuUXc/Cx8fHobar8fDw0KhRo5SZmamzZ8/Kbrfr/PnzDkf6FBQU6KefflJSUpKefvrpa9YREBAgb29v2Wy2G273SvXq1TOuWxIQEKB77rlHe/bscRhT9rPNzMws9/zMzEz5+/vLy8tLHh4e8vb21rFjxyq8/YrYtm2b9u/fr4kTJ97SeQEA1QPX/AAAAFfl5uZW7mKZp0+fdrjYp/TLBS1NJpMWLFhQ7sKaZUcKVFSrVq2M28ZeacWKFTKZTIqPj6/0Pvy6jgMHDmj//v2VmudKly5dkiSVlpZKkhISEmS3268aqFR2/8ts2rRJFy9eNJa3bNmi3NxctWrVSpIUExOj2rVr69///rfDqUtlfn3qifRLaNOiRQu1bNmy3J1OrvY6Sb+87r8el5CQoK1bt141fLjadss8+OCDOnr0qDp16nTV63IEBQUpKipKGzdudDgt59ixY0pLSzP23c3NTW3atNGOHTv0888/l5vnt7zmNptNc+bMUfv27W86wAMAVE8c+QEAAK7q3nvv1fLlyzV+/Hi1b99e+fn5WrNmjcLDw3X06FFjXHh4uLp3766FCxfq7bffVtu2bWWxWHTw4EEFBwerd+/eFd5m69atdc8992ju3Lk6c+aM6tevr7S0NH3//fd64oknKnR73l/Pt23bNr3//vu69957dfr0aX399deKjIy8amhwNadPn9amTZsk/XLay5o1a+Tt7W1c9LR58+Z64IEHtGrVKmVlZSkuLk52u10ZGRlq3ry5HnvssUrVLP1yl5q33npLnTp10vnz57VixQqFh4erS5cukn4JAF544QWNHz9er7zyijp16qTg4GCdO3dO6enp8vb21l/+8pcKb8/Hx0dNmzbVsmXLdPnyZQUHBystLU2nT58uN7Z3795KT0/X6NGj1aVLF0VGRqqgoECHDh3STz/9pM8///yq2+jSpYvatWsnHx+fa9bRp08fTZgwQWPGjNGDDz6oS5cuafXq1fLx8VFSUpJDDbt27VJycrJRQ25urrZs2aKxY8fK19e3wvsuSWfPnpXZbNaoUaMq9TwAwJ2D8AMAAFxV8+bN9cILL2jp0qWaOXOmwsLC9Oyzz+r06dMO4Yf0yy1Gw8LCtHr1as2dO1ceHh6qX79+hW4teiU3NzeNHDlS8+bNU2pqqtavX6+wsDD16dOn3G1YK6JTp07Ky8vT2rVrlZaWpsjISL300kv67rvvyp12cS0ZGRnKyMiQJPn7+ysmJkY9evRQSEiIMWbIkCGqV6+e1q9fr1mzZsnHx0cNGjQod12VikpMTNTRo0e1ZMkSXbx4US1atNCgQYPk6elpjLnnnns0btw4LViwQGvWrFFxcbECAwPVsGFDPfzww5Xe5vDhwzVjxgytWbNGdrtdLVu21BtvvKHnn3/eYVxgYKDGjx+vBQsWaOvWrVqzZo38/f11991369lnn73m/O7u7goICLhuDWXbTElJUUpKitzd3dWsWTM9++yzDheoDQ4O1vjx4zV37lxt3rxZFy9eVHBwsOLj4x1eo8p45JFHKnwRXADAncdk/63HYwIAAOCWSk9P1zvvvKNXXnmFW60CAHALcc0PAAAAAADg0gg/AAAAAACASyP8AAAAAAAALo1rfgAAAAAAAJfGkR8AAAAAAMClEX4AAAAAAACXRvgBAAAAAABcGuEHAAAAAABwaYQfAAAAAADApRF+AAAAAAAAl0b4AQAAAAAAXBrhBwAAAAAAcGmEHwAAAAAAwKX9X0TIuEB3SOvkAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def plot_top_words(text_series, title, n=20):\n",
+ " # Инициализация векторизатора с ограничением на стоп-слова\n",
+ " vec = CountVectorizer(stop_words='english', max_features=n)\n",
+ " \n",
+ " # Подгонка и преобразование текста\n",
+ " bag_of_words = vec.fit_transform(text_series)\n",
+ " sum_words = bag_of_words.sum(axis=0) \n",
+ " \n",
+ " # Создание списка частот слов\n",
+ " words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]\n",
+ " words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)\n",
+ " \n",
+ " # Создание DataFrame для визуализации\n",
+ " words_df = pd.DataFrame(words_freq[:n], columns=['word', 'count'])\n",
+ " \n",
+ " # Визуализация с актуальным синтаксисом seaborn\n",
+ " plt.figure(figsize=(12, 8))\n",
+ " sns.barplot(\n",
+ " data=words_df,\n",
+ " y='word',\n",
+ " x='count',\n",
+ " hue='word', # Добавлен hue для нового синтаксиса\n",
+ " palette='crest',\n",
+ " legend=False # Отключаем легенду\n",
+ " )\n",
+ " plt.title(title, fontsize=14, pad=20)\n",
+ " plt.xlabel('Частота встречаемости', fontsize=12)\n",
+ " plt.ylabel('Топ слова', fontsize=12)\n",
+ " plt.xticks(fontsize=10)\n",
+ " plt.yticks(fontsize=10)\n",
+ " plt.grid(axis='x', alpha=0.3)\n",
+ " plt.show()\n",
+ "\n",
+ "# Применение функции к данным\n",
+ "plot_top_words(df[df['label']=='real']['text'], 'Топ-20 слов в реальных новостях')\n",
+ "plot_top_words(df[df['label']=='fake']['text'], 'Топ-20 слов в фейковых новостях')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7dcb23fd-90b0-4f0e-82a0-cf746fa76e92",
+ "metadata": {},
+ "source": [
+ "## 5. Корреляция признаков"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "1d40069a-b78a-40ac-87a8-ad4a0cc72766",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "=== АНАЛИЗ КОРРЕЛЯЦИИ ПРИЗНАКОВ ===\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAMVCAYAAACP61IzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNc0lEQVR4nOzdeXhM1+PH8c9MVkQSIbFWEpKgpfZSSylqX0ptrbaWUi3dfl1UtUoX31Y31ZZuqKKKUrvad6XUUkLFVrsgSCIim5nfH2mmxkyY6MSV9P16njwP555777k3mUw+c849x2S1Wq0CAAAAAMAAZqMbAAAAAAD47yKUAgAAAAAMQygFAAAAABiGUAoAAAAAMAyhFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwxBKAQAAAACGIZQCAAAAAAxDKAVwSx0+fFgmk0kmk0klSpRQRkaG03p//vmnrV5YWNitbSQAAABuGUIpAEN4enrq9OnTWrRokdPt48ePl9lsltnMrykAAID8jL/2ABiiXr16CggI0IQJExy2ZWRkaMqUKWrWrJm8vLwMaB0AAABuFUIpAEMUKFBA3bt318KFC3XmzBm7bQsWLNDp06fVp08fp/uePHlSw4YNU926dRUSEiIfHx+FhYVpwIABDsdq3LixbRjw9b6GDx8u6Z/hxb169dLu3bvVpk0bBQYGys/PT82bN9fWrVsd2pN1jmvt2LFDHh4eMplMmjhxoq386nM406tXL5lMJh0+fNiufNWqVerTp48qVKggPz8/+fn5qVatWvrmm2+cHic72bV30KBBMplM6tevn6xWq922DRs2qE2bNgoKCpKvr68qVqyoYcOGKTk52eE4JpNJjRs31vHjx/Xwww+rWLFiKliwoOrXr6/ly5dne72HDh3SBx98oMjISPn6+io8PFxvv/220tPTnV7H2rVr1a5dOxUrVkw+Pj6KjIzUG2+84bRNkjRx4sRsv//OhojPnj1b9913n/z9/bP9eZFu/vsZFhbm9Lzz5s2znWf16tW28tWrVzucO0unTp1yNNT9evciu3uS0+/TzbT3s88+U/369VWiRAn5+PioVKlSateundauXevysSXnP+M5+b1x9fVe+30bO3asTCaTWrdurbS0NLtt0dHR6tq1q+344eHheuGFF3Tu3DmH44eFhdndb19fX0VEROjFF1/U+fPnnV4XAORXnkY3AMB/V58+ffT1119r8uTJeumll2zlEyZMUFBQkB588EGn+61du1Yff/yxmjZtqjp16sjLy0vbt2/Xl19+qSVLlmjbtm0KCAiQlPmHZePGjW37rl69WmvWrFHPnj3t/iC+uo4kHTp0SPXr11eNGjX09NNP68iRI/rpp5903333aeXKlapTp84Nr++5556TxWJx+X7cyMiRI3XgwAHVrVtXHTt2VHx8vBYvXqz+/fsrJiZGH3/88U0f+6233tKHH36oHj166Ouvv7b7g/6nn37Sww8/LB8fH3Xr1k0hISFaunSp3n77bS1ZskSrV6+Wr6+v3fEuXLig+vXrKzg4WH379tXZs2c1ffp0tWzZUjNnznT6vX3hhRe0YcMGde3aVX5+fpo/f76GDRumnTt3aubMmXZ1v/zySw0cOFCBgYFq166dQkJC9Pvvv2vEiBFatWqVVq1aJW9vb6fX2qFDB1WrVs32/08//dShzoIFC9SpUycVKFBADz30kMLDw2U2m3X48GF9//33rt/YHEpLS7N7Lbhi5cqVmj179k2d79p7kcXZPcmSk+9TTtu7c+dOFSlSRF27dlXhwoV17NgxzZkzR4sWLdLKlSvVqFEjVy/NQU5+b2Rn4sSJeuaZZ3T//ffr559/tvsZW79+vVq0aKG0tDR17txZYWFh2rhxo0aPHq0FCxZo06ZNKlasmN3xAgIC9MILL0iSkpOTtWrVKo0aNUrbt2/XqlWrbvpaASDPsQLALfTXX39ZJVlbtGhhtVqt1sqVK1vvuusu2/ZTp05ZPT09rc8++6zVarVafXx8rKGhoXbHOH36tPXixYsOx/7++++tkqzvvvtutucfNmyYVZJ11apV122fJOvgwYPtti1evNgqyVqlShW78kaNGlmv/XU6bdo0qyRrzZo1rZKs3333ncM5evbs6bQNPXv2tEqy/vXXX3blhw4dcqibnp5ufeCBB6weHh7WI0eOOL/oa1zb3o8++sgqydqpUydrRkaGXd2EhARrQECA1cfHx/rHH3/Yyq9cuWLt1q2bVZL17bffttsn6/498sgjVovFYiv/448/rN7e3tbg4GBrcnKyw/UGBwdbjx07ZitPTU213nfffVZJ1pkzZ9rKd+/ebfX09LRWrVrVGhcXZ3fu9957zyrJ+tFHHzlc97fffmuVZJ04caJdeWhoqMPPWJcuXaySrD///LNd+apVq6ySrMOGDbOV3ez309l533//fbufm6t/Tp2dOyMjw1q5cmVrmTJlrMWLF3c4Xna+++47h5/LG7Utp98nd7V3xYoVVknWgQMHXvfYV3P2mszp741rv2/Tp0+3enh4WOvVq2dNSkqyq3vlyhVr+fLlrZKsixcvttv2yiuvWCVZ+/TpY1fu7B5fuXLFWqdOHask64ULF5xeGwDkRwzfBWCoPn36aPfu3frtt98kSd9//70yMjKyHborSSEhIfLz83Mof+yxx+Tv7+90iGhOBQYG6vXXX7cra9GihZo2bapdu3Y5Hcab5fLly3rllVd055136qmnnvrXbckSHh7uUObp6amnnnpKV65cuamela+++kovv/yyWrVqpR9//FEeHh522+fOnauEhAT16dNHd999t63cbDbrgw8+kKenp93Q5CweHh763//+Z9fjevfdd+uxxx7T2bNnnU5w9fzzz6tMmTK2/3t7e2vEiBGSZHeOr7/+WhkZGfr8889VtGhRu2MMGjRIwcHB+vHHHx2OnzW81MfH5zp3JFPWEOA777zzhnXdJTY2ViNGjFDz5s3Vtm1bl/b58ssvFR0drZEjRzr0VucWV79PzuSkvRaLRYcPH9aUKVMk6V/Pwv1vfm8sWLBAjz76qKpVq6ZFixapUKFCdts3bNiggwcPqlWrVmrRooXdtjfffFNBQUGaOnWqw3Dfa1mtVl25ckW+vr4qUKBADq4OAPI2hu8CMNSjjz6qV199VRMmTFCdOnX03XffqXr16k6HFF7t559/1tdff61t27bpwoULunLlim3byZMn/3W7qlev7vQP2IYNG2rFihXavn27atas6XTfkSNH6tixY1q6dKlOnDjxr9uS5eLFi/roo480Z84cHTx4UJcuXbLbntPrnjx5sgYMGCBJGjJkiNPhrtu3b5fkOLxZksqWLaty5cpp3759unjxogoXLmy3LTQ01GGfhg0bavz48dq+fbseeughh23Xuvfee+Xp6WlrhyRt2rRJkrRkyRKtWLHCYR8vLy/t3bvXoTwxMVGSXApvtWrV0sKFCzV48GB9/PHHCgsLy/WZoAcPHqzLly9r1KhRmjFjxg3rnz9/XsOGDVP9+vX1yCOPaMiQIbnaviyufp+ulZP2enp62l7Tnp6e6tGjhwYOHOhQb/Xq1U6fK732OdAsN/N7Y8WKFRo4cKDS09P1wgsvOB3ie73XSdaz30uXLlVMTIyqVKli2xYfH29rf3JyslasWKE///xTo0aNcunDEwDILwilAAwVHBysdu3aadq0aerSpYtiYmL0+eefX3efjz/+WC+//LKCg4PVvHlzlSlTxtar8Omnnyo1NfVft6t48eLXLU9ISHC6/ejRo/rggw/Uvn17PfDAAzfsOXJVWlqaGjdurG3btql69ep67LHHVLRoUXl6etqec8zpdffu3Vs1atTQ3r171b9/f23bts3hD+GsIJfd/ShZsqT27dunxMREu1B6M/fP2T4eHh4qWrSoXf2sSWCyeudclTXZTHBw8A3rvvLKK9q8ebPmzJmjOXPm5Og8N2Pz5s2aNGmSnn32WZd7Z4cOHar4+HiNHj06l1tnz9Xv07Vy0t4333xTqamp2r9/vzZt2qSIiAh5ejr+ybJmzRqtWbPGpXbf7O+N/v37Kzw8XJcuXdJLL72kli1bOjwb6srr5Op6WRISEvTWW2/ZldWuXduuJxoA/gsIpQAM98QTT+jnn39Wr1695Ovrqx49emRbNyMjQ++8845KliypHTt2KCQkxLbNarXqgw8+cEubTp8+fd3y7CZEeeWVV2SxWPTJJ5+4pR1Z5s6dq23btumJJ57QuHHj7LZNmzbtpibfqVKlipYvX66pU6dq4MCBev311/XRRx/Z1fH395eU/f2IjY21q5flZu7f6dOnVaFCBbuyK1eu6Ny5c3Z/7Ged69ogfCMHDx6U5Now0EKFCmnRokX68MMPNWjQILVu3Vq1a9fOlYmOrFarnn/+eRUtWtQhoGQnOjpaX3/9tXr37p1tj31ucfX7dLWctvfNN9+0/Xv9+vVq2LChLl++rJEjR9rVGzZsmNOe0saNG9uF1X/ze6N06dJasWKFoqOj1aZNGz311FMOEzrd7OskNDTU1qubnp6u/fv364UXXlC7du30yy+/qGXLltm2CwDyE54pBWC4Fi1aqHTp0jpx4oQefPBBFSlSJNu6cXFxSkhI0L333mv3h6Uk/f7777p8+bJb2rR9+3YlJSU5lK9bt05S5vBeZ9tmzJih//u//1P58uXd0o4sWYGqQ4cO2bYpp5YuXarAwEA9/fTTeuCBBzRq1CiHY2Vd59VLk2Q5duyYDh48qHLlyjmEw6NHj+rIkSPZtjW7+3etjRs3KiMjw65+1szHWcN4XfXbb7+pRIkSKl26tEv1z549q48//liRkZGaMWOGhg8fnu2yL//GlClTtGnTJr377rsKDAx0aZ/nn39efn5++t///uf29tyIq9+nq/2b9jZo0ECBgYFOn0N21b/5vTFz5kyVLVtWrVu3Vt++fTVr1iz98MMPdnWu9zq5dOmSfv/9dxUoUMAhzF/Ny8tLd955py14Zz1LCwD/BYRSAIbz8PDQnDlzNHv2bL333nvXrRsSEqICBQpo27ZtdutRXrhwQc8++6zb2hQfH+8wPDTrGcbKlSs77e157rnnVLJkSYcJktwh6/nM9evX25WvWbNG33777U0dM2sYq8lk0oQJE1S4cGH16tXLLox36NBBAQEB+u6777R7925budVq1auvvqqMjAynQe3KlSsaMmSI3XqnO3fu1OTJkxUcHKzWrVs77DN69GgdP37c9v+0tDTbvbz6HAMGDJCnp6eeffZZHT161OE48fHxDs82jh8/XidOnHB4jvV6+vXrp7i4OE2ePNlhYht3uXz5sgYPHqyqVauqX79+Lu0zd+5crVy5UkOHDnUIWLeCq9+nLK6298qVK4qPj3coX7BggeLj4x0mtcqJf/N74+rh3p988onCwsL0zDPP2D0vXr9+fZUvX16//PKLw4RJ7777rs6dO6eHH34422WKrrZr1y5XLwsA8g2G7wK4LdSqVUu1atW6YT2z2awBAwbo448/VtWqVdWuXTslJibql19+UWhoqEqVKuWW9jRs2FBffvmlfvvtN9WtW1eHDx/WTz/9pAIFCjgMn82yY8cOff/9904nSHImJiZGX331ldNySfrhhx/UokUL1apVS+3atVNYWJg++OADRUdHq3LlyoqJidGCBQvUsWNHl9aHvJ4yZcros88+U8+ePfXSSy/p66+/lpQ53PDbb7/Vww8/rDp16qhbt24KDg7W8uXLtXXrVt1zzz165ZVXHI539913a/369apdu7aaNWtmW6c0IyND33zzjdOZRevWrauqVauqW7duKlSokObPn6+YmBh16tTJLkxWrlxZY8eO1dNPP60KFSqodevWKl++vC5evKhDhw5pzZo16tWrl7766ivt2bNHL7zwgpYtW6ayZcvaDQu9nvHjx2vu3LkaOnSoS2vSSjn7fmY5c+aMJGnq1KkuT6S0Y8cOVahQQc8995xL9d3N1e9TFlfbe/HiRZUsWVIPPPCAypUrJy8vL+3atUtLly6Vh4eHBg0adNNtdtfvjcKFC+u7775TkyZN9MQTT2jx4sW240+cOFEtWrRQ69at1aVLF4WGhmrjxo1avXq1ypcvr/fff9/heFdPdJSRkaF9+/Zp7ty58vDw0BNPPHHT1wsAeY6R69EA+O+5dp3SG3G2TmlaWpp1xIgR1sjISKuPj4+1bNmy1pdeesl68eJFp2v/Xc3VdUp79uxpjY6OtrZu3drq7+9vLVSokLVZs2bW33//3WGfrDUR69SpY7cup9XqfD3Iq9dCvdHX1eswHjp0yPrQQw9Zg4ODrQULFrTWrl3bOm3atBuu2Zhde5158MEHrZKsixYtsitfu3attVWrVtbAwECrt7e3NSoqyjp06FCH9Rqt1sx1Shs1amQ9duyYtVu3btagoCCrr6+v9d5777UuXbrUoX7WepAHDx60vv/++9aIiAirt7e3NTQ01Dp8+HBramqq07Zu3rzZ2r17d2upUqWsXl5e1mLFillr1KhhHTx4sPXPP/+0Wq1W67x586yRkZHWl156yXr69Gmnx7n2Z+bAgQNWPz8/a61atazp6el2da+3TmlOv5+hoaFWSdYuXbo4tMnZz2nWuSVZFy5ceMPruJ5/s06pq9+nnLY3JSXF+uSTT1orVapk9fPzs3p6elpLlixp7dSpk3XDhg1Oj52TdUpz+nsju/VlrVar9YUXXrBKsn755Zd25Tt37rR27tzZWqxYMauXl5c1NDTU+vzzz1vPnj3r9Pqv/tnw8PCwlilTxtqhQweH6wWA/M5ktV41tgoA/uMOHz6s8PBw9ezZ020z596ssLAw9erVy+lELrczk8mkRo0aOX2+zplevXrp+++/119//fWv16K8neXV72eW/8r3CQBw6/FMKQAAAADAMIRSALhN9ejRw6XnbJE38P0EAMA5JjoCgNvUtbP/Im/j+wkAgHM8UwoAAAAAMAzDdwEAAAAAhiGUAgAAAAAMQygFAAAAABiGUAoAAAAAMAyhFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwxBKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDEEoBAAAAAIYhlAIAAAAADONpdAMAAAAAALljz549mjdvnv766y9duHBBL7/8su65557r7rN7925NmjRJx44dU9GiRfXQQw+pcePGudZGekoBAAAAIJ9KTU1VWFiYnnjiCZfqnzlzRu+//77uuusuffDBB2rTpo2++uor7dixI9faSE8pAAAAAORT1atXV/Xq1V2uv3TpUoWEhOjxxx+XJJUpU0Z79+7VwoULVa1atVxpIz2lAAAAAJBHpKenKzk52e4rPT3dbcffv3+/qlSpYldWtWpV7du3z23nuBY9pQAAAADgooVeFQw9/6Uf3tHMmTPtyjp37qyuXbu65fjx8fEKCAiwKwsICNDly5eVlpYmb29vt5znaoTS24jRP+AAXNMmPUb7Dh41uhkAbiCqfFmt2JVidDMA3EDTKr5GNyFP6dixo9q2bWtX5uXlZVBr3INQCgAAAAB5hJeXV66G0MDAQCUkJNiVJSQkqECBArnSSyrxTCkAAAAA4G+RkZHatWuXXdnOnTsVFRWVa+cklAIAAABAPpWSkqLDhw/r8OHDkjKXfDl8+LDi4uIkSVOnTtUXX3xhq9+8eXOdOXNGU6ZM0YkTJ7RkyRJt3LhRbdq0ybU2MnwXAAAAAFxk8jIZ3YQcOXjwoN566y3b/ydNmiRJatSokQYOHKgLFy7YAqokhYSEaPDgwfr++++1aNEiFS1aVE899VSuLQcjSSar1WrNtaMjR5joCMgbmOgIyBuY6AjIG/LaREeLClY09Pytk/caev7cwPBdAAAAAIBhCKUAAAAAAMMQSgEAAAAAhmGiIwAAAABwkdkzb010lBfQUwoAAAAAMAyhFAAAAABgGIbvAgAAAICLTF7067kbdxQAAAAAYBhCKQAAAADAMIRSAAAAAIBhCKUAAAAAAMMw0REAAAAAuIh1St2PnlIAAAAAgGEIpQAAAAAAwxBKAQAAAACGIZQCAAAAAAzDREcAAAAA4CKTFxMduRs9pQAAAAAAw9BTCgAAAAAuYkkY96OnFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4iCVh3I+eUgAAAACAYQilAAAAAADDEEoBAAAAAIYhlAIAAAAADMNERwAAAADgIrMnEx25Gz2lAAAAAADDEEoBAAAAAIZh+C4AAAAAuMjkwfBdd6OnFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4yMxER25HTykAAAAAwDCEUgAAAACAYRi+CwAAAAAuMpkZvutu9JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABeZPOjXczfuKAAAAADAMIRSAAAAAIBhCKUAAAAAAMMQSgEAAAAAhmGiIwAAAABwkdnDZHQT8h16SgEAAAAAhqGnFAAAAABcZDLTU+pu9JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABexJIz70VMKAAAAADAMoRQAAAAAYBhCKQAAAADAMIRSAAAAAIBhCKUAAAAAAMMw+y4AAAAAuMjE7LtuR08pAAAAAMAw9JQCAAAAgItMZvr13I07CgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYZjoCAAAAABcZDKzJIy70VMKAAAAADAMoRQAAAAAYBiG7wIAAACAi8weDN91N3pKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICLWKfU/egpBQAAAAAYhlAKAAAAADAMoRQAAAAAYBhCKQAAAADAMEx0BAAAAAAuMpnp13M37igAAAAAwDD0lAIAAACAi1gSxv3oKQUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYZh9FwAAAABcZPZg9l13o6cUAAAAAGAYQikAAAAAwDCEUgAAAACAYXimFMiGR6GCKvfSEwq8p6oCa1eRd1Cg/nhisI5Pmu3S/p4BhVXp/VdUvMMD8ijoq4Qtu7Rn0PtK3L7HoW5I2yaKevMZ+VWKUNqZczr2/c86MGKsrFeuuPuygHwtKSlJEyd8q42/blBqaqqiKlRQn779FRER6dL+x44e0bhvv9Ke3dHy9PRSrdr3qO+TTykgINBW59y5OE2cME7798Xo/PlzMpvNKlW6jNq0ba8mTR+QycSzRsCNJF9K1OzJn+qPzSuVlnpZoRGV9VDPl1W2XKXr7mexWPTbmvna8dsKHftrr5KTElQ0pLRq1W+pZu17ysvbx1b3fFysNq6co+hta3Xm1FGZzR4qdUeEWnXup4p3183tSwSQA3mup3T37t3q2rWrLl26ZHRTJEnDhw/XxIkTjW4GcoF3sSKKGvqM/CqW08WdMTnb2WRS7XnfqFT3tjoydor2vvahvIODVHf5ZBWMCLWrGtziPtWaNUbp8Re1+4V3FDtvuSKHPK27Rg9149UA+Z/FYtHbw17XmtUr1bZdB/Xu01fx8fEa8urLOnni+A33j4s7q8GDXtKpkyf1WM8+6vhQZ/2+ZbOGvv6q0tPTbfUSExMVF3dW9Ro0VO8nntSjj/dSUFCQPv3kQ03+fkJuXiKQL1gsFo3937P6ff0iNWrZXR0f/T8lJZzXp8Oe0JlTR667b1pqiiaPeVNJiRfUsHkXde41SGERlbVgxpf6YsQAWa1WW92dW1Zp6ZzvFFyirNp3f0atOj+plJRL+uzt/tq4ck4uXyXyM5PZZOhXfpSjntLhw4crLCxMvXr1clsDcuOYuWH37t1666239N1336lQoUJGNwe3QOqpM1pepr5ST8cpoGZlNdg0y+V9Sz7UUkH1amhrt+cU+/MSSdKpn35R4z1LFPXms9rx+Mu2upVGDlLirhhtbtXH1jOakXhJEYP766/PJ+lSzCH3XhiQT21Yv05//rlHg4cMVf0G90mSGtzXSP379dYPUybplVeHXHf/GdN/VEpqikZ9NlYhISGSpKioihr6+qtasXypWrZqI0kKDy+n90Z+bLdv23YP6u3hQzV/3hz1eKyXPDw8cuEKgfxh+6ZlOhSzQ31f+kg17n1AklSjXnMNf669Fkz/Un1eeD/bfT09vfTSu9+rfMVqtrIGDzykoiGltGD6l4rZ9ZutFzSqcm2N+Gqx/PyL2Oo2bN5F/3u5q+ZPH6t7mzyYK9cH3I4WL16s+fPnKz4+XqGhoerTp48iIiKyrb9w4UItXbpUcXFx8vf3V506dfTII4/I29s7V9qX53pKgVvFkpau1NNxN7VviU4tlBJ7VrGzl9rK0uIu6OTMX1S8fVOZvb0kSX6VyqvwXZE6Nm6G3VDdI19NlclsVslOLf7dRQD/IRvWr1VgkSK6t14DW1lAQKAaNGyk3zZtVHp62nX337hhnWrXrmMLpJJUrXoNlS5dRuvXrbnh+YsXL67U1FRlZGTc/EUA/wHbNy6Xf2BRVavT1FZWOCBINes1184tq677WvX08rILpFmq3pN5rFPH//kgt9QdEXaBVJK8vLxVuUYDxZ87rZTLt8eoO+Q9JrPZ0K+c+vXXXzVp0iR17txZI0eOVGhoqEaMGKGEhASn9devX6+pU6eqS5cuGjVqlJ566ilt3LhRP/7447+9ddlyuad0zJgx2rNnj/bs2aNFixZJkr744gulpKRoypQp+vPPP+Xr66u7775bPXv2lL+/v3bv3q13331Xb775pipVynxGYO7cuZo/f74++ugj/fDDD06PefUfBK7Yu3evpk6dqoMHD8rf31+1a9fWI488Il9fX0nSwIED1bRpU8XGxmrTpk0qVKiQHnroITVr1sx2jJiYGI0bN04nT57UHXfcoU6dOumjjz7SBx98oIIFC+qtt96SJPXu3VuS1KhRIw0cOFBS5jCUKVOmaMWKFfL09NQDDzygrl275ugakL8EVKuU+ezoVcOIJClhyy6F9uuuQlHhuhi9T/7V7pQkxW/dZVcv9dQZXT52Sv7Vrv9sDYB/HDp0QOXLR8h8zRt2VFQFLflloU4cP6Gw8HCn+56Li1N8fLwiI6MctkVGVdDW3zc7lKempiolJUUpKZcVvWunli9boooVK8nHx8ehLoB/HPtrr+4Ir+TwWg2NqKz1y2bpzMkjKh3q2nPgWRLjMz9EvjaEOq174Zy8fXzl7e2bo3MAt4v09HS7x0okycvLS15eXk7rL1iwQE2bNtX9998vSerXr5+2bdumVatW6cEHH3SoHxMTowoVKqhBg8wPeUNCQlS/fn3t37/fvRdyFZdDae/evXXq1Cndcccd6tatmyTJw8NDQ4YMUZMmTdSzZ0+lpaXphx9+0KhRozRs2DDdddddatOmjb744gt9+OGHOn36tKZPn64XX3xRgYGBTo/p7++fowuIjY3ViBEj1L17dz399NNKTEzUhAkTNGHCBA0YMMBWb8GCBerWrZs6deqkTZs26dtvv9Wdd96pUqVKKTk5WSNHjlT16tX1/PPP6+zZs3bPiRYrVkwvvfSSPv74Y3366acqWLCgXdf1mjVr1LZtW/3vf//Tvn37NHbsWFWsWFF33313jq4F+YdPyWCdX/+7Q3nKqTN/bw/Rxeh98i0RLElKPXXWoW5q7Fn5lsrZBzTAf9mF8+dVubLj792goCBJ0vnzcdmG0vPnz0mSivxd137/orp48aLS09Pk5fXP7/55c2dr0sTxtv9XrVZdz//fyw77A7CXGH9WEXfWcCgPKJL5nphw4UyOQ+myuRPlW9BPd1Wvf916Z04d1Y7NK1S97gMyM8weedTs2bM1c+ZMu7LOnTs77RTLyMjQoUOH7MKn2WxWlSpVtG/fPqfHr1ChgtatW6cDBw4oIiJCp0+f1vbt29WwYUO3XsfVXA6lBQsWlKenp3x8fBQYGChJmjVrlsLDw/XII4/Y6j399NN6+umndfLkSZUqVUrdu3fXzp079fXXX+vYsWNq1KiRatWqle0xc2rOnDlq2LCh2rTJfNanZMmS6t27t4YNG6a+ffvawmP16tXVokXmUMgOHTpo4cKFio6OVqlSpbR+/XqZTCb1799f3t7eKlOmjM6fP6+vv/5aUuY3zs/PT5IUEBDg8ExpaGiounTpYjv/4sWLtWvXrmxDqbNPNwoWLHhT14/bk0cBX1lSHYcfWVLS/t6e2ZNiLpD5Ka2zuldSUuXp75eLrQTyl7S0NHk6+ZQ4K0imOnmdXb3v1XXt9v97uH1qqn0obdTofkVGRikhIV5bNv+m+PgLSrvOOQBkSktLlaez19rfZWlpqTk63uJZ47R35yZ17/e6ChbKvnMjLfWyxn38sry8ffTgo8/nrNHAbaRjx45q27atXVl2vaSJiYmyWCwOWSswMFAnT550uk+DBg2UmJiooUMzJ928cuWKHnjgAXXq1OnfNz4b/2pJmCNHjig6OlqPPfaYw7bTp0+rVKlS8vT01HPPPaeXX35ZwcHB6tmz5785pdM2HDlyROvWrbMrt1qtOnPmjMqUKSMpMzhmMZlMCgwMVGJioiTp5MmTKlu2rF3v5/Ue/L1W2bJl7f5fpEiRbMdoS84/3ZgxY4bL58Pt78rlFJl9HN9wzb7ef2/PfMO1XE7JLHdS18PXx7YdwD/S09OVdPGiXZl/QIC8vb2Vcc0Hfpn1M4Oij5PXWZas3//OnmVLT0t3un9I8eIKKV5cktSocRN98dkovfH6IH31zXcM4QUkZaSn61KS/d9Dhf2LyNvbRxnOXmt/l3l7u/76+X3DYs2f9oXqNe2o+1pk/+iU5coVjR/1qmKPH9LA18coMIiRSMi7rjdU1x12796t2bNnq2/fvoqMjFRsbKy+++47zZw5U507d86Vc/6rUJqSkqKaNWvq0Ucfddh2dRqPiclcTiMpKUlJSUm2Zz3dISUlRc2aNVPr1q0dthUrVsz2b2czIVosFre0wdPT8TZar3mW8GrOPt1A/pJ66qx8/h6aezXfkiF/b88cxpsSmzls16dksFKOx9rV9SkRrPgtO3O5pUDes/fPPRoy2H6Y7LjvJqtIUJBtGO7Vzp8/L0kKCirmsC1LUFBRSZlDgB33P6fChQs77UW9Wr0GDbVk8SLtjt6pGjVr3/A6gPzuUMwOfTq8r13ZO2MXyT8wWIkXHCcSTLiQ+Z4YUMS1wPjnHxs16fM3dFeNhnr4yTeuW/eHr95S9Na16vX8e6pQpY6LVwA4l5eWZfH395fZbFZ8fLxdeXx8fLYjVadPn6777rtPTZtmTiBWtmxZpaSk6JtvvlGnTp0cngd3hxyFUk9PT7sgFx4ert9++03BwcHZTn8fGxur77//Xv3799evv/6qMWPGaOjQobaLufaYORUeHq4TJ06oRIkSN32MUqVKad26dUpPT7d96nDw4EG7OlnB0x1BNrc/3YDxEv/YqyINakomk91kR4H33K2MS8m6tO+vv+v9mVles4oStvwz2ZFPyRAVuKOkjo6jBx24Vnh4Ob0zYqRdWZEiQSpXrrx2746WxWKxe8PcF7NXPj6+Kl2mdLbHLFqsmAICArV/v+PzNfv3xSi8XPkbtitr6O6lS8muXgqQr5UJq6Dn3vzarsw/sJjKhFXQwb3bHF6rh/dHy9vHVyGlQq89lIO/9u3UNx/+n8qWv0t9X/xQHh7Z/0n786RPtHHVXHXuPUi1G7S6+QsC8iBPT0+VK1dO0dHRuueeeyRl5pno6Gi1bNnS6T6pqakymeyDd24EUbvj56RycHCw9u/frzNnzigxMVEtWrRQUlKSRo8erQMHDig2NlY7duzQ2LFjZbFYZLFY9Pnnn6tq1aq6//77NWDAAB09elQLFizI9pg5DX0dOnRQTEyMxo8fr8OHD+vUqVPasmWLxo8ff+Od/9agQQNZrVZ9/fXXOn78uHbs2KH58+c7XLvJZNLWrVuVmJiolBSGVSKTT4lgFapQTqaresxP/bxYviWCVaJjc1uZV9EiKvlQS51ZsEqWv4cDJu05oKQ/D+qOvl2lq17sof0fltViUezPi2/dhQB5hF/hwqpWvYbdl7e3t+rXv0/xFy5o46/rbXUTEhK0fv1a3VOnrl1P56lTJ3XqlP2zNPXqN9CWLb/p7NkztrI/dmzTiRPH1eDvdU8zjxnvtF3Llv4ik8mk8jl4/APIzwr6+avi3XXtvry8fVT93mZKjD+nHb+tsNVNSrygbRuXqkrNRnav1bOxx3Q29pjdcU8dP6Sx7z2roOBSGvDa5/L2yX4E3rK5E7V83vdq0amvmrTp4f6LBPKAtm3basWKFVq9erWOHz+ucePGKTU1VY0bN5aUufrJ1KlTbfVr1qypZcuWacOGDTpz5ox27typ6dOnq2bNmrkWTnPUU9quXTuNGTNGL774otLS0vTFF1/onXfe0Q8//KARI0YoPT1dwcHBqlq1qkwmk2bNmqW4uDgNHjxYUuazlk8++aRGjx6tu+++W2FhYU6PmZMlYUJDQzV8+HBNmzZNb775pqxWq0qUKKF7773X5WMULFhQr776qsaNG6dBgwapbNmyeuihh/TZZ5/ZnjMKCgpSly5dNHXqVH355Ze67777bEvCIP8KHdBDXgH+tllwQ9rcL9/Smb3yh8dMVkZikiqMeFF3PN5JKyOa6PKRE5KkU7OW6MKm7ao67j35VYpQ+rkLCu3/sOThoX1vf253jj8Hf6Bas79UnV8m6OSMhSp8V5TCBvTQsQk/KWnvIQFwTb0GDVVhbiWNHvWRjh49In//AC1aOF+WKxY98ujjdnXfeG2QJGn8xCm2si7dHtb69Wv1+uBX1K5DR6VcvqyfZ/2ksLBwNWv+z5rBM6ZN1Z49u1WzZm0Fh4To4sVE/bphvfbvi1Hb9g+qVKnse2QBSDXqPqBVUT9o8pg3FXv8oAoVLqK1S6bLarGobbcBdnVHv/WkJOndL3+RJKVcvqQv3n1ayZcS9UD7ntq1ba1d/eDid6hchaqSpB2/rdDsyaMUUrKsSpQJ129rF9jVrXT3vfIPLJpbl4l8LC8N35WkevXqKTExUTNmzFB8fLzCwsI0ZMgQ2/DduLg4u57Rhx56SCaTSdOmTdP58+fl7++vmjVr6uGHH861Npqs13v48T9s3bp1Gjt2rL7//nu7CZBy00KvCrfkPHDd/ftXqGBYGafbskLo3ePfcwilkuQZ6K9KIwepRPtmMhfwUcLvu/Tnqx8oYWu0w7GKt2+qyKHPyK9ieaWdPa/jk2Zr/7tjZM3IyLVrw81rkx6jfQePGt0MOJF08aImjP9Gmzb9qrTUNEVGRanPE08qMsr+9+sTvTLnQrg6lErSkSOHNf7br7Rn9255enmqdu066tO3v4oU+Wftw+3btmr+vDk6eHC/EhMS5OXlrbDwcDVv0UpNmzV3GPIE40SVL6sVuxjZdDtKTkrUz5M/0R+bVyk9LUWh5Sur0+MvKjTiLrt6bzydOdw2K5SeO3NCQwc4ziOSpW7j9nr8mXckSQumf6lFP32Vbd0Xho9TVGWe/74dNK2St9aMjenW4saVclGF6UsMPX9uIJT+bc2aNSpevLiCgoJ0+PBhTZgwQXfeeaeee+65W9YGQimQNxBKgbyBUArkDYTSnMmPofRfzb6bG7755huH5V2yNGzYUE8++WSunDc+Pt7WpR0YGKi6devmahc1AAAAAOA2DKXdunVT+/btnW4rUKBArp23Q4cO6tChQ64dHwAAAADg6LYLpQEBAQoICDC6GQAAAADgIK9NdJQX5O6CMwAAAAAAXAehFAAAAABgGEIpAAAAAMAwhFIAAAAAgGFuu4mOAAAAAOB2ZTLTr+du3FEAAAAAgGEIpQAAAAAAwzB8FwAAAABcZPZgnVJ3o6cUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDMNERAAAAALjIZGaiI3ejpxQAAAAAYBhCKQAAAADAMIRSAAAAAIBhCKUAAAAAAMMw0REAAAAAuMhkpl/P3bijAAAAAADD0FMKAAAAAC5iSRj3o6cUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDMNERAAAAALiIiY7cj55SAAAAAIBhCKUAAAAAAMMwfBcAAAAAXGQy06/nbtxRAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMw0RHAAAAAOAi1il1P3pKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICLTGb69dyNOwoAAAAAMAyhFAAAAABgGIbvAgAAAICrTKxT6m70lAIAAAAADEMoBQAAAAAYhlAKAAAAADAMoRQAAAAAYBgmOgIAAAAAF5nMTHTkbvSUAgAAAAAMQygFAAAAABiGUAoAAAAAMAyhFAAAAABgGCY6AgAAAAAXmcz067kbdxQAAAAAYBh6SgEAAADARSwJ4370lAIAAAAADEMoBQAAAAAYhlAKAAAAADAMoRQAAAAAYBgmOgIAAAAAF7EkjPtxRwEAAAAAhiGUAgAAAAAMw/BdAAAAAHAR65S6Hz2lAAAAAADDEEoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhomOAAAAAMBFTHTkfvSUAgAAAAAMQygFAAAAABiGUAoAAAAAMAyhFAAAAABgGCY6AgAAAABXmenXczfuKAAAAADAMIRSAAAAAIBhGL4LAAAAAC4ymVin1N3oKQUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYQikAAAAAwDBMdAQAAAAALjKxTqnbcUcBAAAAAIYhlAIAAAAADEMoBQAAAAAYhlAKAAAAADAMEx0BAAAAgItMZpPRTch36CkFAAAAABiGnlIAAAAAcBVLwrgddxQAAAAAYBhCKQAAAADAMIRSAAAAAIBhCKUAAAAAAMMQSgEAAAAAhmH2XQAAAABwUV5cp3Tx4sWaP3++4uPjFRoaqj59+igiIiLb+pcuXdKPP/6ozZs3KykpScHBwerZs6dq1KiRK+0jlAIAAABAPvXrr79q0qRJ6tevnyIjI7Vw4UKNGDFCn376qQICAhzqZ2Rk6N1335W/v79efPFFBQUFKS4uTgULFsy1NhJKAQAAAMBFJlPeegJywYIFatq0qe6//35JUr9+/bRt2zatWrVKDz74oEP9lStXKikpSe+88448PTPjYkhISK62kVAKAAAAAHlEenq60tPT7cq8vLzk5eXlUDcjI0OHDh2yC59ms1lVqlTRvn37nB5/69atioyM1Pjx4/X777/L399f9evX14MPPiizOXcCOaEUAAAAAPKI2bNna+bMmXZlnTt3VteuXR3qJiYmymKxKDAw0K48MDBQJ0+edHr806dP6+zZs2rQoIFee+01xcbGaty4cbpy5Yq6dOnituu4GqEUAAAAAPKIjh07qm3btnZlznpJb5bVapW/v7/69+8vs9mscuXK6fz585o3bx6hFAAAAAD+67IbquuMv7+/zGaz4uPj7crj4+Mdek+zBAYGytPT026obunSpRUfH6+MjAzbc6bulLee0gUAAAAAI5lNxn7lgKenp8qVK6fo6GhbmcViUXR0tKKiopzuU6FCBcXGxspisdjKTp06pSJFiuRKIJXoKb2ttEmPMboJAFwUVb6s0U0A4IKmVXyNbgIAGKpt27YaM2aMypUrp4iICC1atEipqalq3LixJOmLL75QUFCQHnnkEUlS8+bNtWTJEk2cOFEtW7ZUbGysZs+erVatWuVaGwmlt5F9B48a3QQALogqX1YLvSoY3QwAN9AmPUbRB2KNbgaAG6gcUcLoJuRr9erVU2JiombMmKH4+HiFhYVpyJAhtuG7cXFxMpn+6YEtVqyYXn/9dX3//fd65ZVXFBQUpFatWjldPsZdTFar1ZprR0eOEEqBvIFQCuQNhFIgb8hrofTCewMMPX+R18Yaev7cwDOlAAAAAADDMHwXAAAAAFxkMtOv527cUQAAAACAYQilAAAAAADDMHwXAAAAAFxkyuFaobgxekoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhlAKAAAAADAMEx0BAAAAgKtM9Ou5G3cUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDMNERAAAAALjIZDYZ3YR8h55SAAAAAIBhCKUAAAAAAMMwfBcAAAAAXGWmX8/duKMAAAAAAMMQSgEAAAAAhiGUAgAAAAAMQygFAAAAABiGiY4AAAAAwEUmE+uUuhs9pQAAAAAAwxBKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIaJjgAAAADAVWb69dyNOwoAAAAAMAw9pQAAAADgIpOZJWHcjZ5SAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMw0RHAAAAAOAqE/167sYdBQAAAAAYhlAKAAAAADAMw3cBAAAAwFWsU+p29JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABeZWKfU7bijAAAAAADDEEoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhomOAAAAAMBVZpPRLch36CkFAAAAABiGUAoAAAAAMAzDdwEAAADARSYz/Xruxh0FAAAAABiGUAoAAAAAMAyhFAAAAABgGEIpAAAAAMAwTHQEAAAAAK4ysU6pu9FTCgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYZjoCAAAAABcZaZfz924owAAAAAAw9BTCgAAAACuYkkYt6OnFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4yMSSMG7HHQUAAAAAGIZQCgAAAAAwDMN3AQAAAMBVJvr13I07CgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYZjoCAAAAABcZTYZ3YJ8h55SAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMw0RHAAAAAOAik4l+PXfjjgIAAAAADEMoBQAAAAAYhuG7AAAAAOAq1il1O3pKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICrWKfU7bijAAAAAADDEEoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhomOAAAAAMBVJpPRLch36CkFAAAAABiGUAoAAAAAMAzDdwEAAADAVea816+3ePFizZ8/X/Hx8QoNDVWfPn0UERFxw/02bNig0aNHq1atWho0aFCutS/v3VEAAAAAgEt+/fVXTZo0SZ07d9bIkSMVGhqqESNGKCEh4br7nTlzRpMnT1alSpVyvY2EUgAAAADII9LT05WcnGz3lZ6enm39BQsWqGnTprr//vtVpkwZ9evXT97e3lq1alW2+1gsFn3++efq2rWrQkJCcuMy7DB8F3BBUlKSJk74Vht/3aDU1FRFVaigPn37KyIi0qX9jx09onHffqU9u6Pl6emlWrXvUd8nn1JAQKCtzrlzcZo4YZz274vR+fPnZDabVap0GbVp215Nmj4gEzO9AdnyKFRQ5V56QoH3VFVg7SryDgrUH08M1vFJs13a3zOgsCq9/4qKd3hAHgV9lbBll/YMel+J2/c41A1p20RRbz4jv0oRSjtzTse+/1kHRoyV9coVd18WkK9dSrqoSRO+0uaN65SamqqIqIrq1XegykVEubT/8aOH9d23Y7R3zy55enqqRu266tXvGbv31uk/fKcZUydme4wRH36hindW+ZdXAtxas2fP1syZM+3KOnfurK5duzrUzcjI0KFDh/Tggw/aysxms6pUqaJ9+/Zle46ZM2fK399fTZo00Z9//um2tmfnX4fS3bt366233tJ3332nQoUKZVtv4MCBat26tdq0afNvT6kZM2Zoy5Yt+vDDD//1sdyha9euevnll3XPPfcY3RTkAovForeHva6//jqkTg91lb+/vxYunK8hr76sTz8bo1Kly1x3/7i4sxo86CUVKlRIj/Xso5SUy5o9a6aOHPlLH4/6Ql5eXpKkxMRExcWdVb0GDRUcHKIrVzK0Y/s2ffrJhzpx/Jge7/XErbhcIE/yLlZEUUOfUfKRE7q4M0ZFG9dxfWeTSbXnfSP/uyvo0MfjlXbugkL7P6K6yydrfZ1OSj5wxFY1uMV9qjVrjM6t2azdL7yjwpWjFDnkafmEFFX0M8Pdf2FAPmWxWDRi+GAd+eugOjzUXYX9A7R44Ry9Ofh5fTD62xu+t56LO6Ohrz6ngoX89EjPvkq5fFnzfp6uo4f/0vujvrK9t9apd59KlCztsP/USd8q5fJllY+smCvXB+Smjh07qm3btnZlWT/z10pMTJTFYlFgYKBdeWBgoE6ePOl0n71792rlypX64IMP3NJeV+Q4lA4fPlxhYWHq1auXJKlChQr65ptvVLBgQUnS6tWrNXHiRE2cONGd7bwt3G5hGLfGhvXr9OefezR4yFDVb3CfJKnBfY3Uv19v/TBlkl55dch1958x/UelpKZo1GdjbcMfoqIqaujrr2rF8qVq2Srzg5rw8HJ6b+THdvu2bfeg3h4+VPPnzVGPx3rJw8MjF64QyPtST53R8jL1lXo6TgE1K6vBplku71vyoZYKqldDW7s9p9ifl0iSTv30ixrvWaKoN5/VjsdfttWtNHKQEnfFaHOrPrae0YzES4oY3F9/fT5Jl2IOuffCgHxq44bVivkzWi+/9pbubdBYklSv4f16tl8PTf9hgv5v0JvX3X/W9ClKSU3RB6O/VXBIcUlSRFQlvf3GS1q1/Bc1b9VekhQWXl5h4eXt9o07e0bn4s6qafM22f4hD1yXydgnIL28vHLtZ/fy5cv6/PPP1b9/f/n7++fKOZz513fU09NTgYGBDC1EvrVh/VoFFimie+s1sJUFBASqQcNG+m3TRqWnp113/40b1ql27Tp24/GrVa+h0qXLaP26NTc8f/HixZWamqqMjIybvwggn7OkpSv1dNxN7VuiUwulxJ5V7OyltrK0uAs6OfMXFW/fVGbvzDd+v0rlVfiuSB0bN8NuqO6Rr6bKZDarZKcW/+4igP+QjevXKDAwSHXq3WcrCwgIVL2G92vLpg03fG/d9Ota1ax9ry2QSlLV6rVUqvQd+nXd6uvuu37NclmtVt13/wP/5hKAPMHf319ms1nx8fF25fHx8Q69p5J0+vRpnT17ViNHjlT37t3VvXt3rV27Vlu3blX37t0VGxubK+3MUU/pmDFjtGfPHu3Zs0eLFi2SJA0YMEBjx47Vd999p8OHD2vs2LGSZBvTnN345kuXLmny5MnasmWLMjIyVK5cOfXs2VNhYWE3dSErVqzQggULdObMGQUHB6tVq1Zq0SLzD4QzZ87omWee0UsvvaTFixdr//79KlmypPr166eoqH+eW1i+fLlmzZqlixcvqmrVqqpUqZJmzpypiRMnavXq1bax21nXM2DAADVu3FiSdPHiRX344Yf6448/FBQUpMcff1y1atW6qWvB7eXQoQMqXz5C5mum/46KqqAlvyzUieMnFBYe7nTfc3Fxio+PV2Sk4/MxkVEVtPX3zQ7lqampSklJUUrKZUXv2qnly5aoYsVK8vHxcc8FAbATUK1S5rOjVqtdecKWXQrt112FosJ1MXqf/KvdKUmK37rLrl7qqTO6fOyU/Kvl/uyEQH7x16H9Co+IdHhvjYiqpGWL5+vkiWMKDSvvdN9zcWeVEH9BEZEVHLZFRFXUtt9/u+65165ermLBIbqzctWbvwD8t5nzTmecp6enypUrp+joaNujhhaLRdHR0WrZsqVD/VKlSumjjz6yK5s2bZpSUlLUq1cvFStWLHfamZPKvXv31qlTp3THHXeoW7dukqRjx47ZtleoUEG9evXS9OnTNXr0aEmSr6+v02N98skn8vb21pAhQ1SwYEEtW7ZM77zzjkaPHi0/P78cXcS6des0Y8YM9enTR+Hh4frrr7/09ddfy8fHxxYapcwb+thjj6lEiRKaNm2aRo8erc8++0weHh7au3evvv32W/Xo0UO1atXSrl27NH36dNu+9erV09GjR/XHH39o6NChkmQbsixlPgzco0cPPfbYY/rll1/02WefaezYsTm+Ftx+Lpw/r8qV73YoDwoKkiSdPx+XbSg9f/6cJKnI33Xt9y+qixcvKj09TV5e3rbyeXNna9LE8bb/V61WXc//38sO+wNwD5+SwTq//neH8pRTZ/7eHqKL0fvkWyJYkpR66qxD3dTYs/ItlfuzEwL5Rfz587rzLsdQWCSoqCTp/Llz2YbSCxcy31sD/6577f5JFxMd3luzHD3yl478dVAPPvQwo/zwn9G2bVuNGTNG5cqVU0REhBYtWqTU1FRbTvriiy8UFBSkRx55RN7e3ipbtqzd/lnzBl1b7k45CqUFCxaUp6enfHx8bN29J06c+Odgnp4qWLCgTCaT0+7gLHv37tWBAwc0btw423joxx9/XFu2bNGmTZvUrFmzHF3EjBkz9Nhjj6lOncyJLUJCQnT8+HEtX77cLpS2a9dONWrUkJTZ2/niiy8qNjZWpUuX1uLFi1W9enW1b5/5DEKpUqUUExOjbdu2SZK8vb3l6+srs9ns9NoaNWqkBg0yh3c+/PDD+uWXX3TgwAFVq1bNoW56errDtM1XB1zcXtLS0uTpZNx+1ptdamr2Q4zS0tLs6trt//eQwNRU+zfORo3uV2RklBIS4rVl82+Kj7+gtOucA8C/41HAVxYnrzFLStrf2zNHKZgLZH7I6qzulZRUefrzISTgqrS0VKfPxHl7e9u2Z7tvauY2Z/tnvZ+mpaY6fe9dt3qZJKkhQ3fxH1KvXj0lJiZqxowZio+PV1hYmIYMGWLLNHFxcYZ/SGPIkjCHDx9WSkqK+vTpY1eelpaW43HKKSkpOn36tL766it9/fXXtnKLxeIQ9K5O91nfhISEBJUuXVonT550mD03IiLCFkpvJDQ01PZvX19fFShQINsFaZ1N4zxjxgyXzoPck56erqSLF+3K/AMC5O3trQwnaz9lPe/i4+P4ppcl683V2bMx6WnpTvcPKV5cIcUzn5Fp1LiJvvhslN54fZC++uY7hvACueDK5RSZnbyOzb7ef2/P/APYcjkls9xJXQ9fH9t2AP/IfG9NtCvzDwiUt7eP03UVsz7M9fbO/v3O++/3Qmf7Z73fejt5v7RarVq3eoXKhoY7TH4E5HctW7Z0OlxXypzI9noGDhyYCy2yZ0goTUlJUZEiRZzegJz2GKakZP4R0L9/f0VG2q8Zee1zCp6e/1xu1qcB1mueIbpZ186KajKZsj22s2mcYby9f+7RkMH2w2THfTdZRYKCbMNwr3b+/HlJUlBQ9mPrg/4eWnTh77r2+59T4cKFnX6Se7V6DRpqyeJF2h29UzVq1r7hdQDImdRTZ+Xz99Dcq/mWDPl7e+Yw3pTYzGG7PiWDlXLc/gNUnxLBit+yM5dbCuQ9MX9Ga9hrL9iVfTlhmgKDgmzDcK924e/326CijkNzsxQpkrkt3sl784Xz5+RX2N/pe+vePbt09kysevR8MieXAOAWyHEo9fT0lMViuentklSuXDnFx8fLbDbbzUh6MwIDA1WkSBGdPn1aDRs2vOnjlCpVSgcOHLArO3jwoN3/Xbk2V+TmNM64eeHh5fTOiJF2ZUWKBKlcufLavTtaFovF7oOOfTF75ePjq9JlHNc/y1K0WDEFBARq/37HxYn374tReLkbf1KbNXT30qVkVy8FQA4k/rFXRRrUlEwmu8mOAu+5WxmXknVp319/18tcPDywZhUlbPlnsiOfkiEqcEdJHR3HiBfgWmHhEXrzXfvlzgKLBCk8PEJ/7t7l8N66P2aPfHx8Var0Hdkes2ixYPkHBOrA/hiHbQf27VV4uQin+61dvUwmk0kNG+fsMTHAgcFLwuRHOb6jwcHB2r9/v86cOaPExESH3sDg4GClpKRo165dSkxMVGqq4zMBVapUUVRUlG222jNnzigmJkY//vijQxB0RdeuXTVnzhwtWrRIJ0+e1NGjR7Vq1SotWLDA5WO0bNlS27dv14IFC3Tq1CktW7ZMO3bssBtfHRISojNnzujw4cNKTEx0OmwEeZdf4cKqVr2G3Ze3t7fq179P8RcuaOOv6211ExIStH79Wt1Tp67dp7GnTp3UqVP2CxHXq99AW7b8prNnz9jK/tixTSdOHFeDBvdddcx4p+1atvQXmUwmlY9w/iYLwHU+JYJVqEI5ma4aOXPq58XyLRGsEh2b28q8ihZRyYda6syCVbL8PdQ+ac8BJf15UHf07Spd9Ud0aP+HZbVYFPvz4lt3IUAe4Ve4sKpWr2X35e3to3sbNFZ8/Hn99utaW93EhHhtXL9aterUs3tvjT11QrGnTtgdt279+7R1y0bFXfXeunPHVp08ccy27unVMjIytHH9GlW8s4rdMjIAbg857ilt166dxowZoxdffFFpaWkaMGCA3fYKFSrogQce0KeffqqLFy86XRLGZDLptdde048//qixY8cqMTFRgYGBqlSpkgICAnJ8EU2bNpWPj4/mzZunKVOmyMfHR2XLllWbNm1cPkbFihXVr18/zZw5U9OmTVPVqlXVpk0bLV78zx8ZderU0W+//aa33npLly5dslsSBvlXvQYNVWFuJY0e9ZGOHj0if/8ALVo4X5YrFj3y6ON2dd94bZAkafzEKbayLt0e1vr1a/X64FfUrkNHpVy+rJ9n/aSwsHA1a/7PuoYzpk3Vnj27VbNmbQWHhOjixUT9umG99u+LUdv2D6pUqex7ZAFIoQN6yCvA3zYLbkib++VbuoQk6fCYycpITFKFES/qjsc7aWVEE10+kvlH7qlZS3Rh03ZVHfee/CpFKP3cBYX2f1jy8NC+tz+3O8efgz9Qrdlfqs4vE3RyxkIVvitKYQN66NiEn5S099CtvWAgD6tbv5GiKt6pLz59X8eOHpa/f4AWL5ori8Wibj1629UdPuRFSdJX3/2zKsJDXR/TxvVrNOy1F9Sm/UNKSbmsubOmqWxYOTV5oJXD+XZs26yLiQmsTQrcpkxWdz1UmQ999dVXOnnypN5+++1bcr59B4/ekvMg55IuXtSE8d9o06ZflZaapsioKPV54klFRtmvkfZEr0cl2YdSSTpy5LDGf/uV9uzeLU8vT9WuXUd9+vZXkSJFbHW2b9uq+fPm6ODB/UpMSJCXl7fCwsPVvEUrNW3W3PBZ0fCPqPJltdDLcX08GOv+/StUMKyM021ZIfTu8e85hFJJ8gz0V6WRg1SifTOZC/go4fdd+vPVD5SwNdrhWMXbN1Xk0GfkV7G80s6e1/FJs7X/3TGyZmTk2rXh5rRJj1H0gdxZ6B3/XtLFi5o04Utt3rReaampioiqqMefeFoRkRXt6j3VO3MZwqtDqZS5vMvEcWO0d/cueXp6qmbte9Wz7wAFFnFchu2TkW/pt1/XatyU2Spc2D/3Lgo3pXJECaObkCMpc78w9Py+HZ4x9Py5gVB6lXnz5unuu++Wr6+vtm/frkmTJqlv375q2rTpLTk/oRTIGwilQN5AKAXyBkJpzuTHUGrI7Ls38uKLL+rsWcfFySXpySef/FcTGl3PgQMHNG/ePF2+fFnFixdX7969b1kgBQAAAJAHMHrN7W7LUPraa6/pypUrTrfdzDOnrnrxxRdz7dgAAAAAAEe3ZSgNDnZcLw4AAAAAkP/clqEUAAAAAG5LZtYpdTfuKAAAAADAMIRSAAAAAIBhCKUAAAAAAMMQSgEAAAAAhmGiIwAAAABwFeuUuh09pQAAAAAAwxBKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIaJjgAAAADAVSb69dyNOwoAAAAAMAyhFAAAAABgGIbvAgAAAICrzPTruRt3FAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4ymQyugX5Dj2lAAAAAADD0FMKAAAAAK4y0a/nbtxRAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMw0RHAAAAAOAqloRxO3pKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICrzPTruRt3FAAAAABgGEIpAAAAAMAwDN8FAAAAABdZWafU7egpBQAAAAAYhlAKAAAAADAMoRQAAAAAYBhCKQAAAADAMEx0BAAAAACuMtGv527cUQAAAACAYQilAAAAAADDEEoBAAAAAIYhlAIAAAAADMNERwAAAADgKiY6cjvuKAAAAADAMIRSAAAAAIBhGL4LAAAAAC6ymkxGNyHfoacUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDMNERAAAAALiKdUrdjjsKAAAAADAMPaUAAAAA4CqWhHE7ekoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhlAKAAAAADAMEx0BAAAAgKvM9Ou5G3cUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDEEoBAAAAAIZh9l0AAAAAcJHVZDK6CfkOPaUAAAAAAMPQUwoAAAAArjLRr+du3FEAAAAAgGEIpQAAAAAAwxBKAQAAAACGIZQCAAAAAAzDREcAAAAA4CIrEx25HXcUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDMNERAAAAALjKZDK6BfkOPaUAAAAAAMMQSgEAAAAAhmH4LgAAAAC4iHVK3Y87CgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYZjoCAAAAABcxTqlbkdPKQAAAADAMPSUAgAAAICr8uCSMIsXL9b8+fMVHx+v0NBQ9enTRxEREU7rLl++XGvXrtWxY8ckSeXKldPDDz+cbX13yHt3FAAAAADgkl9//VWTJk1S586dNXLkSIWGhmrEiBFKSEhwWn/Pnj2qX7++hg0bpnfffVdFixbVu+++q/Pnz+daGwmlAAAAAJBPLViwQE2bNtX999+vMmXKqF+/fvL29taqVauc1n/uuefUokULhYWFqXTp0nrqqadktVq1a9euXGsjoRQAAAAA8oj09HQlJyfbfaWnpzutm5GRoUOHDqlKlSq2MrPZrCpVqmjfvn0unS81NVUZGRny8/NzS/ud4ZlSAAAAAMgjZs+erZkzZ9qVde7cWV27dnWom5iYKIvFosDAQLvywMBAnTx50qXz/fDDDwoKCrILtu5GKAUAAACAPKJjx45q27atXZmXl1eunGvOnDnasGGDhg8fLm9v71w5h0QoBQAAAACXWQ1ep9TLy8vlEOrv7y+z2az4+Hi78vj4eIfe02vNmzdPc+bM0dChQxUaGnqTrXUNz5QCAAAAQD7k6empcuXKKTo62lZmsVgUHR2tqKiobPebO3euZs2apSFDhqh8+fK53k5CKQAAAADkU23bttWKFSu0evVqHT9+XOPGjVNqaqoaN24sSfriiy80depUW/05c+Zo+vTpevrppxUSEqL4+HjFx8crJSUl19rI8F0AAAAAyKfq1aunxMREzZgxQ/Hx8QoLC9OQIUNsw3fj4uJkumpI8rJly5SRkaFPPvnE7jjZTabkDiar1WrNlSMjx/YdPGp0EwC4IKp8WS30qmB0MwDcQJv0GEUfiDW6GQBuoHJECaObkCOJW5cYen7/mi0MPX9uoKcUAAAAAFxl4glId6OnFAAAAABclLhtmaHn96/xgKHnzw30lN5GVuzKvYeHAbhP0yq+DAkE8oDKESUYag/kAW3SY4xuQo5YZeySMPkRfc8AAAAAAMMQSgEAAAAAhiGUAgAAAAAMQygFAAAAABiGiY4AAAAAwEVWloRxO+4oAAAAAMAwhFIAAAAAgGEIpQAAAAAAwxBKAQAAAACGYaIjAAAAAHAVEx25HXcUAAAAAGAYQikAAAAAwDAM3wUAAAAAF1lNJqObkO/QUwoAAAAAMAyhFAAAAABgGEIpAAAAAMAwhFIAAAAAgGGY6AgAAAAAXGRlnVK3444CAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAAFeZTEa3IN+hpxQAAAAAYBhCKQAAAADAMAzfBQAAAAAXsU6p+3FHAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICLrGKdUnejpxQAAAAAYBh6SgEAAADARSwJ437cUQAAAACAYQilAAAAAADDEEoBAAAAAIYhlAIAAAAADMNERwAAAADgKhNLwrgbPaUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMQygFAAAAABiGiY4AAAAAwEVW+vXcjjsKAAAAADAMoRQAAAAAYBiG7wIAAACAi6ysU+p29JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABdZTfTruRt3FAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4yCqT0U3Id+gpBQAAAAAYhlAKAAAAADAMw3cBAAAAwEWsU+p+3FEAAAAAgGEIpQAAAAAAwxBKAQAAAACGIZQCAAAAAAzDREcAAAAA4CKriXVK3Y2eUgAAAACAYegpBQAAAAAXWUVPqbvRUwoAAAAAMAyhFAAAAABgGEIpAAAAAMAwhFIAAAAAgGGY6AgAAAAAXGQ10a/nbtxRAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMQygFAAAAABiG2XcBAAAAwEVWmYxuQr5DTykAAAAAwDD0lAIAAACAi1in1P24owAAAAAAwxBKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIaJjgAAAADARSwJ4370lAIAAAAADEMoBQAAAAAYhlAKAAAAADAMoRQAAAAAYBgmOgIAAAAAF1lN9Ou5G3cUAAAAAGAYQikAAAAAwDAM3wUAAAAAF7FOqfvRUwoAAAAAMAw9pQAAAACQjy1evFjz589XfHy8QkND1adPH0VERGRbf+PGjZo+fbrOnj2rEiVKqEePHqpRo0autY+eUgAAAADIp3799VdNmjRJnTt31siRIxUaGqoRI0YoISHBaf2YmBiNHj1aTZo00ciRI1W7dm19+OGHOnr0aK61kVAKAAAAAHlEenq6kpOT7b7S09Ozrb9gwQI1bdpU999/v8qUKaN+/frJ29tbq1atclp/0aJFqlatmtq3b68yZcqoe/fuKleunBYvXpxbl8TwXQAAAABwldVk7ERHs2fP1syZM+3KOnfurK5duzrUzcjI0KFDh/Tggw/aysxms6pUqaJ9+/Y5Pf6+ffvUtm1bu7KqVatqy5Yt/77x2SCUAgAAAEAe0bFjR4fQ6OXl5bRuYmKiLBaLAgMD7coDAwN18uRJp/vEx8crICDAriwgIEDx8fE33eYbIZQCAAAAgIusVmN7Sr28vLINoXkVz5QCAAAAQD7k7+8vs9ns0MsZHx/v0HuaJTAw0GESpISEhGzruwM9pYALki8lavbkT/XH5pVKS72s0IjKeqjnyypbrtJ197NYLPptzXzt+G2Fjv21V8lJCSoaUlq16rdUs/Y95eXtY6t7Pi5WG1fOUfS2tTpz6qjMZg+VuiNCrTr3U8W76+b2JQL5xqWki5o04Stt3rhOqampioiqqF59B6pcRJRL+x8/eljffTtGe/fskqenp2rUrqte/Z5RQECgrc70H77TjKkTsz3GiA+/UMU7q/zLKwHyH49CBVXupScUeE9VBdauIu+gQP3xxGAdnzTbpf09Awqr0vuvqHiHB+RR0FcJW3Zpz6D3lbh9j0PdkLZNFPXmM/KrFKG0M+d07PufdWDEWFmvXHH3ZQG3LU9PT5UrV07R0dG65557JGX+fRodHa2WLVs63ScqKkq7du1SmzZtbGU7d+5UZGRkrrXTbT2lw4cP18SJE12qu3v3bnXt2lWXLl36V+ccOHCgFi5c+K+OAdyIxWLR2P89q9/XL1Kjlt3V8dH/U1LCeX067AmdOXXkuvumpaZo8pg3lZR4QQ2bd1HnXoMUFlFZC2Z8qS9GDJDVarXV3blllZbO+U7BJcqqffdn1Krzk0pJuaTP3u6vjSvn5PJVAvmDxWLRiOGDtX7NCrVq10mP9XlKCQnxenPw8zp54vgN9z8Xd0ZDX31OsadO6JGefdW+Uzdt27JJb7/+kt3MhnXq3afnXnrd4atYcIj8/AqrfGTF3LxMIM/yLlZEUUOfkV/Fcrq4MyZnO5tMqj3vG5Xq3lZHxk7R3tc+lHdwkOoun6yCEaF2VYNb3Kdas8YoPf6idr/wjmLnLVfkkKd11+ihbrwaIG9o27atVqxYodWrV+v48eMaN26cUlNT1bhxY0nSF198oalTp9rqt27dWn/88Yfmz5+vEydOaMaMGTp48GC2IdYd6CkFbmD7pmU6FLNDfV/6SDXufUCSVKNecw1/rr0WTP9SfV54P9t9PT299NK736t8xWq2sgYPPKSiIaW0YPqXitn1m60XNKpybY34arH8/IvY6jZs3kX/e7mr5k8fq3ubPJgr1wfkJxs3rFbMn9F6+bW3dG+DxpKkeg3v17P9emj6DxP0f4PevO7+s6ZPUUpqij4Y/a2CQ4pLkiKiKuntN17SquW/qHmr9pKksPDyCgsvb7dv3NkzOhd3Vk2bt8l3z/oA7pJ66oyWl6mv1NNxCqhZWQ02zXJ535IPtVRQvRra2u05xf68RJJ06qdf1HjPEkW9+ax2PP6yrW6lkYOUuCtGm1v1sfWMZiReUsTg/vrr80m6FHPIvRcG3Mbq1aunxMREzZgxQ/Hx8QoLC9OQIUNsw3Hj4uJkumpG4QoVKui5557TtGnT9OOPP6pkyZJ65ZVXVLZs2VxrI6EUuIHtG5fLP7CoqtVpaisrHBCkmvWaa/PahUpPT5OXl7fTfT29vOwCaZaq9zTVgulf6tTxQ7ZQWuqOCId6Xl7eqlyjgVbMn6yUy5fkW6CQey4KyKc2rl+jwMAg1al3n60sICBQ9Rrer7Wrll339SpJm35dq5q177UFUkmqWr2WSpW+Q7+uW20Lpc6sX7NcVqtV993/gFuuBciPLGnpSj0dd1P7lujUQimxZxU7e6mtLC3ugk7O/EWlH2kvs7eXLGnp8qtUXoXvilT0s2/ZDdU98tVURQ55WiU7tdCB977819cC5CUtW7bMtqdz+PDhDmX33nuv7r333lxu1T9yJZSuXbtWixYt0smTJ+Xj46PKlSurV69eDlMLx8TEaOrUqTp16pTCwsLUv39/uwS+d+9eTZ06VQcPHpS/v79q166tRx55RL6+vjluU9euXdW/f39t27ZNf/zxh4KCgvT444+rVq1akqTVq1dr4sSJdkOQN2/erI8++kgzZsyQJM2YMUNbtmxRq1at9NNPPykpKUmNGjVSnz59NH/+fC1YsEBWq1WtW7dWp06dbuLO4XZ07K+9uiO8ksxm+9HuoRGVtX7ZLJ05eUSlQ3M2xj4xPvMN+epe0WzrXjgnbx9feXvn/Oce+K/569B+hUdEOrxeI6Iqadni+Tp54phCw8o73fdc3FklxF9QRGQFh20RURW17fffrnvutauXq1hwiO6sXPXmLwBAtgKqVcp8dvSqR18kKWHLLoX2665CUeG6GL1P/tXulCTFb91lVy/11BldPnZK/tWuPx8EcCNW5op1u1y5oxkZGerWrZs+/PBDvfLKKzp79qzGjh3rUG/y5Ml6/PHH9d5776lw4cIaOXKkMjIyJEmxsbEaMWKE6tSpo48++kgvvPCCYmJiNGHChJtu18yZM3Xvvffqo48+UvXq1fXZZ58pKSkpR8c4ffq0duzYoddff13PP/+8Vq5cqffee0/nzp3TW2+9pR49emjatGnav3//TbcTt5fE+LPyL1LMoTygSLAkKeHCmRwfc9ncifIt6Ke7qte/br0zp45qx+YVqlanmcweHjk+D/BfE3/+vIoUKepQXiQos+z8uXPZ7nvhQua2wCDn+yddTFR6eprTfY8e+UtH/jqoBvc1tRsCBcB9fEoGKzX2rEN5yqkzf28PkST5lsh8f0495Vg3NfasfEuF5GIrAdyMXAmlTZo0UfXq1VW8eHFFRUWpd+/e2r59u1JSUuzqdenSRXfffbfKli2rZ555RgkJCdq8ebMkac6cOWrYsKHatGmjkiVLqkKFCurdu7fWrFmjtDTnfxTcSKNGjdSgQQOVKFFCDz/8sFJSUnTgwIEcHcNqterpp59WmTJlVKtWLd111106efKkevXqpVKlSun+++9XqVKltHv37myPkZ6eruTkZLsv3L7S0lLl6WS4X9YQwLS01Bwdb/Gscdq7c5Me7PG8Chbyz/68qZc17uOX5eXtowcffT5njQb+o9LSUp0+z+ntfePXa1pq5jZn+9te76nO91+3epkkqSFDd4Fc41HAV5ZUx78BLSlpf2/PnNHeXCBzZJGzuldSUm3bAdw+cmX47qFDhzRjxgwdOXJEly5dss0wGhcXpzJlytjqRUX9Mz2/n5+fSpUqpRMnTkiSjhw5oiNHjmjdunV2x7ZarTpz5ozdcVwVGvrPzGy+vr4qUKCAwxo8NxIcHKwCBQrY/h8QECCz2Ww3VCwgIOC6x509e7ZmzpxpV5Y1RBjGyUhP16Uk++9bYf8i8vb2UYaT3pGsHhPvq5Z1uZHfNyzW/GlfqF7TjrqvRdds61muXNH4Ua8q9vghDXx9jAKD+FQXuFp6erqSLibalfkHBMrb28dultwsWR9mXu/16u3jYzu24/nS7OpczWq1at3qFSobGu4w+REA97lyOUVmH8cPic2+3n9vz/zQyHI5sxPEWV0PXx/bdgC3D7eH0pSUFI0YMUJVq1bVc889J39/f8XFxWnEiBG2obmuHqdZs2Zq3bq1w7ZixRyHUrrC45rhjyaTyRaYr/53litO1rFydozrHdeZjh07qm3btjlqO3LfoZgd+nR4X7uyd8Yukn9gsBIvOE7KkHAhc1hQQBHXAuOff2zUpM/f0F01GurhJ9+4bt0fvnpL0VvXqtfz76lClTouXgHw3xHzZ7SGvfaCXdmXE6YpMCjINgz3ahfOZ5YFFXUcmpsla9hv/Hnn+/sV9nc6SdLePbt09kysevR8MieXACCHUk+dlc/fQ3Ov5vv3sN3Uv4fxpvw9xNenZLBSjsfa1fUpEaz4LTtzuaUAcsrtofTkyZO6ePGiHnnkEVt4PHjwoNO6+/bts9VJSkrSqVOnVLp0aUlSeHi4Tpw4oRIlSri7iU75+/srJSVFKSkptomUDh8+nCvn8vLyYrmA21CZsAp67s2v7cr8A4upTFgFHdy7TRaLxa5H/PD+aHn7+CqkVOi1h3Lw176d+ubD/1PZ8nep74sfysMj+5fez5M+0cZVc9W59yDVbtDq5i8IyMfCwiP05rsf25UFFglSeHiE/ty9y+H1uj9mj3x8fFWq9B3ZHrNosWD5BwTqwH7HtRMP7Nur8HKOM2RL0trVy2QymdSwcbObvBoArkj8Y6+KNKgpmUx2kx0F3nO3Mi4l69K+v/6u92dmec0qStjyz2RHPiVDVOCOkjo6jtFp+HesYu4Ad3P7M6XFihWTp6enFi9erNOnT+v333/XrFnO16CaNWuWdu3apaNHj2rs2LEqXLiw7rnnHklShw4dFBMTo/Hjx+vw4cM6deqUtmzZovHjx7u7yZKkyMhIeXt768cff1RsbKzWr1+v1atX58q5cHsq6OevinfXtfvy8vZR9XubKTH+nHb8tsJWNynxgrZtXKoqNRvZ9ZycjT2ms7HH7I576vghjX3vWQUFl9KA1z6Xt0/2z7IsmztRy+d9rxad+qpJmx7uv0ggn/ArXFhVq9ey+/L29tG9DRorPv68fvt1ra1uYkK8Nq5frVp16tm9XmNPnVDsqRN2x61b/z5t3bJRcWf/mcBs546tOnnimG3d06tlZGRo4/o1qnhnFbtlZAD8Oz4lglWoQjmZPP/5EPfUz4vlWyJYJTo2t5V5FS2ikg+11JkFq2RJyxx6n7TngJL+PKg7+naVrvpwKrT/w7JaLIr9efGtuxAALnF7T6m/v78GDBigH3/8Ub/88ovCw8P12GOP6YMPPnCo+8gjj2jixIm2JWFeffVVef79yyc0NFTDhw/XtGnT9Oabb8pqtapEiRK5tl6On5+fnn32WU2ZMkUrVqxQ5cqV1aVLF33zzTe5cj7kHTXqPqBVUT9o8pg3FXv8oAoVLqK1S6bLarGobbcBdnVHv5U5fO/dL3+RJKVcvqQv3n1ayZcS9UD7ntq1ba1d/eDid6hchczlI3b8tkKzJ49SSMmyKlEmXL+tXWBXt9Ld98o/MPuhhwCkuvUbKarinfri0/d17Ohh+fsHaPGiubJYLOrWo7dd3eFDXpQkffXddFvZQ10f08b1azTstRfUpv1DSkm5rLmzpqlsWDk1ecBx5MKObZt1MTGBtUmBHAgd0ENeAf62WXBD2twv39KZI+MOj5msjMQkVRjxou54vJNWRjTR5SOZHx6dmrVEFzZtV9Vx78mvUoTSz11QaP+HJQ8P7Xv7c7tz/Dn4A9Wa/aXq/DJBJ2csVOG7ohQ2oIeOTfhJSXsP3doLRr5DT6n7mazXe/gRt9SKXTx4f7tKTkrUz5M/0R+bVyk9LUWh5Sur0+MvKjTiLrt6bzyd+UdrVig9d+aEhg5wfC46S93G7fX4M+9IkhZM/1KLfvoq27ovDB+nqMq1/+2lwA2aVvFV9IHYG1eEIZIuXtSkCV9q86b1SktNVURURT3+xNOKiKxoV++p3t0k2YdSKXN5l4njxmjv7l3y9PRUzdr3qmffAQosEuRwrk9GvqXffl2rcVNmq3Dh7GfThjEqR5TQQi/HdWdhrPv3r1DBMOcTVmaF0LvHv+cQSiXJM9BflUYOUon2zWQu4KOE33fpz1c/UMLWaIdjFW/fVJFDn5FfxfJKO3texyfN1v53x8iagzlOcGu0SXd8bOJ2FnPw2I0r5aIK5bN/FCWvIpTeRgilQN5AKAXyBkIpkDcQSnMmP4bSXFkS5lZbt25dtsNsg4OD9cknn9ziFgEAAAAAXJEvQmmtWrUUGRnpdNu1y7UAAAAAAG4f+SKUFihQQAUKFDC6GQAAAADyOSY6cj+3LwkDAAAAAICrCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMky8mOgIAAACAW4GJjtyPnlIAAAAAgGEIpQAAAAAAwzB8FwAAAABcZLUyfNfd6CkFAAAAABiGUAoAAAAAMAyhFAAAAABgGEIpAAAAAMAwTHQEAAAAAC5inVL3o6cUAAAAAGAYQikAAAAAwDAM3wUAAAAAFzF81/3oKQUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYQikAAAAAwDBMdAQAAAAALmKiI/ejpxQAAAAAYBhCKQAAAADAMIRSAAAAAIBhCKUAAAAAAMMw0REAAAAAuMhqZaIjd6OnFAAAAABgGHpKAQAAAMBFFpaEcTt6SgEAAAAAhiGUAgAAAAAMQygFAAAAABiGUAoAAAAAMAwTHQEAAACAi6xMdOR29JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABdZrUx05G70lAIAAAAADEMoBQAAAAAYhuG7AAAAAOAi1il1P3pKAQAAAACGIZQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDBMdAQAAAICLWKfU/egpBQAAAAAYhlAKAAAAADAMw3cBAAAAwEWsU+p+9JQCAAAAAAxDKAUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYJjoCAAAAABexTqn70VMKAAAAADAMoRQAAAAAYBhCKQAAAADAMIRSAAAAAIBhmOgIAAAAAFxkMboB+RA9pQAAAAAAw9BTCgAAAAAuYkkY96OnFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAwzDREQAAAAC4yComOnI3ekoBAAAAAIYhlAIAAAAADEMoBQAAAAAYhlAKAAAAADAMoRQAAAAAYBhm3wUAAAAAF1mtzL7rbvSUAgAAAAAMQ08pAAAAALiIdUrdj55SAAAAAIBhCKUAAAAAAMMQSgEAAAAAhiGUAgAAAAAMw0RHAAAAAOAii9XoFuQ/9JQCAAAAAAxDKAUAAAAAGIbhuwAAAADgItYpdT9CKQAAAABASUlJmjBhgrZu3SqTyaQ6deqod+/e8vX1zbb+jBkz9McffyguLk7+/v6qXbu2unfvroIFC7p8XkIpAAAAAECfffaZLly4oDfeeENXrlzR2LFj9fXXX+v55593Wv/8+fM6f/68HnvsMZUpU0ZxcXH69ttvdeHCBb300ksun5dnSgEAAADgP+748ePasWOHnnrqKUVGRqpixYrq06ePfv31V50/f97pPmXLltXLL7+sWrVqqUSJEqpcubK6d++urVu36sqVKy6fm1AKAAAAAHlEenq6kpOT7b7S09P/9XH37dunQoUKqXz58rayKlWqyGQy6cCBAy4fJzk5WQUKFJCHh4fL+zB8FwAAAABcZLUaO9HR7NmzNXPmTLuyzp07q2vXrv/quPHx8fL397cr8/DwkJ+fn+Lj4106RmJiombNmqVmzZrl6NyEUgAAAADIIzp27Ki2bdvalXl5eWVb/4cfftDcuXOve8xRo0b963YlJyfr/fffV5kyZdSlS5cc7UsoBQAAAIA8wsvL67oh9Frt2rVT48aNr1unePHiCgwMVGJiol35lStXlJSUpMDAwOvuf/nyZf3vf/9TgQIF9PLLL8vTM2cxk1AKAAAAAPmUv7+/w7BcZ6KionTp0iUdOnRI5cqVkyRFR0fLarUqIiIi2/2Sk5M1YsQIeXl5adCgQfL29s5xG5noCAAAAAD+48qUKaNq1arp66+/1oEDB7R3715NmDBB9erVU1BQkKTMJWBeeOEF28RHWYE0NTVVTz31lC5fvqz4+HjFx8fLYrG4fG56SgEAAADARVar0S3IPc8995zGjx+vt99+WyaTSXXq1FGfPn1s2zMyMnTy5EmlpqZKkv766y/t37/ftu/VvvjiC4WEhLh0XpPVmp9va96yYleK0U0A4IKmVXwVfSDW6GYAuIHKESW00KuC0c0AcANt0mOMbkKOrNp12dDz31+lgKHnzw0M3wUAAAAAGIbhuwAAAADgIouMXac0P6KnFAAAAABgGEIpAAAAAMAwhFIAAAAAgGEIpQAAAAAAw7AkDJBL0tPTNXv2bHXs2FFeXl5GNwdANnitAnkDr1Ug/6KnFMgl6enpmjlzptLT041uCoDr4LUK5A28VoH8i1AKAAAAADAMoRQAAAAAYBhCKQAAAADAMIRSIJd4eXmpc+fOTMYA3OZ4rQJ5A69VIP9i9l0AAAAAgGHoKQUAAAAAGIZQCgAAAAAwDKEUAAAAAGAYQikAAAAAwDCEUgAAAACAYQilAAAAAADDEEoBAAAAAIYhlAJ5yJUrV4xuAgAXWCwWhzKWBQduH9e+Hnl9AsYyWXkVAre9c+fOqWjRorb/r1u3TseOHVN4eLgiIiIUHBxsYOsAZMnIyJCnp6ft/7t27VJSUpLCw8NVokQJA1sGIIvFYpHZnNkvk5SUJD8/P9s2q9Uqk8lkVNOA/yxCKXCbmzRpkuLi4tS1a1eVKVNGU6dO1bJly1SmTBmdPHlSVatWVYsWLVShQgWjmwr8p40aNUp33nmnmjRpIi8vL02ZMkXLli2Tn5+fzp07p8cff1wNGjSQv7+/0U0FIGnWrFnatWuXTCaTWrVqpcqVK6tgwYIEU8AAnjeuAsBIwcHB2rNnjxYsWKA6dero5MmTeu211xQVFaUtW7Zo0aJFmjdvntq1a6eKFSsa3VzgP8vb21uTJ0+Wj4+PSpQood27d+u1115T2bJltWTJEk2fPl2pqalq2rQpwRQw2PLly7V48WJ17NhRmzdv1k8//aSjR4+qRYsWKly4MMEUuMUIpcBtrlWrVvLx8dGyZcuUkpKijIwMhYWFSZJq164ts9msBQsWaMGCBTKZTPSYArdY1h+vAwcOVKFChTR+/Hi1bt1aFSpUsH1Q1LFjR5nNZv38888ymUxq0qQJwRS4ha4esitJKSkp6tGjhxo3bqzWrVtrypQp+v3332WxWNS6dWv5+fkRTIFbiFAK3May3kSbNGkiX19f/fjjj0pJSdGpU6cUGhoqSapZs6YkadGiRZo6daqeeOIJlS1b1shmA/8pJpNJV65ckYeHh3r16iUvLy/NmTNHFSpUUHJysgoWLChJ6tChg0wmk+bMmaPk5GR16NBBhQoVMrj1QP5ntVptgXTjxo1KTk7WkSNHdM8999jqPProo5oyZYq2bdsmk8mkFi1a8MERcAsRSoHb0Pbt2xUZGSk/Pz9NnTpVZrNZ3bt3l8Vi0c8//6yFCxeqXbt2uuOOOyRlBtP09HTt2bNHZcqUMbj1wH/Hvn37FBUVJQ8PD82ZM0dhYWHq0aOHzGaz5syZo40bN6phw4by9vaWJLVv316XL1/W/v37bWEVQO65urdz0qRJWrVqlQoVKqSzZ88qPj5eFStWVOHChSVlBtOpU6dq5cqVKlq0qJo0aWJk04H/FCY6Am4zycnJGjZsmJKTk1W1alWtW7dO77zzjm3I7sqVK7VkyRKFh4erbdu2TkPotcOUALhfbGysPvzwQ4WHh8vPz0+LFy/WBx98YBupMHHiRC1btkz9+vVTvXr1bMFU+ucPZYYHArdGbGyspk2bpvbt26tkyZJatmyZNm3apLCwMD388MO2YCpJS5cuVbNmzXgfBW4hQilwG0pMTNTzzz+v9PR0DRkyRHfeeafS09Pl5eUlKTOYLl26VOXKlVPz5s1tgRXArZOWlqaNGzdq0qRJSktL09tvv63w8HClpaXZAmhWMH3yySdVt25d+fj42PYnkAK3xrp16/Tzzz8rKChIL7/8sgoUKCCr1ar58+dr8+bNKlu2rB555BG7pWEkPuAFbiVeacBtwmKx2P6dkpIif39/FStWTN9++60SEhLk5eWljIwMSVKTJk3UokULbd26VTt27DCoxcB/U9Zr1dvbW/7+/jKbzSpatKh++eUXZWRkyNvbW2lpaZKkXr16qXnz5ho7dqx2795tdxwCKZA7sl6jFotFFotFKSkpKlCggI4fP24LmSaTSe3bt1fdunV1/PhxffPNN0pOTrY7DoEUuHXoKQVuM/v371dkZKTS0tKUlJSkDz/8UJcvX9bbb7/tMOnC7t27ValSJd44AQOcO3dORYsW1ZkzZ7R7924tXrxYpUuX1sCBA+Xh4WHXy7JkyRI1a9ZMHh4eBrca+O84evSoypYtq4yMDG3atEmzZs1ScHCwnn/+ebtJxn766SdduHBBffv25f0UMAivPMBgV/eQHj58WG+88YaWLl0qb29vBQUF6dlnn1WBAgU0fPhwnT9/XhaLRZ999pnmzJmju+66S2az2e4YAHLH1a+z6OhoDRgwQPv27VNISIjq1Kmjpk2b6sSJE/ryyy9ts32OHz9e0dHRatGihTw8PHTlyhUDrwD479i9e7deeeUVrV69Wp6enqpbt646duyo5ORkff7553a9ol26dFG/fv14PwUMRE8pYKCrnymbN2+eLBaLpk+fLrPZrB49eqh169aSpJMnT2rMmDE6fvy4SpUqpaSkJI0aNUqenkygDdwKV/d6rlmzRsePH9e8efMUEBCgF154QXfeeacuX76sdevWafny5TKbzSpcuLCOHj2qsWPH0kMK3GKJiYmaN2+eFi5cqKeeekqNGjVSRkaGNmzYoOXLl6tw4cIaMGCA3XOkPOcNGIdQCtwGZsyYoSVLlqh///5KSUnRoUOH9Msvv+ixxx5T27ZtJWVOqrJ06VJJUqtWrRyGBwLIfVOmTNGGDRvUoUMHnT9/Xrt371ZsbKxefPFF3XXXXUpJSdGePXu0detWSVKfPn14rQK5LLswmZSUpLlz52revHkaMGCALZj++uuvmjlzpu655x49+uijBrQYwLXoZgEMdvnyZf3xxx/q2LGjbSHv++67T0FBQZo8ebI8PDzUvHlzeXt72wKqxKyAwK0WGxurLVu2qE+fPqpdu7akzCH3c+bM0ccff6xBgwapYsWKql69umrUqGHb78qVK/SUArkoK5AuWLBApUqVsr3+/Pz81L59e0nS2LFj5eXlpXr16qlevXry9/fX3XffbVibAdjjL1rAYBkZGYqLi7P90Zo1W2CrVq1UrVo1TZo0SStWrJCU+WlwFgIpcGtlvVavHjYfFhamNm3ayMfHRx999JH27t1rW3806/VKIAVyX1JSkvbt26dPP/1UO3futJUXLlxYrVu3VlRUlEaPHq2VK1fK09NT1apV4xlS4DbCX7XALeTsza9w4cKqWbOmVq5cqdjYWJnNZplMJnl5ealEiRKKiorS+PHjtXXrVp51AW4RZ0+2FCtWTBUrVtTOnTuVlJRkK4+MjFRoaKiKFCmizz//XIcPH5bJZOL1CuSia99P/fz81L17d9WrV0+jRo2yC6ZFihTRHXfcoTJlymjVqlV2HxrxAS9we+CVCNwiVw+3PXLkiA4cOGCbibNhw4by8/PTlClTFBcXJ5PJpPT0dJ09e1YPPvigGjdurFmzZik5OdnpH8sA3MdisdgCZUJCgi5cuCBJ8vX1tYXS9evX6/Lly5Kk5ORkeXp6qk2bNgoJCdGmTZtksVh4rQK55Or305MnT+rw4cOSpFKlSqlTp06qXbu2Ro0apejoaEmZczIkJyerR48eevvtt/nACLgN8UwpcItkvYFOnjxZGzduVEJCgipWrKh27dqpWrVqatmypRYvXqxXX31VUVFROnPmjCSpevXqOnDggI4fP66CBQsaeQnAf0LWa3XatGnasmWLkpOTVbNmTfXu3VtdunTRxYsXtWzZMm3dulXh4eHavXu3TCaTGjdurE2bNun48eP0vgC5KOv1lTXxWHJyssLDw/X444+rXLly6tq1q8xms9555x1Vq1ZN58+fl9lsVrVq1WzD6wmmwO2FUArksqs/0f3999+1bds2Pfnkk/L19dWPP/6omTNnKjU1VXXq1FF4eLi2bNmiEydOKDw8XJ06dZIknTt3TkWLFlVaWpq8vLx4MwVywdWv1RUrVvx/e3cfX/N9/3/8kdOTCyQREidypURmVq2osrr1RqYiOpREzUjrOnTqqttu6C7caHSq1qq20wW5Ja6CmRXRIiKNBq0wQXLrEkMTE+RSJUdEJCfn/P7wy1loa913uUCe9/8k53Nu7/zx8vk8P+/3+/UmLS2N0aNHc+vWLT766CNKSkqYO3cuU6dOJS0tjZycHM6ePYufnx/Tpk0DwMnJCZPJZJ9tVa2KNJz6NZqenm5vPNamTRvWrVvH6tWrmTRpEj169CAqKoru3buTk5NDQEAAkZGR9j2kemkkcv/RkTAiTSQjI4OcnBzc3d3t3QCvX7/OqlWrqKio4Pnnn+fpp5++42ZpNpvZuXMnn332GUuWLCEgIKC5hi/SYvzjH//g4sWLuLm50b9/fwDy8/N5/fXX6dq1K3PmzMHNzQ243fzIaDRy69YtduzYwYEDB3jjjTfw8/Nrzj9B5KF27NgxCgoKcHZ2ZujQocDtJbrR0dFUV1czadIkfvSjH/HII4/c0f1anbBF7l96VSTSBG7cuEFcXBwff/wxBQUF9p+7ubkxe/ZsXF1dSUpK4rPPPrPvQysvLycpKYlz586xePFiBVKRJlBUVMSSJUtYv369vZmRzWYjICCA6OhocnNz+fOf/0xJSQkARqORq1evEhMTw9GjR1m0aJECqUgjsdls3Lp1i1WrVrF161Z7HcLtVQqLFy/GycmJhIQEMjMzsVqtd4RQBVKR+5dCqUgjuHsBQps2bYiOjiYoKIjz589/o1397Nmzqamp4auvvrIv92vbti2hoaEsWLCAzp07N+XwRVqMu2vV29ubhQsX4urqSnZ2Njdv3rTvQfP39+f111/n5MmT7N+/336Np6cnERERLFq0SLUq0sicnZ2JiYnBz8+PzMxMLly4YK/jumB648YN0tPTtUxX5AGi5bsiDaz+fpWSkhKMRiNWqxVPT0+KiopYsWIF7u7uRERE8Pjjj9uvq6ysxMXFRXteRJpI/Tq7efMmjo6OWK1WnJycOHXqFCtWrCAkJITJkyfj5ORkb45SXFyMl5cXBoNBDVNEmljdElyz2cxrr71Ghw4dmD59+h2riSwWCwaDQfdRkQeIQqlIA6r/gPq3v/2NjIwMqqqqqK2ttZ+fVlxczDvvvEPbtm2JiIigR48ed3yHAqlI46tfZ4mJifzzn//k6tWrBAUFERoaSmBgIKdPn+add9751mAK2p8m0lzuDqYmk4lp06Z9Y5uL7qciDw5VqkgDqntY3b59O/v27WPs2LH85je/wcfHh5iYGAoKCjCZTMybNw+z2czGjRvJzc294zt0AxVpfHV1tmXLFnbv3k2/fv346U9/yvnz51m5ciUVFRX06tWL+fPnc+TIET788EMsFssds6IKpCINr24v973UNTByd3dn+fLllJaWsmLFCvtRanV0PxV5cKhaRRpI3aKDyspKzpw5wy9+8Qt69erFxYsXOXv2LBMmTMDHx4eamhpMJhOvvvoqnTp10h40kSZmtVoBuHLlCpmZmcybN4+QkBA8PDwoLCwkPDwcV1dXrFYrwcHBzJ49G7PZrAdckUa2evVqduzYwddff/0fP1s/mC5duhQ/Pz+8vLyaYJQi0hh0hxX5H7z77rvEx8cD2Juh3Lx5k6+++opOnTqRlZXFn/70JyIjIxkyZAjV1dXs2rWLwsJCfH19mTVrln0PqYg0nvj4eFJSUoB/z55UVVVRXl5OUFAQJ06cYOXKlbz00ksMHjyYW7dukZaWhtls5sc//jGLFy9WrYo0Mg8PD44ePUpqaup/FUw9PDyYP38+BoOB2traJhipiDQ0Y3MPQORBZbVaeeyxx9i0aROtW7dm3LhxODg44OnpSe/evdm+fTvHjx9nypQpDBo0CICysjLOnj1Lp06d6Nixo31/mmZgRBpPaWkpZrOZPXv24OLiYj971MXFBT8/P/bv38/27duZMGECYWFhwO1zSTMzM3n00Udxd3e3f5dqVaTh1d0Lx40bR+vWrdm7dy82m43Q0FDat29/z2vvrkktqxd5MCmUivwfGQwGBg8ejIuLC2vWrMFmsxEZGQlAx44d2bNnD3379rUH0srKSuLi4qitraVv374A6top0gS8vLwYPXo0+/fv56OPPsJmszFgwAB8fX0xGAxs2rSJMWPG2ANpdXU127dvx2AwaHm9SBNwcHCwNyUaOXIkVquVpKQkgHsG0/qNxw4cOEBZWRljxoxpsnGLSMNRKBX5HxiNRvr374/NZmPt2rXYbDZefPFFfv7zn1NaWsq5c+dYsmQJXl5eFBQUUFVVxbJly3Tsi0gTCwgI4LnnnsNqtbJjxw5qa2sZOHAgr732GgsXLuTIkSP242AyMzMxm80sX75ctSrSyOrqq36NRUREYLVaSU5OBr49mN4dSBMSEpg5c2bTDVxEGpSOhBFpABaLhcOHD7N27VqGDx/O+PHjAUhNTSU3N5eamhp8fHwYMWKEfQ+MlhiJNL38/Hz27dtHTk4O4eHhDBw4kOrqamJjYyktLcVoNOLj48OkSZNUqyKNrP4Ln+zsbKqqqqiurqZfv37A7eOa9u3bR2ho6B3BtP51Bw4cYPPmzcyYMcN+nYg8eBRKRRrIdwXTu2nWRaR51QXT7OxsIiIiGDhwIAC3bt3CaDTaQ6gCqUjT2Lx5M8ePH8fR0ZHa2lqcnJz47W9/i4eHB4mJiSQlJREaGsrAgQPv6LCbkpLCpk2beOWVVxRIRR5wWr4r0kCMRiMDBgwAIDY2FqPRyLhx477xOQVSkeYVEBDA0KFDgdszMQaDgZCQEJydne2fsdlsCqQiTSApKYnU1FR+//vfExgYSEpKCrGxsVy8eBEPDw/Cw8Ox2Wxs27aN9u3b2/s0JCcns379el599VWefvrpZv4rROR/pVAq8j3U37tyL3XB1MHBgZiYGLy8vBg8eHATjFBE/ht1wdRgMLBu3Tratm1LcHCw/fdqQibSNK5cucKoUaMIDAwkPT2dhIQEpk+fTs+ePamsrKR169ZERETQvn17e+fsiooKrly5wty5cxVIRR4SWr4r0ggsFgtZWVkEBwdrtkXkPnbhwgWysrJ4/vnntYpBpBksXryYXr168YMf/IA//vGPjB8/niFDhmC1Wtm1axeurq4MGTLE/vm6LTA3b96kVatWzThyEWlICqUi93D27FkMBgNBQUHEx8cTGBho33/2fVmtVhwcHDTzItKIvm2v9n+7f1v7vUUaz3fVV1JSEp9//jl5eXlMmjTJfjRTRUUFq1atonv37kRERDTxaEWkqWn5rsi3sNlsfP3118TGxhIQEICDgwNffPEFb7311n+8tv6Nt6SkhA4dOjT2cEVatPo1d+XKFaqqqjCZTP9xFqX+dXXLBEWk4VksFozG24+cFy5cwGq1YjKZcHV1pWfPnqSlpeHn54efnx8AxcXFxMXFcf36dUaMGNGcQxeRJqKZUpF7yMrK4sMPP8RsNjNr1iz7fpbv2mN697lpx48fZ+bMmbRr165Jxy3SUtSvub/85S8cO3aM6upqjEYj/fr1IzQ0FJPJdM/rUlJSKC0tJSIiAhcXlyYdv8jDbO3atYwaNcr+cnbz5s0cPHgQBwcHampqGDZsGMOGDaO0tJTVq1dz8+ZNqqur8fDwwGAwEB0djdFo1CoGkRZAM6Uid6l/83Nzc8Pd3R1XV1cyMzMxmUx069YNBweHb9wk6/87JSWFjRs3Mnv2bAVSkUZSP1ju3r2bTz/9lDlz5tCzZ09WrlxJamoqffv2/UYovTuQxsXF8ctf/lKBVKQBlZeXk5OTQ1ZWFm+88QZFRUUcOnSI2bNnYzKZOHHiBKmpqZjNZiZOnMi8efMoLi4mPz8fX19fevTogcFg0NFMIi2EZkpFvkPdA62bmxunT59m27ZtdOzYkaFDh9KtW7c7Pnv3Qd4JCQnMnDlTXQFFGsHVq1fx9PQEbtdebW0tK1as4Mknn+S5557j5MmTvP/++4wfP56wsDAsFgs2mw1HR8dvrGZQrYo0nuLiYmJiYigpKWHYsGFUVlbys5/9zP771NRUtm3bxtixY+1HvdSnGVKRlkOVLvItSkpKSEhIoLi4GIBevXrxwgsvUFhYSHJyMmfOnAHgzTff5MiRI/abZnJyMlu2bOGVV17RQ65II1izZg0bNmzg0qVLAPaZlOvXr/PEE0+QnZ3Ne++9Zw+kNTU1fPrpp+Tn5wPcEUg3b96sWhVpRCaTiRkzZuDt7c2GDRsoLCwEbodNgEGDBvHUU0+xZ88e+8/qUyAVaTm0fFeEb76NdXFxwcHBgfz8fLp27QpA3759cXBwIDExkfj4eGw2G5WVlfTr1w+A9PR0Nm3axKxZs+w/E5GG9cQTT5CQkMDevXsZNmwY/v7+uLi40LZtW95++22uXr3K1KlT7V2yb9y4wdGjR3F0dCQwMBC4/fKoLpCqVkUaR92qBG9vb6KiokhISOD06dNcunQJf39/++d8fX25fPmyZkVFWjhVvwj/fhtbU1ODxWLBzc2NH/7wh5SXlwNQXV0NQJ8+fYiMjOTZZ5+lT58+fPDBB/YmDNXV1SxYsEAPuSKNxGq18swzzzBlyhROnTrFJ598wr/+9S8AIiIicHJywtfX1x5IKysriYmJwWaz3XGUU0FBgQKpSCOoP9tZ13sBoGPHjkycOBF/f3+WLl3K+fPnKSsro6qqioyMDNq0aWPvzisiLZP2lIr8f3v37iUxMZH27dvz+OOPc/jwYTp16sScOXNwcHDA1dX1W6+r3+peRBpP/ZmUrKwsYmJiCA4OZuTIkXTs2JGDBw+ya9cu4PaywaqqKiwWC0uXLsVoNKpWRRrR3c3+cnNzqayspH///vTp0weAoqIiVq9ezfnz5/Hy8qJ79+7k5ubaa/S7OtuLyMNPoVRarLqbn81mw2azcfHiRXJzc7l27RpFRUXk5uaSn5+Pj48PNpsNPz8/rFYrEydOxNfXt7mHL9JiZGRk4Ovri4+PDwkJCTg6OjJ27Fj+/ve/Ex8fT3BwMC+88AImk4nCwkJSU1MxGo20a9eO0NBQdfAUaWT1w+TmzZs5fPgwwcHBuLi4kJSURFRUFGFhYTg4OFBYWMjWrVtJT0/n7bffxt/fXzUqItpTKi1T/Te6daG0c+fOdO7c2f6ZzMxMdu3aRVhYGAaDwb7cyNvbu5lGLdLymM1m9u3bx4ULF+jduzeff/45S5cuBf69zzsuLg6AESNG4Ofnx4svvnjHd1itVj3sijSC5ORkunXrZr93pqWl8cUXXzBv3jyCgoLIzMwkKSmJuLg4KioqGDVqFB07dmTs2LG4ubnZA6lqVEQUSqXFqR9I9+7dS3Z2NmazmaCgIMLDw2nbti0ArVu35vz580RFReHv73/H/jM1ZBBpXCkpKQwePBh3d3emT5/OokWLOHLkCL/+9a/p3LkzNTU1GI1G+7LA+Ph4DAYDYWFhdOnS5Y7vUq2KNLzi4mJ27tzJk08+ydChQwkICODGjRuEh4cTFBRERkYGH3zwAS+//DJVVVVs3LiR1q1bM2TIEHx9fZk2bRqg+6mI3Kb/BaTFqbv5bdmyhcTERLp27crw4cPZs2cPGzZs4MaNG1itVh599FG8vLy4du3ad36HiDS8jIwMDhw4gMViAW43TPHy8iIwMJB169Zx6dIlHB0dqa2txWq10qdPH6ZOncrBgwfJzMxs5tGLtAwmk4kFCxaQl5fHnj17KCoqIiQkhF69elFaWsqWLVsYM2YMoaGhPPbYYxiNRtatW8ehQ4fu+B7dT0UEFEqlBanfFfDChQscP36cuXPnMmrUKNzc3DAajfTo0YM2bdpgMBhwcnKiurqac+fONeOoRVqenj17smzZMoxGI9nZ2ZhMJhYvXsyMGTPs3TsvX76M0Wi0P9D26dOHpUuXMnLkyGYevUjL0aVLF15++WXy8vLYuXMnZrMZk8nE1atXAejduzcATk5OhIWFMX/+fAYMGNCcQxaR+5RCqbQINpvN/vBqtVqpqqrC0dGRHj16cPz4cd566y0mT55MaGgolZWVnDhxAoDRo0cTHh7enEMXaVFsNhuOjo4YDAbOnTtHdHQ0W7ZswcnJCX9/f8aOHUunTp148803uXTpEgDvvfceiYmJBAYG2veniUjT6NKlCzNmzCAvL4/du3dz+fJlWrVqxaVLlzh//jwXL15k06ZNFBcX06dPHx555BFqa2ube9gicp9R91156H355Zdcu3aNAQMGsHbtWvsb25UrV/LMM8+QmJjISy+9xJAhQwA4c+YMW7duZdasWZhMJkB7XkSaQv1ajY2Npba2lq5du7J+/XpGjBjBuHHjAMjNzWX79u2cPn2aLl26UF5ezvvvv6/jXkSaUV5eHqtXr6ZLly5ERESQnp7O1q1b6dChA23atNGxLyJyTwql8tCy2WxUVVWxYsUKLBYLrVq1Ijs7m+joaLy9vVmzZg0ZGRkMGTKECRMmAFBTU8O7776L0WjkV7/6lYKoSBP4tlrNycnhD3/4A/7+/qSmphIbG8vIkSOJjIwEoKysjJMnT1JRUcHw4cPtsy/q4CnSfOqCadeuXYmIiMBms1FeXk5QUJCOfRGRe1IolYdeRUUFCxcupKCggMjISCIiIoDbR7789a9/xdHRkaeeegpnZ2eOHTtGWVkZy5cvx2g0aoZUpAl9V61WV1dz5MgRYmNjCQ8Pt8+Y1qdaFbk/5OXlsXbtWry8vJg8eTKenp6AalRE7k1rneSh5+DggLe3N23btuXLL7+kffv2hISEEBwcTG1tLZmZmXzyyScEBATg6enJ7373O826iDSD76pVJycn+vfvD0BcXBw3b95kypQpd1yrh12R+0OXLl2IiooiOTmZdu3a2X+uGhWRe9FMqbQYZWVlxMTEUF1dzbPPPktISIj9d2azGXd3d/u/FUhFmk/9Wh00aJC9W6fFYmHv3r2cOnWKRYsWaV+ayH2sbu+oZkhF5PvQ/xLSYnh4eBAVFYWzszOHDh0iNTUVq9XK4sWL+fjjj+2fs9lsCqQizah+raalpXHw4EGsVivLli2jrKzMHkj1TlXk/lVXowqkIvJ9aKZUWpzi4mI2btzI5cuXsVgsODk52feQisj9o36t1tTU4OzsbK9VdfAUERF5eCiUSot07do1cnNzKS8v5yc/+Yn2kIrcp1SrIiIiDz+FUhHUFVDkQaFaFRERefgolIqIiIiIiEiz0etmERERERERaTYKpSIiIiIiItJsFEpFRERERESk2SiUioiIiIiISLNRKBUREREREZFmo1AqIiIiIiIizUahVERERERERJqNQqmIiIiIiIg0G4VSERERERERaTYKpSIiIiIiItJs/h8gBGrO0IBb4wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Численные значения корреляции:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " text_length \n",
+ " title_length \n",
+ " label_num \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " text_length \n",
+ " 1.000000 \n",
+ " -0.027829 \n",
+ " -0.224248 \n",
+ " \n",
+ " \n",
+ " title_length \n",
+ " -0.027829 \n",
+ " 1.000000 \n",
+ " -0.070484 \n",
+ " \n",
+ " \n",
+ " label_num \n",
+ " -0.224248 \n",
+ " -0.070484 \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " text_length title_length label_num\n",
+ "text_length 1.000000 -0.027829 -0.224248\n",
+ "title_length -0.027829 1.000000 -0.070484\n",
+ "label_num -0.224248 -0.070484 1.000000"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print(\"\\n=== АНАЛИЗ КОРРЕЛЯЦИИ ПРИЗНАКОВ ===\")\n",
+ "\n",
+ "# Создаем копию DataFrame для безопасного изменения\n",
+ "numeric_df = df[['text_length', 'title_length']].copy()\n",
+ "\n",
+ "# Правильное создание нового столбца\n",
+ "numeric_df.loc[:, 'label_num'] = df['label'].map({'real': 1, 'fake': 0})\n",
+ "\n",
+ "# Вычисляем матрицу корреляции\n",
+ "corr_matrix = numeric_df.corr()\n",
+ "\n",
+ "# Визуализация тепловой карты\n",
+ "plt.figure(figsize=(10, 8))\n",
+ "sns.heatmap(\n",
+ " corr_matrix,\n",
+ " annot=True,\n",
+ " cmap='coolwarm',\n",
+ " center=0,\n",
+ " fmt=\".2f\",\n",
+ " linewidths=.5,\n",
+ " annot_kws={\"size\": 12}\n",
+ ")\n",
+ "\n",
+ "# Настройка отображения\n",
+ "plt.title('Матрица корреляции признаков', fontsize=14, pad=20)\n",
+ "plt.xticks(fontsize=10, rotation=45)\n",
+ "plt.yticks(fontsize=10, rotation=0)\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "\n",
+ "# Вывод численных значений корреляции\n",
+ "print(\"\\nЧисленные значения корреляции:\")\n",
+ "display(corr_matrix)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2b95b797-59ac-4ca2-90da-f5536cb0eaad",
+ "metadata": {},
+ "source": [
+ "## 1. Создаем копию данных для обработки"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "68e0b53e-c974-4b70-8454-b9ef26984ecd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_processed = df.copy()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20847895-9d1d-40f3-b21c-de251dc459cf",
+ "metadata": {},
+ "source": [
+ "## 2. Преобразование категориального признака"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "b0116eff-b140-4c7b-abba-1487125b6efe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_processed['label_num'] = df_processed['label'].map({'real': 1, 'fake': 0})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7e5e081f-57ad-43c8-bf29-cc22b15bf07b",
+ "metadata": {},
+ "source": [
+ "## 3. Создание новых признаков из текста"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "f759a1b6-366b-4339-8a89-6ced2bdd1489",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "\n",
+ "def extract_text_features(text):\n",
+ " text = str(text)\n",
+ " features = {\n",
+ " 'num_words': len(text.split()),\n",
+ " 'num_chars': len(text),\n",
+ " 'num_upper': sum(1 for c in text if c.isupper()),\n",
+ " 'num_excl': text.count('!'),\n",
+ " 'num_quest': text.count('?'),\n",
+ " 'num_quotes': text.count('\"') + text.count(\"'\"),\n",
+ " 'num_digits': sum(c.isdigit() for c in text),\n",
+ " 'num_links': len(re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\\\(\\\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', text))\n",
+ " }\n",
+ " return features\n",
+ "\n",
+ "# Применяем функцию к тексту и заголовкам\n",
+ "text_features = pd.DataFrame(df_processed['text'].apply(extract_text_features).tolist()) # Исправлено toList() на tolist()\n",
+ "title_features = pd.DataFrame(df_processed['title'].apply(extract_text_features).tolist())\n",
+ "\n",
+ "# Добавляем префиксы к названиям столбцов\n",
+ "text_features = text_features.add_prefix('text_')\n",
+ "title_features = title_features.add_prefix('title_')\n",
+ "\n",
+ "# Объединяем с основным DataFrame\n",
+ "df_processed = pd.concat([df_processed, text_features, title_features], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "76517662-85e7-428d-83d5-dcf9f65d4450",
+ "metadata": {},
+ "source": [
+ "## 4. Анализ тональности"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "a2c611f9-b014-4d8e-9c05-9e283c186abd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_sentiment(text):\n",
+ " analysis = TextBlob(str(text))\n",
+ " return analysis.sentiment.polarity, analysis.sentiment.subjectivity\n",
+ "\n",
+ "df_processed[['text_polarity', 'text_subjectivity']] = df_processed['text'].apply(get_sentiment).apply(pd.Series)\n",
+ "df_processed[['title_polarity', 'title_subjectivity']] = df_processed['title'].apply(get_sentiment).apply(pd.Series)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aa4b1b84-c3d0-4744-953d-0f4a8ebf220c",
+ "metadata": {},
+ "source": [
+ "## 5. Удаление исходных текстовых признаков"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "7a6f9b20-1380-4da2-bcfe-0807a382c38e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_processed.drop(['title', 'text', 'label'], axis=1, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19f129bf-d534-4a48-a49c-d73d5eb8414c",
+ "metadata": {},
+ "source": [
+ "## 6. Проверка результата"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "592f0c83-85ce-4790-ad07-d7c768381936",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Преобразованные данные:\n",
+ "Всего признаков: 23\n",
+ " text_length title_length label_num text_num_words text_num_chars \\\n",
+ "0 10 5 1 10 72 \n",
+ "1 12 5 1 12 89 \n",
+ "2 12 5 0 12 81 \n",
+ "3 12 5 0 12 91 \n",
+ "4 10 7 1 10 72 \n",
+ "\n",
+ " text_num_upper text_num_excl text_num_quest text_num_quotes \\\n",
+ "0 1 0 0 0 \n",
+ "1 1 0 0 0 \n",
+ "2 1 0 0 0 \n",
+ "3 1 0 0 0 \n",
+ "4 1 0 0 0 \n",
+ "\n",
+ " text_num_digits ... title_num_upper title_num_excl title_num_quest \\\n",
+ "0 0 ... 5 0 0 \n",
+ "1 0 ... 4 0 0 \n",
+ "2 0 ... 4 0 0 \n",
+ "3 0 ... 4 0 0 \n",
+ "4 0 ... 6 0 0 \n",
+ "\n",
+ " title_num_quotes title_num_digits title_num_links text_polarity \\\n",
+ "0 0 0 0 0.000000 \n",
+ "1 0 0 0 0.068182 \n",
+ "2 0 0 0 0.000000 \n",
+ "3 0 0 0 -0.700000 \n",
+ "4 0 0 0 0.000000 \n",
+ "\n",
+ " text_subjectivity title_polarity title_subjectivity \n",
+ "0 0.000000 0.136364 0.454545 \n",
+ "1 0.227273 0.000000 0.000000 \n",
+ "2 0.000000 0.000000 0.250000 \n",
+ "3 0.850000 0.000000 0.250000 \n",
+ "4 0.000000 0.136364 0.454545 \n",
+ "\n",
+ "[5 rows x 23 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Преобразованные данные:\")\n",
+ "print(f\"Всего признаков: {len(df_processed.columns)}\")\n",
+ "print(df_processed.head())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a798f58f-b6d1-4825-a78e-786af058068f",
+ "metadata": {},
+ "source": [
+ "## Сохранение обработанных данных"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "11a3590f-d3a1-4864-bb4a-2f3e250e91b5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_processed.to_csv('processed_news_data.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "946611ad-1d66-45f0-8b2c-5fdd6cc7781b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Настройка логистической регрессии...\n",
+ "Настройка SVM...\n",
+ "Настройка Random Forest...\n",
+ "Настройка Gradient Boosting...\n",
+ "\n",
+ "Результаты на тестовой выборке:\n",
+ "\n",
+ "LogisticRegression:\n",
+ "Accuracy: 1.0000\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 113\n",
+ " 1 1.00 1.00 1.00 87\n",
+ "\n",
+ " accuracy 1.00 200\n",
+ " macro avg 1.00 1.00 1.00 200\n",
+ "weighted avg 1.00 1.00 1.00 200\n",
+ "\n",
+ "\n",
+ "SVM:\n",
+ "Accuracy: 1.0000\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 113\n",
+ " 1 1.00 1.00 1.00 87\n",
+ "\n",
+ " accuracy 1.00 200\n",
+ " macro avg 1.00 1.00 1.00 200\n",
+ "weighted avg 1.00 1.00 1.00 200\n",
+ "\n",
+ "\n",
+ "RandomForest:\n",
+ "Accuracy: 1.0000\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 113\n",
+ " 1 1.00 1.00 1.00 87\n",
+ "\n",
+ " accuracy 1.00 200\n",
+ " macro avg 1.00 1.00 1.00 200\n",
+ "weighted avg 1.00 1.00 1.00 200\n",
+ "\n",
+ "\n",
+ "GradientBoosting:\n",
+ "Accuracy: 1.0000\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 113\n",
+ " 1 1.00 1.00 1.00 87\n",
+ "\n",
+ " accuracy 1.00 200\n",
+ " macro avg 1.00 1.00 1.00 200\n",
+ "weighted avg 1.00 1.00 1.00 200\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 1. Загрузка и подготовка данных\n",
+ "data = pd.read_csv('15_fake_news_detection.csv')\n",
+ "X = data['text']\n",
+ "y = data['label'].map({'real': 0, 'fake': 1})\n",
+ "\n",
+ "# 2. Векторизация текста\n",
+ "tfidf = TfidfVectorizer(max_features=5000, stop_words='english')\n",
+ "X_tfidf = tfidf.fit_transform(X)\n",
+ "\n",
+ "# 3. Разделение данных\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " X_tfidf, y, test_size=0.2, random_state=42\n",
+ ")\n",
+ "\n",
+ "# 4. Масштабирование данных\n",
+ "scaler = StandardScaler(with_mean=False)\n",
+ "X_train_scaled = scaler.fit_transform(X_train)\n",
+ "X_test_scaled = scaler.transform(X_test)\n",
+ "\n",
+ "best_models = {}\n",
+ "\n",
+ "# 5. Логистическая регрессия\n",
+ "print(\"Настройка логистической регрессии...\")\n",
+ "lr_param_grid = {'C': [0.01, 0.1, 1, 10], 'penalty': ['l1', 'l2'], 'solver': ['liblinear']}\n",
+ "lr_grid = GridSearchCV(LogisticRegression(random_state=42), lr_param_grid, cv=5, n_jobs=-1)\n",
+ "lr_grid.fit(X_train_scaled, y_train)\n",
+ "best_models['LogisticRegression'] = lr_grid.best_estimator_\n",
+ "\n",
+ "# 6. SVM\n",
+ "print(\"Настройка SVM...\")\n",
+ "svm_param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf'], 'gamma': ['scale', 'auto']}\n",
+ "svm_grid = GridSearchCV(SVC(random_state=42, probability=True), svm_param_grid, cv=5, n_jobs=-1)\n",
+ "svm_grid.fit(X_train_scaled, y_train)\n",
+ "best_models['SVM'] = svm_grid.best_estimator_\n",
+ "\n",
+ "# 7. Random Forest\n",
+ "print(\"Настройка Random Forest...\")\n",
+ "rf_param_grid = {'n_estimators': [100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5]}\n",
+ "rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), rf_param_grid, cv=5, n_jobs=-1)\n",
+ "rf_grid.fit(X_train, y_train)\n",
+ "best_models['RandomForest'] = rf_grid.best_estimator_\n",
+ "\n",
+ "# 8. Gradient Boosting (вместо XGBoost)\n",
+ "print(\"Настройка Gradient Boosting...\")\n",
+ "gb_param_grid = {'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1], 'max_depth': [3, 5]}\n",
+ "gb_grid = GridSearchCV(GradientBoostingClassifier(random_state=42), gb_param_grid, cv=5, n_jobs=-1)\n",
+ "gb_grid.fit(X_train, y_train)\n",
+ "best_models['GradientBoosting'] = gb_grid.best_estimator_\n",
+ "\n",
+ "# 9. Оценка моделей\n",
+ "print(\"\\nРезультаты на тестовой выборке:\")\n",
+ "for name, model in best_models.items():\n",
+ " if name in ['LogisticRegression', 'SVM']:\n",
+ " y_pred = model.predict(X_test_scaled)\n",
+ " else:\n",
+ " y_pred = model.predict(X_test)\n",
+ " \n",
+ " print(f\"\\n{name}:\")\n",
+ " print(f\"Accuracy: {accuracy_score(y_test, y_pred):.4f}\")\n",
+ " print(classification_report(y_test, y_pred))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "id": "34c9e8a0-26aa-4fe2-a8b4-3786a1a1287f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAHpCAYAAADgV6fhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjZUlEQVR4nO3deZzNdf//8eeZ3WDMjDHGOmMbZEsSkUiWSPZLpStbuITK1dVVaUOlfb/QRSrak8uWK4pIhCzpItuYjCgxYWbEYLb3749+c75OM8OZcWbOmXk/7tft3G7N+/M5n/M6h3Ge1+vzfn8+DmOMEQAAAAAAAPD/+Xm7AAAAAAAAAPgWGkYAAAAAAABwQcMIAAAAAAAALmgYAQAAAAAAwAUNIwAAAAAAALigYQQAAAAAAAAXNIwAAAAAAADggoYRAAAAAAAAXNAwAgAAAAAAgAsaRkAxmTNnjhwOh+bMmVMsxx82bJgcDocOHDhQLMfHhTkcDnXq1MnbZQAAgCIq7qwGAKUdDSOUKQ6HQw6Hw9tleMTkyZPlcDj01VdfFdtr5H5euQ9/f39FRkaqU6dOmjNnjowxxfbaAACg7CBTeE5cXFyez/P8x+TJk71dYqHRnANKpwBvFwCUVf369VPbtm1VrVq1Yjn+008/rQcffFA1atS45GNNmjRJkpSZmanExEQtXLhQa9as0ZYtWzRt2rRLPn5ZtHv3boWGhnq7DAAAfAqZwnPuuecehYeH5xlnhjOAkkLDCCgmlSpVUqVKlYrt+NWqVfNYM+rPZ6q++eYbXXvttZoxY4b+8Y9/qE6dOh55nbKkUaNG3i4BAACfQ6bwnAkTJiguLs7bZQCwGEvSYK1z587pmWeeUbNmzRQaGqqwsDB16NBB8+bNy3d/Y4xeffVVXXbZZQoJCVGNGjU0fvx4paWlKS4uLs8XekFTb7dv365bb71VcXFxCg4OVpUqVXTFFVdowoQJyszMlPTHVOQpU6ZIkq677jqXaci5LnQNo02bNunmm29WjRo1FBwcrGrVqqlbt24Fvrc/a9++vRo1aiRjjLZu3Zpn+7fffquBAwcqJiZGQUFBqlWrlv72t7/p8OHD+R5v8+bN6tatmypWrKiwsDB16dJFGzZsKHDZXe71gY4cOaKRI0eqRo0a8vf3d/ksC1PD/v37NXr0aNWvX1/lypVTZGSkmjVrpjFjxuj48ePO/TIyMvTaa6/piiuuUEREhEJDQxUXF6c+ffpo5cqV+db4Z2lpaZo4caIaNmyokJAQRUREqHv37nmeL0lfffWVc2r5999/rxtvvFHh4eEKDQ1Vx44dtX79+nw/TwAASosLZYqtW7fqnnvuUYsWLRQZGamQkBA1aNBA//jHP5SSkpLnWOdnq9WrV6tTp07ObHHjjTdq9+7d+daQmJiov/zlL4qIiFD58uXVrl07/fe//71g3Vu3btWAAQMUHR2t4OBgxcbGauzYsfr111/z7JubyZKSkjRt2jRnVoyLi9NTTz3lXI73ySef6KqrrlL58uUVHR2t8ePH68yZM+5+lPnKycnRv//9b7Vu3VoVKlRQ+fLl1bp1a73++uvKycnJs783MlanTp00fPhwSdLw4cNdci3X4gR8GzOMYKWMjAx1795da9asUaNGjTRu3Dilp6dr/vz5uvnmm/X999/rqaeecnnOuHHj9Prrr6t69eoaPXq0goKCtGTJEm3atEmZmZkKDAy86Otu375dbdq0kcPhUO/evVWnTh2dPHlSiYmJmjFjhp588kkFBgZqwoQJWrRokdasWaOhQ4cW6uzSG2+8oTvvvFP+/v7q3bu3GjRooOTkZG3ZskUzZszQoEGDCvVZ/fl9vfXWWxo9erSCg4PVu3dv1apVS/v27dPs2bP16aefauPGjapdu7Zz/6+//lrdunVTdna2+vfvr3r16mnHjh267rrr1Llz5wJf98SJE2rbtq0qVKig/v37y8/PT1WrVi10Db/++qtat26tkydPqmfPnhowYIDOnj2rpKQkvfvuuxo/frwqV64s6Y/A9+GHH6pp06YaMmSIypUrp8OHD2vdunVavny5unTpcsHPKjU1Ve3bt9euXbvUunVrTZgwQceOHdO8efPUrVs3vf766/rb3/6W53lbtmzRc889p6uvvlojR47UwYMH9Z///EfXX3+9vv/+ezVs2NC9PywAAHzYnzPFG2+8oYULF6pjx47q0qWLcnJytHXrVr300ktatmyZvv32W1WsWDHPcZYuXarFixerR48eGjNmjHbt2qXPPvtMmzdv1q5duxQVFeXcd9++fbr66qt1/Phx9ejRQ5dffrkSExPVt29f9ejRI986ly5dqgEDBsgYo4EDByo2NlZbt27V66+/rsWLF2vdunX5zpS677779NVXX+mmm25St27dtGTJEj388MPKyMhQZGSkHnzwQfXt21cdOnTQihUrNH36dGVnZ+v1118v8md6++2364MPPlCtWrU0cuRIORwOLVy4UGPHjtW6dev0/vvv53lOSWesYcOGKTw8XIsXL1afPn10+eWXO2vJb8kdAB9igDJEknHnr/VTTz1lJJkePXqYzMxM5/jRo0dNbGyskWS++eYb5/jXX39tJJn4+HiTkpLiHD937pzp0KGDkWRiY2NdXuPtt982kszbb7/tHLv33nuNJLNo0aI8NZ04ccJkZ2c7f540aZKRZFavXp3vexg6dKiRZJKSkpxjO3fuNAEBASYiIsL88MMPeZ5z6NAhl58L+rzWrFlj/Pz8TFBQkDl8+LBzfO/evSYwMNDUq1fP/Pzzzy7PWblypfHz8zN9+/Z1jmVnZ5v69esbSeazzz5z2f/11193vv6f32Pu+O233+7y51OUGl577TUjybzyyit53uepU6dMenq6McaY1NRU43A4TKtWrUxWVlaefY8dO5anxo4dO7qMjR492kgyo0ePNjk5Oc7xhIQEExYWZoKCglz+vFavXu18r+f/PTHGmH//+99Gkrnzzjvz1AIAgK8pbKYwxpgDBw7k+507e/ZsI8k888wzLuO52crf39+sXLnSZduDDz5oJJlnn33WZbxr16755oBFixbl+x38+++/m8jISOPn52e+/vprl+c888wzRpLp2rWry3huJouNjXXJJikpKaZy5comNDTUREVFmV27djm3nT171jRu3NgEBQWZo0ePuhwvN4vec889ZtKkSS6Pl19+2bnfBx98YCSZli1bmt9//905furUKdOqVSsjybz//vsux/ZGxjIm/1wMwPfRMEKZ4m7DqH79+sbhcJjdu3fn2ZYbUoYPH+4cu+OOO4wkM3fu3Dz7r1u3rtANo88///yiNRalYTR+/Hgjybz00ksXPb4x//d55YaQhx56yAwaNMgEBgYah8NhXnvtNZf9J0yYYCSZpUuX5nu8vn37Gn9/f3Py5EljjDFr1641ksx1112XZ9/s7GwTHx9fYMMovwBVlBpyw8zMmTMv+FmkpaUZSaZdu3YuzZ6C/LlhdO7cORMaGmoqVKhgjh8/nmf/Rx55xEgyU6ZMcY7lNozat2+fZ/+MjAwTEBBgWrVqddFaAADwtsJmigvJyckxYWFhefJDbra67bbb8jxn//79RpIZMGCAc+zQoUNGkqlTp06+jamOHTvmyWrvvfeekWRuvfXWPPtnZmaauLg4I8n89NNPzvHcTDZ79uw8zxk+fLiRZB599NE82yZPnmwkma+++splPLdhlN/j/LzZpUuXAnPlypUr881g3shYxtAwAkorlqTBOr///rsSExNVo0aNfC9cnLtMatu2bc6x3P++5ppr8uzftm1bBQS496t0880369VXX1Xfvn01cOBAdenSRe3bt1e9evWK8lby2LhxoyQVOMW6ILnXS8rlcDj05ptvOteb59qwYYMkac2aNdq8eXOe4yQnJys7O1sJCQlq1arVBT83Pz8/tWvXTgkJCfnWFBcXp+jo6Dzjha2hd+/eeuihhzRu3Dh9/vnn6t69u9q3b6/LLrvM5ZpQYWFhuummm/Tpp5/q8ssv14ABA9ShQwe1adPGrbuh7d27V+np6Wrfvr0iIyPzbO/cubOefPJJl79Xua688so8Y4GBgapatWq+13AAAMBXuZsppD/upDZz5kx99NFH2rVrl9LS0lyuu/PLL7/k+xr5fW/WqlVLkly+N8/PIf7+/nme06lTJ61Zs8Zl7LvvvpOkfJfNBwQE6Nprr9WBAwe0bds2lyX4BdVVvXp1SVKrVq3ybMu90+3PP/+cZ5skJSUlXfCyBN999538/PzyvaZix44d5e/vn2/uKOmMBaD0omEE66SlpUlSgXcYyx1PTU3N85zc9d3n8/f3d14D52KuuuoqrV27VlOnTtX8+fP17rvvSpIaNmyoSZMm6dZbb3X7feQnt+bcAOIu8/8vxnj69Glt2LBBd9xxh8aMGaPY2FiXwJR78cLnn3/+gsc7deqUpAt/bhcal6SYmJh8xwtbQ2xsrDZt2qTJkydr+fLlWrBggaQ/guV9992nu+++2/mcjz/+WM8++6w++OAD522BQ0JCNHDgQL3wwgsXrLcof69yFbR+PyAgQNnZ2Rd8nwAA+BJ3M4X0x4m0hQsXqm7duurTp49iYmIUHBwsSXrllVd07ty5fF8jv+/N3JN3539vXiyH5Jc1LuX7PL+74+bWdaFtuTc9Kay0tDRFRkYqKCgo32NHRUUpOTk5zzZvZCwApRN3SYN1cr+wjxw5ku/23LtfnP/FHhYWJkk6evRonv2zs7Nd7rR1MVdffbWWLl2qlJQUffPNN3r00Ud19OhRDR48ON87aRVGboAq6IzcxZQvX15dunTRp59+quzsbA0dOlTp6enO7bmfSVpamswfS1rzfXTs2FHShT+3C41LKvDMVGFrkKTGjRvr448/1vHjx7VlyxY988wzysnJ0T333KM333zTuV+5cuU0efJkJSQk6ODBg3rvvfd0zTXX6L333tPAgQMv+NkV5e8VAABl1cUyxZYtW7Rw4UJ16dJFe/fu1dtvv62nn35akydP1mOPPaaMjIxLriH3O7egvJHfd3Zp+j6vVKmSTpw4kW/DKSsrS8eOHXNmsfN5I2MBKJ1oGME6FStWVL169fTLL79o3759ebavXr1aknTFFVc4x1q2bClJWrduXZ79N27cqKysrELXERwcrHbt2unxxx/Xa6+9JklavHixc3vu1OnCzDBp27atJGnZsmWFrud8zZs316hRo/Tzzz/r5ZdfznP8tWvXunWcC31uOTk5RbptfGFrOF9AQIBatWqlBx54QB9++KEkadGiRfnuW6tWLd122236/PPPVb9+fa1bt+6CjcGGDRsqNDRU//vf//I965jf3ysAAMq6gjJFYmKiJKl37955lvZv2rTpkm83L7nmkPzy1FdffVXgc/LblpWV5cwfvvB93rJlS+Xk5Ojrr7/Os+3rr79WdnZ2oeoszoxVlFwLwPtoGMFKI0aMkDFG//znP12+uI4dO6YnnnjCuU+uIUOGSJKmTp3qnKosSRkZGXrooYfcft3169fnG4Byz3ydf62c3GVuBw8edPv4d955pwICAvTEE09o165debYXtEY+P4888oiCg4P1wgsvOK8HMH78eAUGBurvf/97vtceysjIcAkZuddnWr16dZ4m1qxZswq8ftGFFLaGrVu3uvyZ5frzZ/7bb79px44defY7ffq0Tp06pYCAgHynfOcKCgrSbbfdpt9//12PPvqoy7Yff/xRr732mgIDA3X77be790YBACgj8ssUudfm+XNjJjk5WePGjfPI69asWVNdu3ZVUlKSpk2b5rJt8eLFea5fJEl9+/ZVZGSkPvzwQ+e1IXO98sorSkpKUpcuXfJcv8gbcrPqxIkTXWZvpaen68EHH5Qk3XHHHW4fr7gyllS0XAvA+7iGEcqkYcOGFbhtxowZuu+++7Rs2TItXrxYLVq0UM+ePZWenq5PPvlEycnJuv/++10u1NyxY0eNHj1as2bNUpMmTTRgwAAFBgbq008/VaVKlVS9enX5+V28//rcc89p1apV6tChg+rUqaMKFSpo586dWrZsmSIiIjR69Gjnvtddd538/Pw0ceJE/fDDD4qIiJD0R+gqyGWXXaYZM2ZozJgxatmypfr06aMGDRro+PHj2rx5s8LCwpwzXS6mRo0aGjNmjF599VU999xzevrpp9WoUSO99dZbGjFihJo0aaIbbrhB8fHxyszM1MGDB7V27VpVqVJFe/bskfTHha1nz56tG264Qb1799aAAQNUr149bd++XStWrFCPHj20bNkytz67XIWt4d1339XMmTN1zTXXqF69eoqIiNCPP/6oTz/9VMHBwZowYYKkP5bxtWzZUs2aNVPz5s1Vq1YtnTx5UkuXLtWRI0d09913q2LFihes7ZlnntHatWs1bdo0bd68Wdddd52OHTumefPm6ffff9e0adNUp04dt98rAABlQX6ZonXr1mrfvr0WLFigdu3a6ZprrtHRo0e1bNkyNWzY0Hmx6Es1ffp0XX311ZowYYK++OILtWjRQomJiVq4cKHzZhfnq1Chgt566y395S9/UceOHfWXv/xFtWvX1tatW/XFF18oJiZGM2fO9Ehtl2rw4MFavHix5s2bpyZNmqhv375yOBxatGiRkpKSdPPNN+u2225z+3jFlbGkPy7JEBoaqldeeUXHjx93Xkfprrvu8onlfQAKUHI3ZAOKnwq4Ben5j5SUFGOMMWfOnDFTp041TZo0MSEhIaZChQqmffv25oMPPsj32NnZ2eall14yDRs2NEFBQaZatWpm7NixJjU11VSoUMG0aNHCZf/8bh/6+eefm2HDhpnGjRubsLAwExoaauLj481dd91lDhw4kOc13333XdOiRQsTEhLirD9X7i1ck5KS8jxv/fr1pn///qZKlSomMDDQVKtWzXTv3t188skn+X5eBTly5IgJDQ01oaGh5siRI87x7du3m6FDh5ratWuboKAgExERYZo0aWJGjx5tvvzyyzzH2bhxo+nSpYupUKGCqVChgrn++uvN+vXrzbhx44wks23btjx1nX/L+vy4W8PGjRvNmDFjTPPmzU1ERIQJCQkx9erVM8OGDTM7duxw7peSkmKmTJlirrvuOlO9enUTFBRkYmJiTMeOHc0HH3xgcnJy3KoxJSXF3H///aZ+/fomKCjIVKpUyXTp0iXfW96uXr3aeQvi/MTGxrrcPhcAAF9VlExx/Phxc+edd5rY2FgTHBxs6tatayZOnGhOnz6d73fgxW7NXtB38759+8yAAQNMpUqVTGhoqGnbtq1ZunTpBY+3adMm07dvXxMVFWUCAwNNrVq1zJgxY8wvv/ySZ98LZbJJkyYZSWb16tV5thX0+rGxsQUe78+ys7PN9OnTTatWrUy5cuVMuXLlzBVXXGGmTZtmsrOz8+zvjYyVa9myZaZt27amfPnyzr8v7rxHAN7jMOb/38oAQJHs27dP8fHxuuWWW5xrtuGe9u3b69tvv1VaWprKly/v7XIAAAAAAP8f1zAC3HTkyBHl5OS4jKWnpzun2/br188LVfm+9PT0fC8CPWfOHK1fv17dunWjWQQAAAAAPoYZRoCbHnzwQX344Yfq1KmTqlWrpiNHjujLL7/Uzz//rB49eui///1vgbcptdmePXvUsmVLde3aVfXr11dWVpa2bdumdevWKTw8XOvXr1fjxo29XSYAAAAA4Dw0jAA3ffnll3rhhRf0/fff68SJEwoICFB8fLwGDx6sCRMmKDAw0Nsl+qSUlBT985//1Jo1a3TkyBGdO3dOMTEx6tKlix5++GHVq1fP2yUCAAAAAP6EhhEAAAAAAABccA0jAAAAAAAAuKBhBAAAAAAAABc0jAAAAAAAAOCChhHghqlTp8rhcMjhcGjv3r3eLsd6mzZt0sSJE9WjRw/FxMTI4XCoZs2aRT7emTNnNGnSJDVs2FAhISGKjo7WoEGDtHv37gKfc+LECU2YMEFxcXEKDg5W9erVNWLECP38889FrgMAgNKMvORbyEsALhUXvQYuwhijunXr6qeffpIxRv/4xz/0wgsveLssq02YMEGvvvqqAgMDddlll+l///ufatSoUaTwce7cOV1//fX65ptvdOWVV6pz5846dOiQPvnkEwUFBWnVqlVq06aNy3OOHz+udu3aKSEhQZ07d1br1q21Z88eLV68WNHR0dqwYYPq1q3rqbcLAIDPIy/5HvISgEtmAFzQ8uXLjSQzbNgwExMTY6Kiosy5c+e8XZbVtm3bZr777jvnn4MkU6NGjSId66mnnjKSzMCBA012drZzfNGiRUaSueyyy1zGjTFm9OjRRpK59957XcZfffVVI8l07969SLUAAFBakZd8D3kJwKWiYQRcxIABA4wk880335h//OMfRpL56KOPCtz/0KFD5q677jL169c3ISEhJiIiwrRu3do8/vjjRd5XkunYsWO+rzd06FAjySQlJTnHkpKSjCQzdOhQs3fvXjNo0CBTpUoV43A4zOrVq40xxmzZssXcfffdpnnz5iYiIsIEBweb+vXrm3vvvdecOHGiwPf30Ucfmc6dOzufExsba2655RazefNmY4wx//73v40kM3ny5Hyf/+uvv5qAgADTtGnTAl+jsIoagHJyckzt2rWNJLN///482zt06GAkmVWrVjnHfv/9d1OuXDlTvnx5c/LkSZf9s7OzTWxsrJFkfvzxx8K/EQAASinykivyEnkJKAu4hhFwAUePHtWSJUsUHx+vdu3aadiwYZKkWbNm5bv/li1b1KJFC/3rX/9S9erVdffdd+u2225TxYoVNXny5CLvW1Q//vij2rRpowMHDui2227T6NGjFRYWJkl644039NFHH6lhw4YaPny47rzzTlWrVk0vvfSS2rdvr99//93lWMYYDRs2TLfccou2b9+u/v376+9//7s6dOigtWvXaunSpZKk2267TWFhYXrzzTeVnZ2dp6a33npLWVlZ+tvf/iZJmjx5shwOh8fec2H8+OOPOnjwoOLj41WnTp0823v06CFJWrVqlXNs48aNOnPmjNq3b6+KFSu67O/n56fu3btLklavXl2MlQMA4DvIS/+HvPQH8hJQNgR4uwDAl7399tvKzMx0Bp+mTZuqVatWWr16tRITE1W/fn3nvhkZGfrLX/6iEydO6P3339fgwYNdjnX+evHC7Hsp1q1bp4kTJ+qpp57Ks23ixImaPn26/P39XcbffPNNjRw5UjNmzNADDzzgHH/jjTc0d+5ctW7dWitWrFClSpWc27Kzs5WcnCxJqlChgm6//XZNnz5dy5YtU69evZz7GWM0e/ZshYaG6vbbb/fIe7wUuRfkjI+Pz3d7gwYNJEkJCQmX9BwAAMoy8hJ5SSIvAWURM4yAAuR+Wfv5+WnIkCHO8WHDhskYozfeeMNl/08//VQHDhxQ79698wQaSS53pSjMvpeiatWqmjRpUr7bYmNj84QfSRoxYoTCwsL0+eefu4z/61//kiTNnDnTJfxIkr+/v6pVq+b8+c4773Tue74vvvhCSUlJuvnmm53HGD9+vHbv3q3x48cX8t1durS0NEnK835y5Y6npqZe0nMAACiryEvkJfISUHbRMAIKsGrVKv3444/q2rWratSo4RwfPHiwgoKCNGfOHGVmZjrHN27cKOn/puVeSGH2vRQtWrRQcHBwvtsyMzM1bdo0XXPNNYqMjJS/v78cDof8/Px08uRJ/fLLL859T58+rR9++EFVq1ZVy5YtL/q6TZo00bXXXqtly5bp0KFDzvHcqeljxoxxjkVFRalRo0aKiooq6tsEAABeQl4iLwEou2gYAQXI/bLOnV6dKzIyUjfddJOSk5O1ePFi53juGZLzw1JBCrPvpYiJiSlw280336y77rpLv/76q/r06aP7779fkyZN0qRJk1SpUiWdO3fukuodO3assrOzNXv2bEnSkSNHtGTJEl1++eW66qqrivaGPCz37FbuWbA/yx0PDw+/pOcAAFBWkZfIS+QloOziGkZAPn777TctWrRIknTrrbfq1ltvzXe/WbNmaeDAgZL+7wvv/DNNBSnMvpLkcDiUlZWV77YLTeV1OBz5jm/ZskULFy5Uly5dtGzZMgUE/N8/BTk5OXruuecuqV5J6t+/v6pWrao333xTjz32WJ6LN/qChg0bSip4/fy+ffskua6/L8pzAAAoi8hL5CWJvASUZTSMgHzMnTtXGRkZatWqlS6//PJ891myZIlWrlyppKQk1alTR23btpUkLVu2zGUKcX4Ks68kRUREuExVzpWdna3vv//+os//s8TERElS7969XcKPJG3atElnzpxxGStfvryaNm2qH374Qdu2bXNrmnVgYKBGjhypqVOn6tNPP9Xs2bNVoUIF3XbbbYWut7jUq1dPtWvXVkJCgvPP8XzLli2TJHXu3Nk51rZtW5UrV07ffPONfv/9d5c7f+Tk5OiLL76QJF133XUl8A4AAPAe8hJ5SSIvAWWaAZBHfHy8kWS+/fbbAvd55JFHjCTz0EMPGWOMOXfunImLizOSzAcffJBn/0OHDjn/uzD7GmPMDTfcYCSZzz//3GV88uTJRpKRZJKSkpzjSUlJRpIZOnRovrVv2LDBSDL9+/d3GT969Ki54oorjCQTGxvrsm3WrFlGkmndurVJTU112ZadnW0OHz6c53V++ukn4+/vb2rUqGEkmdGjR+fZ57fffjO7d+82v/32W761ukOSqVGjxgX3SUxMNLt37zYZGRku40899ZSRZAYOHGiys7Od44sWLTKSzGWXXeYybowxo0ePNpLMvffe6zL+6quvGkmme/fuRX4vAACUFuQl8hJ5CSjbaBgBf7J69WojyTRr1uyC+yUlJRmHw2GqVatmMjMzjTHGbN682URERBhJpmPHjuaBBx4w99xzj+nWrZvx9/d3eX5h9l25cqVxOBwmJCTEDB061Pz97383bdq0MdHR0aZTp06FDkBZWVmmffv2RpK5+uqrzT//+U8zZMgQU6VKFXPNNdeY6tWr5wlAOTk55vbbbzeSTJUqVczIkSPNxIkTzdChQ02tWrXMpEmT8n2t3r17O0Pa1q1b82yfNGmSkVTg8/Oze/duM3ToUOdDkgkNDXUZ+3Ogio2NzfM5GWPM2bNnTbt27Ywkc+WVV5oHHnjA3HrrrSYgIMCEhoaajRs35nn9Y8eOOUNy586dzYMPPmj69OljJJno6GiTmJjo9nsBAKA0Ii+Rl8hLQNlHwwj4k8GDBxtJ5tVXX73ovl27djWSzIIFC5xjP/30k7nzzjtNXFycCQwMNJGRkeaqq64yU6dOzfP8wuy7ePFi06pVKxMcHGwiIyPNzTffbA4cOOAMAIUJQMYYc/z4cXPnnXea2NhYExwcbOrWrWsmTpxoTp8+bWJjY/MEoFzvvfeeufbaa01YWJgJDg42cXFxZvDgwfmGG2P+78zTlVdeme/2ogSg3JB6ocefg05BAcgYY06fPm0effRRU79+fRMUFGSioqLMwIEDzc6dOwus4fjx4+buu+82tWvXNoGBgSYmJsYMHz48z9lOAADKIvISeYm8BJR9DmOMcWfpGgAUxeTJkzVlyhTNnj1bd9xxh7fLAQAA8DnkJQC+iIYRgGLz+++/q0GDBsrMzNShQ4cUGhrq7ZIAAAB8CnkJgK/iLmkAPO6///2vvvvuO3366ac6evSoXnjhBcIPAADAechLAHwdDSMAHvfJJ59o7ty5qlq1qiZOnKi///3v3i4JAADAp5CXAPg6lqQBAAAAAADAhZ+3CwAAAAAAAIBvoWEEAAAAAAAAF1Zcw6hcy/HeLgEoc1I2T/N2CUCZE1JC38qe/F48s41/C8oSMhPgWeQlwPNKKi9JZCZmGAEAAAAAAMCFFTOMAADAeRycLwIAALgoyzMTDSMAAGzjcHi7AgAAAN9neWayu10GAAAAAACAPJhhBACAbSyfXg0AAOAWyzMTDSMAAGxj+fRqAAAAt1iemexulwEAAAAAACAPZhgBAGAby6dXAwAAuMXyzETDCAAA21g+vRoAAMAtlmcmu9tlAAAAAAAAyIMZRgAA2Mby6dUAAABusTwz0TACAMA2lk+vBgAAcIvlmcnudhkAAAAAAADyYIYRAAC2sXx6NQAAgFssz0w0jAAAsI3l06sBAADcYnlmsrtdBgAAAAAAgDyYYQQAgG0sn14NAADgFsszEw0jAABsY/n0agAAALdYnploGAEAYBvLz5YBAAC4xfLMZPe7BwAAAAAAQB7MMAIAwDaWny0DAABwi+WZiYYRAAC28bN7PT4AAIBbLM9MdrfLAAAAAAAAkAczjAAAsI3l06sBAADcYnlmomEEAIBtLL9FLAAAgFssz0x2t8sAAAAAAACQBzOMAACwjeXTqwEAANxieWaiYQQAgG0sn14NAADgFsszk93tMgAAAAAAAOTBDCMAAGxj+fRqAAAAt1iemWgYAQBgG8unVwMAALjF8sxkd7sMAAAAAAAAeTDDCAAA21g+vRoAAMAtlmcmGkYAANjG8unVAAAAbrE8M9ndLgMAAAAAAEAezDACAMA2lk+vBgAAcIvlmYmGEQAAtrF8ejUAAIBbLM9MdrfLAAAAAAAAkAczjAAAsI3l06sBAADcYnlmomEEAIBtvBh+du3apSVLligpKUkpKSm67777dNVVVzm3G2M0b948ffnllzp9+rQaNWqkkSNHqlq1as59Tp06pbfeektbt26Vw+FQmzZtNHz4cIWEhHjjLQEAgLLKS5nJV/KS3e0yAABQos6dO6e4uDjdcccd+W5fvHixli1bplGjRumpp55ScHCwpk6dqoyMDOc+r732mg4dOqRHHnlEDz74oHbv3q2ZM2eW1FsAAAAoVr6Sl2gYAQBgG4fDc49CatmypW655RaXs2S5jDH67LPP1L9/f7Vu3VqxsbEaP368UlJStHnzZknSzz//rO+//15jxoxRgwYN1KhRI40YMULr16/XiRMnLvmjAQAAcPJSZvKVvETDCAAA2zj8PPbIzMxUenq6yyMzM7NIZSUnJys1NVXNmzd3joWGhqp+/fpKSEiQJCUkJKh8+fKqV6+ec59mzZrJ4XAoMTHx0j4XAACA8/lgZirJvMQ1jAAAQJEtXLhQ8+fPdxkbOHCgBg0aVOhjpaamSpIqVarkMl6pUiXnttTUVIWFhbls9/f3V4UKFZz7AAAA+BpPZaaSzEs0jAAAsE0RlpIVpF+/furVq5fLWGBgoMeODwAA4DWWZyYaRgAA2MaDd/wIDAz0WNgJDw+XJKWlpSkiIsI5npaWpri4OOc+J0+edHledna2Tp065Xw+AACAR/hgZirJvMQ1jAAAgE+Ijo5WeHi4duzY4RxLT09XYmKi4uPjJUnx8fE6ffq09u/f79znhx9+kDFG9evXL/GaAQAASlJJ5iVmGAEAYBsPTq8urLNnz+rIkSPOn5OTk3XgwAFVqFBBUVFR6tmzpxYsWKBq1aopOjpaH330kSIiItS6dWtJUs2aNXX55Zdr5syZGjVqlLKysvTWW2+pXbt2ioyM9NbbAgAAZZGXMpOv5CWHMcZ4/N35mHItx3u7BKDMSdk8zdslAGVOSAmdxgkd8JbHjpX+nxGF2n/nzp2aMmVKnvGOHTtq3LhxMsZo3rx5WrlypdLT09WoUSPdcccdql69unPfU6dO6c0339TWrVvlcDjUpk0bjRgxQiEhIZf8fmxHZgI8i7wEeF5J5SXJe5nJV/ISDSMARUIAAjyvpAJQ+YFve+xYp+cP99ix4H1kJsCzyEuA55Vkw8j2zMQ1jAAAAAAAAOCCaxgBAGAb713CCAAAoPSwPDPRMAIAwDIOL170GgAAoLSwPTOxJA0AAAAAAAAumGEEAIBlbD9bBgAA4A7bMxMNIwAALGN7+AEAAHCH7ZmJJWkAAAAAAABwwQwjAAAsY/vZMgAAAHfYnploGAEAYBu7sw8AAIB7LM9MLEkDAAAAAACAC2YYAQBgGdunVwMAALjD9sxEwwgAAMvYHn4AAADcYXtmYkkaAAAAAAAAXDDDCAAAy9h+tgwAAMAdtmcmGkYAAFjG9vADAADgDtszE0vSAAAAAAAA4IIZRgAA2Mbuk2UAAADusTwz0TACAMAytk+vBgAAcIftmYklaQAAAAAAAHDBDCMAACxj+9kyAAAAd9iemWgYAQBgGdvDDwAAgDtsz0wsSQMAAAAAAIALZhgBAGAbu0+WAQAAuMfyzETDCAAAy9g+vRoAAMAdtmcmlqQBAAAAAADABTOMAACwjO1nywAAANxhe2aiYQQAgGVsDz8AAADusD0z0TACAMAytocfAAAAd9iembiGEQAAAAAAAFwwwwgAANvYfbIMAADAPZZnJhpGAABYxvbp1QAAAO6wPTOxJA0AAAAAAAAumGEEAIBlbD9bBgAA4A7bMxMNIwAALGN7+AEAAHCH7ZnJZxpGL7zwgtv73nfffcVYCQAAgG8iLwEAgJLiMw2j0NBQb5cAAIAd7D5ZVqqRlwAAKEGWZyafaRiNHTvW2yUAAGAF26dXl2bkJQAASo7tmYm7pAEAAAAAAMCFz8ww+rONGzdq/fr1On78uLKysly2Pfvss16qCgCA0s/2s2VlCXkJAIDiY3tm8skZRp999plmzJih8PBwJSUlqV69eqpQoYKOHj2qyy+/3NvloRDaX1FP81/5m/Z/MVVntk3TTZ2au2zv07mFPp0xTj+vflZntk1T8/gaeY7xr4dv0c4lk3Riw0s6uOppzXt5tOLjqpbUWwBKrY8+eF89unZW65bNdNstf9GO7du9XRJ8hMPh8NgD3kNeKlvITID3kJlQENszk082jL744guNHj1aI0aMUEBAgPr06aNHH31UPXr0UHp6urfLQyGULxesHQm/aMLTH+e7PbRckNZ//6MeeW1RgcfYtvuQRk9+T5f3f1K9x06Xw+HQ0hnj5OdXOn/pgJKwfNlneuG5p/W3seP00ScL1bBhI935tzt0/Phxb5cGwEPIS2ULmQnwDjITUDCfbBgdO3ZMDRs2lCQFBQXpzJkzkqRrr71W33zzjTdLQyF98c0uTZmxVEtW59+l//C/m/X0rOVatXFvgcd4a8E3+ua7H3Xw1xP6fs/PmjL9U9WqFqnY6pWLq2yg1Ht37tvqP3CQ+vYboHr16+uRSVMUEhKiRQv+4+3S4ANsP1tWVpCXyhYyE+AdZCZciO2ZyScbRuHh4Tp16pQkKSoqSvv27ZMkJScnyxjjzdLgZaEhQRrSu62Sfj6mn4+keLscwCdlZmRo966dant1O+eYn5+f2rZtp+3/2+bFyuAzHB58wGvIS7gQMhNwcWQmXJTlmcknL3rdtGlTbdmyRXXq1FGnTp00d+5cbdy4Ufv379dVV111wedmZmYqMzOzhCpFSRn9lw6aOqGvKoQGa2/SEd145zRlZmV7uyzAJ6Wkpig7O1uVK7ueUa5cubKSkvZ7qSoAnnYpeUkiM5VVZCbAfWQm4MJ8smE0evRo55mxG264QRUrVtTevXt15ZVXqmvXrhd87sKFCzV//vw/jUYXU6UoKR8t26wvv92jmKgwTRjSRe89O0Kdh7+kcxlZF38yAMBFaZ0WDVeXkpckMlNZRWYCAM+xPTP5ZMPIz891pVz79u3Vvn17t57br18/9erVy2Wscvv7PVYbvOPkqbM6eeqsfjz4mzZtP6Bfv35OfTq30LzlW71dGuBzIsIj5O/vn+dijcePH1dUVJSXqoIvsT38lBWXkpckMlNZRWYC3EdmwsXYnpl88hpGkrR792699tprevjhh3XixAlJ0tdff609e/Zc8HmBgYEKDQ11eaBscTgccsihoECf7HcCXhcYFKTGlzXRtxs3OMdycnL07bcb1LxFSy9WBsDTipqXJDKTDchMwIWRmYAL88mG0caNGzV16lQFBQXpwIEDzvX16enpWrhwoZerQ2GULxek5vE11Dy+hiQprkZlNY+voVoxEZKkiLBQNY+vocb1YiRJ8XFV1Ty+hqpWrujc/74R3dSycS3ViolQ2xZ19P7zd+jMuUx9vm6nd94UUArcPnS4FsyfpyWLFmr/jz/qyccn68yZM+rbr7+3S4MPcDg894D3kJfKFjIT4B1kJlyI7ZnJJ083LFiwQKNGjVLHjh21fv1653jDhg31n/9we8PS5IrLYvXF7HucPz933wBJ0rtLNmr0pPd0Y8dmeuPx253b3312hCTpyX9/pqkzP9O5jCy1b1lP4wd3UkRYqJKP/6513yXqumEv6reUUyX7ZoBS5IYePZVy4oRmTHtNx479poaNGmvGzNmqzPRqiOnVZQV5qWwhMwHeQWbChdiemXyyYXT48GE1btw4z3hoaKjS09O9UBGKau3WfSrXcnyB29/79Fu99+m3BW7/9bc09bvr9eIoDSjzbr3tr7r1tr96uwwAxYS8VLaQmQDvITMB+fPJJWnh4eE6cuRInvE9e/YoOpq7dwAAcClsn15dVpCXAAAoXrZnJp9sGF1//fWaM2eO9u3bJ4fDoZSUFK1du1bvvPOOunXr5u3yAAAo1RwOh8ce8B7yEgAAxcv2zOSTS9L69u0rY4wef/xxZWRkaNKkSQoICFDv3r11/fXXe7s8AAAAryMvAQCA4uSTDSOHw6H+/furd+/eOnLkiM6ePauaNWtqxYoVGjdunN544w1vlwgAQKlVSk9y4U/ISwAAFC/bM5NPNYwyMzP1ySefaPv27QoMDNRNN92kq666SqtXr9bzzz8vPz8/3Xjjjd4uEwCAUs3Pz/L0U8qRlwAAKBm2Zyafahh9/PHHWrlypZo1a6aEhAS9/PLL6tSpk/bt26chQ4bo6quvlp+fT152CQCAUsP2s2WlHXkJAICSYXtm8qmG0caNGzV+/HhdeeWVOnjwoP75z38qOztbzz//fKm9SBQAAPhDTk6O5s2bp7Vr1yo1NVWRkZHq2LGjBgwY4PyeN8Zo3rx5+vLLL3X69Gk1atRII0eOVLVq1bxcve8gLwEAUHb5Ul7yqYbR8ePHVbduXUlS7dq1FRAQoF69ehF+AADwIG99ry5atMh5fZ2aNWtq//79mjFjhkJDQ9WzZ09J0uLFi7Vs2TKNGzdO0dHR+vjjjzV16lS99NJLCgoK8krdvoa8BABAyfDGd6sv5SWfmq+ck5OjgID/62H5+/srJCTEixUBAFD2OByeexRGQkKCrrzySl1xxRWKjo5W27Zt1bx5cyUmJkr642zZZ599pv79+6t169aKjY3V+PHjlZKSos2bNxfDJ1E6kZcAACgZ3shMvpSXfGqGkSRNnz5dgYGBkv64qOMbb7yh4OBgl33uu+8+b5QGAAD+JDMzU5mZmS5jgYGBzu/y88XHx+vLL7/U4cOHVb16dR04cEB79+7VkCFDJEnJyclKTU1V8+bNnc8JDQ1V/fr1lZCQoPbt2xfvmylFyEsAAJQu7mYmX8pLPtUw6tixo8vPHTp08FIlAACUXZ6cXr1w4ULNnz/fZWzgwIEaNGhQnn379u2rM2fO6O9//7v8/PyUk5OjW265xfl9n5qaKkmqVKmSy/MqVark3AbyEgAAJcUbmcmX8pJPNYzGjh3r7RIAACjzPBl++vXrp169ermM5Te7SJI2bNigdevW6e6771atWrV04MABzZkzRxEREerUqZPHairryEsAAJQMb2QmX8pLPtUwAgAApUtBy8/y895776lPnz7OqdK1a9fWb7/9pkWLFqlTp04KDw+XJKWlpSkiIsL5vLS0NMXFxXm6dAAAgBLjbmbypbzkUxe9BgAAxc9bF70+d+6c/Pxco4efn5+MMZKk6OhohYeHa8eOHc7t6enpSkxMVHx8/CW/bwAAgMLwRmbypbzEDCMAACzjrduvt2rVSgsWLFBUVJRq1qypAwcOaOnSpbruuuucdfXs2VMLFixQtWrVFB0drY8++kgRERFq3bq1V2oGAAD28kZm8qW8RMMIAACUiBEjRujjjz/W7NmzlZaWpsjISHXt2lUDBw507tOnTx+dO3dOM2fOVHp6uho1aqSHHnpIQUFBXqwcAACgZPhSXnKY3HlNZVi5luO9XQJQ5qRsnubtEoAyJ6SETuNc8fgqjx3ru8c6e+xY8D4yE+BZ5CXA80oqL0lkJmYYAQBgGW8tSQMAAChNbM9MXPQaAAAAAAAALphhBACAZSw/WQYAAOAW2zMTDSMAACxj+/RqAAAAd9iemViSBgAAAAAAABfMMAIAwDKWnywDAABwi+2ZiYYRAACWsX16NQAAgDtsz0wsSQMAAAAAAIALZhgBAGAZy0+WAQAAuMX2zETDCAAAy9g+vRoAAMAdtmcmlqQBAAAAAADABTOMAACwjOUnywAAANxie2aiYQQAgGVsn14NAADgDtszE0vSAAAAAAAA4IIZRgAAWMbyk2UAAABusT0z0TACAMAytk+vBgAAcIftmYmGEQAAlrE9/AAAALjD9szENYwAAAAAAADgghlGAABYxvKTZQAAAG6xPTPRMAIAwDK2T68GAABwh+2ZiSVpAAAAAAAAcMEMIwAALGP5yTIAAAC32J6ZaBgBAGAZ26dXAwAAuMP2zMSSNAAAAAAAALhghhEAAJax/GQZAACAW2zPTDSMAACwjJ/t6QcAAMANtmcmlqQBAAAAAADABTOMAACwjOUnywAAANxie2aiYQQAgGVsv+MHAACAO2zPTCxJAwAAAAAAgAtmGAEAYBk/u0+WAQAAuMX2zETDCAAAy9g+vRoAAMAdtmcmlqQBAAAAAADABTOMAACwjOUnywAAANxie2aiYQQAgGUcsjz9AAAAuMH2zMSSNAAAAAAAALhghhEAAJax/Y4fAAAA7rA9M9EwAgDAMrbf8QMAAMAdtmcmlqQBAAAAAADABTOMAACwjOUnywAAANxie2aiYQQAgGX8bE8/AAAAbrA9M7EkDQAAAAAAAC6YYQQAgGUsP1kGAADgFtszEw0jAAAsY/sdPwAAANxhe2aiYQQAgGUszz4AAABusT0zcQ0jAAAAAAAAuGCGEQAAlrH9jh8AAADusD0z0TACAMAydkcfAAAA99iemViSBgAAAAAAABduzTCaP39+kQ4+cODAIj0PAAAUH9vv+FGcyEwAAJQdtmcmtxpGn3zySZEOTvgBAMD3+NmdfYoVmQkAgLLD9szkVsPo448/Lu46AAAASj0yEwAAKCu46DUAAJaxfXo1AACAO2zPTDSMAACwjOXZBwAAwC22Z6YiN4x++uknLVu2TElJSUpPT5cxxmW7w+HQv/71r0suEAAAoDQjMwEAgNLIryhP2rlzpx566CF99913ioiIUHJysqpWraqIiAj99ttvCgkJUePGjT1dKwAA8ACHw+GxBy6MzAQAQOlle2Yq0gyjefPmKTo6WlOnTlVWVpZGjRqlfv36qWnTptq3b5+eeuop3XbbbZ6uFQAAeIA37/hx4sQJvffee/r+++917tw5xcTEaOzYsapXr54kyRijefPm6csvv9Tp06fVqFEjjRw5UtWqVfNe0ZeAzAQAQOnlrczkK3mpSDOM9u/fr86dOys0NFR+fn8cIicnR5LUoEEDde3albuEAAAAF6dOndKjjz6qgIAAPfTQQ3r55Zc1ZMgQlS9f3rnP4sWLtWzZMo0aNUpPPfWUgoODNXXqVGVkZHix8qIjMwEAgMLwpbxUpBlG/v7+KleunCSpfPny8vf3V1pamnN7dHS0fv75Z89UCAAAPMqT06IzMzOVmZnpMhYYGKjAwMA8+y5evFiVK1fW2LFjnWPR0dHO/zbG6LPPPlP//v3VunVrSdL48eM1atQobd68We3bt/dY3SWFzAQAQOnljczkS3mpSA2jmJgY/frrr5L++ABr1KihTZs2qUOHDpKk7777TuHh4R4rEgAAeI4nZ1cvXLhQ8+fPdxkbOHCgBg0alGffLVu2qEWLFnrppZe0a9cuRUZGqlu3burSpYskKTk5WampqWrevLnzOaGhoapfv74SEhJKZcOIzAQAQOnljczkS3mpSA2jli1bavXq1Ro8eLD8/f1144036vXXX9fdd98tSTp69KhuvfVWjxUJAAB8U79+/dSrVy+XsfxmF0l/BJwVK1boxhtvVL9+/fTjjz/q7bffVkBAgDp16qTU1FRJUqVKlVyeV6lSJee20obMBAAAJPczky/lpSI1jAYMGKCePXs61+J36tRJfn5++vbbb+Xn56f+/furU6dOnqwTAAB4iJ8Hp1cXtPwsPzk5OapXr54GDx4sSapTp44OHjyoFStWlNncQGYCAKD08kZm8qW8VKSGUUBAgCpWrOgydu211+raa6/1SFEAAKD4eOvOrhEREapZs6bLWM2aNfXtt99KknNpVlpamiIiIpz7pKWlKS4urqTK9CgyEwAApZc3MpMv5aUi3SUNAACgsBo2bKjDhw+7jB0+fFhVqlSR9McFHcPDw7Vjxw7n9vT0dCUmJio+Pr5EawUAAPAGX8pLRZphNGXKlIvu43A49NhjjxXl8AAAoBh58o4fhXHjjTfq0Ucf1YIFC9SuXTslJibqyy+/1OjRo5119ezZUwsWLFC1atUUHR2tjz76SBEREc67gJQ2ZCYAAEovb2QmX8pLRWoYGWPyfHA5OTn67bffdPz4ccXExCgyMtIjBQIAAM/y1pK0+vXr67777tMHH3yg//znP4qOjtbQoUOddwyTpD59+ujcuXOaOXOm0tPT1ahRIz300EMKCgryTtGXiMwEAEDp5Y3M5Et5yWGMMZ484NatWzVr1iw9+OCDqlOnjicPXWTlWo73dglAmZOyeZq3SwDKnJAincYpvL/N3+mxY80c2MRjx7INmQko+8hLgOeVVF6SyEwev4ZRq1at1KFDB82ZM8fThwYAAB7g53B47IGiIzMBAODbbM9MxXLR66pVq+rHH38sjkMDAIBL5HB47oFLQ2YCAMB32Z6ZPN4wys7O1oYNG/LcQhYAAAD/h8wEAAB8WZFW/82YMSPf8fT0dO3bt0+pqakaMmTIJRUGAACKh7fukmYjMhMAAKWX7ZmpSA2jnTvzXvjJ4XCofPnyatiwoa6//nq1aNHikovzFC42B3hegwmLvV0CUOYcmtanRF6nWNajI19kJsBu5CXA80oqL0lkpiI1jKZPn+7pOgAAAMocMhMAACititQwW7NmjZKTkwvcnpycrDVr1hS5KAAAUHwcDofHHrgwMhMAAKWX7ZmpSA2jGTNmKCEhocDtiYmJBa7ZBwAA3uXn8NwDF0ZmAgCg9LI9MxVpSdrFnD17Vv7+/sVxaAAAcIlKa2gpi8hMAAD4Ltszk9sNo59++kkHDhxw/rx7925lZ2fn2e/06dNasWKFqlWr5pECAQAAShMyEwAAKAvcbhht2rRJ8+fPd/68cuVKrVy5Mt99Q0NDNX78+EuvDgAAeFxpXUdfWpCZAAAoG2zPTG43jLp06aJWrVrJGKOHHnpIgwYNUsuWLfPsFxISoqpVqzK9GgAAH2X79OriRmYCAKBssD0zud0wioiIUEREhCRp0qRJqlmzpsLCwoqtMAAAgNKIzAQAAMqCIt0lrXbt2kpJSSlw+8GDB3Xq1KkiFwUAAIqPw+G5By6MzAQAQOlle2YqUsNozpw5mjVrVoHbZ82apXfffbfIRQEAgOLj53B47IELIzMBAFB62Z6ZitQw2rlzp1q1alXg9latWmnHjh1FLgoAAKAsIDMBAIDSyu1rGJ3v5MmTF1yLX7FiRaWlpRW5KAAAUHyKdLYIRUJmAgCg9LI9MxWpYRQeHq6kpKQCt+/fv5+LOwIA4KNK6azoUonMBABA6WV7ZipSw6x169ZatWqVtmzZkmfb5s2btXr1al111VWXXBwAAEBpRmYCAAClVZFmGA0aNEg7duzQ888/r7i4ONWqVUuSdOjQIR04cEA1a9bUoEGDPFooAADwjNJ64cXSiMwEAEDpZXtmKlLDKDQ0VFOnTtWSJUv07bffauPGjZKkqlWrasCAAerTp48yMzM9WigAAPAMy7NPiSIzAQBQetmemYrUMJKkkJAQDRo0yOWsWEZGhrZu3apXX31V//vf//T+++97pEgAAIDSiswEAABKoyI3jHIZY7Rjxw6tW7dOmzZt0pkzZxQWFqb27dt7oj4AAOBhfpafLfMWMhMAAKWL7ZmpyA2j/fv3a+3atVq/fr1SU1MlSe3bt9cNN9ygBg0ayGH73C0AAHyU7evxSxqZCQCA0sn2zFSohtHRo0e1du1arVu3Tr/++qsiIyN1zTXXqH79+nrllVfUpk0bxcfHF1etAAAApQKZCQAAlHZuN4wefvhhJSYmKiwsTG3atNGYMWPUqFEjSdKRI0eKrUAAAOBZlp8sK3ZkJgAAygbbM5PbDaPExERFR0dryJAhuuKKK+Tv71+cdQEAgGJi+3r84kZmAgCgbLA9M7ndMBoxYoTWrVunF154QRUqVFCbNm3Url07NWnSpDjrAwAAKFXITAAAoCxwu2HUvXt3de/eXcnJyc41+V9++aXCw8OdAYiLNgIA4Psc4vu6OJGZAAAoG2zPTIW+S1p0dLQGDBigAQMGuNz1Q5Jmz56tbdu26corr1SzZs0UFBTk8YIBAMClsX16dUkhMwEAULrZnpkK3TA6X926dVW3bl3dfvvt+uGHH5xBaNWqVQoKCtK7777rqToBAABKLTITAAAobS6pYZTLz89PzZs3V/PmzTVq1Cht2bJF69at88ShAQCAh9l+tsybyEwAAJQetmcmjzSMzhcUFKR27dqpXbt2nj40AADwAK6f4xvITAAA+DbbM5OftwsAAAAAAACAb/H4DCMAAODbbJ9eDQAA4A7bMxMNIwAALGP57GoAAAC32J6ZaBgBAGAZP9vTDwAAgBtsz0xcwwgAAAAAAAAumGEEAIBlbF+PDwAA4A7bMxMNIwAALGP57GoAAAC32J6ZWJIGAAAAAAAAF8wwAgDAMn6y/HQZAACAG2zPTDSMAACwjO3TqwEAANxhe2ZiSRoAAAAAAABcMMMIAADL2H7HDwAAAHfYnploGAEAYBk/2+dXAwAAuMH2zMSSNAAAAAAAALhghhEAAJax/GQZAACAW2zPTDSMAACwjO3TqwEAANxhe2ZiSRoAAAAAAABcMMMIAADLWH6yDAAAwC22ZyYaRgAAWIbpxQAAABdne2ay/f0DAAAAAADgT5hhBACAZRy2z68GAABwg+2ZiYYRAACWsTv6AAAAuMf2zMSSNAAAAAAAALhghhEAAJbx85Hp1YsWLdIHH3ygnj17atiwYZKkjIwMvfPOO1q/fr0yMzPVokULjRw5UuHh4V6tFQAA2McXMpM38xIzjAAAsIzDg4+iSkxM1IoVKxQbG+syPnfuXG3dulX33nuvpkyZopSUFL344ouX8EoAAABF4+3M5O28RMMIAAAUWWZmptLT010emZmZF3zO2bNn9a9//Ut/+9vfVL58eed4enq6Vq1apaFDh6pp06aqW7euxo4dq7179yohIaG43woAAECxKWxm8oW8xJI0AAAs48nZ1QsXLtT8+fNdxgYOHKhBgwYV+JzZs2erZcuWat68uRYsWOAc379/v7Kzs9WsWTPnWI0aNRQVFaWEhATFx8d7rnAAAICL8GZm8oW8RMMIAADLePIWsf369VOvXr1cxgIDAwvc/5tvvlFSUpKefvrpPNtSU1MVEBDgchZNkipVqqTU1FSP1AsAAOAub2UmX8lLNIwAAECRBQYGXrBBdL5jx45pzpw5euSRRxQUFFTMlQEAAPgOdzOTL+UlGkYAAFjGWxcw3L9/v9LS0vTAAw84x3JycrR7924tX75cDz/8sLKysnT69GmXs2ZpaWncJQ0AAJQ4b2QmX8pLNIwAALCMJ6dXF0azZs30wgsvuIy9/vrrql69uvr06aOoqCj5+/trx44datu2rSTp8OHDOnbsGNcvAgAAJc4bmcmX8hINIwAALOOddpFUrlw51a5d22UsODhYFStWdI537txZ77zzjipUqKDQ0FC99dZbio+Pp2EEAABKnDcyky/lJRpGAADAZwwdOlQOh0MvvviisrKy1KJFC40cOdLbZQEAAPiMkspLDmOM8fhRfczZLG9XAJQ9DSYs9nYJQJlzaFqfEnmd+f/71WPHGtiimseOBe8jMwGeRV4CPK+k8pJEZmKGEQAAlvHWRa8BAABKE9szk+3vHwAAAAAAAH/CDCMAACzjrbukAQAAlCa2ZyYaRgAAWMbu6AMAAOAe2zMTS9IAAAAAAADgghlGAABYxvLZ1QAAAG6xPTPRMAIAwDJ+1k+wBgAAuDjbMxNL0gAAAAAAAOCCGUYAAFjG9unVAAAA7rA9M9EwAgDAMg7Lp1cDAAC4w/bMxJI0AAAAAAAAuGCGEQAAlrF9ejUAAIA7bM9MNIwAALCM7Xf8AAAAcIftmYklaQAAAAAAAHDBDCMAACxj+/RqAAAAd9iemWgYAQBgGdvDDwAAgDtsz0wsSQMAAAAAAIALZhgBAGAZh+UXcAQAAHCH7ZmJhhEAAJbxszv7AAAAuMX2zMSSNAAAAAAAALjw2RlGu3fv1ooVK3T06FH94x//UGRkpL7++mtFR0erUaNG3i4PAIBSy/bp1WUJeQkAgOJje2byyRlGGzdu1NSpUxUUFKQDBw4oMzNTkpSenq6FCxd6uToAAEo3h8NzD3gPeQkAgOJle2byyYbRggULNGrUKI0ZM0b+/v7O8YYNG2r//v1erAwAAMA3kJcAAEBx8sklaYcPH1bjxo3zjIeGhio9Pd0LFQEAUHbYPr26rCAvAQBQvGzPTD45wyg8PFxHjhzJM75nzx5FR0d7oSIAAMoOP4fnHvAe8hIAAMXL9szkkw2j66+/XnPmzNG+ffvkcDiUkpKitWvX6t1331W3bt28XR4AAKWaw4P/g/eQlwAAKF62ZyafXJLWt29fGWP0+OOPKyMjQ5MmTVJAQIBuuukm9ejRw9vloZh89MH7mvv2mzp27DfFN2ykBx96VM2aN/d2WYDP83NI9/ZspH6tayo6LERH087qk28P6tXlCc59Dk3rk+9zn1y4UzO/TCypUgF4EHnJTuQloGjIS0Dh+WTDKDs7W/3791fv3r115MgRnT17VjVr1lRISIhOnjypsLAwb5cID1u+7DO98NzTemTSFDVr1kLvvztXd/7tDi1eulyVK1f2dnmATxvbtYFu7xCnv7+7TQm/nlTz2uF68a9X6OSZLL295o8L314xcbnLc65rUlXPD75cy74/7I2S4WWl9U4dcEVesg95CSg68hKKwvbM5JNL0l555RUZYxQQEKCaNWuqfv36CgkJUWpqqqZMmeLt8lAM3p37tvoPHKS+/QaoXv36emTSFIWEhGjRgv94uzTA57WqG6kvth/Rqp1H9fOJM/rs+1/19Z5kXR4b7tznt9/PuTy6NYvR+n3HdPA4F8a1kcODD3gPeck+5CWg6MhLKArbM5NPNoyOHz+uf//73y5jKSkpmjJliqpXr+6lqlBcMjMytHvXTrW9up1zzM/PT23bttP2/23zYmVA6bB1/wm1b1hFdaLLS5Ia1whT67qRWr0rOd/9oyoGq3PTqvp4w08lWSYADyMv2YW8BFwa8hJQeD65JG3ixImaNGmS5s6dq6FDh+rEiROaMmWKYmNjNWHChAs+NzMzU5mZmS5jfkGhxVgtLlVKaoqys7PzTKWuXLmykpL2e6kqoPSYvmKfKoQE6qtHrle2MfJ3OPTc0t1atOXnfPcf2KaWTp/N0rLvfy3hSuEr/GyfX11GXEpekshMpQ15Cbg05CUUhe2ZyScbRmFhYXr44Yf12GOPSZK+++471alTR3fffbf8/C48KWrhwoWaP3++y9g7H8wrtloBwNtuuqKG+rWuqbvmblXCryd1WY1KmjywmY6mndX8bw/l2f/mtrW1cMvPOpeV44Vq4Qvsjj5lx6XkJYnMBMAu5CUUhe2ZyScbRpIUFRWlRx55RJMmTVKzZs101113yeFGd69fv37q1atXCVQIT4kIj5C/v7+OHz/uMn78+HFFRUV5qSqg9Hi4bxPNWLFPS7b+Iknac/h31YwM1biuDfIEoKvqRap+TEWNfXuLN0oF4GFFzUsSmam0IS8Bl4a8BBSezzSMhg8fnu94RkaGtm7dqhEjRjjH3n777QKPExgYqMDAQJexs1meqRHFIzAoSI0va6JvN25Q5+u7SJJycnL07bcbdMutf/VydYDvKxfkr5wc4zKWbYz8/PL+n8Zbro7V9oOp2v3LyZIqD77I9tNlpZin8pJEZiptyEvApSEvoUgsz0w+0zAaOnSot0uAF90+dLgefegBNWnSVE2bNdd7787VmTNn1Ldff2+XBvi8lTuO6K7u8fol5YwSfj2ppjXDNeq6evp440GX/SqEBOjGltX1xMKdXqoUvsJhe/opxchLdiMvAUVHXkJR2J6ZfKZh1KlTJ2+XAC+6oUdPpZw4oRnTXtOxY7+pYaPGmjFztiozxRq4qEc/2aH7ejXS1JubK6pCsI6mndX73xzQK8v2uuzXu1UNORzS4gIu7gjA95GX7EZeAoqOvAQUnsMYYy6+m/dkZGQoK8t1fnRoaOHu4MH0asDzGkxY7O0SgDLn0LQ+JfI6m/aneexYV9Wt5LFjoeg8kZckMhPgaeQlwPNKKi9JZCafmWF0vrNnz+r999/Xhg0b9Pvvv+fZ/vHHH3uhKgAAyga7J1eXHeQlAACKl+2Z6eL3XPWC9957Tz/88INGjhypwMBAjRkzRoMGDVJkZKTGjx/v7fIAAAC8jrwEAACKk082jLZu3aqRI0eqbdu28vf3V+PGjTVgwADdeuutWrdunbfLAwCgdHN48AGvIS8BAFDMLM9MPtkwOnXqlKpWrSpJKleunE6dOiVJatSokXbt2uXN0gAAKPUcHvwfvIe8BABA8bI9M/lkw6hq1apKTk6WJNWoUUPr16+XJG3ZskXly5f3ZmkAAAA+gbwEAACKk081jI4ePaqcnBx16tRJBw4ckCT16dNHn3/+uW677TbNnTtXvXv39m6RAACUcg6H5x4oeeQlAABKhu2Zyafuknb33Xdr1qxZ6tWrlyTp5Zdf1vDhw/XKK69o//79iomJUWxsrJerBACgdCulmQX/H3kJAICSYXtm8qkZRn+2bds2nTt3TlWqVFGbNm0IPwAAAH9CXgIAAMXBp2YYAQCAEmD76TIAAAB3WJ6ZfK5h5PjT4r4//wwAAC5Nab1TB/4PeQkAgOJne2byuYbR9OnTFRgYKEnKzMzUG2+8oeDgYJd97rvvPm+UBgAA4BPISwAAoLj5VMOoY8eOLj936NDBS5UAAFB2MRmldCMvAQBQMmzPTD7VMBo7dqy3SwAAoMyzPPuUeuQlAABKhu2ZyafvkgYAAAAAAICS51MzjAAAQAmw/XQZAACAOyzPTDSMAACwjO13/AAAAHCH7ZmJhhEAAJax/QKOAAAA7rA9M3ENIwAAAAAAALhghhEAAJbx1smyhQsXatOmTfrll18UFBSk+Ph4/fWvf1X16tWd+2RkZOidd97R+vXrlZmZqRYtWmjkyJEKDw/3UtUAAMBW3shMvpSXmGEEAIBtHB58FMKuXbvUvXt3TZ06VY888oiys7P15JNP6uzZs8595s6dq61bt+ree+/VlClTlJKSohdffPGS3i4AAECReCEz+VJeomEEAABKxMMPP6xOnTqpVq1aiouL07hx43Ts2DHt379fkpSenq5Vq1Zp6NChatq0qerWrauxY8dq7969SkhI8HL1AAAAxc+X8hJL0gAAsIwn7/iRmZmpzMxMl7HAwEAFBgZe9Lnp6emSpAoVKkiS9u/fr+zsbDVr1sy5T40aNRQVFaWEhATFx8d7rG4AAICL8YXM5M28RMMIAADLePKOHwsXLtT8+fNdxgYOHKhBgwZd8Hk5OTmaM2eOGjZsqNq1a0uSUlNTFRAQoPLly7vsW6lSJaWmpnquaAAAADd4OzN5Oy/RMAIAAEXWr18/9erVy2XMndlFb775pg4dOqTHH3+8uEoDAADwGUXJTN7OSzSMAACwjCfv+OHu8rPzvfnmm/ruu+80ZcoUVa5c2TkeHh6urKwsnT592uWsWVpaGndJAwAAJc6bmckX8hIXvQYAwDZeukuaMUZvvvmmNm3apMcee0zR0dEu2+vWrSt/f3/t2LHDOXb48GEdO3aM6xcBAICS54XM5Et5iRlGAACgRLz55ptat26d7r//fpUrV865zj40NFRBQUEKDQ1V586d9c4776hChQoKDQ3VW2+9pfj4eBpGAADACr6Ul2gYAQBgGU/e8aMwvvjiC0nS5MmTXcbHjh2rTp06SZKGDh0qh8OhF198UVlZWWrRooVGjhxZwpUCAAB4JzP5Ul5yGGOMx4/qY85mebsCoOxpMGGxt0sAypxD0/qUyOvsPZLusWM1jAn12LHgfWQmwLPIS4DnlVRekshMXMMIAAAAAAAALliSBgCAZbyzIA0AAKB0sT0z0TACAMA2tqcfAAAAd1iemViSBgAAAAAAABfMMAIAwDLeuksaAABAaWJ7ZqJhBACAZRx2Zx8AAAC32J6ZWJIGAAAAAAAAF8wwAgDAMpafLAMAAHCL7ZmJhhEAALaxPf0AAAC4w/LMxJI0AAAAAAAAuGCGEQAAlrH9jh8AAADusD0z0TACAMAytt/xAwAAwB22ZyaWpAEAAAAAAMAFM4wAALCM5SfLAAAA3GJ7ZqJhBACAbWxPPwAAAO6wPDPRMAIAwDK2X8ARAADAHbZnJq5hBAAAAAAAABfMMAIAwDK23/EDAADAHbZnJhpGAABYxvLsAwAA4BbbMxNL0gAAAAAAAOCCGUYAAFjG9unVAAAA7rA9M9EwAgDAOpanHwAAALfYnZlYkgYAAAAAAAAXzDACAMAytk+vBgAAcIftmYmGEQAAlrE8+wAAALjF9szEkjQAAAAAAAC4YIYRAACWsX16NQAAgDtsz0w0jAAAsIzD+gnWAAAAF2d7ZmJJGgAAAAAAAFwwwwgAANvYfbIMAADAPZZnJhpGAABYxvLsAwAA4BbbMxNL0gAAAAAAAOCCGUYAAFjG9jt+AAAAuMP2zETDCAAAy9h+xw8AAAB32J6ZWJIGAAAAAAAAF8wwAgDANnafLAMAAHCP5ZmJhhEAAJaxPPsAAAC4xfbMxJI0AAAAAAAAuGCGEQAAlrH9jh8AAADusD0z0TACAMAytt/xAwAAwB22ZyaWpAEAAAAAAMAFM4wAALCM7dOrAQAA3GF7ZmKGEQAAAAAAAFzQMAIAAAAAAIALlqQBAGAZ26dXAwAAuMP2zETDCAAAy9h+xw8AAAB32J6ZaBgBAGAZ28+WAQAAuMP2zMQ1jAAAAAAAAOCCGUYAAFjG8pNlAAAAbrE9M9EwAgDANranHwAAAHdYnplYkgYAAAAAAAAXzDACAMAytt/xAwAAwB22ZyYaRgAAWMb2O34AAAC4w/bMxJI0AAAAAAAAuGCGEQAAlrH8ZBkAAIBbbM9MNIwAALCN7ekHAADAHZZnJhpGAACgRC1fvlyffvqpUlNTFRsbqxEjRqh+/freLgsAAMBn+EJe4hpGAABYxuHB/xXW+vXr9c4772jgwIF69tlnFRsbq6lTpyotLa0Y3ikAAEDReSsz+UpeomEEAIBlHA7PPQpr6dKluv7663XdddepZs2aGjVqlIKCgrR69WrPv1EAAIBL4K3M5Ct5iYYRAAAosszMTKWnp7s8MjMz8903KytL+/fvV7NmzZxjfn5+atasmRISEkqqZAAAgBLnbmbypbxkxTWMQqx4l6VfZmamFi5cqH79+ikwMNDb5eAiDk3r4+0S4AZ+r5AfT34vzpu3UPPnz3cZGzhwoAYNGpRn35MnTyonJ0fh4eEu4+Hh4Tp8+LDnikKRkZlKB/5tLz3IS6UDv1MoiDcyky/lJWIBfEZmZqbmz5+vXr168Q814CH8XqG49evXT7169XIZ4+8aULz4tx3wLH6nUBJKY2aiYQQAAIosMDDQ7bATFhYmPz8/paamuoynpqbmOYsGAABQlribmXwpL3ENIwAAUCICAgJUt25d/fDDD86xnJwc/fDDD4qPj/diZQAAAL7Bl/ISM4wAAECJ6dWrl6ZPn666deuqfv36+uyzz3Tu3Dl16tTJ26UBAAD4BF/JSzSM4DMCAwM1cOBAn1/HCZQm/F7B17Rr104nT57UvHnzlJqaqri4OD300EMsSQMKgX/bAc/idwq+xlfyksMYY0r0FQEAAAAAAODTuIYRAAAAAAAAXNAwAgAAAAAAgAsaRgAAAAAAAHBBwwil2vTp0/Xcc895uwzAZ3311VcaNmyYt8sAAHgReQm4ODITkBd3SUOxmT59utasWSNJ8vf3V2RkpK6++moNGjRIQUFBXq4OKF3O/30632uvvaaYmBgvVAQA8ATyEuBZZCbAc2gYoVhdfvnlGjt2rLKysrR//35Nnz5dkvTXv/7Vy5UBpU/u79P5wsLCvFQNAMBTyEuAZ5GZAM+gYYRiFRAQoPDwcElSVFSUvv76a+3YsUOSlJOTo8WLF2vlypVKTU1V9erVNWDAALVt29a5febMmfrhhx+UmpqqqKgode/eXT179vTW2wG86vzfp1xLly7V6tWrlZycrAoVKqhVq1b661//qpCQkHyPcfLkST311FOqXLmyJkyYIH9//wv+HgIAih95CfAsMhPgGTSMUGIOHjyohIQEValSRZK0aNEirV27VqNGjVK1atW0e/du/etf/1JYWJguu+wy5eTkqHLlyrr33ntVsWJF7d27V7NmzVJ4eLjatWvn5XcD+AaHw6Hhw4crOjpaycnJmj17tt577z2NHDkyz77Hjh3Tk08+qQYNGujOO++Un5+fFixYcMHfQwBAySIvAcWDzAQUHg0jFKvvvvtOt99+u3JycpSZmSmHw6ERI0YoMzNTCxcu1KOPPqr4+HhJUtWqVbVnzx6tWLFCl112mQICAjRo0CDnsaKjo5WQkKANGzYQgGCl3N+nXC1bttS9997r/Dk6Olq33HKL3njjjTzh5/Dhw3riiSd01VVXadiwYXI4HG79HgIAih95CfAsMhPgGTSMUKyaNGmiUaNG6ezZs/rvf/8rf39/tW3bVocOHdK5c+f0xBNPuOyflZWlOnXqOH9evny5Vq9erWPHjikjI0NZWVmKi4sr4XcB+Ibc36dcwcHB2r59uxYtWqRffvlFZ86cUXZ2tjIzM3Xu3DkFBwdLkjIyMvTYY4/pmmuucbn7x5EjR9z6PQQAFC/yEuBZZCbAM2gYoVgFBwc770Zw55136p///KdWrVqlWrVqSZImTpyoyMhIl+cEBPzx1/Kbb77Ru+++qyFDhig+Pl7lypXTkiVLtG/fvpJ9E4CPOP/3SZKSk5P17LPPqmvXrrrllltUoUIF7dmzR//+97+VlZXlDD+BgYFq1qyZtm7dqt69ezt/586ePSvpwr+HAIDiR14CPIvMBHiGn7cLgD38/PzUr18/ffTRR6pZs6YCAwN17NgxxcTEuDyioqIkSXv37lXDhg3VvXt31alTRzExMTp69KiX3wXgO/bv36+cnBzn/0moXr26UlJS8uzncDh01113qW7dupoyZYpOnDghSW79HgIAShZ5CfA8MhNQNDSMUKKuvvpq+fn5acWKFbrppps0d+5cffXVVzpy5Ij279+vZcuW6auvvpIkxcTE6Mcff9T333+vw4cP66OPPlJiYqJ33wDgQ2JiYpSdna3ly5fr6NGj+vrrr7VixYp89/Xz89Pdd9+t2NhYPf7440pNTVW5cuUu+nsIACh55CXAs8hMQNEwfw4lyt/fXzfccIOWLFmiadOmKSwsTIsWLdLRo0dVvnx51alTR/369ZMkde3aVQcOHNArr7wih8Oh9u3bq3v37tq2bZuX3wXgG+Li4jRkyBAtXrxYH3zwgRo3bqzBgwdr2rRp+e7v7++ve+65Ry+//LKmTJmiyZMn6+abb77g7yEAoOSRlwDPIjMBReMwxhhvFwEAAAAAAADfwZI0AAAAAAAAuKBhBAAAAAAAABc0jAAAAAAAAOCChhEAAAAAAABc0DACAAAAAACACxpGAAAAAAAAcEHDCAAAAAAAAC5oGAEAAAAAAMAFDSMAFzVu3DhNnz7d+fPOnTs1aNAg7dy504tVufpzjQAAACWJvASgrAnwdgEALu6rr77SjBkznD8HBgYqKipKzZs314ABAxQeHu694grhu+++U2JiogYNGuTtUgAAQBlDXgIAz6JhBJQigwYNUnR0tDIzM7Vnzx598cUX2rZtm1588UUFBweXWB2NGzfWe++9p4CAwv0Tsm3bNn3++ecEIAAAUGzISwDgGTSMgFKkZcuWqlevniTp+uuvV8WKFbV06VJt3rxZ11xzTZ79z549q5CQEI/X4efnp6CgII8fFwAA4FKRlwDAM2gYAaVY06ZNtXTpUiUnJ2v69OnauHGjnn/+eb399tvavXu3mjZtqvvvv185OTlatmyZvvzySx09elShoaFq3bq1Bg8erAoVKjiPZ4zRggULtGLFCp06dUoNGjTQiBEj8rzuzp07NWXKFE2aNElNmjRxju/bt0/z589XQkKCsrKyVLVqVXXu3Fk9e/bU9OnTtWbNGklyOWM2b948SfJ4jQAAABJ5ibwEoKhoGAGl2JEjRyRJFStW1K+//qqcnBxNnTpVjRo10u233+6cdj1r1iytWbNGnTp1Uo8ePZScnKzly5crKSlJTzzxhHOq9Mcff6wFCxaoZcuWatmypZKSkvTkk08qKyvrorVs375dzzzzjCIiItSjRw+Fh4frl19+0datW9WzZ0917dpVKSkp2r59u8aPH5/n+SVRIwAAsA95ibwEoGhoGAGlSHp6uk6ePKnMzEzt3btX//nPfxQUFKRWrVopISFBmZmZuvrqqzV48GDnc/bs2aNVq1bp7rvvdpmG3aRJEz311FPauHGjrrnmGp08eVJLlizRFVdcoQceeEAOh0OS9OGHH2rhwoUXrCsnJ0ezZs1SRESEnnvuOZUvX965zRgjSYqPj1e1atW0fft2XXvttS7PL4kaAQCAHchL5CUAnkHDCChFnnjiCZefq1SporvuukuRkZHOsW7durnss2HDBoWGhqp58+Y6efKkc7xu3boKCQnRDz/8oGuuuUbbt29XVlaWbrjhBmewkKQbb7zxouEiKSlJycnJGjp0qEv4keRyrIKURI0AAMAO5CXyEgDPoGEElCJ33HGHqlWrJn9/f1WqVEnVq1eXn5+fc7u/v79LGJL+mIadnp6ukSNH5nvM3MBx7NgxSVK1atVctoeFheUJNX929OhRSVKtWrUK94ZKsEYAAGAH8hJ5CYBn0DACSpH69es77/qRn4CAAJdAJP0x/blSpUq666678n1OWFiYR2ssitJQIwAAKB3ISwDgGTSMgDKuatWq2rFjhxo1anTBW7tGRUVJkn799VdVrVrVOX7y5EmdPn36oq8hSYcOHVLz5s0L3K+g6dYlUSMAAEBByEsAkJffxXcBUJq1a9dOOTk5mj9/fp5t2dnZzuDQvHlz+fv7a/ny5c4LL0rSf//734u+Rp06dRQdHa3PPvssTxA5/1i5dyH58z4lUSMAAEBByEsAkBczjIAy7rLLLlOXLl20aNEi/fTTT84QceTIEW3YsEHDhw9X27ZtFRYWpptuukmLFi3SM888o5YtW+rAgQPatm2bKlaseMHX8PPz08iRI/Xss8/q/vvvV6dOnRQREaFffvlFP//8sx5++GFJf1yUUZLefvtttWjRQn5+fmrfvn2J1AgAAFAQ8hIA5EXDCLDA6NGjVbduXa1cuVIffvih/P39VaVKFXXo0EENGzZ07nfLLbcoKChIK1as0M6dO9WgQQM98sgjeuaZZy76GpdffrkmTZqk+fPna+nSpcrJyVFMTIyuv/565z5t2rTRDTfcoPXr12vt2rUyxqh9+/YlViMAAEBByEsA4Mphzp+nCAAAAAAAAOtxDSMAAAAAAAC4oGEEAAAAAAAAFzSMAAAAAAAA4IKGEQAAAAAAAFzQMAIAAAAAAIALGkYAAAAAAABwQcMIAAAAAAAALmgYAQAAAAAAwAUNIwAAAAAAALigYQQAAAAAAAAXNIwAAAAAAADggoYRAAAAAAAAXPw/jbAAyuE9aiUAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Сравнительная таблица метрик:\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Model \n",
+ " Accuracy \n",
+ " Precision (Fake) \n",
+ " Recall (Fake) \n",
+ " F1-Score (Fake) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " LogisticRegression \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " RandomForest \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Model Accuracy Precision (Fake) Recall (Fake) \\\n",
+ "0 LogisticRegression 1.0 1.0 1.0 \n",
+ "1 RandomForest 1.0 1.0 1.0 \n",
+ "\n",
+ " F1-Score (Fake) \n",
+ "0 1.0 \n",
+ "1 1.0 "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.model_selection import train_test_split, GridSearchCV\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.svm import SVC\n",
+ "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
+ "from sklearn.metrics import (accuracy_score, \n",
+ " classification_report, \n",
+ " confusion_matrix)\n",
+ "\n",
+ "# 1. Загрузка и подготовка данных\n",
+ "data = pd.read_csv('15_fake_news_detection.csv')\n",
+ "X = data['text']\n",
+ "y = data['label'].map({'real': 0, 'fake': 1})\n",
+ "\n",
+ "# 2. Векторизация текста\n",
+ "tfidf = TfidfVectorizer(max_features=5000, stop_words='english')\n",
+ "X_tfidf = tfidf.fit_transform(X)\n",
+ "\n",
+ "# 3. Разделение данных\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " X_tfidf, y, test_size=0.2, random_state=42\n",
+ ")\n",
+ "\n",
+ "# 4. Масштабирование данных\n",
+ "scaler = StandardScaler(with_mean=False)\n",
+ "X_train_scaled = scaler.fit_transform(X_train)\n",
+ "X_test_scaled = scaler.transform(X_test)\n",
+ "\n",
+ "# Обучение моделей (пример для 2 моделей для краткости)\n",
+ "models = {\n",
+ " 'LogisticRegression': LogisticRegression(random_state=42),\n",
+ " 'RandomForest': RandomForestClassifier(random_state=42)\n",
+ "}\n",
+ "\n",
+ "for name, model in models.items():\n",
+ " if name == 'LogisticRegression':\n",
+ " model.fit(X_train_scaled, y_train)\n",
+ " else:\n",
+ " model.fit(X_train, y_train)\n",
+ "\n",
+ "# Функция для построения confusion matrix\n",
+ "def plot_confusion_matrix(y_true, y_pred, model_name, ax):\n",
+ " cm = confusion_matrix(y_true, y_pred)\n",
+ " sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax,\n",
+ " xticklabels=['Real', 'Fake'], \n",
+ " yticklabels=['Real', 'Fake'])\n",
+ " ax.set_title(f'{model_name}\\nAccuracy: {accuracy_score(y_true, y_pred):.2f}')\n",
+ " ax.set_xlabel('Predicted')\n",
+ " ax.set_ylabel('Actual')\n",
+ "\n",
+ "# Создаем фигуру для графиков\n",
+ "fig, axes = plt.subplots(1, 2, figsize=(12, 5))\n",
+ "\n",
+ "# Оценка моделей и построение матриц ошибок\n",
+ "for i, (name, model) in enumerate(models.items()):\n",
+ " # Предсказание на тестовых данных\n",
+ " if name == 'LogisticRegression':\n",
+ " y_pred = model.predict(X_test_scaled)\n",
+ " else:\n",
+ " y_pred = model.predict(X_test)\n",
+ " \n",
+ " # Построение confusion matrix\n",
+ " plot_confusion_matrix(y_test, y_pred, name, axes[i])\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n",
+ "\n",
+ "# Сравнительная таблица метрик\n",
+ "results = []\n",
+ "for name, model in models.items():\n",
+ " if name == 'LogisticRegression':\n",
+ " y_pred = model.predict(X_test_scaled)\n",
+ " else:\n",
+ " y_pred = model.predict(X_test)\n",
+ " \n",
+ " report = classification_report(y_test, y_pred, output_dict=True)\n",
+ " results.append({\n",
+ " 'Model': name,\n",
+ " 'Accuracy': report['accuracy'],\n",
+ " 'Precision (Fake)': report['1']['precision'],\n",
+ " 'Recall (Fake)': report['1']['recall'],\n",
+ " 'F1-Score (Fake)': report['1']['f1-score']\n",
+ " })\n",
+ "\n",
+ "results_df = pd.DataFrame(results)\n",
+ "print(\"\\nСравнительная таблица метрик:\")\n",
+ "display(results_df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b3b449e7-ac3a-4709-90bd-2c1d1f7388a6",
+ "metadata": {},
+ "source": [
+ "## 1. Реализация логистической регрессии"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "id": "82e949ab-97c8-4068-978b-d8e48156b004",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "from sklearn.base import BaseEstimator, ClassifierMixin\n",
+ "\n",
+ "class MyLogisticRegression(BaseEstimator, ClassifierMixin):\n",
+ " def __init__(self, learning_rate=0.01, max_iter=1000, tol=1e-4, C=1.0, penalty='l2'):\n",
+ " self.learning_rate = learning_rate\n",
+ " self.max_iter = max_iter\n",
+ " self.tol = tol\n",
+ " self.C = C # Параметр регуляризации\n",
+ " self.penalty = penalty # 'l2' или 'l1'\n",
+ " self.weights = None\n",
+ " self.bias = None\n",
+ " \n",
+ " def _sigmoid(self, z):\n",
+ " return 1 / (1 + np.exp(-z))\n",
+ " \n",
+ " def _loss(self, h, y):\n",
+ " # Функция потерь с регуляризацией\n",
+ " m = y.shape[0]\n",
+ " loss = (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()\n",
+ " \n",
+ " if self.penalty == 'l2':\n",
+ " reg = (self.C / (2 * m)) * np.sum(self.weights**2)\n",
+ " elif self.penalty == 'l1':\n",
+ " reg = (self.C / m) * np.sum(np.abs(self.weights))\n",
+ " else:\n",
+ " reg = 0\n",
+ " \n",
+ " return loss + reg\n",
+ " \n",
+ " def fit(self, X, y):\n",
+ " # Инициализация параметров\n",
+ " m, n = X.shape\n",
+ " self.weights = np.zeros(n)\n",
+ " self.bias = 0\n",
+ " \n",
+ " # Градиентный спуск\n",
+ " for i in range(self.max_iter):\n",
+ " # Прямое распространение\n",
+ " z = np.dot(X, self.weights) + self.bias\n",
+ " h = self._sigmoid(z)\n",
+ " \n",
+ " # Обратное распространение\n",
+ " dw = (1/m) * np.dot(X.T, (h - y))\n",
+ " db = (1/m) * np.sum(h - y)\n",
+ " \n",
+ " # Регуляризация\n",
+ " if self.penalty == 'l2':\n",
+ " dw += (self.C / m) * self.weights\n",
+ " elif self.penalty == 'l1':\n",
+ " dw += (self.C / m) * np.sign(self.weights)\n",
+ " \n",
+ " # Обновление параметров\n",
+ " self.weights -= self.learning_rate * dw\n",
+ " self.bias -= self.learning_rate * db\n",
+ " \n",
+ " # Проверка сходимости\n",
+ " if i % 100 == 0:\n",
+ " loss = self._loss(h, y)\n",
+ " if hasattr(self, 'prev_loss') and np.abs(self.prev_loss - loss) < self.tol:\n",
+ " break\n",
+ " self.prev_loss = loss\n",
+ " \n",
+ " def predict_proba(self, X):\n",
+ " return self._sigmoid(np.dot(X, self.weights) + self.bias)\n",
+ " \n",
+ " def predict(self, X, threshold=0.5):\n",
+ " return (self.predict_proba(X) >= threshold).astype(int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "841e2b68-ea29-440e-870f-c0eec84603e0",
+ "metadata": {},
+ "source": [
+ "## 2. Обучение и оценка модели"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "b9b5a815-9c0a-4fec-9d9c-7dcbe3d6a609",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 1.0\n",
+ "\n",
+ "Confusion Matrix:\n",
+ "[[113 0]\n",
+ " [ 0 87]]\n",
+ "\n",
+ "Classification Report:\n",
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 1.00 1.00 1.00 113\n",
+ " 1 1.00 1.00 1.00 87\n",
+ "\n",
+ " accuracy 1.00 200\n",
+ " macro avg 1.00 1.00 1.00 200\n",
+ "weighted avg 1.00 1.00 1.00 200\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "# Масштабирование данных\n",
+ "scaler = StandardScaler(with_mean=False)\n",
+ "X_train_scaled = scaler.fit_transform(X_train)\n",
+ "X_test_scaled = scaler.transform(X_test)\n",
+ "\n",
+ "# Создание и обучение модели\n",
+ "my_lr = MyLogisticRegression(learning_rate=0.1, max_iter=5000, C=1.0, penalty='l2')\n",
+ "my_lr.fit(X_train_scaled.toarray(), y_train) # .toarray() для разреженных матриц\n",
+ "\n",
+ "# Предсказания\n",
+ "y_pred = my_lr.predict(X_test_scaled.toarray())\n",
+ "\n",
+ "# Оценка качества\n",
+ "print(\"Accuracy:\", accuracy_score(y_test, y_pred))\n",
+ "print(\"\\nConfusion Matrix:\")\n",
+ "print(confusion_matrix(y_test, y_pred))\n",
+ "print(\"\\nClassification Report:\")\n",
+ "print(classification_report(y_test, y_pred))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0a70fbb0-a055-4e5e-9da9-832febe013b6",
+ "metadata": {},
+ "source": [
+ "## 3. Подбор гиперпараметров"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8fe3cce8-7dfa-4539-b806-1d102860b34c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import GridSearchCV\n",
+ "\n",
+ "# Параметры для подбора\n",
+ "param_grid = {\n",
+ " 'learning_rate': [0.01, 0.1, 1],\n",
+ " 'C': [0.1, 1, 10],\n",
+ " 'penalty': ['l1', 'l2'],\n",
+ " 'max_iter': [1000, 5000]\n",
+ "}\n",
+ "\n",
+ "# Сеточный поиск\n",
+ "grid_search = GridSearchCV(MyLogisticRegression(), param_grid, cv=5, scoring='accuracy')\n",
+ "grid_search.fit(X_train_scaled.toarray(), y_train)\n",
+ "\n",
+ "# Лучшие параметры\n",
+ "print(\"Best parameters:\", grid_search.best_params_)\n",
+ "best_my_lr = grid_search.best_estimator_\n",
+ "\n",
+ "# Оценка лучшей модели\n",
+ "y_pred_best = best_my_lr.predict(X_test_scaled.toarray())\n",
+ "print(\"\\nBest model accuracy:\", accuracy_score(y_test, y_pred_best))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ace461f0-5ca7-4201-a5ed-f2e08bea333b",
+ "metadata": {},
+ "source": [
+ "## 4. Сравнение с sklearn LogisticRegression"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "id": "5d2f00f0-d9e2-449a-ad08-854da1805629",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "My Logistic Regression Accuracy: 1.0\n",
+ "Sklearn Logistic Regression Accuracy: 1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import LogisticRegression\n",
+ "\n",
+ "# Обучение sklearn версии\n",
+ "sk_lr = LogisticRegression(penalty='l2', C=1.0, solver='liblinear', max_iter=5000)\n",
+ "sk_lr.fit(X_train_scaled, y_train)\n",
+ "y_pred_sk = sk_lr.predict(X_test_scaled)\n",
+ "\n",
+ "# Сравнение метрик\n",
+ "print(\"\\nMy Logistic Regression Accuracy:\", accuracy_score(y_test, y_pred))\n",
+ "print(\"Sklearn Logistic Regression Accuracy:\", accuracy_score(y_test, y_pred_sk))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15a97285-d758-46e0-993b-2c5e5b13bfcc",
+ "metadata": {},
+ "source": [
+ "## 5. Визуализация результатов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "b295294b-a589-4180-bfde-5a89dc473995",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAHqCAYAAACEH842AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa2UlEQVR4nO3deVxUZf//8fcAw6YiICLuqIRkrpmlYrmmZW6ot1mZW2qm1m1l3bdlt0vZbnV3m2VZLvm1XBI1U8vKzD2zTCsVFU3NLRVwQWU7vz/6ccYRHAEHBjyvZ4/5gzNnzlwzMM67z/W5zrEZhmEIAAAAAAAAkOTl6QEAAAAAAACg+KBYBAAAAAAAABPFIgAAAAAAAJgoFgEAAAAAAMBEsQgAAAAAAAAmikUAAAAAAAAwUSwCAAAAAACAiWIRAAAAAAAATBSLAAAAAAAAYKJYBBSiVq1ayWazFdrxbTabWrVqVWjHR8HwewEAa5gxY4ZsNptmzJiRp/0LOxcgp/79+8tms2n//v2FcvzIyEhFRkYWyrFRcPxegGtHsQjXzGazyWazycvLS3v37r3ifq1btzb3zWuoyq/s0Na/f/9COX5R8+QXXfbvKvvm7e2t0NBQtWrVSjNmzJBhGB4ZFwAAhSUzM1MffPCBWrZsqdDQUNntdoWHh6t+/foaNGiQlixZ4ukhFnvffffddTVp4skCX2RkpFMW8/LyUtmyZdW0aVO99dZbSk9P98i4AFiDj6cHgOuDj4+PMjIy9OGHH+rFF1/Mcf/u3bv13XffmftZxaxZs5Samlpox9+xY4cCAwML7fiSNHbsWElSenq69uzZo/j4eK1evVo//vijJk+eXKjPXVIVxe8FAOBemZmZ6tSpk1asWKHg4GDdc889qlKlitLS0vTbb79pzpw52rlzp7p06eLpoSIfXnrpJf373/9W5cqVC+X433zzTaEc91L//Oc/FRwcrMzMTB04cEALFy7U448/rm+++Uaff/55oT9/SVQUvxfgekexCG5RoUIFVaxYUdOnT9eECRPk4+P8pzVt2jRJUufOnRUfH++JIXpEtWrVCvX4MTExhXp8SRo3bpzTz+vWrdMdd9yhKVOm6Mknn1SNGjUKfQwlTVH8XgAA7vXJJ59oxYoVatCggVavXq2yZcs63Z+amqpNmzZ5aHQoqIoVK6pixYqFdvxatWoV2rGzjRw50qnT/LnnnlPDhg21dOlSrV69Wi1btiz0MZQ0RfF7Aa53LEOD2wwePFhHjx7V0qVLnbanp6drxowZat68uerUqZPjcc2aNZOXl9cV15JPmjRJNptNr7/+utvHvHv3bvXt21eVK1eWr6+vKlWqpL59+2r37t257n/kyBENGDBA4eHhCggIUMOGDTVz5kyz5frywkpurcuGYWjmzJlq3ry5ypcvL39/f1WtWlUdOnTQ3LlzJTlauP/44w/98ccfTi3Ily6xu1Kbd2Zmpt577z3FxsaqbNmyCggIUFRUlAYNGnTF15ZXsbGxiomJkWEY2rJlS477N23apJ49eyoiIkK+vr6qWrWqHn74YR0+fDjX423evFnt27dXmTJlFBQUpHbt2mnDhg0aN26cbDabvvvuO6f9s1/z0aNHNWjQIFWuXFne3t5OSxvzM4bExEQNGTJEUVFRCggIUGhoqOrVq6ehQ4fq5MmT5n5paWl6++23dfPNNyskJESBgYGKjIxU165d9fXXX+c6xsulpKRo9OjRql27tvz9/RUSEqIOHTrkeLwkp7+prVu36p577lFwcLACAwPVsmVLrV+/Ptf3EwBQMNn/rvbv3z9HoUiSAgMD1bp16zwdKykpSXfccYe8vLz00ksv5ekxX375pTp27KiwsDD5+fmpVq1aeuqpp5ScnJxj31WrVmnIkCGqU6eOgoKCFBAQoLp162r8+PG6cOFCjv0v/U6dM2eObrvtNpUuXdosQFx6/4IFC3TrrbcqMDBQoaGh6t27t/788888vYaCOHLkiIYPH67IyEj5+vqqfPny6t69e64ZQ/r7u3TkyJGqUqWK/P39FRMTozfeeEOJiYm5norgSucsWrJkidq2bauKFSvKz89PlSpVUsuWLTVlyhRJ0v79+2Wz2bR69WpJzsvzL/2Od3XKgLlz56pt27YKDQ2Vv7+/IiMjdd999+nHH38s0HuVLSoqyiwQbd68Ocf9O3fuVP/+/VW1alX5+vqqQoUKuv/++7Vr165cj5eQkKAePXooJCREpUqVUvPmzfXFF19c8Zxc2a/59OnTeuKJJxQZGSm73e6Ug/MzhmPHjmnUqFGqXbu2SpUqpeDgYNWuXVv9+/dXYmKiuV9eMvTlY7zcxYsX9fLLL6tevXoKDAxUUFCQbr/9ds2bNy/Hvtl/A/3799f+/fvVu3dvhYWFyd/fX7fcckuO/+cBrjd0FsFt7rvvPj3xxBOaNm2aunXrZm5fsmSJjh8/rldeeUV79uzJ8bhHHnlEGzdu1AcffKCJEyfmuP/999+Xn5+f289DtHnzZrVr105nzpxRly5dVKdOHe3cuVOzZ8/W4sWL9fXXX6tJkybm/sePH1ezZs30xx9/6I477lDz5s119OhRDRs2TO3bt8/z8z777LN66aWXVKNGDfXq1Utly5bVkSNHtHnzZs2fP1/33nuvIiMjNXbsWL311luS/p5RytawYUOXx09LS1OnTp20cuVKVa1aVffff7+CgoK0f/9+xcfHq0WLFrrhhhvy81Zdkd1ud/r5o48+0pAhQ+Tn56cuXbqoatWq2r17t6ZNm6bPP/9cGzdudOq2+v7779W+fXtlZmaqe/fuqlWrlrZv367WrVurTZs2V3zeU6dOqWnTpipdurS6d+8uLy8vVahQId9jOHLkiJo0aaLTp0+rY8eO6tGjhy5cuKB9+/bp448/1ogRI1SuXDlJf4fNTz75RHXr1lXfvn0VEBCgw4cPa+3atVqxYoXatWvn8r1KTk5WbGysfv/9dzVp0kQjR47UiRMnNG/ePLVv317vvvuuHn744RyP+/HHH/Xqq6+qWbNmGjRokA4cOKDPPvtMbdu21datW1W7du28/bIAAC5l/3ufkJBwTcc5cOCA7rrrLu3Zs0ezZs1Snz59rvqY8ePHa9y4cQoNDVWnTp0UHh6ubdu26fXXX9eyZcu0YcMGBQUFmfu/8sor2rlzp5o3b6577rlHFy5c0Lp16zRu3Dh99913+vrrr+Xt7Z3jeSZNmqSVK1eqc+fOat26tVJSUpzunzJlipYsWaIuXbqoZcuW2rRpk+bOnatffvlFW7dulZ+f3zW9N5fbt2+fWrRoocOHD6tNmza67777dPDgQc2fP19ffPGFPvvsM3Xq1Mnc/8KFC2rTpo1++uknNWrUSA888IBSUlI0ceJErVmzJs/P+/777+vhhx9WRESEOnfurLCwMB0/flzbtm3T9OnTNWzYMAUHB2vs2LGaMWOG/vjjD3NZvqSrnk/SMAwNGDBAM2fOVFhYmLp3767y5cvr0KFDWrVqlWrXrq1bbrkl3+9Xbi7PYitWrFD37t2Vnp6uzp07KyoqSocOHdLChQv1xRdfaNWqVbr55pvN/bP/jpKSknTPPfeofv36SkxMVFxcnDp27HjF501LS1ObNm106tQptW/fXkFBQWa3eX7GkJqaqtjYWO3du1d33nmnOnfuLMMw9Mcff2jx4sXq2bOnatasKSlvGdqVtLQ0dejQQatXr1ZMTIyGDx+u1NRULViwQPfee6+2bt2a6+k0/vjjD916662qWbOmHnzwQZ06dUpz5841JwzzWkQGShwDuEaSjMqVKxuGYRgPPfSQ4e3tbRw8eNC8v0OHDkZQUJBx7tw549lnnzUkGdOnTzfvP3/+vFGuXDkjIiLCSE9Pdzr2qlWrDEnG/fffn6exTJ8+3ZBk9OvXz+V+WVlZRkxMjCHJmD17ttN9n376qSHJqF27tpGZmWluHzhwoCHJePrpp53237p1q+Hr62tIMsaOHet0X8uWLY3LP2ahoaFG5cqVjXPnzuUY119//eX0c/Xq1Y3q1atf8XVIMlq2bOm0bfTo0YYko3PnzsaFCxec7rtw4YJx/PjxKx7v8mPn9k/E6tWrDS8vL8PX19c4fPiwuX3Xrl2G3W43atWqZRw6dMjpMV9//bXh5eVldOvWzdyWmZlpREVFGZKMZcuWOe3/7rvvms+/atWqXMf14IMP5vh7ye8Y3n77bUOS8dZbb+V4nWfPnjVSU1MNwzCM5ORkw2azGY0bNzYyMjJy7HvixIkcY7z89zJkyBBDkjFkyBAjKyvL3J6QkGAEBQUZvr6+xr59+8zt2X/7l39eDMMw3nvvPUOS8cgjj+QYCwCgYH766SfDbrcbNpvN6NOnj/HZZ58Z+/fvd/mY7NyR/e/01q1bjYoVKxpBQUHGypUrc+yfWy749ttvDUlGs2bNjKSkpFyPP3LkSKfte/fudfouyTZmzBhDkvHpp586bR87dqwhyQgMDDR++umnHI/Lvr9MmTLGtm3bnO677777DEnG3Llzr/g+XCr7++vy78HctG/f3pBkvPDCC07b161bZ3h7exuhoaHGmTNnzO0TJkwwJBm9e/d2ev0HDhwwwsLCcs2A/fr1MyQ5fcfefPPNhq+vr3Hs2LEcY7o8i+X2O7tUbllt6tSphiSjSZMmRnJystN9GRkZTvnJlerVq+cYu2EYxs6dO43AwEBDkvHjjz+a20+dOmUEBwcb5cqVM3777Tenx2zfvt0oVaqU0ahRI6ftbdq0MSQZU6ZMcdq+bNmyK+aQ7HG1bdvWOHv2rNN9+R3DkiVLcv0bNwzDuHjxonH69Gnz52vN0C+++KIhybj77rudMuSxY8fM17Ru3Tpz+759+8z3YNy4cU7HWrFihXks4HpFsQjX7NJi0caNGw1Jxvjx4w3DMIz9+/cbXl5e5v/U5lYsMgzDGDVqlCHJWLBggdP23r17G5KM1atX52kseS0WrV271gxmuWnRooXT8168eNEICAgwypYt6/SllW3QoEH5KhZFRkbmKOTkJr/FooyMDKNs2bJGQECA8eeff171+K5kfzmOHTvWGDt2rPHMM88YvXr1MoP022+/7bT/yJEjDUnG0qVLcz1et27dDG9vb/P9W7NmjSHJaN26dY59MzMzjejo6CsWi64U8PI7huxi0dSpU12+FykpKYYko3nz5rmG88td/nu5ePGiERgYaJQuXdo4efJkjv2zw33258YwHGE7NjY2x/5paWmGj4+P0bhx46uOBQCQd3PnzjUiIiLM70BJRmhoqNGtWzdjyZIlOfa/tFj01VdfGWXKlDEqVapkbN26Ndfj55YLunXrZkgyfv3111wf07BhQ6N8+fJ5Gv/JkycNScaAAQOctmcXg3L7H/JL73/22Wdz3JddzHryySfzNIa8FosOHjxoSDKqVatmpKWl5bi/T58+hiRj5syZ5rZatWoZXl5eOYonhmEYL7zwQr6KRYGBgcapU6eu+noKUiyqW7euISnXwlx+ZBcw/vnPfxpjx441xowZY/Tt29coVaqUIckYNWqU0/5vvfWWIcmYPHlyrsfLzknZRZwDBw4YkoyoqCinCdJs7dq1c1ksyu3vPL9jyC4WjR49+qrvx7Vm6KioKMNmsxk7duzIsf+0adNyfHayi0XVq1fPdbKwWrVqRrly5a46FqCkYhka3Oq2225TvXr19NFHH2nMmDGaNm2asrKyNHjwYJePe+SRRzRp0iRNnTpVPXr0kCSdOHFC8fHxuvHGG3XHHXe4dZw//fSTJF1xqVObNm20du1a/fzzz7rjjju0a9cunT9/XrfccovKlCmTY/8WLVqYJ/G+mgceeED/+9//VKdOHfXq1UstW7ZUs2bNcj0/Qn7t3LlTKSkpuu2221SpUqVrPp70d2v8pWw2mz788EMNGDDAafuGDRskSatXr851/fzx48eVmZmphIQENW7cWD///LOkv9+7y3l5eal58+ZXXAoQGRmp8PDwHNvzO4YuXbromWee0fDhw/Xll1+qQ4cOio2NVZ06dZzONRUUFKTOnTvr888/V8OGDdWjRw/dfvvtuu222/J01bNdu3aZbdahoaE57m/Tpo1eeOEF8z25VG5t6na7XRUqVFBSUtJVnxsAkHe9evVSXFycVq1aZeaAtWvXatGiRVq0aJH69u1rnsflUgsWLNBXX32lG264QcuXL8/XBS42bNggu92u+fPna/78+TnuT0tL019//aWTJ0+aS+XOnTun//73v4qPj1dCQoLOnDkjwzDMx1zpHEO33nqry7Hk9p1TtWpVSXL7d072d97tt9+eYymV9Pd34+zZs/Xzzz+rb9++On36tPbu3auqVavmugwstzxxJQ888ICefPJJ1alTR71791bLli0VGxur8uXLF/j1ZDt37px+/fVXVahQQY0aNbrm40nSf//73xzbxo0b57Q0TnLkoF9++SXHeTQlxxLLHTt2qE6dOtq6daskx/lDL9eiRYtcz6soSf7+/qpfv36O7fkdQ8uWLVW5cmW9/PLL+umnn9SxY0fFxsaqYcOGOZZSXkuGPnPmjPbs2aPKlSvneiGS7P8nyC2L5TYW6e/PRvbrBa5HFIvgdoMHD9Zjjz2m5cuXa/r06WrcuPFVvyxr1qypDh066Msvv9TevXtVq1YtzZw5UxcvXsz1PC7XKnuN/pWujpG9Pfukktn7Z58X53JX2p6bN998UzVr1tT06dP18ssv6+WXX5aPj486duyoSZMmKSoqKs/Hulz2eN15edjs8Hnu3Dlt2LBBDz30kIYOHarq1as7FduyTwb92muvuTze2bNnJV3bexoREZHr9vyOoXr16vrhhx80btw4rVixQgsXLpT095f/qFGj9Nhjj5mPmTt3rl555RXNmTPHDGf+/v7q2bOnXn/9dZfjze/f26WCg4NzfYyPj48yMzNdvk4AQP7Z7Xa1b9/ePB9hZmamPvvsMw0cOFCzZs1SXFyc07kZpb//Bzk9PV233XabWVzJq5MnTyojIyPH5Mzlzp49q3Llyik9PV1t2rTRDz/8oLp16+ree+9V+fLlzYLL+PHjdfHixVyPcaXvz2y5fedkX+HW3d85+f1uPH36tCT3ZLEnnnhCYWFhmjJlit5++2299dZbstlsatmypV577bVrOp9QYWSxffv2KTIyUhcuXNDWrVs1dOhQjR8/3jyHTrbsHPTBBx+4PJ47slh4eHiOomlBxhAUFKSNGzdq7NixWrJkib788ktJUlhYmIYNG6YxY8aYf9vXkqELK4tlZWW5fJ1AScbV0OB2Dz74oAICAjR06FD9+eefGjJkSJ4e98gjj8gwDPPL5f3335e/v7/69u3r9jFmz0AcPXo01/uPHDnitF/2SSWPHTuW6/5X2p4bb29vjRw5Ur/88ouOHTumzz77THFxcVqyZInuuuuuKwa8vMj+MiuMq5aUKlVK7dq10+eff67MzEz169dPqamp5v3Z71VKSoqMv5e45nrLvnrHtbynuYWTgoxBkm688UbNnTtXJ0+e1I8//qiXX35ZWVlZ+uc//6kPP/zQ3C8gIEDjxo1TQkKCDhw4oNmzZ6tFixaaPXu2evbs6fK9y+/fGwCg+PD29lavXr30+OOPS5K+/fbbHPu8+OKL6tKli6ZPn66BAwfm638gy5Ytq5CQEJffW4ZhqHr16pKkxYsX64cfflD//v21fft2vf/++5o4caLGjRt31Qm2K31/eoIns5gk9e3bVxs3btTJkyf1xRdf6KGHHtL333+vDh066K+//srXsS5VmFnM399fTZs21fLly1WmTBk98sgjTld6zX6vfvnlF5d/S/369ZNUuFksr2OQpCpVqujDDz/U8ePH9euvv+rtt99WuXLlNGHCBE2YMMHc71oyNFkMyD+KRXC74OBg9ezZU4cOHVKpUqV033335elxnTp1UrVq1TR9+nR99dVXSkhIUK9evRQSEuL2MWZ3Ol1+WfZsq1atkiTzSg0xMTEKCAjQtm3bdObMmRz7r127tkDjCA8PV/fu3TVv3jy1adNGe/fu1a+//mre7+3tna+ZvJiYGAUHB2vbtm1XvFT9tapfv74GDx6sQ4cO6c033zS3N23aVJLyfDWS7N9Bbu9dVlZWgS4Nn98xXMrHx0eNGzfWv/71L33yySeSpEWLFuW6b9WqVfXAAw/oyy+/VFRUlNauXWvOpOWmdu3aCgwM1C+//HLFSyBLcro6CQCgeMlehn7pcq9sfn5+WrBggf7xj39oxowZ6tOnjzIyMvJ03KZNmyopKUm//fZbnvbPvrJs9+7dc9yXfZn3kuDSHJDbe3X5d2NQUJBq1qypP//8U/v378+xf0GzWHBwsDp27KgPPvhA/fv316lTp/T999+b92cvP8prHitVqpTq1q2rY8eO5bqkyR0qVqyoZ555RufOnXNaipbfHJR9hd0NGzbkWuAsyHt6LVnMZrPppptu0qOPPqqVK1dKunIWu1qGvlyZMmVUq1Yt/fnnn9q9e3eO+8liQE4Ui1AoXnjhBcXHx+vLL7/M9Rw/ufHy8tKQIUN0/PhxDRw4UJI0dOjQQhlfbGysateurbVr12rBggVO9y1YsEBr1qxRdHS0uf7d19dX9957r1JSUvTCCy847f/LL79o1qxZeXreixcvat26dTm2p6en69SpU5LkdA6ccuXK6a+//tL58+fzdHxvb28NGzZM58+f19ChQ3PMsGSf9+BajRkzRn5+fnr99dfNcxiMGDFCdrtdjz/+eK7nGkpLS3MKDrGxsapVq5ZWrVql5cuXO+37/vvvF+jSxfkdw5YtW3JcNlhyzKRl/y7++usvbd++Pcd+586d09mzZ+Xj4yNfX98rjsvX11cPPPCAzpw5o+eee87pvr179+rtt9+W3W53aiUHABStTz75RCtXrsz1f5qPHj1qdj5f6TyKdrtdn3zyifr06aNPPvlE9957r9LT06/6vNkdS4MHD851oufcuXPauHGj+XP2+Xoun/BKTEzUv/71r6s+X3FRpUoV3Xnnndq/f7/eeustp/s2bdqkOXPmKCQkRHFxceb2vn37KisrS6NHj3Yq2h08eDDHMVxZtWpVrkW/48ePS8qZxSTpwIEDeT5+9jL2hx9+OEfOyMrKMrtYrsWjjz6qChUqaMaMGWbxY8CAAQoODtb48eP1ww8/5HhMVlaW099NtWrV1KpVK+3Zs0dTp0512nfFihVXPF+RK/kdw2+//ZZrB9PlWSy/GTo3AwcOlGEYeuqpp5yKfydOnNDzzz9v7gPgb5yzCIWiWrVq+Tq5Y7ZBgwZpwoQJ+vPPP1WvXj01a9asQM+/du1a9e/fP9f7br75Zj322GOaOXOm7rzzTt17773q2rWrYmJitGvXLi1atEhlypTRrFmznE729/LLL+vbb7/Vq6++qk2bNql58+Y6cuSI5s2bp44dO2rRokW5nhzwUufPn1eLFi0UFRWlxo0bq3r16rpw4YJWrlypHTt2qEuXLrrxxhvN/du2bavNmzfrrrvu0h133CE/Pz81aNBAnTt3vuJzjB07Vps2bdLnn3+u6OhoderUSWXKlNHBgwf11Vdf6bXXXrvie5NXlStX1tChQ/Xf//5Xr776ql566SXFxMToo48+0sCBA3XTTTfprrvuUnR0tNLT03XgwAGtWbNG5cuX186dOyX9XRycNm2a7rrrLnXp0kU9evRQrVq1tG3bNq1cuVJ33323li9fftX39FL5HcPHH3+sqVOnqkWLFqpVq5ZCQkK0d+9eff755/Lz89PIkSMl/d1K3qhRI9WrV0/169dX1apVdfr0aS1dulRHjx7VY489dtWi6Msvv6w1a9Zo8uTJ2rx5s1q3bq0TJ05o3rx5OnPmjCZPnqwaNWoU7BcCALhmmzZt0n//+19FRESoRYsW5r/J+/bt0xdffKHz58+ra9euLpcee3t7a+bMmfL399e0adPUvXt3LViwQH5+fld8TNu2bfXyyy9r9OjRuuGGG9SxY0fVqFFDZ8+e1R9//KHVq1erRYsWWrFihSSpc+fOioqK0htvvKHt27erUaNGOnDggJYuXap77rknX0WNwrRz584r5o1q1appwoQJeu+99xQbG6unnnpKX331lW655RYdPHhQ8+fPl5eXl6ZPn+70/fr0009r0aJF+vTTT7Vr1y61b99eKSkpmjdvnu644448ZTFJiouLU+nSpdW0aVNFRkbKMAytWbNGmzdvVuPGjdWuXTtz37Zt22r+/Pnq3r27OnbsqICAAFWvXt3lBM+gQYO0Zs0affzxx7rhhhvUtWtXlS9fXocPH9a3336rgQMH5nry5/wIDAzUv//9bz3++OP6z3/+o08++UTlypXTggULFBcXp6ZNm6pt27a66aabZLPZdPDgQW3YsEEnT57UhQsXzOO88847io2N1bBhw7Rs2TLVr19fiYmJ+uyzz9S1a1ctXrw4X1ksv2NYuXKlnnrqKTVr1kzR0dEKDw/XoUOHzOd96qmnJOU/Q+dm1KhRWr58uRYvXqwGDRqoY8eOSk1N1fz583X8+HE9/fTT+TpROnDdK5yLrMFKJBmVK1fO077PPvtsrpfgvFT2JWSvdMlNV7IvYevq1rVrV3P/nTt3Gn369DEiIiIMHx8fIyIiwnjggQeMnTt35nr8Q4cOGX379jXCwsIMf39/o0GDBsaMGTOM+fPnG5KMN99802n/yy+3mpaWZrzyyivGXXfdZVStWtXw8/MzwsLCjNtuu8149913jYsXLzo9/uzZs8bQoUONypUrG97e3jkuCasrXJo2PT3d+N///mc0adLEKFWqlBEYGGhERUUZgwcPNnbv3p2n9zL7/bqSo0ePGoGBgUZgYKBx9OhRc/u2bduMfv36GdWqVTN8fX2NkJAQ46abbjKGDBlifPPNNzmOs3HjRqNdu3ZG6dKljdKlSxtt27Y11q9fbwwfPtyQZPz88885xnW1y/HmdQwbN240hg4datSvX98ICQkx/P39jVq1ahn9+/c3tm/fbu6XlJRkjB8/3mjdurVRqVIlw9fX14iIiDBatmxpzJkzx8jKysrTGJOSkoynn37aiIqKMnx9fY2yZcsa7dq1M7788ssc+2Zfenjs2LG5vsbcLgkLACi4AwcOGJMnTza6detmREdHG2XKlDHsdrsRERFh3H333cbHH3+c4/Li2bnj8lyTlZVljBgxwpBktG/f3khNTTUMw/Vl2NesWWP84x//MCpWrGjY7XYjLCzMaNCggfH4448bmzdvzjHW+++/36hUqZLh7+9v1KlTx3jllVeM9PT0XL+Dxo4da0gyVq1aletzu7o/+/Lhl1+S/kqyv79c3Ro0aGDuf+jQIWPo0KFGtWrVDLvdbpQrV87o2rWr8cMPP+R6/KSkJOPRRx81KlasaPj6+hq1a9c2Xn/9dWPTpk3mZeYv1a9fP0OSsW/fPnPbu+++a3Tr1s2oUaOGERAQYISEhBgNGzY0XnnlFeP06dNOj8/IyDBGjx5t1KhRw/Dx8cnx/rr6Pp49e7Zxxx13GEFBQYafn58RGRlp3H///caWLVvy9F5mX6L+0rFf6vz580alSpUMm81m/PLLL+b2ffv2GcOHDzeioqIMPz8/o0yZMkbt2rWNPn36GPHx8TmOs2PHDiMuLs4oW7asERgYaDRt2tRYunSp8dprrxmScjwmLxkkr2P4/fffjccff9xo3LixERYWZvj6+hrVq1c3evToYaxbt87cL78Z+kpjPH/+vDFx4kTjpptuMvz9/Y3SpUsbsbGxxpw5c3J9Da7+9l19noHrgc0wcunBBDwkKytLUVFROnbsmI4cOWKeeK+4e/bZZ/Xiiy9qxYoV6tChg6eHc12IjY3Vpk2blJKSolKlSnl6OAAAoBj74IMPNGTIEL333nuFciVdK3rggQc0Z84c7dy5U7Vr1/b0cAAUMc5ZhGJlwYIF2rdvn/r27VssC0W5nUtg+/btevvttxUaGup0lS1cXWpqaq4nfJ4xY4bWr1+v9u3bUygCAACm3LLYgQMH9Pzzz8vHx8flUn3klJWVlesVwr755hvNnTtXderUoVAEWBTnLEKx8PLLL+vUqVN6//33VapUKY0ePdrTQ8rVLbfcoqioKNWtW1elSpXS7t279cUXXygrK0tTp06Vv7+/p4dYohw4cECNGjXSnXfeqaioKGVkZOjnn3/W2rVrFRwcrEmTJnl6iAAAoBjp0aOH0tPT1bhxYwUHB2v//v1aunSpUlNT9dJLL6lSpUqeHmKJkpaWpqpVq6p169aKiYmRj4+PfvvtN61cuVK+vr565513PD1EAB7CMjQUCzabTXa7XXXq1NFrr72mO++809NDytX48eO1aNEi7d+/X2fOnFFwcLCaNm2qUaNGqVWrVp4eXomTlJSkp556SqtXr9bRo0d18eJFRUREqF27dnr22WdVq1YtTw8RAAAUI1OmTNHHH3+s3bt3KyUlRaVLl1ajRo00YsQIde/e3dPDK3EyMzM1cuRIffvttzp06JBSU1MVFhamO+64Q//+97/VqFEjTw8RgIdQLAIAAAAAAICJcxYBAAAAAADARLEIAAAAAAAAJopFAAAAAAAAMBWbq6EFNBrh6SEAlpS0ebKnhwBYkn8RfwMXxvfs+Z/596OokZcAzyAvAZ5BXvIcOosAAAAAAABgKjadRQAAoBDZmB8CAABwibxk4p0AAAAAAACAic4iAACswGbz9AgAAACKN/KSiWIRAABWQFs1AACAa+QlE+8EAAAAAAAATHQWAQBgBbRVAwAAuEZeMtFZBAAAAAAAABOdRQAAWAFr8AEAAFwjL5koFgEAYAW0VQMAALhGXjJRNgMAAAAAAICJziIAAKyAtmoAAADXyEsm3gkAAAAAAACY6CwCAMAKWIMPAADgGnnJRLEIAAAroK0aAADANfKSiXcCAAAAAAAAJjqLAACwAtqqAQAAXCMvmegsAgAAAAAAgInOIgAArIA1+AAAAK6Rl0wUiwAAsALaqgEAAFwjL5komwEAAAAAAMBEZxEAAFZAWzUAAIBr5CUTxSIAAKyA8AMAAOAaecnEOwEAAAAAAAATnUUAAFiBFydsBAAAcIm8ZKKzCAAAAAAAACY6iwAAsALW4AMAALhGXjJRLAIAwApstFUDAAC4RF4yUTYDAAAAAACAic4iAACsgLZqAAAA18hLJt4JAAAAAAAAmOgsAgDACliDDwAA4Bp5yUSxCAAAK6CtGgAAwDXykol3AgAAAAAAACY6iwAAsALaqgEAAFwjL5noLAIAAAAAAICJziIAAKyANfgAAACukZdMFIsAALAC2qoBAABcIy+ZKJsBAAAAAADARGcRAABWQFs1AACAa+QlE+8EAAAAAAAATHQWAQBgBazBBwAAcI28ZKJYBACAFdBWDQAA4Bp5yUSxCAAAFLrff/9dS5Ys0b59+5SUlKRRo0bp1ltvNe83DEPz5s3TN998o3PnzikmJkaDBg1SxYoVzX3Onj2rjz76SFu2bJHNZtNtt92mAQMGyN/f3xMvCQAAwO2KS2aibAYAgBXYvNx/y4eLFy8qMjJSDz30UK73L168WMuXL9fgwYP14osvys/PTxMnTlRaWpq5z9tvv62DBw9qzJgx+ve//60dO3Zo6tSp1/S2AAAAmDycl6Tik5koFgEAgELXqFEj9e7d22lmLJthGFq2bJm6d++uJk2aqHr16hoxYoSSkpK0efNmSdKhQ4e0detWDR06VDfccINiYmI0cOBArV+/XqdOnSrqlwMAAFAoiktmolgEAIAV2Gzuv7nJ8ePHlZycrPr165vbAgMDFRUVpYSEBElSQkKCSpUqpVq1apn71KtXTzabTXv27HHbWAAAgIUV47wkFW1m4pxFAABYQSGcsDE9PV3p6elO2+x2u+x2e76Ok5ycLEkqW7as0/ayZcua9yUnJysoKMjpfm9vb5UuXdrcBwAA4JoU47wkFW1molgEAAAKJD4+XgsWLHDa1rNnT/Xq1ctDIwIAACheSmpeolgEAIAVuLkNWpLi4uLUqVMnp20FmSULDg6WJKWkpCgkJMTcnpKSosjISHOf06dPOz0uMzNTZ8+eNR8PAABwTYpxXpKKNjNxziIAAFAgdrtdgYGBTreChJ/w8HAFBwdr+/bt5rbU1FTt2bNH0dHRkqTo6GidO3dOiYmJ5j6//vqrDMNQVFTUtb8YAACAQuCuvCQVbWaiswgAACsohDX4+XHhwgUdPXrU/Pn48ePav3+/SpcurbCwMHXs2FELFy5UxYoVFR4erk8//VQhISFq0qSJJKlKlSpq2LChpk6dqsGDBysjI0MfffSRmjdvrtDQUE+9LAAAcD3xcF6Sik9mshmGYbj91RVAQKMRnh4CYElJmyd7egiAJfkX8XRNQPcP3X7M8wsfyvO+v/32m8aPH59je8uWLTV8+HAZhqF58+bp66+/VmpqqmJiYvTQQw+pUqVK5r5nz57Vhx9+qC1btshms+m2227TwIED5e/v75bXUxKQlwDPIC8BnmG1vCQVn8xEsQiwOMIP4BlWDD+4duQlwDPIS4BnkJc8h2VoAABYgK0QTtgIAABwPSEvOXh+QR4AAAAAAACKDTqLAACwAGbKAAAAXCMvOVAsAgDACsg+AAAArpGXTCxDAwAAAAAAgInOIgAALIC2agAAANfISw4UiwAAsADCDwAAgGvkJQeWoQEAAAAAAMBEZxEAABbATBkAAIBr5CUHOosAAAAAAABgorMIAAALYKYMAADANfKSA8UiAACsgOwDAADgGnnJxDI0AAAAAAAAmOgsAgDAAmirBgAAcI285EBnEQAAAAAAAEx0FgEAYAHMlAEAALhGXnKgWAQAgAUQfgAAAFwjLzmwDA0AAAAAAAAmOosAALAAZsoAAABcIy850FkEAAAAAAAAE51FAABYARNlAAAArpGXTBSLAACwANqqAQAAXCMvObAMDQAAAAAAACY6iwAAsABmygAAAFwjLznQWQQAAAAAAAATnUUAAFgAM2UAAACukZccKBYBAGAFZB8AAADXyEsmlqEBAAAAAADARGcRAAAWQFs1AACAa+QlBzqLAAAAAAAAYKKzCAAAC2CmDAAAwDXykgPFIgAALIDwAwAA4Bp5yYFlaAAAAAAAADDRWQQAgAUwUwYAAOAaecmBziIAAAAAAACY6CwCAMAKmCgDAABwjbxkolgEAIAF0FYNAADgGnnJgWVoAAAAAAAAMNFZBACABTBTBgAA4Bp5yYHOIgAAAAAAAJjy3Fn0+uuv5/mgo0aNKtBgAABA4WCmrOiQmQAAKJnISw55LhYFBgYW5jgAAEBhIvsUGTITAAAlFHnJlOdi0bBhwwpzHAAAANcFMhMAACjpOME1AAAWQFs1AACAa+QlhwIXizZu3Kj169fr5MmTysjIcLrvlVdeueaBAQAA9yH8eA6ZCQCAkoG85FCgq6EtW7ZMU6ZMUXBwsPbt26datWqpdOnSOnbsmBo2bOjmIcITYm+upQVvPazErybq/M+T1blVfaf7u7ZpoM+nDNehVa/o/M+TVT+6co5j/O/Z3vptyVid2vCGDnz7kua9OUTRkRWK6iUA17VP5/yf7r6zjZo0qqcHev9D27dt8/SQAOSCzHR9Iy8BxRt5CSi4AhWLvvrqKw0ZMkQDBw6Uj4+Punbtqueee0533323UlNT3T1GeECpAD9tT/hTI1+am+v9gQG+Wr91r8a8veiKx/h5x0ENGTdbDbu/oC7D3pHNZtPSKcPl5UW1FrgWK5Yv0+uvvqSHhw3Xp/PjVbt2jB55+CGdPHnS00NDMWaz2dx+w9WRma5v5CWg+CIvoSDISw4FKhadOHFCtWvXliT5+vrq/PnzkqQ77rhD69atc9/o4DFfrftd46cs1ZJVuVffP/lis156f4W+3bjrisf4aOE6rftprw4cOaWtOw9p/Dufq2rFUFWvVK6whg1Ywsczp6t7z17qFtdDtaKiNGbsePn7+2vRws88PTQAlyEzXd/IS0DxRV4Crk2BikXBwcE6e/asJCksLEy7d++WJB0/flyGYbhvdLhuBPr7qm+Xptp36IQOHU3y9HCAEis9LU07fv9NTZs1N7d5eXmpadPm2vbLzx4cGYo7Zso8g8yE/CAvAe5BXkJBkZccCnSC67p16+rHH39UjRo11KpVK82cOVMbN25UYmKibr31VnePESXYkH/crokju6l0oJ927Tuqex6ZrPSMTE8PCyixkpKTlJmZqXLlnGecy5Urp337Ej00KpQIJTerlGhkJuQFeQlwL/ISCoy8ZCpQsWjIkCHmbNhdd92lMmXKaNeuXbrlllt05513XvXx6enpSk9PL8hTo4T5dPlmfbNppyLCgjSybzvNfmWg2gx4QxfTMq7+YAAASrhryUzkJesgLwEAipsCFYu8vJxXr8XGxio2NjbPj4+Pj9eCBQsu2xpekKGgmDt99oJOn72gvQf+0g/b9uvI96+qa5sGmrdii6eHBpRIIcEh8vb2znFyxpMnTyosLMxDo0JJUJLboEuya8lM5CXrIC8B7kVeQkGRlxwKVCySpB07dmjlypU6duyYnnzySYWGhur7779XeHi4YmJiXD42Li5OnTp1ctpWLvbpgg4FJYTNZpNNNvnaC/xnB1ie3ddXN9a5SZs2blCbtu0kSVlZWdq0aYN639fHw6MDkJuCZibykjWRl4BrR14Crl2BvoU2btyoyZMnq0WLFtq/f7/ZIp2amqr4+HiNHj3a5ePtdrvsdntBnhpFpFSAr2pVLW/+HFm5nOpHV1bS6VQdPJqkkKBAVY0IUcXwspKk6MgKkqRjJ0/r2MkziqxcTj07NNY3G3boRNJZVa4QrCcHtNf5i+n6cu1vHnlNwPXiwX4D9Nwz/9JNN9VV3Xr1NfvjmTp//ry6xXX39NBQjDFT5hnXkpnIS8UfeQkovshLKAjykkOBikULFy7U4MGD1bJlS61fv97cXrt2bX32GZcivB7cXKe6vpr2T/PnV0f1kCR9vGSjhoydrXta1tMHEx407//4lYGSpBfeW6aJU5fpYlqGYhvV0oj7WykkKFDHT57R2p/2qHX/Sfor6WzRvhjgOnPX3R2VdOqUpkx+WydO/KXaMTdqytRpKkdbNVwg+3gGmen6Rl4Cii/yEgqCvORQoGLR4cOHdeONN+bYHhgYqNTU1GseFDxvzZbdCmg04or3z/58k2Z/vumK9x/5K0Vxj75bGEMDIOm+B/rovgdoowaKOzLT9Y28BBRv5CWg4LyuvktOwcHBOnr0aI7tO3fuVHg4J14EAKC4sdlsbr/h6shMAACUHOQlhwIVi9q2basZM2Zo9+7dstlsSkpK0po1azRr1iy1b9/e3WMEAAAokchMAACgJCrQMrRu3brJMAxNmDBBaWlpGjt2rHx8fNSlSxe1bdvW3WMEAADXqARPbJVoZCYAAEoO8pJDgYpFNptN3bt3V5cuXXT06FFduHBBVapU0cqVKzV8+HB98MEH7h4nAAC4BiW5DbokIzMBAFBykJcc8lUsSk9P1/z587Vt2zbZ7XZ17txZt956q1atWqXXXntNXl5euueeewprrAAAACUCmQkAAJRk+SoWzZ07V19//bXq1aunhIQEvfnmm2rVqpV2796tvn37qlmzZvLyKtBpkAAAQCFioqxokZkAACh5yEsO+SoWbdy4USNGjNAtt9yiAwcO6KmnnlJmZqZee+012rUAAAD+PzITAAAoyfJVLDp58qRq1qwpSapWrZp8fHzUqVMnQg8AAMWclxff1UWJzAQAQMlDXnLIV7EoKytLPj6Oh3h7e8vf39/tgwIAAO7l6RpFVlaW5s2bpzVr1ig5OVmhoaFq2bKlevToYRZQDMPQvHnz9M033+jcuXOKiYnRoEGDVLFiRc8OvgDITAAAlDzkJYd8Xw3tnXfekd1ul/T3yRs/+OAD+fn5Oe0zatQo94wOAABcFxYtWmReAaxKlSpKTEzUlClTFBgYqI4dO0qSFi9erOXLl2v48OEKDw/X3LlzNXHiRL3xxhvy9fX18CvIPzITAADIj+KUl/JVLGrZsqXTz7fffrvbBgIAAAqPp5c/JSQk6JZbbtHNN98sSQoPD9fatWu1Z88eSX/Pki1btkzdu3dXkyZNJEkjRozQ4MGDtXnzZsXGxnps7AVBZgIAoOQhLznkq1g0bNgwtz0xAACwjujoaH3zzTc6fPiwKlWqpP3792vXrl3q27evJOn48eNKTk5W/fr1zccEBgYqKipKCQkJJa5YRGYCAAD5VZzyUr6XoQEAgJKnMCbK0tPTlZ6e7rTNbrebS68u1a1bN50/f16PP/64vLy8lJWVpd69e5sdN8nJyZKksmXLOj2ubNmy5n0AAACFibzkQLEIAAALKIy26vj4eC1YsMBpW8+ePdWrV68c+27YsEFr167VY489pqpVq2r//v2aMWOGQkJC1KpVK7ePDQAAIL/ISw4UiwAAQIHExcWpU6dOTttymyWTpNmzZ6tr165me3S1atX0119/adGiRWrVqpWCg4MlSSkpKQoJCTEfl5KSosjIyEIZPwAAQGErqXnJy61HAwAAxZLNZnP7zW63KzAw0Ol2pfBz8eJFeXk5xw4vLy8ZhiHp7xM4BgcHa/v27eb9qamp2rNnj6KjowvvjQEAAPj/yEsOdBYBAIBC17hxYy1cuFBhYWGqUqWK9u/fr6VLl6p169aS/g5nHTt21MKFC1WxYkWFh4fr008/VUhIiHm1DwAAgOtZccpLFIsAALAAD18JVgMHDtTcuXM1bdo0paSkKDQ0VHfeead69uxp7tO1a1ddvHhRU6dOVWpqqmJiYvTMM8/I19fXgyMHAABWQV5ysBnZ/UweFtBohKeHAFhS0ubJnh4CYEn+RTxd02j8t24/5s9j27j9mHCNvAR4BnkJ8AzykudwziIAAAAAAACYWIYGAIAFeLqtGgAAoLgjLznQWQQAAAAAAAATnUUAAFiAjakyAAAAl8hLDhSLAACwALIPAACAa+QlB5ahAQAAAAAAwERnEQAAFkBbNQAAgGvkJQeKRQAAWADZBwAAwDXykgPL0AAAAAAAAGCiswgAAAugrRoAAMA18pIDnUUAAAAAAAAw0VkEAIAFMFEGAADgGnnJgWIRAAAWQFs1AACAa+QlB5ahAQAAAAAAwERnEQAAFsBEGQAAgGvkJQc6iwAAAAAAAGCiswgAAAtgDT4AAIBr5CUHikUAAFgA2QcAAMA18pIDy9AAAAAAAABgorMIAAALoK0aAADANfKSA51FAAAAAAAAMNFZBACABTBTBgAA4Bp5yYFiEQAAFkD2AQAAcI285MAyNAAAAAAAAJjoLAIAwAJoqwYAAHCNvORAZxEAAAAAAABMdBYBAGABTJQBAAC4Rl5yoFgEAIAF0FYNAADgGnnJgWVoAAAAAAAAMNFZBACABTBRBgAA4Bp5yYHOIgAAAAAAAJjoLAIAwAK8mCoDAABwibzkQLEIAAALIPsAAAC4Rl5yYBkaAAAAAAAATHQWAQBgAVwKFgAAwDXykgOdRQAAAAAAADDRWQQAgAV4MVEGAADgEnnJgWIRAAAWQFs1AACAa+QlB5ahAQAAAAAAwERnEQAAFsBEGQAAgGvkJQc6iwAAAAAAAGCiswgAAAuwiakyAAAAV8hLDhSLAACwAK7uAQAA4Bp5yYFlaAAAAAAAADDRWQQAgAVwKVgAAADXyEsOFIsAALAAsg8AAIBr5CUHlqEBAAAAAADARGcRAAAW4MVUGQAAgEvkJQc6iwAAAAAAAGCiswgAAAtgogwAAMA18pIDxSIAACyAq3sAAAC4Rl5yYBkaAAAAAAAATHQWAQBgAUyUAQAAuEZecqCzCAAAAAAAACY6iwAAsAAuBQsAAOAaecmBYhEAABZA9AEAAHCNvOTAMjQAAAAAAACY6CwCAMACuBQsAACAa+QlBzqLAAAAAAAAYKKzCAAAC/BiogwAAMAl8pIDxSIAACyAtmoAAADXyEsOLEMDAAAAAACAic4iAAAsgIkyAAAA18hLDnQWAQAAAAAAwERnEQAAFlAc1uCfOnVKs2fP1tatW3Xx4kVFRERo2LBhqlWrliTJMAzNmzdP33zzjc6dO6eYmBgNGjRIFStW9PDIAQCAFZCXHCgWAQBgAZ6+usfZs2f13HPP6aabbtIzzzyjoKAgHTlyRKVKlTL3Wbx4sZYvX67hw4crPDxcc+fO1cSJE/XGG2/I19fXg6MHAABWQF5yYBkaAAAodIsXL1a5cuU0bNgwRUVFKTw8XA0aNFBERISkv2fJli1bpu7du6tJkyaqXr26RowYoaSkJG3evNnDowcAACh8xSkv0VkEAIAFeLqt+scff1SDBg30xhtv6Pfff1doaKjat2+vdu3aSZKOHz+u5ORk1a9f33xMYGCgoqKilJCQoNjYWE8NHQAAWAR5yYFiEQAAKJD09HSlp6c7bbPb7bLb7Tn2PX78uFauXKl77rlHcXFx2rt3r6ZPny4fHx+1atVKycnJkqSyZcs6Pa5s2bLmfQAAACVNSc1LFIsAALCAwpgni4+P14IFC5y29ezZU7169cqxb1ZWlmrVqqX7779fklSjRg0dOHBAK1euVKtWrQphdAAAAPlDXnKgWAQAgAV4FUJbdVxcnDp16uS0LbdZMkkKCQlRlSpVnLZVqVJFmzZtkiQFBwdLklJSUhQSEmLuk5KSosjISPcNGgAA4ArISw6c4BoAABSI3W5XYGCg0+1K4ad27do6fPiw07bDhw+rfPnykqTw8HAFBwdr+/bt5v2pqanas2ePoqOjC+9FAAAAFKKSmpcoFgEAYAE2m/tv+XHPPfdo9+7dWrhwoY4ePaq1a9fqm2++UYcOHf7/+Gzq2LGjFi5cqB9//FEHDhzQ5MmTFRISoiZNmhTCOwIAAOCMvOTAMjQAAFDooqKiNGrUKM2ZM0efffaZwsPD1a9fP91+++3mPl27dtXFixc1depUpaamKiYmRs8884x8fX09OHIAAICiUZzyks0wDMOtRyyggEYjPD0EwJKSNk/29BAAS/Iv4umaIfN/c/sx3//HTW4/JlwjLwGeQV4CPIO85Dl0FgEAYAGFcL5GAACA6wp5yYFzFgEAAAAAAMBEZxEAABZQGJeCBQAAuJ6QlxzoLAIAAAAAAICJziIAACyAiTIAAADXyEsOFIsAALAAG+kHAADAJfKSA8vQAAAAAAAAYCo2nUVJmyd7egiAJd0wcrGnhwBY0sHJXYv0+Zgduj6QlwDPIC8BnkFe8pxiUywCAACFh7ZqAAAA18hLDhTOAAAAAAAAYKKzCAAAC/BiogwAAMAl8pIDnUUAAAAAAAAw0VkEAIAFMFMGAADgGnnJgWIRAAAWwAkbAQAAXCMvObAMDQAAAAAAACY6iwAAsADaqgEAAFwjLznQWQQAAAAAAAATnUUAAFgAS/ABAABcIy85UCwCAMACvEg/AAAALpGXHFiGBgAAAAAAABOdRQAAWACzQwAAAK6Rlxx4LwAAAAAAAGCiswgAAAtgCT4AAIBr5CUHikUAAFgAJ2wEAABwjbzkwDI0AAAAAAAAmOgsAgDAApgoAwAAcI285EBnEQAAAAAAAEx0FgEAYAFezJQBAAC4RF5yoFgEAIAFcMJGAAAA18hLDixDAwAAAAAAgInOIgAALICJMgAAANfISw50FgEAAAAAAMBEZxEAABbACRsBAABcIy85UCwCAMACbCL9AAAAuEJecmAZGgAAAAAAAEx0FgEAYAG0VQMAALhGXnKgswgAAAAAAAAmOosAALAAZsoAAABcIy85UCwCAMACbDbSDwAAgCvkJQeWoQEAAAAAAMBEZxEAABZAWzUAAIBr5CUHOosAAAAAAABgorMIAAALYAk+AACAa+QlB4pFAABYgBfpBwAAwCXykgPL0AAAAAAAAGCiswgAAAvghI0AAACukZccKBYBAGABdFUDAAC4Rl5yYBkaAAAAAAAATHQWAQBgAV5iqgwAAMAV8pIDnUUAAAAAAAAw0VkEAIAFsAYfAADANfKSA8UiAAAsgKt7AAAAuEZecmAZGgAAAAAAAEx0FgEAYAFe9FUDAAC4RF5yoLMIAAAAAAAAJjqLAACwACbKAAAAXCMvOVAsAgDAAmirBgAAcI285MAyNAAAAAAAAJjoLAIAwAKYKAMAAHCNvORAZxEAAAAAAABMdBYBAGABzA4BAAC4Rl5yoFgEAIAF2OirBgAAcIm85EDhDAAAAAAAACY6iwAAsADmyQAAAFwjLzlQLAIAAEVq0aJFmjNnjjp27Kj+/ftLktLS0jRr1iytX79e6enpatCggQYNGqTg4GCPjhUAAMBTPJmZWIYGAIAFeNlsbr8VxJ49e7Ry5UpVr17dafvMmTO1ZcsWPfHEExo/frySkpI0adIkd7x0AACAPCkueUnyfGaiWAQAgAXYCuGWXxcuXND//vc/PfzwwypVqpS5PTU1Vd9++6369eununXrqmbNmho2bJh27dqlhISEgr1gAACAfCoOeUkqHpmJYhEAACgS06ZNU6NGjVS/fn2n7YmJicrMzFS9evXMbZUrV1ZYWBjFIgAAYDnFITNxziIAACygMK4Em56ervT0dKdtdrtddrs9x77r1q3Tvn379NJLL+W4Lzk5WT4+Pk4zZ5JUtmxZJScnu3XMAAAAV+LpvCQVn8xEsQgAABRIfHy8FixY4LStZ8+e6tWrl9O2EydOaMaMGRozZox8fX2LcogAAAAelde8JBWvzESxCAAAC7AVwlRZXFycOnXq5LQtt1myxMREpaSk6F//+pe5LSsrSzt27NCKFSv07LPPKiMjQ+fOnXOaKUtJSeFqaAAAoMh4Mi9JxSszUSwCAMACCuMkha5aqC9Vr149vf76607b3n33XVWqVEldu3ZVWFiYvL29tX37djVt2lSSdPjwYZ04cULR0dGFMHIAAICcPJmXpOKVmSgWAQCAQhUQEKBq1ao5bfPz81OZMmXM7W3atNGsWbNUunRpBQYG6qOPPlJ0dDTFIgAAYBnFKTNRLAIAwAIKo63anfr16yebzaZJkyYpIyNDDRo00KBBgzw9LAAAYCHFPS9JRZeZbIZhGG4/agFcyPD0CABrumHkYk8PAbCkg5O7Funzzdt62O3H7NWwktuPCdfIS4BnkJcAzyAveQ6dRQAAWEDxnycDAADwLPKSA8UiAAAsoCS0VQMAAHgSecmhME72DQAAAAAAgBKKziIAACyA2SEAAADXyEsOFIsAALAA2qoBAABcIy85UDgDAAAAAACAic4iAAAsgHkyAAAA18hLDnQWAQAAAAAAwERnEQAAFsASfAAAANfISw4UiwAAsAAvGqsBAABcIi85sAwNAAAAAAAAJjqLAACwANqqAQAAXCMvOdBZBAAAAAAAABOdRQAAWICNNfgAAAAukZccKBYBAGABtFUDAAC4Rl5yYBkaAAAAAAAATHQWAQBgAVwKFgAAwDXykgOdRQAAAAAAADDRWQQAgAWwBh8AAMA18pIDxSIAACyA8AMAAOAaecmBZWgAAAAAAAAw0VkEAIAF2DhhIwAAgEvkJQc6iwAAAAAAAGCiswgAAAvwYqIMAADAJfKSA8UiAAAsgLZqAAAA18hLDgUuFu3YsUMrV67UsWPH9OSTTyo0NFTff/+9wsPDFRMT484xAgAAlFhkJgAAUNIU6JxFGzdu1MSJE+Xr66v9+/crPT1dkpSamqr4+Hi3DhAAAFw7m839N1wdmQkAgJKDvORQoGLRwoULNXjwYA0dOlTe3t7m9tq1aysxMdFtgwMAACjJyEwAAKAkKtAytMOHD+vGG2/MsT0wMFCpqanXPCgAAOBerMH3DDITAAAlB3nJoUCdRcHBwTp69GiO7Tt37lR4ePg1DwoAALiXl839N1wdmQkAgJKDvORQoGJR27ZtNWPGDO3evVs2m01JSUlas2aNPv74Y7Vv397dYwQAACiRyEwAAKAkKtAytG7duskwDE2YMEFpaWkaO3asfHx81LlzZ919993uHiMAALhGtFV7BpkJAICSg7zkUKBiUWZmprp3764uXbro6NGjunDhgqpUqSJ/f3+dPn1aQUFB7h4niqlP5/yfZk7/UCdO/KXo2jH69zPPqV79+p4eFnDd8LJJT3SMUVyTKgoP8texlAuav+mA/rsiwdzn4OSuuT72hfjfNPWbPUU1VAC5IDNBIi8BhY28BLhfgYpFb731lp588kn5+PioSpUq5vbk5GQ9//zzmjRpktsGiOJrxfJlev3VlzRm7HjVq9dA//fxTD3y8ENavHSFypUr5+nhAdeFYXfeoAdvj9TjH/+shCOnVb9asCb1uVmnz2do+uq/r6R08+gVTo9pfVMFvXZ/Qy3fetgTQ0YxVZIv3VqSkZlAXgIKH3kJ7kJecijQOYtOnjyp9957z2lbUlKSxo8fr0qVKrllYCj+Pp45Xd179lK3uB6qFRWlMWPHy9/fX4sWfubpoQHXjcY1Q/XVtqP69rdjOnTqvJZtPaLvdx5Xw+rB5j5/nbnodGtfL0Lrd5/QgZNcaQkOtkK44erITCAvAYWPvAR3IS85FKhYNHr0aCUkJGjmzJmSpFOnTmncuHGqWrWqHn/8cbcOEMVTelqadvz+m5o2a25u8/LyUtOmzbXtl589ODLg+rIl8ZRia5dXjfBSkqQbKwepSc1Qrfr9eK77h5XxU5u6FTR3wx9FOUwAV0BmsjbyElA0yEuA+xVoGVpQUJCeffZZ/ec//5Ek/fTTT6pRo4Yee+wxeXkVqP6EEiYpOUmZmZk52qfLlSunffsSPTQq4PrzzsrdKu1v13dj2irTMORts+nVpTu06MdDue7f87aqOnchQ8u3HinikaK486Kv2iPITNZGXgKKBnkJ7kJecihQsUiSwsLCNGbMGI0dO1b16tXTo48+Klse39j09HSlp6c7bfPyDSzoUADgutX55sqKa1JFj87cooQjp1WnclmN61lPx1IuaMGmgzn2v7dpNcX/eEgXM7I8MFoAuSloZiIvAUDekJcA98tzsWjAgAG5bk9LS9OWLVs0cOBAc9v06dNdHis+Pl4LFixw2jZrzry8DgXFQEhwiLy9vXXy5Emn7SdPnlRYWJiHRgVcf57tdpOmrNytJVv+lCTtPHxGVUIDNfzOG3KEn1trhSoqooyGTf/RE0NFMcc8WdFxV2YiL5V85CWgaJCX4C7kJYc8F4v69evntieNi4tTp06d3HY8FD27r69urHOTNm3coDZt20mSsrKytGnTBvW+r4+HRwdcPwJ8vZWVZThtyzQMeXnl/Crr3ay6th1I1o4/TxfV8FCSkH6KjLsyE3mp5CMvAUWDvAS3IS+Z8lwsatWqldue1G63y263O227kOG2w6OIPNhvgJ575l+66aa6qluvvmZ/PFPnz59Xt7junh4acN34evtRPdohWn8mnVfCkdOqWyVYg1vX0tyNB5z2K+3vo3saVdLz8b95aKQAsrkrM5GXrg/kJaDwkZcA9yvwOYuypaWlKSPDObkEBrKe3gruurujkk6d0pTJb+vEib9UO+ZGTZk6TeVoqwbc5rn52zWqU4wm3ltfYaX9dCzlgv5v3X69tXyX035dGleWzSYtvsKJHAEbU2UeR2ayJvISUPjIS3AX8pKDzTAM4+q7Obtw4YL+7//+Txs2bNCZM2dy3D937tx8D4SZMsAzbhi52NNDACzp4OSuRfp8PySmuP2Yt9Ys6/ZjXm/cnZnIS4BnkJcAzyAveU6Brtk6e/Zs/frrrxo0aJDsdruGDh2qXr16KTQ0VCNGjHD3GAEAAEokMhMAACiJClQs2rJliwYNGqSmTZvK29tbN954o3r06KH77rtPa9eudfcYAQDANbIVwg1XR2YCAKDkIC85FKhYdPbsWVWoUEGSFBAQoLNnz0qSYmJi9Pvvv7tvdAAAACUYmQkAAJREBSoWVahQQcePH5ckVa5cWevXr5ck/fjjjypVqpT7RgcAANyDqTKPIDMBAFCCkJdM+SoWHTt2TFlZWWrVqpX2798vSeratau+/PJLPfDAA5o5c6a6dOlSGOMEAADXwFYI/+HKyEwAAJQ85CUHn/zs/Nhjj+n9999Xp06dJElvvvmmBgwYoLfeekuJiYmKiIhQ9erVC2WgAAAAJQWZCQAAlGQFWoaW7eeff9bFixdVvnx53XbbbYQeAACKKZvN/TfkHZkJAIDij7zkcE3FIgAAAAAAAFxf8rUMTZJsl5XGLv8ZAAAUP3xbFz0yEwAAJQvf1A75Lha98847stvtkqT09HR98MEH8vPzc9pn1KhR7hkdAABwD9JPkSMzAQBQwpCXTPkqFrVs2dLp59tvv92tgwEAALgekJkAAEBJlq9i0bBhwwprHAAAoBCV5Eu3lkRkJgAASh7ykgMnuAYAAAAAAIAp3+csAgAAJQ/nVgYAAHCNvORAsQgAAAsg+wAAALhGXnJgGRoAAAAAAABMdBYBAGAFTJUBAAC4Rl4y0VkEAAAAAAAAE51FAABYAJeCBQAAcI285ECxCAAAC+DqHgAAAK6RlxxYhgYAAAAAAAATnUUAAFiApyfK4uPj9cMPP+jPP/+Ur6+voqOj1adPH1WqVMncJy0tTbNmzdL69euVnp6uBg0aaNCgQQoODvbcwAEAgGWQlxzoLAIAAIXu999/V4cOHTRx4kSNGTNGmZmZeuGFF3ThwgVzn5kzZ2rLli164oknNH78eCUlJWnSpEkeHDUAAEDRKU55iWIRAABWYCuEWz48++yzatWqlapWrarIyEgNHz5cJ06cUGJioiQpNTVV3377rfr166e6deuqZs2aGjZsmHbt2qWEhIRrfPEAAAB5QF4ysQwNAAALKIyre6Snpys9Pd1pm91ul91uv+pjU1NTJUmlS5eWJCUmJiozM1P16tUz96lcubLCwsKUkJCg6OhoN44cAAAgJ/KSA8UiAABQIPHx8VqwYIHTtp49e6pXr14uH5eVlaUZM2aodu3aqlatmiQpOTlZPj4+KlWqlNO+ZcuWVXJyslvHDQAAUFRKal6iWAQAgAUUxqVg4+Li1KlTJ6dteZkl+/DDD3Xw4EFNmDDB/YMCAAAoIPKSA8UiAABQIHltob7Uhx9+qJ9++knjx49XuXLlzO3BwcHKyMjQuXPnnGbLUlJSuBoaAAAosUpqXuIE1wAAWICHz9cowzD04Ycf6ocfftB//vMfhYeHO91fs2ZNeXt7a/v27ea2w4cP68SJE5yvCAAAFAnykgOdRQAAWEEhtFXnx4cffqi1a9fq6aefVkBAgLmuPjAwUL6+vgoMDFSbNm00a9YslS5dWoGBgfroo48UHR1NsQgAABQN8pKJYhEAACh0X331lSRp3LhxTtuHDRumVq1aSZL69esnm82mSZMmKSMjQw0aNNCgQYOKeKQAAACeUZzyks0wDMPtRy2ACxmeHgFgTTeMXOzpIQCWdHBy1yJ9vp1HUt1+zJiKgW4/JlwjLwGeQV4CPIO85DmcswgAAAAAAAAmlqEBAGABhXEpWAAAgOsJecmBYhEAABZA9gEAAHCNvOTAMjQAAAAAAACY6CwCAMAKmCoDAABwjbxkolgEAIAF2Eg/AAAALpGXHFiGBgAAAAAAABOdRQAAWABX9wAAAHCNvORAZxEAAAAAAABMdBYBAGABTJQBAAC4Rl5yoFgEAIAVkH4AAABcIy+ZWIYGAAAAAAAAE51FAABYAJeCBQAAcI285EBnEQAAAAAAAEx0FgEAYAFcChYAAMA18pIDxSIAACyA7AMAAOAaecmBZWgAAAAAAAAw0VkEAIAVMFUGAADgGnnJRGcRAAAAAAAATHQWAQBgAVwKFgAAwDXykgPFIgAALICrewAAALhGXnJgGRoAAAAAAABMdBYBAGABTJQBAAC4Rl5yoLMIAAAAAAAAJjqLAACwANbgAwAAuEZecqBYBACAJZB+AAAAXCMvZWMZGgAAAAAAAEx0FgEAYAG0VQMAALhGXnKgswgAAAAAAAAmOosAALAAJsoAAABcIy85UCwCAMACaKsGAABwjbzkwDI0AAAAAAAAmOgsAgDAAmw0VgMAALhEXnKgswgAAAAAAAAmOosAALACJsoAAABcIy+ZKBYBAGABZB8AAADXyEsOLEMDAAAAAACAic4iAAAsgEvBAgAAuEZecqCzCAAAAAAAACY6iwAAsAAuBQsAAOAaecmBYhEAAFZA9gEAAHCNvGRiGRoAAAAAAABMdBYBAGABTJQBAAC4Rl5yoFgEAIAFcHUPAAAA18hLDixDAwAAAAAAgInOIgAALICrewAAALhGXnKgswgAAAAAAAAmOosAALAA1uADAAC4Rl5yoLMIAAAAAAAAJopFAAAAAAAAMLEMDQAAC6CtGgAAwDXykgOdRQAAAAAAADDRWQQAgAVwKVgAAADXyEsOFIsAALAA2qoBAABcIy85sAwNAAAAAAAAJjqLAACwACbKAAAAXCMvOdBZBAAAAAAAABOdRQAAWAFTZQAAAK6Rl0wUiwAAsACu7gEAAOAaecmBZWgAAAAAAAAw0VkEAIAFcClYAAAA18hLDnQWAQAAAAAAwERnEQAAFsBEGQAAgGvkJQeKRQAAWAHpBwAAwDXykoliEQAAKDIrVqzQ559/ruTkZFWvXl0DBw5UVFSUp4cFAABQbBSHvMQ5iwAAsABbIfyXX+vXr9esWbPUs2dPvfLKK6pevbomTpyolJSUQnjFAAAA+UNecqBYBAAAisTSpUvVtm1btW7dWlWqVNHgwYPl6+urVatWeXpoAAAAxUJxyUssQwMAwAIK41Kw6enpSk9Pd9pmt9tlt9tz7JuRkaHExER169bN3Obl5aV69eopISHB/YMDAADIJ/KSQ7EpFvkXm5EgP9LT0xUfH6+4uLhc/9hR/B2c3NXTQ0AB8NlDfhXG9+y8efFasGCB07aePXuqV69eOfY9ffq0srKyFBwc7LQ9ODhYhw8fdv/grlPkpZKLf7dLNvJSycVnD/lBXnIgcuCapKena8GCBerUqRP/+AJFiM8eioO4uDh16tTJaRt/j0Du+Hcb8Aw+e/C0kpqXKBYBAIACuVILdW6CgoLk5eWl5ORkp+3Jyck5Zs8AAACuFyU1L3GCawAAUOh8fHxUs2ZN/frrr+a2rKws/frrr4qOjvbgyAAAAIqH4pSX6CwCAABFolOnTnrnnXdUs2ZNRUVFadmyZbp48aJatWrl6aEBAAAUC8UlL1EswjWx2+3q2bNniVhzCVxP+OyhJGrevLlOnz6tefPmKTk5WZGRkXrmmWdYhgZL4N9twDP47KGkKS55yWYYhlGkzwgAAAAAAIBii3MWAQAAAAAAwESxCAAAAAAAACaKRQAAAAAAADBRLEKRe+edd/Tqq696ehhAiffdd9+pf//+nh4GAKAQkJcA9yEzAfnH1dDg5J133tHq1aslSd7e3goNDVWzZs3Uq1cv+fr6enh0wPXp0s/dpd5++21FRER4YEQAAFfIS4BnkJmAokOxCDk0bNhQw4YNU0ZGhhITE/XOO+9Ikvr06ePhkQHXr+zP3aWCgoI8NBoAwNWQlwDPIDMBRYNiEXLw8fFRcHCwJCksLEzff/+9tm/fLknKysrS4sWL9fXXXys5OVmVKlVSjx491LRpU/P+qVOn6tdff1VycrLCwsLUoUMHdezY0VMvBygRLv3cZVu6dKlWrVql48ePq3Tp0mrcuLH69Okjf3//XI9x+vRpvfjiiypXrpxGjhwpb29vl59XAEDBkZcAzyAzAUWDYhFcOnDggBISElS+fHlJ0qJFi7RmzRoNHjxYFStW1I4dO/S///1PQUFBqlOnjrKyslSuXDk98cQTKlOmjHbt2qX3339fwcHBat68uYdfDVCy2Gw2DRgwQOHh4Tp+/LimTZum2bNna9CgQTn2PXHihF544QXdcMMNeuSRR+Tl5aWFCxe6/LwCANyDvAR4FpkJcD+KRcjhp59+0oMPPqisrCylp6fLZrNp4MCBSk9PV3x8vJ577jlFR0dLkipUqKCdO3dq5cqVqlOnjnx8fNSrVy/zWOHh4UpISNCGDRsIP4AL2Z+7bI0aNdITTzxh/hweHq7evXvrgw8+yBF8Dh8+rOeff1633nqr+vfvL5vNlqfPKwCg4MhLgGeQmYCiQbEIOdx0000aPHiwLly4oC+++ELe3t5q2rSpDh48qIsXL+r555932j8jI0M1atQwf16xYoVWrVqlEydOKC0tTRkZGYqMjCziVwGULNmfu2x+fn7atm2bFi1apD///FPnz59XZmam0tPTdfHiRfn5+UmS0tLS9J///EctWrRwusrH0aNH8/R5BQAUDHkJ8AwyE1A0KBYhBz8/P/NqAo888oieeuopffvtt6pataokafTo0QoNDXV6jI/P339K69at08cff6y+ffsqOjpaAQEBWrJkiXbv3l20LwIoYS793EnS8ePH9corr+jOO+9U7969Vbp0ae3cuVPvvfeeMjIyzOBjt9tVr149bdmyRV26dDE/mxcuXJDk+vMKACg48hLgGWQmoGh4eXoAKN68vLwUFxenTz/9VFWqVJHdbteJEycUERHhdAsLC5Mk7dq1S7Vr11aHDh1Uo0YNRURE6NixYx5+FUDJk5iYqKysLPN/JCpVqqSkpKQc+9lsNj366KOqWbOmxo8fr1OnTklSnj6vAAD3IC8BnkNmAgoHxSJcVbNmzeTl5aWVK1eqc+fOmjlzpr777jsdPXpUiYmJWr58ub777jtJUkREhPbu3autW7fq8OHD+vTTT7Vnzx7PvgCgBIqIiFBmZqZWrFihY8eO6fvvv9fKlStz3dfLy0uPPfaYqlevrgkTJig5OVkBAQFX/bwCANyHvAR4BpkJKBz01eGqvL29ddddd2nJkiWaPHmygoKCtGjRIh07dkylSpVSjRo1FBcXJ0m68847tX//fr311luy2WyKjY1Vhw4d9PPPP3v4VQAlS2RkpPr27avFixdrzpw5uvHGG3X//fdr8uTJue7v7e2tf/7zn3rzzTc1fvx4jRs3Tvfee6/LzysAwH3IS4BnkJmAwmEzDMPw9CAAAAAAAABQPLAMDQAAAAAAACaKRQAAAAAAADBRLAIAAAAAAICJYhEAAAAAAABMFIsAAAAAAABgolgEAAAAAAAAE8UiAAAAAAAAmCgWAQAAAAAAwESxCAAAAAAAACaKRQAAAAAAADBRLAIAAAAAAICJYhEAAAAAAABM/w+AWvAwCht07gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n",
+ "\n",
+ "# Confusion matrix для моей реализации\n",
+ "cm_my = confusion_matrix(y_test, y_pred)\n",
+ "sns.heatmap(cm_my, annot=True, fmt='d', cmap='Blues', ax=ax1,\n",
+ " xticklabels=['Real', 'Fake'], yticklabels=['Real', 'Fake'])\n",
+ "ax1.set_title('My Logistic Regression')\n",
+ "\n",
+ "# Confusion matrix для sklearn\n",
+ "cm_sk = confusion_matrix(y_test, y_pred_sk)\n",
+ "sns.heatmap(cm_sk, annot=True, fmt='d', cmap='Blues', ax=ax2,\n",
+ " xticklabels=['Real', 'Fake'], yticklabels=['Real', 'Fake'])\n",
+ "ax2.set_title('Sklearn Logistic Regression')\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/project/cleaned_fake_news.csv b/project/cleaned_fake_news.csv
new file mode 100644
index 00000000..f583168e
--- /dev/null
+++ b/project/cleaned_fake_news.csv
@@ -0,0 +1,19 @@
+title,text,label,text_length,title_length
+Government Announces New Education Reforms,The education ministry has proposed reforms to modernize the curriculum.,real,10,5
+Economy Shows Signs of Recovery,The new study conducted by international researchers shows walking improves heart health.,real,12,5
+Aliens Land in Central Park,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake,12,5
+Aliens Land in Central Park,The celebrity stated that secret documents reveal shocking information about the president.,fake,12,5
+New Study Reveals Health Benefits of Walking,The education ministry has proposed reforms to modernize the curriculum.,real,10,7
+Cure for Aging Discovered in Remote Village,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake,12,7
+Cure for Aging Discovered in Remote Village,The celebrity stated that secret documents reveal shocking information about the president.,fake,12,7
+Government Announces New Education Reforms,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real,15,5
+Economy Shows Signs of Recovery,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real,15,5
+Celebrity Reveals Secret Government Plans,The celebrity stated that secret documents reveal shocking information about the president.,fake,12,5
+Economy Shows Signs of Recovery,The education ministry has proposed reforms to modernize the curriculum.,real,10,5
+Cure for Aging Discovered in Remote Village,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake,16,7
+Celebrity Reveals Secret Government Plans,Sources claim that extraterrestrial beings were seen stepping out of a spaceship.,fake,12,5
+New Study Reveals Health Benefits of Walking,The new study conducted by international researchers shows walking improves heart health.,real,12,7
+Celebrity Reveals Secret Government Plans,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake,16,5
+New Study Reveals Health Benefits of Walking,Recent economic data shows that the GDP is steadily growing over the last two quarters.,real,15,7
+Government Announces New Education Reforms,The new study conducted by international researchers shows walking improves heart health.,real,12,5
+Aliens Land in Central Park,An isolated village claims its elders live up to 150 due to a secret herbal tea.,fake,16,5
diff --git a/project/processed_news_data.csv b/project/processed_news_data.csv
new file mode 100644
index 00000000..96577e94
--- /dev/null
+++ b/project/processed_news_data.csv
@@ -0,0 +1,1001 @@
+text_length,title_length,label_num,text_num_words,text_num_chars,text_num_upper,text_num_excl,text_num_quest,text_num_quotes,text_num_digits,text_num_links,title_num_words,title_num_chars,title_num_upper,title_num_excl,title_num_quest,title_num_quotes,title_num_digits,title_num_links,text_polarity,text_subjectivity,title_polarity,title_subjectivity
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+16,7,0,16,80,1,0,0,0,3,0,7,43,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,41,5,0,0,0,0,0,-0.12954545454545455,0.525,-0.4,0.7
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,7,1,12,89,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,31,4,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.0,0.0
+10,7,1,10,72,1,0,0,0,0,0,7,44,6,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+15,7,1,15,87,4,0,0,0,0,0,7,44,6,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.13636363636363635,0.45454545454545453
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,42,5,0,0,0,0,0,0.0,0.0,0.13636363636363635,0.45454545454545453
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,27,4,0,0,0,0,0,-0.7,0.85,0.0,0.25
+12,5,0,12,81,1,0,0,0,0,0,5,27,4,0,0,0,0,0,0.0,0.0,0.0,0.25
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+15,5,1,15,87,4,0,0,0,0,0,5,42,5,0,0,0,0,0,0.09166666666666667,0.25416666666666665,0.13636363636363635,0.45454545454545453
+12,7,0,12,91,1,0,0,0,0,0,7,43,5,0,0,0,0,0,-0.7,0.85,-0.1,0.2
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+12,5,0,12,81,1,0,0,0,0,0,5,41,5,0,0,0,0,0,0.0,0.0,-0.4,0.7
+12,7,0,12,81,1,0,0,0,0,0,7,43,5,0,0,0,0,0,0.0,0.0,-0.1,0.2
+12,5,0,12,91,1,0,0,0,0,0,5,41,5,0,0,0,0,0,-0.7,0.85,-0.4,0.7
+12,5,1,12,89,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.06818181818181818,0.22727272727272727,0.0,0.0
+10,5,1,10,72,1,0,0,0,0,0,5,31,4,0,0,0,0,0,0.0,0.0,0.0,0.0
+16,5,0,16,80,1,0,0,0,3,0,5,27,4,0,0,0,0,0,-0.12954545454545455,0.525,0.0,0.25
diff --git a/project/wine_variety_classifier.ipynb b/project/wine_variety_classifier.ipynb
deleted file mode 100644
index ca554989..00000000
--- a/project/wine_variety_classifier.ipynb
+++ /dev/null
@@ -1,5095 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "az8fJ8aDd6Q_"
- },
- "source": [
- "## Задача 10. Классификация на выбранном датасете."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "Rw9IZG14fxlm",
- "outputId": "28136302-0275-4d73-b4c4-75cdbb544173"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Collecting opendatasets\n",
- " Downloading opendatasets-0.1.22-py3-none-any.whl.metadata (9.2 kB)\n",
- "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from opendatasets) (4.66.6)\n",
- "Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (from opendatasets) (1.6.17)\n",
- "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from opendatasets) (8.1.7)\n",
- "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (1.16.0)\n",
- "Requirement already satisfied: certifi>=2023.7.22 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2024.8.30)\n",
- "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.8.2)\n",
- "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.32.3)\n",
- "Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (8.0.4)\n",
- "Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.2.3)\n",
- "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (6.2.0)\n",
- "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle->opendatasets) (0.5.1)\n",
- "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle->opendatasets) (1.3)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.4.0)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.10)\n",
- "Downloading opendatasets-0.1.22-py3-none-any.whl (15 kB)\n",
- "Installing collected packages: opendatasets\n",
- "Successfully installed opendatasets-0.1.22\n"
- ]
- }
- ],
- "source": [
- "!pip install opendatasets"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "11XpX0ldba5F"
- },
- "source": [
- "Импорт модулей"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "R30hzockb6RQ"
- },
- "outputs": [],
- "source": [
- "import opendatasets as od\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "from sklearn.model_selection import train_test_split, GridSearchCV\n",
- "from sklearn.metrics import classification_report, mean_squared_error, accuracy_score, confusion_matrix\n",
- "import seaborn as sns\n",
- "import matplotlib.pyplot as plt\n",
- "import plotly.express as px"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "pSglBQCibe9N"
- },
- "source": [
- "# Подготовка данных"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "w-D38cQ3WVOJ"
- },
- "source": [
- "Возьмем датасет wine-reviews с kaggle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "v_Zx3Wp733_p"
- },
- "source": [
- "В датасете содержится информация о винах. Информации по столбцам соответсвуют списку ниже.\n",
- "\n",
- "* Страна-производитель;\n",
- "* описание;\n",
- "* виноградник на территории винодельни, откуда собирают виноград;\n",
- "* оценка вина; цена за бутылку;\n",
- "* провинция или штат, из которого произведено вино;\n",
- "* винодельческий район в провинции или штате;\n",
- "* иногда в пределах винодельческого региона указываются более конкретные регионы;\n",
- "* имя дегустатора;\n",
- "* твитер аккаунт дегустатора;\n",
- "* название;\n",
- "* сорт винограда;\n",
- "* винодельня."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "YcAp_Wjisbue",
- "outputId": "12d94a8a-ddf6-41f1-da03-67fc0a8217b8"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Please provide your Kaggle credentials to download this dataset. Learn more: http://bit.ly/kaggle-creds\n",
- "Your Kaggle username: Shcherbakov\n",
- "Your Kaggle Key: ··········\n",
- "Dataset URL: https://www.kaggle.com/datasets/zynicide/wine-reviews\n",
- "Downloading wine-reviews.zip to ./wine-reviews\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 50.9M/50.9M [00:00<00:00, 86.9MB/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "od.download(\n",
- " \"https://www.kaggle.com/datasets/zynicide/wine-reviews\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 823
- },
- "id": "4mIMtZR1fm4r",
- "outputId": "c62d7552-68cf-4431-fafa-1e72599adfc0"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "wine_reviews"
- },
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " country \n",
- " description \n",
- " designation \n",
- " points \n",
- " price \n",
- " province \n",
- " region_1 \n",
- " region_2 \n",
- " taster_name \n",
- " taster_twitter_handle \n",
- " title \n",
- " variety \n",
- " winery \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " Italy \n",
- " Aromas include tropical fruit, broom, brimston... \n",
- " Vulkà Bianco \n",
- " 87 \n",
- " NaN \n",
- " Sicily & Sardinia \n",
- " Etna \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Nicosia 2013 Vulkà Bianco (Etna) \n",
- " White Blend \n",
- " Nicosia \n",
- " \n",
- " \n",
- " 1 \n",
- " Portugal \n",
- " This is ripe and fruity, a wine that is smooth... \n",
- " Avidagos \n",
- " 87 \n",
- " 15.0 \n",
- " Douro \n",
- " NaN \n",
- " NaN \n",
- " Roger Voss \n",
- " @vossroger \n",
- " Quinta dos Avidagos 2011 Avidagos Red (Douro) \n",
- " Portuguese Red \n",
- " Quinta dos Avidagos \n",
- " \n",
- " \n",
- " 2 \n",
- " US \n",
- " Tart and snappy, the flavors of lime flesh and... \n",
- " NaN \n",
- " 87 \n",
- " 14.0 \n",
- " Oregon \n",
- " Willamette Valley \n",
- " Willamette Valley \n",
- " Paul Gregutt \n",
- " @paulgwine \n",
- " Rainstorm 2013 Pinot Gris (Willamette Valley) \n",
- " Pinot Gris \n",
- " Rainstorm \n",
- " \n",
- " \n",
- " 3 \n",
- " US \n",
- " Pineapple rind, lemon pith and orange blossom ... \n",
- " Reserve Late Harvest \n",
- " 87 \n",
- " 13.0 \n",
- " Michigan \n",
- " Lake Michigan Shore \n",
- " NaN \n",
- " Alexander Peartree \n",
- " NaN \n",
- " St. Julian 2013 Reserve Late Harvest Riesling ... \n",
- " Riesling \n",
- " St. Julian \n",
- " \n",
- " \n",
- " 4 \n",
- " US \n",
- " Much like the regular bottling from 2012, this... \n",
- " Vintner's Reserve Wild Child Block \n",
- " 87 \n",
- " 65.0 \n",
- " Oregon \n",
- " Willamette Valley \n",
- " Willamette Valley \n",
- " Paul Gregutt \n",
- " @paulgwine \n",
- " Sweet Cheeks 2012 Vintner's Reserve Wild Child... \n",
- " Pinot Noir \n",
- " Sweet Cheeks \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 129966 \n",
- " Germany \n",
- " Notes of honeysuckle and cantaloupe sweeten th... \n",
- " Brauneberger Juffer-Sonnenuhr Spätlese \n",
- " 90 \n",
- " 28.0 \n",
- " Mosel \n",
- " NaN \n",
- " NaN \n",
- " Anna Lee C. Iijima \n",
- " NaN \n",
- " Dr. H. Thanisch (Erben Müller-Burggraef) 2013 ... \n",
- " Riesling \n",
- " Dr. H. Thanisch (Erben Müller-Burggraef) \n",
- " \n",
- " \n",
- " 129967 \n",
- " US \n",
- " Citation is given as much as a decade of bottl... \n",
- " NaN \n",
- " 90 \n",
- " 75.0 \n",
- " Oregon \n",
- " Oregon \n",
- " Oregon Other \n",
- " Paul Gregutt \n",
- " @paulgwine \n",
- " Citation 2004 Pinot Noir (Oregon) \n",
- " Pinot Noir \n",
- " Citation \n",
- " \n",
- " \n",
- " 129968 \n",
- " France \n",
- " Well-drained gravel soil gives this wine its c... \n",
- " Kritt \n",
- " 90 \n",
- " 30.0 \n",
- " Alsace \n",
- " Alsace \n",
- " NaN \n",
- " Roger Voss \n",
- " @vossroger \n",
- " Domaine Gresser 2013 Kritt Gewurztraminer (Als... \n",
- " Gewürztraminer \n",
- " Domaine Gresser \n",
- " \n",
- " \n",
- " 129969 \n",
- " France \n",
- " A dry style of Pinot Gris, this is crisp with ... \n",
- " NaN \n",
- " 90 \n",
- " 32.0 \n",
- " Alsace \n",
- " Alsace \n",
- " NaN \n",
- " Roger Voss \n",
- " @vossroger \n",
- " Domaine Marcel Deiss 2012 Pinot Gris (Alsace) \n",
- " Pinot Gris \n",
- " Domaine Marcel Deiss \n",
- " \n",
- " \n",
- " 129970 \n",
- " France \n",
- " Big, rich and off-dry, this is powered by inte... \n",
- " Lieu-dit Harth Cuvée Caroline \n",
- " 90 \n",
- " 21.0 \n",
- " Alsace \n",
- " Alsace \n",
- " NaN \n",
- " Roger Voss \n",
- " @vossroger \n",
- " Domaine Schoffit 2012 Lieu-dit Harth Cuvée Car... \n",
- " Gewürztraminer \n",
- " Domaine Schoffit \n",
- " \n",
- " \n",
- "
\n",
- "
129971 rows × 13 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- " country description \\\n",
- "0 Italy Aromas include tropical fruit, broom, brimston... \n",
- "1 Portugal This is ripe and fruity, a wine that is smooth... \n",
- "2 US Tart and snappy, the flavors of lime flesh and... \n",
- "3 US Pineapple rind, lemon pith and orange blossom ... \n",
- "4 US Much like the regular bottling from 2012, this... \n",
- "... ... ... \n",
- "129966 Germany Notes of honeysuckle and cantaloupe sweeten th... \n",
- "129967 US Citation is given as much as a decade of bottl... \n",
- "129968 France Well-drained gravel soil gives this wine its c... \n",
- "129969 France A dry style of Pinot Gris, this is crisp with ... \n",
- "129970 France Big, rich and off-dry, this is powered by inte... \n",
- "\n",
- " designation points price \\\n",
- "0 Vulkà Bianco 87 NaN \n",
- "1 Avidagos 87 15.0 \n",
- "2 NaN 87 14.0 \n",
- "3 Reserve Late Harvest 87 13.0 \n",
- "4 Vintner's Reserve Wild Child Block 87 65.0 \n",
- "... ... ... ... \n",
- "129966 Brauneberger Juffer-Sonnenuhr Spätlese 90 28.0 \n",
- "129967 NaN 90 75.0 \n",
- "129968 Kritt 90 30.0 \n",
- "129969 NaN 90 32.0 \n",
- "129970 Lieu-dit Harth Cuvée Caroline 90 21.0 \n",
- "\n",
- " province region_1 region_2 \\\n",
- "0 Sicily & Sardinia Etna NaN \n",
- "1 Douro NaN NaN \n",
- "2 Oregon Willamette Valley Willamette Valley \n",
- "3 Michigan Lake Michigan Shore NaN \n",
- "4 Oregon Willamette Valley Willamette Valley \n",
- "... ... ... ... \n",
- "129966 Mosel NaN NaN \n",
- "129967 Oregon Oregon Oregon Other \n",
- "129968 Alsace Alsace NaN \n",
- "129969 Alsace Alsace NaN \n",
- "129970 Alsace Alsace NaN \n",
- "\n",
- " taster_name taster_twitter_handle \\\n",
- "0 Kerin O’Keefe @kerinokeefe \n",
- "1 Roger Voss @vossroger \n",
- "2 Paul Gregutt @paulgwine \n",
- "3 Alexander Peartree NaN \n",
- "4 Paul Gregutt @paulgwine \n",
- "... ... ... \n",
- "129966 Anna Lee C. Iijima NaN \n",
- "129967 Paul Gregutt @paulgwine \n",
- "129968 Roger Voss @vossroger \n",
- "129969 Roger Voss @vossroger \n",
- "129970 Roger Voss @vossroger \n",
- "\n",
- " title variety \\\n",
- "0 Nicosia 2013 Vulkà Bianco (Etna) White Blend \n",
- "1 Quinta dos Avidagos 2011 Avidagos Red (Douro) Portuguese Red \n",
- "2 Rainstorm 2013 Pinot Gris (Willamette Valley) Pinot Gris \n",
- "3 St. Julian 2013 Reserve Late Harvest Riesling ... Riesling \n",
- "4 Sweet Cheeks 2012 Vintner's Reserve Wild Child... Pinot Noir \n",
- "... ... ... \n",
- "129966 Dr. H. Thanisch (Erben Müller-Burggraef) 2013 ... Riesling \n",
- "129967 Citation 2004 Pinot Noir (Oregon) Pinot Noir \n",
- "129968 Domaine Gresser 2013 Kritt Gewurztraminer (Als... Gewürztraminer \n",
- "129969 Domaine Marcel Deiss 2012 Pinot Gris (Alsace) Pinot Gris \n",
- "129970 Domaine Schoffit 2012 Lieu-dit Harth Cuvée Car... Gewürztraminer \n",
- "\n",
- " winery \n",
- "0 Nicosia \n",
- "1 Quinta dos Avidagos \n",
- "2 Rainstorm \n",
- "3 St. Julian \n",
- "4 Sweet Cheeks \n",
- "... ... \n",
- "129966 Dr. H. Thanisch (Erben Müller-Burggraef) \n",
- "129967 Citation \n",
- "129968 Domaine Gresser \n",
- "129969 Domaine Marcel Deiss \n",
- "129970 Domaine Schoffit \n",
- "\n",
- "[129971 rows x 13 columns]"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine_reviews = pd.read_csv(\"wine-reviews/winemag-data-130k-v2.csv\", index_col='Unnamed: 0')\n",
- "wine_reviews"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "H9H8GdrDbrA7"
- },
- "source": [
- "Так как датасет довольно большой выберем одну страну для рассмотрения."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "id": "29H0yQYRmpt4",
- "outputId": "854572c4-cceb-4d4c-df9b-d8d19d6a56d4"
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " title \n",
- " \n",
- " \n",
- " country \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " Argentina \n",
- " 3800 \n",
- " \n",
- " \n",
- " Armenia \n",
- " 2 \n",
- " \n",
- " \n",
- " Australia \n",
- " 2329 \n",
- " \n",
- " \n",
- " Austria \n",
- " 3345 \n",
- " \n",
- " \n",
- " Bosnia and Herzegovina \n",
- " 2 \n",
- " \n",
- " \n",
- " Brazil \n",
- " 52 \n",
- " \n",
- " \n",
- " Bulgaria \n",
- " 141 \n",
- " \n",
- " \n",
- " Canada \n",
- " 257 \n",
- " \n",
- " \n",
- " Chile \n",
- " 4472 \n",
- " \n",
- " \n",
- " China \n",
- " 1 \n",
- " \n",
- " \n",
- " Croatia \n",
- " 73 \n",
- " \n",
- " \n",
- " Cyprus \n",
- " 11 \n",
- " \n",
- " \n",
- " Czech Republic \n",
- " 12 \n",
- " \n",
- " \n",
- " Egypt \n",
- " 1 \n",
- " \n",
- " \n",
- " England \n",
- " 74 \n",
- " \n",
- " \n",
- " France \n",
- " 22093 \n",
- " \n",
- " \n",
- " Georgia \n",
- " 86 \n",
- " \n",
- " \n",
- " Germany \n",
- " 2165 \n",
- " \n",
- " \n",
- " Greece \n",
- " 466 \n",
- " \n",
- " \n",
- " Hungary \n",
- " 146 \n",
- " \n",
- " \n",
- " India \n",
- " 9 \n",
- " \n",
- " \n",
- " Israel \n",
- " 505 \n",
- " \n",
- " \n",
- " Italy \n",
- " 19540 \n",
- " \n",
- " \n",
- " Lebanon \n",
- " 35 \n",
- " \n",
- " \n",
- " Luxembourg \n",
- " 6 \n",
- " \n",
- " \n",
- " Macedonia \n",
- " 12 \n",
- " \n",
- " \n",
- " Mexico \n",
- " 70 \n",
- " \n",
- " \n",
- " Moldova \n",
- " 59 \n",
- " \n",
- " \n",
- " Morocco \n",
- " 28 \n",
- " \n",
- " \n",
- " New Zealand \n",
- " 1419 \n",
- " \n",
- " \n",
- " Peru \n",
- " 16 \n",
- " \n",
- " \n",
- " Portugal \n",
- " 5691 \n",
- " \n",
- " \n",
- " Romania \n",
- " 120 \n",
- " \n",
- " \n",
- " Serbia \n",
- " 12 \n",
- " \n",
- " \n",
- " Slovakia \n",
- " 1 \n",
- " \n",
- " \n",
- " Slovenia \n",
- " 87 \n",
- " \n",
- " \n",
- " South Africa \n",
- " 1401 \n",
- " \n",
- " \n",
- " Spain \n",
- " 6645 \n",
- " \n",
- " \n",
- " Switzerland \n",
- " 7 \n",
- " \n",
- " \n",
- " Turkey \n",
- " 90 \n",
- " \n",
- " \n",
- " US \n",
- " 54504 \n",
- " \n",
- " \n",
- " Ukraine \n",
- " 14 \n",
- " \n",
- " \n",
- " Uruguay \n",
- " 109 \n",
- " \n",
- " \n",
- "
\n",
- "
dtype: int64 "
- ],
- "text/plain": [
- "country\n",
- "Argentina 3800\n",
- "Armenia 2\n",
- "Australia 2329\n",
- "Austria 3345\n",
- "Bosnia and Herzegovina 2\n",
- "Brazil 52\n",
- "Bulgaria 141\n",
- "Canada 257\n",
- "Chile 4472\n",
- "China 1\n",
- "Croatia 73\n",
- "Cyprus 11\n",
- "Czech Republic 12\n",
- "Egypt 1\n",
- "England 74\n",
- "France 22093\n",
- "Georgia 86\n",
- "Germany 2165\n",
- "Greece 466\n",
- "Hungary 146\n",
- "India 9\n",
- "Israel 505\n",
- "Italy 19540\n",
- "Lebanon 35\n",
- "Luxembourg 6\n",
- "Macedonia 12\n",
- "Mexico 70\n",
- "Moldova 59\n",
- "Morocco 28\n",
- "New Zealand 1419\n",
- "Peru 16\n",
- "Portugal 5691\n",
- "Romania 120\n",
- "Serbia 12\n",
- "Slovakia 1\n",
- "Slovenia 87\n",
- "South Africa 1401\n",
- "Spain 6645\n",
- "Switzerland 7\n",
- "Turkey 90\n",
- "US 54504\n",
- "Ukraine 14\n",
- "Uruguay 109\n",
- "Name: title, dtype: int64"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine_reviews.groupby(\"country\")['title'].count()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "VHjuA5XTb5Wv"
- },
- "source": [
- "Наибольшее количество информации содержится о винах Америки, Франции и Италии.\n",
- "\n",
- "Рассмотрим Италию."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "pAVugV0xnZWl"
- },
- "outputs": [],
- "source": [
- "wine_reviews = wine_reviews[wine_reviews['country'] == 'Italy']"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Q79LaXnDICTn"
- },
- "source": [
- "Добавим год разлива вина. Пропущенные значения заменим медианой для сорта."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "HINLwR7PDTmO"
- },
- "outputs": [],
- "source": [
- "def unwrap_list(num_in_list):\n",
- " try:\n",
- " return num_in_list[0]\n",
- " except:\n",
- " return np.nan"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "id": "dHdgOEhbIAWv",
- "outputId": "2211aaf3-3fce-4353-c1bd-530665e85661"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- ":1: SettingWithCopyWarning: \n",
- "A value is trying to be set on a copy of a slice from a DataFrame.\n",
- "Try using .loc[row_indexer,col_indexer] = value instead\n",
- "\n",
- "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
- " wine_reviews['year'] = wine_reviews['title'].transform(lambda x: unwrap_list(list(filter(lambda a: a.isdigit() and len(a) == 4, x.split())))).astype(float)\n",
- ":2: SettingWithCopyWarning: \n",
- "A value is trying to be set on a copy of a slice from a DataFrame.\n",
- "Try using .loc[row_indexer,col_indexer] = value instead\n",
- "\n",
- "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
- " wine_reviews['year'] = wine_reviews.groupby(['variety'])['year'].transform(lambda x: x.fillna(x.median()))\n"
- ]
- },
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "repr_error": "Out of range float values are not JSON compliant: nan",
- "type": "dataframe",
- "variable_name": "wine_reviews"
- },
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " country \n",
- " description \n",
- " designation \n",
- " points \n",
- " price \n",
- " province \n",
- " region_1 \n",
- " region_2 \n",
- " taster_name \n",
- " taster_twitter_handle \n",
- " title \n",
- " variety \n",
- " winery \n",
- " year \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " Italy \n",
- " Aromas include tropical fruit, broom, brimston... \n",
- " Vulkà Bianco \n",
- " 87 \n",
- " NaN \n",
- " Sicily & Sardinia \n",
- " Etna \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Nicosia 2013 Vulkà Bianco (Etna) \n",
- " White Blend \n",
- " Nicosia \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 6 \n",
- " Italy \n",
- " Here's a bright, informal red that opens with ... \n",
- " Belsito \n",
- " 87 \n",
- " 16.0 \n",
- " Sicily & Sardinia \n",
- " Vittoria \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Terre di Giurfo 2013 Belsito Frappato (Vittoria) \n",
- " Frappato \n",
- " Terre di Giurfo \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 13 \n",
- " Italy \n",
- " This is dominated by oak and oak-driven aromas... \n",
- " Rosso \n",
- " 87 \n",
- " NaN \n",
- " Sicily & Sardinia \n",
- " Etna \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Masseria Setteporte 2012 Rosso (Etna) \n",
- " Nerello Mascalese \n",
- " Masseria Setteporte \n",
- " 2012.0 \n",
- " \n",
- " \n",
- " 22 \n",
- " Italy \n",
- " Delicate aromas recall white flower and citrus... \n",
- " Ficiligno \n",
- " 87 \n",
- " 19.0 \n",
- " Sicily & Sardinia \n",
- " Sicilia \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Baglio di Pianetto 2007 Ficiligno White (Sicilia) \n",
- " White Blend \n",
- " Baglio di Pianetto \n",
- " 2007.0 \n",
- " \n",
- " \n",
- " 24 \n",
- " Italy \n",
- " Aromas of prune, blackcurrant, toast and oak c... \n",
- " Aynat \n",
- " 87 \n",
- " 35.0 \n",
- " Sicily & Sardinia \n",
- " Sicilia \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Canicattì 2009 Aynat Nero d'Avola (Sicilia) \n",
- " Nero d'Avola \n",
- " Canicattì \n",
- " 2009.0 \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 129929 \n",
- " Italy \n",
- " This luminous sparkler has a sweet, fruit-forw... \n",
- " NaN \n",
- " 91 \n",
- " 38.0 \n",
- " Veneto \n",
- " Prosecco Superiore di Cartizze \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " Col Vetoraz Spumanti NV Prosecco Superiore di... \n",
- " Prosecco \n",
- " Col Vetoraz Spumanti \n",
- " 2007.0 \n",
- " \n",
- " \n",
- " 129943 \n",
- " Italy \n",
- " A blend of Nero d'Avola and Syrah, this convey... \n",
- " Adènzia \n",
- " 90 \n",
- " 29.0 \n",
- " Sicily & Sardinia \n",
- " Sicilia \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Baglio del Cristo di Campobello 2012 Adènzia R... \n",
- " Red Blend \n",
- " Baglio del Cristo di Campobello \n",
- " 2012.0 \n",
- " \n",
- " \n",
- " 129947 \n",
- " Italy \n",
- " A blend of 65% Cabernet Sauvignon, 30% Merlot ... \n",
- " Symposio \n",
- " 90 \n",
- " 20.0 \n",
- " Sicily & Sardinia \n",
- " Terre Siciliane \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Feudo Principi di Butera 2012 Symposio Red (Te... \n",
- " Red Blend \n",
- " Feudo Principi di Butera \n",
- " 2012.0 \n",
- " \n",
- " \n",
- " 129961 \n",
- " Italy \n",
- " Intense aromas of wild cherry, baking spice, t... \n",
- " NaN \n",
- " 90 \n",
- " 30.0 \n",
- " Sicily & Sardinia \n",
- " Sicilia \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " COS 2013 Frappato (Sicilia) \n",
- " Frappato \n",
- " COS \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 129962 \n",
- " Italy \n",
- " Blackberry, cassis, grilled herb and toasted a... \n",
- " Sàgana Tenuta San Giacomo \n",
- " 90 \n",
- " 40.0 \n",
- " Sicily & Sardinia \n",
- " Sicilia \n",
- " NaN \n",
- " Kerin O’Keefe \n",
- " @kerinokeefe \n",
- " Cusumano 2012 Sàgana Tenuta San Giacomo Nero d... \n",
- " Nero d'Avola \n",
- " Cusumano \n",
- " 2012.0 \n",
- " \n",
- " \n",
- "
\n",
- "
19540 rows × 14 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- " country description \\\n",
- "0 Italy Aromas include tropical fruit, broom, brimston... \n",
- "6 Italy Here's a bright, informal red that opens with ... \n",
- "13 Italy This is dominated by oak and oak-driven aromas... \n",
- "22 Italy Delicate aromas recall white flower and citrus... \n",
- "24 Italy Aromas of prune, blackcurrant, toast and oak c... \n",
- "... ... ... \n",
- "129929 Italy This luminous sparkler has a sweet, fruit-forw... \n",
- "129943 Italy A blend of Nero d'Avola and Syrah, this convey... \n",
- "129947 Italy A blend of 65% Cabernet Sauvignon, 30% Merlot ... \n",
- "129961 Italy Intense aromas of wild cherry, baking spice, t... \n",
- "129962 Italy Blackberry, cassis, grilled herb and toasted a... \n",
- "\n",
- " designation points price province \\\n",
- "0 Vulkà Bianco 87 NaN Sicily & Sardinia \n",
- "6 Belsito 87 16.0 Sicily & Sardinia \n",
- "13 Rosso 87 NaN Sicily & Sardinia \n",
- "22 Ficiligno 87 19.0 Sicily & Sardinia \n",
- "24 Aynat 87 35.0 Sicily & Sardinia \n",
- "... ... ... ... ... \n",
- "129929 NaN 91 38.0 Veneto \n",
- "129943 Adènzia 90 29.0 Sicily & Sardinia \n",
- "129947 Symposio 90 20.0 Sicily & Sardinia \n",
- "129961 NaN 90 30.0 Sicily & Sardinia \n",
- "129962 Sàgana Tenuta San Giacomo 90 40.0 Sicily & Sardinia \n",
- "\n",
- " region_1 region_2 taster_name \\\n",
- "0 Etna NaN Kerin O’Keefe \n",
- "6 Vittoria NaN Kerin O’Keefe \n",
- "13 Etna NaN Kerin O’Keefe \n",
- "22 Sicilia NaN Kerin O’Keefe \n",
- "24 Sicilia NaN Kerin O’Keefe \n",
- "... ... ... ... \n",
- "129929 Prosecco Superiore di Cartizze NaN NaN \n",
- "129943 Sicilia NaN Kerin O’Keefe \n",
- "129947 Terre Siciliane NaN Kerin O’Keefe \n",
- "129961 Sicilia NaN Kerin O’Keefe \n",
- "129962 Sicilia NaN Kerin O’Keefe \n",
- "\n",
- " taster_twitter_handle \\\n",
- "0 @kerinokeefe \n",
- "6 @kerinokeefe \n",
- "13 @kerinokeefe \n",
- "22 @kerinokeefe \n",
- "24 @kerinokeefe \n",
- "... ... \n",
- "129929 NaN \n",
- "129943 @kerinokeefe \n",
- "129947 @kerinokeefe \n",
- "129961 @kerinokeefe \n",
- "129962 @kerinokeefe \n",
- "\n",
- " title variety \\\n",
- "0 Nicosia 2013 Vulkà Bianco (Etna) White Blend \n",
- "6 Terre di Giurfo 2013 Belsito Frappato (Vittoria) Frappato \n",
- "13 Masseria Setteporte 2012 Rosso (Etna) Nerello Mascalese \n",
- "22 Baglio di Pianetto 2007 Ficiligno White (Sicilia) White Blend \n",
- "24 Canicattì 2009 Aynat Nero d'Avola (Sicilia) Nero d'Avola \n",
- "... ... ... \n",
- "129929 Col Vetoraz Spumanti NV Prosecco Superiore di... Prosecco \n",
- "129943 Baglio del Cristo di Campobello 2012 Adènzia R... Red Blend \n",
- "129947 Feudo Principi di Butera 2012 Symposio Red (Te... Red Blend \n",
- "129961 COS 2013 Frappato (Sicilia) Frappato \n",
- "129962 Cusumano 2012 Sàgana Tenuta San Giacomo Nero d... Nero d'Avola \n",
- "\n",
- " winery year \n",
- "0 Nicosia 2013.0 \n",
- "6 Terre di Giurfo 2013.0 \n",
- "13 Masseria Setteporte 2012.0 \n",
- "22 Baglio di Pianetto 2007.0 \n",
- "24 Canicattì 2009.0 \n",
- "... ... ... \n",
- "129929 Col Vetoraz Spumanti 2007.0 \n",
- "129943 Baglio del Cristo di Campobello 2012.0 \n",
- "129947 Feudo Principi di Butera 2012.0 \n",
- "129961 COS 2013.0 \n",
- "129962 Cusumano 2012.0 \n",
- "\n",
- "[19540 rows x 14 columns]"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine_reviews['year'] = wine_reviews['title'].transform(lambda x: unwrap_list(list(filter(lambda a: a.isdigit() and len(a) == 4, x.split())))).astype(float)\n",
- "wine_reviews['year'] = wine_reviews.groupby(['variety'])['year'].transform(lambda x: x.fillna(x.median()))\n",
- "wine_reviews"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "inCyvZZB94db"
- },
- "source": [
- "Посмотрим есть ли в region_2 не NaN значения."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "dvvW7jf39Aon",
- "outputId": "cc9d7c69-afaf-4de5-8351-c17ee065a085"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "0"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine_reviews['region_2'].notnull().sum()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "MblBifJc-ANA"
- },
- "source": [
- "Нет."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "0wI9FO6aBBwD"
- },
- "source": [
- "Посмотрим на количество вин, оцененных каждым дегустатором."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 272
- },
- "id": "zAO6YTbjA8bX",
- "outputId": "a4b62fbd-cdf5-4506-e68e-e62be5b84b32"
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count \n",
- " \n",
- " \n",
- " taster_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " Kerin O’Keefe \n",
- " 10776 \n",
- " \n",
- " \n",
- " Roger Voss \n",
- " 97 \n",
- " \n",
- " \n",
- " Joe Czerwinski \n",
- " 89 \n",
- " \n",
- " \n",
- " Michael Schachner \n",
- " 76 \n",
- " \n",
- " \n",
- " Paul Gregutt \n",
- " 4 \n",
- " \n",
- " \n",
- "
\n",
- "
dtype: int64 "
- ],
- "text/plain": [
- "taster_name\n",
- "Kerin O’Keefe 10776\n",
- "Roger Voss 97\n",
- "Joe Czerwinski 89\n",
- "Michael Schachner 76\n",
- "Paul Gregutt 4\n",
- "Name: count, dtype: int64"
- ]
- },
- "execution_count": 34,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine_reviews['taster_name'].value_counts()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "IELV46tjBhFB"
- },
- "source": [
- "При таком распределении Kerin O’Keefe почти не будет влиять на обучение, а остальные признаки могут влиять слишком сильно или не попасть в тренировочную выборку. Уберем этот признак."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1BzsdrTWIIUT"
- },
- "source": [
- "Будем пытаться предсказать сорт вина"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "MAgAGDx33kRd"
- },
- "source": [
- "Заметим, что некоторые сорта встречаются всего несколько раз, поэтому они могут, либо не попасть в тренировочную выборку, либо слишком сильно влиять на модель.\n",
- "\n",
- "Страна у всех вин одна. Убираем столбец country.\n",
- "\n",
- "Так как description яляется уникальным признаком, то оно не повлияет на обучение.\n",
- "\n",
- "Информации о винограднике на территории винодельни не содержательна т.к. винодельня может содержать несколько виноградников. Оба признака могут замедлить модель, т.к. они связаны, то оставим один. Если оставить информацию о винограднике вместо винодельни, то шанс переобучения выше. Убираем столбец designation.\n",
- "\n",
- "По аналогичной причине оставляем province и убираем region_1.\n",
- "\n",
- "В region_2 все значения NaN. Убираем.\n",
- "\n",
- "Хранить информацию о твитере дегустатора, очевидно, не нужно.\n",
- "\n",
- "Так как title яляется уникальным признаком, то оно не повлияет на обучение.\n",
- "\n",
- "\n",
- "Удалим эти данные.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 429
- },
- "id": "Y22RJ1Je3gpX",
- "outputId": "5793e461-fdfc-44ed-b5ff-8b74f7a1be56"
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count \n",
- " \n",
- " \n",
- " variety \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " Red Blend \n",
- " 3624 \n",
- " \n",
- " \n",
- " Nebbiolo \n",
- " 2736 \n",
- " \n",
- " \n",
- " Sangiovese \n",
- " 2265 \n",
- " \n",
- " \n",
- " White Blend \n",
- " 779 \n",
- " \n",
- " \n",
- " Sangiovese Grosso \n",
- " 750 \n",
- " \n",
- " \n",
- " Glera \n",
- " 709 \n",
- " \n",
- " \n",
- " Corvina, Rondinella, Molinara \n",
- " 619 \n",
- " \n",
- " \n",
- " Pinot Grigio \n",
- " 605 \n",
- " \n",
- " \n",
- " Barbera \n",
- " 479 \n",
- " \n",
- " \n",
- " Nero d'Avola \n",
- " 361 \n",
- " \n",
- " \n",
- "
\n",
- "
dtype: int64 "
- ],
- "text/plain": [
- "variety\n",
- "Red Blend 3624\n",
- "Nebbiolo 2736\n",
- "Sangiovese 2265\n",
- "White Blend 779\n",
- "Sangiovese Grosso 750\n",
- "Glera 709\n",
- "Corvina, Rondinella, Molinara 619\n",
- "Pinot Grigio 605\n",
- "Barbera 479\n",
- "Nero d'Avola 361\n",
- "Name: count, dtype: int64"
- ]
- },
- "execution_count": 35,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "match_id_counts = wine_reviews['variety'].value_counts()\n",
- "match_id_counts[:10]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "4Jk_qQEG-XKY"
- },
- "source": [
- "Оставим первые три сорта вина, т.к. между ними разница в количестве строк не так велика, как между 3 и 4 (нумеруя с 1 сверху)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 424
- },
- "id": "eykVrqCL3pXR",
- "outputId": "92c22c11-0aa7-4440-a808-bbec5aa64d2c"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"data\",\n \"rows\": 8625,\n \"fields\": [\n {\n \"column\": \"points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 80,\n \"max\": 100,\n \"num_unique_values\": 21,\n \"samples\": [\n 87,\n 81,\n 84\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 42.73811041300064,\n \"min\": 6.0,\n \"max\": 800.0,\n \"num_unique_values\": 192,\n \"samples\": [\n 120.0,\n 320.0,\n 100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"province\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Northwestern Italy\",\n \"Central Italy\",\n \"Veneto\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winery\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1724,\n \"samples\": [\n \"Cordella\",\n \"Corte dei Papi\",\n \"Castello Banfi\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.170948183314536,\n \"min\": 1637.0,\n \"max\": 2016.0,\n \"num_unique_values\": 27,\n \"samples\": [\n 2012.0,\n 1997.0,\n 2005.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"variety\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Red Blend\",\n \"Sangiovese\",\n \"Nebbiolo\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe",
- "variable_name": "data"
- },
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " points \n",
- " price \n",
- " province \n",
- " winery \n",
- " year \n",
- " variety \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 28 \n",
- " 87 \n",
- " 17.0 \n",
- " Sicily and Sardinia \n",
- " Terre di Giurfo \n",
- " 2011.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- " 31 \n",
- " 86 \n",
- " NaN \n",
- " Sicily and Sardinia \n",
- " Duca di Salaparuta \n",
- " 2010.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- " 50 \n",
- " 86 \n",
- " NaN \n",
- " Sicily and Sardinia \n",
- " Viticultori Associati Canicatti \n",
- " 2008.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- " 54 \n",
- " 85 \n",
- " NaN \n",
- " Sicily and Sardinia \n",
- " Corvo \n",
- " 2010.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- " 61 \n",
- " 86 \n",
- " 17.0 \n",
- " Central Italy \n",
- " Podere dal Nespoli \n",
- " 2015.0 \n",
- " Sangiovese \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 129826 \n",
- " 88 \n",
- " 50.0 \n",
- " Piedmont \n",
- " Vinchio-Vaglio Serra \n",
- " 2006.0 \n",
- " Nebbiolo \n",
- " \n",
- " \n",
- " 129844 \n",
- " 86 \n",
- " NaN \n",
- " Tuscany \n",
- " Caparzo \n",
- " 2006.0 \n",
- " Sangiovese \n",
- " \n",
- " \n",
- " 129892 \n",
- " 91 \n",
- " 72.0 \n",
- " Tuscany \n",
- " La Mannella \n",
- " 2012.0 \n",
- " Sangiovese \n",
- " \n",
- " \n",
- " 129943 \n",
- " 90 \n",
- " 29.0 \n",
- " Sicily and Sardinia \n",
- " Baglio del Cristo di Campobello \n",
- " 2012.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- " 129947 \n",
- " 90 \n",
- " 20.0 \n",
- " Sicily and Sardinia \n",
- " Feudo Principi di Butera \n",
- " 2012.0 \n",
- " Red Blend \n",
- " \n",
- " \n",
- "
\n",
- "
8625 rows × 6 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- " points price province winery \\\n",
- "28 87 17.0 Sicily and Sardinia Terre di Giurfo \n",
- "31 86 NaN Sicily and Sardinia Duca di Salaparuta \n",
- "50 86 NaN Sicily and Sardinia Viticultori Associati Canicatti \n",
- "54 85 NaN Sicily and Sardinia Corvo \n",
- "61 86 17.0 Central Italy Podere dal Nespoli \n",
- "... ... ... ... ... \n",
- "129826 88 50.0 Piedmont Vinchio-Vaglio Serra \n",
- "129844 86 NaN Tuscany Caparzo \n",
- "129892 91 72.0 Tuscany La Mannella \n",
- "129943 90 29.0 Sicily and Sardinia Baglio del Cristo di Campobello \n",
- "129947 90 20.0 Sicily and Sardinia Feudo Principi di Butera \n",
- "\n",
- " year variety \n",
- "28 2011.0 Red Blend \n",
- "31 2010.0 Red Blend \n",
- "50 2008.0 Red Blend \n",
- "54 2010.0 Red Blend \n",
- "61 2015.0 Sangiovese \n",
- "... ... ... \n",
- "129826 2006.0 Nebbiolo \n",
- "129844 2006.0 Sangiovese \n",
- "129892 2012.0 Sangiovese \n",
- "129943 2012.0 Red Blend \n",
- "129947 2012.0 Red Blend \n",
- "\n",
- "[8625 rows x 6 columns]"
- ]
- },
- "execution_count": 36,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "valid_match_ids = match_id_counts[match_id_counts >= 2265].index\n",
- "data = pd.DataFrame(wine_reviews[wine_reviews['variety'].isin(valid_match_ids)][['points', 'price', 'province', 'winery', 'year', 'variety']])\n",
- "data['province'] = data['province'].replace({'Sicily & Sardinia' : 'Sicily and Sardinia'})\n",
- "data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true,
- "id": "zG1ELGzz7GYh"
- },
- "outputs": [],
- "source": [
- "data['points'] = data['points'].astype(int)\n",
- "data['price'] = data['price'].astype(float)\n",
- "data['province'] = data['province'].astype('category')\n",
- "data['winery'] = data['winery'].astype('category')\n",
- "data['variety'] = data['variety'].astype('category')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "UcLgQziMPkV-",
- "outputId": "6ccaaf7d-2bb2-49d8-f4ad-6d6652fb2a5b"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Index: 8625 entries, 28 to 129947\n",
- "Data columns (total 6 columns):\n",
- " # Column Non-Null Count Dtype \n",
- "--- ------ -------------- ----- \n",
- " 0 points 8625 non-null int64 \n",
- " 1 price 7468 non-null float64 \n",
- " 2 province 8625 non-null category\n",
- " 3 winery 8625 non-null category\n",
- " 4 year 8625 non-null float64 \n",
- " 5 variety 8625 non-null category\n",
- "dtypes: category(3), float64(2), int64(1)\n",
- "memory usage: 381.7 KB\n"
- ]
- }
- ],
- "source": [
- "data.info()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "QAIF_9egdRtw"
- },
- "source": [
- "Заменим NaN значения цены на средние по провинции."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 362
- },
- "id": "SRqKZBU-bU5J",
- "outputId": "16ac89cc-79a8-4fbb-fdc9-f4cb61db2c88"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- ":1: FutureWarning:\n",
- "\n",
- "The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " points \n",
- " 0 \n",
- " \n",
- " \n",
- " price \n",
- " 0 \n",
- " \n",
- " \n",
- " province \n",
- " 0 \n",
- " \n",
- " \n",
- " winery \n",
- " 0 \n",
- " \n",
- " \n",
- " year \n",
- " 0 \n",
- " \n",
- " \n",
- " variety \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
dtype: int64 "
- ],
- "text/plain": [
- "points 0\n",
- "price 0\n",
- "province 0\n",
- "winery 0\n",
- "year 0\n",
- "variety 0\n",
- "dtype: int64"
- ]
- },
- "execution_count": 39,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data['price'] = data.groupby(['province'])['price'].transform(lambda x: x.fillna(x.mean()))\n",
- "data.isnull().sum()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "7gbTQQGBdqcc"
- },
- "source": [
- " # Визуализация"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "eR9GASTOabhA"
- },
- "source": [
- "Посмотрим на зависимость сорта винограда в зависимости от провинции"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 542
- },
- "id": "SYcr7AzFY7Qb",
- "outputId": "3bd91c7e-86ad-4129-bdcf-a2c4a0f9f606"
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- "\n",
- " \n",
- "\n",
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig = px.scatter(data, x='province', y='variety', title=\"Scatter plot: variety by province\")\n",
- "fig.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "OdFdWRw6ajqx"
- },
- "source": [
- "Можно заметить, что в каждой провинции используются не все сорта. Значит признак будет влиять на модель."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "qLRcau1KXPgt"
- },
- "source": [
- "Посмотрим на количество строк для каждого сорта."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 487
- },
- "id": "wiZwp7dC5x8o",
- "outputId": "29a6b95e-37d5-4da1-efe3-f0127ac4e47f"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAHWCAYAAAComkTsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXR0lEQVR4nO3deXyM5/7/8fckZLJJIpZEiEhRErWmlrTHrmI5yqFUORKlHEpb0uLkHLW2ddAWp1Xa0xZtaelCq1r7TmirgqKKRmkJiog1JLl+f/SX+RoJTSK3sbyej8c8Hu7ruu77/lwzmZnk7V5sxhgjAAAAAAAAAIXKzdUFAAAAAAAAAHcigjcAAAAAAADAAgRvAAAAAAAAgAUI3gAAAAAAAAALELwBAAAAAAAAFiB4AwAAAAAAACxA8AYAAAAAAABYgOANAAAAAAAAsADBGwAAAAAAAGABgjcAAOAyTZo0UZMmTVxdxh1j1KhRstlsri6j0OQ2nwoVKqhnz56uKcjFmjRpovvuu8/VZRQqPgMAAHc6gjcAAJDD4cOHNWrUKCUlJbm6lNvaxo0bNWrUKKWmprq6FNwmeO/l3UsvvaQFCxa4ugwAAK6L4A0AAORw+PBhjR492vI//pcuXaqlS5daug9X2rhxo0aPHk3wVoj27Nmj//3vf64uwzI36713q7iRzwCCNwDA7YDgDQAAuIyHh4c8PDxcXUaenTt3ztUl3PXsdruKFi3q6jJwg86fPy/p9vsMAAAgvwjeAABwkd9++029e/dWSEiI7Ha7wsPD1b9/f126dMkx5ueff1bnzp0VGBgob29vNWjQQIsWLXLazsyZM2Wz2XTgwAGn9tWrV8tms2n16tWOtuxrRO3atUtNmzaVt7e3ypYtqwkTJjitV7duXUnS448/LpvNJpvNppkzZ+Y6j+3bt8tms+mLL75wtG3ZskU2m0116tRxGtu6dWvVr1/fqZ4rr++UXfO8efP04osvqly5cvL09FTz5s21b9++HPvevHmzWrVqJX9/f3l7e6tx48basGGD05gzZ85o0KBBqlChgux2u0qXLq2HHnpI33//fa7zyZZ9fbFdu3apW7duKl68uP7yl7845tyzZ0/dc8898vT0VHBwsHr16qUTJ044rT9kyBBJUnh4uON5vPJ1+uCDDxQVFSUvLy8FBgaqa9euOnTo0HXryrZ+/XrVrVtXnp6eqlixot58881rjs3LfrJ/NrZs2aIHHnhAXl5eCg8P1/Tp03NsLz09XSNHjlSlSpVkt9sVGhqqoUOHKj093WmczWbTwIEDtWDBAt13332y2+2qVq2aFi9eXOD5XH2Nt+yf/w0bNig+Pl6lSpWSj4+P/va3v+n48eNO62ZlZWnUqFEKCQmRt7e3mjZtql27duX5unHnzp3Ts88+q9DQUNntdlWpUkUvv/yyjDEFnveV8vreu977N1teX6OrDRw4UL6+vo5g7EqPPfaYgoODlZmZKUn6/PPP1bZtW8dnWMWKFTV27FhHf7Yrf7YaNWokb29v/etf/3L0XX2Nt7zUbrPZdO7cOc2aNcvxPPXs2VOrVq2SzWbT/Pnzc9Q/Z84c2Ww2JSYmXvc5AACgMBVxdQEAANyNDh8+rHr16ik1NVV9+/ZV1apV9dtvv+mTTz7R+fPn5eHhoaNHj+qBBx7Q+fPn9fTTT6tEiRKaNWuWHn74YX3yySf629/+VqB9nzp1Sq1atVLHjh3VpUsXffLJJxo2bJiqV6+u1q1bKyIiQmPGjNGIESPUt29fNWzYUJL0wAMP5Lq9++67TwEBAVq7dq0efvhhSdK6devk5uambdu2KS0tTX5+fsrKytLGjRvVt2/fP63xP//5j9zc3PTcc8/p9OnTmjBhgrp3767Nmzc7xqxcuVKtW7dWVFSURo4cKTc3N82YMUPNmjXTunXrVK9ePUlSv3799Mknn2jgwIGKjIzUiRMntH79eu3evTtHMJibzp07q3LlynrppZccAcuyZcv0888/6/HHH1dwcLB27typt956Szt37tSmTZtks9nUsWNH/fTTT/rwww81adIklSxZUpJUqlQpSdKLL76o559/Xl26dNETTzyh48eP67XXXlOjRo20detWBQQEXLOmHTt2qGXLlipVqpRGjRqljIwMjRw5UkFBQTnG5mc/p06dUps2bdSlSxc99thjmjdvnvr37y8PDw/16tVL0h/h1cMPP6z169erb9++ioiI0I4dOzRp0iT99NNPOU79W79+vT777DM9+eSTKlasmP773/+qU6dOOnjwoEqUKJHv+VzLU089peLFi2vkyJE6cOCAJk+erIEDB2ru3LmOMQkJCZowYYLatWunmJgYbdu2TTExMbp48eKfbt8Yo4cfflirVq1S7969VatWLS1ZskRDhgzRb7/9pkmTJuV73lfLy3vvz96/Uv5foys9+uijmjp1qhYtWqTOnTs72s+fP6+FCxeqZ8+ecnd3l/RH6Onr66v4+Hj5+vpq5cqVGjFihNLS0jRx4kSn7Z44cUKtW7dW165d9fe///2ar21ea3///ff1xBNPqF69eo7PlIoVK6pBgwYKDQ3V7Nmzc3xGzp49WxUrVlR0dPQ15w8AQKEzAADgpouNjTVubm7m22+/zdGXlZVljDFm0KBBRpJZt26do+/MmTMmPDzcVKhQwWRmZhpjjJkxY4aRZJKTk522s2rVKiPJrFq1ytHWuHFjI8m89957jrb09HQTHBxsOnXq5Gj79ttvjSQzY8aMPM2nbdu2pl69eo7ljh07mo4dOxp3d3fz9ddfG2OM+f77740k8/nnnzvV07hx4xw1R0REmPT0dEf7lClTjCSzY8cOx3NUuXJlExMT43i+jDHm/PnzJjw83Dz00EOONn9/fzNgwIA8zeNKI0eONJLMY489lqPv/PnzOdo+/PBDI8msXbvW0TZx4sRcX5sDBw4Yd3d38+KLLzq179ixwxQpUiRH+9U6dOhgPD09zS+//OJo27Vrl3F3dzdX/nqXn/1k/2y88sorjrb09HRTq1YtU7p0aXPp0iVjjDHvv/++cXNzc/q5NMaY6dOnG0lmw4YNjjZJxsPDw+zbt8/Rtm3bNiPJvPbaa/mejzHGhIWFmbi4OMdy9s9/ixYtnH4WBg8ebNzd3U1qaqoxxpiUlBRTpEgR06FDB6ftjRo1ykhy2mZuFixYYCSZF154wan9kUceMTabzWmOeZ13bq733svr+zc/r9HVsrKyTNmyZZ22Z4wx8+bNy/Hzndv74B//+Ifx9vY2Fy9ezFH39OnTc53TlZ8B+andx8cn19ctISHB2O12x2tvjDHHjh0zRYoUMSNHjrzm3AEAsAKnmgIAcJNlZWVpwYIFateune6///4c/TabTZL01VdfqV69eo7TGyXJ19dXffv21YEDB7Rr164C7d/X11d///vfHcseHh6qV6+efv755wJtT5IaNmyo77//3nENtPXr16tNmzaqVauW1q1bJ+mPo+BsNpvTfK7l8ccfd7ruU/aRP9k1JiUlae/everWrZtOnDih33//Xb///rvOnTun5s2ba+3atcrKypIkBQQEaPPmzTp8+HCB5tavX78cbV5eXo5/X7x4Ub///rsaNGggSX96CqskffbZZ8rKylKXLl0ctf/+++8KDg5W5cqVtWrVqmuum5mZqSVLlqhDhw4qX768oz0iIkIxMTE3tJ8iRYroH//4h2PZw8ND//jHP3Ts2DFt2bJFkvTxxx8rIiJCVatWddpms2bNJCnHNlu0aKGKFSs6lmvUqCE/Pz/Ha5mf+VxP3759He8d6Y+fmczMTP3yyy+SpBUrVigjI0NPPvmk03pPPfVUnrb/1Vdfyd3dXU8//bRT+7PPPitjjL7++mun9j+bd0Hl5f2b39foSjabTZ07d9ZXX32ls2fPOtrnzp2rsmXLOr1/r3wfnDlzRr///rsaNmyo8+fP68cff3Tart1u1+OPP/6n87uR2rPFxsYqPT1dn3zyiVP9GRkZTs8dAAA3A6eaAgBwkx0/flxpaWm67777rjvul19+cboeWraIiAhH/59tIzflypVzCigkqXjx4tq+fXu+t5WtYcOGysjIUGJiokJDQ3Xs2DE1bNhQO3fudAreIiMjFRgY+KfbuzKAya5P+uM0O0nau3evJCkuLu6a2zh9+rSKFy+uCRMmKC4uTqGhoYqKilKbNm0UGxure+65J09zCw8Pz9F28uRJjR49Wh999JGOHTuWY79/Zu/evTLGqHLlyrn2X+/mAcePH9eFCxdyXbdKlSr66quvCryfkJAQ+fj4OLXde++9kqQDBw6oQYMG2rt3r3bv3u04ZfZqVz8fV7+W0h+vZ/ZrmZ/5XM+f/cxkB3CVKlVyGhcYGOgYez2//PKLQkJCVKxYMaf2K9+P16snu6bsegoqL+/f/L5GV3v00Uc1efJkffHFF+rWrZvOnj2rr776Sv/4xz+c9r1z504NHz5cK1euVFpamtM2rn4flC1bNk83UbjR2iWpatWqqlu3rmbPnq3evXtL+uM00wYNGuR4/QEAsBrBGwAAt7mr/wjPdvUFzrNlX5/pauaqC8Tnx/333y9PT0+tXbtW5cuXV+nSpXXvvfeqYcOGeuONN5Senq5169bl+bp0f1Zj9tFsEydOVK1atXId6+vrK0nq0qWLGjZsqPnz52vp0qWaOHGixo8fr88++8xxTazrufKonmxdunTRxo0bNWTIENWqVUu+vr7KyspSq1atHLVdT1ZWlmw2m77++utc55pd+42yYj9ZWVmqXr26Xn311Vz7Q0NDnZat+HnLzc3aT15ZVU9etpvf1+hqDRo0UIUKFTRv3jx169ZNCxcu1IULF/Too486xqSmpqpx48by8/PTmDFjVLFiRXl6eur777/XsGHDcrwPcnsf5eZGa88WGxurZ555Rr/++qvS09O1adMmvf7663laFwCAwkTwBgDATVaqVCn5+fnphx9+uO64sLAw7dmzJ0d79ilcYWFhkv7vyJ7U1FSncVcfgZMf1wrzriX7dLd169apfPnyjlNDGzZsqPT0dM2ePVtHjx5Vo0aNClzTlbJP4fPz81OLFi3+dHyZMmX05JNP6sknn9SxY8dUp04dvfjii3kK3q526tQprVixQqNHj9aIESMc7dlH4V3pWs9jxYoVZYxReHi444iyvCpVqpS8vLxy3d/VPy/53c/hw4d17tw5p6PefvrpJ0l/3E00e5vbtm1T8+bN8/1zkpv8zOdGZL9f9u3b53QU44kTJ/J0FFpYWJiWL1+uM2fOOB31dvX78UYVxnNaGK9Rly5dNGXKFKWlpWnu3LmqUKGC43Rq6Y87sJ44cUKfffaZ0/s6OTn5ptV+vf6uXbsqPj5eH374oS5cuKCiRYs6BYcAANwsXOMNAICbzM3NTR06dNDChQv13Xff5ejPPnKlTZs2+uabb5SYmOjoO3funN566y1VqFBBkZGRkv4vhFq7dq1jXGZmpt56660C15gdvFwd5l1Pw4YNtXnzZq1atcoRvJUsWVIREREaP368Y0xhiIqKUsWKFfXyyy87XYcq2/HjxyX98Txcfcpb6dKlFRISovT09ALtO/uIo6uPXJo8eXKOsdd6Hjt27Ch3d3eNHj06x3aMMTpx4sR19x8TE6MFCxbo4MGDjvbdu3dryZIlN7SfjIwMvfnmm47lS5cu6c0331SpUqUUFRUl6Y9A5rffftP//ve/HLVduHDBcZ2/vMrPfG5E8+bNVaRIEU2bNs2pPa9HQbVp00aZmZk5xk+aNEk2m61AIW5uCvLeu1phvEaPPvqo0tPTNWvWLC1evFhdunRx6s/tfXDp0iW98cYbBa47v7X7+Phc83kqWbKkWrdurQ8++ECzZ89Wq1atHHcWBgDgZuKINwAAXOCll17S0qVL1bhxY/Xt21cRERE6cuSIPv74Y61fv14BAQH65z//qQ8//FCtW7fW008/rcDAQM2aNUvJycn69NNP5eb2x/+fVatWTQ0aNFBCQoJOnjypwMBAffTRR8rIyChwfRUrVlRAQICmT5+uYsWKycfHR/Xr18/1emfZGjZsqBdffFGHDh1yCtgaNWqkN998UxUqVFC5cuUKXNOV3Nzc9Pbbb6t169aqVq2aHn/8cZUtW1a//fabVq1aJT8/Py1cuFBnzpxRuXLl9Mgjj6hmzZry9fXV8uXL9e233+qVV14p0L79/PzUqFEjTZgwQZcvX1bZsmW1dOnSXI/0yQ6r/v3vf6tr164qWrSo2rVrp4oVK+qFF15QQkKCDhw4oA4dOqhYsWJKTk7W/Pnz1bdvXz333HPXrGH06NFavHixGjZsqCeffFIZGRl67bXXVK1aNadrfeV3PyEhIRo/frwOHDige++9V3PnzlVSUpLeeustx/XgevTooXnz5qlfv35atWqVHnzwQWVmZurHH3/UvHnztGTJklxvGnI9eZ3PjQgKCtIzzzyjV155RQ8//LBatWqlbdu26euvv1bJkiX/9Oiqdu3aqWnTpvr3v/+tAwcOqGbNmlq6dKk+//xzDRo0yOlGCjeiIO+9qxXGa1SnTh1VqlRJ//73v5Wenp7jaLEHHnhAxYsXV1xcnJ5++mnZbDa9//77N3wqbX5qj4qK0vLly/Xqq68qJCRE4eHhTtfFjI2N1SOPPCJJGjt27A3VBQBAgd3ku6gCAID/75dffjGxsbGmVKlSxm63m3vuuccMGDDApKenO8bs37/fPPLIIyYgIMB4enqaevXqmS+//DLHtvbv329atGhh7Ha7CQoKMv/617/MsmXLjCSzatUqx7jGjRubatWq5Vg/Li7OhIWFObV9/vnnJjIy0hQpUsRIMjNmzLjufNLS0oy7u7spVqyYycjIcLR/8MEHRpLp0aNHjnUaN25sGjdu7FhetWqVkWQ+/vhjp3HJycm51rB161bTsWNHU6JECWO3201YWJjp0qWLWbFihTHGmPT0dDNkyBBTs2ZNU6xYMePj42Nq1qxp3njjjevOxRhjRo4caSSZ48eP5+j79ddfzd/+9jcTEBBg/P39TefOnc3hw4eNJDNy5EinsWPHjjVly5Y1bm5uRpJJTk529H366afmL3/5i/Hx8TE+Pj6matWqZsCAAWbPnj1/Wt+aNWtMVFSU8fDwMPfcc4+ZPn26o+ar5WU/2T8b3333nYmOjjaenp4mLCzMvP766zm2d+nSJTN+/HhTrVo1Y7fbTfHixU1UVJQZPXq0OX36tGOcJDNgwIAc64eFhZm4uLgCzefqdWfMmGEkmW+//dZpXPbP0pU//xkZGeb55583wcHBxsvLyzRr1szs3r3blChRwvTr1y/X5/lKZ86cMYMHDzYhISGmaNGipnLlymbixIkmKyvLaVx+5p2ba7338vP+zetrdD3//ve/jSRTqVKlXPs3bNhgGjRoYLy8vExISIgZOnSoWbJkSZ4/d7L7rvwMyE/tP/74o2nUqJHx8vIyknI8t+np6aZ48eLG39/fXLhwIU9zBgCgsNmMcdEVZwEAAHDLaNKkiX7//fc/vfbgnSY1NVXFixfXCy+8oH//+9+uLgeFKCMjQyEhIWrXrp3eeecdV5cDALhLcY03AAAA3BUuXLiQoy372nxNmjS5ucXAcgsWLNDx48cVGxvr6lIAAHcxrvEGAACAu8LcuXM1c+ZMtWnTRr6+vlq/fr0+/PBDtWzZUg8++KCry0Mh2bx5s7Zv366xY8eqdu3aaty4satLAgDcxQjeAAAAcFeoUaOGihQpogkTJigtLc1xw4UXXnjB1aWhEE2bNk0ffPCBatWqpZkzZ7q6HADAXY5rvAEAAAAAAAAW4BpvAAAAAAAAgAUI3gAAAAAAAAALcI23PMjKytLhw4dVrFgx2Ww2V5cDAAAAAAAAFzLG6MyZMwoJCZGb27WPayN4y4PDhw8rNDTU1WUAAAAAAADgFnLo0CGVK1fumv0Eb3lQrFgxSX88mX5+fi6uBgAAAAAAAK6Ulpam0NBQR2Z0LQRveZB9eqmfnx/BGwAAAAAAACTpTy9Jxs0VAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACRVxdAAAAKBxRQ95zdQkAUKi2TIx1dQkAANwQjngDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWcGnwNm3aNNWoUUN+fn7y8/NTdHS0vv76a0d/kyZNZLPZnB79+vVz2sbBgwfVtm1beXt7q3Tp0hoyZIgyMjKcxqxevVp16tSR3W5XpUqVNHPmzJsxPQAAAAAAANzFirhy5+XKldN//vMfVa5cWcYYzZo1S+3bt9fWrVtVrVo1SVKfPn00ZswYxzre3t6Of2dmZqpt27YKDg7Wxo0bdeTIEcXGxqpo0aJ66aWXJEnJyclq27at+vXrp9mzZ2vFihV64oknVKZMGcXExNzcCQMAAAAAAOCu4dLgrV27dk7LL774oqZNm6ZNmzY5gjdvb28FBwfnuv7SpUu1a9cuLV++XEFBQapVq5bGjh2rYcOGadSoUfLw8ND06dMVHh6uV155RZIUERGh9evXa9KkSQRvAAAAAAAAsMwtc423zMxMffTRRzp37pyio6Md7bNnz1bJkiV13333KSEhQefPn3f0JSYmqnr16goKCnK0xcTEKC0tTTt37nSMadGihdO+YmJilJiYeM1a0tPTlZaW5vQAAAAAAAAA8sOlR7xJ0o4dOxQdHa2LFy/K19dX8+fPV2RkpCSpW7duCgsLU0hIiLZv365hw4Zpz549+uyzzyRJKSkpTqGbJMdySkrKdcekpaXpwoUL8vLyylHTuHHjNHr06EKfKwAAAAAAAO4eLg/eqlSpoqSkJJ0+fVqffPKJ4uLitGbNGkVGRqpv376OcdWrV1eZMmXUvHlz7d+/XxUrVrSspoSEBMXHxzuW09LSFBoaatn+AAAAAAAAcOdx+ammHh4eqlSpkqKiojRu3DjVrFlTU6ZMyXVs/fr1JUn79u2TJAUHB+vo0aNOY7KXs68Ld60xfn5+uR7tJkl2u91xp9XsBwAAAAAAAJAfLg/erpaVlaX09PRc+5KSkiRJZcqUkSRFR0drx44dOnbsmGPMsmXL5Ofn5zhdNTo6WitWrHDazrJly5yuIwcAAAAAAAAUNpeeapqQkKDWrVurfPnyOnPmjObMmaPVq1dryZIl2r9/v+bMmaM2bdqoRIkS2r59uwYPHqxGjRqpRo0akqSWLVsqMjJSPXr00IQJE5SSkqLhw4drwIABstvtkqR+/frp9ddf19ChQ9WrVy+tXLlS8+bN06JFi1w5dQAAAAAAANzhXBq8HTt2TLGxsTpy5Ij8/f1Vo0YNLVmyRA899JAOHTqk5cuXa/LkyTp37pxCQ0PVqVMnDR8+3LG+u7u7vvzyS/Xv31/R0dHy8fFRXFycxowZ4xgTHh6uRYsWafDgwZoyZYrKlSunt99+WzExMa6YMgAAAAAAAO4SNmOMcXURt7q0tDT5+/vr9OnTXO8NAHDLihrynqtLAIBCtWVirKtLAAAgV3nNim65a7wBAAAAAAAAdwKCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFjApcHbtGnTVKNGDfn5+cnPz0/R0dH6+uuvHf0XL17UgAEDVKJECfn6+qpTp046evSo0zYOHjyotm3bytvbW6VLl9aQIUOUkZHhNGb16tWqU6eO7Ha7KlWqpJkzZ96M6QEAAAAAAOAu5tLgrVy5cvrPf/6jLVu26LvvvlOzZs3Uvn177dy5U5I0ePBgLVy4UB9//LHWrFmjw4cPq2PHjo71MzMz1bZtW126dEkbN27UrFmzNHPmTI0YMcIxJjk5WW3btlXTpk2VlJSkQYMG6YknntCSJUtu+nwBAAAAAABw97AZY4yri7hSYGCgJk6cqEceeUSlSpXSnDlz9Mgjj0iSfvzxR0VERCgxMVENGjTQ119/rb/+9a86fPiwgoKCJEnTp0/XsGHDdPz4cXl4eGjYsGFatGiRfvjhB8c+unbtqtTUVC1evDhPNaWlpcnf31+nT5+Wn59f4U8aAIBCEDXkPVeXAACFasvEWFeXAABArvKaFd0y13jLzMzURx99pHPnzik6OlpbtmzR5cuX1aJFC8eYqlWrqnz58kpMTJQkJSYmqnr16o7QTZJiYmKUlpbmOGouMTHRaRvZY7K3kZv09HSlpaU5PQAAAAAAAID8cHnwtmPHDvn6+sput6tfv36aP3++IiMjlZKSIg8PDwUEBDiNDwoKUkpKiiQpJSXFKXTL7s/uu96YtLQ0XbhwIdeaxo0bJ39/f8cjNDS0MKYKAAAAAACAu4jLg7cqVaooKSlJmzdvVv/+/RUXF6ddu3a5tKaEhASdPn3a8Th06JBL6wEAAAAAAMDtp4irC/Dw8FClSpUkSVFRUfr22281ZcoUPfroo7p06ZJSU1Odjno7evSogoODJUnBwcH65ptvnLaXfdfTK8dcfSfUo0ePys/PT15eXrnWZLfbZbfbC2V+AAAAAAAAuDu5/Ii3q2VlZSk9PV1RUVEqWrSoVqxY4ejbs2ePDh48qOjoaElSdHS0duzYoWPHjjnGLFu2TH5+foqMjHSMuXIb2WOytwEAAAAAAABYwaVHvCUkJKh169YqX768zpw5ozlz5mj16tVasmSJ/P391bt3b8XHxyswMFB+fn566qmnFB0drQYNGkiSWrZsqcjISPXo0UMTJkxQSkqKhg8frgEDBjiOWOvXr59ef/11DR06VL169dLKlSs1b948LVq0yJVTBwAAAAAAwB3OpcHbsWPHFBsbqyNHjsjf3181atTQkiVL9NBDD0mSJk2aJDc3N3Xq1Enp6emKiYnRG2+84Vjf3d1dX375pfr376/o6Gj5+PgoLi5OY8aMcYwJDw/XokWLNHjwYE2ZMkXlypXT22+/rZiYmJs+XwAAAAAAANw9bMYY4+oibnVpaWny9/fX6dOn5efn5+pyAADIVdSQ91xdAgAUqi0TY11dAgAAucprVnTLXeMNAAAAAAAAuBMQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFigiKsLwI2LGvKeq0sAgEK1ZWKsq0sAAAAAgBvGEW8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWcGnwNm7cONWtW1fFihVT6dKl1aFDB+3Zs8dpTJMmTWSz2Zwe/fr1cxpz8OBBtW3bVt7e3ipdurSGDBmijIwMpzGrV69WnTp1ZLfbValSJc2cOdPq6QEAAAAAAOAu5tLgbc2aNRowYIA2bdqkZcuW6fLly2rZsqXOnTvnNK5Pnz46cuSI4zFhwgRHX2Zmptq2batLly5p48aNmjVrlmbOnKkRI0Y4xiQnJ6tt27Zq2rSpkpKSNGjQID3xxBNasmTJTZsrAAAAAAAA7i5FXLnzxYsXOy3PnDlTpUuX1pYtW9SoUSNHu7e3t4KDg3PdxtKlS7Vr1y4tX75cQUFBqlWrlsaOHathw4Zp1KhR8vDw0PTp0xUeHq5XXnlFkhQREaH169dr0qRJiomJsW6CAAAAAAAAuGvdUtd4O336tCQpMDDQqX327NkqWbKk7rvvPiUkJOj8+fOOvsTERFWvXl1BQUGOtpiYGKWlpWnnzp2OMS1atHDaZkxMjBITE3OtIz09XWlpaU4PAAAAAAAAID9cesTblbKysjRo0CA9+OCDuu+++xzt3bp1U1hYmEJCQrR9+3YNGzZMe/bs0WeffSZJSklJcQrdJDmWU1JSrjsmLS1NFy5ckJeXl1PfuHHjNHr06EKfIwAAAAAAAO4et0zwNmDAAP3www9av369U3vfvn0d/65evbrKlCmj5s2ba//+/apYsaIltSQkJCg+Pt6xnJaWptDQUEv2BQAAAAAAgDvTLXGq6cCBA/Xll19q1apVKleu3HXH1q9fX5K0b98+SVJwcLCOHj3qNCZ7Ofu6cNca4+fnl+NoN0my2+3y8/NzegAAAAAAAAD54dLgzRijgQMHav78+Vq5cqXCw8P/dJ2kpCRJUpkyZSRJ0dHR2rFjh44dO+YYs2zZMvn5+SkyMtIxZsWKFU7bWbZsmaKjowtpJgAAAAAAAIAzlwZvAwYM0AcffKA5c+aoWLFiSklJUUpKii5cuCBJ2r9/v8aOHastW7bowIED+uKLLxQbG6tGjRqpRo0akqSWLVsqMjJSPXr00LZt27RkyRINHz5cAwYMkN1ulyT169dPP//8s4YOHaoff/xRb7zxhubNm6fBgwe7bO4AAAAAAAC4s7k0eJs2bZpOnz6tJk2aqEyZMo7H3LlzJUkeHh5avny5WrZsqapVq+rZZ59Vp06dtHDhQsc23N3d9eWXX8rd3V3R0dH6+9//rtjYWI0ZM8YxJjw8XIsWLdKyZctUs2ZNvfLKK3r77bcVExNz0+cMAAAAAACAu4NLb65gjLluf2hoqNasWfOn2wkLC9NXX3113TFNmjTR1q1b81UfAAAAAAAAUFC3xM0VAAAAAAAAgDsNwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALBAEVcXAAAAAAAoHFFD3nN1CQBQqLZMjHV1CTeEI94AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYoUPDWrFkzpaam5mhPS0tTs2bNbrQmAAAAAAAA4LZXoOBt9erVunTpUo72ixcvat26dTdcFAAAAAAAAHC7K5Kfwdu3b3f8e9euXUpJSXEsZ2ZmavHixSpbtmzhVQcAAAAAAADcpvJ1xFutWrVUu3Zt2Ww2NWvWTLVq1XI8oqKi9MILL2jEiBF53t64ceNUt25dFStWTKVLl1aHDh20Z88epzEXL17UgAEDVKJECfn6+qpTp046evSo05iDBw+qbdu28vb2VunSpTVkyBBlZGQ4jVm9erXq1Kkju92uSpUqaebMmfmZOgAAAAAAAJAv+QrekpOTtX//fhlj9M033yg5Odnx+O2335SWlqZevXrleXtr1qzRgAEDtGnTJi1btkyXL19Wy5Ytde7cOceYwYMHa+HChfr444+1Zs0aHT58WB07dnT0Z2Zmqm3btrp06ZI2btyoWbNmaebMmU4BYHJystq2baumTZsqKSlJgwYN0hNPPKElS5bkZ/oAAAAAAABAnuXrVNOwsDBJUlZWVqHsfPHixU7LM2fOVOnSpbVlyxY1atRIp0+f1jvvvKM5c+Y4btowY8YMRUREaNOmTWrQoIGWLl2qXbt2afny5QoKClKtWrU0duxYDRs2TKNGjZKHh4emT5+u8PBwvfLKK5KkiIgIrV+/XpMmTVJMTEyhzAUAAAAAAAC4Ur6Ctyvt3btXq1at0rFjx3IEcfk53fRKp0+fliQFBgZKkrZs2aLLly+rRYsWjjFVq1ZV+fLllZiYqAYNGigxMVHVq1dXUFCQY0xMTIz69++vnTt3qnbt2kpMTHTaRvaYQYMG5VpHenq60tPTHctpaWkFmg8AAAAAAADuXgUK3v73v/+pf//+KlmypIKDg2Wz2Rx9NputQMFbVlaWBg0apAcffFD33XefJCklJUUeHh4KCAhwGhsUFOS4sUNKSopT6Jbdn913vTFpaWm6cOGCvLy8nPrGjRun0aNH53sOAAAAAAAAQLYCBW8vvPCCXnzxRQ0bNqzQChkwYIB++OEHrV+/vtC2WVAJCQmKj493LKelpSk0NNSFFQEAAAAAAOB2U6Dg7dSpU+rcuXOhFTFw4EB9+eWXWrt2rcqVK+doDw4O1qVLl5Samup01NvRo0cVHBzsGPPNN984bS/7rqdXjrn6TqhHjx6Vn59fjqPdJMlut8tutxfK3AAAAAAAAHB3ytddTbN17txZS5cuveGdG2M0cOBAzZ8/XytXrlR4eLhTf1RUlIoWLaoVK1Y42vbs2aODBw8qOjpakhQdHa0dO3bo2LFjjjHLli2Tn5+fIiMjHWOu3Eb2mOxtAAAAAAAAAIWtQEe8VapUSc8//7w2bdqk6tWrq2jRok79Tz/9dJ62M2DAAM2ZM0eff/65ihUr5rgmm7+/v7y8vOTv76/evXsrPj5egYGB8vPz01NPPaXo6Gg1aNBAktSyZUtFRkaqR48emjBhglJSUjR8+HANGDDAcdRav3799Prrr2vo0KHq1auXVq5cqXnz5mnRokUFmT4AAAAAAADwpwoUvL311lvy9fXVmjVrtGbNGqc+m82W5+Bt2rRpkqQmTZo4tc+YMUM9e/aUJE2aNElubm7q1KmT0tPTFRMTozfeeMMx1t3dXV9++aX69++v6Oho+fj4KC4uTmPGjHGMCQ8P16JFizR48GBNmTJF5cqV09tvv62YmJgCzB4AAAAAAAD4cwUK3pKTkwtl58aYPx3j6empqVOnaurUqdccExYWpq+++uq622nSpIm2bt2a7xoBAAAAAACAgijQNd4AAAAAAAAAXF+Bjnjr1avXdfvffffdAhUDAAAAAAAA3CkKFLydOnXKafny5cv64YcflJqaqmbNmhVKYQAAAAAAAMDtrEDB2/z583O0ZWVlqX///qpYseINFwUAAAAAAADc7grtGm9ubm6Kj4/XpEmTCmuTAAAAAAAAwG2rUG+usH//fmVkZBTmJgEAAAAAAIDbUoFONY2Pj3daNsboyJEjWrRokeLi4gqlMAAAAAAAAOB2VqDgbevWrU7Lbm5uKlWqlF555ZU/veMpAAAAAAAAcDcoUPC2atWqwq4DAAAAAAAAuKMUKHjLdvz4ce3Zs0eSVKVKFZUqVapQigIAAAAAAABudwW6ucK5c+fUq1cvlSlTRo0aNVKjRo0UEhKi3r176/z584VdIwAAAAAAAHDbKVDwFh8frzVr1mjhwoVKTU1VamqqPv/8c61Zs0bPPvtsYdcIAAAAAAAA3HYKdKrpp59+qk8++URNmjRxtLVp00ZeXl7q0qWLpk2bVlj1AQAAAAAAALelAh3xdv78eQUFBeVoL126NKeaAgAAAAAAACpg8BYdHa2RI0fq4sWLjrYLFy5o9OjRio6OLrTiAAAAAAAAgNtVgU41nTx5slq1aqVy5cqpZs2akqRt27bJbrdr6dKlhVogAAAAAAAAcDsqUPBWvXp17d27V7Nnz9aPP/4oSXrsscfUvXt3eXl5FWqBAAAAAAAAwO2oQMHbuHHjFBQUpD59+ji1v/vuuzp+/LiGDRtWKMUBAAAAAAAAt6sCXePtzTffVNWqVXO0V6tWTdOnT7/hogAAAAAAAIDbXYGCt5SUFJUpUyZHe6lSpXTkyJEbLgoAAAAAAAC43RUoeAsNDdWGDRtytG/YsEEhISE3XBQAAAAAAABwuyvQNd769OmjQYMG6fLly2rWrJkkacWKFRo6dKieffbZQi0QAAAAAAAAuB0VKHgbMmSITpw4oSeffFKXLl2SJHl6emrYsGFKSEgo1AIBAAAAAACA21GBgjebzabx48fr+eef1+7du+Xl5aXKlSvLbrcXdn0AAAAAAADAbalAwVs2X19f1a1bt7BqAQAAAAAAAO4YBbq5AgAAAAAAAIDrI3gDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwAMEbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABVwavK1du1bt2rVTSEiIbDabFixY4NTfs2dP2Ww2p0erVq2cxpw8eVLdu3eXn5+fAgIC1Lt3b509e9ZpzPbt29WwYUN5enoqNDRUEyZMsHpqAAAAAAAAuMu5NHg7d+6catasqalTp15zTKtWrXTkyBHH48MPP3Tq7969u3bu3Klly5bpyy+/1Nq1a9W3b19Hf1pamlq2bKmwsDBt2bJFEydO1KhRo/TWW29ZNi8AAAAAAACgiCt33rp1a7Vu3fq6Y+x2u4KDg3Pt2717txYvXqxvv/1W999/vyTptddeU5s2bfTyyy8rJCREs2fP1qVLl/Tuu+/Kw8ND1apVU1JSkl599VWngA4AAAAAAAAoTLf8Nd5Wr16t0qVLq0qVKurfv79OnDjh6EtMTFRAQIAjdJOkFi1ayM3NTZs3b3aMadSokTw8PBxjYmJitGfPHp06dSrXfaanpystLc3pAQAAAAAAAOTHLR28tWrVSu+9955WrFih8ePHa82aNWrdurUyMzMlSSkpKSpdurTTOkWKFFFgYKBSUlIcY4KCgpzGZC9nj7nauHHj5O/v73iEhoYW9tQAAAAAAABwh3PpqaZ/pmvXro5/V69eXTVq1FDFihW1evVqNW/e3LL9JiQkKD4+3rGclpZG+AYAAAAAAIB8uaWPeLvaPffco5IlS2rfvn2SpODgYB07dsxpTEZGhk6ePOm4LlxwcLCOHj3qNCZ7+VrXjrPb7fLz83N6AAAAAAAAAPlxWwVvv/76q06cOKEyZcpIkqKjo5WamqotW7Y4xqxcuVJZWVmqX7++Y8zatWt1+fJlx5hly5apSpUqKl68+M2dAAAAAAAAAO4aLg3ezp49q6SkJCUlJUmSkpOTlZSUpIMHD+rs2bMaMmSINm3apAMHDmjFihVq3769KlWqpJiYGElSRESEWrVqpT59+uibb77Rhg0bNHDgQHXt2lUhISGSpG7dusnDw0O9e/fWzp07NXfuXE2ZMsXpVFIAAAAAAACgsLk0ePvuu+9Uu3Zt1a5dW5IUHx+v2rVra8SIEXJ3d9f27dv18MMP695771Xv3r0VFRWldevWyW63O7Yxe/ZsVa1aVc2bN1ebNm30l7/8RW+99Zaj39/fX0uXLlVycrKioqL07LPPasSIEerbt+9Nny8AAAAAAADuHi69uUKTJk1kjLlm/5IlS/50G4GBgZozZ851x9SoUUPr1q3Ld30AAAAAAABAQd1W13gDAAAAAAAAbhcEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAZcGb2vXrlW7du0UEhIim82mBQsWOPUbYzRixAiVKVNGXl5eatGihfbu3es05uTJk+revbv8/PwUEBCg3r176+zZs05jtm/froYNG8rT01OhoaGaMGGC1VMDAAAAAADAXc6lwdu5c+dUs2ZNTZ06Ndf+CRMm6L///a+mT5+uzZs3y8fHRzExMbp48aJjTPfu3bVz504tW7ZMX375pdauXau+ffs6+tPS0tSyZUuFhYVpy5YtmjhxokaNGqW33nrL8vkBAAAAAADg7lXElTtv3bq1WrdunWufMUaTJ0/W8OHD1b59e0nSe++9p6CgIC1YsEBdu3bV7t27tXjxYn377be6//77JUmvvfaa2rRpo5dfflkhISGaPXu2Ll26pHfffVceHh6qVq2akpKS9OqrrzoFdAAAAAAAAEBhumWv8ZacnKyUlBS1aNHC0ebv76/69esrMTFRkpSYmKiAgABH6CZJLVq0kJubmzZv3uwY06hRI3l4eDjGxMTEaM+ePTp16lSu+05PT1daWprTAwAAAAAAAMiPWzZ4S0lJkSQFBQU5tQcFBTn6UlJSVLp0aaf+IkWKKDAw0GlMbtu4ch9XGzdunPz9/R2P0NDQG58QAAAAAAAA7iq3bPDmSgkJCTp9+rTjcejQIVeXBAAAAAAAgNvMLRu8BQcHS5KOHj3q1H706FFHX3BwsI4dO+bUn5GRoZMnTzqNyW0bV+7jana7XX5+fk4PAAAAAAAAID9u2eAtPDxcwcHBWrFihaMtLS1NmzdvVnR0tCQpOjpaqamp2rJli2PMypUrlZWVpfr16zvGrF27VpcvX3aMWbZsmapUqaLixYvfpNkAAAAAAADgbuPS4O3s2bNKSkpSUlKSpD9uqJCUlKSDBw/KZrNp0KBBeuGFF/TFF19ox44dio2NVUhIiDp06CBJioiIUKtWrdSnTx9988032rBhgwYOHKiuXbsqJCREktStWzd5eHiod+/e2rlzp+bOnaspU6YoPj7eRbMGAAAAAADA3aCIK3f+3XffqWnTpo7l7DAsLi5OM2fO1NChQ3Xu3Dn17dtXqamp+stf/qLFixfL09PTsc7s2bM1cOBANW/eXG5uburUqZP++9//Ovr9/f21dOlSDRgwQFFRUSpZsqRGjBihvn373ryJAgAAAAAA4K7j0uCtSZMmMsZcs99ms2nMmDEaM2bMNccEBgZqzpw5191PjRo1tG7dugLXCQAAAAAAAOTXLXuNNwAAAAAAAOB2RvAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAAC9zSwduoUaNks9mcHlWrVnX0X7x4UQMGDFCJEiXk6+urTp066ejRo07bOHjwoNq2bStvb2+VLl1aQ4YMUUZGxs2eCgAAAAAAAO4yRVxdwJ+pVq2ali9f7lguUuT/Sh48eLAWLVqkjz/+WP7+/ho4cKA6duyoDRs2SJIyMzPVtm1bBQcHa+PGjTpy5IhiY2NVtGhRvfTSSzd9LgAAAAAAALh73PLBW5EiRRQcHJyj/fTp03rnnXc0Z84cNWvWTJI0Y8YMRUREaNOmTWrQoIGWLl2qXbt2afny5QoKClKtWrU0duxYDRs2TKNGjZKHh8fNng4AAAAAAADuErf0qaaStHfvXoWEhOiee+5R9+7ddfDgQUnSli1bdPnyZbVo0cIxtmrVqipfvrwSExMlSYmJiapevbqCgoIcY2JiYpSWlqadO3dec5/p6elKS0tzegAAAAAAAAD5cUsHb/Xr19fMmTO1ePFiTZs2TcnJyWrYsKHOnDmjlJQUeXh4KCAgwGmdoKAgpaSkSJJSUlKcQrfs/uy+axk3bpz8/f0dj9DQ0MKdGAAAAAAAAO54t/Sppq1bt3b8u0aNGqpfv77CwsI0b948eXl5WbbfhIQExcfHO5bT0tII3wAAAAAAAJAvt/QRb1cLCAjQvffeq3379ik4OFiXLl1Samqq05ijR486rgkXHByc4y6n2cu5XTcum91ul5+fn9MDAAAAAAAAyI/bKng7e/as9u/frzJlyigqKkpFixbVihUrHP179uzRwYMHFR0dLUmKjo7Wjh07dOzYMceYZcuWyc/PT5GRkTe9fgAAAAAAANw9bulTTZ977jm1a9dOYWFhOnz4sEaOHCl3d3c99thj8vf3V+/evRUfH6/AwED5+fnpqaeeUnR0tBo0aCBJatmypSIjI9WjRw9NmDBBKSkpGj58uAYMGCC73e7i2QEAAAAAAOBOdksHb7/++qsee+wxnThxQqVKldJf/vIXbdq0SaVKlZIkTZo0SW5uburUqZPS09MVExOjN954w7G+u7u7vvzyS/Xv31/R0dHy8fFRXFycxowZ46opAQAAAAAA4C5xSwdvH3300XX7PT09NXXqVE2dOvWaY8LCwvTVV18VdmkAAAAAAADAdd1W13gDAAAAAAAAbhcEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAAAAAAwAIEbwAAAAAAAIAFCN4AAAAAAAAACxC8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABggbsqeJs6daoqVKggT09P1a9fX998842rSwIAAAAAAMAd6q4J3ubOnav4+HiNHDlS33//vWrWrKmYmBgdO3bM1aUBAAAAAADgDnTXBG+vvvqq+vTpo8cff1yRkZGaPn26vL299e6777q6NAAAAAAAANyBiri6gJvh0qVL2rJlixISEhxtbm5uatGihRITE3OMT09PV3p6umP59OnTkqS0tDTriy2AzPQLri4BAArVrfp5e6vj+wDAnYbvg/zjuwDAneZW/S7IrssYc91xd0Xw9vvvvyszM1NBQUFO7UFBQfrxxx9zjB83bpxGjx6doz00NNSyGgEA/8f/tX6uLgEAcAvg+wAAcKt/F5w5c0b+/v7X7L8rgrf8SkhIUHx8vGM5KytLJ0+eVIkSJWSz2VxYGeA6aWlpCg0N1aFDh+Tn5+fqcgAALsL3AQCA7wLgjyPdzpw5o5CQkOuOuyuCt5IlS8rd3V1Hjx51aj969KiCg4NzjLfb7bLb7U5tAQEBVpYI3Db8/Pz4cgUA8H0AAOC7AHe96x3plu2uuLmCh4eHoqKitGLFCkdbVlaWVqxYoejoaBdWBgAAAAAAgDvVXXHEmyTFx8crLi5O999/v+rVq6fJkyfr3Llzevzxx11dGgAAAAAAAO5Ad03w9uijj+r48eMaMWKEUlJSVKtWLS1evDjHDRcA5M5ut2vkyJE5TsMGANxd+D4AAPBdAOSdzfzZfU8BAAAAAAAA5NtdcY03AAAAAAAA4GYjeAMAAAAAAAAsQPAGAAAAAAAAWIDgDbjLVahQQZMnT77uGJvNpgULFlyz/8CBA7LZbEpKSsrzfps0aaJBgwbleTwAwBqrV6+WzWZTamrqDW1n5syZCggIKJSarqew6gUA5A+/vwMFQ/AG3KZ69uwpm82m//znP07tCxYskM1mu6m1hIaG6siRI7rvvvtu6n4B4G6S/blvs9lUtGhRhYeHa+jQobp48aLl+65QoYJj3+7u7goJCVHv3r116tQpy/cNAHe748ePq3///ipfvrzsdruCg4MVExOjDRs23NQ6PvvsM40dO/am7hO4ExC8AbcxT09PjR8/3uV/+Li7uys4OFhFihRxaR0AcKdr1aqVjhw5op9//lmTJk3Sm2++qZEjR96UfY8ZM0ZHjhzRwYMHNXv2bK1du1ZPP/30Tdk3ANzNOnXqpK1bt2rWrFn66aef9MUXX6hJkyY6ceLETa0jMDBQxYoVu6n7BO4EBG/AbaxFixYKDg7WuHHjrjlm/fr1atiwoby8vBQaGqqnn35a586dcxpz5swZPfbYY/Lx8VHZsmU1derUHNs5cuSIWrduLS8vL91zzz365JNPHH25nWq6Zs0a1atXT3a7XWXKlNE///lPZWRkXLPOU6dOKTY2VsWLF5e3t7dat26tvXv35uPZAIA7X/aRDqGhoerQoYNatGihZcuWOfqzsrI0btw4hYeHy8vLSzVr1nT6vJakr776Svfee6+8vLzUtGlTHThwIE/7LlasmIKDg1W2bFk1bdpUcXFx+v7776+7zueff646derI09NT99xzj0aPHu30XWCz2fT222/rb3/7m7y9vVW5cmV98cUXhVIvANwJUlNTtW7dOo0fP15NmzZVWFiY6tWrp4SEBD388MOSpFdffVXVq1eXj4+PQkND9eSTT+rs2bOObWRfCmDJkiWKiIiQr6+v4z9ysmVkZOjpp59WQECASpQooWHDhikuLk4dOnRwjLn6VNPr/f6elpYmLy8vff31107zmT9/vooVK6bz589Lkg4dOqQuXbooICBAgYGBat++vdPn/OrVq1WvXj35+PgoICBADz74oH755RdH/599zwC3AoI34Dbm7u6ul156Sa+99pp+/fXXHP379+9Xq1at1KlTJ23fvl1z587V+vXrNXDgQKdxEydOVM2aNbV161b985//1DPPPOP0h5wkPf/88+rUqZO2bdum7t27q2vXrtq9e3eudf32229q06aN6tatq23btmnatGl655139MILL1xzLj179tR3332nL774QomJiTLGqE2bNrp8+XIBnhkAuPP98MMP2rhxozw8PBxt48aN03vvvafp06dr586dGjx4sP7+979rzZo1kv74A6djx45q166dkpKS9MQTT+if//xnvvf922+/aeHChapfv/41x6xbt06xsbF65plntGvXLr355puaOXOmXnzxRadxo0ePVpcuXbR9+3a1adNG3bt318mTJwu1XgC4Xfn6+srX11cLFixQenp6rmPc3Nz03//+Vzt37tSsWbO0cuVKDR061GnM+fPn9fLLL+v999/X2rVrdfDgQT333HOO/vHjx2v27NmaMWOGNmzYoLS0tOte41m6/u/vfn5++utf/6o5c+Y4rTN79mx16NBB3t7eunz5smJiYlSsWDGtW7dOGzZscISCly5dUkZGhjp06KDGjRtr+/btSkxMVN++fR2X1cnr9wzgcgbAbSkuLs60b9/eGGNMgwYNTK9evYwxxsyfP99kv7V79+5t+vbt67TeunXrjJubm7lw4YIxxpiwsDDTqlUrpzGPPvqoad26tWNZkunXr5/TmPr165v+/fsbY4xJTk42kszWrVuNMcb861//MlWqVDFZWVmO8VOnTjW+vr4mMzPTGGNM48aNzTPPPGOMMeann34yksyGDRsc43///Xfj5eVl5s2bl+/nBgDuRHFxccbd3d34+PgYu91uJBk3NzfzySefGGOMuXjxovH29jYbN250Wq93797mscceM8YYk5CQYCIjI536hw0bZiSZU6dOXXPfYWFhxsPDw/j4+BhPT08jydSvX99pnRkzZhh/f3/HcvPmzc1LL73ktJ3333/flClTxrEsyQwfPtyxfPbsWSPJfP311zdULwDcST755BNTvHhx4+npaR544AGTkJBgtm3bds3xH3/8sSlRooRjecaMGUaS2bdvn6Nt6tSpJigoyLEcFBRkJk6c6FjOyMgw5cuXd/y9YUz+f3+fP3++8fX1NefOnTPGGHP69Gnj6enp+Ix///33c/zNkJ6ebry8vMySJUvMiRMnjCSzevXqXOeZl+8Z4FbAEW/AHWD8+PGaNWtWjiPQtm3bppkzZzr+p8zX11cxMTHKyspScnKyY1x0dLTTetHR0Tm2lZcx2Xbv3q3o6Ginmzw8+OCDOnv2bK5H5u3evVtFihRxOnKiRIkSqlKlyjX3AQB3o6ZNmyopKUmbN29WXFycHn/8cXXq1EmStG/fPp0/f14PPfSQ0+f+e++9p/3790v64/P26qPUrv58v5YhQ4YoKSlJ27dv14oVKyRJbdu2VWZmZq7jt23bpjFjxjjV0qdPHx05csRxipEk1ahRw/FvHx8f+fn56dixYzdcLwDcKTp16qTDhw/riy++UKtWrbR69WrVqVNHM2fOlCQtX75czZs3V9myZVWsWDH16NFDJ06ccPqs9fb2VsWKFR3LZcqUcXzWnj59WkePHlW9evUc/e7u7oqKirpmTXn5/b1NmzYqWrSo4xICn376qfz8/NSiRQtJf3xP7Nu3T8WKFXN8TwQGBurixYvav3+/AgMD1bNnT8XExKhdu3aaMmWK0+mxef2eAVyNK6EDd4BGjRopJiZGCQkJ6tmzp6P97Nmz+sc//pHrxa/Lly9/EysEABQGHx8fVapUSZL07rvvqmbNmnrnnXfUu3dvx/V8Fi1apLJlyzqtZ7fbb3jfJUuWdOy7cuXKmjx5sqKjo7Vq1SrHH1FXOnv2rEaPHq2OHTvm6PP09HT8u2jRok59NptNWVlZN1wvANxJPD099dBDD+mhhx7S888/ryeeeEIjR45UkyZN9Ne//lX9+/fXiy++qMDAQK1fv169e/fWpUuX5O3tLSn3z1pjjKU1e3h46JFHHtGcOXPUtWtXzZkzR48++qjjhmxnz55VVFSUZs+enWPdUqVKSZJmzJihp59+WosXL9bcuXM1fPhwLVu2TA0aNMjz9wzgagRvwB3iP//5j2rVqqUqVao42urUqaNdu3Y5/lC6lk2bNuVYjoiIyNEWGxvrtFy7du1ctxcREaFPP/1UxhjHUW8bNmxQsWLFVK5cuVzHZ2RkaPPmzXrggQckSSdOnNCePXsUGRl53doB4G7l5uamf/3rX4qPj1e3bt0UGRkpu92ugwcPqnHjxrmuExERkePmBVd/B+SVu7u7JOnChQu59tepU0d79uz50++g6ynMegHgThIZGakFCxZoy5YtysrK0iuvvCI3tz9OaJs3b16+tuXv76+goCB9++23atSokSQpMzNT33//vWrVqpXrOnn9/b179+566KGHtHPnTq1cudLpms916tTR3LlzVbp0afn5+V2zvtq1a6t27dpKSEhQdHS05syZowYNGhTK9wxwM3CqKXCHqF69urp3767//ve/jrZhw4Zp48aNGjhwoJKSkrR37159/vnnOW6usGHDBk2YMEE//fSTpk6dqo8//ljPPPOM05iPP/5Y7777rn766SeNHDlS33zzTY7tZHvyySd16NAhPfXUU/rxxx/1+eefa+TIkYqPj3f8QnClypUrq3379urTp4/Wr1+vbdu26e9//7vKli2r9u3bF8KzAwB3ps6dO8vd3V1Tp05VsWLF9Nxzz2nw4MGaNWuW9u/fr++//16vvfaaZs2aJUnq16+f9u7dqyFDhmjPnj2aM2eO41SlP3PmzBmlpKToyJEj+uabbzRkyBCVKlXK8QfX1UaMGKH33ntPo0eP1s6dO7V792599NFHGj58eJ7ndyP1AsCd4MSJE2rWrJk++OADbd++XcnJyfr44481YcIEtW/fXpUqVdLly5f12muv6eeff9b777+v6dOn53s/Tz31lMaNG6fPP/9ce/bs0TPPPKNTp045XTrmSnn9/b1Ro0YKDg5W9+7dFR4e7nRqavfu3VWyZEm1b99e69atU3JyslavXq2nn35av/76q5KTk5WQkKDExET98ssvWrp0qfbu3es4QKAwvmeAm8LVF5kDUDBX3lwhW3JysvHw8DBXvrW/+eYb89BDDxlfX1/j4+NjatSoYV588UVHf1hYmBk9erTp3Lmz8fb2NsHBwWbKlClO25Vkpk6dah566CFjt9tNhQoVzNy5c532qyturmCMMatXrzZ169Y1Hh4eJjg42AwbNsxcvnzZ0X/lxVmNMebkyZOmR48ext/f33h5eZmYmBjz008/3eCzBAB3jtw+940xZty4caZUqVLm7NmzJisry0yePNlUqVLFFC1a1JQqVcrExMSYNWvWOMYvXLjQVKpUydjtdtOwYUPz7rvv5unmCpIcj1KlSpk2bdo4fe5ffXMFY4xZvHixeeCBB4yXl5fx8/Mz9erVM2+99ZajX5KZP3++0zr+/v5mxowZN1QvANwpLl68aP75z3+aOnXqGH9/f+Pt7W2qVKlihg8fbs6fP2+MMebVV181ZcqUcfwO/d577zl9Tub2+XzlDdmMMeby5ctm4MCBxs/PzxQvXtwMGzbMdO7c2XTt2tUxpqC/vw8dOtRIMiNGjMjRd+TIERMbG2tKlixp7Ha7ueeee0yfPn3M6dOnTUpKiunQoYMpU6aM8fDwMGFhYWbEiBGOm7UZ8+ffM8CtwGaMxSd2AwAAAACA20ZWVpYiIiLUpUsXjR071tXlALc1rvEGAAAAAMBdLPtUzsaNGys9PV2vv/66kpOT1a1bN1eXBtz2uMYbAAAAAAB3MTc3N82cOVN169bVgw8+qB07dmj58uU5brgGIP841RQAAAAAAACwAEe8AQAAAAAAABYgeAMAAAAAAAAsQPAGAAAAAAAAWIDgDQAAAAAAALAAwRsAAAAAAABgAYI3AAAA5MmBAwdks9mUlJTk6lIAAABuCzZjjHF1EQAAALj1ZWZm6vjx4ypZsqSKFCmSp3WaNGmiWrVqafLkydYWBwAAcAvK229MAAAAuKtdunRJHh4eCg4OdnUpAAAAtw1ONQUAALjDvPXWWwoJCVFWVpZTe/v27dWrVy/t379f7du3V1BQkHx9fVW3bl0tX77caWyFChU0duxYxcbGys/PT3379s31VNMffvhBrVu3lq+vr4KCgtSjRw/9/vvvkqSePXtqzZo1mjJlimw2m2w2m5KTk1WpUiW9/PLLTvtLSkqSzWbTvn37rHlSAAAAXIDgDQAA4A7TuXNnnThxQqtWrXK0nTx5UosXL1b37t119uxZtWnTRitWrNDWrVvVqlUrtWvXTgcPHnTazssvv6yaNWtq69atev7553PsJzU1Vc2aNVPt2rX13XffafHixTp69Ki6dOkiSZoyZYqio6PVp08fHTlyREeOHFH58uXVq1cvzZgxw2lbM2bMUKNGjVSpUiULnhEAAADX4BpvAAAAd6AOHTqoRIkSeueddyT9cRTc6NGjdejQIbm55fy/1/vuu0/9+vXTwIEDJf1xxFvt2rU1f/58x5gDBw4oPDxcW7duVa1atfTCCy9o3bp1WrJkiWPMr7/+qtDQUO3Zs0f33ntvrtd4O3z4sMqXL6+NGzeqXr16unz5skJCQvTyyy8rLi7OomcEAADg5uOINwAAgDtQ9+7d9emnnyo9PV2SNHv2bHXt2lVubm46e/asnnvuOUVERCggIEC+vr7avXt3jiPe7r///uvuY9u2bVq1apV8fX0dj6pVq0qS9u/ff831QkJC1LZtW7377ruSpIULFyo9PV2dO3e+kSkDAADccri5AgAAwB2oXbt2MsZo0aJFqlu3rtatW6dJkyZJkp577jktW7ZML7/8sipVqiQvLy898sgjunTpktM2fHx8rruPs2fPql27dho/fnyOvjJlylx33SeeeEI9evTQpEmTNGPGDD366KPy9vbO5ywBAABubQRvAAAAdyBPT0917NhRs2fP1r59+1SlShXVqVNHkrRhwwb17NlTf/vb3yT9EaAdOHAg3/uoU6eOPv30U1WoUEFFiuT+a6WHh4cyMzNztLdp00Y+Pj6aNm2aFi9erLVr1+Z7/wAAALc6TjUFAAC4Q3Xv3l2LFi3Su+++q+7duzvaK1eurM8++0xJSUnatm2bunXrluMOqHkxYMAAnTx5Uo899pi+/fZb7d+/X0uWLNHjjz/uCNsqVKigzZs368CBA/r9998d+3F3d1fPnj2VkJCgypUrKzo6unAmDQAAcAsheAMAALhDNWvWTIGBgdqzZ4+6devmaH/11VdVvHhxPfDAA2rXrp1iYmIcR8PlR0hIiDZs2KDMzEy1bNlS1atX16BBgxQQEOC4gcNzzz0nd3d3RUZGqlSpUk7Xkevdu7cuXbqkxx9//MYnCwAAcAvirqYAAABwiXXr1ql58+Y6dOiQgoKCXF0OAABAoSN4AwAAwE2Vnp6u48ePKy4uTsHBwZo9e7arSwIAALAEp5oCAADgpvrwww8VFham1NRUTZgwwdXlAAAAWIYj3gAAAAAAAAALcMQbAAAAAAAAYAGCNwAAAAAAAMACBG8AAAAAAACABQjeAAAAAAAAAAsQvAEAAAAAAAAWIHgDAAAAAAAALEDwBgAAAAAAAFiA4A0AAAAAAACwwP8DoJjsUACTVHgAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(15,5))\n",
- "sns.countplot(data=data, x='variety')\n",
- "plt.title(\"count wines rate depending on the variety\")\n",
- "plt.xlabel(\"variety\")\n",
- "plt.ylabel(\"count\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Tmi7YJ7qXUFt"
- },
- "source": [
- "Заметим, что разница между столбцами не очень большая, значит, скорее всего, точность предсказаний будет не сильно отличться."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "s-Ch6pnlekYR"
- },
- "source": [
- "Посмотрим на количество в зависимости от оценки"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 472
- },
- "id": "aNIJf7NSTKqw",
- "outputId": "ab4f6b3d-7100-4691-cb8c-79c45a1a0338"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGdElEQVR4nO3deViU9f7/8dcAsogCoiySiGTmlmnhhqVZckTtuKTp1+Lkkl85mVTmyTz+yjXN1FLTFrNTLiez7ZiWlWlmroSKa2qG5XZUsFTAlfXz+6OL+TqCMsyMLPp8XNdcl3Pfn3nf73tmPvDinvseLcYYIwAAgJucW1k3AAAAUB4QigAAAEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAq6r9u3bq3379mXdxg1j3LhxslgsZd2GyxS1P3Xq1NGAAQPKpqEy1r59e91xxx1l3YZDLBaLxo0bV9ZtwEmEItyUjh8/rnHjxmnHjh1l3UqFtmnTJo0bN07p6ell3QoqCOZeYS+//LKWLl1a1m1AkkdZNwCUhePHj2v8+PGqU6eOmjVrdt22s3LlyutWuzzYtGmTxo8frwEDBiggIKCs27kh7N+/X25uN+7fq6U190rbxYsX5eHh2K/Ul19+WQ8//LB69Ojh2qZQYoQi4Dry9PQs6xZK5Pz58/L19S3rNm5qXl5eZd0CHODt7V3WLcAFbtw/R1Dmjh07pkGDBiksLExeXl6KjIzUkCFDlJ2dbR3z22+/qXfv3goMDFTlypXVunVrffXVVzZ15s+fL4vFokOHDtks/+GHH2SxWPTDDz9YlxWck7B3717df//9qly5sm655RZNnTrV5nEtWrSQJA0cOFAWi0UWi0Xz588vcj927doli8WiL774wrosOTlZFotFd999t83Yzp07q1WrVjb9XH5OUUHPn3zyiSZNmqRatWrJ29tbHTp00IEDBwptOykpSZ06dZK/v78qV66s++67Txs3brQZc/bsWQ0bNkx16tSRl5eXgoOD9Ze//EXbtm0rcn8KFJzPsnfvXj366KOqVq2a7r33Xus+DxgwQLfeequ8vb0VGhqqxx9/XKdOnbJ5/IgRIyRJkZGR1ufx8tfpgw8+UFRUlHx8fBQYGKi+ffvq6NGj1+yrwIYNG9SiRQt5e3urbt26euedd6461p7tFLw3kpOT1aZNG/n4+CgyMlJz5swpVC8rK0tjx47VbbfdJi8vL4WHh+v5559XVlaWzTiLxaKEhAQtXbpUd9xxh7y8vNS4cWOtWLHC4f258pyigvf/xo0bNXz4cAUFBcnX11cPPfSQfv/9d5vH5ufna9y4cQoLC1PlypV1//33a+/evXafp3T+/Hn94x//UHh4uLy8vFS/fn29+uqrMsY4vN+Xs3fuXWv+FrD3NSpKSd4LJ0+e1KBBgxQSEiJvb281bdpUCxYsKDTuynOKCubXgQMHrEdS/f39NXDgQF24cMHmcefPn9eCBQusz0fBa+Xo3IbjOFKE6+L48eNq2bKl0tPTFR8frwYNGujYsWP67LPPdOHCBXl6eiotLU1t2rTRhQsX9PTTT6t69epasGCBunXrps8++0wPPfSQQ9s+c+aMOnXqpJ49e6pPnz767LPPNHLkSDVp0kSdO3dWw4YNNWHCBI0ZM0bx8fFq27atJKlNmzZF1rvjjjsUEBCgdevWqVu3bpKk9evXy83NTTt37lRmZqb8/PyUn5+vTZs2KT4+vtgeX3nlFbm5uem5555TRkaGpk6dqri4OCUlJVnHfP/99+rcubOioqI0duxYubm5ad68eXrggQe0fv16tWzZUpL0xBNP6LPPPlNCQoIaNWqkU6dOacOGDdq3b1+h0FaU3r17q169enr55Zetv/xWrVql3377TQMHDlRoaKj27NmjuXPnas+ePfrxxx9lsVjUs2dP/fLLL1q8eLFmzJihGjVqSJKCgoIkSZMmTdLo0aPVp08f/e///q9+//13zZ49W+3atdP27duv+XHb7t271bFjRwUFBWncuHHKzc3V2LFjFRISUmhsSbZz5swZdenSRX369NEjjzyiTz75REOGDJGnp6cef/xxSX8Gi27dumnDhg2Kj49Xw4YNtXv3bs2YMUO//PJLoXM/NmzYoCVLlujJJ59U1apVNWvWLPXq1UtHjhxR9erVS7w/V/PUU0+pWrVqGjt2rA4dOqSZM2cqISFBH3/8sXXMqFGjNHXqVHXt2lWxsbHauXOnYmNjdenSpWLrG2PUrVs3rVmzRoMGDVKzZs307bffasSIETp27JhmzJhR4v2+kj1zr7j5K5X8NSqKPe+Fixcvqn379jpw4IASEhIUGRmpTz/9VAMGDFB6erqeeeaZYrfTp08fRUZGavLkydq2bZv+9a9/KTg4WFOmTJEk/fvf/9b//u//qmXLltafHXXr1pXk/NyGAwxwHfTr18+4ubmZLVu2FFqXn59vjDFm2LBhRpJZv369dd3Zs2dNZGSkqVOnjsnLyzPGGDNv3jwjyRw8eNCmzpo1a4wks2bNGuuy++67z0gyCxcutC7LysoyoaGhplevXtZlW7ZsMZLMvHnz7NqfBx980LRs2dJ6v2fPnqZnz57G3d3dfPPNN8YYY7Zt22YkmWXLltn0c9999xXquWHDhiYrK8u6/PXXXzeSzO7du63PUb169UxsbKz1+TLGmAsXLpjIyEjzl7/8xbrM39/fDB061K79uNzYsWONJPPII48UWnfhwoVCyxYvXmwkmXXr1lmXTZs2rcjX5tChQ8bd3d1MmjTJZvnu3buNh4dHoeVX6tGjh/H29jaHDx+2Ltu7d69xd3c3l//YKsl2Ct4br732mnVZVlaWadasmQkODjbZ2dnGGGP+/e9/Gzc3N5v3pTHGzJkzx0gyGzdutC6TZDw9Pc2BAwesy3bu3GkkmdmzZ5d4f4wxJiIiwvTv3996v+D9HxMTY/NeePbZZ427u7tJT083xhiTmppqPDw8TI8ePWzqjRs3zkiyqVmUpUuXGklm4sSJNssffvhhY7FYbPbR3v0uyrXmnr3ztySvUVHsfS/MnDnTSDIffPCBdVx2draJjo42VapUMZmZmTbPydixY633C+bX448/brPthx56yFSvXt1mma+vb5Gvj6NzG47j4zO4XH5+vpYuXaquXbuqefPmhdYXXIL89ddfq2XLltaPbCSpSpUqio+P16FDh7R3716Htl+lShX97W9/s9739PRUy5Yt9dtvvzlUT5Latm2rbdu26fz585L+/Cu5S5cuatasmdavXy/pz6NHFovFZn+uZuDAgTbnGxX8xVzQ444dO5SSkqJHH31Up06d0h9//KE//vhD58+fV4cOHbRu3Trl5+dLkgICApSUlKTjx487tG9PPPFEoWU+Pj7Wf1+6dEl//PGHWrduLUl2HbpfsmSJ8vPz1adPH2vvf/zxh0JDQ1WvXj2tWbPmqo/Ny8vTt99+qx49eqh27drW5Q0bNlRsbKxT2/Hw8NDf//53631PT0/9/e9/18mTJ5WcnCxJ+vTTT9WwYUM1aNDApuYDDzwgSYVqxsTEWP+yl6Q777xTfn5+1teyJPtzLfHx8TaX77dt21Z5eXk6fPiwJGn16tXKzc3Vk08+afO4p556yq76X3/9tdzd3fX000/bLP/HP/4hY4y++eYbm+XF7bej7Jm/JX2NimLPe+Hrr79WaGioHnnkEeu4SpUq6emnn9a5c+e0du3aYrdz5fxq27atTp06pczMzGIf6+zcRsnx8Rlc7vfff1dmZmax3zdy+PBhm/NvCjRs2NC63pHvLKlVq1ah736pVq2adu3aVeJaBdq2bavc3FwlJiYqPDxcJ0+eVNu2bbVnzx6bUNSoUSMFBgYWW+/yX44F/Ul/HtKXpJSUFElS//79r1ojIyND1apV09SpU9W/f3+Fh4crKipKXbp0Ub9+/XTrrbfatW+RkZGFlp0+fVrjx4/XRx99pJMnTxbabnFSUlJkjFG9evWKXF+pUqWrPvb333/XxYsXi3xs/fr19fXXXzu8nbCwsEInkt9+++2SpEOHDql169ZKSUnRvn37rB8DXunK5+PK11L68/UseC1Lsj/XUtx7piAc3XbbbTbjAgMDrWOv5fDhwwoLC1PVqlVtll8+H6/VT0FPBf04yp75W9LXqCj2vBcOHz6sevXqFboa8GrPSVGu9br5+fld87HOzm2UHKEI5d7VvqwvLy+vyOXu7u5FLjdXnCxaEs2bN5e3t7fWrVun2rVrKzg4WLfffrvatm2rt956S1lZWVq/fr3d50EV12PBUaBp06Zd9bLlKlWqSPrznIW2bdvq888/18qVKzVt2jRNmTJFS5YssZ6DcS2XHxUq0KdPH23atEkjRoxQs2bNVKVKFeXn56tTp07W3q4lPz9fFotF33zzTZH7WtC7s67HdvLz89WkSRNNnz69yPXh4eE296/H+60opbUde12vfuypW9LXqCw58zw5O7dRcoQiuFxQUJD8/Pz0008/XXNcRESE9u/fX2j5zz//bF0v/d9fVld+QaA9f6VdTUm/FbngEP769etVu3Zt68ddbdu2VVZWlhYtWqS0tDS1a9fO4Z4uV/CxhJ+fn2JiYoodX7NmTT355JN68skndfLkSd19992aNGmSQz84z5w5o9WrV2v8+PEaM2aMdXnB0avLXe15rFu3rowxioyMtP71ba+goCD5+PgUub0r3y8l3c7x48cLfe3AL7/8IunPq74Kau7cuVMdOnRwybdnl2R/nFEwXw4cOGBz9O/UqVN2Hb2JiIjQd999p7Nnz9ocLbpyPjrLFc+pK14je94LERER2rVrl/Lz822OFpXmc+LKuY3icU4RXM7NzU09evTQl19+qa1btxZaX/AXUpcuXbR582YlJiZa150/f15z585VnTp11KhRI0n/FxDWrVtnHZeXl6e5c+c63GPBD8KSfBNz27ZtlZSUpDVr1lhDUY0aNdSwYUPrlSQFy50VFRWlunXr6tVXX9W5c+cKrS+4FDsvL6/Qx1nBwcEKCwuz69LkohT8ZXvlX7IzZ84sNPZqz2PPnj3l7u6u8ePHF6pjjLG5tL+o7cfGxmrp0qU6cuSIdfm+ffv07bffOrWd3Nxcm0vhs7Oz9c477ygoKEhRUVGS/vzr/NixY3r33XcL9Xbx4kXreWX2Ksn+OKNDhw7y8PDQ22+/bbP8jTfesOvxXbp0UV5eXqHxM2bMkMVicdkvYUfm3pVc8RrZ817o0qWLUlNTba7wy83N1ezZs1WlShXdd999Du/D5Xx9fQs9H9djbqN4HCnCdfHyyy9r5cqVuu+++6yXzJ44cUKffvqpNmzYoICAAP3zn//U4sWL1blzZz399NMKDAzUggULdPDgQf3nP/+x/mXWuHFjtW7dWqNGjdLp06cVGBiojz76SLm5uQ73V7duXQUEBGjOnDmqWrWqfH191apVqyLPrynQtm1bTZo0SUePHrUJP+3atdM777yjOnXqqFatWg73dDk3Nzf961//UufOndW4cWMNHDhQt9xyi44dO6Y1a9bIz89PX375pc6ePatatWrp4YcfVtOmTVWlShV999132rJli1577TWHtu3n56d27dpp6tSpysnJ0S233KKVK1fq4MGDhcYW/PJ44YUX1LdvX1WqVEldu3ZV3bp1NXHiRI0aNUqHDh1Sjx49VLVqVR08eFCff/654uPj9dxzz121h/Hjx2vFihVq27atnnzySesvosaNG9ucW1LS7YSFhWnKlCk6dOiQbr/9dn388cfasWOH5s6daz3/6LHHHtMnn3yiJ554QmvWrNE999yjvLw8/fzzz/rkk0/07bffFnkBwbXYuz/OCAkJ0TPPPKPXXntN3bp1U6dOnbRz50598803qlGjRrFHVLp27ar7779fL7zwgg4dOqSmTZtq5cqVWrZsmYYNG2ZzUrUzHJl7V3LFa2TPeyE+Pl7vvPOOBgwYoOTkZNWpU0efffaZNm7cqJkzZxY6/8pRUVFR+u677zR9+nSFhYUpMjJS9evXd/nchh1K+3I33DwOHz5s+vXrZ4KCgoyXl5e59dZbzdChQ20uRf/111/Nww8/bAICAoy3t7dp2bKlWb58eaFav/76q4mJiTFeXl4mJCTE/L//9//MqlWrirwkv3HjxoUe379/fxMREWGzbNmyZaZRo0bGw8PDrsvzMzMzjbu7u6latarJzc21Lv/ggw+MJPPYY48VeszVLsn/9NNPbcYdPHiwyB62b99uevbsaapXr268vLxMRESE6dOnj1m9erUx5s/LiEeMGGGaNm1qqlatanx9fU3Tpk3NW2+9dc19Meb/Lhn+/fffC63773//ax566CETEBBg/P39Te/evc3x48cLXXZsjDEvvfSSueWWW4ybm1uhy/P/85//mHvvvdf4+voaX19f06BBAzN06FCzf//+Yvtbu3atiYqKMp6enubWW281c+bMsfZ8JXu2U/De2Lp1q4mOjjbe3t4mIiLCvPHGG4XqZWdnmylTppjGjRsbLy8vU61aNRMVFWXGjx9vMjIyrOMkFXnJ9JWX1Zdkf652Sf6VX29R1FdS5ObmmtGjR5vQ0FDj4+NjHnjgAbNv3z5TvXp188QTTxT5PF/u7Nmz5tlnnzVhYWGmUqVKpl69embatGk2XwVQ0v0uytXmXknmr72vUVFK8l5IS0szAwcONDVq1DCenp6mSZMmRf6suHJuXG1+FfUVIz///LNp166d8fHxsX59gjNzG46zGFNGZ+kBQClq3769/vjjj2LPdbvRpKenq1q1apo4caJeeOGFsm6nXLhZ3wsoHucUAcAN4uLFi4WWFZwLdvl/NwOgaJxTBAA3iI8//ljz589Xly5dVKVKFW3YsEGLFy9Wx44ddc8995R1e0C5RygCgBvEnXfeKQ8PD02dOlWZmZnWk68nTpxY1q0BFQLnFAEAAIhzigAAACQRigAAACRxTpFd8vPzdfz4cVWtWtUlX1EPAACuP2OMzp49q7CwsEL/sW9RCEV2OH78eLn6DwYBAID9jh49atf/OEAoskPBV7kfPXpUfn5+ZdwNAACwR2ZmpsLDw+3+L1kIRXYo+MjMz8+PUAQAQAVj76kvnGgNAAAgQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkyaOsGwBQ/kWNWOiyWsnT+rmsFgC4EkeKAAAARCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQxJc3AjcEvlwRAJzHkSIAAAARigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACQRigAAACTxjdYAbnB82zcAe3GkCAAAQIQiAAAASWUcitatW6euXbsqLCxMFotFS5cuta7LycnRyJEj1aRJE/n6+iosLEz9+vXT8ePHbWqcPn1acXFx8vPzU0BAgAYNGqRz587ZjNm1a5fatm0rb29vhYeHa+rUqaWxewAAoAIp01B0/vx5NW3aVG+++WahdRcuXNC2bds0evRobdu2TUuWLNH+/fvVrVs3m3FxcXHas2ePVq1apeXLl2vdunWKj4+3rs/MzFTHjh0VERGh5ORkTZs2TePGjdPcuXOv+/4BAICKo0xPtO7cubM6d+5c5Dp/f3+tWrXKZtkbb7yhli1b6siRI6pdu7b27dunFStWaMuWLWrevLkkafbs2erSpYteffVVhYWFadGiRcrOztb7778vT09PNW7cWDt27ND06dNtwhMAALi5VahzijIyMmSxWBQQECBJSkxMVEBAgDUQSVJMTIzc3NyUlJRkHdOuXTt5enpax8TGxmr//v06c+ZMkdvJyspSZmamzQ0AANzYKkwounTpkkaOHKlHHnlEfn5+kqTU1FQFBwfbjPPw8FBgYKBSU1OtY0JCQmzGFNwvGHOlyZMny9/f33oLDw939e4AAIBypkKEopycHPXp00fGGL399tvXfXujRo1SRkaG9Xb06NHrvk0AAFC2yv2XNxYEosOHD+v777+3HiWSpNDQUJ08edJmfG5urk6fPq3Q0FDrmLS0NJsxBfcLxlzJy8tLXl5ertwNAABQzpXrI0UFgSglJUXfffedqlevbrM+Ojpa6enpSk5Oti77/vvvlZ+fr1atWlnHrFu3Tjk5OdYxq1atUv369VWtWrXS2REAAFDulWkoOnfunHbs2KEdO3ZIkg4ePKgdO3boyJEjysnJ0cMPP6ytW7dq0aJFysvLU2pqqlJTU5WdnS1JatiwoTp16qTBgwdr8+bN2rhxoxISEtS3b1+FhYVJkh599FF5enpq0KBB2rNnjz7++GO9/vrrGj58eFntNgAAKIfK9OOzrVu36v7777feLwgq/fv317hx4/TFF19Ikpo1a2bzuDVr1qh9+/aSpEWLFikhIUEdOnSQm5ubevXqpVmzZlnH+vv7a+XKlRo6dKiioqJUo0YNjRkzhsvxAQCAjTINRe3bt5cx5qrrr7WuQGBgoD788MNrjrnzzju1fv36EvcHAABuHuX6nCIAAIDSQigCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAECS5FHWDQC4uUWNWOiyWsnT+rmsFoCbD0eKAAAARCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQRCgCAACQVMahaN26deratavCwsJksVi0dOlSm/XGGI0ZM0Y1a9aUj4+PYmJilJKSYjPm9OnTiouLk5+fnwICAjRo0CCdO3fOZsyuXbvUtm1beXt7Kzw8XFOnTr3euwYAACqYMg1F58+fV9OmTfXmm28WuX7q1KmaNWuW5syZo6SkJPn6+io2NlaXLl2yjomLi9OePXu0atUqLV++XOvWrVN8fLx1fWZmpjp27KiIiAglJydr2rRpGjdunObOnXvd9w8AAFQcHmW58c6dO6tz585FrjPGaObMmXrxxRfVvXt3SdLChQsVEhKipUuXqm/fvtq3b59WrFihLVu2qHnz5pKk2bNnq0uXLnr11VcVFhamRYsWKTs7W++//748PT3VuHFj7dixQ9OnT7cJTwAA4OZWbs8pOnjwoFJTUxUTE2Nd5u/vr1atWikxMVGSlJiYqICAAGsgkqSYmBi5ubkpKSnJOqZdu3by9PS0jomNjdX+/ft15syZUtobAABQ3pXpkaJrSU1NlSSFhITYLA8JCbGuS01NVXBwsM16Dw8PBQYG2oyJjIwsVKNgXbVq1QptOysrS1lZWdb7mZmZTu4NAAAo78rtkaKyNHnyZPn7+1tv4eHhZd0SAAC4zsptKAoNDZUkpaWl2SxPS0uzrgsNDdXJkydt1ufm5ur06dM2Y4qqcfk2rjRq1ChlZGRYb0ePHnV+hwAAQLlWbkNRZGSkQkNDtXr1auuyzMxMJSUlKTo6WpIUHR2t9PR0JScnW8d8//33ys/PV6tWraxj1q1bp5ycHOuYVatWqX79+kV+dCZJXl5e8vPzs7kBAIAbW5mGonPnzmnHjh3asWOHpD9Prt6xY4eOHDkii8WiYcOGaeLEifriiy+0e/du9evXT2FhYerRo4ckqWHDhurUqZMGDx6szZs3a+PGjUpISFDfvn0VFhYmSXr00Ufl6empQYMGac+ePfr444/1+uuva/jw4WW01wAAoDwq0xOtt27dqvvvv996vyCo9O/fX/Pnz9fzzz+v8+fPKz4+Xunp6br33nu1YsUKeXt7Wx+zaNEiJSQkqEOHDnJzc1OvXr00a9Ys63p/f3+tXLlSQ4cOVVRUlGrUqKExY8ZwOT4AALBRpqGoffv2MsZcdb3FYtGECRM0YcKEq44JDAzUhx9+eM3t3HnnnVq/fr3DfQIAgBtfuT2nCAAAoDQRigAAAEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkFTOQ1FeXp5Gjx6tyMhI+fj4qG7dunrppZdkjLGOMcZozJgxqlmzpnx8fBQTE6OUlBSbOqdPn1ZcXJz8/PwUEBCgQYMG6dy5c6W9OwAAoBwr16FoypQpevvtt/XGG29o3759mjJliqZOnarZs2dbx0ydOlWzZs3SnDlzlJSUJF9fX8XGxurSpUvWMXFxcdqzZ49WrVql5cuXa926dYqPjy+LXQIAAOWUR1k3cC2bNm1S9+7d9eCDD0qS6tSpo8WLF2vz5s2S/jxKNHPmTL344ovq3r27JGnhwoUKCQnR0qVL1bdvX+3bt08rVqzQli1b1Lx5c0nS7Nmz1aVLF7366qsKCwsrm50DAADlSrk+UtSmTRutXr1av/zyiyRp586d2rBhgzp37ixJOnjwoFJTUxUTE2N9jL+/v1q1aqXExERJUmJiogICAqyBSJJiYmLk5uampKSkUtwbAABQnpXrI0X//Oc/lZmZqQYNGsjd3V15eXmaNGmS4uLiJEmpqamSpJCQEJvHhYSEWNelpqYqODjYZr2Hh4cCAwOtY66UlZWlrKws6/3MzEyX7RMAACifyvWRok8++USLFi3Shx9+qG3btmnBggV69dVXtWDBguu63cmTJ8vf3996Cw8Pv67bAwAAZa9ch6IRI0bon//8p/r27asmTZroscce07PPPqvJkydLkkJDQyVJaWlpNo9LS0uzrgsNDdXJkydt1ufm5ur06dPWMVcaNWqUMjIyrLejR4+6etcAAEA5U65D0YULF+TmZtuiu7u78vPzJUmRkZEKDQ3V6tWrreszMzOVlJSk6OhoSVJ0dLTS09OVnJxsHfP9998rPz9frVq1KnK7Xl5e8vPzs7kBAIAbW7k+p6hr166aNGmSateurcaNG2v79u2aPn26Hn/8cUmSxWLRsGHDNHHiRNWrV0+RkZEaPXq0wsLC1KNHD0lSw4YN1alTJw0ePFhz5sxRTk6OEhIS1LdvX648AwAAVuU6FM2ePVujR4/Wk08+qZMnTyosLEx///vfNWbMGOuY559/XufPn1d8fLzS09N17733asWKFfL29raOWbRokRISEtShQwe5ubmpV69emjVrVlnsEgAAKKfKdSiqWrWqZs6cqZkzZ151jMVi0YQJEzRhwoSrjgkMDNSHH354HToEAAA3inJ9ThEAAEBpIRQBAACIUAQAACCJUAQAACCJUAQAACCpnF99BgA3s6gRC11WK3laP5fVAm5UHCkCAAAQoQgAAEASoQgAAECSg6HogQceUHp6eqHlmZmZeuCBB5ztCQAAoNQ5FIp++OEHZWdnF1p+6dIlrV+/3ummAAAASluJrj7btWuX9d979+5Vamqq9X5eXp5WrFihW265xXXdAQAAlJIShaJmzZrJYrHIYrEU+TGZj4+PZs+e7bLmAAAASkuJQtHBgwdljNGtt96qzZs3KygoyLrO09NTwcHBcnd3d3mTAAAA11uJQlFERIQkKT8//7o0AwAAUFYc/kbrlJQUrVmzRidPniwUksaMGeN0YwBQEbjqW6f5xmmg7DkUit59910NGTJENWrUUGhoqCwWi3WdxWIhFAEAgArHoVA0ceJETZo0SSNHjnR1PwAAAGXCoe8pOnPmjHr37u3qXgAAAMqMQ6God+/eWrlypat7AQAAKDMOfXx22223afTo0frxxx/VpEkTVapUyWb9008/7ZLmAAAASotDoWju3LmqUqWK1q5dq7Vr19qss1gshCIAAFDhOBSKDh486Oo+AAAAypRD5xQBAADcaBw6UvT4449fc/3777/vUDMAAABlxaFQdObMGZv7OTk5+umnn5Senl7kfxQLAABQ3jkUij7//PNCy/Lz8zVkyBDVrVvX6aYAAABKm8vOKXJzc9Pw4cM1Y8YMV5UEAAAoNS490frXX39Vbm6uK0sCAACUCoc+Phs+fLjNfWOMTpw4oa+++kr9+/d3SWMAAAClyaFQtH37dpv7bm5uCgoK0muvvVbslWkAAADlkUOhaM2aNa7uAwAAoEw5FIoK/P7779q/f78kqX79+goKCnJJUwAAAKXNoVB0/vx5PfXUU1q4cKHy8/MlSe7u7urXr59mz56typUru7RJoKKLGrHQZbWSp/VzWS0AwP9x6Oqz4cOHa+3atfryyy+Vnp6u9PR0LVu2TGvXrtU//vEPV/cIAABw3Tl0pOg///mPPvvsM7Vv3966rEuXLvLx8VGfPn309ttvu6o/AACAUuHQkaILFy4oJCSk0PLg4GBduHDB6aYAAABKm0OhKDo6WmPHjtWlS5esyy5evKjx48crOjraZc0BAACUFoc+Pps5c6Y6deqkWrVqqWnTppKknTt3ysvLSytXrnRpgwAAAKXBoVDUpEkTpaSkaNGiRfr5558lSY888oji4uLk4+Pj0gYBAABKg0OhaPLkyQoJCdHgwYNtlr///vv6/fffNXLkSJc0BwAAUFocOqfonXfeUYMGDQotb9y4sebMmeN0UwAAAKXNoVCUmpqqmjVrFloeFBSkEydOON0UAABAaXMoFIWHh2vjxo2Flm/cuFFhYWFONwUAAFDaHApFgwcP1rBhwzRv3jwdPnxYhw8f1vvvv69nn3220HlGzjp27Jj+9re/qXr16vLx8VGTJk20detW63pjjMaMGaOaNWvKx8dHMTExSklJsalx+vRpxcXFyc/PTwEBARo0aJDOnTvn0j4BAEDF5tCJ1iNGjNCpU6f05JNPKjs7W5Lk7e2tkSNHatSoUS5r7syZM7rnnnt0//3365tvvlFQUJBSUlJUrVo165ipU6dq1qxZWrBggSIjIzV69GjFxsZq79698vb2liTFxcXpxIkTWrVqlXJycjRw4EDFx8frww8/dFmvAACgYnMoFFksFk2ZMkWjR4/Wvn375OPjo3r16snLy8ulzU2ZMkXh4eGaN2+edVlkZKT138YYzZw5Uy+++KK6d+8uSVq4cKFCQkK0dOlS9e3bV/v27dOKFSu0ZcsWNW/eXJI0e/ZsdenSRa+++iof9wEAAEkOfnxWoEqVKmrRooXuuOMOlwciSfriiy/UvHlz9e7dW8HBwbrrrrv07rvvWtcfPHhQqampiomJsS7z9/dXq1atlJiYKElKTExUQECANRBJUkxMjNzc3JSUlFTkdrOyspSZmWlzAwAANzanQtH19ttvv+ntt99WvXr19O2332rIkCF6+umntWDBAkl/XgUnqdD/wxYSEmJdl5qaquDgYJv1Hh4eCgwMtI650uTJk+Xv72+9hYeHu3rXAABAOVOuQ1F+fr7uvvtuvfzyy7rrrrsUHx+vwYMHX/fvQho1apQyMjKst6NHj17X7QEAgLJXrkNRzZo11ahRI5tlDRs21JEjRyRJoaGhkqS0tDSbMWlpadZ1oaGhOnnypM363NxcnT592jrmSl5eXvLz87O5AQCAG1u5DkX33HOP9u/fb7Psl19+UUREhKQ/T7oODQ3V6tWrreszMzOVlJSk6OhoSVJ0dLTS09OVnJxsHfP9998rPz9frVq1KoW9AAAAFYFDV5+VlmeffVZt2rTRyy+/rD59+mjz5s2aO3eu5s6dK+nPq+CGDRumiRMnql69etZL8sPCwtSjRw9Jfx5Z6tSpk/Vjt5ycHCUkJKhv375ceQYAAKzKdShq0aKFPv/8c40aNUoTJkxQZGSkZs6cqbi4OOuY559/XufPn1d8fLzS09N17733asWKFdbvKJKkRYsWKSEhQR06dJCbm5t69eqlWbNmlcUuAQCAcqpchyJJ+utf/6q//vWvV11vsVg0YcIETZgw4apjAgMD+aJGAABwTeX6nCIAAIDSQigCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAECS5FHWDQAAykbUiIUuq5U8rZ/LagFlhSNFAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIqmCh6JVXXpHFYtGwYcOsyy5duqShQ4eqevXqqlKlinr16qW0tDSbxx05ckQPPvigKleurODgYI0YMUK5ubml3D0AACjPKkwo2rJli9555x3deeedNsufffZZffnll/r000+1du1aHT9+XD179rSuz8vL04MPPqjs7Gxt2rRJCxYs0Pz58zVmzJjS3gUAAFCOVYhQdO7cOcXFxendd99VtWrVrMszMjL03nvvafr06XrggQcUFRWlefPmadOmTfrxxx8lSStXrtTevXv1wQcfqFmzZurcubNeeuklvfnmm8rOzi6rXQIAAOVMhQhFQ4cO1YMPPqiYmBib5cnJycrJybFZ3qBBA9WuXVuJiYmSpMTERDVp0kQhISHWMbGxscrMzNSePXuK3F5WVpYyMzNtbgAA4MbmUdYNFOejjz7Stm3btGXLlkLrUlNT5enpqYCAAJvlISEhSk1NtY65PBAVrC9YV5TJkydr/PjxLugeAABUFOX6SNHRo0f1zDPPaNGiRfL29i617Y4aNUoZGRnW29GjR0tt2wAAoGyU61CUnJyskydP6u6775aHh4c8PDy0du1azZo1Sx4eHgoJCVF2drbS09NtHpeWlqbQ0FBJUmhoaKGr0QruF4y5kpeXl/z8/GxuAADgxlauQ1GHDh20e/du7dixw3pr3ry54uLirP+uVKmSVq9ebX3M/v37deTIEUVHR0uSoqOjtXv3bp08edI6ZtWqVfLz81OjRo1KfZ8AAED5VK7PKapataruuOMOm2W+vr6qXr26dfmgQYM0fPhwBQYGys/PT0899ZSio6PVunVrSVLHjh3VqFEjPfbYY5o6dapSU1P14osvaujQofLy8ir1fQIAAOVTuQ5F9pgxY4bc3NzUq1cvZWVlKTY2Vm+99ZZ1vbu7u5YvX64hQ4YoOjpavr6+6t+/vyZMmFCGXQMAgPKmwoWiH374wea+t7e33nzzTb355ptXfUxERIS+/vrr69wZAACoyMr1OUUAAAClhVAEAAAgQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAIAkQhEAAICkCvh/nwEAyr+oEQtdVit5Wj+X1QKuhSNFAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIIhQBAABIkjzKugGgvIgasdBltZKn9XNZLQBA6eBIEQAAgAhFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAksp5KJo8ebJatGihqlWrKjg4WD169ND+/fttxly6dElDhw5V9erVVaVKFfXq1UtpaWk2Y44cOaIHH3xQlStXVnBwsEaMGKHc3NzS3BUAAFDOletQtHbtWg0dOlQ//vijVq1apZycHHXs2FHnz5+3jnn22Wf15Zdf6tNPP9XatWt1/Phx9ezZ07o+Ly9PDz74oLKzs7Vp0yYtWLBA8+fP15gxY8pilwAAQDnlUdYNXMuKFSts7s+fP1/BwcFKTk5Wu3btlJGRoffee08ffvihHnjgAUnSvHnz1LBhQ/34449q3bq1Vq5cqb179+q7775TSEiImjVrppdeekkjR47UuHHj5OnpWRa7BgAAyplyfaToShkZGZKkwMBASVJycrJycnIUExNjHdOgQQPVrl1biYmJkqTExEQ1adJEISEh1jGxsbHKzMzUnj17itxOVlaWMjMzbW4AAODGVmFCUX5+voYNG6Z77rlHd9xxhyQpNTVVnp6eCggIsBkbEhKi1NRU65jLA1HB+oJ1RZk8ebL8/f2tt/DwcBfvDQAAKG8qTCgaOnSofvrpJ3300UfXfVujRo1SRkaG9Xb06NHrvk0AAFC2yvU5RQUSEhK0fPlyrVu3TrVq1bIuDw0NVXZ2ttLT022OFqWlpSk0NNQ6ZvPmzTb1Cq5OKxhzJS8vL3l5ebl4LwAAQHlWro8UGWOUkJCgzz//XN9//70iIyNt1kdFRalSpUpavXq1ddn+/ft15MgRRUdHS5Kio6O1e/dunTx50jpm1apV8vPzU6NGjUpnRwAAQLlXro8UDR06VB9++KGWLVumqlWrWs8B8vf3l4+Pj/z9/TVo0CANHz5cgYGB8vPz01NPPaXo6Gi1bt1aktSxY0c1atRIjz32mKZOnarU1FS9+OKLGjp0KEeDAACAVbkORW+//bYkqX379jbL582bpwEDBkiSZsyYITc3N/Xq1UtZWVmKjY3VW2+9ZR3r7u6u5cuXa8iQIYqOjpavr6/69++vCRMmlNZuAACACqBchyJjTLFjvL299eabb+rNN9+86piIiAh9/fXXrmwNAADcYMr1OUUAAAClhVAEAAAgQhEAAICkcn5OEQAARYkasdBltZKn9XNZLVRsHCkCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASX96ICoQvawMAXE8cKQIAABChCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQJLkUdYN4MYSNWKhy2olT+vnsloAABSHUAQAwBX4A+/mxMdnAAAAIhQBAABIIhQBAABIIhQBAABIIhQBAABI4uozAABKFVe2lV8cKQIAABChCAAAQBKhCAAAQNJNForefPNN1alTR97e3mrVqpU2b95c1i0BAIBy4qY50frjjz/W8OHDNWfOHLVq1UozZ85UbGys9u/fr+Dg4LJur9Rwgh8A3Nj4Oe+4m+ZI0fTp0zV48GANHDhQjRo10pw5c1S5cmW9//77Zd0aAAAoB26KI0XZ2dlKTk7WqFGjrMvc3NwUExOjxMTEMuysMBI+AKA8c9XvqfL4O+qmCEV//PGH8vLyFBISYrM8JCREP//8c6HxWVlZysrKst7PyMiQJGVmZkqS2r242GW9rZv4iM39vKyLLqtd0O+NUp/ei65d0etX5N5dWb8i915U/Yrc+/WuX5F7d2X9omq7+vdrwTaMMfY9yNwEjh07ZiSZTZs22SwfMWKEadmyZaHxY8eONZK4cePGjRs3bjfA7ejRo3blhZviSFGNGjXk7u6utLQ0m+VpaWkKDQ0tNH7UqFEaPny49X5+fr5Onz6t6tWry2KxFLu9zMxMhYeH6+jRo/Lz83N+B0qxfkXu/XrXr8i9X+/69H5j1qf3G7N+Re69pPWNMTp79qzCwsLsqn1ThCJPT09FRUVp9erV6tGjh6Q/g87q1auVkJBQaLyXl5e8vLxslgUEBJR4u35+ftflDVEa9Sty79e7fkXu/XrXp/cbsz6935j1K3LvJanv7+9vd82bIhRJ0vDhw9W/f381b95cLVu21MyZM3X+/HkNHDiwrFsDAADlwE0Tiv7nf/5Hv//+u8aMGaPU1FQ1a9ZMK1asKHTyNQAAuDndNKFIkhISEor8uMzVvLy8NHbs2EIfwVWE+hW59+tdvyL3fr3r0/uNWZ/eb8z6Fbn3613fYoy916kBAADcuG6ab7QGAAC4FkIRAACACEUAAACSCEUAAACSCEUOy8vL0+jRoxUZGSkfHx/VrVtXL730ks3/r2KM0ZgxY1SzZk35+PgoJiZGKSkpLqu/ZMkSdezY0fpN2zt27HBZ/zk5ORo5cqSaNGkiX19fhYWFqV+/fjp+/LhLeh83bpwaNGggX19fVatWTTExMUpKSnLZc3O5J554QhaLRTNnznRJ7QEDBshisdjcOnXq5NLe9+3bp27dusnf31++vr5q0aKFjhw54pL6V/ZecJs2bZrTtc+dO6eEhATVqlVLPj4+atSokebMmeOy5yYtLU0DBgxQWFiYKleurE6dOtk9p86ePathw4YpIiJCPj4+atOmjbZs2WJd78x8tae+M/O1uPrOzFd7endmvtpT/3Ilma/21ndmztrTu6Pz1Z76js5Xe2o7M1/tqV+S+bpu3Tp17dpVYWFhslgsWrp0qc16e+bn6dOnFRcXJz8/PwUEBGjQoEE6d+6c3ftTsCE4YNKkSaZ69epm+fLl5uDBg+bTTz81VapUMa+//rp1zCuvvGL8/f3N0qVLzc6dO023bt1MZGSkuXjxokvqL1y40IwfP968++67RpLZvn27y/pPT083MTEx5uOPPzY///yzSUxMNC1btjRRUVEu6X3RokVm1apV5tdffzU//fSTGTRokPHz8zMnT550Sf0CS5YsMU2bNjVhYWFmxowZLqndv39/06lTJ3PixAnr7fTp08XWtrf+gQMHTGBgoBkxYoTZtm2bOXDggFm2bJlJS0tzSf3L+z5x4oR5//33jcViMb/++qvTtQcPHmzq1q1r1qxZYw4ePGjeeecd4+7ubpYtW+Z07/n5+aZ169ambdu2ZvPmzebnn3828fHxpnbt2ubcuXPF1u/Tp49p1KiRWbt2rUlJSTFjx441fn5+5r///a8xxrn5ak99Z+ZrcfWdma/29O7MfLWnfoGSzld76zszZ4ur7cx8tae+o/PVntrOzNfi6pd0vn799dfmhRdeMEuWLDGSzOeff26z3p752alTJ9O0aVPz448/mvXr15vbbrvNPPLII3btSwFCkYMefPBB8/jjj9ss69mzp4mLizPG/PkDPDQ01EybNs26Pj093Xh5eZnFixc7Xf9yBw8eLPEP2ZLUL7B582YjyRw+fNjltTMyMowk891337ms9//+97/mlltuMT/99JOJiIiw64esPbX79+9vunfvXmwtR+v/z//8j/nb3/523epfqXv37uaBBx5wSe3GjRubCRMm2Iy5++67zQsvvOB0/f379xtJ5qeffrKuz8vLM0FBQebdd9+9Zu0LFy4Yd3d3s3z58iJ7c3a+Flf/co7M15LUL2DvfHWkdknmq731HZmv9tZ3dM7aU9uZ+erIc2/vfLWntjPztbj6zszXK0ORPfNz7969RpLZsmWLdcw333xjLBaLOXbsWLH7U4CPzxzUpk0brV69Wr/88oskaefOndqwYYM6d+4sSTp48KBSU1MVExNjfYy/v79atWqlxMREp+tf7/6LkpGRIYvFUuz/A1fS2tnZ2Zo7d678/f3VtGlTl/Sen5+vxx57TCNGjFDjxo2LrVnS3n/44QcFBwerfv36GjJkiE6dOuWS+vn5+frqq690++23KzY2VsHBwWrVqlWhQ8nO9l8gLS1NX331lQYNGuSS2m3atNEXX3yhY8eOyRijNWvW6JdfflHHjh2drp+VlSVJ8vb2tj7Gzc1NXl5e2rBhwzVr5+bmKi8vz+axkuTj46MNGzY4PV+Lq+8sR+rbO19LWruk89We+o7O15L078icLa62s/O1pM99SearPbWdma/F1Xdmvl7JnvmZmJiogIAANW/e3DomJiZGbm5uJfqolyNFDsrLyzMjR440FovFeHh4GIvFYl5++WXr+o0bNxpJ5vjx4zaP6927t+nTp4/T9S/nyF+eJalvjDEXL140d999t3n00UddVvvLL780vr6+xmKxmLCwMLN582aX9f7yyy+bv/zlLyY/P98YY+z+y9Oe2osXLzbLli0zu3btMp9//rlp2LChadGihcnNzXW6/okTJ4wkU7lyZTN9+nSzfft2M3nyZGOxWMwPP/zgkv4vN2XKFFOtWjW7PiKyp/alS5dMv379jCTj4eFhPD09zYIFC4qtbU/97OxsU7t2bdO7d29z+vRpk5WVZV555RUjyXTs2LHY+tHR0ea+++4zx44dM7m5uebf//63cXNzM7fffrvT87W4+pdzZL6WpL4xJZuv9tZ2dL7aU9/R+WpvfWfm7LVqOztf7en9ciWZr/bUdma+FlffmfmqK44U2TM/J02aVORzFhQUZN566y2794lQ5KDFixebWrVqmcWLF5tdu3aZhQsXmsDAQDN//nxjjPOhqLj6l3Pkh2xJ6mdnZ5uuXbuau+66y2RkZLis9rlz50xKSopJTEw0jz/+uKlTp45dn8MXV3/r1q0mJCTE5pCpvT9kS/K8FPj111/t/iihuPrHjh0zkgp9Dt61a1fTt29fl/dfv359k5CQUGxde2tPmzbN3H777eaLL74wO3fuNLNnzzZVqlQxq1atckn9rVu3mqZNmxpJxt3d3cTGxprOnTubTp06FVv/wIEDpl27dtbHtmjRwsTFxZkGDRq4JBRdq/7lHA1F9tYv6Xy1t7aj87W4+s7M15L0f7mSzNlr1XZ2vpa095LMV3tqOzNf7anv6HwlFFVAtWrVMm+88YbNspdeesnUr1/fGPN/k+7KH3zt2rUzTz/9tNP1L+fID1l762dnZ5sePXqYO++80/zxxx8urX2l22677ZpHNeytP2PGDGOxWIy7u7v1Jsm4ubmZiIiI69J7jRo1zJw5c5zuPSsry3h4eJiXXnrJZszzzz9v2rRp43T9y61bt85IMjt27Ci2rj21L1y4YCpVqlToHINBgwaZ2NhYl/aenp5uPcm3ZcuW5sknn7RrH4z585d7wQ/XPn36mC5dujg9X4urfzlHQ5E99R2ZryXp/XL2ztfi6jszX53p3945e63azs7XkvRe0vlaXG1n52tJei/pfL0yFNkzP9977z0TEBBgsz4nJ8e4u7ubJUuW2L0vnFPkoAsXLsjNzfbpc3d3V35+viQpMjJSoaGhWr16tXV9ZmamkpKSFB0d7XR9Z9lTPycnR3369FFKSoq+++47Va9e3WW1i5Kfn2/9HNqZ+o899ph27dqlHTt2WG9hYWEaMWKEvv32W5f3/t///lenTp1SzZo1ne7d09NTLVq00P79+23G/PLLL4qIiHC6/uXee+89RUVF2XVeiD21c3JylJOT4/D7tiS9+/v7KygoSCkpKdq6dau6d+9u1z5Ikq+vr2rWrKkzZ87o22+/Vffu3Z2er8XVd6Wr1Xd0vjrau73ztbj6zsxXR/svyZy9Vm1n52tJei/pfC2utrPztSS9OzNfJft+n0ZHRys9PV3JycnWMd9//73y8/PVqlUr+zdmd3yCjf79+5tbbrnFevnwkiVLTI0aNczzzz9vHfPKK6+YgIAA62fZ3bt3t/sSX3vqnzp1ymzfvt189dVXRpL56KOPzPbt282JEyecrp+dnW26detmatWqZXbs2GFzSWhWVpZTtc+dO2dGjRplEhMTzaFDh8zWrVvNwIEDjZeXl82VCs48N1ey93B8cbXPnj1rnnvuOZOYmGgOHjxovvvuO3P33XebevXqmUuXLrmk9yVLlphKlSqZuXPnmpSUFDN79mzj7u5u1q9f77LnJiMjw1SuXNm8/fbbxdYsSe377rvPNG7c2KxZs8b89ttvZt68ecbb29uuw9f21P/kk0/MmjVrzK+//mqWLl1qIiIiTM+ePe3qf8WKFeabb74xv/32m1m5cqVp2rSpadWqlcnOzjbGODdf7anvzHwtrr4z87W42s7OV3uemyuV9OOza9V3ds4W17sz89Xe58aR+WpPbWfmqz31SzJfz549a7Zv3262b99uJFnP0Sq4etKe+dmpUydz1113maSkJLNhwwZTr149LskvLZmZmeaZZ54xtWvXNt7e3ubWW281L7zwgs0PoPz8fDN69GgTEhJivLy8TIcOHcz+/ftdVn/evHlGUqHb2LFjna5fcIi/qNuaNWucqn3x4kXz0EMPmbCwMOPp6Wlq1qxpunXrZveJm/Y8N1ey94dscbUvXLhgOnbsaIKCgkylSpVMRESEGTx4sElNTXVp7++995657bbbjLe3t2natKlZunSpS+u/8847xsfHx6Snp9tV197aJ06cMAMGDDBhYWHG29vb1K9f37z22mvWE2idrf/666+bWrVqmUqVKpnatWubF1980a5f+sYY8/HHH5tbb73VeHp6mtDQUDN06FCb/XdmvtpT35n5Wlx9Z+ZrcbWdna/2PDdXKmkoulZ9Z+esPb07Ol/tre/IfLWntjPz1Z76JZmva9asKfL9279/f2OMffPz1KlT5pFHHjFVqlQxfn5+ZuDAgebs2bMles4sxlzla4ABAABuIpxTBAAAIEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRgJvQ/PnzFRAQUNZtAChn+PJGADedixcv6uzZswoODrb7Me3bt1ezZs00c+bM69cYgDLlUdYNAEBp8/HxkY+PT1m3AaCc4eMzABVO+/btlZCQoISEBPn7+6tGjRoaPXq0Cg58nzlzRv369VO1atVUuXJlde7cWSkpKdbHX/nx2bhx49SsWTP9+9//Vp06deTv76++ffvq7NmzkqQBAwZo7dq1ev3112WxWGSxWHTo0CGdOXNGcXFxCgoKko+Pj+rVq6d58+aV6nMBwHUIRQAqpAULFsjDw0ObN2/W66+/runTp+tf//qXpD9DzNatW/XFF18oMTFRxhh16dJFOTk5V63366+/aunSpVq+fLmWL1+utWvX6pVXXpEkvf7664qOjtbgwYN14sQJnThxQuHh4Ro9erT27t2rb775Rvv27dPbb7+tGjVqlMr+A3A9Pj4DUCGFh4drxowZslgsql+/vnbv3q0ZM2aoffv2+uKLL7Rx40a1adNGkrRo0SKFh4dr6dKl6t27d5H18vPzNX/+fFWtWlWS9Nhjj2n16tWaNGmS/P395enpqcqVKys0NNT6mCNHjuiuu+5S8+bNJUl16tS5vjsN4LriSBGACql169ayWCzW+9HR0UpJSdHevXvl4eGhVq1aWddVr15d9evX1759+65ar06dOtZAJEk1a9bUyZMnr9nDkCFD9NFHH6lZs2Z6/vnntWnTJif2CEBZIxQBgKRKlSrZ3LdYLMrPz7/mYzp37qzDhw/r2Wef1fHjx9WhQwc999xz17NNANcRoQhAhZSUlGRz/8cff1S9evXUqFEj5ebm2qw/deqU9u/fr0aNGjm8PU9PT+Xl5RVaHhQUpP79++uDDz7QzJkzNXfuXIe3AaBsEYoAVEhHjhzR8OHDtX//fi1evFizZ8/WM888o3r16ql79+4aPHiwNmzYoJ07d+pvf/ubbrnlFnXv3t3h7dWpU0dJSUk6dOiQ/vjjD+Xn52vMmDFatmyZDhw4oD179mj58uVq2LChC/cSQGkiFAGokPr166eLFy+qZcuWGjp0qJ555hnFx8dLkubNm6eoqCj99a9/VXR0tIwx+vrrrwt9RFYSzz33nNzd3dWoUSMFBQXpyJEj8vT01KhRo3TnnXeqXbt2cnd310cffeSqXQRQyvhGawAVDt8uDeB64EgRAACACEUAAACS+PgMAABAEkeKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJEn/H6i60oTTbSfJAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sns.countplot(data=data, x='points')\n",
- "plt.title(\"count wines rate depending on the points\")\n",
- "plt.xlabel(\"points\")\n",
- "plt.ylabel(\"count\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "SH9b95lPfMAY"
- },
- "source": [
- "Видим, что количество вин с оценкой в диапазоне 87-90 больше всего, следовательно, для них признак оценки будет меньше влиять на модель."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "lGZe1Xt4SGlb"
- },
- "source": [
- "Проверим что оценка и стоимость вина не линейно-зависимы."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 472
- },
- "id": "srmdq10zQ2jp",
- "outputId": "c2c7cdd1-099f-4af9-fbc1-2d286c005292"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHHCAYAAABUcOnjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+vUlEQVR4nO3deViU9f7/8dewIwq4sIgLapqKa2EqlUtG4pJLerLM41Ie62dgpSfreHK3svLkkqfMPKZZmmWn3CrXzI6Jlqa5paFpmAKWxuIGCp/fH13MVwRjGAYB7+fjuuaque973vf7vofP8PJeBpsxxggAAOAG51baDQAAAFwPhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB5Yis1m08SJE0u7jTKvTp06GjJkSGm34TJXb8+XX34pm82mL7/8stR6Ki3Hjh2TzWbTv/71r9JupcgWLlwom82mY8eOlXYrKKcIPUA58MYbb2jhwoWl3QbKkc8++4yAf4UDBw5o4sSJBCaLI/TAUi5cuKCxY8eWdhtFRuhxrfbt2+vChQtq3759abdSYj777DNNmjSptNtwqYEDB+rChQsKDw8v8msPHDigSZMmEXosjtCDG15OTo4uXrwoSfLx8ZGHh0ep9mOM0YULF0q1B6tzc3OTj4+P3Nz4CCxP3N3d5ePjI5vNVtqtoJxixKNcmDhxomw2mw4ePKh+/frJ399fVatW1ZNPPmkPNLlsNpvi4uK0ePFiNWnSRN7e3lqzZo193tWH/E+cOKGhQ4cqLCxM3t7eqlu3roYPH66srCz7MqmpqXrqqadUq1YteXt7q379+nr55ZeVk5NTaO916tTRvffeq7Vr16pVq1by9fXV3LlzJUkLFixQp06dFBwcLG9vb0VERGjOnDn5Xr9//35t3rxZNptNNptNHTt2dElvxhg9//zzqlmzpipUqKC77rpL+/fvL3BZR9Zz5fUiM2bMUHh4uHx9fdWhQwft27cvX82DBw/qL3/5i6pUqSIfHx+1atVKK1euzLNM7nUcX3/9tUaNGqWgoCD5+fnpvvvu06+//urU9hR0TU/Hjh3VtGlTHThwQHfddZcqVKigGjVq6JVXXsn3+p9//lk9e/aUn5+fgoODNXLkSK1du9bh64R27dqlrl27yt/fXxUrVtTdd9+tbdu2Ob3dVxsyZIhef/11SbL/zBQUFN566y3ddNNN8vb21m233aZvv/023zKOvEcFKerPwhdffKF27drJz89PgYGB6tWrl3744YcC98mVR2tyx9eWLVvUunVr+fj4qF69elq0aFGe191///2SpLvuusu+P3Lfqx07digmJkbVqlWTr6+v6tatq0ceeaTQbUT5U7r/5AWKqF+/fqpTp46mTp2qbdu26bXXXtPvv/+e5wNO+uMD9MMPP1RcXJyqVaumOnXqFFjv5MmTat26tVJTU/Xoo4+qUaNGOnHihD766COdP39eXl5eOn/+vDp06KATJ07oscceU+3atbV161aNGTNGSUlJmjlzZqF9Hzp0SP3799djjz2mYcOGqWHDhpKkOXPmqEmTJurZs6c8PDy0atUqPf7448rJyVFsbKwkaebMmRoxYoQqVqyo5557TpIUEhIiScXubfz48Xr++efVrVs3devWTd999506d+6cJ/A5s55FixYpIyNDsbGxunjxombNmqVOnTpp79699t7379+vO+64QzVq1NA//vEP+fn56cMPP1Tv3r313//+V/fdd1+emiNGjFDlypU1YcIEHTt2TDNnzlRcXJw++OCDIm/Ptfz+++/q0qWL+vTpo379+umjjz7Ss88+q2bNmqlr166SpHPnzqlTp05KSkrSk08+qdDQUC1ZskSbNm1yaB379+9Xu3bt5O/vr2eeeUaenp6aO3euOnbsqM2bN6tNmzZF3u6rPfbYYzp58qTWr1+vd999t8BllixZooyMDD322GOy2Wx65ZVX1KdPH/3000/y9PS091qU96ggjvwsbNiwQV27dlW9evU0ceJEXbhwQbNnz9Ydd9yh77777prjN9fhw4f1l7/8RUOHDtXgwYP19ttva8iQIYqMjFSTJk3Uvn17PfHEE3rttdf0z3/+U40bN5YkNW7cWKdOnVLnzp0VFBSkf/zjHwoMDNSxY8f08ccfF7ptKIcMUA5MmDDBSDI9e/bMM/3xxx83ksz3339vnybJuLm5mf379+erI8lMmDDB/nzQoEHGzc3NfPvtt/mWzcnJMcYYM2XKFOPn52d+/PHHPPP/8Y9/GHd3d5OYmPinvYeHhxtJZs2aNfnmnT9/Pt+0mJgYU69evTzTmjRpYjp06JBv2eL0durUKePl5WW6d+9u31ZjjPnnP/9pJJnBgwcXeT1Hjx41koyvr6/55Zdf7Mtt377dSDIjR460T7v77rtNs2bNzMWLF+3TcnJyzO23324aNGhgn7ZgwQIjyURHR+fpc+TIkcbd3d2kpqYWeXs2bdpkJJlNmzbZp3Xo0MFIMosWLbJPy8zMNKGhoaZv3772aa+++qqRZJYvX26fduHCBdOoUaN8NQvSu3dv4+XlZY4cOWKfdvLkSVOpUiXTvn37Im/3tcTGxpqCPuJz36OqVauaM2fO2KevWLHCSDKrVq2yT3P0PSpIUX4WWrZsaYKDg83p06ft077//nvj5uZmBg0alG+fHD161D4td3x99dVX9mmnTp0y3t7e5u9//7t92rJlywp8fz755BMjqcDPANx4OL2FciX36EeuESNGSPrjos0rdejQQREREX9aKycnR8uXL1ePHj3UqlWrfPNzTwcsW7ZM7dq1U+XKlfXbb7/ZH9HR0crOztZXX31VaN9169ZVTExMvum+vr72/09LS9Nvv/2mDh066KefflJaWlqhdYvT24YNG5SVlaURI0bkOfXx1FNPFXs9vXv3Vo0aNezPW7durTZt2tjfpzNnzuiLL75Qv379lJGRYa93+vRpxcTEKCEhQSdOnMhT89FHH83TZ7t27ZSdna2ff/65yNtzLRUrVtRf//pX+3MvLy+1bt1aP/30k33amjVrVKNGDfXs2dM+zcfHR8OGDSu0fnZ2ttatW6fevXurXr169unVq1fXQw89pC1btig9Pb1I2+2sBx54QJUrV85TV5J9W515jwpS2M9CUlKSdu/erSFDhqhKlSr25Zo3b6577rkn39guSEREhL1/SQoKClLDhg3zvG/XEhgYKElavXq1Ll26VOjyKN84vYVypUGDBnme33TTTXJzc8t3R0bdunULrfXrr78qPT1dTZs2/dPlEhIStGfPHgUFBRU4/9SpU4Wu61r9fP3115owYYLi4+N1/vz5PPPS0tIUEBBQYr3l/tK8ep8GBQXl+WXozHqurilJN998sz788ENJf5yOMMZo3LhxGjdu3DVrXvnLsnbt2nnm5/b4+++/F3l7rqVmzZr5rn2pXLmy9uzZY3/+888/66abbsq3XP369Qut/+uvv+r8+fP205tXaty4sXJycnT8+HE1adLEPr2w7XZWYXWdeY8KUtjPQu77dq19snbtWp07d05+fn4Ob0vu9jiyjzp06KC+fftq0qRJmjFjhjp27KjevXvroYcekre3d6GvR/lC6EG5dq27OK48glJcOTk5uueee/TMM88UOP/mm28utEZB/Rw5ckR33323GjVqpOnTp6tWrVry8vLSZ599phkzZjh0IbIrenOEq9eTu21PP/10gUfApPwhwt3dvcDljDFFWvefuR7rKKqS6qmwus68R6WlOPvIZrPpo48+0rZt27Rq1SqtXbtWjzzyiF599VVt27ZNFStWdHW7KEWEHpQrCQkJeY6aHD58WDk5OYVe6FiQoKAg+fv7F3gnyZVuuukmnT17VtHR0UVex59ZtWqVMjMztXLlyjz/Ui3ogthrhbvi9Jb7XScJCQl5TrX8+uuv+f6FXNT1JCQk5Jv2448/2t+n3PV5enq6bL8WZXuKu54DBw7IGJPnfTl8+HChrw0KClKFChV06NChfPMOHjwoNzc31apVyyV9Fve2ble9R4X9LOS+b9faJ9WqVfvTozyOKmx/tG3bVm3bttULL7ygJUuWaMCAAVq6dKn+9re/FXvdKDu4pgflSu5tuLlmz54tSfY7a4rCzc1NvXv31qpVq7Rjx45883P/ldivXz/Fx8dr7dq1+ZZJTU3V5cuXi7xu6f/+dXrlv0bT0tK0YMGCfMv6+fkpNTU13/Ti9BYdHS1PT0/Nnj07Tw8F3fFV1PUsX748z/Ue33zzjbZv325/n4KDg9WxY0fNnTtXSUlJ+WoWdkt2cbenOGJiYnTixIk8t21fvHhR8+bNK/S17u7u6ty5s1asWJHnlGxKSoqWLFmiO++8U/7+/i7pMzcoFPRz4whXvUeF/SxUr15dLVu21DvvvJOn13379mndunXq1q2bU/1f7Vr74/fff893RKhly5aSpMzMTJesG2UHR3pQrhw9elQ9e/ZUly5dFB8fr/fee08PPfSQWrRo4VS9F198UevWrVOHDh306KOPqnHjxkpKStKyZcu0ZcsWBQYGavTo0Vq5cqXuvfde+22w586d0969e/XRRx/p2LFjqlatWpHX3blzZ3l5ealHjx567LHHdPbsWc2bN0/BwcH5fslERkZqzpw5ev7551W/fn0FBwerU6dOxeotKChITz/9tKZOnap7771X3bp1065du/T555/ne01R11O/fn3deeedGj58uDIzMzVz5kxVrVo1z+mx119/XXfeeaeaNWumYcOGqV69ekpJSVF8fLx++eUXff/990Xan0XZnuJ47LHH9O9//1v9+/fXk08+qerVq2vx4sXy8fGRVPgRheeff17r16/XnXfeqccff1weHh6aO3euMjMzC/xOIGdFRkZKkp544gnFxMTI3d1dDz74YJFquOI9cuRnYdq0aeratauioqI0dOhQ+y3rAQEBLvtTGi1btpS7u7tefvllpaWlydvbW506ddKSJUv0xhtv6L777tNNN92kjIwMzZs3T/7+/i4LXChDSuWeMaCIcm9ZP3DggPnLX/5iKlWqZCpXrmzi4uLMhQsX8iwrycTGxhZYR1fdsm6MMT///LMZNGiQCQoKMt7e3qZevXomNjbWZGZm2pfJyMgwY8aMMfXr1zdeXl6mWrVq5vbbbzf/+te/TFZW1p/2Hh4ebrp3717gvJUrV5rmzZsbHx8fU6dOHfPyyy+bt99+O99tucnJyaZ79+6mUqVKRlKe29eL01t2draZNGmSqV69uvH19TUdO3Y0+/btM+Hh4Xlu8XZ0Pbm3KU+bNs28+uqrplatWsbb29u0a9cuz9cK5Dpy5IgZNGiQCQ0NNZ6enqZGjRrm3nvvNR999JF9mdzblK++pbig284d3Z5r3bLepEmTfD0OHjzYhIeH55n2008/me7duxtfX18TFBRk/v73v5v//ve/RpLZtm3bn+5zY4z57rvvTExMjKlYsaKpUKGCueuuu8zWrVvzLFOU7S7I5cuXzYgRI0xQUJCx2Wz229evfI+uVtD4cOQ9KkhRfxY2bNhg7rjjDuPr62v8/f1Njx49zIEDBwrcJ1ffsl7Q+OrQoUO+r3mYN2+eqVevnnF3d7fvw++++87079/f1K5d23h7e5vg4GBz7733mh07dvzp9qF8shlTilfoAQ6aOHGiJk2apF9//dWl/2qHax07dkx169bVtGnT9PTTT5d2O9fVzJkzNXLkSP3yyy+F3tFkBVb+WUDZxTU9AFBEV//ttIsXL2ru3Llq0KABgQcow7imBwCKqE+fPqpdu7ZatmyptLQ0vffeezp48KAWL15c2q0B+BOEHgAoopiYGP3nP//R4sWLlZ2drYiICC1dulQPPPBAabcG4E9wTQ8AALAErukBAACWQOgBAACWwDU9+uNvzJw8eVKVKlUq9le3AwCA68MYo4yMDIWFhcnNrfDjOIQeSSdPnnTZ37sBAADX1/Hjx1WzZs1ClyP0SKpUqZKkP3aaq/7uDQAAKFnp6emqVauW/fd4YQg9+r+/lePv70/oAQCgnHH00hQuZAYAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJZA6AEAAJbgUdoNAACAG1/k6EUuq7Vz2iCnXseRHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmEHgAAYAmlGnomTpwom82W59GoUSP7/IsXLyo2NlZVq1ZVxYoV1bdvX6WkpOSpkZiYqO7du6tChQoKDg7W6NGjdfny5eu9KQAAoIzzKO0GmjRpog0bNtife3j8X0sjR47Up59+qmXLlikgIEBxcXHq06ePvv76a0lSdna2unfvrtDQUG3dulVJSUkaNGiQPD099eKLL173bQEAAGVXqYceDw8PhYaG5puelpam+fPna8mSJerUqZMkacGCBWrcuLG2bdumtm3bat26dTpw4IA2bNigkJAQtWzZUlOmTNGzzz6riRMnysvL63pvDgAAKKNK/ZqehIQEhYWFqV69ehowYIASExMlSTt37tSlS5cUHR1tX7ZRo0aqXbu24uPjJUnx8fFq1qyZQkJC7MvExMQoPT1d+/fvv74bAgAAyrRSPdLTpk0bLVy4UA0bNlRSUpImTZqkdu3aad++fUpOTpaXl5cCAwPzvCYkJETJycmSpOTk5DyBJ3d+7rxryczMVGZmpv15enq6i7YIAACUVaUaerp27Wr//+bNm6tNmzYKDw/Xhx9+KF9f3xJb79SpUzVp0qQSqw8AAMqeUj+9daXAwEDdfPPNOnz4sEJDQ5WVlaXU1NQ8y6SkpNivAQoNDc13N1fu84KuE8o1ZswYpaWl2R/Hjx937YYAAIAyp0yFnrNnz+rIkSOqXr26IiMj5enpqY0bN9rnHzp0SImJiYqKipIkRUVFae/evTp16pR9mfXr18vf318RERHXXI+3t7f8/f3zPAAAwI2tVE9vPf300+rRo4fCw8N18uRJTZgwQe7u7urfv78CAgI0dOhQjRo1SlWqVJG/v79GjBihqKgotW3bVpLUuXNnRUREaODAgXrllVeUnJyssWPHKjY2Vt7e3qW5aQAAoIwp1dDzyy+/qH///jp9+rSCgoJ05513atu2bQoKCpIkzZgxQ25uburbt68yMzMVExOjN954w/56d3d3rV69WsOHD1dUVJT8/Pw0ePBgTZ48ubQ2CQAAlFE2Y4wp7SZKW3p6ugICApSWlsapLgAASkDk6EUuq7Vz2iBJRf/9Xaau6QEAACgphB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJhB4AAGAJZSb0vPTSS7LZbHrqqafs0y5evKjY2FhVrVpVFStWVN++fZWSkpLndYmJierevbsqVKig4OBgjR49WpcvX77O3QMAgLKuTISeb7/9VnPnzlXz5s3zTB85cqRWrVqlZcuWafPmzTp58qT69Oljn5+dna3u3bsrKytLW7du1TvvvKOFCxdq/Pjx13sTAABAGVfqoefs2bMaMGCA5s2bp8qVK9unp6Wlaf78+Zo+fbo6deqkyMhILViwQFu3btW2bdskSevWrdOBAwf03nvvqWXLlurataumTJmi119/XVlZWaW1SQAAoAwq9dATGxur7t27Kzo6Os/0nTt36tKlS3mmN2rUSLVr11Z8fLwkKT4+Xs2aNVNISIh9mZiYGKWnp2v//v3XZwMAAEC54FGaK1+6dKm+++47ffvtt/nmJScny8vLS4GBgXmmh4SEKDk52b7MlYEnd37uvGvJzMxUZmam/Xl6erqzmwAAAMqJUjvSc/z4cT355JNavHixfHx8ruu6p06dqoCAAPujVq1a13X9AADg+iu10LNz506dOnVKt956qzw8POTh4aHNmzfrtddek4eHh0JCQpSVlaXU1NQ8r0tJSVFoaKgkKTQ0NN/dXLnPc5cpyJgxY5SWlmZ/HD9+3LUbBwAAypxSCz1333239u7dq927d9sfrVq10oABA+z/7+npqY0bN9pfc+jQISUmJioqKkqSFBUVpb179+rUqVP2ZdavXy9/f39FRERcc93e3t7y9/fP8wAAADe2Urump1KlSmratGmeaX5+fqpatap9+tChQzVq1ChVqVJF/v7+GjFihKKiotS2bVtJUufOnRUREaGBAwfqlVdeUXJyssaOHavY2Fh5e3tf920CAABlV6leyFyYGTNmyM3NTX379lVmZqZiYmL0xhtv2Oe7u7tr9erVGj58uKKiouTn56fBgwdr8uTJpdg1AAAoi2zGGFPaTZS29PR0BQQEKC0tjVNdAACUgMjRi1xWa+e0QZKK/vu71L+nBwAA4Hog9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEsg9AAAAEvwKO0GAABA2RA5epHLau2cNshltVyFIz0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASnA497777ru644w6FhYXp559/liTNnDlTK1ascFlzAAAAruJU6JkzZ45GjRqlbt26KTU1VdnZ2ZKkwMBAzZw505X9AQAAuIRToWf27NmaN2+ennvuObm7u9unt2rVSnv37nW4zpw5c9S8eXP5+/vL399fUVFR+vzzz+3zL168qNjYWFWtWlUVK1ZU3759lZKSkqdGYmKiunfvrgoVKig4OFijR4/W5cuXndksAABwA3Mq9Bw9elS33HJLvune3t46d+6cw3Vq1qypl156STt37tSOHTvUqVMn9erVS/v375ckjRw5UqtWrdKyZcu0efNmnTx5Un369LG/Pjs7W927d1dWVpa2bt2qd955RwsXLtT48eOd2SwAAHADcyr01K1bV7t37843fc2aNWrcuLHDdXr06KFu3bqpQYMGuvnmm/XCCy+oYsWK2rZtm9LS0jR//nxNnz5dnTp1UmRkpBYsWKCtW7dq27ZtkqR169bpwIEDeu+999SyZUt17dpVU6ZM0euvv66srCxnNg0AANygnAo9o0aNUmxsrD744AMZY/TNN9/ohRde0JgxY/TMM8841Uh2draWLl2qc+fOKSoqSjt37tSlS5cUHR1tX6ZRo0aqXbu24uPjJUnx8fFq1qyZQkJC7MvExMQoPT3dfrQIAABAkjycedHf/vY3+fr6auzYsTp//rweeughhYWFadasWXrwwQeLVGvv3r2KiorSxYsXVbFiRX3yySeKiIjQ7t275eXlpcDAwDzLh4SEKDk5WZKUnJycJ/Dkzs+ddy2ZmZnKzMy0P09PTy9SzwAAoPxxKvRI0oABAzRgwACdP39eZ8+eVXBwsFN1GjZsqN27dystLU0fffSRBg8erM2bNzvblkOmTp2qSZMmleg6AABA2eL0hcwJCQmSZL9rSpISEhJ07NixItXy8vJS/fr1FRkZqalTp6pFixaaNWuWQkNDlZWVpdTU1DzLp6SkKDQ0VJIUGhqa726u3Oe5yxRkzJgxSktLsz+OHz9epJ4BAED541ToGTJkiLZu3Zpv+vbt2zVkyJBiNZSTk6PMzExFRkbK09NTGzdutM87dOiQEhMTFRUVJUmKiorS3r17derUKfsy69evl7+/vyIiIq65Dm9vb/tt8rkPAABwY3Pq9NauXbt0xx135Jvetm1bxcXFOVxnzJgx6tq1q2rXrq2MjAwtWbJEX375pdauXauAgAANHTpUo0aNUpUqVeTv768RI0YoKipKbdu2lSR17txZERERGjhwoF555RUlJydr7Nixio2Nlbe3tzObBgAAblBOhR6bzaaMjIx809PS0uzfzuyIU6dOadCgQUpKSlJAQICaN2+utWvX6p577pEkzZgxQ25uburbt68yMzMVExOjN954w/56d3d3rV69WsOHD1dUVJT8/Pw0ePBgTZ482ZnNAgAANzCbMcYU9UU9evSQr6+v3n//ffs3MmdnZ+uBBx7QuXPn8nyrcnmQnp6ugIAApaWlcaoLAGBZkaMXuazWzmmDSrx2UX9/O3Wk5+WXX1b79u3VsGFDtWvXTpL0v//9T+np6friiy+cKQkAAFCinLqQOSIiQnv27FG/fv106tQpZWRkaNCgQTp48KCaNm3q6h4BAACKzenv6QkLC9OLL77oyl4AAABKjMOhZ8+ePWratKnc3Ny0Z8+eP122efPmxW4MAADAlRwOPS1btlRycrKCg4PVsmVL2Ww2FXQNtM1mK9IdXAAAANeDw6Hn6NGjCgoKsv8/AABAeeJw6AkPD5ckXbp0SZMmTdK4ceNUt27dEmsMAADAlYp895anp6f++9//lkQvAAAAJcapW9Z79+6t5cuXu7gVAACAkuPULesNGjTQ5MmT9fXXXysyMlJ+fn555j/xxBMuaQ4AAMBVnAo98+fPV2BgoHbu3KmdO3fmmWez2Qg9AACgzHEq9Fx591bubes2m801HQEAAJQAp67pkf442tO0aVP5+PjIx8dHTZs21X/+8x9X9gYAAOAyTh3pGT9+vKZPn64RI0YoKipKkhQfH6+RI0cqMTFRkydPdmmTAAAAxeVU6JkzZ47mzZun/v3726f17NlTzZs314gRIwg9AACgzHHq9NalS5fUqlWrfNMjIyN1+fLlYjcFAADgak6FnoEDB2rOnDn5pr/11lsaMGBAsZsCAABwNadOb0l/XMi8bt06tW3bVpK0fft2JSYmatCgQRo1apR9uenTpxe/SwAAgGJyKvTs27dPt956qyTpyJEjkqRq1aqpWrVq2rdvn305bmMHAABlhVOhZ9OmTa7uAwAAoEQ5/T09AAAA5QmhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWAKhBwAAWEKphp6pU6fqtttuU6VKlRQcHKzevXvr0KFDeZa5ePGiYmNjVbVqVVWsWFF9+/ZVSkpKnmUSExPVvXt3VahQQcHBwRo9erQuX758PTcFAACUcaUaejZv3qzY2Fht27ZN69ev16VLl9S5c2edO3fOvszIkSO1atUqLVu2TJs3b9bJkyfVp08f+/zs7Gx1795dWVlZ2rp1q9555x0tXLhQ48ePL41NAgAAZZRHaa58zZo1eZ4vXLhQwcHB2rlzp9q3b6+0tDTNnz9fS5YsUadOnSRJCxYsUOPGjbVt2za1bdtW69at04EDB7RhwwaFhISoZcuWmjJlip599llNnDhRXl5epbFpAACgjClT1/SkpaVJkqpUqSJJ2rlzpy5duqTo6Gj7Mo0aNVLt2rUVHx8vSYqPj1ezZs0UEhJiXyYmJkbp6enav3//deweAACUZaV6pOdKOTk5euqpp3THHXeoadOmkqTk5GR5eXkpMDAwz7IhISFKTk62L3Nl4MmdnzuvIJmZmcrMzLQ/T09Pd9VmAACAMqrMHOmJjY3Vvn37tHTp0hJf19SpUxUQEGB/1KpVq8TXCQAASleZCD1xcXFavXq1Nm3apJo1a9qnh4aGKisrS6mpqXmWT0lJUWhoqH2Zq+/myn2eu8zVxowZo7S0NPvj+PHjLtwaAABQFpVq6DHGKC4uTp988om++OIL1a1bN8/8yMhIeXp6auPGjfZphw4dUmJioqKioiRJUVFR2rt3r06dOmVfZv369fL391dERESB6/X29pa/v3+eBwAAuLGV6jU9sbGxWrJkiVasWKFKlSrZr8EJCAiQr6+vAgICNHToUI0aNUpVqlSRv7+/RowYoaioKLVt21aS1LlzZ0VERGjgwIF65ZVXlJycrLFjxyo2Nlbe3t6luXkAAKAMKdXQM2fOHElSx44d80xfsGCBhgwZIkmaMWOG3Nzc1LdvX2VmZiomJkZvvPGGfVl3d3etXr1aw4cPV1RUlPz8/DR48GBNnjz5em0GAAAoB0o19BhjCl3Gx8dHr7/+ul5//fVrLhMeHq7PPvvMla0BAIAbTJm4kBkAAKCkEXoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAlEHoAAIAleJR2AwAA3EgiRy9ySZ2d0wa5pA7+D0d6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJXDLOgAA5YSrboeXrHlLPEd6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJfBnKAAAlsKfcrAujvQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLIPQAAABLKNXQ89VXX6lHjx4KCwuTzWbT8uXL88w3xmj8+PGqXr26fH19FR0drYSEhDzLnDlzRgMGDJC/v78CAwM1dOhQnT179jpuBQAAKA88SnPl586dU4sWLfTII4+oT58++ea/8soreu211/TOO++obt26GjdunGJiYnTgwAH5+PhIkgYMGKCkpCStX79ely5d0sMPP6xHH31US5Ysud6bAwBwgcjRi1xWa+e0QS6rhfKvVENP165d1bVr1wLnGWM0c+ZMjR07Vr169ZIkLVq0SCEhIVq+fLkefPBB/fDDD1qzZo2+/fZbtWrVSpI0e/ZsdevWTf/6178UFhZ23bYFAACUbWX2mp6jR48qOTlZ0dHR9mkBAQFq06aN4uPjJUnx8fEKDAy0Bx5Jio6Olpubm7Zv337dewYAAGVXqR7p+TPJycmSpJCQkDzTQ0JC7POSk5MVHBycZ76Hh4eqVKliX6YgmZmZyszMtD9PT093VdsAAKCMKrNHekrS1KlTFRAQYH/UqlWrtFsCAAAlrMyGntDQUElSSkpKnukpKSn2eaGhoTp16lSe+ZcvX9aZM2fsyxRkzJgxSktLsz+OHz/u4u4BAEBZU2ZDT926dRUaGqqNGzfap6Wnp2v79u2KioqSJEVFRSk1NVU7d+60L/PFF18oJydHbdq0uWZtb29v+fv753kAAIAbW6le03P27FkdPnzY/vzo0aPavXu3qlSpotq1a+upp57S888/rwYNGthvWQ8LC1Pv3r0lSY0bN1aXLl00bNgwvfnmm7p06ZLi4uL04IMPcucWAADIo1RDz44dO3TXXXfZn48aNUqSNHjwYC1cuFDPPPOMzp07p0cffVSpqam68847tWbNGvt39EjS4sWLFRcXp7vvvltubm7q27evXnvtteu+LQAAoGwr1dDTsWNHGWOuOd9ms2ny5MmaPHnyNZepUqUKX0QIAAAKVWav6QEAAHAlQg8AALAEQg8AALAEQg8AALCEMvtnKAAAZRd/CR3lEUd6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJRB6AACAJXDLOgDcgLilHMiPIz0AAMASCD0AAMASCD0AAMASCD0AAMASCD0AAMASuHsLAEoBd1cB1x9HegAAgCUQegAAgCUQegAAgCVwTQ8AXAPX3QA3Fo70AAAASyD0AAAAS+D0FoByi9NPAIqCIz0AAMASCD0AAMASCD0AAMASuKYHQIly1XU3XHMDoLg40gMAACyB0AMAACyB0AMAACyBa3oAi+O7bgBYBUd6AACAJRB6AACAJXB6CyjjOP0EAK5B6AFcgGACAGUfp7cAAIAlcKQHlsCRGAAAR3oAAIAlEHoAAIAlcHrrBsIpHAAAro0jPQAAwBI40gOHleSRJI5SAQBKGqHnOuOXOwAApYPTWwAAwBIIPQAAwBIIPQAAwBIIPQAAwBIIPQAAwBIIPQAAwBK4Zf0q3FIOAMCNiSM9AADAEm6Y0PP666+rTp068vHxUZs2bfTNN9+UdksAAKAMuSFCzwcffKBRo0ZpwoQJ+u6779SiRQvFxMTo1KlTpd0aAAAoI26I0DN9+nQNGzZMDz/8sCIiIvTmm2+qQoUKevvtt0u7NQAAUEaU+9CTlZWlnTt3Kjo62j7Nzc1N0dHRio+PL8XOAABAWVLu79767bfflJ2drZCQkDzTQ0JCdPDgwQJfk5mZqczMTPvztLQ0SVJ6erqyMy+4rLf09PR800qyPr0XXLu81y/PvbuyfnnuvaD65bn3kq5fnnt3Zf3y3HtB9Uuidu5/jTGOvdCUcydOnDCSzNatW/NMHz16tGndunWBr5kwYYKRxIMHDx48ePC4AR7Hjx93KDOU+yM91apVk7u7u1JSUvJMT0lJUWhoaIGvGTNmjEaNGmV/npOTozNnzqhq1aqy2Wx/ur709HTVqlVLx48fl7+/f/E34AaqX557L+n69H5j1i/PvZd0fXq/MeuXtd6NMcrIyFBYWJhD9ct96PHy8lJkZKQ2btyo3r17S/ojxGzcuFFxcXEFvsbb21ve3t55pgUGBhZpvf7+/iXyht8I9ctz7yVdn95vzPrlufeSrk/vN2b9stR7QECAw3XLfeiRpFGjRmnw4MFq1aqVWrdurZkzZ+rcuXN6+OGHS7s1AABQRtwQoeeBBx7Qr7/+qvHjxys5OVktW7bUmjVr8l3cDAAArOuGCD2SFBcXd83TWa7k7e2tCRMm5Ds9Rv3y3XtJ16f3G7N+ee69pOvT+41Zvzz3Lkk2Yxy9zwsAAKD8KvdfTggAAOAIQg8AALAEQg8AALAEQg8AALAEQs81ZGdna9y4capbt658fX110003acqUKXn+vocxRuPHj1f16tXl6+ur6OhoJSQkuKT2xx9/rM6dO9u/JXr37t0u6/3SpUt69tln1axZM/n5+SksLEyDBg3SyZMnXbZvJk6cqEaNGsnPz0+VK1dWdHS0tm/f7pLaV/p//+//yWazaebMmS7rfciQIbLZbHkeXbp0cVnvP/zwg3r27KmAgAD5+fnptttuU2JiokvqX9137mPatGkuqX/27FnFxcWpZs2a8vX1VUREhN58802X1E5JSdGQIUMUFhamChUqqEuXLg6Np1wZGRl66qmnFB4eLl9fX91+++369ttv7fOdHa+O1C7OeC2sfnHHqyP9OzteHal9paKOV0fqOzteHe3d2fHqSP3ijFdH6js7Xh2pXZTx+tVXX6lHjx4KCwuTzWbT8uXL88x3ZGyeOXNGAwYMkL+/vwIDAzV06FCdPXvWoW25emUowAsvvGCqVq1qVq9ebY4ePWqWLVtmKlasaGbNmmVf5qWXXjIBAQFm+fLl5vvvvzc9e/Y0devWNRcuXCh27UWLFplJkyaZefPmGUlm165dLus9NTXVREdHmw8++MAcPHjQxMfHm9atW5vIyEiX7ZvFixeb9evXmyNHjph9+/aZoUOHGn9/f3Pq1Kli18718ccfmxYtWpiwsDAzY8YMl/U+ePBg06VLF5OUlGR/nDlzxiW1Dx8+bKpUqWJGjx5tvvvuO3P48GGzYsUKk5KS4pL6V/aclJRk3n77bWOz2cyRI0dcUn/YsGHmpptuMps2bTJHjx41c+fONe7u7mbFihXFqp2Tk2Patm1r2rVrZ7755htz8OBB8+ijj5ratWubs2fPFtq7Mcb069fPREREmM2bN5uEhAQzYcIE4+/vb3755RdjjPPj1ZHaxRmvhdUv7nh1pH9nx6sjtXM5M14dqe/seHWkdnHGqyP1izNeHanv7HgtrHZRx+tnn31mnnvuOfPxxx8bSeaTTz7JM9+RsdmlSxfTokULs23bNvO///3P1K9f3/Tv39+h/XQlQs81dO/e3TzyyCN5pvXp08cMGDDAGPPHh3RoaKiZNm2afX5qaqrx9vY277//frFqX+no0aNF/hAtSv1c33zzjZFkfv755xKpn5aWZiSZDRs2uKT2L7/8YmrUqGH27dtnwsPDHf4QdaT+4MGDTa9evRyqV9TaDzzwgPnrX/9a5NqO1r9ar169TKdOnVxWv0mTJmby5Ml5lrn11lvNc889V6zahw4dMpLMvn377POzs7NNUFCQmTdvXqG9nz9/3ri7u5vVq1cX2Ftxxmthta/kzHgtSv1cRRmvztR3dLw6WtvZ8epIfWfHqyO1izNendnvRRmvjtR3drwWVrs44/Xq0OPI2Dxw4ICRZL799lv7Mp9//rmx2WzmxIkTf7q+q3F66xpuv/12bdy4UT/++KMk6fvvv9eWLVvUtWtXSdLRo0eVnJys6Oho+2sCAgLUpk0bxcfHF6t2SfdekLS0NNlsNof+BllR62dlZemtt95SQECAWrRoUezaOTk5GjhwoEaPHq0mTZoU2q8zvX/55ZcKDg5Ww4YNNXz4cJ0+fbrYtXNycvTpp5/q5ptvVkxMjIKDg9WmTZt8h3qL23uulJQUffrppxo6dKjL6t9+++1auXKlTpw4IWOMNm3apB9//FGdO3cuVu3MzExJko+Pj/01bm5u8vb21pYtWwrt/fLly8rOzs7zekny9fXVli1bijVeC6tdXM7UL8p4LWr9ooxXR2oXZ7w62rsz47Ww2sUdr0Xd70Udr47Ud3a8Fla7uOP1So6Mzfj4eAUGBqpVq1b2ZaKjo+Xm5ubwaVi7IkUkC8nOzjbPPvussdlsxsPDw9hsNvPiiy/a53/99ddGkjl58mSe191///2mX79+xap9JWf+5ViU+sYYc+HCBXPrrbeahx56yKX1V61aZfz8/IzNZjNhYWHmm2++cUntF1980dxzzz0mJyfHGGOK9C9HR+q///77ZsWKFWbPnj3mk08+MY0bNza33XabuXz5crFqJyUlGUmmQoUKZvr06WbXrl1m6tSpxmazmS+//NIlvV/p5ZdfNpUrV3bo9I2j9S9evGgGDRpkJBkPDw/j5eVl3nnnnWLXzsrKMrVr1zb333+/OXPmjMnMzDQvvfSSkWQ6d+7sUP9RUVGmQ4cO5sSJE+by5cvm3XffNW5ububmm28u1ngtrPaVnBmvRalvTNHHq6P1nRmvjtQuznh1pL6z47Ww2sUdr470fqWijldH6js7XgurXZzxqquO9DgyNl944YUC91lQUJB54403HNoe+/qLtLSFvP/++6ZmzZrm/fffN3v27DGLFi0yVapUMQsXLjTGFC/0FFb7Ss58iBalflZWlunRo4e55ZZbTFpamkvrnz171iQkJJj4+HjzyCOPmDp16hR6Lryw2jt27DAhISF5DmkW5UO0KPsm15EjRxw61F9Y7RMnThhJ+c5D9+jRwzz44IMu771hw4YmLi6u0LpFqT9t2jRz8803m5UrV5rvv//ezJ4921SsWNGsX7++2LV37NhhWrRoYSQZd3d3ExMTY7p27Wq6dOniUP+HDx827du3t7/+tttuMwMGDDCNGjUqduj5s9pXcjb0OFrfmfHqaH1nxmthtYs7Xh3t/UqOjtfCahd3vBa196KOV0fqOzteHant7Hgl9JRRNWvWNP/+97/zTJsyZYpp2LChMeb/BtbVH27t27c3TzzxRLFqX8mZD1FH62dlZZnevXub5s2bm99++83l9a9Wv379Pz0y4UjtGTNmGJvNZtzd3e0PScbNzc2Eh4eXWO/VqlUzb775ZrFqZ2ZmGg8PDzNlypQ8yzzzzDPm9ttvd2nvX331lZFkdu/eXWhdR+ufP3/eeHp65jvPP3ToUBMTE+Oy3lNTU+0X0LZu3do8/vjjDm+DMX/88s79AO3Xr5/p1q1bscZrYbWv5GzocaS+s+O1KP1fyZHxWljt4o5XZ3t3ZLwWVru447UovTszXgurX5zxWpTeizperw49jozN+fPnm8DAwDzzL126ZNzd3c3HH3/s8LYYwzU913T+/Hm5ueXdPe7u7srJyZEk1a1bV6Ghodq4caN9fnp6urZv366oqKhi1S7p3qU/boPt16+fEhIStGHDBlWtWtWl9QuSk5NjPxfsbO2BAwdqz5492r17t/0RFham0aNHa+3atSXS+y+//KLTp0+revXqxart5eWl2267TYcOHcqzzI8//qjw8HCX9j5//nxFRkYWek1GUepfunRJly5dcuq9L0rvAQEBCgoKUkJCgnbs2KFevXo5vA2S5Ofnp+rVq+v333/X2rVr1atXr2KN18Jqu9K16hdnvDpSvyCOjNfCahd3vDrTu6PjtbDaxR2vRendmfFaWP3ijNei9F7c8erI2IyKilJqaqp27txpX+aLL75QTk6O2rRpU6T1caTnGgYPHmxq1Khhv8X2448/NtWqVTPPPPOMfZmXXnrJBAYG2s8n9+rVy6FbYB2pffr0abNr1y7z6aefGklm6dKlZteuXSYpKanYvWdlZZmePXuamjVrmt27d+e5ZTIzM7PY9c+ePWvGjBlj4uPjzbFjx8yOHTvMww8/bLy9vfNc7e/svrlaUQ6XF1Y/IyPDPP300yY+Pt4cPXrUbNiwwdx6662mQYMG5uLFi8Xu/eOPPzaenp7mrbfeMgkJCWb27NnG3d3d/O9//yt277nS0tJMhQoVzJw5cxzaJ0Wp36FDB9OkSROzadMm89NPP5kFCxYYHx+fQg8xO1L7ww8/NJs2bTJHjhwxy5cvN+Hh4aZPnz4O979mzRrz+eefm59++smsW7fOtGjRwrRp08ZkZWUZY5wfr47ULs54Lax+ccdrYfWLM14d2TdXK+rprT+rX5zx6kjvxRmvju4bZ8erI/WdHa+O1C7KeM3IyDC7du0yu3btMpLs10jl3n3oyNjs0qWLueWWW8z27dvNli1bTIMGDbhl3ZXS09PNk08+aWrXrm18fHxMvXr1zHPPPZfnQyYnJ8eMGzfOhISEGG9vb3P33XebQ4cOuaT2ggULjKR8jwkTJhS7fu4h+IIemzZtKnb9CxcumPvuu8+EhYUZLy8vU716ddOzZ0+HLox0ZN9crSgfooXVP3/+vOncubMJCgoynp6eJjw83AwbNswkJye7rPf58+eb+vXrGx8fH9OiRQuzfPlyl/Sea+7cucbX19ekpqY6VLco9ZOSksyQIUNMWFiY8fHxMQ0bNjSvvvqq/SLV4tSeNWuWqVmzpvH09DS1a9c2Y8eOdfiXujHGfPDBB6ZevXrGy8vLhIaGmtjY2Dz7wNnx6kjt4ozXwuoXd7wWVr8449WRfXO1ooaeP6tfnPHqaO/OjldH6zs7Xh2p7+x4daR2Ucbrpk2bCvz5HTx4sDHGsbF5+vRp079/f1OxYkXj7+9vHn74YZORkVHkfWYz5hpfdQsAAHAD4ZoeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeADechQsXKjAwsLTbAFDG8OWEAG44Fy5cUEZGhoKDgx1+TceOHdWyZUvNnDmz5BoDUKo8SrsBAHA1X19f+fr6lnYbAMoYTm8BKHM6duyouLg4xcXFKSAgQNWqVdO4ceOUe2D6999/16BBg1S5cmVVqFBBXbt2VUJCgv31V5/emjhxolq2bKl3331XderUUUBAgB588EFlZGRIkoYMGaLNmzdr1qxZstlsstlsOnbsmH7//XcNGDBAQUFB8vX1VYMGDbRgwYLrui8AuA6hB0CZ9M4778jDw0PffPONZs2apenTp+s///mPpD9Cyo4dO7Ry5UrFx8fLGKNu3brp0qVL16x35MgRLV++XKtXr9bq1au1efNmvfTSS5KkWbNmKSoqSsOGDVNSUpKSkpJUq1YtjRs3TgcOHNDnn3+uH374QXPmzFG1atWuy/YDcD1ObwEok2rVqqUZM2bIZrOpYcOG2rt3r2bMmKGOHTtq5cqV+vrrr3X77bdLkhYvXqxatWpp+fLluv/++wusl5OTo4ULF6pSpUqSpIEDB2rjxo164YUXFBAQIC8vL1WoUEGhoaH21yQmJuqWW25Rq1atJEl16tQp2Y0GUKI40gOgTGrbtq1sNpv9eVRUlBISEnTgwAF5eHioTZs29nlVq1ZVw4YN9cMPP1yzXp06deyBR5KqV6+uU6dO/WkPw4cP19KlS9WyZUs988wz2rp1azG2CEBpI/QAsARPT888z202m3Jycv70NV27dtXPP/+skSNH6uTJk7r77rv19NNPl2SbAEoQoQdAmbR9+/Y8z7dt26YGDRooIiJCly9fzjP/9OnTOnTokCIiIpxen5eXl7Kzs/NNDwoK0uDBg/Xee+9p5syZeuutt5xeB4DSRegBUCYlJiZq1KhROnTokN5//33Nnj1bTz75pBo0aKBevXpp2LBh2rJli77//nv99a9/VY0aNdSrVy+n11enTh1t375dx44d02+//aacnByNHz9eK1as0OHDh7V//36tXr1ajRs3duFWArieCD0AyqRBgwbpwoULat26tWJjY/Xkk0/q0UcflSQtWLBAkZGRuvfeexUVFSVjjD777LN8p7CK4umnn5a7u7siIiIUFBSkxMREeXl5acyYMWrevLnat28vd3d3LV261FWbCOA64xuZAZQ5fDsygJLAkR4AAGAJhB4AAGAJnN4CAACWwJEeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCYQeAABgCf8frNhOvi9vs3MAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sns.barplot(data=data, x='points', y='price', errorbar=None)\n",
- "plt.title(\"price rate depending on the points\")\n",
- "plt.xlabel(\"points\")\n",
- "plt.ylabel(\"price\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "gV5rvdzQf9Rm"
- },
- "source": [
- "Проверили. Признаки не линейно-зависимы."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "H2EamkuhAPKu"
- },
- "source": [
- "Посмотрим на зависимость оценки вина от года розлива."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 450
- },
- "id": "zm_kgoac_-Oq",
- "outputId": "91648859-c779-404e-93b8-8fafbedf6387"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAHWCAYAAAAIOsSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY5klEQVR4nO3dd5gV5fk//nuXsruUpSkdFRFR0IiiImDERBQ7tmiiiUqsiZ0YEz6xgVHsGhVbVJTYNVFJLEkUNDEiKkXFQlFsKGChiAoC+/z+8Mf5sgMLCy5b2NfruvbSfWbOzH3vM+fsMu8zZ/JSSikAAAAAAADIya/qAgAAAAAAAKobAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAArGD33XeP3XffvarLqLGeffbZyMvLi2effbaqS6kQq+rn2GOPjc0226zKaqpKF154YeTl5cVnn31W1aUAAMB6J0ABAIAKcu+998a1115b1WWU8vHHH8eFF14YkyZNqupSqEEuueSSePTRR6u6DAAAqFICFAAAWMG//vWv+Ne//rVOj62uAcqQIUMEKBXoz3/+c0yZMqWqy1ivBCgAABBRt6oLAACA6qR+/fpVXcJqLVq0KOrXrx/5+d4LVVXq1atX1SVQiTznAABqL38BAgBQYy2/H8Pbb78dhx9+eBQXF0eLFi3ijDPOiEWLFpVad+nSpXHRRRdFp06doqCgIDbbbLP4v//7v1i8eHGp9bL3QFl+D4wHH3wwLr744mjfvn0UFhbGHnvsEdOnTy/1uMcffzzef//9yMvLi7y8vFL3ybj++uujW7du0aBBg2jWrFnsuOOOce+99662v+X7vv/+++Pcc8+Ndu3aRYMGDWLBggXxxRdfxNlnnx3bbrttNGrUKIqLi2OfffaJV199tdTjd9ppp4iIGDhwYK6uO++8M7fOuHHjYu+9944mTZpEgwYNom/fvvG///2vXD//jz76KA466KBo2LBhtGzZMs4666yVfp5rs5+1mc+IiLvvvjt69OgRRUVF0bx58/jpT38aH374Yal1dt9999hmm23izTffjB/96EfRoEGDaNeuXVx++eXr3E/2Hijvvfde5OXlxZVXXhm33npr7hjbaaed4uWXX17p8Q899FB07do1CgsLY5tttolHHnlkre6rcuONN0a3bt2ioKAg2rZtG6ecckrMmzdvnfvOysvLi6+++iruuuuu3DFz7LHHllpn3rx5ceyxx0bTpk2jSZMmMXDgwPj6669X2lZ55ihrzJgxkZeXF4888shKy+69997Iy8uLsWPH5sbefvvtOOyww6J58+ZRWFgYO+64Y4waNarU48rzfIlY/XMOAIDaxxUoAADUeIcffnhsttlmMWzYsHjxxRfjuuuui7lz58bIkSNz6xx//PFx1113xWGHHRa/+c1vYty4cTFs2LB46623VnmiNuvSSy+N/Pz8OPvss2P+/Plx+eWXx1FHHRXjxo2LiIg//OEPMX/+/Pjoo4/immuuiYiIRo0aRcR3H/l0+umnx2GHHZYLA1577bUYN25cHHnkkWvc90UXXRT169ePs88+OxYvXhz169ePN998Mx599NH4yU9+Eh07dozZs2fHLbfcEn379o0333wz2rZtG1tvvXUMHTo0zj///DjxxBPjhz/8YURE9O7dOyIiRo8eHfvss0/06NEjLrjggsjPz48RI0bEj3/84/jvf/8bO++8c5k1ffPNN7HHHnvEBx98EKeffnq0bds2/vKXv8To0aNXWndt91Oe+bz44ovjvPPOi8MPPzyOP/74+PTTT+P666+P3XbbLSZOnBhNmzbNrTt37tzYe++945BDDonDDz88Hn744fjd734X2267beyzzz5r3U9Z7r333vjyyy/jpJNOiry8vLj88svjkEMOiXfffTd31crjjz8eRxxxRGy77bYxbNiwmDt3bhx33HHRrl27cu3jwgsvjCFDhkS/fv3iV7/6VUyZMiVuuummePnll+N///tfqatjytP3qvzlL3+J448/Pnbeeec48cQTIyKiU6dOpdY5/PDDo2PHjjFs2LCYMGFC3HbbbdGyZcu47LLLcuuszRytaPfdd48OHTrEPffcEwcffHCpZffcc0906tQpevXqFRERb7zxRvTp0yfatWsXv//976Nhw4bx4IMPxkEHHRR//etfc49/99131/h8WdGqnnMAANRCCQAAaqgLLrggRUQ68MADS43/+te/ThGRXn311ZRSSpMmTUoRkY4//vhS65199tkpItLo0aNzY3379k19+/bNfT9mzJgUEWnrrbdOixcvzo3/6U9/ShGRXn/99dzYfvvtlzbddNOV6hwwYEDq1q3bWve3fN+bb755+vrrr0stW7RoUVq2bFmpsRkzZqSCgoI0dOjQ3NjLL7+cIiKNGDGi1LolJSWpc+fOqX///qmkpCQ3/vXXX6eOHTumPffcc7W1XXvttSki0oMPPpgb++qrr9IWW2yRIiKNGTNmrfdT3vl87733Up06ddLFF19car3XX3891a1bt9R43759U0SkkSNH5sYWL16cWrdunQ499NC17iellI455phS8zxjxowUEalFixbpiy++yI0/9thjKSLS3//+99zYtttum9q3b5++/PLL3Nizzz6bImKVx86K5syZk+rXr5/22muvUnN/ww03pIhId9xxx1r3XZaGDRumY445ZqXx5XP0y1/+stT4wQcfnFq0aJH7fm3maFUGDx6cCgoK0rx583Jjc+bMSXXr1k0XXHBBbmyPPfZI2267bVq0aFFurKSkJPXu3Tt17tw5N1be58vqnnMAANQ+PsILAIAa75RTTin1/WmnnRYREU888USp/w4aNKjUer/5zW8i4rurAtZk4MCBpd6FvvxqjnfffXeNj23atGl89NFHq/w4p/I45phjoqioqNRYQUFB7p4My5Yti88//zwaNWoUXbp0iQkTJqxxm5MmTYpp06bFkUceGZ9//nl89tln8dlnn8VXX30Ve+yxR/znP/+JkpKSMh//xBNPRJs2beKwww7LjTVo0CB3xcL32c+a5vNvf/tblJSUxOGHH57b3meffRatW7eOzp07x5gxY0o9vlGjRvHzn/889339+vVj5513LjV35e1ndY444oho1qxZ7vvsMfLxxx/H66+/HkcffXTu6qSIiL59+8a22267xu0//fTT8e2338aZZ55Z6n4cJ5xwQhQXF690HJen73V18sknl/r+hz/8YXz++ee5j7pa2znKOvroo2Px4sXx8MMP58YeeOCBWLp0aa6nL774IkaPHh2HH354fPnll7l9fP7559G/f/+YNm1azJw5MyLW/vmyquccAAC1j4/wAgCgxuvcuXOp7zt16hT5+fnx3nvvRUTE+++/H/n5+bHFFluUWq9169bRtGnTeP/999e4j0022aTU98tPlM+dO3eNj/3d734XTz/9dOy8886xxRZbxF577RVHHnlk9OnTZ42PjYjo2LHjSmMlJSXxpz/9KW688caYMWNGLFu2LLesRYsWa9zmtGnTIuK7E8VlmT9/fqlAYEXvv/9+bLHFFpGXl1dqvEuXLt97P2uaz2nTpkVKaaX1lsve5L19+/Yr1dmsWbN47bXX1rqf1VnTMbL8OMseh8vH1hR8LX98tqb69evH5ptvvtJxXJ6+19Xqei0uLl7rOcraaqutYqeddop77rknjjvuuIj47uO7dtlll9zPb/r06ZFSivPOOy/OO++8VW5nzpw50a5du7V+vqzqOQcAQO0jQAEAYIOTPWm8pvHyqFOnzirHU0prfOzWW28dU6ZMiX/84x/x1FNPxV//+te48cYb4/zzz48hQ4as8fGreif8JZdcEuedd1788pe/jIsuuiiaN28e+fn5ceaZZ672ypHllq9zxRVXRPfu3Ve5zopXSayrithPdt5KSkoiLy8vnnzyyVXOS3Z732fu1kZl7ae81mc9a9r22s7Rqhx99NFxxhlnxEcffRSLFy+OF198MW644Ybc8uXH1tlnnx39+/df5TaWhy1r+3xx9QkAABECFAAANgDTpk0r9Y7x6dOnR0lJSWy22WYREbHppptGSUlJTJs2LbbeeuvcerNnz4558+bFpptuWiF1rC6gadiwYRxxxBFxxBFHxLfffhuHHHJIXHzxxTF48OAoLCxc6309/PDD8aMf/Shuv/32UuPz5s2LjTbaaI01Lb8peHFxcfTr12+t97/pppvG5MmTI6VUah9Tpkz53vtZ03x26tQpUkrRsWPH2HLLLde69lUpbz/fdx8R3/WTtaqxsh4/ZcqU2HzzzXPj3377bcyYMWOd5rEs3ydsjKiYOfrpT38agwYNivvuuy+++eabqFevXhxxxBG55ct/BvXq1Vtj7+V9vgAAwIrcAwUAgBpv+PDhpb6//vrrIyJin332iYiIfffdNyIirr322lLrXX311RERsd9++1VIHQ0bNoz58+evNP7555+X+r5+/frRtWvXSCnFkiVL1mlfderUWelKgoceeih3z4cVa4r47kTxinr06BGdOnWKK6+8MhYuXLjS9j/99NPV7n/fffeNjz/+uNQ9Kr7++uu49dZbv/d+1jSfhxxySNSpUyeGDBmy0s8gpbTSz7s8ytvP99G2bdvYZpttYuTIkaV+Fs8991y8/vrra3x8v379on79+nHdddeV6vv222+P+fPnV9hxHPHdcZM9ZtZGRczRRhttFPvss0/cfffdcc8998Tee+9dKuxo2bJl7L777nHLLbfEJ598stLjVzy2yvt8AQCAFbkCBQCAGm/GjBlx4IEHxt577x1jx46Nu+++O4488sjYbrvtIiJiu+22i2OOOSZuvfXWmDdvXvTt2zdeeumluOuuu+Kggw6KH/3oRxVSR48ePeKBBx6IQYMGxU477RSNGjWKAw44IPbaa69o3bp19OnTJ1q1ahVvvfVW3HDDDbHffvtF48aN12lf+++/fwwdOjQGDhwYvXv3jtdffz3uueeeUlcmRHx3JUDTpk3j5ptvjsaNG0fDhg2jZ8+e0bFjx7jttttin332iW7dusXAgQOjXbt2MXPmzBgzZkwUFxfH3//+9zL3f8IJJ8QNN9wQRx99dIwfPz7atGkTf/nLX6JBgwal1svPz1/r/axpPjt16hR//OMfY/DgwfHee+/FQQcdFI0bN44ZM2bEI488EieeeGKcffbZa/XzLG8/39cll1wSAwYMiD59+sTAgQNj7ty5ccMNN8Q222yzyoBpRRtvvHEMHjw4hgwZEnvvvXcceOCBMWXKlLjxxhtjp512KnXD+O+rR48e8fTTT8fVV18dbdu2jY4dO0bPnj3L/fiKmqOjjz46DjvssIiIuOiii1ZaPnz48Nh1111j2223jRNOOCE233zzmD17dowdOzY++uijePXVVyOi/M8XAAAoJQEAQA11wQUXpIhIb775ZjrssMNS48aNU7NmzdKpp56avvnmm1LrLlmyJA0ZMiR17Ngx1atXL3Xo0CENHjw4LVq0qNR6ffv2TX379s19P2bMmBQR6aGHHiq13owZM1JEpBEjRuTGFi5cmI488sjUtGnTFBFp0003TSmldMstt6TddtsttWjRIhUUFKROnTql3/72t2n+/Pmr7a+sfaeU0qJFi9JvfvOb1KZNm1RUVJT69OmTxo4du1L9KaX02GOPpa5du6a6deuuVPPEiRPTIYcckqtt0003TYcffnh65plnVltbSim9//776cADD0wNGjRIG220UTrjjDPSU089lSIijRkzptS65dnP2sxnSin99a9/Tbvuumtq2LBhatiwYdpqq63SKaeckqZMmZJbp2/fvqlbt24rPfaYY47Jzc/a9pN97PJj4YorrlhpPxGRLrjgglJj999/f9pqq61SQUFB2mabbdKoUaPSoYcemrbaaqtV/JRXdsMNN6Stttoq1atXL7Vq1Sr96le/SnPnzi21ztr0vSpvv/122m233VJRUVGKiHTMMceklP7fHH366ael1h8xYkSKiDRjxoxS4+WZo9VZvHhxatasWWrSpMkqj4GUUnrnnXfS0UcfnVq3bp3q1auX2rVrl/bff//08MMP59Yp7/Nldc85AABqn7yUquiOhgAA8D1deOGFMWTIkPj000/dx2ADUJvns3v37rHxxhvHv//976oupVpZunRptG3bNg444ICV7l8CAADrm3ugAAAAVJIlS5bE0qVLS409++yz8eqrr8buu+9eNUVVY48++mh8+umncfTRR1d1KQAA1ELugQIAAFBJZs6cGf369Yuf//zn0bZt23j77bfj5ptvjtatW8fJJ59c1eVVG+PGjYvXXnstLrrooth+++2jb9++VV0SAAC1kAAFAACgkjRr1ix69OgRt912W3z66afRsGHD2G+//eLSSy+NFi1aVHV51cZNN90Ud999d3Tv3j3uvPPOqi4HAIBayj1QAAAAAAAAMtwDBQAAAAAAIEOAAgAAAAAAkLHB3wOlpKQkPv7442jcuHHk5eVVdTkAAAAAAEAVSinFl19+GW3bto38/LKvM9ngA5SPP/44OnToUNVlAAAAAAAA1ciHH34Y7du3L3P5Bh+gNG7cOCK++0EUFxdXcTUAAAAAAEBVWrBgQXTo0CGXH5Rlgw9Qln9sV3FxsQAFAAAAAACIiFjjbT/cRB4AAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACAjLpVXQAAAABQvfX47ciqLmGtjb/i6KouAQCo4QQoAAAAlawmnoyOcEIaAIDaRYACNYR/ZAMAQPXj73QAgA2XAAUAgA2Ck5hQ/XheAlWhNrz21IYeAaoDAcoGzi9UAAAAWDP/fobqpzY8L2tDj1CTCVAAYB34I3fDYS6h+vG8BFg/vL4CwNrJr+oCAAAAAAAAqhsBCgAAAAAAQIYABQAAAAAAIMM9UKjxfIYrAKyZ35cAAEBV8G8RajIBCgAA1CA18R+g/vEJAADURAIUAAAAAAD4HmriG50ivNlpTQQoAJXML1QAAAAAapraeE7LTeQBAAAAAAAyXIECAJSpNr67BAAAACCilgcoTgoBAAAAAACr4iO8AAAAAAAAMgQoAAAAAAAAGbX6I7yA6sXH6gEAAAAA1YUrUAAAAAAAADIEKAAAAAAAABk+wguACufj2AAAAACo6VyBAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACCjSgOUZcuWxXnnnRcdO3aMoqKi6NSpU1x00UWRUsqtk1KK888/P9q0aRNFRUXRr1+/mDZtWhVWDQAAAAAAbOiqNEC57LLL4qabboobbrgh3nrrrbjsssvi8ssvj+uvvz63zuWXXx7XXXdd3HzzzTFu3Lho2LBh9O/fPxYtWlSFlQMAAAAAABuyulW58xdeeCEGDBgQ++23X0REbLbZZnHffffFSy+9FBHfXX1y7bXXxrnnnhsDBgyIiIiRI0dGq1at4tFHH42f/vSnVVY7AAAAAACw4arSK1B69+4dzzzzTEydOjUiIl599dV4/vnnY5999omIiBkzZsSsWbOiX79+ucc0adIkevbsGWPHjl3lNhcvXhwLFiwo9QUAAAAAALA2qvQKlN///vexYMGC2GqrraJOnTqxbNmyuPjii+Ooo46KiIhZs2ZFRESrVq1KPa5Vq1a5ZVnDhg2LIUOGrN/CAQAAAACADVqVXoHy4IMPxj333BP33ntvTJgwIe6666648sor46677lrnbQ4ePDjmz5+f+/rwww8rsGIAAAAAAKA2qNIrUH7729/G73//+9y9TLbddtt4//33Y9iwYXHMMcdE69atIyJi9uzZ0aZNm9zjZs+eHd27d1/lNgsKCqKgoGC91w4AAAAAAGy4qvQKlK+//jry80uXUKdOnSgpKYmIiI4dO0br1q3jmWeeyS1fsGBBjBs3Lnr16lWptQIAAAAAALVHlV6BcsABB8TFF18cm2yySXTr1i0mTpwYV199dfzyl7+MiIi8vLw488wz449//GN07tw5OnbsGOedd160bds2DjrooKosHQAAAAAA2IBVaYBy/fXXx3nnnRe//vWvY86cOdG2bds46aST4vzzz8+tc84558RXX30VJ554YsybNy923XXXeOqpp6KwsLAKKwcAAAAAADZkVRqgNG7cOK699tq49tpry1wnLy8vhg4dGkOHDq28wgAAAAAAgFqtSu+BAgAAAAAAUB0JUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACCjygOUmTNnxs9//vNo0aJFFBUVxbbbbhuvvPJKbnlKKc4///xo06ZNFBUVRb9+/WLatGlVWDEAAAAAALChq9IAZe7cudGnT5+oV69ePPnkk/Hmm2/GVVddFc2aNcutc/nll8d1110XN998c4wbNy4aNmwY/fv3j0WLFlVh5QAAAAAAwIasblXu/LLLLosOHTrEiBEjcmMdO3bM/X9KKa699to499xzY8CAARERMXLkyGjVqlU8+uij8dOf/rTSawYAAAAAADZ8VXoFyqhRo2LHHXeMn/zkJ9GyZcvYfvvt489//nNu+YwZM2LWrFnRr1+/3FiTJk2iZ8+eMXbs2FVuc/HixbFgwYJSXwAAAAAAAGujSgOUd999N2666abo3Llz/POf/4xf/epXcfrpp8ddd90VERGzZs2KiIhWrVqVelyrVq1yy7KGDRsWTZo0yX116NBh/TYBAAAAAABscKo0QCkpKYkddtghLrnkkth+++3jxBNPjBNOOCFuvvnmdd7m4MGDY/78+bmvDz/8sAIrBgAAAAAAaoMqDVDatGkTXbt2LTW29dZbxwcffBAREa1bt46IiNmzZ5daZ/bs2bllWQUFBVFcXFzqCwAAAAAAYG1UaYDSp0+fmDJlSqmxqVOnxqabbhoR391QvnXr1vHMM8/kli9YsCDGjRsXvXr1qtRaAQAAAACA2qNuVe78rLPOit69e8cll1wShx9+eLz00ktx6623xq233hoREXl5eXHmmWfGH//4x+jcuXN07NgxzjvvvGjbtm0cdNBBVVk6AAAAAACwAavSAGWnnXaKRx55JAYPHhxDhw6Njh07xrXXXhtHHXVUbp1zzjknvvrqqzjxxBNj3rx5seuuu8ZTTz0VhYWFVVg5AAAAAACwIavSACUiYv/994/999+/zOV5eXkxdOjQGDp0aCVWBQAAAAAA1GZVeg8UAAAAAACA6kiAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyFinAOWuu+6Kxx9/PPf9OeecE02bNo3evXvH+++/X2HFAQAAAAAAVIV1ClAuueSSKCoqioiIsWPHxvDhw+Pyyy+PjTbaKM4666wKLRAAAAAAAKCy1V2XB3344YexxRZbRETEo48+GoceemiceOKJ0adPn9h9990rsj4AAAAAAIBKt05XoDRq1Cg+//zziIj417/+FXvuuWdERBQWFsY333xTcdUBAAAAAABUgXW6AmXPPfeM448/PrbffvuYOnVq7LvvvhER8cYbb8Rmm21WkfUBAAAAAABUunW6AmX48OHRq1ev+PTTT+Ovf/1rtGjRIiIixo8fHz/72c8qtEAAAAAAAIDKtk5XoCxYsCCuu+66yM8vnb9ceOGF8eGHH1ZIYQAAAAAAAFVlna5A6dixY3z22WcrjX/xxRfRsWPH710UAAAAAABAVVqnACWltMrxhQsXRmFh4fcqCAAAAAAAoKqt1Ud4DRo0KCIi8vLy4vzzz48GDRrkli1btizGjRsX3bt3r9ACAQAAAAAAKttaBSgTJ06MiO+uQHn99dejfv36uWX169eP7bbbLs4+++yKrRAAAAAAAKCSrVWAMmbMmIiIGDhwYPzpT3+K4uLi9VIUAAAAAABAVVqrAGW5ESNGVHQdAAAAAAAA1cY6BShfffVVXHrppfHMM8/EnDlzoqSkpNTyd999t0KKAwAAAAAAqArrFKAcf/zx8dxzz8UvfvGLaNOmTeTl5VV0XQAAAAAAAFVmnQKUJ598Mh5//PHo06dPRdcDAAAAAABQ5fLX5UHNmjWL5s2bV3QtAAAAAAAA1cI6BSgXXXRRnH/++fH1119XdD0AAAAAAABVbp0+wuuqq66Kd955J1q1ahWbbbZZ1KtXr9TyCRMmVEhxAAAAAAAAVWGdApSDDjqogssAAAAAAACoPtYpQLngggsqug4AAAAAAIBqY53ugQIAAAAAALAhK/cVKM2bN4+pU6fGRhttFM2aNYu8vLwy1/3iiy8qpDgAAAAAAICqUO4A5ZprronGjRtHRMS11167vuoBAAAAAACocuUOUI455phV/j8AAAAAAMCGZp1uIh8RsWzZsnj00UfjrbfeioiIbt26xYEHHhh16tSpsOIAAAAAAACqwjoFKNOnT4999903Zs6cGV26dImIiGHDhkWHDh3i8ccfj06dOlVokQAAAAAAAJUpf10edPrpp0enTp3iww8/jAkTJsSECRPigw8+iI4dO8bpp59e0TUCAAAAAABUqnW6AuW5556LF198MZo3b54ba9GiRVx66aXRp0+fCisOAAAAAACgKqzTFSgFBQXx5ZdfrjS+cOHCqF+//vcuCgAAAAAAoCqtU4Cy//77x4knnhjjxo2LlFKklOLFF1+Mk08+OQ488MCKrhEAAAAAAKBSrVOAct1110WnTp2iV69eUVhYGIWFhdG7d+/YYost4k9/+lNF1wgAAAAAAFCp1ukeKE2bNo3HHnsspk+fHm+++WZERHTt2jW22GKLCi0OAAAAAACgKqxTgBIRcfvtt8c111wT06ZNi4iIzp07x5lnnhnHH398hRUHAAAAAABQFdYpQDn//PPj6quvjtNOOy169eoVERFjx46Ns846Kz744IMYOnRohRYJAAAAAABQmdYpQLnpppviz3/+c/zsZz/LjR144IHxgx/8IE477TQBCgAAAAAAUKOt003klyxZEjvuuONK4z169IilS5d+76IAAAAAAACq0joFKL/4xS/ipptuWmn81ltvjaOOOup7FwUAAAAAAFCVvtdN5P/1r3/FLrvsEhER48aNiw8++CCOPvroGDRoUG69q6+++vtXCQAAAAAAUInWKUCZPHly7LDDDhER8c4770RExEYbbRQbbbRRTJ48ObdeXl5eBZQIAAAAAABQudYpQBkzZkxF1wEAAAAAAFBtrNM9UAAAAAAAADZkAhQAAAAAAICMahOgXHrppZGXlxdnnnlmbmzRokVxyimnRIsWLaJRo0Zx6KGHxuzZs6uuSAAAAAAAoFaoFgHKyy+/HLfcckv84Ac/KDV+1llnxd///vd46KGH4rnnnouPP/44DjnkkCqqEgAAAAAAqC2qPEBZuHBhHHXUUfHnP/85mjVrlhufP39+3H777XH11VfHj3/84+jRo0eMGDEiXnjhhXjxxRersGIAAAAAAGBDV+UByimnnBL77bdf9OvXr9T4+PHjY8mSJaXGt9pqq9hkk01i7NixZW5v8eLFsWDBglJfAAAAAAAAa6NuVe78/vvvjwkTJsTLL7+80rJZs2ZF/fr1o2nTpqXGW7VqFbNmzSpzm8OGDYshQ4ZUdKkAAAAAAEAtUmVXoHz44YdxxhlnxD333BOFhYUVtt3BgwfH/Pnzc18ffvhhhW0bAAAAAACoHaosQBk/fnzMmTMndthhh6hbt27UrVs3nnvuubjuuuuibt260apVq/j2229j3rx5pR43e/bsaN26dZnbLSgoiOLi4lJfAAAAAAAAa6PKPsJrjz32iNdff73U2MCBA2OrrbaK3/3ud9GhQ4eoV69ePPPMM3HooYdGRMSUKVPigw8+iF69elVFyQAAAAAAQC1RZQFK48aNY5tttik11rBhw2jRokVu/LjjjotBgwZF8+bNo7i4OE477bTo1atX7LLLLlVRMgAAAAAAUEtU6U3k1+Saa66J/Pz8OPTQQ2Px4sXRv3//uPHGG6u6LAAAAAAAYANXrQKUZ599ttT3hYWFMXz48Bg+fHjVFAQAAAAAANRKVXYTeQAAAAAAgOpKgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAICMKg1Qhg0bFjvttFM0btw4WrZsGQcddFBMmTKl1DqLFi2KU045JVq0aBGNGjWKQw89NGbPnl1FFQMAAAAAALVBlQYozz33XJxyyinx4osvxr///e9YsmRJ7LXXXvHVV1/l1jnrrLPi73//ezz00EPx3HPPxccffxyHHHJIFVYNAAAAAABs6OpW5c6feuqpUt/feeed0bJlyxg/fnzstttuMX/+/Lj99tvj3nvvjR//+McRETFixIjYeuut48UXX4xddtllpW0uXrw4Fi9enPt+wYIF67cJAAAAAABgg1Ot7oEyf/78iIho3rx5RESMHz8+lixZEv369cuts9VWW8Umm2wSY8eOXeU2hg0bFk2aNMl9dejQYf0XDgAAAAAAbFCqTYBSUlISZ555ZvTp0ye22WabiIiYNWtW1K9fP5o2bVpq3VatWsWsWbNWuZ3BgwfH/Pnzc18ffvjh+i4dAAAAAADYwFTpR3it6JRTTonJkyfH888//722U1BQEAUFBRVUFQAAAAAAUBtViytQTj311PjHP/4RY8aMifbt2+fGW7duHd9++23Mmzev1PqzZ8+O1q1bV3KVAAAAAABAbVGlAUpKKU499dR45JFHYvTo0dGxY8dSy3v06BH16tWLZ555Jjc2ZcqU+OCDD6JXr16VXS4AAAAAAFBLVOlHeJ1yyilx7733xmOPPRaNGzfO3dekSZMmUVRUFE2aNInjjjsuBg0aFM2bN4/i4uI47bTTolevXrHLLrtUZekAAAAAAMAGrEoDlJtuuikiInbfffdS4yNGjIhjjz02IiKuueaayM/Pj0MPPTQWL14c/fv3jxtvvLGSKwUAAAAAAGqTKg1QUkprXKewsDCGDx8ew4cPr4SKAAAAAAAAqslN5AEAAAAAAKoTAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgAwBCgAAAAAAQIYABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyBCgAAAAAAAAZAhQAAAAAAAAMgQoAAAAAAAAGQIUAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABk1IgAZfjw4bHZZptFYWFh9OzZM1566aWqLgkAAAAAANiAVfsA5YEHHohBgwbFBRdcEBMmTIjtttsu+vfvH3PmzKnq0gAAAAAAgA1UtQ9Qrr766jjhhBNi4MCB0bVr17j55pujQYMGcccdd1R1aQAAAAAAwAaqblUXsDrffvttjB8/PgYPHpwby8/Pj379+sXYsWNX+ZjFixfH4sWLc9/Pnz8/IiIWLFiw0rrLFn9TwRVXjlX1UhY9Vl9r02NE7eizNvQYUTv61GP15XhdWW3oMaJ29FkbeoyomX3Whh4jHK+rUhv6rA09RtTMPmtDjxGO11WpDX3Whh4jakefeqy+HK8r25B6XD6WUlrtY/PSmtaoQh9//HG0a9cuXnjhhejVq1du/Jxzzonnnnsuxo0bt9JjLrzwwhgyZEhllgkAAAAAANQwH374YbRv377M5dX6CpR1MXjw4Bg0aFDu+5KSkvjiiy+iRYsWkZeXVyk1LFiwIDp06BAffvhhFBcXV8o+K5seNxy1oc/a0GNE7ehTjxuO2tBnbegxonb0qccNR23oszb0GFE7+qwNPUbUjj71uOGoDX3Whh4jakefetxw1IY+q6LHlFJ8+eWX0bZt29WuV60DlI022ijq1KkTs2fPLjU+e/bsaN269SofU1BQEAUFBaXGmjZtur5KXK3i4uIN9qBeTo8bjtrQZ23oMaJ29KnHDUdt6LM29BhRO/rU44ajNvRZG3qMqB191oYeI2pHn3rccNSGPmtDjxG1o089bjhqQ5+V3WOTJk3WuE61vol8/fr1o0ePHvHMM8/kxkpKSuKZZ54p9ZFeAAAAAAAAFalaX4ESETFo0KA45phjYscdd4ydd945rr322vjqq69i4MCBVV0aAAAAAACwgar2AcoRRxwRn376aZx//vkxa9as6N69ezz11FPRqlWrqi6tTAUFBXHBBRes9FFiGxI9bjhqQ5+1oceI2tGnHjcctaHP2tBjRO3oU48bjtrQZ23oMaJ29FkbeoyoHX3qccNRG/qsDT1G1I4+9bjhqA19Vuce81JKqaqLAAAAAAAAqE6q9T1QAAAAAAAAqoIABQAAAAAAIEOAAgAAAAAAkCFAAQAAAAAAyKjVAcp//vOfOOCAA6Jt27aRl5cXjz766ErrvPXWW3HggQdGkyZNomHDhrHTTjvFBx98kFt+0kknRadOnaKoqCg23njjGDBgQLz99tu55XfeeWfk5eWt8mvOnDll1vbFF1/EUUcdFcXFxdG0adM47rjjYuHChRXe48KFC+PUU0+N9u3bR1FRUXTt2jVuvvnmlbYzduzY+PGPfxwNGzaM4uLi2G233eKbb77JLZ86dWoMGDAgNtpooyguLo5dd901xowZs9raUkpx/vnnR5s2baKoqCj69esX06ZNW+seK6LP9957r8x5euihhyJiw5jLd955Jw4++ODYeOONo7i4OA4//PCYPXt2qXWq+1zOnj07jj322Gjbtm00aNAg9t5771L7+uKLL+K0006LLl26RFFRUWyyySZx+umnx/z580tt55lnnonevXtH48aNo3Xr1vG73/0uli5dutraFi1aFKecckq0aNEiGjVqFIceeuhKP7/K6DGifHO52WabrXSsXnrppRtUjxERjz/+ePTs2TOKioqiWbNmcdBBB622tup0vJanz2effbbM156XX365zNpq2lzW9Nee8vY5YcKE2HPPPaNp06bRokWLOPHEE9f4O6Gi+hw2bFjstNNO0bhx42jZsmUcdNBBMWXKlFLrlOe4+eCDD2K//faLBg0aRMuWLeO3v/3tSq+fzz77bOywww5RUFAQW2yxRdx5551rrO+1116LH/7wh1FYWBgdOnSIyy+/vNr2+Mknn8SRRx4ZW265ZeTn58eZZ55ZrvrK87OrLj3+7W9/iz333DN3PPfq1Sv++c9/rrG+ipjHyuzz+eefjz59+kSLFi2iqKgottpqq7jmmmsqpc/KfE4u97///S/q1q0b3bt3r5QeK7PPsn5fzpo1a733WZlzuXjx4vjDH/4Qm266aRQUFMRmm20Wd9xxx2rrq0mvPccee+wq57Fbt26rra+mHa8REffcc09st9120aBBg2jTpk388pe/jM8//3y19dWkuYyIGD58eGy99dZRVFQUXbp0iZEjR66xvorosSL7PP3006NHjx5RUFBQ5mvnuhx/1Wku19TjokWL4thjj41tt9026tatu8Z/by1XEedCKqvHZ599NgYMGBBt2rSJhg0bRvfu3eOee+5ZY3017XidMmVK/OhHP4pWrVpFYWFhbL755nHuuefGkiVL1nuflfmcXG769OnRuHHjaNq06Rrrq2lzWdZ5zBdffHG991mZc5lSiiuvvDK23HLLKCgoiHbt2sXFF1+82voq6jxstpBa64knnkh/+MMf0t/+9rcUEemRRx4ptXz69OmpefPm6be//W2aMGFCmj59enrsscfS7Nmzc+vccsst6bnnnkszZsxI48ePTwcccEDq0KFDWrp0aUoppa+//jp98sknpb769++f+vbtu9ra9t5777TddtulF198Mf33v/9NW2yxRfrZz35W4T2ecMIJqVOnTmnMmDFpxowZ6ZZbbkl16tRJjz32WG6dF154IRUXF6dhw4alyZMnp7fffjs98MADadGiRbl1OnfunPbdd9/06quvpqlTp6Zf//rXqUGDBumTTz4ps7ZLL700NWnSJD366KPp1VdfTQceeGDq2LFj+uabbyq9z6VLl640T0OGDEmNGjVKX375ZUqp5s/lwoUL0+abb54OPvjg9Nprr6XXXnstDRgwIO20005p2bJlue1U57ksKSlJu+yyS/rhD3+YXnrppfT222+nE088MW2yySZp4cKFKaWUXn/99XTIIYekUaNGpenTp6dnnnkmde7cOR166KG57UyaNCnVr18/DRkyJE2bNi09++yzaauttkq/+c1vVlvbySefnDp06JCeeeaZ9Morr6Rddtkl9e7du9J7LO9cbrrppmno0KGljtnl29hQenz44YdTs2bN0k033ZSmTJmS3njjjfTAAw+strbqdLyWp8/Fixev9Npz/PHHp44dO6aSkpIya6tpc1nTX3vK0+fMmTNTs2bN0sknn5zefvvt9NJLL6XevXuXen1an332798/jRgxIk2ePDlNmjQp7bvvvqV6SGnNx83SpUvTNttsk/r165cmTpyYnnjiibTRRhulwYMH59Z59913U4MGDdKgQYPSm2++ma6//vpUp06d9NRTT5VZ2/z581OrVq3SUUcdlSZPnpzuu+++VFRUlG655ZZq2eOMGTPS6aefnu66667UvXv3dMYZZ6yxtvJstzr1eMYZZ6TLLrssvfTSS2nq1Klp8ODBqV69emnChAll1lZR81iZfU6YMCHde++9afLkyWnGjBnpL3/5S2rQoMFqa65px+tyc+fOTZtvvnnaa6+90nbbbbfa2mriXI4ZMyZFRJoyZUqp35kr/q5ZX31W5lweeOCBqWfPnunf//53mjFjRnrhhRfS888/X2ZtNe21Z968eaXm78MPP0zNmzdPF1xwQZm11cTj9fnnn0/5+fnpT3/6U3r33XfTf//739StW7d08MEHl1lbTZvLG2+8MTVu3Djdf//96Z133kn33XdfatSoURo1atR677Gi+kwppdNOOy3dcMMN6Re/+MUqXzvX5firTnNZnh4XLlyYTj755HTrrbem/v37pwEDBpSrvoo4F1JZPV588cXp3HPPTf/73//S9OnT07XXXpvy8/PT3//+9zJrq4nH6zvvvJPuuOOONGnSpPTee++lxx57LLVs2XK1Nde043W5b7/9Nu24445pn332SU2aNFltbTVxLmfMmJEiIj399NOlfm9+++23673PypzL0047LXXp0iU99thj6d13302vvPJK+te//rXa+irqPOyKanWAsqJVnZA+4ogj0s9//vO12s6rr76aIiJNnz59lcvnzJmT6tWrl0aOHFnmNt58880UEenll1/OjT355JMpLy8vzZw5c63qWdGqeuzWrVsaOnRoqbEddtgh/eEPf8h937Nnz3TuueeWud1PP/00RUT6z3/+kxtbsGBBioj073//e5WPKSkpSa1bt05XXHFFbmzevHmpoKAg3XfffWvT1krWtc+s7t27p1/+8pdlLq9pc/nPf/4z5efnp/nz5+eWz5s3L+Xl5eXmqbrP5ZQpU1JEpMmTJ+fGli1bljbeeOP05z//ucztPPjgg6l+/fppyZIlKaWUBg8enHbcccdS64waNSoVFhamBQsWrHIb8+bNS/Xq1UsPPfRQbuytt95KEZHGjh27Lu2llNatx/LMZUrfBSjXXHNNuWupaT0uWbIktWvXLt12223lrqW6Ha/lncsVffvtt2njjTde6fm+opo2lxvCa095+rzllltSy5YtS53Me+2111JEpGnTplV6n3PmzEkRkZ577rncdtd03DzxxBMpPz8/zZo1K7fOTTfdlIqLi9PixYtTSimdc845qVu3bqX2dcQRR6T+/fuXWcuNN96YmjVrlttGSin97ne/S126dKmWPa6ob9++5QpQ1na75VUZPS7XtWvXNGTIkDKXr695TKly+zz44INX+2+Amnq8HnHEEencc89NF1xwwRoDlJo4l8sDlLlz55a7lpo2l08++WRq0qRJ+vzzz8tdS01/7XnkkUdSXl5eeu+998qspSYer1dccUXafPPNS+3ruuuuS+3atSuzlpo2l7169Upnn312qX0NGjQo9enTp9J7XNc+V1TWa+e6HH/VaS5XVJ7fD8ccc0y5ApT1dS6kMnpcbt99900DBw4sc3lNPF5X5ayzzkq77rprmctr6vF6zjnnpJ///OdpxIgRawxQauJcLg9QJk6cWO5aatpcvvnmm6lu3brp7bffLnct6+u1p1Z/hNfqlJSUxOOPPx5bbrll9O/fP1q2bBk9e/Zc5cd8LffVV1/FiBEjomPHjtGhQ4dVrjNy5Mho0KBBHHbYYWVuZ+zYsdG0adPYcccdc2P9+vWL/Pz8GDdu3Dr3tCq9e/eOUaNGxcyZMyOlFGPGjImpU6fGXnvtFRERc+bMiXHjxkXLli2jd+/e0apVq+jbt288//zzuW20aNEidznuV199FUuXLo1bbrklWrZsGT169FjlfmfMmBGzZs2Kfv365caaNGkSPXv2jLFjx1Zoj+XpM2v8+PExadKkOO6448rcZk2by8WLF0deXl4UFBTkHlNYWBj5+fm5+azuc7l48eJc3cvl5+dHQUFBqWMya/78+VFcXBx169bNbWfFbUREFBUVxaJFi2L8+PGr3Mb48eNjyZIlpfrcaqutYpNNNqnQPsvTY3nmcrlLL700WrRoEdtvv31cccUVq700s6b1OGHChJg5c2bk5+fH9ttvH23atIl99tknJk+eXOa+q9vxujZzudyoUaPi888/j4EDB5a575o2lxvCa095+ly8eHHUr18/8vP/359fRUVFERFlzvf67HP5Rxs2b948Isp33IwdOza23XbbaNWqVW6d/v37x4IFC+KNN97IrbPiNpavs7p6x44dG7vttlvUr1+/1GOmTJkSc+fOrXY9rov1td3K6rGkpCS+/PLL3H7K6nF9zGNE5fU5ceLEeOGFF6Jv375l1lITj9cRI0bEu+++GxdccEG5aqnJc9m9e/do06ZN7LnnnvG///2vSvpcXz2OGjUqdtxxx7j88sujXbt2seWWW8bZZ59d6qOVV9VjTX7tuf3226Nfv36x6aabrrbHmna89urVKz788MN44oknIqUUs2fPjocffjj23Xff1fZZk+ayrH9zvfTSS2V+XND66nFd+yyPdTn+qtNcri/r61xIZfY4f/78Nf7dU9OO16zp06fHU089tca/e2ra8Tp69Oh46KGHYvjw4eVavybP5YEHHhgtW7aMXXfdNUaNGrXadWvaXP7973+PzTffPP7xj39Ex44dY7PNNovjjz8+vvjiizIfs75eewQoZZgzZ04sXLgwLr300th7773jX//6Vxx88MFxyCGHxHPPPVdq3RtvvDEaNWoUjRo1iieffDL+/e9/l/rluaLbb789jjzyyNwJk1WZNWtWtGzZstRY3bp1o3nz5mv8DN+1df3110fXrl2jffv2Ub9+/dh7771j+PDhsdtuu0VExLvvvhsRERdeeGGccMIJ8dRTT8UOO+wQe+yxR+7z1/Py8uLpp5+OiRMnRuPGjaOwsDCuvvrqeOqpp6JZs2Zl9hgRpZ60y7+v6B7L02fW7bffHltvvXX07t27zG3WtLncZZddomHDhvG73/0uvv766/jqq6/i7LPPjmXLlsUnn3wSEdV/Lpe/4A4ePDjmzp0b3377bVx22WXx0Ucf5XrI+uyzz+Kiiy6KE088MTfWv3//eOGFF+K+++6LZcuWxcyZM2Po0KEREWVuZ9asWVG/fv2VPjuzovssT4/lmcuI7z5P8v77748xY8bESSedFJdcckmcc845Ze67pvW44uvTueeeG//4xz+iWbNmsfvuu5f5C7W6Ha/lncsV3X777dG/f/9o3759mfuuaXO5Ibz2lKfPH//4xzFr1qy44oor4ttvv425c+fG73//+4hY/WvP+uizpKQkzjzzzOjTp09ss802uX2t6biZNWvWKmtZsday1lmwYEGZJ/nKs921tT57XBc1vccrr7wyFi5cGIcffniZ9ayvn11l9Nm+ffsoKCiIHXfcMU455ZQ4/vjjy6ynps3ltGnT4ve//33cfffduTeTrElNnMs2bdrEzTffHH/961/jr3/9a3To0CF23333mDBhQqX2uT57fPfdd+P555+PyZMnxyOPPBLXXnttPPzww/HrX/96g+lxRR9//HE8+eSTq30+rst2y2t99tmnT5+455574ogjjoj69etH69ato0mTJqs92VfT5rJ///5x2223xfjx4yOlFK+88krcdtttsWTJkvjss88qrcfv02d5rEvN1Wku15f1cS6kMnt88MEH4+WXX17tm9Zq4vG6XO/evaOwsDA6d+4cP/zhD3PnQ1alph2vn3/+eRx77LFx5513RnFxcbkeUxPnslGjRnHVVVfFQw89FI8//njsuuuucdBBB602RKlpc/nuu+/G+++/Hw899FCMHDky7rzzzhg/fvxq38i+vs7DClDKUFJSEhERAwYMiLPOOiu6d+8ev//972P//fdf6cbcRx11VEycODGee+652HLLLePwww+PRYsWrbTNsWPHxltvvbXaqxoq2/XXXx8vvvhijBo1KsaPHx9XXXVVnHLKKfH0009HxP/7OZx00kkxcODA2H777eOaa66JLl265G5WmFKKU045JVq2bBn//e9/46WXXoqDDjooDjjggDJPCFW2NfW5om+++Sbuvffe1c5TTZzLjTfeOB566KH4+9//Ho0aNYomTZrEvHnzYocddsi9G7q6z2W9evXib3/7W0ydOjWaN28eDRo0iDFjxsQ+++xT6h3dyy1YsCD222+/6Nq1a1x44YW58b322iuuuOKKOPnkk6OgoCC23HLL3Lu9VrWdylSeHsszlxERgwYNit133z1+8IMfxMknnxxXXXVVXH/99bl301eViupx+evTH/7whzj00EOjR48eMWLEiMjLy4uHHnqoyvpbriLncrmPPvoo/vnPf1ab156K6nFDeO0pT5/dunWLu+66K6666qpo0KBBtG7dOjp27BitWrWq9NeeU045JSZPnhz3339/pe63Mumx4tx7770xZMiQePDBB1f6B0llqIw+//vf/8Yrr7wSN998c1x77bVx3333rbd9rcr66nHZsmVx5JFHxpAhQ2LLLbes0G2vi/U5l126dImTTjopevToEb1794477rgjevfuHddcc02F72t11mePJSUlkZeXF/fcc0/svPPOse+++8bVV18dd91112qvQqlolfXac9ddd0XTpk3LfcPqirY++3zzzTfjjDPOiPPPPz/Gjx8fTz31VLz33ntx8sknV/i+Vmd99njeeefFPvvsE7vsskvUq1cvBgwYEMccc0xEVP6/ufxNsGGorB7HjBkTAwcOjD//+c/RrVu39bqvVamMPh944IGYMGFC3HvvvfH444/HlVdeud72tSrrs8cTTjghjjzyyDLfMF2Z1mefG220UQwaNCh69uwZO+20U1x66aXx85//PK644ooK39fqrO+/exYvXhwjR46MH/7wh7H77rvH7bffHmPGjFnppvXrmwClDBtttFHUrVs3unbtWmp86623jg8++KDUWJMmTaJz586x2267xcMPPxxvv/12PPLIIytt87bbbovu3buX+XEky7Vu3TrmzJlTamzp0qXxxRdfROvWrdexo5V988038X//939x9dVXxwEHHBA/+MEP4tRTT40jjjgi9+LZpk2biIjV/hxGjx4d//jHP+L++++PPn36xA477BA33nhjFBUVxV133VVmjxERs2fPLjU+e/bsCu2xvH2u6OGHH46vv/46jj766DK3WRPnMuK74OCdd96JOXPmxGeffRZ/+ctfYubMmbH55ptHRPWfy4iIHj16xKRJk2LevHnxySefxFNPPRWff/55roflvvzyy9h7772jcePG8cgjj0S9evVKLR80aFDMmzcvPvjgg/jss89iwIABERErbWe51q1bx7fffhvz5s0rNb4++ixPj2uay1Xp2bNnLF26NN57771VLq9pPa7q9amgoCA233zzlV6nV+xxeU/ru8eIip/LESNGRIsWLeLAAw9c7X5r2lxuKK895ZnLI488MmbNmhUzZ86Mzz//PC688ML49NNPV/vaU9F9nnrqqfGPf/wjxowZU+pKpvIcN61bt15lLSvWWtY6xcXFZV61WZ7tro313eO6qKk93n///XH88cfHgw8+uNJHs2Wtj59dZfXZsWPH2HbbbeOEE06Is846q9QbL7Jq0lx++eWX8corr8Spp54adevWjbp168bQoUPj1Vdfjbp168bo0aMrpcf13WdZdt5555g+fXqZy2vSXEZ897dPu3btokmTJrl1tt5660gpxUcffbRB9LhcSinuuOOO+MUvflHmpzusuO+adrwOGzYs+vTpE7/97W/jBz/4QfTv3z9uvPHGuOOOO8p880hNm8uioqK444474uuvv4733nsvPvjgg9hss82icePGsfHGG1dKj9+3z/JYl5qr01yuLxV9LqSyenzuuefigAMOiGuuuWa154SW77umHa/LdejQIbp27Ro/+9nP4tJLL40LL7wwli1btsp1a9rxOnr06Ljyyitzf/ccd9xxMX/+/Khbt27ujeBZNXkuV9SzZ88a83dPebRp0ybq1q1b6k1AW2+9dUTEas/5rI/zsAKUMtSvXz922mmnlRKtqVOnrvbzV1NKkVJa6R3eCxcujAcffLBc7xru1atXzJs3r9S9GEaPHh0lJSXRs2fPteykbEuWLIklS5as9O6POnXq5N7Zvdlmm0Xbtm1X+3P4+uuvI2Lld5Hk5+fntpPVsWPHaN26dTzzzDO5sQULFsS4ceOiV69e36+xjPL0uaLbb789DjzwwDL/qKupc7mijTbaKJo2bRqjR4+OOXPm5E7GVve5XFGTJk1i4403jmnTpsUrr7ySC0CW73+vvfaK+vXrx6hRo1b67N3l8vLyom3btlFUVBT33XdfdOjQIXbYYYdVrtujR4+oV69eqT6nTJkSH3zwwXrrc3U9LlfWXK7KpEmTIj8/v8x3D9e0Hnv06BEFBQWlXp+WLFkS7733Xpmv09XxeF1uTXOZUooRI0bE0UcfvVIgmFXT5nJDee1ZrjzPy1atWkWjRo3igQceiMLCwthzzz1Xub+K7DOlFKeeemo88sgjMXr06OjYsWOp5eU5bnr16hWvv/56qT9K//3vf0dxcXEuzOzVq1epbSxfZ3X19urVK/7zn/+U+kz0f//739GlS5cyP8atKntcFxW13crs8b777ouBAwfGfffdF/vtt1+5eqyIeazsPrOWv9ttffdZGT0WFxfH66+/HpMmTcp9nXzyydGlS5eYNGlSmX+PbihzOWnSpNwbLtZnn5XVY58+feLjjz+OhQsX5taZOnVq5Ofnl/nRnjXxtSfiu5OY06dPL/e/uWra8fr111+v8t9uy2soq8+aOJf16tWL9u3bR506deL++++P/fffv8wrUCryd3BF9Fke63L8Vae5XF8q6lxIZfb47LPPxn777ReXXXZZqY8AL0tNPF5XpaSkJJYsWVLmv7tq2vE6duzYUn/3DB06NBo3bhyTJk2Kgw8+eL32WJl9rkp5/u6pSXPZp0+fWLp0abzzzju5salTp0ZElHnOZ72dh13n289vAL788ss0ceLENHHixBQR6eqrr04TJ05M77//fkoppb/97W+pXr166dZbb03Tpk1L119/fapTp07673//m1JK6Z133kmXXHJJeuWVV9L777+f/ve//6UDDjggNW/ePM2ePbvUvm677bZUWFiY5s6du1Id48aNS126dEkfffRRbmzvvfdO22+/fRo3blx6/vnnU+fOndPPfvazCu+xb9++qVu3bmnMmDHp3XffTSNGjEiFhYXpxhtvzG3jmmuuScXFxemhhx5K06ZNS+eee24qLCxM06dPTyml9Omnn6YWLVqkQw45JE2aNClNmTIlnX322alevXpp0qRJue106dIl/e1vf8t9f+mll6amTZumxx57LL322mtpwIABqWPHjumbb76pkj5TSmnatGkpLy8vPfnkk2XuqybP5R133JHGjh2bpk+fnv7yl7+k5s2bp0GDBuWW14S5fPDBB9OYMWPSO++8kx599NG06aabpkMOOST3+Pnz56eePXumbbfdNk2fPj198sknua+lS5fm1rv88svTa6+9liZPnpyGDh2a6tWrlx555JHc8o8++ih16dIljRs3Ljd28sknp0022SSNHj06vfLKK6lXr16pV69eld5jSmueyxdeeCFdc801adKkSemdd95Jd999d9p4443T0UcfvcH0mFJKZ5xxRmrXrl365z//md5+++103HHHpZYtW6Yvvvgit051Pl7L22dKKT399NMpItJbb7210rKaPpcbwmtPefpMKaXrr78+jR8/Pk2ZMiXdcMMNqaioKP3pT38qtc766vNXv/pVatKkSXr22WdLvTZ+/fXXuXXWdNwsXbo0bbPNNmmvvfZKkyZNSk899VTaeOON0+DBg3PrvPvuu6lBgwbpt7/9bXrrrbfS8OHDU506ddJTTz1V6ufw4x//OPf9vHnzUqtWrdIvfvGLNHny5HT//fenBg0apFtuuaVa9phSyh0vPXr0SEceeWSaOHFieuONN3LL//a3v6UuXbqs9XarS4/33HNPqlu3bho+fHip/cybNy+3zvqax8rs84YbbkijRo1KU6dOTVOnTk233XZbaty4cfrDH/6w3vuszON1RRdccEHabrvtSo1tCHN5zTXXpEcffTRNmzYtvf766+mMM85I+fn56emnn17vfVZWj19++WVq3759Ouyww9Ibb7yRnnvuudS5c+d0/PHH59ap6a89y/385z9PPXv2XGUtG8LxOmLEiFS3bt104403pnfeeSc9//zzaccdd0w777xzbp2aPpdTpkxJf/nLX9LUqVPTuHHj0hFHHJGaN2+eZsyYsd57rKg+U/ruHMHEiRPTSSedlLbccsvc7//FixenlMp3/FXnuSxPjyml9MYbb6SJEyemAw44IO2+++65dZZbX+dCKqvH0aNHpwYNGqTBgweX2s/nn3+e28aGcLzefffd6YEHHkhvvvlmeuedd9IDDzyQ2rZtm4466qj13mdlHq8rGjFiRGrSpEmpsQ1hLu+888507733prfeeiu99dZb6eKLL075+fnpjjvuWO99VlaPy5YtSzvssEPabbfd0oQJE9Irr7ySevbsmfbcc8/cNtbnedgV1eoAZcyYMSkiVvo65phjcuvcfvvtaYsttkiFhYVpu+22S48++mhu2cyZM9M+++yTWrZsmerVq5fat2+fjjzyyPT222+vtK9evXqlI488crV1rPiHxOeff55+9rOfpUaNGqXi4uI0cODA9OWXX1Z4j5988kk69thjU9u2bVNhYWHq0qVLuuqqq1JJSUmp7QwbNiy1b98+NWjQIPXq1SsXIi338ssvp7322is1b948NW7cOO2yyy7piSeeKLVORKQRI0bkvi8pKUnnnXdeatWqVSooKEh77LFHmjJlylr3WJF9Dh48OHXo0CEtW7aszH3V5Ln83e9+l1q1apXq1auXOnfuvMqfQXWfyz/96U+pffv2qV69emmTTTZJ5557bqlflGU9PjsvP/rRj1KTJk1SYWFh6tmz50o9zpgxI0VEGjNmTG7sm2++Sb/+9a9Ts2bNUoMGDdLBBx+cPvnkk0rvMaU1z+X48eNTz549cz1uvfXW6ZJLLkmLFi3aYHpMKaVvv/02/eY3v0ktW7ZMjRs3Tv369UuTJ08utU51Pl7L22dKKf3sZz9LvXv3XmUdG8Jc1vTXnvL2+Ytf/CI1b9481a9fP/3gBz9II0eOXKmW9dVnWa+NK+6rPMfNe++9l/bZZ59UVFSUNtpoo/Sb3/wmLVmyZKWfZ/fu3VP9+vXT5ptvXmofKX13AnfTTTctNfbqq6+mXXfdNRUUFKR27dqlSy+9tFr3uKr9rNjTiBEjUva9SuXZbnXpsW/fvmv8O3l9zWNl9nndddelbt26pQYNGqTi4uK0/fbbpxtvvLHU34IbwvG6olUFKBvCXF522WWpU6dOqbCwMDVv3jztvvvuafTo0ZXSZ2XO5VtvvZX69euXioqKUvv27dOgQYNKnbCo6a89KX13QrqoqCjdeuutq6xlQzheU/ru9adr166pqKgotWnTJh111FGlTgDV9Ll88803U/fu3VNRUVEqLi5OAwYMWOlcyfrqsSL7LOv34Yr/tlzT8Vfd57I8PW666aarXGe59XUupLJ6POaYY1a5vG/fvrltbAjH6/3335922GGH1KhRo9SwYcPUtWvXdMkll5R6Y9aGcLyuaFUByoYwl3feeWfaeuutc3/D7rzzzumhhx6qlD4rcy5nzpyZDjnkkNSoUaPUqlWrdOyxx5YKNtfnedgV5f3/jQMAAAAAAPD/cw8UAAAAAACADAEKAAAAAABAhgAFAAAAAAAgQ4ACAAAAAACQIUABAAAAAADIEKAAAAAAAABkCFAAAAAAAAAyBCgAAAAAAAAZAhQAAAAAAIAMAQoAAAAAAECGAAUAAGANli1bFiUlJVVdBgAAUIkEKAAAQI0ycuTIaNGiRSxevLjU+EEHHRS/+MUvIiLiscceix122CEKCwtj8803jyFDhsTSpUtz61599dWx7bbbRsOGDaNDhw7x61//OhYuXJhbfuedd0bTpk1j1KhR0bVr1ygoKIgPPvigchoEAACqBQEKAABQo/zkJz+JZcuWxahRo3Jjc+bMiccffzx++ctfxn//+984+uij44wzzog333wzbrnllrjzzjvj4osvzq2fn58f1113Xbzxxhtx1113xejRo+Occ84ptZ+vv/46LrvssrjtttvijTfeiJYtW1ZajwAAQNXLSymlqi4CAABgbfz617+O9957L5544omI+O6KkuHDh8f06dNjzz33jD322CMGDx6cW//uu++Oc845Jz7++ONVbu/hhx+Ok08+OT777LOI+O4KlIEDB8akSZNiu+22W/8NAQAA1Y4ABQAAqHEmTpwYO+20U7z//vvRrl27+MEPfhA/+clP4rzzzouNN944Fi5cGHXq1Mmtv2zZsli0aFF89dVX0aBBg3j66adj2LBh8fbbb8eCBQti6dKlpZbfeeedcdJJJ8WiRYsiLy+vCjsFAACqSt2qLgAAAGBtbb/99rHddtvFyJEjY6+99oo33ngjHn/88YiIWLhwYQwZMiQOOeSQlR5XWFgY7733Xuy///7xq1/9Ki6++OJo3rx5PP/883HcccfFt99+Gw0aNIiIiKKiIuEJAADUYgIUAACgRjr++OPj2muvjZkzZ0a/fv2iQ4cOERGxww47xJQpU2KLLbZY5ePGjx8fJSUlcdVVV0V+/ne3hXzwwQcrrW4AAKBmEKAAAAA10pFHHhlnn312/PnPf46RI0fmxs8///zYf//9Y5NNNonDDjss8vPz49VXX43JkyfHH//4x9hiiy1iyZIlcf3118cBBxwQ//vf/+Lmm2+uwk4AAIDqKL+qCwAAAFgXTZo0iUMPPTQaNWoUBx10UG68f//+8Y9//CP+9a9/xU477RS77LJLXHPNNbHppptGRMR2220XV199dVx22WWxzTbbxD333BPDhg2roi4AAIDqyk3kAQCAGmuPPfaIbt26xXXXXVfVpQAAABsYAQoAAFDjzJ07N5599tk47LDD4s0334wuXbpUdUkAAMAGxj1QAACAGmf77bePuXPnxmWXXSY8AQAA1gtXoAAAAAAAAGS4iTwAAAAAAECGAAUAAAAAACBDgAIAAAAAAJAhQAEAAAAAAMgQoAAAAAAAAGQIUAAAAAAAADIEKAAAAAAAABkCFAAAAAAAgIz/D2g6V8HN+B/UAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(20, 5))\n",
- "sns.barplot(data=data, x='year', y='points', errorbar=None)\n",
- "plt.title(\"points rate depending on the year\")\n",
- "plt.xlabel(\"year\")\n",
- "plt.ylabel(\"points\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "890pOlA8A2se"
- },
- "source": [
- "Проверили. Значения не линейно-зависимы. Функцию нельзя считать константной т.к. колебания оценки на 1-2 могут быть существенны (видно из предыдущего графика)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ndxrlPqeEb0X"
- },
- "source": [
- "Посмотрим на зависимость цены вина от года розлива."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 250,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 450
- },
- "id": "Fsl2BUlQEVpj",
- "outputId": "713d79b8-9076-428e-f6e5-01a72c939ca6"
- },
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAHWCAYAAAAIOsSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf6UlEQVR4nO3de5yXc/4//udMh2kqMykddZBTylmonJdIzrTLYp3WccWixW6fdf4gh6WWLSwprZzyccgii9I6JETIIUVEVBadpCnN6/fH/np/zbumptS8m5n7/XZ7327NdV3v1/V8zuua90zvx/u6rryUUgoAAAAAAAAy8nNdAAAAAAAAwPpGgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAACuQl5cXV1xxRa7LWO9tsskmcfLJJ+e6jLUmu58XXngh8vLy4oUXXshZTbny6aefRl5eXvzlL3/JdSkAAJATAhQAAKhGBg0aFEOHDs11GVQhTz31lLAQAABWoHauCwAAgPXRDz/8ELVrV70/lwcNGhQbbbRRtTorJJf22muv+OGHH6Ju3bq5LmWdeeqpp2LgwIFCFAAAyOIMFAAA+P+VlpbGokWLIiKiXr16OQ9QUkrxww8/5LSGmi4/Pz/q1asX+fn+61QT+JkDAOCn/C8AAIBq5Yorroi8vLz48MMP4+ijj46ioqJo0qRJnHfeeZlwZJm8vLw455xzYvjw4bH11ltHQUFBjBo1KrMu+xP5M2bMiFNPPTVatWoVBQUF0b59+/jd734XixcvzmwzZ86cOP/886NNmzZRUFAQm2++eVx//fVRWlq6yto32WSTOOSQQ+KZZ56JnXfeOQoLC+OOO+6IiIghQ4bEvvvuG82aNYuCgoLo1KlT3Hbbbcs9/7333ouxY8dGXl5e5OXlxT777LNWakspxdVXXx2tW7eO+vXrxy9+8Yt47733VrhtRfbz0/tr9O/fP9q1axeFhYWx9957x6RJk5Yb88MPP4xf/vKX0bhx46hXr17svPPOMXLkyDLbDB06NPLy8uLll1+OPn36RNOmTaNBgwZx5JFHxtdff71G/azoHij77LNPbLPNNvH+++/HL37xi6hfv35svPHGccMNNyz3/M8++ywOO+ywaNCgQTRr1iwuuOCCeOaZZyp8X5W33norevbsGUVFRdGwYcPYb7/94tVXX13jvrOdfPLJMXDgwIiIzDGTl5e33HZ///vfY7PNNouCgoLYZZdd4vXXX19um4rMUbaUUmyyySZx+OGHL7du0aJFUVxcHGeeeWZmWUlJSVx++eWx+eabR0FBQbRp0yYuvvjiKCkpKfPcivy8RKz8Zw4AAKreNQkAAKACjj766Nhkk02iX79+8eqrr8Ytt9wS3333XQwbNqzMdqNHj46HHnoozjnnnNhoo41ik002WeF4X375Zey6664xZ86cOOOMM2KrrbaKGTNmxMMPPxwLFy6MunXrxsKFC2PvvfeOGTNmxJlnnhlt27aNV155Jfr27RtfffVVDBgwYJV1T548OY499tg488wz4/TTT48OHTpERMRtt90WW2+9dRx22GFRu3bteOKJJ+Lss8+O0tLS6N27d0REDBgwIM4999xo2LBh/PnPf46IiObNm0dE/OzaLrvssrj66qvjoIMOioMOOijefPPNOOCAA8qER2uyn2HDhsX8+fOjd+/esWjRovjrX/8a++67b7z77ruZ2t97773YfffdY+ONN44//elP0aBBg3jooYfiiCOOiP/7v/+LI488ssyY5557bmy44YZx+eWXx6effhoDBgyIc845Jx588MHV7qc83333XRx44IFx1FFHxdFHHx0PP/xw/PGPf4xtt902evbsGRER33//fey7777x1VdfxXnnnRctWrSI++67L8aMGVOhfbz33nux5557RlFRUVx88cVRp06duOOOO2KfffaJsWPHRpcuXVa772xnnnlmfPnll/Hss8/GP/7xjxVuc99998X8+fPjzDPPjLy8vLjhhhviqKOOik8++STq1KmTqXV15miZvLy8+M1vfhM33HBDfPvtt9G4cePMuieeeCLmzZsXv/nNbyLiv2eIHXbYYfHSSy/FGWecER07dox33303+vfvHx999FE89thjmedW5OdlmfJ+5gAAIBIAAFQjl19+eYqIdNhhh5VZfvbZZ6eISG+//XZmWUSk/Pz89N577y03TkSkyy+/PPP1iSeemPLz89Prr7++3LalpaUppZT+93//NzVo0CB99NFHZdb/6U9/SrVq1UrTp09fae3t2rVLEZFGjRq13LqFCxcut6xHjx5p0003LbNs6623Tnvvvfdy2/6c2mbPnp3q1q2bDj744EyvKaX0P//zPyki0kknnbTa+5k2bVqKiFRYWJi++OKLzHbjx49PEZEuuOCCzLL99tsvbbvttmnRokWZZaWlpWm33XZLW2yxRWbZkCFDUkSk7t27l6nzggsuSLVq1Upz5sxZ7X7GjBmTIiKNGTMms2zvvfdOEZGGDRuWWVZSUpJatGiRevXqlVl20003pYhIjz32WGbZDz/8kLbaaqvlxlyRI444ItWtWzd9/PHHmWVffvll2mCDDdJee+212n2Xp3fv3mlF/zVcNkdNmjRJ3377bWb5448/niIiPfHEE5llFZ2jFZk8eXKKiHTbbbeVWX7YYYelTTbZJNPTP/7xj5Sfn59efPHFMtvdfvvtKSLSyy+/nFlW0Z+Xlf3MAQCAS3gBAFAtZX/K/Nxzz42I/94w+6f23nvv6NSp00rHKi0tjcceeywOPfTQ2HnnnZdbv+ySRyNGjIg999wzNtxww/jPf/6TeXTv3j2WLl0a//73v1dZd/v27aNHjx7LLS8sLMz8e+7cufGf//wn9t577/jkk09i7ty5qxz359T23HPPxeLFi+Pcc88tc3mn888//2fv54gjjoiNN9448/Wuu+4aXbp0yczTt99+G6NHj46jjz465s+fnxnvm2++iR49esSUKVNixowZZcY844wzytS55557xtKlS+Ozzz5b7X7K07Bhw8yZERERdevWjV133TU++eSTzLJRo0bFxhtvHIcddlhmWb169eL0009f5fhLly6Nf/3rX3HEEUfEpptumlnesmXLOO644+Kll16KefPmrVbfa+qYY46JDTfcsMy4EZHpdU3m6Ke23HLL6NKlSwwfPjyz7Ntvv42nn346jj/++DI/Xx07doytttqqzLG17777RkSUObNndX5eyvuZAwAAl/ACAKBa2mKLLcp8vdlmm0V+fn58+umnZZa3b99+lWN9/fXXMW/evNhmm21Wut2UKVPinXfeiaZNm65w/ezZs1e5r/Lqefnll+Pyyy+PcePGxcKFC8usmzt3bhQXF6+z2pa9AZ/9PW3atGmZN9bXZD/ZY0b89w31hx56KCIipk6dGimluPTSS+PSSy8td8yfhjBt27Yts35Zjd99991q91Oe1q1bL3evkA033DDeeeedzNefffZZbLbZZsttt/nmm69y/K+//joWLly4wstJdezYMUpLS+Pzzz+PrbfeOrN8VX2vqVWNuyZzlO3EE0+Mc845Jz777LNo165djBgxIpYsWRInnHBCZpspU6bEBx98UKFja3V+XiryGgAAQM0kQAEAoEZY0Y2xI8p+Uv3nKi0tjf333z8uvvjiFa7fcsstVznGiur5+OOPY7/99outttoqbr755mjTpk3UrVs3nnrqqejfv3+FbgK/NmqriLW9n2W9XXjhheWeJZAdSNSqVWuF26WUVmvfK1MZ+1hd66qmVY27JnOU7de//nVccMEFMXz48Pif//mfuPfee2PnnXcuEyCVlpbGtttuGzfffPMKx2jTpk1ErP7Py9p8DQAAoHoRoAAAUC1NmTKlzCfLp06dGqWlpeXeJH5lmjZtGkVFRTFp0qSVbrfZZpvFggULonv37qu9j5V54oknoqSkJEaOHFnmbIAV3Yy8vKDo59TWrl27iPjv9/Snl5P6+uuvlzu7YXX3M2XKlOWWffTRR5l5Wra/OnXqrLXv6+r083P38/7770dKqcy8TJ06dZXPbdq0adSvXz8mT5683LoPP/ww8vPzM4HBz1XeMVNRa2OOGjduHAcffHAMHz48jj/++Hj55ZdjwIABZbbZbLPN4u2334799ttvpTWvzs8LAACsjHugAABQLQ0cOLDM17feemtERPTs2XO1x8rPz48jjjginnjiiXjjjTeWW7/sk/hHH310jBs3Lp555pnltpkzZ078+OOPq73viP93BsBPzySYO3duDBkyZLltGzRoEHPmzFlu+c+prXv37lGnTp249dZby9SQ/Qb3muznscceK3N/jNdeey3Gjx+fmadmzZrFPvvsE3fccUd89dVXy4359ddfl1v32ujn5+jRo0fMmDEjRo4cmVm2aNGiuPPOO1f53Fq1asUBBxwQjz/+eJnLzs2aNSvuu+++2GOPPaKoqGit1NmgQYOIiBUeNxWxtubohBNOiPfffz8uuuiiqFWrVvz6178us/7oo4+OGTNmrPD798MPP8T3338fEav38wIAACvjDBQAAKqladOmxWGHHRYHHnhgjBs3Lu6999447rjjYvvtt1+j8a699tr417/+FXvvvXecccYZ0bFjx/jqq69ixIgR8dJLL0WjRo3ioosuipEjR8YhhxwSJ598cnTu3Dm+//77ePfdd+Phhx+OTz/9NDbaaKPV3vcBBxwQdevWjUMPPTTOPPPMWLBgQdx5553RrFmz5d6w7ty5c9x2221x9dVXx+abbx7NmjWLfffd92fV1rRp07jwwgujX79+ccghh8RBBx0Ub731Vjz99NPLPWd197P55pvHHnvsEb/73e+ipKQkBgwYEE2aNClzCbCBAwfGHnvsEdtuu22cfvrpsemmm8asWbNi3Lhx8cUXX8Tbb7+9Wt/P1enn5zjzzDPjb3/7Wxx77LFx3nnnRcuWLWP48OFRr169iFj1mR9XX311PPvss7HHHnvE2WefHbVr14477rgjSkpK4oYbblhrdXbu3DkiIn7/+99Hjx49VhherMramKODDz44mjRpEiNGjIiePXtGs2bNyqw/4YQT4qGHHoqzzjorxowZE7vvvnssXbo0Pvzww3jooYfimWeeiZ133nm1fl4AAGBlBCgAAFRLDz74YFx22WXxpz/9KWrXrh3nnHNO3HjjjWs83sYbbxzjx4+PSy+9NIYPHx7z5s2LjTfeOHr27Bn169ePiIj69evH2LFj49prr40RI0bEsGHDoqioKLbccsu48sorV3mj9/J06NAhHn744bjkkkviwgsvjBYtWsTvfve7aNq0afz2t78ts+1ll10Wn332Wdxwww0xf/782HvvvWPffff92bVdffXVUa9evbj99ttjzJgx0aVLl/jXv/4VBx98cJntVnc/J554YuTn58eAAQNi9uzZseuuu8bf/va3aNmyZWabTp06xRtvvBFXXnllDB06NL755pto1qxZ7LjjjnHZZZet0fe0ov38HA0bNozRo0fHueeeG3/961+jYcOGceKJJ8Zuu+0WvXr1ygQp5dl6663jxRdfjL59+0a/fv2itLQ0unTpEvfee2906dJlrdV51FFHxbnnnhsPPPBA3HvvvZFSWu0AZW3MUd26deOYY46JQYMGlbl5/DL5+fnx2GOPRf/+/WPYsGHx6KOPRv369WPTTTeN8847L3N/ndX5eQEAgJXJS7m8yyEAAKxlV1xxRVx55ZXx9ddfr9WzCVi7Pv3002jfvn3ceOONceGFF+a6nEo1YMCAuOCCC+KLL76IjTfeONflrFcuuOCCGDx4cMycOTMTTAIAQK64BwoAAMA68sMPP5T5etGiRXHHHXfEFltsITzJsmjRorj33nujV69ewhMAANYLLuEFAACwjhx11FHRtm3b2GGHHWLu3Llx7733xocffhjDhw/PdWnrjdmzZ8dzzz0XDz/8cHzzzTdx3nnn5bokAACICAEKAADAOtOjR4+46667Yvjw4bF06dLo1KlTPPDAA3HMMcfkurT1xvvvvx/HH398NGvWLG655ZbYYYcdcl0SAABEhHugAAAAAAAALMc9UAAAAAAAALIIUAAAAAAAALJU+3uglJaWxpdffhkbbLBB5OXl5bocAAAAAAAgh1JKMX/+/GjVqlXk55d/nkm1D1C+/PLLaNOmTa7LAAAAAAAA1iOff/55tG7dutz11T5A2WCDDSLiv9+IoqKiHFcDAAAAAADk0rx586JNmzaZ/KA81T5AWXbZrqKiIgEKAAAAAAAQEbHK2364iTwAAAAAAEAWAQoAAAAAAEAWAQoAAAAAAEAWAQoAAAAAAECWnAYoS5cujUsvvTTat28fhYWFsdlmm8X//u//Rkops01KKS677LJo2bJlFBYWRvfu3WPKlCk5rBoAAAAAAKjuchqgXH/99XHbbbfF3/72t/jggw/i+uuvjxtuuCFuvfXWzDY33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRDisHAAAAAACqs7z009M9KtkhhxwSzZs3j8GDB2eW9erVKwoLC+Pee++NlFK0atUq/vCHP8SFF14YERFz586N5s2bx9ChQ+PXv/71Kvcxb968KC4ujrlz50ZRUdE66wUAAAAAAFj/VTQ3yOkZKLvttls8//zz8dFHH0VExNtvvx0vvfRS9OzZMyIipk2bFjNnzozu3btnnlNcXBxdunSJcePGrXDMkpKSmDdvXpkHAAAAAADA6qidy53/6U9/innz5sVWW20VtWrViqVLl8Y111wTxx9/fEREzJw5MyIimjdvXuZ5zZs3z6zL1q9fv7jyyivXbeEAAAAAAEC1ltMzUB566KEYPnx43HffffHmm2/GPffcE3/5y1/innvuWeMx+/btG3Pnzs08Pv/887VYMQAAAAAAUBPk9AyUiy66KP70pz9l7mWy7bbbxmeffRb9+vWLk046KVq0aBEREbNmzYqWLVtmnjdr1qzYYYcdVjhmQUFBFBQUrPPaAQAAAACA6iunZ6AsXLgw8vPLllCrVq0oLS2NiIj27dtHixYt4vnnn8+snzdvXowfPz66detWqbUCAAAAAAA1R07PQDn00EPjmmuuibZt28bWW28db731Vtx8883x29/+NiIi8vLy4vzzz4+rr746tthii2jfvn1ceuml0apVqzjiiCNyWToAAAAAAFCN5TRAufXWW+PSSy+Ns88+O2bPnh2tWrWKM888My677LLMNhdffHF8//33ccYZZ8ScOXNijz32iFGjRkW9evVyWDkAAAAAAFCd5aWUUq6LWJfmzZsXxcXFMXfu3CgqKsp1OQAAAAAAQA5VNDfI6RkoAACwtnS+aFiuS1gjE248MdclAAAAsAI5vYk8AAAAAADA+kiAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkCWnAcomm2wSeXl5yz169+4dERGLFi2K3r17R5MmTaJhw4bRq1evmDVrVi5LBgAAAAAAaoCcBiivv/56fPXVV5nHs88+GxERv/rVryIi4oILLognnngiRowYEWPHjo0vv/wyjjrqqFyWDAAAAAAA1AC1c7nzpk2blvn6uuuui8022yz23nvvmDt3bgwePDjuu+++2HfffSMiYsiQIdGxY8d49dVXo2vXrrkoGQAAAAAAqAHWm3ugLF68OO6999747W9/G3l5eTFhwoRYsmRJdO/ePbPNVlttFW3bto1x48aVO05JSUnMmzevzAMAAAAAAGB1rDcBymOPPRZz5syJk08+OSIiZs6cGXXr1o1GjRqV2a558+Yxc+bMcsfp169fFBcXZx5t2rRZh1UDAAAAAADV0XoToAwePDh69uwZrVq1+lnj9O3bN+bOnZt5fP7552upQgAAAAAAoKbI6T1Qlvnss8/iueeei0ceeSSzrEWLFrF48eKYM2dOmbNQZs2aFS1atCh3rIKCgigoKFiX5QIAAAAAANXcenEGypAhQ6JZs2Zx8MEHZ5Z17tw56tSpE88//3xm2eTJk2P69OnRrVu3XJQJAAAAAADUEDk/A6W0tDSGDBkSJ510UtSu/f/KKS4ujlNPPTX69OkTjRs3jqKiojj33HOjW7du0bVr1xxWDAAAAAAAVHc5D1Cee+65mD59evz2t79dbl3//v0jPz8/evXqFSUlJdGjR48YNGhQDqoEAAAAAABqkryUUsp1EevSvHnzori4OObOnRtFRUW5LgcAgHWk80XDcl3CGplw44m5LgEAAKBGqWhusF7cAwUAAAAAAGB9IkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIIkABAAAAAADIkvMAZcaMGfGb3/wmmjRpEoWFhbHtttvGG2+8kVmfUorLLrssWrZsGYWFhdG9e/eYMmVKDisGAAAAAACqu5wGKN99913svvvuUadOnXj66afj/fffj5tuuik23HDDzDY33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRDisHAAAAAACqs9q53Pn1118fbdq0iSFDhmSWtW/fPvPvlFIMGDAgLrnkkjj88MMjImLYsGHRvHnzeOyxx+LXv/51pdcMAAAAAABUfzk9A2XkyJGx8847x69+9ato1qxZ7LjjjnHnnXdm1k+bNi1mzpwZ3bt3zywrLi6OLl26xLhx41Y4ZklJScybN6/MAwAAAAAAYHXkNED55JNP4rbbbostttginnnmmfjd734Xv//97+Oee+6JiIiZM2dGRETz5s3LPK958+aZddn69esXxcXFmUebNm3WbRMAAAAAAEC1k9MApbS0NHbaaae49tprY8cdd4wzzjgjTj/99Lj99tvXeMy+ffvG3LlzM4/PP/98LVYMAAAAAADUBDkNUFq2bBmdOnUqs6xjx44xffr0iIho0aJFRETMmjWrzDazZs3KrMtWUFAQRUVFZR4AAAAAAACrI6cByu677x6TJ08us+yjjz6Kdu3aRcR/byjfokWLeP755zPr582bF+PHj49u3bpVaq0AAAAAAEDNUTuXO7/gggtit912i2uvvTaOPvroeO211+Lvf/97/P3vf4+IiLy8vDj//PPj6quvji222CLat28fl156abRq1SqOOOKIXJYOAAAAAABUYzkNUHbZZZd49NFHo2/fvnHVVVdF+/btY8CAAXH88cdntrn44ovj+++/jzPOOCPmzJkTe+yxR4waNSrq1auXw8oBAAAAAIDqLC+llHJdxLo0b968KC4ujrlz57ofCgBANdb5omG5LmGNTLjxxFyXAAAAUKNUNDfI6T1QAAAAAAAA1kc5vYQXAAAAsP6rimf5OcMPAPi5nIECAAAAAACQRYACAAAAAACQRYACAAAAAACQRYACAAAAAACQxU3kAQCgCnEjZwAAgMrhDBQAAAAAAIAsAhQAAAAAAIAsLuEFAACsV6riZcoiXKoMAACqG2egAAAAAAAAZBGgAAAAAAAAZHEJLwAAAFhDLjkHAFB9OQMFAAAAAAAgiwAFAAAAAAAgiwAFAAAAAAAgi3ugAAAAVDL3zQAAgPWfM1AAAAAAAACyCFAAAAAAAACyuIQXAAAAANVGTbhMYk3oEWB94AwUAAAAAACALM5AAQAAYJ3wCWkAAKoyZ6AAAAAAAABkcQYKAAAAUOM5YwoAyOYMFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCy1c10AAAAAAOte54uG5bqENTLhxhNzXQIANZQzUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALIIUAAAAAAAALLkNEC54oorIi8vr8xjq622yqxftGhR9O7dO5o0aRINGzaMXr16xaxZs3JYMQAAAAAAUBPk/AyUrbfeOr766qvM46WXXsqsu+CCC+KJJ56IESNGxNixY+PLL7+Mo446KofVAgAAAAAANUHtnBdQu3a0aNFiueVz586NwYMHx3333Rf77rtvREQMGTIkOnbsGK+++mp07dq1sksFAAAAAABqiJyfgTJlypRo1apVbLrppnH88cfH9OnTIyJiwoQJsWTJkujevXtm26222iratm0b48aNK3e8kpKSmDdvXpkHAAAAAADA6shpgNKlS5cYOnRojBo1Km677baYNm1a7LnnnjF//vyYOXNm1K1bNxo1alTmOc2bN4+ZM2eWO2a/fv2iuLg482jTps067gIAAAAAAKhucnoJr549e2b+vd1220WXLl2iXbt28dBDD0VhYeEajdm3b9/o06dP5ut58+YJUQAAAAAAgNWS80t4/VSjRo1iyy23jKlTp0aLFi1i8eLFMWfOnDLbzJo1a4X3TFmmoKAgioqKyjwAAAAAAABWx3oVoCxYsCA+/vjjaNmyZXTu3Dnq1KkTzz//fGb95MmTY/r06dGtW7ccVgkAAAAAAFR3Ob2E14UXXhiHHnpotGvXLr788su4/PLLo1atWnHsscdGcXFxnHrqqdGnT59o3LhxFBUVxbnnnhvdunWLrl275rJsAAAAAACgmstpgPLFF1/EscceG9988000bdo09thjj3j11VejadOmERHRv3//yM/Pj169ekVJSUn06NEjBg0alMuSAQAAAACAGiCnAcoDDzyw0vX16tWLgQMHxsCBAyupIgAAAAAAgPXsHigAAAAAAADrAwEKAAAAAABAFgEKAAAAAABAlpzeAwUAAAAAYEU6XzQs1yWskQk3npjrEoC1xBkoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWQQoAAAAAAAAWWrnugAAAAAAgJqo80XDcl3CGplw44m5LgEqhTNQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAstRe0yf+4x//iNtvvz2mTZsW48aNi3bt2sWAAQOiffv2cfjhh6/NGgFgvdP5omG5LmGNTLjxxFyXAAAAAFAlrNEZKLfddlv06dMnDjrooJgzZ04sXbo0IiIaNWoUAwYMWJv1AQAAAAAAVLo1ClBuvfXWuPPOO+PPf/5z1KpVK7N85513jnfffXetFQcAAAAAAJALaxSgTJs2LXbcccfllhcUFMT333//s4sCAAAAAADIpTW6B0r79u1j4sSJ0a5duzLLR40aFR07dlwrhQFUV+6dAQAAAADrvzUKUPr06RO9e/eORYsWRUopXnvttbj//vujX79+cdddd63tGgEAAAAAACrVGgUop512WhQWFsYll1wSCxcujOOOOy5atWoVf/3rX+PXv/712q4RAAAAAACgUq1RgBIRcfzxx8fxxx8fCxcujAULFkSzZs3WZl0AAAAAAAA5s0YByrRp0+LHH3+MLbbYIurXrx/169ePiIgpU6ZEnTp1YpNNNlmbNQIAAAAAAFSq/DV50sknnxyvvPLKcsvHjx8fJ5988s+tCQAAAAAAIKfWKEB56623Yvfdd19uedeuXWPixIk/tyYAAAAAAICcWqMAJS8vL+bPn7/c8rlz58bSpUt/dlEAAAAAAAC5tEYByl577RX9+vUrE5YsXbo0+vXrF3vsscdaKw4AAAAAACAX1ugm8tdff33stdde0aFDh9hzzz0jIuLFF1+MefPmxejRo9dqgcB/db5oWK5LWCMTbjwx1yUAAAAAAKy2NToDpVOnTvHOO+/E0UcfHbNnz4758+fHiSeeGB9++GFss802a7tGAAAAAACASrVGAUpERKtWreLaa6+NJ598Mh5++OG47LLLonHjxmtcyHXXXRd5eXlx/vnnZ5YtWrQoevfuHU2aNImGDRtGr169YtasWWu8DwAAAAAAgIqo8CW83nnnndhmm20iPz8/3nnnnZVuu912261WEa+//nrccccdyz3vggsuiCeffDJGjBgRxcXFcc4558RRRx0VL7/88mqNDwAAAAAAsDoqHKDssMMOMXPmzGjWrFnssMMOkZeXFyml5bbLy8src3P5VVmwYEEcf/zxceedd8bVV1+dWT537twYPHhw3HfffbHvvvtGRMSQIUOiY8eO8eqrr0bXrl0rvA8AAAAAAIDVUeEAZdq0adG0adPMv9eW3r17x8EHHxzdu3cvE6BMmDAhlixZEt27d88s22qrraJt27Yxbty4cgOUkpKSKCkpyXw9b968tVZrVeTG4wAAAAAAsPoqHKC0a9cuIiKWLFkSV155ZVx66aXRvn37n7XzBx54IN588814/fXXl1s3c+bMqFu3bjRq1KjM8ubNm8fMmTPLHbNfv35x5ZVX/qy6AAAAAACAmm21byJfp06d+L//+7+fvePPP/88zjvvvBg+fHjUq1fvZ4+3TN++fWPu3LmZx+eff77WxgYAAAAAAGqG1Q5QIiKOOOKIeOyxx37WjidMmBCzZ8+OnXbaKWrXrh21a9eOsWPHxi233BK1a9eO5s2bx+LFi2POnDllnjdr1qxo0aJFueMWFBREUVFRmQcAAAAAAMDqqPAlvH5qiy22iKuuuipefvnl6Ny5czRo0KDM+t///verHGO//faLd999t8yyU045Jbbaaqv44x//GG3atIk6derE888/H7169YqIiMmTJ8f06dOjW7dua1I2AAAAAABAhaxRgDJ48OBo1KhRTJgwISZMmFBmXV5eXoUClA022CC22WabMssaNGgQTZo0ySw/9dRTo0+fPtG4ceMoKiqKc889N7p161buDeQBAAAAAADWhjUKUKZNm5b5d0opIv4bnKxt/fv3j/z8/OjVq1eUlJREjx49YtCgQWt9PwAAAAAAAD+1RgFKxH/PQunfv39MmTIlIv57Wa/zzz8/TjvttDUu5oUXXijzdb169WLgwIExcODANR4TAGBlOl80LNclrJEJN56Y6xIAAACgWlujAOWyyy6Lm2++OXNJrYiIcePGxQUXXBDTp0+Pq666aq0WCQAAAAAAUJnWKEC57bbb4s4774xjjz02s+ywww6L7bbbLs4991wBCgAAAAAAUKXlr8mTlixZEjvvvPNyyzt37hw//vjjzy4KAAAAAAAgl9YoQDnhhBPitttuW2753//+9zj++ON/dlEAAAAAAAC59LNuIv+vf/0runbtGhER48ePj+nTp8eJJ54Yffr0yWx38803//wqAQAAAAAAKtEaBSiTJk2KnXbaKSIiPv7444iI2GijjWKjjTaKSZMmZbbLy8tbCyUCAPBzdb5oWK5LWCMTbjwx1yUAAABQQ61RgDJmzJi1XQcAAAAAAMB6Y43ugQIAAAAAAFCdCVAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACyCFAAAAAAAACy1M51AbnU+aJhuS5hjUy48cRclwAAAAAAANWaM1AAAAAAAACyCFAAAAAAAACy1OhLeAEAAAAAsO64jQJVmTNQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsghQAAAAAAAAsuQ0QLnttttiu+22i6KioigqKopu3brF008/nVm/aNGi6N27dzRp0iQaNmwYvXr1ilmzZuWwYgAAAAAAoCbIaYDSunXruO6662LChAnxxhtvxL777huHH354vPfeexERccEFF8QTTzwRI0aMiLFjx8aXX34ZRx11VC5LBgAAAAAAaoDaudz5oYceWubra665Jm677bZ49dVXo3Xr1jF48OC47777Yt99942IiCFDhkTHjh3j1Vdfja5du65wzJKSkigpKcl8PW/evHXXAAAAAAAAUC2tN/dAWbp0aTzwwAPx/fffR7du3WLChAmxZMmS6N69e2abrbbaKtq2bRvjxo0rd5x+/fpFcXFx5tGmTZvKKB8AAAAAAKhGch6gvPvuu9GwYcMoKCiIs846Kx599NHo1KlTzJw5M+rWrRuNGjUqs33z5s1j5syZ5Y7Xt2/fmDt3bubx+eefr+MOAAAAAACA6ianl/CKiOjQoUNMnDgx5s6dGw8//HCcdNJJMXbs2DUer6CgIAoKCtZihQAAAAAAQE2T8wClbt26sfnmm0dEROfOneP111+Pv/71r3HMMcfE4sWLY86cOWXOQpk1a1a0aNEiR9UCAAAAAAA1Qc4v4ZWttLQ0SkpKonPnzlGnTp14/vnnM+smT54c06dPj27duuWwQgAAAAAAoLrL6Rkoffv2jZ49e0bbtm1j/vz5cd9998ULL7wQzzzzTBQXF8epp54affr0icaNG0dRUVGce+650a1bt+jatWsuywYAAAAAAKq5nAYos2fPjhNPPDG++uqrKC4uju222y6eeeaZ2H///SMion///pGfnx+9evWKkpKS6NGjRwwaNCiXJQNQAZ0vGpbrEtbIhBtPzHUJAAAAAKwnchqgDB48eKXr69WrFwMHDoyBAwdWUkUAAAAAAADrwU3k4efySXcAAAAAANa29e4m8gAAAAAAALkmQAEAAAAAAMgiQAEAAAAAAMjiHigAQLncZwoAAACoqZyBAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkEWAAgAAAAAAkKV2Lnfer1+/eOSRR+LDDz+MwsLC2G233eL666+PDh06ZLZZtGhR/OEPf4gHHnggSkpKokePHjFo0KBo3rx5DisHAAAAAID/6nzRsFyXsEYm3HhihbetCT1my+kZKGPHjo3evXvHq6++Gs8++2wsWbIkDjjggPj+++8z21xwwQXxxBNPxIgRI2Ls2LHx5ZdfxlFHHZXDqgEAAAAAgOoup2egjBo1qszXQ4cOjWbNmsWECRNir732irlz58bgwYPjvvvui3333TciIoYMGRIdO3aMV199Nbp27ZqLsgEAAAAAgGpuvboHyty5cyMionHjxhERMWHChFiyZEl07949s81WW20Vbdu2jXHjxq1wjJKSkpg3b16ZBwAAAAAAwOrI6RkoP1VaWhrnn39+7L777rHNNttERMTMmTOjbt260ahRozLbNm/ePGbOnLnCcfr16xdXXnnlui4XWAdq4nUUAQAAAID103pzBkrv3r1j0qRJ8cADD/yscfr27Rtz587NPD7//PO1VCEAAAAAAFBTrBdnoJxzzjnxz3/+M/79739H69atM8tbtGgRixcvjjlz5pQ5C2XWrFnRokWLFY5VUFAQBQUF67pkAAAAAACgGsvpGSgppTjnnHPi0UcfjdGjR0f79u3LrO/cuXPUqVMnnn/++cyyyZMnx/Tp06Nbt26VXS4AAAAAAFBD5PQMlN69e8d9990Xjz/+eGywwQaZ+5oUFxdHYWFhFBcXx6mnnhp9+vSJxo0bR1FRUZx77rnRrVu36Nq1ay5LBwAAAAAAqrGcBii33XZbRETss88+ZZYPGTIkTj755IiI6N+/f+Tn50evXr2ipKQkevToEYMGDarkSgEAAAAAgJokpwFKSmmV29SrVy8GDhwYAwcOrISKAAAAAAAAcnwPFAAAAAAAgPWRAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACCLAAUAAAAAACBLTgOUf//733HooYdGq1atIi8vLx577LEy61NKcdlll0XLli2jsLAwunfvHlOmTMlNsQAAAAAAQI2R0wDl+++/j+233z4GDhy4wvU33HBD3HLLLXH77bfH+PHjo0GDBtGjR49YtGhRJVcKAAAAAADUJLVzufOePXtGz549V7gupRQDBgyISy65JA4//PCIiBg2bFg0b948Hnvssfj1r39dmaUCAAAAAAA1yHp7D5Rp06bFzJkzo3v37pllxcXF0aVLlxg3bly5zyspKYl58+aVeQAAAAAAAKyO9TZAmTlzZkRENG/evMzy5s2bZ9atSL9+/aK4uDjzaNOmzTqtEwAAAAAAqH7W2wBlTfXt2zfmzp2beXz++ee5LgkAAAAAAKhi1tsApUWLFhERMWvWrDLLZ82alVm3IgUFBVFUVFTmAQAAAAAAsDrW2wClffv20aJFi3j++eczy+bNmxfjx4+Pbt265bAyAAAAAACguqudy50vWLAgpk6dmvl62rRpMXHixGjcuHG0bds2zj///Lj66qtjiy22iPbt28ell14arVq1iiOOOCJ3RQMAAAAAANVeTgOUN954I37xi19kvu7Tp09ERJx00kkxdOjQuPjii+P777+PM844I+bMmRN77LFHjBo1KurVq5erkgEAAAAAgBogpwHKPvvsEymlctfn5eXFVVddFVdddVUlVgUAAAAAANR06+09UAAAAAAAAHJFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJBFgAIAAAAAAJClSgQoAwcOjE022STq1asXXbp0iddeey3XJQEAAAAAANXYeh+gPPjgg9GnT5+4/PLL480334ztt98+evToEbNnz851aQAAAAAAQDW13gcoN998c5x++ulxyimnRKdOneL222+P+vXrx913353r0gAAAAAAgGqqdq4LWJnFixfHhAkTom/fvpll+fn50b179xg3btwKn1NSUhIlJSWZr+fOnRsREfPmzVtu26UlP6zliivHinopjx7XX6vTY0TN6LMm9BhRM/rU4/rL8bq8mtBjRM3osyb0GFE1+6wJPUY4XlekJvRZE3qMqJp91oQeIxyvK1IT+qwJPUbUjD71uP5yvC6vOvW4bFlKaaXPzUur2iKHvvzyy9h4443jlVdeiW7dumWWX3zxxTF27NgYP378cs+54oor4sorr6zMMgEAAAAAgCrm888/j9atW5e7fr0+A2VN9O3bN/r06ZP5urS0NL799tto0qRJ5OXlVUoN8+bNizZt2sTnn38eRUVFlbLPyqbH6qMm9FkTeoyoGX3qsfqoCX3WhB4jakafeqw+akKfNaHHiJrRZ03oMaJm9KnH6qMm9FkTeoyoGX3qsfqoCX3moseUUsyfPz9atWq10u3W6wBlo402ilq1asWsWbPKLJ81a1a0aNFihc8pKCiIgoKCMssaNWq0rkpcqaKiomp7UC+jx+qjJvRZE3qMqBl96rH6qAl91oQeI2pGn3qsPmpCnzWhx4ia0WdN6DGiZvSpx+qjJvRZE3qMqBl96rH6qAl9VnaPxcXFq9xmvb6JfN26daNz587x/PPPZ5aVlpbG888/X+aSXgAAAAAAAGvTen0GSkREnz594qSTToqdd945dt111xgwYEB8//33ccopp+S6NAAAAAAAoJpa7wOUY445Jr7++uu47LLLYubMmbHDDjvEqFGjonnz5rkurVwFBQVx+eWXL3cpsepEj9VHTeizJvQYUTP61GP1URP6rAk9RtSMPvVYfdSEPmtCjxE1o8+a0GNEzehTj9VHTeizJvQYUTP61GP1URP6XJ97zEsppVwXAQAAAAAAsD5Zr++BAgAAAAAAkAsCFAAAAAAAgCwCFAAAAAAAgCwCFAAAAAAAgCw1OkD597//HYceemi0atUq8vLy4rHHHltumw8++CAOO+ywKC4ujgYNGsQuu+wS06dPz6w/88wzY7PNNovCwsJo2rRpHH744fHhhx9m1g8dOjTy8vJW+Jg9e3a5tX377bdx/PHHR1FRUTRq1ChOPfXUWLBgwVrvccGCBXHOOedE69ato7CwMDp16hS33377cuOMGzcu9t1332jQoEEUFRXFXnvtFT/88ENm/UcffRSHH354bLTRRlFUVBR77LFHjBkzZqW1pZTisssui5YtW0ZhYWF07949pkyZsto9ro0+P/3003LnacSIERFRPeby448/jiOPPDKaNm0aRUVFcfTRR8esWbPKbLO+z+WsWbPi5JNPjlatWkX9+vXjwAMPLLOvb7/9Ns4999zo0KFDFBYWRtu2beP3v/99zJ07t8w4zz//fOy2226xwQYbRIsWLeKPf/xj/PjjjyutbdGiRdG7d+9o0qRJNGzYMHr16rXc968yeoyo2Fxusskmyx2r1113XbXqMSLiySefjC5dukRhYWFsuOGGccQRR6y0tvXpeK1Iny+88EK5rz2vv/56ubVVtbms6q89Fe3zzTffjP333z8aNWoUTZo0iTPOOGOVvxPWVp/9+vWLXXbZJTbYYINo1qxZHHHEETF58uQy21TkuJk+fXocfPDBUb9+/WjWrFlcdNFFy71+vvDCC7HTTjtFQUFBbL755jF06NBV1vfOO+/EnnvuGfXq1Ys2bdrEDTfcsN72+NVXX8Vxxx0XW265ZeTn58f5559fofoq8r1bX3p85JFHYv/9988cz926dYtnnnlmlfWtjXmszD5feuml2H333aNJkyZRWFgYW221VfTv379S+qzMn8llXn755ahdu3bssMMOldJjZfZZ3u/LmTNnrvM+K3MuS0pK4s9//nO0a9cuCgoKYpNNNom77757pfVVpdeek08+eYXzuPXWW6+0vqp2vEZEDB8+PLbffvuoX79+tGzZMn7729/GN998s9L6qtJcRkQMHDgwOnbsGIWFhdGhQ4cYNmzYKutbGz2uzT5///vfR+fOnaOgoKDc1841Of7Wp7lcVY+LFi2Kk08+ObbddtuoXbv2Kv+/tczaeC+ksnp84YUX4vDDD4+WLVtGgwYNYocddojhw4evsr6qdrxOnjw5fvGLX0Tz5s2jXr16semmm8Yll1wSS5YsWed9VubP5DJTp06NDTbYIBo1arTK+qraXJb3Puarr766zvuszLlMKcVf/vKX2HLLLaOgoCA23njjuOaaa1Za39p6Hza7kBrrqaeeSn/+85/TI488kiIiPfroo2XWT506NTVu3DhddNFF6c0330xTp05Njz/+eJo1a1ZmmzvuuCONHTs2TZs2LU2YMCEdeuihqU2bNunHH39MKaW0cOHC9NVXX5V59OjRI+29994rre3AAw9M22+/fXr11VfTiy++mDbffPN07LHHrvUeTz/99LTZZpulMWPGpGnTpqU77rgj1apVKz3++OOZbV555ZVUVFSU+vXrlyZNmpQ+/PDD9OCDD6ZFixZlttliiy3SQQcdlN5+++300UcfpbPPPjvVr18/ffXVV+XWdt1116Xi4uL02GOPpbfffjsddthhqX379umHH36o9D5//PHH5ebpyiuvTA0bNkzz589PKVX9uVywYEHadNNN05FHHpneeeed9M4776TDDz887bLLLmnp0qWZcdbnuSwtLU1du3ZNe+65Z3rttdfShx9+mM4444zUtm3btGDBgpRSSu+++2466qij0siRI9PUqVPT888/n7bYYovUq1evzDgTJ05MdevWTVdeeWWaMmVKeuGFF9JWW22V/vCHP6y0trPOOiu1adMmPf/88+mNN95IXbt2Tbvttlul91jRuWzXrl266qqryhyzy8aoLj0+/PDDacMNN0y33XZbmjx5cnrvvffSgw8+uNLa1qfjtSJ9lpSULPfac9ppp6X27dun0tLScmuranNZ1V97KtLnjBkz0oYbbpjOOuus9OGHH6bXXnst7bbbbmVen9Zlnz169EhDhgxJkyZNShMnTkwHHXRQmR5SWvVx8+OPP6Ztttkmde/ePb311lvpqaeeShtttFHq27dvZptPPvkk1a9fP/Xp0ye9//776dZbb021atVKo0aNKre2uXPnpubNm6fjjz8+TZo0Kd1///2psLAw3XHHHetlj9OmTUu///3v0z333JN22GGHdN55562ytoqMuz71eN5556Xrr78+vfbaa+mjjz5Kffv2TXXq1ElvvvlmubWtrXmszD7ffPPNdN9996VJkyaladOmpX/84x+pfv36K625qh2vy3z33Xdp0003TQcccEDafvvtV1pbVZzLMWPGpIhIkydPLvM786e/a9ZVn5U5l4cddljq0qVLevbZZ9O0adPSK6+8kl566aVya6tqrz1z5swpM3+ff/55aty4cbr88svLra0qHq8vvfRSys/PT3/961/TJ598kl588cW09dZbpyOPPLLc2qraXA4aNChtsMEG6YEHHkgff/xxuv/++1PDhg3TyJEj13mPa6vPlFI699xz09/+9rd0wgknrPC1c02Ov/VpLivS44IFC9JZZ52V/v73v6cePXqkww8/vEL1rY33Qiqrx2uuuSZdcskl6eWXX05Tp05NAwYMSPn5+emJJ54ot7aqeLx+/PHH6e67704TJ05Mn376aXr88cdTs2bNVlpzVTtel1m8eHHaeeedU8+ePVNxcfFKa6uKczlt2rQUEem5554r83tz8eLF67zPypzLc889N3Xo0CE9/vjj6ZNPPklvvPFG+te//rXS+tbW+7A/VaMDlJ9a0RvSxxxzTPrNb36zWuO8/fbbKSLS1KlTV7h+9uzZqU6dOmnYsGHljvH++++niEivv/56ZtnTTz+d8vLy0owZM1arnp9aUY9bb711uuqqq8os22mnndKf//znzNddunRJl1xySbnjfv311yki0r///e/Msnnz5qWISM8+++wKn1NaWppatGiRbrzxxsyyOXPmpIKCgnT//fevTlvLWdM+s+2www7pt7/9bbnrq9pcPvPMMyk/Pz/NnTs3s37OnDkpLy8vM0/r+1xOnjw5RUSaNGlSZtnSpUtT06ZN05133lnuOA899FCqW7duWrJkSUoppb59+6add965zDYjR45M9erVS/PmzVvhGHPmzEl16tRJI0aMyCz74IMPUkSkcePGrUl7KaU167Eic5nSfwOU/v37V7iWqtbjkiVL0sYbb5zuuuuuCteyvh2vFZ3Ln1q8eHFq2rTpcj/vP1XV5rI6vPZUpM877rgjNWvWrMybee+8806KiDRlypRK73P27NkpItLYsWMz467quHnqqadSfn5+mjlzZmab2267LRUVFaWSkpKUUkoXX3xx2nrrrcvs65hjjkk9evQot5ZBgwalDTfcMDNGSin98Y9/TB06dFgve/ypvffeu0IByuqOW1GV0eMynTp1SldeeWW569fVPKZUuX0eeeSRK/0/QFU9Xo855ph0ySWXpMsvv3yVAUpVnMtlAcp3331X4Vqq2lw+/fTTqbi4OH3zzTcVrqWqv/Y8+uijKS8vL3366afl1lIVj9cbb7wxbbrppmX2dcstt6SNN9643Fqq2lx269YtXXjhhWX21adPn7T77rtXeo9r2udPlffauSbH3/o0lz9Vkd8PJ510UoUClHX1Xkhl9LjMQQcdlE455ZRy11fF43VFLrjggrTHHnuUu76qHq8XX3xx+s1vfpOGDBmyygClKs7lsgDlrbfeqnAtVW0u33///VS7du304YcfVriWdfXaU6Mv4bUypaWl8eSTT8aWW24ZPXr0iGbNmkWXLl1WeJmvZb7//vsYMmRItG/fPtq0abPCbYYNGxb169ePX/7yl+WOM27cuGjUqFHsvPPOmWXdu3eP/Pz8GD9+/Br3tCK77bZbjBw5MmbMmBEppRgzZkx89NFHccABB0RExOzZs2P8+PHRrFmz2G233aJ58+ax9957x0svvZQZo0mTJpnTcb///vv48ccf44477ohmzZpF586dV7jfadOmxcyZM6N79+6ZZcXFxdGlS5cYN27cWu2xIn1mmzBhQkycODFOPfXUcsesanNZUlISeXl5UVBQkHlOvXr1Ij8/PzOf6/tclpSUZOpeJj8/PwoKCsock9nmzp0bRUVFUbt27cw4Px0jIqKwsDAWLVoUEyZMWOEYEyZMiCVLlpTpc6uttoq2bduu1T4r0mNF5nKZ6667Lpo0aRI77rhj3HjjjSs9NbOq9fjmm2/GjBkzIj8/P3bcccdo2bJl9OzZMyZNmlTuvte343V15nKZkSNHxjfffBOnnHJKufuuanNZHV57KtJnSUlJ1K1bN/Lz/9+fX4WFhRER5c73uuxz2aUNGzduHBEVO27GjRsX2267bTRv3jyzTY8ePWLevHnx3nvvZbb56RjLtllZvePGjYu99tor6tatW+Y5kydPju+++26963FNrKtxK6vH0tLSmD9/fmY/5fW4LuYxovL6fOutt+KVV16Jvffeu9xaquLxOmTIkPjkk0/i8ssvr1AtVXkud9hhh2jZsmXsv//+8fLLL+ekz3XV48iRI2PnnXeOG264ITbeeOPYcsst48ILLyxzaeUV9ViVX3sGDx4c3bt3j3bt2q20x6p2vHbr1i0+//zzeOqppyKlFLNmzYqHH344DjrooJX2WZXmsrz/c7322mvlXi5oXfW4pn1WxJocf+vTXK4r6+q9kMrsce7cuav8u6eqHa/Zpk6dGqNGjVrl3z1V7XgdPXp0jBgxIgYOHFih7avyXB522GHRrFmz2GOPPWLkyJEr3baqzeUTTzwRm266afzzn/+M9u3bxyabbBKnnXZafPvtt+U+Z1299ghQyjF79uxYsGBBXHfddXHggQfGv/71rzjyyCPjqKOOirFjx5bZdtCgQdGwYcNo2LBhPP300/Hss8+W+eX5U4MHD47jjjsu84bJisycOTOaNWtWZlnt2rWjcePGq7yG7+q69dZbo1OnTtG6deuoW7duHHjggTFw4MDYa6+9IiLik08+iYiIK664Ik4//fQYNWpU7LTTTrHffvtlrr+el5cXzz33XLz11luxwQYbRL169eLmm2+OUaNGxYYbblhujxFR5od22ddru8eK9Jlt8ODB0bFjx9htt93KHbOqzWXXrl2jQYMG8cc//jEWLlwY33//fVx44YWxdOnS+OqrryJi/Z/LZS+4ffv2je+++y4WL14c119/fXzxxReZHrL95z//if/93/+NM844I7OsR48e8corr8T9998fS5cujRkzZsRVV10VEVHuODNnzoy6desud+3Mtd1nRXqsyFxG/Pd6kg888ECMGTMmzjzzzLj22mvj4osvLnffVa3Hn74+XXLJJfHPf/4zNtxww9hnn33K/YW6vh2vFZ3Lnxo8eHD06NEjWrduXe6+q9pcVofXnor0ue+++8bMmTPjxhtvjMWLF8d3330Xf/rTnyJi5a8966LP0tLSOP/882P33XePbbbZJrOvVR03M2fOXGEtP621vG3mzZtX7pt8FRl3da3LHtdEVe/xL3/5SyxYsCCOPvrocutZV9+7yuizdevWUVBQEDvvvHP07t07TjvttHLrqWpzOWXKlPjTn/4U9957b+bDJKtSFeeyZcuWcfvtt8f//d//xf/93/9FmzZtYp999ok333yzUvtclz1+8skn8dJLL8WkSZPi0UcfjQEDBsTDDz8cZ599drXp8ae+/PLLePrpp1f687gm41bUuuxz9913j+HDh8cxxxwTdevWjRYtWkRxcfFK3+yranPZo0ePuOuuu2LChAmRUoo33ngj7rrrrliyZEn85z//qbQef06fFbEmNa9Pc7murIv3Qiqzx4ceeihef/31lX5orSoer8vstttuUa9evdhiiy1izz33zLwfsiJV7Xj95ptv4uSTT46hQ4dGUVFRhZ5TFeeyYcOGcdNNN8WIESPiySefjD322COOOOKIlYYoVW0uP/nkk/jss89ixIgRMWzYsBg6dGhMmDBhpR9kX1fvwwpQylFaWhoREYcffnhccMEFscMOO8Sf/vSnOOSQQ5a7Mffxxx8fb731VowdOza23HLLOProo2PRokXLjTlu3Lj44IMPVnpWQ2W79dZb49VXX42RI0fGhAkT4qabborevXvHc889FxH/7/tw5plnximnnBI77rhj9O/fPzp06JC5WWFKKXr37h3NmjWLF198MV577bU44ogj4tBDDy33DaHKtqo+f+qHH36I++67b6XzVBXnsmnTpjFixIh44oknomHDhlFcXBxz5syJnXbaKfNp6PV9LuvUqROPPPJIfPTRR9G4ceOoX79+jBkzJnr27FnmE93LzJs3Lw4++ODo1KlTXHHFFZnlBxxwQNx4441x1llnRUFBQWy55ZaZT3utaJzKVJEeKzKXERF9+vSJffbZJ7bbbrs466yz4qabbopbb70182n6XFlbPS57ffrzn/8cvXr1is6dO8eQIUMiLy8vRowYkbP+llmbc7nMF198Ec8888x689qztnqsDq89Felz6623jnvuuSduuummqF+/frRo0SLat28fzZs3r/TXnt69e8ekSZPigQceqNT9ViY9rj333XdfXHnllfHQQw8t9x+SylAZfb744ovxxhtvxO233x4DBgyI+++/f53ta0XWVY9Lly6N4447Lq688srYcsst1+rYa2JdzmWHDh3izDPPjM6dO8duu+0Wd999d+y2227Rv3//tb6vlVmXPZaWlkZeXl4MHz48dt111zjooIPi5ptvjnvuuWelZ6GsbZX12nPPPfdEo0aNKnzD6rVtXfb5/vvvx3nnnReXXXZZTJgwIUaNGhWffvppnHXWWWt9XyuzLnu89NJLo2fPntG1a9eoU6dOHH744XHSSSdFROX/n8vfBNVDZfU4ZsyYOOWUU+LOO++Mrbfeep3ua0Uqo88HH3ww3nzzzbjvvvviySefjL/85S/rbF8rsi57PP300+O4444r9wPTlWld9rnRRhtFnz59okuXLrHLLrvEddddF7/5zW/ixhtvXOv7Wpl1/XdPSUlJDBs2LPbcc8/YZ599YvDgwTFmzJjlblq/rglQyrHRRhtF7dq1o1OnTmWWd+zYMaZPn15mWXFxcWyxxRax1157xcMPPxwffvhhPProo8uNedddd8UOO+xQ7uVIlmnRokXMnj27zLIff/wxvv3222jRosUadrS8H374If7nf/4nbr755jj00ENju+22i3POOSeOOeaYzItny5YtIyJW+n0YPXp0/POf/4wHHnggdt9999hpp51i0KBBUVhYGPfcc0+5PUZEzJo1q8zyWbNmrdUeK9rnTz388MOxcOHCOPHEE8sdsyrOZcR/g4OPP/44Zs+eHf/5z3/iH//4R8yYMSM23XTTiFj/5zIionPnzjFx4sSYM2dOfPXVVzFq1Kj45ptvMj0sM3/+/DjwwANjgw02iEcffTTq1KlTZn2fPn1izpw5MX369PjPf/4Thx9+eETEcuMs06JFi1i8eHHMmTOnzPJ10WdFelzVXK5Ily5d4scff4xPP/10heurWo8ren0qKCiITTfddLnX6Z/2uKyndd1jxNqfyyFDhkSTJk3isMMOW+l+q9pcVpfXnorM5XHHHRczZ86MGTNmxDfffBNXXHFFfP311yt97VnbfZ5zzjnxz3/+M8aMGVPmTKaKHDctWrRYYS0/rbW8bYqKiso9a7Mi466Odd3jmqiqPT7wwANx2mmnxUMPPbTcpdmyrYvvXWX12b59+9h2223j9NNPjwsuuKDMBy+yVaW5nD9/frzxxhtxzjnnRO3ataN27dpx1VVXxdtvvx21a9eO0aNHV0qP67rP8uy6664xderUctdXpbmM+O/fPhtvvHEUFxdntunYsWOklOKLL76oFj0uk1KKu+++O0444YRyr+7w031XteO1X79+sfvuu8dFF10U2223XfTo0SMGDRoUd999d7kfHqlqc1lYWBh33313LFy4MD799NOYPn16bLLJJrHBBhtE06ZNK6XHn9tnRaxJzevTXK4ra/u9kMrqcezYsXHooYdG//79V/qe0LJ9V7XjdZk2bdpEp06d4thjj43rrrsurrjiili6dOkKt61qx+vo0aPjL3/5S+bvnlNPPTXmzp0btWvXznwQPFtVnsuf6tKlS5X5u6ciWrZsGbVr1y7zIaCOHTtGRKz0PZ918T6sAKUcdevWjV122WW5ROujjz5a6fVXU0qRUlruE94LFiyIhx56qEKfGu7WrVvMmTOnzL0YRo8eHaWlpdGlS5fV7KR8S5YsiSVLliz36Y9atWplPtm9ySabRKtWrVb6fVi4cGFELP8pkvz8/Mw42dq3bx8tWrSI559/PrNs3rx5MX78+OjWrdvPayxLRfr8qcGDB8dhhx1W7h91VXUuf2qjjTaKRo0axejRo2P27NmZN2PX97n8qeLi4mjatGlMmTIl3njjjUwAsmz/BxxwQNStWzdGjhy53LV3l8nLy4tWrVpFYWFh3H///dGmTZvYaaedVrht586do06dOmX6nDx5ckyfPn2d9bmyHpcpby5XZOLEiZGfn1/up4erWo+dO3eOgoKCMq9PS5YsiU8//bTc1+n18XhdZlVzmVKKIUOGxIknnrhcIJitqs1ldXntWaYiP5fNmzePhg0bxoMPPhj16tWL/ffff4X7W5t9ppTinHPOiUcffTRGjx4d7du3L7O+IsdNt27d4t133y3zR+mzzz4bRUVFmTCzW7duZcZYts3K6u3WrVv8+9//LnNN9GeffTY6dOhQ7mXcctnjmlhb41Zmj/fff3+ccsopcf/998fBBx9coR7XxjxWdp/Zln3abV33WRk9FhUVxbvvvhsTJ07MPM4666zo0KFDTJw4sdy/R6vLXE6cODHzgYt12Wdl9bj77rvHl19+GQsWLMhs89FHH0V+fn65l/asiq89Ef99E3Pq1KkV/j9XVTteFy5cuML/uy2robw+q+Jc1qlTJ1q3bh21atWKBx54IA455JByz0BZm7+D10afFbEmx9/6NJfrytp6L6Qye3zhhRfi4IMPjuuvv77MJcDLUxWP1xUpLS2NJUuWlPv/rqp2vI4bN67M3z1XXXVVbLDBBjFx4sQ48sgj12mPldnnilTk756qNJe77757/Pjjj/Hxxx9nln300UcREeW+57PO3odd49vPVwPz589Pb731VnrrrbdSRKSbb745vfXWW+mzzz5LKaX0yCOPpDp16qS///3vacqUKenWW29NtWrVSi+++GJKKaWPP/44XXvttemNN95In332WXr55ZfToYcemho3bpxmzZpVZl933XVXqlevXvruu++Wq2P8+PGpQ4cO6YsvvsgsO/DAA9OOO+6Yxo8fn1566aW0xRZbpGOPPXat97j33nunrbfeOo0ZMyZ98sknaciQIalevXpp0KBBmTH69++fioqK0ogRI9KUKVPSJZdckurVq5emTp2aUkrp66+/Tk2aNElHHXVUmjhxYpo8eXK68MILU506ddLEiRMz43To0CE98sgjma+vu+661KhRo/T444+nd955Jx1++OGpffv26YcffshJnymlNGXKlJSXl5eefvrpcvdVlefy7rvvTuPGjUtTp05N//jHP1Ljxo1Tnz59Muurwlw+9NBDacyYMenjjz9Ojz32WGrXrl066qijMs+fO3du6tKlS9p2223T1KlT01dffZV5/Pjjj5ntbrjhhvTOO++kSZMmpauuuirVqVMnPfroo5n1X3zxRerQoUMaP358ZtlZZ52V2rZtm0aPHp3eeOON1K1bt9StW7dK7zGlVc/lK6+8kvr3758mTpyYPv7443Tvvfempk2bphNPPLHa9JhSSuedd17aeOON0zPPPJM+/PDDdOqpp6ZmzZqlb7/9NrPN+ny8VrTPlFJ67rnnUkSkDz74YLl1VX0uq8NrT0X6TCmlW2+9NU2YMCFNnjw5/e1vf0uFhYXpr3/9a5lt1lWfv/vd71JxcXF64YUXyrw2Lly4MLPNqo6bH3/8MW2zzTbpgAMOSBMnTkyjRo1KTZs2TX379s1s88knn6T69euniy66KH3wwQdp4MCBqVatWmnUqFFlvg/77rtv5us5c+ak5s2bpxNOOCFNmjQpPfDAA6l+/frpjjvuWC97TClljpfOnTun4447Lr311lvpvffey6x/5JFHUocOHVZ73PWlx+HDh6fatWungQMHltnPnDlzMtusq3mszD7/9re/pZEjR6aPPvooffTRR+muu+5KG2ywQfrzn/+8zvuszOP1py6//PK0/fbbl1lWHeayf//+6bHHHktTpkxJ7777bjrvvPNSfn5+eu6559Z5n5XV4/z581Pr1q3TL3/5y/Tee++lsWPHpi222CKddtppmW2q+mvPMr/5zW9Sly5dVlhLdThehwwZkmrXrp0GDRqUPv744/TSSy+lnXfeOe26666Zbar6XE6ePDn94x//SB999FEaP358OuaYY1Ljxo3TtGnT1nmPa6vPlP77HsFbb72VzjzzzLTllltmfv+XlJSklCp2/K3Pc1mRHlNK6b333ktvvfVWOvTQQ9M+++yT2WaZdfVeSGX1OHr06FS/fv3Ut2/fMvv55ptvMmNUh+P13nvvTQ8++GB6//3308cff5wefPDB1KpVq3T88cev8z4r83j9qSFDhqTi4uIyy6rDXA4dOjTdd9996YMPPkgffPBBuuaaa1J+fn66++6713mfldXj0qVL00477ZT22muv9Oabb6Y33ngjdenSJe2///6ZMdbl+7A/VaMDlDFjxqSIWO5x0kknZbYZPHhw2nzzzVO9evXS9ttvnx577LHMuhkzZqSePXumZs2apTp16qTWrVun4447Ln344YfL7atbt27puOOOW2kdP/1D4ptvvknHHntsatiwYSoqKkqnnHJKmj9//lrv8auvvkonn3xyatWqVapXr17q0KFDuummm1JpaWmZcfr165dat26d6tevn7p165YJkZZ5/fXX0wEHHJAaN26cNthgg9S1a9f01FNPldkmItKQIUMyX5eWlqZLL700NW/ePBUUFKT99tsvTZ48ebV7XJt99u3bN7Vp0yYtXbq03H1V5bn84x//mJo3b57q1KmTtthiixV+D9b3ufzrX/+aWrdunerUqZPatm2bLrnkkjK/KMt7fva8/OIXv0jFxcWpXr16qUuXLsv1OG3atBQRacyYMZllP/zwQzr77LPThhtumOrXr5+OPPLI9NVXX1V6jymtei4nTJiQunTpkumxY8eO6dprr02LFi2qNj2mlNLixYvTH/7wh9SsWbO0wQYbpO7du6dJkyaV2WZ9Pl4r2mdKKR177LFpt912W2Ed1WEuq/prT0X7POGEE1Ljxo1T3bp103bbbZeGDRu2XC3rqs/yXht/uq+KHDeffvpp6tmzZyosLEwbbbRR+sMf/pCWLFmy3Pdzhx12SHXr1k2bbrppmX2k9N83cNu1a1dm2dtvv5322GOPVFBQkDbeeON03XXXrdc9rmg/P+1pyJAhKfuzShUZd33pce+9917l38nrah4rs89bbrklbb311ql+/fqpqKgo7bjjjmnQoEFl/hasDsfrT60oQKkOc3n99denzTbbLNWrVy81btw47bPPPmn06NGV0mdlzuUHH3yQunfvngoLC1Pr1q1Tnz59yrxhUdVfe1L67xvShYWF6e9///sKa6kOx2tK/3396dSpUyosLEwtW7ZMxx9/fJk3gKr6XL7//vtphx12SIWFhamoqCgdfvjhy71Xsq56XJt9lvf78Kf/t1zV8be+z2VFemzXrt0Kt1lmXb0XUlk9nnTSSStcv/fee2fGqA7H6wMPPJB22mmn1LBhw9SgQYPUqVOndO2115b5YFZ1OF5/akUBSnWYy6FDh6aOHTtm/obddddd04gRIyqlz8qcyxkzZqSjjjoqNWzYMDVv3jydfPLJZYLNdfk+7E/l/f+NAwAAAAAA8P9zDxQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAAAAAIAsAhQAAIBVWLp0aZSWlua6DAAAoBIJUAAAgCpl2LBh0aRJkygpKSmz/IgjjogTTjghIiIef/zx2GmnnaJevXqx6aabxpVXXhk//vhjZtubb745tt1222jQoEG0adMmzj777FiwYEFm/dChQ6NRo0YxcuTI6NSpUxQUFMT06dMrp0EAAGC9IEABAACqlF/96lexdOnSGDlyZGbZ7Nmz48knn4zf/va38eKLL8aJJ54Y5513Xrz//vtxxx13xNChQ+Oaa67JbJ+fnx+33HJLvPfee3HPPffE6NGj4+KLLy6zn4ULF8b1118fd911V7z33nvRrFmzSusRAADIvbyUUsp1EQAAAKvj7LPPjk8//TSeeuqpiPjvGSUDBw6MqVOnxv777x/77bdf9O3bN7P9vffeGxdffHF8+eWXKxzv4YcfjrPOOiv+85//RMR/z0A55ZRTYuLEibH99tuv+4YAAID1jgAFAACoct56663YZZdd4rPPPouNN944tttuu/jVr34Vl156aTRt2jQWLFgQtWrVymy/dOnSWLRoUXz//fdRv379eO6556Jfv37x4Ycfxrx58+LHH38ss37o0KFx5plnxqJFiyIvLy+HnQIAALlSO9cFAAAArK4dd9wxtt9++xg2bFgccMAB8d5778WTTz4ZERELFiyIK6+8Mo466qjlnlevXr349NNP45BDDonf/e53cc0110Tjxo3jpZdeilNPPTUWL14c9evXj4iIwsJC4QkAANRgAhQAAKBKOu2002LAgAExY8aM6N69e7Rp0yYiInbaaaeYPHlybL755it83oQJE6K0tDRuuummyM//720hH3rooUqrGwAAqBoEKAAAQJV03HHHxYUXXhh33nlnDBs2LLP8sssui0MOOSTatm0bv/zlLyM/Pz/efvvtmDRpUlx99dWx+eabx5IlS+LWW2+NQw89NF5++eW4/fbbc9gJAACwPsrPdQEAAABrori4OHr16hUNGzaMI444IrO8R48e8c9//jP+9a9/xS677BJdu3aN/v37R7t27SIiYvvtt4+bb745rr/++thmm21i+PDh0a9fvxx1AQAArK/cRB4AAKiy9ttvv9h6663jlltuyXUpAABANSNAAQAAqpzvvvsuXnjhhfjlL38Z77//fnTo0CHXJQEAANWMe6AAAABVzo477hjfffddXH/99cITAABgnXAGCgAAAAAAQBY3kQcAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMgiQAEAAAAAAMjy/wGgffZku0SWVgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {}
- }
- ],
- "source": [
- "plt.figure(figsize=(20, 5))\n",
- "sns.barplot(data=data, x='year', y='price', errorbar=None)\n",
- "plt.title(\"price rate depending on the year\")\n",
- "plt.xlabel(\"year\")\n",
- "plt.ylabel(\"price\")\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "BTYtTderEeaN"
- },
- "source": [
- "Проверили. Признаки не линейно-зависимы."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "agLGino1gDOT"
- },
- "source": [
- "# Модель и обучение"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 181,
- "metadata": {
- "id": "uup4zgoEgomo"
- },
- "outputs": [],
- "source": [
- "X = data.drop(['variety'], axis=1)\n",
- "Y = data['variety']"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "4K3fctb5NeuY"
- },
- "source": [
- "Представляем данные в виде необходимом для обучения."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 182,
- "metadata": {
- "id": "KWPAaK1uhhoK"
- },
- "outputs": [],
- "source": [
- "province = pd.get_dummies(X['province'], drop_first=True)\n",
- "winery = pd.get_dummies(X['winery'], drop_first=True)\n",
- "\n",
- "X_gd = X.drop(['province', 'winery'], axis=1)\n",
- "\n",
- "X_gd = pd.concat([X_gd, province, winery], axis=1)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "41KFmdv-gGrU"
- },
- "source": [
- "Разбиваем данные на тренировочные и тестовые"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 183,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 479
- },
- "id": "-SLpeeP7y1fL",
- "outputId": "8ec058a1-2d75-4d0d-da3d-2f734c406540"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " points price year Italy Other Lombardy Northeastern Italy \\\n",
- "47486 91 55.000000 2007.0 False False False \n",
- "122282 87 44.428758 2011.0 False False False \n",
- "96663 87 20.000000 2011.0 False False False \n",
- "21437 88 26.000000 2013.0 False False False \n",
- "66082 87 45.000000 2013.0 False False False \n",
- "... ... ... ... ... ... ... \n",
- "84833 86 45.000000 2013.0 False False False \n",
- "77114 87 44.428758 2006.0 False False False \n",
- "80524 88 23.000000 2015.0 False False False \n",
- "12797 88 18.000000 2013.0 False False False \n",
- "109138 86 16.000000 2012.0 False False False \n",
- "\n",
- " Northwestern Italy Piedmont Sicily and Sardinia Southern Italy \\\n",
- "47486 False True False False \n",
- "122282 False False False False \n",
- "96663 False False False False \n",
- "21437 False False False False \n",
- "66082 False True False False \n",
- "... ... ... ... ... \n",
- "84833 False True False False \n",
- "77114 False False False False \n",
- "80524 False False False False \n",
- "12797 False False False False \n",
- "109138 False False True False \n",
- "\n",
- " ... Vèscine Wine for Food Zanoni Zenato Zeni Ziobaffa Zisola \\\n",
- "47486 ... False False False False False False False \n",
- "122282 ... False False False False False False False \n",
- "96663 ... False False False False False False False \n",
- "21437 ... False False False False False False False \n",
- "66082 ... False False False False False False False \n",
- "... ... ... ... ... ... ... ... ... \n",
- "84833 ... False False False False False False False \n",
- "77114 ... False False False False False False False \n",
- "80524 ... False False False False False False False \n",
- "12797 ... False False False False False False False \n",
- "109138 ... False False False False False False False \n",
- "\n",
- " Zonin Zymè Ïl Macchione \n",
- "47486 False False False \n",
- "122282 False False False \n",
- "96663 False False False \n",
- "21437 False False False \n",
- "66082 False False False \n",
- "... ... ... ... \n",
- "84833 False False False \n",
- "77114 False False False \n",
- "80524 False False False \n",
- "12797 False False False \n",
- "109138 False False False \n",
- "\n",
- "[6900 rows x 1735 columns]"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " points \n",
- " price \n",
- " year \n",
- " Italy Other \n",
- " Lombardy \n",
- " Northeastern Italy \n",
- " Northwestern Italy \n",
- " Piedmont \n",
- " Sicily and Sardinia \n",
- " Southern Italy \n",
- " ... \n",
- " Vèscine \n",
- " Wine for Food \n",
- " Zanoni \n",
- " Zenato \n",
- " Zeni \n",
- " Ziobaffa \n",
- " Zisola \n",
- " Zonin \n",
- " Zymè \n",
- " Ïl Macchione \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 47486 \n",
- " 91 \n",
- " 55.000000 \n",
- " 2007.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " True \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 122282 \n",
- " 87 \n",
- " 44.428758 \n",
- " 2011.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 96663 \n",
- " 87 \n",
- " 20.000000 \n",
- " 2011.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 21437 \n",
- " 88 \n",
- " 26.000000 \n",
- " 2013.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 66082 \n",
- " 87 \n",
- " 45.000000 \n",
- " 2013.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " True \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 84833 \n",
- " 86 \n",
- " 45.000000 \n",
- " 2013.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " True \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 77114 \n",
- " 87 \n",
- " 44.428758 \n",
- " 2006.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 80524 \n",
- " 88 \n",
- " 23.000000 \n",
- " 2015.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 12797 \n",
- " 88 \n",
- " 18.000000 \n",
- " 2013.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- " 109138 \n",
- " 86 \n",
- " 16.000000 \n",
- " 2012.0 \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " True \n",
- " False \n",
- " ... \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " False \n",
- " \n",
- " \n",
- "
\n",
- "
6900 rows × 1735 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "X_train_gd"
- }
- },
- "metadata": {},
- "execution_count": 183
- }
- ],
- "source": [
- "X_train_gd, X_test_gd, Y_train, Y_test = train_test_split(X_gd, Y, test_size=0.2, random_state=42)\n",
- "X_train_gd"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "WS7tGX1ihEqX"
- },
- "source": [
- "Сперва попробуем модель с прошлого дз с подбором параметров."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 184,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "soqCIXWGhXza",
- "outputId": "495ed1f7-f5d7-45b6-98d6-9102732b53ca"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for DecisionTreeClassifier: {'criterion': 'gini', 'max_depth': None}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.99 0.98 0.98 526\n",
- " Red Blend 0.82 0.87 0.84 742\n",
- " Sangiovese 0.78 0.71 0.75 457\n",
- "\n",
- " accuracy 0.86 1725\n",
- " macro avg 0.86 0.85 0.86 1725\n",
- "weighted avg 0.86 0.86 0.86 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "from sklearn.tree import DecisionTreeClassifier\n",
- "\n",
- "# create dict with paramemeters for model\n",
- "param_grid_clf = {\n",
- " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
- " 'max_depth': [5, 10, None],\n",
- "}\n",
- "\n",
- "# create model\n",
- "clf = DecisionTreeClassifier(random_state=42)\n",
- "\n",
- "# selection of best parameters\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "\n",
- "# train model\n",
- "grid_search_clf.fit(X_train_gd, Y_train)\n",
- "\n",
- "# check of best parameters\n",
- "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
- "\n",
- "# prediction of results\n",
- "y_pred_dtc_gd = grid_search_clf.predict(X_test_gd)\n",
- "\n",
- "# check of metric values\n",
- "print(classification_report(Y_test, y_pred_dtc_gd))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "yhoQcYZVHwED"
- },
- "source": [
- "Видим, что модель неплохо справляется с предсказанием."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "kgd_EhRClKF6"
- },
- "source": [
- "Представим данные в другом виде т.к. для других моделей обучение на таких данных происходит очень долго."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 185,
- "metadata": {
- "id": "rd8FBKRQZMj6"
- },
- "outputs": [],
- "source": [
- "from sklearn.decomposition import PCA\n",
- "from sklearn.manifold import TSNE\n",
- "from sklearn.preprocessing import LabelEncoder"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "AwS19hFQIhuj"
- },
- "source": [
- "# LabelEncoder"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 186,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 424
- },
- "id": "moPDZmN4Im6e",
- "outputId": "c7a05214-2768-4f36-f42c-45755e4576a8"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " points price province winery year\n",
- "47486 91 55.000000 5 1005 2007.0\n",
- "122282 87 44.428758 8 1670 2011.0\n",
- "96663 87 20.000000 9 35 2011.0\n",
- "21437 88 26.000000 8 884 2013.0\n",
- "66082 87 45.000000 5 1005 2013.0\n",
- "... ... ... ... ... ...\n",
- "84833 86 45.000000 5 137 2013.0\n",
- "77114 87 44.428758 8 127 2006.0\n",
- "80524 88 23.000000 8 777 2015.0\n",
- "12797 88 18.000000 8 1248 2013.0\n",
- "109138 86 16.000000 6 70 2012.0\n",
- "\n",
- "[6900 rows x 5 columns]"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " points \n",
- " price \n",
- " province \n",
- " winery \n",
- " year \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 47486 \n",
- " 91 \n",
- " 55.000000 \n",
- " 5 \n",
- " 1005 \n",
- " 2007.0 \n",
- " \n",
- " \n",
- " 122282 \n",
- " 87 \n",
- " 44.428758 \n",
- " 8 \n",
- " 1670 \n",
- " 2011.0 \n",
- " \n",
- " \n",
- " 96663 \n",
- " 87 \n",
- " 20.000000 \n",
- " 9 \n",
- " 35 \n",
- " 2011.0 \n",
- " \n",
- " \n",
- " 21437 \n",
- " 88 \n",
- " 26.000000 \n",
- " 8 \n",
- " 884 \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 66082 \n",
- " 87 \n",
- " 45.000000 \n",
- " 5 \n",
- " 1005 \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 84833 \n",
- " 86 \n",
- " 45.000000 \n",
- " 5 \n",
- " 137 \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 77114 \n",
- " 87 \n",
- " 44.428758 \n",
- " 8 \n",
- " 127 \n",
- " 2006.0 \n",
- " \n",
- " \n",
- " 80524 \n",
- " 88 \n",
- " 23.000000 \n",
- " 8 \n",
- " 777 \n",
- " 2015.0 \n",
- " \n",
- " \n",
- " 12797 \n",
- " 88 \n",
- " 18.000000 \n",
- " 8 \n",
- " 1248 \n",
- " 2013.0 \n",
- " \n",
- " \n",
- " 109138 \n",
- " 86 \n",
- " 16.000000 \n",
- " 6 \n",
- " 70 \n",
- " 2012.0 \n",
- " \n",
- " \n",
- "
\n",
- "
6900 rows × 5 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "X_train_lbe",
- "summary": "{\n \"name\": \"X_train_lbe\",\n \"rows\": 6900,\n \"fields\": [\n {\n \"column\": \"points\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 80,\n \"max\": 100,\n \"num_unique_values\": 21,\n \"samples\": [\n 91,\n 98,\n 84\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 41.19681534610238,\n \"min\": 6.0,\n \"max\": 800.0,\n \"num_unique_values\": 195,\n \"samples\": [\n 145.0,\n 135.0,\n 112.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"province\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 0,\n \"max\": 9,\n \"num_unique_values\": 10,\n \"samples\": [\n 3,\n 8,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"winery\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 499,\n \"min\": 0,\n \"max\": 1723,\n \"num_unique_values\": 1622,\n \"samples\": [\n 577,\n 1625,\n 277\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9.671348672109806,\n \"min\": 1637.0,\n \"max\": 2016.0,\n \"num_unique_values\": 27,\n \"samples\": [\n 2005.0,\n 1998.0,\n 2014.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
- }
- },
- "metadata": {},
- "execution_count": 186
- }
- ],
- "source": [
- "lbe = LabelEncoder()\n",
- "X_lbe = pd.DataFrame(X)\n",
- "X_lbe['province'] = lbe.fit_transform(data['province'])\n",
- "X_lbe['winery'] = lbe.fit_transform(data['winery'])\n",
- "X_train_lbe, X_test_lbe, Y_train, Y_test = train_test_split(X_lbe, Y, test_size=0.2, random_state=42)\n",
- "X_train_lbe"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 187,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "rMIOZOTXKBeS",
- "outputId": "9df203b0-0326-439e-ef07-889fe6db490f"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.99 0.98 0.99 526\n",
- " Red Blend 0.80 0.80 0.80 742\n",
- " Sangiovese 0.69 0.70 0.70 457\n",
- "\n",
- " accuracy 0.83 1725\n",
- " macro avg 0.83 0.83 0.83 1725\n",
- "weighted avg 0.83 0.83 0.83 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
- " 'max_depth': [5, 10, None],\n",
- "}\n",
- "clf = DecisionTreeClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_lbe, Y_train)\n",
- "y_pred_dtc_lbe = grid_search_clf.predict(X_test_lbe)\n",
- "\n",
- "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_dtc_lbe))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "wqviIDxZL22H"
- },
- "source": [
- "Видим незначительное падение точночности модели."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "w1DDtKxQMCgr"
- },
- "source": [
- "Попробуем другие модели"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 188,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "NlEebtR5KbOL",
- "outputId": "842ff145-847c-43f1-ec5b-8d0a91f701e4"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for SGDClassifier: {'loss': 'modified_huber', 'max_iter': 200}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.30 1.00 0.47 526\n",
- " Red Blend 0.00 0.00 0.00 742\n",
- " Sangiovese 0.00 0.00 0.00 457\n",
- "\n",
- " accuracy 0.30 1725\n",
- " macro avg 0.10 0.33 0.16 1725\n",
- "weighted avg 0.09 0.30 0.14 1725\n",
- "\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_stochastic_gradient.py:744: ConvergenceWarning:\n",
- "\n",
- "Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "from sklearn.linear_model import SGDClassifier\n",
- "\n",
- "# create dict with paramemeters for model\n",
- "param_grid_clf = {\n",
- " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
- " 'max_iter': [100, 200, 400, 800, 1000]\n",
- "}\n",
- "\n",
- "# create model\n",
- "clf = SGDClassifier(random_state=42)\n",
- "\n",
- "# selection of best parameters\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "\n",
- "# train model\n",
- "grid_search_clf.fit(X_train_lbe, Y_train)\n",
- "\n",
- "# check of best parameters\n",
- "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
- "\n",
- "# prediction of results\n",
- "y_pred_sgdc_lbe = grid_search_clf.predict(X_test_lbe)\n",
- "\n",
- "# check of metric values\n",
- "print(classification_report(Y_test, y_pred_sgdc_lbe))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Kp6yGqjKMGMH"
- },
- "source": [
- "Точность модели SGDClassifier очень низкая."
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Были попытки перебирать разные параметры ядра модли SVC, но это катастрафически замедляло процесс, а результаты не становились сильно лучше, поэтому тут использую дефолтные параметры."
- ],
- "metadata": {
- "id": "pICdMV1OhQHV"
- }
- },
- {
- "cell_type": "code",
- "execution_count": 189,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "h4Zc9hPFK2HD",
- "outputId": "0e187de2-7e96-413d-fc6c-1165e991a5f3"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.52 0.22 0.31 526\n",
- " Red Blend 0.46 0.93 0.61 742\n",
- " Sangiovese 0.00 0.00 0.00 457\n",
- "\n",
- " accuracy 0.46 1725\n",
- " macro avg 0.33 0.38 0.31 1725\n",
- "weighted avg 0.36 0.46 0.36 1725\n",
- "\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "from sklearn.svm import SVC\n",
- "\n",
- "clf = SVC()\n",
- "clf.fit(X_train_lbe, Y_train)\n",
- "y_pred_svc_lbe = clf.predict(X_test_lbe)\n",
- "\n",
- "# check of metric values\n",
- "print(classification_report(Y_test, y_pred_svc_lbe))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "UrYWrS02OeQP"
- },
- "source": [
- "Точность у модели SVC очень низкая."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "QZdAmoL2Lhqp"
- },
- "source": [
- "# PCA"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 190,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "-OnYsi83ZVQ6",
- "outputId": "29c543bf-e71c-4d1d-c3e6-bde96f7d497b"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "array([[ 4.26507051e+00, -2.31516787e+00, 1.63172872e+00, ...,\n",
- " 3.58225259e-18, 2.88184583e-18, 1.30234266e-20],\n",
- " [-6.43751638e+00, 1.66052025e+00, -2.08758127e+00, ...,\n",
- " 3.15901817e-18, 1.87872264e-19, -8.05538076e-20],\n",
- " [-3.08530170e+01, 1.59344524e+00, -1.33581991e+00, ...,\n",
- " -2.35725523e-18, -1.67147617e-18, 1.11176722e-20],\n",
- " ...,\n",
- " [-2.78372126e+01, 5.59889241e+00, -4.34360135e-01, ...,\n",
- " -5.38174105e-20, -7.44436577e-21, 8.56165509e-21],\n",
- " [-3.28294277e+01, 3.58499107e+00, -2.86877737e-01, ...,\n",
- " -4.94705731e-20, -2.86098011e-20, 3.72404376e-21],\n",
- " [-3.48845942e+01, 2.58382951e+00, -2.20524267e+00, ...,\n",
- " -6.24065254e-20, -3.38691686e-20, 1.20095839e-21]])"
- ]
- },
- "metadata": {},
- "execution_count": 190
- }
- ],
- "source": [
- "pca = PCA()\n",
- "X_train_pca = pca.fit_transform(X_train_gd)\n",
- "X_test_pca = pca.transform(X_test_gd)\n",
- "X_train_pca"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 191,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 472
- },
- "id": "zdsFUNX4P6Cy",
- "outputId": "f79cd830-3838-4566-8c62-7274b1352ad7"
- },
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHHCAYAAAD6Rv9iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeMklEQVR4nO3dd1gU1/s28HtBOlKUrgiKig01QSXYCxFLLLHGGAsxmhg7MVGTrzWJWBJ796dGTbPGFLuoaRp7jR0LagRUAigWhH3eP3iZuO6CLMzKAvfnuvbSPXNm5pnZ2dmHmXPOaEREQERERERmwaKgAyAiIiKi/zA5IyIiIjIjTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zOiIiIiMwIkzMiIiIiM8LkjIiIiMiMqJ6cTZgwARqNRu3FFpiitj25cejQIdSvXx8ODg7QaDQ4fvx4QYekx9/fH3379jV6vqtXr0Kj0eCrr75SPabcyGvcplLQ+6OwaNq0KZo2bVrQYagm67x2586dgg7lhdu7dy80Gg3Wr19f0KHkSnx8PLp06YLSpUtDo9Fg1qxZBR0SvQAlCjoAMi9PnjxB165dYWtri5kzZ8Le3h5+fn4FHRaRyZ05cwZr165F37594e/vX9DhqGLy5MmoVq0aOnbsWNChUB6NGDEC27dvx/jx4+Hl5YU6deoUdEjF0rfffouEhAQMHz78hayPyRnpiImJwbVr17B06VK88847BR2O6vz8/PDw4UNYWVkVdChmgfvjP2fOnMHEiRPRtGlTveRsx44dBRNUPk2ePBldunRhclaI7d69Gx06dMDIkSMLOpRi7dtvv8Xp06dfWHLGNmekIyEhAQDg4uJSsIGYiEajga2tLSwtLQs6lAKVnp6OtLS0Ir0/UlNTVVuWtbU1rK2tVVseFX1qHX8JCQlF9nxM2ctXcvbHH3+gbt26sLW1RUBAABYvXpxt3a+//hrBwcGws7NDqVKl8MYbb+D69es6dZo2bYoaNWrgyJEjqF+/Puzs7FC+fHksWrRIb3mPHz/G+PHjUbFiRdjY2MDX1xcfffQRHj9+rFNPo9Fg8ODB2LRpE2rUqAEbGxtUr14d27Zte2Hbc+bMGTRr1gz29vYoU6YMpk2bpre8R48eYcKECahcuTJsbW3h7e2NTp06ISYmRqmj1Woxa9YsVK9eHba2tvD09MS7776Lf//9N9s4n7Z79240atQIDg4OcHFxQYcOHXD27Fllet++fdGkSRMAQNeuXaHRaJ7bziYpKQnDhw+Hr68vbGxsULFiRUydOhVarRYAICJo1qwZ3N3dlcQPANLS0hAUFISAgADlJJbVDubcuXPo1q0bnJycULp0aQwbNgyPHj3KMY7ExESMHDkSQUFBcHR0hJOTE1q3bo0TJ07o1DPUxqpv375wdHTEzZs30bFjRzg6OsLd3R0jR45ERkaGzvy5/QxEBJ999hnKli0Le3t7NGvWDH///XeO2wBk3lYuVaoUIiIi9KalpKTA1tZW+Qs6LS0N48aNQ3BwMJydneHg4IBGjRphz549Brf5iy++wKxZsxAQEAAbGxucOXPG4P44efIk+vbtiwoVKsDW1hZeXl54++23cffuXZ3lZn1ely5dQt++feHi4gJnZ2dERETgwYMHevF//fXXqFevHuzt7eHq6orGjRvrXZHaunWrcoyWLFkSbdu2zdV+++qrr6DRaPDrr7/i/fffh4eHB8qWLQsAuHbtGt5//30EBgbCzs4OpUuXRteuXXH16lWd+bt27QoAaNasGTQaDTQaDfbu3QvAcJuzhIQE9OvXD56enrC1tUWtWrWwcuXK58aaZcGCBahevTpsbGzg4+ODQYMGISkpSaeOMeeQZ2k0GqSmpmLlypXK9jzb3jEpKSnXn93zzneG5PYYyanto0ajwYQJE/SWeeHCBbz11ltwdnaGu7s7xo4dCxHB9evX0aFDBzg5OcHLywtffvmlwdgyMjLw8ccfw8vLCw4ODmjfvr3BbTpw4ABatWoFZ2dn2Nvbo0mTJvjzzz8NbueZM2fw5ptvwtXVFQ0bNsxx31y+fBldu3ZFqVKlYG9vj1deeQWbN29Wpmcd0yKC+fPnK59hTrRaLWbPno2goCDY2trC3d0drVq1wuHDh5U66enp+PTTT5XzgL+/Pz7++GO9305/f3+89tpr2Lt3L+rUqQM7OzsEBQUp34mNGzcq6wkODsaxY8d05s86r16+fBnh4eFwcHCAj48PJk2aBBHRqZuamooPPvhA+R0JDAzEF198oVfPmN/zmzdv4u2334anp6dSb/ny5Tp1stofrl27Fp9//jnKli0LW1tbtGjRApcuXVLqNW3aFJs3b8a1a9eUz+Hpq+tz585F9erVlXNbnTp18O233+b4WT2X5NHJkyfFzs5OypUrJ1FRUfLpp5+Kp6en1KxZU55d7GeffSYajUa6d+8uCxYskIkTJ4qbm5v4+/vLv//+q9Rr0qSJ+Pj4iIeHhwwePFjmzJkjDRs2FACybNkypV5GRoa0bNlS7O3tZfjw4bJ48WIZPHiwlChRQjp06KCzbgBSq1Yt8fb2lk8//VRmzZolFSpUEHt7e7lz584L2R5fX18ZNmyYLFiwQJo3by4AZMuWLUq99PR0adGihQCQN954Q+bNmydRUVHSvHlz2bRpk1LvnXfekRIlSkj//v1l0aJFMmrUKHFwcJC6detKWlpajp/Xzp07pUSJElK5cmWZNm2aErOrq6tcuXJFRET27dsnH3/8sQCQoUOHyurVq2XHjh3ZLjM1NVVq1qwppUuXlo8//lgWLVokvXv3Fo1GI8OGDVPqXb58WRwdHeX1119XykaPHi0ajUZ+/fVXpWz8+PECQIKCgqRdu3Yyb948eeuttwSA9OrVS2fdfn5+0qdPH+X9oUOHJCAgQEaPHi2LFy+WSZMmSZkyZcTZ2Vlu3ryp1Lty5YoAkBUrVihlffr0EVtbW6levbq8/fbbsnDhQuncubMAkAULFuisN7efwf/+9z8BIG3atJF58+bJ22+/LT4+PuLm5qYTtyFvv/22uLi4yOPHj3XKV65cKQDk0KFDIiJy+/Zt8fb2lsjISFm4cKFMmzZNAgMDxcrKSo4dO6a3zdWqVZMKFSrIlClTZObMmXLt2jWD++OLL76QRo0ayaRJk2TJkiUybNgwsbOzk3r16olWq9X7vF566SXp1KmTLFiwQN555x0BIB999JFO7BMmTBAAUr9+fZk+fbrMnj1b3nzzTRk1apRSZ9WqVaLRaKRVq1Yyd+5cmTp1qvj7+4uLi4tyjGZnxYoVyjY2adJE5s6dK1OmTBERkXXr1kmtWrVk3LhxsmTJEvn444/F1dVV/Pz8JDU1VUREYmJiZOjQoQJAPv74Y1m9erWsXr1a4uLiRCTzu9ykSRNlfQ8ePJCqVauKlZWVjBgxQubMmSONGjUSADJr1qwcY31634WFhcncuXNl8ODBYmlpqXcc5fYcYsjq1avFxsZGGjVqpGzPvn37dNafm88ut+e7nLbzeesxdBxmASDjx4/XW2bt2rWlR48esmDBAmnbtq0AkBkzZkhgYKAMHDhQFixYIA0aNBAAOueZPXv2KOeZmjVryowZM2T06NFia2srlStXlgcPHih1o6OjxdraWkJDQ+XLL7+UmTNnSs2aNcXa2loOHDigF1O1atWkQ4cOsmDBApk/f362+yUuLk48PT2lZMmS8sknn8iMGTOkVq1aYmFhIRs3bhSRzGNy9erVAkBeffVV5TPMSd++fQWAtG7dWmbNmiVffPGFdOjQQebOnavU6dOnjwCQLl26yPz586V3794CQDp27KizLD8/PwkMDBRvb2+ZMGGCzJw5U8qUKSOOjo7y9ddfS7ly5WTKlCkyZcoUcXZ2looVK0pGRobOemxtbaVSpUrSq1cvmTdvnrz22msCQMaOHavU02q10rx5c9FoNPLOO+/IvHnzpF27dgJAhg8frncs5Ob3PC4uTsqWLSu+vr4yadIkWbhwobRv314AyMyZM/WOhZdeekmCg4Nl5syZMmHCBLG3t5d69eop9Xbs2CG1a9cWNzc35XP44YcfRERkyZIlyv5cvHixzJ49W/r16ydDhw7N8bN6njwnZx07dhRbW1u5du2aUnbmzBmxtLTUSWauXr0qlpaW8vnnn+vMf+rUKSlRooROeZMmTQSAfPnll0rZ48ePpXbt2uLh4aGctFavXi0WFhby+++/6yxz0aJFAkD+/PPP/zYQEGtra7l06ZJSduLECQGgc8CacntWrVqlsz1eXl7SuXNnpWz58uXKieVZWT+Gv//+uwCQb775Rmf6tm3bDJY/K2sf3r17V2c/WFhYSO/evZWyrIN13bp1OS5PROTTTz8VBwcHuXDhgk756NGjxdLSUmJjY5WyxYsXCwD5+uuv5a+//hJLS0u9L17WCa59+/Y65e+//74AkBMnTihlzyZnjx490jkxiGSe8G1sbGTSpEk6ZYaSMwA69URE+cJmye1nkJCQINbW1tK2bVudZCYr8X1ecrZ9+3YBID///LNOeZs2baRChQrK+/T0dL0E7t9//xVPT095++239bbZyclJEhISdOob2h9P/zhl+e677wSA/Pbbb0pZ1uf19LpERF5//XUpXbq08v7ixYtiYWEhr7/+ut5nlLV/7t27Jy4uLtK/f3+d6XFxceLs7KxX/qys5Kxhw4aSnp6uM83Q9uzfv1/vu7lu3ToBIHv27NGr/2xyNmvWLOV4zpKWliahoaHi6OgoKSkp2caadXy0bNlSZ3/MmzdPAMjy5ct11pubc0h2HBwcDB5vuf3sjDnfGZLb9eQlORswYIBSlp6eLmXLlhWNRqMk5SKZ3wc7OzudfZB1jitTpozO57R27VoBILNnzxaRzGOzUqVKEh4ervM9fvDggZQvX15effVVvZh69OiR4/7IMnz4cAGg8xt27949KV++vPj7++scFwBk0KBBz13m7t27lT+sn5UV//HjxwWAvPPOOzrTR44cKQBk9+7dSpmfn58AUBJ6kf/OTXZ2djq/lVnn96e/O1nn1SFDhujE0bZtW7G2tpbbt2+LiMimTZsEgHz22Wc6MXXp0kU0Go3Ob3duf8/79esn3t7eOgmbiMgbb7whzs7Oyjkh61ioWrWqzrl09uzZAkBOnTqllLVt21b8/Pye3bXSoUMHqV69ul55fuXptmZGRga2b9+Ojh07oly5ckp51apVER4erlN348aN0Gq16NatG+7cuaO8vLy8UKlSJb1bMCVKlMC7776rvLe2tsa7776LhIQEHDlyBACwbt06VK1aFVWqVNFZZvPmzQFAb5lhYWEICAhQ3tesWRNOTk64fPmyybfH0dERb731ls721KtXT1k3AGzYsAFubm4YMmSI3r7Ouoy9bt06ODs749VXX9VZb3BwMBwdHfXW+7Rbt27h+PHj6Nu3L0qVKqWzH1599VVs2bIl23lzsm7dOjRq1Aiurq46MYWFhSEjIwO//fabUnfAgAEIDw/HkCFD0KtXLwQEBGDy5MkGlzto0CCd91n7Jac4bWxsYGGReThnZGTg7t27cHR0RGBgII4ePZqr7Xnvvfd03jdq1Ejnc8rtZ7Br1y6kpaVhyJAhOrchctuQtHnz5nBzc8OaNWuUsn///Rc7d+5E9+7dlTJLS0ulHZRWq0ViYiLS09NRp04dg9vcuXNnuLu7P3f9dnZ2yv8fPXqEO3fu4JVXXgEAg8s1tN/u3r2LlJQUAMCmTZug1Woxbtw45TPKkrV/du7ciaSkJPTo0UNn31paWiIkJCTH4/tp/fv312s/9/T2PHnyBHfv3kXFihXh4uKS62PjWVu2bIGXlxd69OihlFlZWWHo0KG4f/8+fv3112znzTo+hg8frrM/+vfvDycnJ51bW0DuziF59bzPztjzXV7XkxdPd1iytLREnTp1ICLo16+fUu7i4oLAwECD+6p3794oWbKk8r5Lly7w9vZWzjPHjx/HxYsX8eabb+Lu3bvKtqempqJFixb47bfflOYb2W1ndrZs2YJ69erp3Pp0dHTEgAEDcPXqVZw5cyZ3O+EpGzZsgEajwfjx4/WmZX3PsrYtMjJSZ/oHH3wAAHrHXrVq1RAaGqq8DwkJAZB5jnr6tzKr3NB+Hjx4sE4cgwcPRlpaGnbt2qXEZGlpiaFDh+rFJCLYunWrTvnzfs9FBBs2bEC7du0gIjrHbXh4OJKTk/W+9xERETptShs1apTt9jzLxcUFN27cwKFDh55b1xh56q15+/ZtPHz4EJUqVdKbFhgYqPMjevHiRYiIwboA9HqJ+fj4wMHBQaescuXKADLbJbzyyiu4ePEizp49m+0PzdNtmwDoHERZXF1dlXZCptyesmXL6rUTcHV1xcmTJ5X3MTExCAwMRIkS2X8cFy9eRHJyMjw8PAxOf3abn3bt2jVlW55VtWpVbN++HampqXr7/XkuXryIkydP5vpzWLZsGQICAnDx4kXs27dP50fzac/u24CAAFhYWOi0EXpWVluLBQsW4MqVKzptxUqXLv3cbclqn/G0p48RIPefQdb+fnY73N3d4erq+txYSpQogc6dO+Pbb7/F48ePYWNjg40bN+LJkyc6yRkArFy5El9++SXOnTuHJ0+eKOXly5fXW66hMkMSExMxceJEfP/993qfYXJysl79Z79fWdv477//wsnJCTExMbCwsEC1atWyXefFixcBQPkD61lOTk65it3QNj58+BBRUVFYsWIFbt68qdOOxdD25Ma1a9dQqVIlvWSzatWqyvSc5gX0v4/W1taoUKGC3ry5OYfk1fM+O2PPd3ldT148u0xnZ2fY2trCzc1Nr/zZ9pKA/vdTo9GgYsWKynkm65js06dPtjEkJyfrfKdz+x27du2aktA87enjp0aNGrlaVpaYmBj4+Pjo/AFuaL0WFhaoWLGiTrmXlxdcXFz0jj1D+xgAfH19DZY/2/bWwsICFSpU0Cl7+vc8KyYfHx+dRBnI/ruUm9/zpKQkLFmyBEuWLNGrCzw/R3j6+HyeUaNGYdeuXahXrx4qVqyIli1b4s0330SDBg2eO29OTD6UhlarhUajwdatWw32CHN0dMzTMoOCgjBjxgyD0589cLLrifb0SdqYdRuzPWqtW6vVwsPDA998843B6bm5IqI2rVaLV199FR999JHB6Vlfwix79+5VGp2eOnVK5y+ynORmEODJkydj7NixePvtt/Hpp5+iVKlSsLCwwPDhw/X+ujUkN70VX+Rn8MYbb2Dx4sXYunUrOnbsiLVr16JKlSqoVauWUufrr79G37590bFjR3z44Yfw8PCApaUloqKidDqSZMkuGX5Wt27dsG/fPnz44YeoXbs2HB0dodVq0apVK4P7Uo1jPGu5q1evhpeXl970nP5weZqhbRwyZAhWrFiB4cOHIzQ0FM7OztBoNHjjjTdydWwUNDXPX8YuW63z9/PWk913/NkOOc9bptrnegCYPn06ateubbDOs9uf2+9YQcvtwOrZ7U9THpPPk5tjFgDeeuutbBPrmjVrGrXMnFStWhXnz5/HL7/8gm3btmHDhg1YsGABxo0bh4kTJz53/uzkKTlzd3eHnZ2d8pfF086fP6/zPiAgACKC8uXL6/1YG/LPP//oXcW5cOECACi9IwICAnDixAm0aNFCldH7Tbk9uREQEIADBw7gyZMn2f4lGhAQgF27dqFBgwZGnwCyBpF9dlsA4Ny5c3BzczP6qllWTPfv30dYWNhz6966dQtDhgxBy5YtYW1tjZEjRyI8PNzgALcXL17U+Qv00qVL0Gq1OQ4Mun79ejRr1gzLli3TKU9KStL7SzqvcvsZZG3TxYsXdf5qvH37dq571jZu3Bje3t5Ys2YNGjZsiN27d+OTTz7RqbN+/XpUqFABGzdu1PkeGLqtkVv//vsvoqOjMXHiRIwbN04pN/TdyK2AgABotVqcOXMm2x+5rNsUHh4euTqejLF+/Xr06dNHp9feo0eP9HpGGnMu8fPzw8mTJ6HVanWunp07d06ZntO8QOb38enjIy0tDVeuXFF1+/N7fjTF+c6QrCsVz34mOV2BzK9nj2kRwaVLl5Qf7qxj0snJSfVj0s/PL9vzcdZ0YwUEBGD79u1ITEzM9uqZn58ftFotLl68qFyZAjKfQpCUlKT6gONarRaXL1/WOXae/T338/PDrl27cO/ePZ2rZ3ndF+7u7ihZsiQyMjJe2HfJwcEB3bt3R/fu3ZGWloZOnTrh888/x5gxY2Bra5un9eWpzZmlpSXCw8OxadMmxMbGKuVnz57F9u3bdep26tQJlpaWmDhxol4WKiJ6l5vT09N1hrBIS0vD4sWL4e7ujuDgYACZf9nfvHkTS5cu1Yvt4cOHRo8vY8rtyY3OnTvjzp07mDdvnt60rHV069YNGRkZ+PTTT/XqpKen653Unubt7Y3atWtj5cqVOvVOnz6NHTt2oE2bNkbHnBXT/v379fYRkHmSTU9PV973798fWq0Wy5Ytw5IlS1CiRAn069fP4F8m8+fP13k/d+5cAEDr1q2zjcXS0lJvWevWrcPNmzeN2qac5PYzCAsLg5WVFebOnasTkzGPXbGwsECXLl3w888/Y/Xq1UhPT9e7pZn1197T6zhw4AD2799vxFbpMrRMwLjYn9WxY0dYWFhg0qRJeleqstYTHh4OJycnTJ48Wef2bJbbt2/nef2Gjo25c+fqXZXJ+gMlp+9SljZt2iAuLk6nXWB6ejrmzp0LR0dHZUgaQ8LCwmBtbY05c+boxLVs2TIkJyejbdu2udmsXHFwcMjV9mTHFOc7Q5ycnODm5qbTThXIHG7EVFatWoV79+4p79evX49bt24p55ng4GAEBATgiy++wP379/Xmz88x2aZNGxw8eFDnu5qamoolS5bA398/xyYA2encuTNExODVmqzPLutc/+z3OesulJrHXpanf9dEBPPmzYOVlRVatGihxJSRkaH3+zdz5kxoNJocz/uGWFpaonPnztiwYQNOnz6tNz2vn5uDg4PBZhDPfgesra1RrVo1iIhyLnvw4AHOnTtn1OPS8nxbc+LEidi2bRsaNWqE999/XzkxVa9eXactREBAAD777DOMGTMGV69eRceOHVGyZElcuXIFP/zwAwYMGKAz8rGPjw+mTp2Kq1evonLlylizZg2OHz+OJUuWKFeVevXqhbVr1+K9997Dnj170KBBA2RkZODcuXNYu3Yttm/fbvQjLky1PbnRu3dvrFq1CpGRkTh48CAaNWqE1NRU7Nq1C++//z46dOiAJk2a4N1330VUVBSOHz+Oli1bwsrKChcvXsS6deswe/ZsdOnSJdt1TJ8+Ha1bt0ZoaCj69euHhw8fYu7cuXB2dtYZQ8gYH374IX766Se89tpr6Nu3L4KDg5GamopTp05h/fr1uHr1Ktzc3LBixQps3rwZX331lTL21Ny5c/HWW29h4cKFeP/993WWe+XKFbRv3x6tWrXC/v378fXXX+PNN9/UuaX3rNdeew2TJk1CREQE6tevj1OnTuGbb77Ra++QH7n9DLLGSIuKisJrr72GNm3a4NixY9i6datRV/G6d++OuXPnYvz48QgKCtL5Szdrmzdu3IjXX38dbdu2xZUrV7Bo0SJUq1bN4I9Jbjg5OaFx48aYNm0anjx5gjJlymDHjh24cuVKnpYHABUrVsQnn3yCTz/9FI0aNUKnTp1gY2ODQ4cOwcfHB1FRUXBycsLChQvRq1cvvPzyy3jjjTfg7u6O2NhYbN68GQ0aNDD4x0tuvPbaa1i9ejWcnZ1RrVo17N+/H7t27dJri1i7dm1YWlpi6tSpSE5Oho2NDZo3b26wjeGAAQOwePFi9O3bF0eOHIG/vz/Wr1+PP//8E7NmzdJrP/M0d3d3jBkzBhMnTkSrVq3Qvn17nD9/HgsWLEDdunV1Gv/nV3BwMHbt2oUZM2bAx8cH5cuXN9jWKTumON9l55133sGUKVPwzjvvoE6dOvjtt9+UqyymUKpUKTRs2BARERGIj4/HrFmzULFiRfTv3x9A5h9I//d//4fWrVujevXqiIiIQJkyZXDz5k3s2bMHTk5O+Pnnn/O07tGjR+O7775D69atMXToUJQqVQorV67ElStXsGHDBr22jLnRrFkz9OrVC3PmzMHFixeVZgi///47mjVrhsGDB6NWrVro06cPlixZgqSkJDRp0gQHDx7EypUr0bFjRzRr1ixP25MdW1tbbNu2DX369EFISAi2bt2KzZs34+OPP1aagbRr1w7NmjXDJ598gqtXr6JWrVrYsWMHfvzxRwwfPlyn8X9uTZkyBXv27EFISAj69++PatWqITExEUePHsWuXbuQmJho9DKDg4OxZs0aREZGom7dunB0dES7du3QsmVLeHl5oUGDBvD09MTZs2cxb948tG3bVjkPHDx4EM2aNcP48eNz/3ubn66ev/76qwQHB4u1tbVUqFBBFi1apHQpftaGDRukYcOG4uDgIA4ODlKlShUZNGiQnD9/XqnTpEkTqV69uhw+fFhCQ0PF1tZW/Pz8ZN68eXrLS0tLk6lTp0r16tXFxsZGXF1dJTg4WCZOnCjJyclKPWTTDfnZoRhMuT3P6tOnj16X3AcPHsgnn3wi5cuXFysrK/Hy8pIuXbpITEyMTr0lS5ZIcHCw2NnZScmSJSUoKEg++ugj+eeff/TW86xdu3ZJgwYNxM7OTpycnKRdu3Zy5swZnTrGDKUhktn9e8yYMVKxYkWxtrYWNzc3qV+/vnzxxReSlpYm169fF2dnZ2nXrp3evK+//ro4ODjI5cuXReS/7uhnzpyRLl26SMmSJcXV1VUGDx4sDx8+1JnX0FAaH3zwgXh7e4udnZ00aNBA9u/frzcEQnZDaTg4OOjFl91nn5vPICMjQyZOnKjE07RpUzl9+rTB4y47Wq1WfH19DXYzz5o+efJk8fPzExsbG3nppZfkl19+0Tu+srZ5+vTpesswtD9u3Lghr7/+uri4uIizs7N07dpV/vnnn2yHNMjqEp8la1iLZ8cmW758ubz00kvK97VJkyayc+dOnTp79uyR8PBwcXZ2FltbWwkICJC+ffvK4cOHc9xXWevMGgPuaf/++69ERESIm5ubODo6Snh4uJw7d87gZ7F06VKpUKGCMoRO1tAAzx5HIiLx8fHKcq2trSUoKMjgUBDZmTdvnlSpUkWsrKzE09NTBg4cqDdumDHnEEPOnTsnjRs3Fjs7O51hXIz97HJzvjPEmPU8ePBA+vXrJ87OzlKyZEnp1q2bJCQk5Pq4y+57/Ow+zDrHfffddzJmzBjx8PAQOzs7adu2rc7wEFmOHTsmnTp1ktKlS4uNjY34+flJt27dJDo6+rkx5SQmJka6dOkiLi4uYmtrK/Xq1ZNffvlFr152v2GGpKeny/Tp06VKlSpibW0t7u7u0rp1azly5IhS58mTJzJx4kTlt8bX11fGjBkjjx490lmWn5+ftG3bNlfxGDrHZH0eMTExyriknp6eMn78eL0hde7duycjRowQHx8fsbKykkqVKsn06dN1hjDJaV8Y+i7Hx8fLoEGDxNfXV/lNbdGihSxZskSpk93vnaHz4v379+XNN98UFxcXAaB8/xYvXiyNGzdWjo+AgAD58MMPdfKQrPU8fRw/j+b/b7BZaNq0Ke7cuWPwUiQVfRMmTMDEiRNx+/Zt1dqJERHRi9e3b1+sX78+z1fxizs+W5OIiIjIjDA5IyIiIjIjTM6IiIiIzIhZtTkjIiIiKu545YyIiIjIjDA5IyIiIjIjJn+2prnRarX4559/ULJkSVUe/URERESmJyK4d+8efHx88jRQb2FS7JKzf/75R+/B6ERERFQ4XL9+XXnaTFFV7JKzrMcpXL9+HU5OTgUcDREREeVGSkoKfH19c3w8WlFR7JKzrFuZTk5OTM6IiIgKmeLQJKlo37QlIiIiKmSYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmREmZ0RERERmhMkZERERkRlhckZERERkRordEwJMJiMD+P134NYtwNsbaNQIsLQs6KiIiIiokGFypoaNG4Fhw4AbN/4rK1sWmD0b6NSp4OIiIiKiQoe3NfNr40agSxfdxAwAbt7MLN+4sWDiIiIiokKJyVl+ZGRkXjET0Z+WVTZ8eGY9IiIiolxgcpYfv/+uf8XsaSLA9euZ9YiIiIhygclZfty6pW49IiIiKvaYnOWHt7e69YiIiKjYY3KWH40aZfbK1GgMT9doAF/fzHpEREREucDkLD8sLTOHyzAkK2GbNYvjnREREVGuMTnLr06dgPXrAQ8P3fKyZTPLOc4ZERERGYGD0KqhUyfAywto0ABwdwfWruUTAoiIiChPmJypJSsRc3QEmjYt0FCIiIio8OJtTSIiIiIzwuRMbYaeFkBERESUS0zO1JLdcBpERERERmByRkRERGRGmJwRERERmREmZ0RERERmhMmZ2tghgIiIiPKByZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMztTGNmdERESUD0zO1MI2Z0RERKQCJmdEREREZoTJGREREZEZYXJGREREZEaYnKmNHQKIiIgoH5icqYUdAoiIiEgFTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOVMbOwQQERFRPjA5Uws7BBAREZEKmJwRERERmREmZ0RERERmhMkZERERkRlhcqY2dgggIiKifGByphZ2CCAiIiIVMDkjIiIiMiNMzoiIiIjMCJMztbHNGREREeUDkzO1sM0ZERERqYDJGREREZEZYXJGREREZEaYnBERERGZESZnamOHACIiIsoHJmdqYYcAIiIiUgGTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zO1MYOAURERJQPBZ6czZ8/H/7+/rC1tUVISAgOHjyYY/1Zs2YhMDAQdnZ28PX1xYgRI/Do0aMXFG0O2CGAiIiIVFCgydmaNWsQGRmJ8ePH4+jRo6hVqxbCw8ORkJBgsP63336L0aNHY/z48Th79iyWLVuGNWvW4OOPP37BkRMRERGZRoEmZzNmzED//v0RERGBatWqYdGiRbC3t8fy5csN1t+3bx8aNGiAN998E/7+/mjZsiV69Ojx3KttRERERIVFgSVnaWlpOHLkCMLCwv4LxsICYWFh2L9/v8F56tevjyNHjijJ2OXLl7Flyxa0adMm2/U8fvwYKSkpOi8iIiIic1WioFZ8584dZGRkwNPTU6fc09MT586dMzjPm2++iTt37qBhw4YQEaSnp+O9997L8bZmVFQUJk6cqGrsOWKHACIiIsqHAu8QYIy9e/di8uTJWLBgAY4ePYqNGzdi8+bN+PTTT7OdZ8yYMUhOTlZe169fN01w7BBAREREKiiwK2dubm6wtLREfHy8Tnl8fDy8vLwMzjN27Fj06tUL77zzDgAgKCgIqampGDBgAD755BNYWOjnmjY2NrCxsVF/A4iIiIhMoMCunFlbWyM4OBjR0dFKmVarRXR0NEJDQw3O8+DBA70EzNLSEgAgvJ1IRERERUCBXTkDgMjISPTp0wd16tRBvXr1MGvWLKSmpiIiIgIA0Lt3b5QpUwZRUVEAgHbt2mHGjBl46aWXEBISgkuXLmHs2LFo166dkqQVOCaJRERElA8Fmpx1794dt2/fxrhx4xAXF4fatWtj27ZtSieB2NhYnStl//vf/6DRaPC///0PN2/ehLu7O9q1a4fPP/+8oDbhP2xzRkRERCrQSDG7H5iSkgJnZ2ckJyfDyclJvQWfPg0EBQEeHsAz7eiIiIgof0z2+22GClVvTSIiIqKijskZERERkRlhcqa24nWXmIiIiFTG5Ewt7BBAREREKmByRkRERGRGmJwRERERmREmZ0RERERmhMmZ2tghgIiIiPKByZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMzoiIiIjMCJMztbFDABEREeUDkzO1sEMAERERqYDJGREREZEZYXJGREREZEaYnKmNbc6IiIgoH5icqYVtzoiIiEgFTM6IiIiIzAiTMyIiIiIzwuSMiIiIyIwwOVMbOwQQERFRPjA5Uws7BBAREZEKmJwRERERmREmZ0RERERmhMkZERERkRlhcqY2dgggIiKifMhXciYiECYjmdghgIiIiFSQp+Rs1apVCAoKgp2dHezs7FCzZk2sXr1a7diIiIiIip0Sxs4wY8YMjB07FoMHD0aDBg0AAH/88Qfee+893LlzByNGjFA9SCIiIqLiwujkbO7cuVi4cCF69+6tlLVv3x7Vq1fHhAkTmJwRERER5YPRtzVv3bqF+vXr65XXr18ft27dUiWoQo1t8IiIiCgfjE7OKlasiLVr1+qVr1mzBpUqVVIlqEKJHQKIiIhIBUbf1pw4cSK6d++O3377TWlz9ueffyI6Otpg0kZEREREuWf0lbPOnTvjwIEDcHNzw6ZNm7Bp0ya4ubnh4MGDeP31100RIxEREVGxYfSVMwAIDg7G119/rXYsRQPbnBEREVE+5Co5S0lJgZOTk/L/nGTVK3bY5oyIiIhUkKvkzNXVFbdu3YKHhwdcXFygMZCIiAg0Gg0yMjJUD5KIiIiouMhVcrZ7926UKlUKALBnzx6TBkRERERUnOUqOWvSpIny//Lly8PX11fv6pmI4Pr16+pGR0RERFTMGN1bs3z58rh9+7ZeeWJiIsqXL69KUIUaOwQQERFRPhidnGW1LXvW/fv3YWtrq0pQhRI7BBAREZEKcj2URmRkJABAo9Fg7NixsLe3V6ZlZGTgwIEDqF27tuoBEhERERUnuU7Ojh07BiDzytmpU6dgbW2tTLO2tkatWrUwcuRI9SMkIiIiKkZynZxl9dKMiIjA7Nmzi+94ZkREREQmZPQTAlasWGGKOIoOdgggIiKifMjT45sOHz6MtWvXIjY2FmlpaTrTNm7cqEpghQ47BBAREZEKjO6t+f3336N+/fo4e/YsfvjhBzx58gR///03du/eDWdnZ1PESERERFRsGJ2cTZ48GTNnzsTPP/8Ma2trzJ49G+fOnUO3bt1Qrlw5U8RIREREVGwYnZzFxMSgbdu2ADJ7aaampkKj0WDEiBFYsmSJ6gESERERFSdGJ2eurq64d+8eAKBMmTI4ffo0ACApKQkPHjxQN7rCiB0CiIiIKB+M7hDQuHFj7Ny5E0FBQejatSuGDRuG3bt3Y+fOnWjRooUpYiwc2CGAiIiIVGB0cjZv3jw8evQIAPDJJ5/AysoK+/btQ+fOnfG///1P9QCJiIiIihOjkrP09HT88ssvCA8PBwBYWFhg9OjRJgmMiIiIqDgyqs1ZiRIl8N577ylXzsgAtjkjIiKifDC6Q0C9evVw/PhxE4RSyLHNGREREanA6DZn77//PiIjI3H9+nUEBwfDwcFBZ3rNmjVVC46IiIiouNGIGHcfzsJC/2KbRqOBiECj0SAjI0O14EwhJSUFzs7OSE5OVvfh7VevAuXLA/b2QGqqesslIiIi0/1+myGjr5xduXLFFHEQEREREfKQnPn5+ZkijqKDHQKIiIgoH4zuEKC2+fPnw9/fH7a2tggJCcHBgwdzrJ+UlIRBgwbB29sbNjY2qFy5MrZs2fKCos0BOwQQERGRCoy+cqamNWvWIDIyEosWLUJISAhmzZqF8PBwnD9/Hh4eHnr109LS8Oqrr8LDwwPr169HmTJlcO3aNbi4uLz44ImIiIhMwOgOAWoKCQlB3bp1MW/ePACAVquFr68vhgwZYnBw20WLFmH69Ok4d+4crKys8rROkzUovHYN8PcH7OwAPmOUiIhIVcWpQ0CB3dZMS0vDkSNHEBYW9l8wFhYICwvD/v37Dc7z008/ITQ0FIMGDYKnpydq1KiByZMn59hD9PHjx0hJSdF5EREREZmrPCVnSUlJ+L//+z+MGTMGiYmJAICjR4/i5s2buV7GnTt3kJGRAU9PT51yT09PxMXFGZzn8uXLWL9+PTIyMrBlyxaMHTsWX375JT777LNs1xMVFQVnZ2fl5evrm+sY84QdAoiIiCgfjG5zdvLkSYSFhcHZ2RlXr15F//79UapUKWzcuBGxsbFYtWqVKeIEkHnb08PDA0uWLIGlpSWCg4Nx8+ZNTJ8+HePHjzc4z5gxYxAZGam8T0lJMU2Cxg4BREREpAKjr5xFRkaib9++uHjxImxtbZXyNm3a4Lfffsv1ctzc3GBpaYn4+Hid8vj4eHh5eRmcx9vbG5UrV4alpaVSVrVqVcTFxSEtLc3gPDY2NnByctJ5EREREZkro5OzQ4cO4d1339UrL1OmTLa3Iw2xtrZGcHAwoqOjlTKtVovo6GiEhoYanKdBgwa4dOkStFqtUnbhwgV4e3vD2traiK0gIiIiMk9GJ2c2NjYGG9VfuHAB7u7uRi0rMjISS5cuxcqVK3H27FkMHDgQqampiIiIAAD07t0bY8aMUeoPHDgQiYmJGDZsGC5cuIDNmzdj8uTJGDRokLGbQURERGSWjG5z1r59e0yaNAlr164FkPlczdjYWIwaNQqdO3c2alndu3fH7du3MW7cOMTFxaF27drYtm2b0kkgNjZW51mevr6+2L59O0aMGIGaNWuiTJkyGDZsGEaNGmXsZpgOOwQQERFRPhg9zllycjK6dOmCw4cP4969e/Dx8UFcXBxCQ0OxZcsWODg4mCpWVZhsnJTr14Fy5QAbG+DRI/WWS0RERMVqnDOjr5w5Oztj586d+PPPP3HixAncv38fL7/8ss54ZURERESUN3l+fFODBg3QoEEDNWMhIiIiKvaM7hAwdOhQzJkzR6983rx5GD58uBoxFW5sc0ZERET5YHRytmHDBoNXzOrXr4/169erEhQRERFRcWV0cnb37l04OzvrlTs5OeHOnTuqBFUo8QkBREREpAKjk7OKFSti27ZteuVbt25FhQoVVAmKiIiIqLgyukNAZGQkBg8ejNu3b6N58+YAgOjoaHz55ZeYNWuW2vERERERFStGJ2dvv/02Hj9+jM8//xyffvopAMDf3x8LFy5E7969VQ+w0GGHACIiIsoHowehfdrt27dhZ2cHR0dHNWMyKZMNYnfzJlC2LGBlBWTzEHYiIiLKGw5Cm0vGPkuTiIiIiHJmdIeA+Ph49OrVCz4+PihRogQsLS11XkRERESUd0ZfOevbty9iY2MxduxYeHt7Q8MhJIiIiIhUY3Ry9scff+D3339H7dq1TRBOEcAOAURERJQPRt/W9PX1RT76EBRdvIJIREREKjA6OZs1axZGjx6Nq1evmiAcIiIiouLN6Nua3bt3x4MHDxAQEAB7e3tYWVnpTE9MTFQtOCIiIqLixujkjE8BICIiIjIdo5OzPn36mCKOooPt8YiIiCgf8jUI7aNHj5D2zGj4RX3U3myxQwARERGpwOgOAampqRg8eDA8PDzg4OAAV1dXnRcRERER5Z3RydlHH32E3bt3Y+HChbCxscH//d//YeLEifDx8cGqVatMESMRERFRsWH0bc2ff/4Zq1atQtOmTREREYFGjRqhYsWK8PPzwzfffIOePXuaIk4iIiKiYsHoK2eJiYmoUKECgMz2ZVlDZzRs2BC//fabutEVRuwQQERERPlgdHJWoUIFXLlyBQBQpUoVrF27FkDmFTUXFxdVgytU2CGAiIiIVGB0chYREYETJ04AAEaPHo358+fD1tYWI0aMwIcffqh6gERERETFiUby+aDMa9eu4ciRI6hYsSJq1qypVlwmk5KSAmdnZyQnJ6s77EdcHODtDVhYABkZ6i2XiIiITPf7bYbyNc4ZAPj5+cHPz0+NWIoGtjkjIiKifMhVcjZnzhwMGDAAtra2mDNnTo51hw4dqkpghQ7bnBEREZEKcnVbs3z58jh8+DBKly6N8uXLZ78wjQaXL19WNUC1meyyaHw84OWVmaRpteotl4iIiHhb81lZvTOf/T8RERERqcuo3ppPnjxBQEAAzp49a6p4iIiIiIo1o5IzKysrPHr0yFSxFA3sEEBERET5YPQ4Z4MGDcLUqVORnp5uingKL3YIICIiIhUYPZTGoUOHEB0djR07diAoKAgODg460zdu3KhacERERETFjdHJmYuLCzp37myKWIiIiIiKPaOTsxUrVpgiDiIiIiJCHtqcEREREZHp5OnxTevXr8fatWsRGxuLtLQ0nWlHjx5VJbBChx0CiIiISAVGXzmbM2cOIiIi4OnpiWPHjqFevXooXbo0Ll++jNatW5siRiIiIqJiw+jkbMGCBViyZAnmzp0La2trfPTRR9i5cyeGDh2K5ORkU8RIREREVGwYnZzFxsaifv36AAA7Ozvcu3cPANCrVy9899136kZHREREVMwYnZx5eXkhMTERAFCuXDn89ddfADKfuZmLZ6gXD9wPRERElEdGJ2fNmzfHTz/9BACIiIjAiBEj8Oqrr6J79+54/fXXVQ+w0GCHACIiIlKBRoy83KXVaqHValGiRGZHz++//x779u1DpUqV8O6778La2tokgaolJSUFzs7OSE5OhpOTk3oLvnMHcHfP/L9Wy2SNiIhIRSb7/TZDRidnhR2TMyIiosKnOCVnRt/WrFixIiZMmIALFy6YIp6ioXjlu0RERKQio5OzQYMGYfPmzahatSrq1q2L2bNnIy4uzhSxFS68UkZEREQqMDo5GzFiBA4dOoSzZ8+iTZs2mD9/Pnx9fdGyZUusWrXKFDESERERFRuqtDn766+/MHDgQJw8eRIZGRlqxGUyJrtnffcu4OaW+f+MDMCCjy0lIiJSS3Fqc5anZ2tmOXjwIL799lusWbMGKSkp6Nq1q1pxERERERVLRidnFy5cwDfffIPvvvsOV65cQfPmzTF16lR06tQJjo6Opoix8GGHACIiIsojo5OzKlWqoG7duhg0aBDeeOMNeHp6miKuwocdAoiIiEgFRidn58+fR6VKlUwRCxEREVGxZ3SrdSZmRERERKbDLoVEREREZoTJmSmwQwARERHlEZMztbBDABEREamAyRkRERGRGclVb83IyMhcL3DGjBl5DoaIiIiouMtVcnbs2DGd90ePHkV6ejoCAwMBZA5Ma2lpieDgYPUjJCIiIipGcnVbc8+ePcqrXbt2aNKkCW7cuIGjR4/i6NGjuH79Opo1a4a2bdvmKYj58+fD398ftra2CAkJwcGDB3M13/fffw+NRoOOHTvmab0mww4BRERElEdGtzn78ssvERUVBVdXV6XM1dUVn332Gb788kujA1izZg0iIyMxfvx4HD16FLVq1UJ4eDgSEhJynO/q1asYOXIkGjVqZPQ6TYIdAoiIiEgFRidnKSkpuH37tl757du3ce/ePaMDmDFjBvr374+IiAhUq1YNixYtgr29PZYvX57tPBkZGejZsycmTpyIChUqGL1OIiIiInNldHL2+uuvIyIiAhs3bsSNGzdw48YNbNiwAf369UOnTp2MWlZaWhqOHDmCsLCw/wKysEBYWBj279+f7XyTJk2Ch4cH+vXrZ2z4RERERGbN6GdrLlq0CCNHjsSbb76JJ0+eZC6kRAn069cP06dPN2pZd+7cQUZGht7D0z09PXHu3DmD8/zxxx9YtmwZjh8/nqt1PH78GI8fP1bep6SkGBVjnrDNGREREeWR0cmZvb09FixYgOnTpyMmJgYAEBAQAAcHB9WDe9a9e/fQq1cvLF26FG5ubrmaJyoqChMnTjRxZGCbMyIiIlKF0clZllu3buHWrVto3Lgx7OzsICLQGJmguLm5wdLSEvHx8Trl8fHx8PLy0qsfExODq1evol27dkqZVqsFkHn17vz58wgICNCZZ8yYMTrjtKWkpMDX19eoOImIiIheFKPbnN29exctWrRA5cqV0aZNG9y6dQsA0K9fP3zwwQdGLcva2hrBwcGIjo5WyrRaLaKjoxEaGqpXv0qVKjh16hSOHz+uvNq3b49mzZrh+PHjBpMuGxsbODk56byIiIiIzJXRydmIESNgZWWF2NhY2NvbK+Xdu3fHtm3bjA4gMjISS5cuxcqVK3H27FkMHDgQqampiIiIAAD07t0bY8aMAQDY2tqiRo0aOi8XFxeULFkSNWrUgLW1tdHrJyIiIjInRt/W3LFjB7Zv346yZcvqlFeqVAnXrl0zOoDu3bvj9u3bGDduHOLi4lC7dm1s27ZN6SQQGxsLC4tC9ghQdgggIiKiPDI6OUtNTdW5YpYlMTERNjY2eQpi8ODBGDx4sMFpe/fuzXHer776Kk/rVB07BBAREZEKjL4k1ahRI6xatUp5r9FooNVqMW3aNDRr1kzV4IiIiIiKG6OvnE2bNg0tWrTA4cOHkZaWho8++gh///03EhMT8eeff5oiRiIiIqJiw+grZzVq1MCFCxfQsGFDdOjQAampqejUqROOHTumN4wFERERERknT+OcOTs745NPPlE7lqKDHQKIiIgoj/KUnCUlJeHgwYNISEhQBoHN0rt3b1UCK3TYIYCIiIhUYHRy9vPPP6Nnz564f/8+nJycdJ4KoNFoim9yRkRERKQCo9ucffDBB3j77bdx//59JCUl4d9//1VeiYmJpoiRiIiIqNgwOjm7efMmhg4danCsMyIiIiLKH6OTs/DwcBw+fNgUsRQd7BBAREREeWR0m7O2bdviww8/xJkzZxAUFAQrKyud6e3bt1ctuEKFHQKIiIhIBRoR4y7z5PScS41Gg4yMjHwHZUopKSlwdnZGcnIynJyc1Fvw/ftAyZKZ/3/wALCzU2/ZRERExZzJfr/NkNFXzp4dOoOIiIiI1GN0mzPKBbY5IyIiojzK1ZWzOXPmYMCAAbC1tcWcOXNyrDt06FBVAit02OaMiIiIVJCrNmfly5fH4cOHUbp0aZQvXz77hWk0uHz5sqoBqs1k96xTUwFHx//+z6FGiIiIVMM2Z8+4cuWKwf8TERERkbrY5oyIiIjIjOTpwec3btzATz/9hNjYWKSlpelMmzFjhiqBFWrsEEBERER5ZHRyFh0djfbt26NChQo4d+4catSogatXr0JE8PLLL5sixsKBHQKIiIhIBUbf1hwzZgxGjhyJU6dOwdbWFhs2bMD169fRpEkTdO3a1RQxEhERERUbRidnZ8+eRe/evQEAJUqUwMOHD+Ho6IhJkyZh6tSpqgdIREREVJwYnZw5ODgo7cy8vb0RExOjTLtz5456kREREREVQ0a3OXvllVfwxx9/oGrVqmjTpg0++OADnDp1Chs3bsQrr7xiihgLH3YIICIiojwyOjmbMWMG7t+/DwCYOHEi7t+/jzVr1qBSpUrFu6cmOwQQERGRCnL1hICixGQjDD98+N9TAe7d++9pAURERJRvxekJARyEloiIiMiM5Oq2pqurKzS5vG2XmJiYr4CIiIiIirNcJWezZs0ycRhFTPG6U0xEREQqylVy1qdPH1PHUfixQwARERGpIE/P1szIyMAPP/yAs2fPAgCqVauGDh06oESJPC2OiIiIiP4/o7Opv//+G+3bt0dcXBwCAwMBAFOnToW7uzt+/vln1KhRQ/UgiYiIiIoLo3trvvPOO6hevTpu3LiBo0eP4ujRo7h+/Tpq1qyJAQMGmCLGwodtzoiIiCiPjL5ydvz4cRw+fBiurq5KmaurKz7//HPUrVtX1eAKFbY5IyIiIhUYfeWscuXKiI+P1ytPSEhAxYoVVQmKiIiIqLgyOjmLiorC0KFDsX79ety4cQM3btzA+vXrMXz4cEydOhUpKSnKi4iIiIiMY/Tjmyws/svnsgamzVrE0+81Gg0yMjLUilM1Jnv8w+PHgK1t5v+Tk4Ei/mgJIiKiF6k4Pb7J6DZne/bsMUUcRQs7BBAREVEeGZ2cNWnSxBRxFH7sEEBEREQqMLrN2YQJE6DVavXKk5OT0aNHD1WCIiIiIiqujE7Oli1bhoYNG+Ly5ctK2d69exEUFISYmBhVgyMiIiIqboxOzk6ePImyZcuidu3aWLp0KT788EO0bNkSvXr1wr59+0wRIxEREVGxYXSbM1dXV6xduxYff/wx3n33XZQoUQJbt25FixYtTBFf4cQOAURERJRHRl85A4C5c+di9uzZ6NGjBypUqIChQ4fixIkTasdWuLBDABEREanA6OSsVatWmDhxIlauXIlvvvkGx44dQ+PGjfHKK69g2rRppoiRiIiIqNgwOjnLyMjAyZMn0aVLFwCAnZ0dFi5ciPXr12PmzJmqB0hERERUnBj9hICc3LlzB25ubmotziRMNsLwkyeAtXXm///9F3BxUW/ZRERExVxxekJAntqc/f7773jrrbcQGhqKmzdvAgBWr16Nc+fOqRpcocUOAURERJRHRidnGzZsQHh4OOzs7HDs2DE8fvwYQOYgtJMnT1Y9wEKDHQKIiIhIBUYnZ5999hkWLVqEpUuXwsrKSilv0KABjh49qmpwRERERMWN0cnZ+fPn0bhxY71yZ2dnJCUlqRETERERUbFldHLm5eWFS5cu6ZX/8ccfqFChgipBFXpsc0ZERER5ZHRy1r9/fwwbNgwHDhyARqPBP//8g2+++QYjR47EwIEDTRFj4cA2Z0RERKQCox/fNHr0aGi1WrRo0QIPHjxA48aNYWNjg5EjR2LIkCGmiJGIiIio2MjzOGdpaWm4dOkS7t+/j2rVqsHR0VHt2EzCZOOkZGQAJf5/rnv3LlCqlHrLJiIiKuaK0zhnRl85y2JtbY1q1aqpGQsRERFRsZenQWjpOdghgIiIiPKIyZla2CGAiIiIVMDkjIiIiMiMMDkjIiIiMiNMzoiIiIjMiFkkZ/Pnz4e/vz9sbW0REhKCgwcPZlt36dKlaNSoEVxdXeHq6oqwsLAc6xcIdgggIiKiPCrw5GzNmjWIjIzE+PHjcfToUdSqVQvh4eFISEgwWH/v3r3o0aMH9uzZg/3798PX1xctW7bEzZs3X3Dkz2CHACIiIlJBngehVUtISAjq1q2LefPmAQC0Wi18fX0xZMgQjB49+rnzZ2RkwNXVFfPmzUPv3r2fW99kg9iJABb/P9e9fRtwc1Nv2URERMVccRqEtkCvnKWlpeHIkSMICwtTyiwsLBAWFob9+/fnahkPHjzAkydPUIoj8hMREVERkOcnBKjhzp07yMjIgKenp065p6cnzp07l6tljBo1Cj4+PjoJ3tMeP36Mx48fK+9TUlLyHjARERGRiRV4m7P8mDJlCr7//nv88MMPsLW1NVgnKioKzs7OysvX19f0gbFDABEREeVRgSZnbm5usLS0RHx8vE55fHw8vLy8cpz3iy++wJQpU7Bjxw7UrFkz23pjxoxBcnKy8rp+/boqsethhwAiIiJSQYEmZ9bW1ggODkZ0dLRSptVqER0djdDQ0GznmzZtGj799FNs27YNderUyXEdNjY2cHJy0nkRERERmasCbXMGAJGRkejTpw/q1KmDevXqYdasWUhNTUVERAQAoHfv3ihTpgyioqIAAFOnTsW4cePw7bffwt/fH3FxcQAAR0dHODo6Fth2EBEREamhwJOz7t274/bt2xg3bhzi4uJQu3ZtbNu2TekkEBsbCwuL/y7wLVy4EGlpaejSpYvOcsaPH48JEya8yNCzxzZnRERElEcFPs7Zi2bScVKy2p3FxwMeHuoum4iIqBjjOGdEREREVCCYnBERERGZESZnRERERGaEyZkpFK9mfERERKQiJmdq4kC0RERElE9MzoiIiIjMCJMzIiIiIjPC5IyIiIjIjDA5MwV2CCAiIqI8YnKmJnYIICIionxickZERERkRpicEREREZkRJmdEREREZoTJmSmwQwARERHlEZMzNbFDABEREeUTkzMiIiIiM8LkjIiIiMiMMDkzBbY5IyIiojxicqYmtjkjIiKifGJyRkRERGRGmJwRERERmREmZ0RERERmhMmZKbBDABEREeURkzM1sUMAERER5ROTMyIiIiIzwuSMiIiIyIwwOSMiIiIyI0zOTIEdAoiIiCiPmJypiR0CiIiIKJ+YnBERERGZESZnRERERGaEyRkRERGRGWFyZgrsEEBERER5xORMTewQQERERPnE5IyIiIjIjDA5IyIiIjIjTM5MgW3OiIiIKI+YnKmJbc6IiIgon5icEREREZkRJmdEREREZoTJGREREZEZYXKmloyMzBcA7Nv33/+JiIiIjMDkTA0bNwL+/sCTJ5nve/TIfL9xY0FGRURERIUQk7P82rgR6NIFuHFDt/zmzcxyJmhERERkBCZn+ZGRAQwbZnhcs6yy4cN5i5OIiIhyjclZfvz+u/4Vs6eJANevZ9YjIiIiygUmZ/lx65a69YiIiKjYY3KWH97e6tYjIiKiYo/JWX40agSULZv9Y5s0GsDXN7MeERERUS4wOcsPS0tg9uzM/z+boGW9nzUrsx4RERFRLjA5y69OnYD164EyZXTLy5bNLO/UqWDiIiIiokKJyZkaOnUCrl4F3N0z3y9aBFy5wsSMiIiIjMbkTC2WloCDQ+b/a9fmrUwiIiLKEyZnaipRIvPf9PSCjYOIiIgKLSZnamJyRkRERPnE5ExNWckZH9dEREREecTkTE28ckZERET5xORMTVmdAJicERERUR4xOVMTr5wRERFRPjE5U0tGBpCamvn/48fZ7oyIiIjyRCMiUtBBvEgpKSlwdnZGcnIynJyc1Fnoxo3AsGHAjRv60zQaILtdnN00zlPw8xT0+jmPec9T0OvnPC9unoJef2GbR6MBbG2BwEBg8mSgZUvVxv00ye+3mTKLK2fz58+Hv78/bG1tERISgoMHD+ZYf926dahSpQpsbW0RFBSELVu2vKBIDdi4EejSxXBiBmR/QOc0jfMU/DwFvX7OY97zFPT6Oc+Lm6eg11/Y5hEBHj7MvIPUpg1gZ5f5O0lGKfDkbM2aNYiMjMT48eNx9OhR1KpVC+Hh4UhISDBYf9++fejRowf69euHY8eOoWPHjujYsSNOnz79giNH5q3LYcNyPnCJiIiKqydPgM6dmaAZqcBva4aEhKBu3bqYN28eAECr1cLX1xdDhgzB6NGj9ep3794dqamp+OWXX5SyV155BbVr18aiRYueuz5VL4vu3Qs0a5a/ZRARERV1ZcoA167l6xYnb2u+IGlpaThy5AjCwsKUMgsLC4SFhWH//v0G59m/f79OfQAIDw/Ptv7jx4+RkpKi81LNrVvqLYuIiKiounkT+P33go6i0CjQ5OzOnTvIyMiAp6enTrmnpyfi4uIMzhMXF2dU/aioKDg7OysvX19fdYIHAG9v9ZZFRERUlPGCRq4VeJszUxszZgySk5OV1/Xr19VbeKNGgI2NessjIiIqqnhBI9cKNDlzc3ODpaUl4uPjdcrj4+Ph5eVlcB4vLy+j6tvY2MDJyUnnpRpLS2DZMvWWR0REVBSVKZN5QYNypUCTM2trawQHByM6Olop02q1iI6ORmhoqMF5QkNDdeoDwM6dO7Otb3I9ewIBAQWzbiIiosJgzhzVxjsrDgr8tmZkZCSWLl2KlStX4uzZsxg4cCBSU1MREREBAOjduzfGjBmj1B82bBi2bduGL7/8EufOncOECRNw+PBhDB48uKA2Abh0CahTp+DWT0REZI6srYENG4BOnQo6kkKlwJOz7t2744svvsC4ceNQu3ZtHD9+HNu2bVMa/cfGxuLWU40I69evj2+//RZLlixBrVq1sH79emzatAk1atQoqE3IdOgQcO8e8NprmaMjZ9Fosp8nu2mcp+DnKej1cx7znqeg1895Xtw8Bb3+wjaPRpM58Gzt2sCWLcCDB0zM8qDAxzl70YrTOClERERFRXH6/S7wK2dERERE9B8mZ0RERERmhMkZERERkRlhckZERERkRpicEREREZkRJmdEREREZoTJGREREZEZYXJGREREZEaYnBERERGZkRIFHcCLlvVAhJSUlAKOhIiIiHIr63e7ODzYqNglZ/fu3QMA+Pr6FnAkREREZKx79+7B2dm5oMMwqWL3bE2tVot//vkHJUuWhCanh7nmQUpKCnx9fXH9+vUi/9yv7HAfcB8A3AcA9wHAfQBwHwDq7QMRwb179+Dj4wMLi6LdKqvYXTmzsLBA2bJlTboOJyenYvslzMJ9wH0AcB8A3AcA9wHAfQCosw+K+hWzLEU79SQiIiIqZJicEREREZkRJmcqsrGxwfjx42FjY1PQoRQY7gPuA4D7AOA+ALgPAO4DgPsgL4pdhwAiIiIic8YrZ0RERERmhMkZERERkRlhckZERERkRpicEREREZkRJmcqmT9/Pvz9/WFra4uQkBAcPHiwoENSRVRUFOrWrYuSJUvCw8MDHTt2xPnz53XqNG3aFBqNRuf13nvv6dSJjY1F27ZtYW9vDw8PD3z44YdIT09/kZuSLxMmTNDbxipVqijTHz16hEGDBqF06dJwdHRE586dER8fr7OMwr4P/P399faBRqPBoEGDABTN4+C3335Du3bt4OPjA41Gg02bNulMFxGMGzcO3t7esLOzQ1hYGC5evKhTJzExET179oSTkxNcXFzQr18/3L9/X6fOyZMn0ahRI9ja2sLX1xfTpk0z9ablWk774MmTJxg1ahSCgoLg4OAAHx8f9O7dG//884/OMgwdO1OmTNGpU1j3AQD07dtXb/tatWqlU6coHwcADJ4bNBoNpk+frtQp7MfBCyWUb99//71YW1vL8uXL5e+//5b+/fuLi4uLxMfHF3Ro+RYeHi4rVqyQ06dPy/Hjx6VNmzZSrlw5uX//vlKnSZMm0r9/f7l165bySk5OVqanp6dLjRo1JCwsTI4dOyZbtmwRNzc3GTNmTEFsUp6MHz9eqlevrrONt2/fVqa/99574uvrK9HR0XL48GF55ZVXpH79+sr0orAPEhISdLZ/586dAkD27NkjIkXzONiyZYt88sknsnHjRgEgP/zwg870KVOmiLOzs2zatElOnDgh7du3l/Lly8vDhw+VOq1atZJatWrJX3/9Jb///rtUrFhRevTooUxPTk4WT09P6dmzp5w+fVq+++47sbOzk8WLF7+ozcxRTvsgKSlJwsLCZM2aNXLu3DnZv3+/1KtXT4KDg3WW4efnJ5MmTdI5Np4+hxTmfSAi0qdPH2nVqpXO9iUmJurUKcrHgYjobPutW7dk+fLlotFoJCYmRqlT2I+DF4nJmQrq1asngwYNUt5nZGSIj4+PREVFFWBUppGQkCAA5Ndff1XKmjRpIsOGDct2ni1btoiFhYXExcUpZQsXLhQnJyd5/PixKcNVzfjx46VWrVoGpyUlJYmVlZWsW7dOKTt79qwAkP3794tI0dgHzxo2bJgEBASIVqsVkaJ/HDz7g6TVasXLy0umT5+ulCUlJYmNjY189913IiJy5swZASCHDh1S6mzdulU0Go3cvHlTREQWLFggrq6uOvtg1KhREhgYaOItMp6hH+VnHTx4UADItWvXlDI/Pz+ZOXNmtvMU9n3Qp08f6dChQ7bzFMfjoEOHDtK8eXOdsqJ0HJgab2vmU1paGo4cOYKwsDClzMLCAmFhYdi/f38BRmYaycnJAIBSpUrplH/zzTdwc3NDjRo1MGbMGDx48ECZtn//fgQFBcHT01MpCw8PR0pKCv7+++8XE7gKLl68CB8fH1SoUAE9e/ZEbGwsAODIkSN48uSJzjFQpUoVlCtXTjkGiso+yJKWloavv/4ab7/9NjQajVJeHI6DLFeuXEFcXJzO5+7s7IyQkBCdz93FxQV16tRR6oSFhcHCwgIHDhxQ6jRu3BjW1tZKnfDwcJw/fx7//vvvC9oa9SQnJ0Oj0cDFxUWnfMqUKShdujReeuklTJ8+Xed2dlHYB3v37oWHhwcCAwMxcOBA3L17V5lW3I6D+Ph4bN68Gf369dObVtSPA7UUuwefq+3OnTvIyMjQ+cEBAE9PT5w7d66AojINrVaL4cOHo0GDBqhRo4ZS/uabb8LPzw8+Pj44efIkRo0ahfPnz2Pjxo0AgLi4OIP7J2taYRASEoKvvvoKgYGBuHXrFiZOnIhGjRrh9OnTiIuLg7W1td6Pkaenp7J9RWEfPG3Tpk1ISkpC3759lbLicBw8LStmQ9v09Ofu4eGhM71EiRIoVaqUTp3y5cvrLSNrmqurq0niN4VHjx5h1KhR6NGjh84DrocOHYqXX34ZpUqVwr59+zBmzBjcunULM2bMAFD490GrVq3QqVMnlC9fHjExMfj444/RunVr7N+/H5aWlsXuOFi5ciVKliyJTp066ZQX9eNATUzOKNcGDRqE06dP448//tApHzBggPL/oKAgeHt7o0WLFoiJiUFAQMCLDtMkWrdurfy/Zs2aCAkJgZ+fH9auXQs7O7sCjKxgLFu2DK1bt4aPj49SVhyOA8rekydP0K1bN4gIFi5cqDMtMjJS+X/NmjVhbW2Nd999F1FRUUXikT5vvPGG8v+goCDUrFkTAQEB2Lt3L1q0aFGAkRWM5cuXo2fPnrC1tdUpL+rHgZp4WzOf3NzcYGlpqdczLz4+Hl5eXgUUlfoGDx6MX375BXv27EHZsmVzrBsSEgIAuHTpEgDAy8vL4P7JmlYYubi4oHLlyrh06RK8vLyQlpaGpKQknTpPHwNFaR9cu3YNu3btwjvvvJNjvaJ+HGTFnNN338vLCwkJCTrT09PTkZiYWKSOjazE7Nq1a9i5c6fOVTNDQkJCkJ6ejqtXrwIoGvvgaRUqVICbm5vOsV8cjgMA+P3333H+/Pnnnh+Aon8c5AeTs3yytrZGcHAwoqOjlTKtVovo6GiEhoYWYGTqEBEMHjwYP/zwA3bv3q13ydmQ48ePAwC8vb0BAKGhoTh16pTOySnrBF6tWjWTxG1q9+/fR0xMDLy9vREcHAwrKyudY+D8+fOIjY1VjoGitA9WrFgBDw8PtG3bNsd6Rf04KF++PLy8vHQ+95SUFBw4cEDnc09KSsKRI0eUOrt374ZWq1WS19DQUPz222948uSJUmfnzp0IDAwsFLdxshKzixcvYteuXShduvRz5zl+/DgsLCyUW32FfR8868aNG7h7967OsV/Uj4Msy5YtQ3BwMGrVqvXcukX9OMiXgu6RUBR8//33YmNjI1999ZWcOXNGBgwYIC4uLjq90gqrgQMHirOzs+zdu1en+/ODBw9EROTSpUsyadIkOXz4sFy5ckV+/PFHqVChgjRu3FhZRtYQCi1btpTjx4/Ltm3bxN3d3ayHUHjWBx98IHv37pUrV67In3/+KWFhYeLm5iYJCQkikjmURrly5WT37t1y+PBhCQ0NldDQUGX+orAPRDJ7IpcrV05GjRqlU15Uj4N79+7JsWPH5NixYwJAZsyYIceOHVN6Ik6ZMkVcXFzkxx9/lJMnT0qHDh0MDqXx0ksvyYEDB+SPP/6QSpUq6QyhkJSUJJ6entKrVy85ffq0fP/992Jvb282wwfktA/S0tKkffv2UrZsWTl+/LjOOSKrx92+fftk5syZcvz4cYmJiZGvv/5a3N3dpXfv3so6CvM+uHfvnowcOVL2798vV65ckV27dsnLL78slSpVkkePHinLKMrHQZbk5GSxt7eXhQsX6s1fFI6DF4nJmUrmzp0r5cqVE2tra6lXr5789ddfBR2SKgAYfK1YsUJERGJjY6Vx48ZSqlQpsbGxkYoVK8qHH36oM76ViMjVq1eldevWYmdnJ25ubvLBBx/IkydPCmCL8qZ79+7i7e0t1tbWUqZMGenevbtcunRJmf7w4UN5//33xdXVVezt7eX111+XW7du6SyjsO8DEZHt27cLADl//rxOeVE9Dvbs2WPw+O/Tp4+IZA6nMXbsWPH09BQbGxtp0aKF3r65e/eu9OjRQxwdHcXJyUkiIiLk3r17OnVOnDghDRs2FBsbGylTpoxMmTLlRW3ic+W0D65cuZLtOSJr/LsjR45ISEiIODs7i62trVStWlUmT56sk7iIFN598ODBA2nZsqW4u7uLlZWV+Pn5Sf/+/fX+OC/Kx0GWxYsXi52dnSQlJenNXxSOgxdJIyJi0ktzRERERJRrbHNGREREZEaYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmREmZ0RERERmhMkZERERkRlhckZE9AL07dsXHTt2LOgwiKgQYHJGREREZEaYnBGRjqZNm2Lo0KH46KOPUKpUKXh5eWHChAnPnW/58uWoXr06bGxs4O3tjcGDByvTYmNj0aFDBzg6OsLJyQndunVDfHy8Mn3ChAmoXbs2li9fjnLlysHR0RHvv/8+MjIyMG3aNHh5ecHDwwOff/65zjo1Gg0WLlyI1q1bw87ODhUqVMD69et16pw6dQrNmzeHnZ0dSpcujQEDBuD+/fvK9KwrWl988QW8vb1RunRpDBo0CE+ePFHqPH78GCNHjkSZMmXg4OCAkJAQ7N27V5n+1VdfwcXFBdu3b0fVqlXh6OiIVq1a4datW8r2rVy5Ej/++CM0Gg00Gg327t2LtLQ0DB48GN7e3rC1tYWfnx+ioqJy9TkRUdHF5IyI9KxcuRIODg44cOAApk2bhkmTJmHnzp3Z1l+4cCEGDRqEAQMG4NSpU/jpp59QsWJFAIBWq0WHDh2QmJiIX3/9FTt37sTly5fRvXt3nWXExMRg69at2LZtG7777jssW7YMbdu2xY0bN/Drr79i6tSp+N///ocDBw7ozDd27Fh07twZJ06cQM+ePfHGG2/g7NmzAIDU1FSEh4fD1dUVhw4dwrp167Br1y6dxBEA9uzZg5iYGOzZswcrV67EV199ha+++kqZPnjwYOzfvx/ff/89Tp48ia5du6JVq1a4ePGiUufBgwf44osvsHr1avz222+IjY3FyJEjAQAjR45Et27dlITt1q1bqF+/PubMmYOffvoJa9euxfnz5/HNN9/A39/f6M+LiIqYgn7yOhGZlyZNmkjDhg11yurWrSujRo3Kdh4fHx/55JNPDE7bsWOHWFpaSmxsrFL2999/CwA5ePCgiIiMHz9e7O3tJSUlRakTHh4u/v7+kpGRoZQFBgZKVFSU8h6AvPfeezrrCwkJkYEDB4qIyJIlS8TV1VXu37+vTN+8ebNYWFhIXFyciIj06dNH/Pz8JD09XanTtWtX6d69u4iIXLt2TSwtLeXmzZs662nRooWMGTNGRERWrFghAOTSpUvK9Pnz54unp6fyvk+fPtKhQwedZQwZMkSaN28uWq3W4L4jouKJV86ISE/NmjV13nt7eyMhIcFg3YSEBPzzzz9o0aKFwelnz56Fr68vfH19lbJq1arBxcVFucIFAP7+/ihZsqTy3tPTE9WqVYOFhYVO2bNxhIaG6r3PWu7Zs2dRq1YtODg4KNMbNGgArVaL8+fPK2XVq1eHpaWlwe09deoUMjIyULlyZTg6OiqvX3/9FTExMco89vb2CAgIMLiM7PTt2xfHjx9HYGAghg4dih07duRYn4iKhxIFHQARmR8rKyud9xqNBlqt1mBdOzs7k63TmDjUXnfWeu7fvw9LS0scOXJEJ4EDAEdHxxyXISI5rvfll1/GlStXsHXrVuzatQvdunVDWFiYXrs5IipeeOWMiPKlZMmS8Pf3R3R0tMHpVatWxfXr13H9+nWl7MyZM0hKSkK1atXyvf6//vpL733VqlWVdZ84cQKpqanK9D///BMWFhYIDAzM1fJfeuklZGRkICEhARUrVtR5eXl55TpOa2trZGRk6JU7OTmhe/fuWLp0KdasWYMNGzYgMTEx18sloqKHyRkR5duECRPw5ZdfYs6cObh48SKOHj2KuXPnAgDCwsIQFBSEnj174ujRozh48CB69+6NJk2aoE6dOvle97p167B8+XJcuHAB48ePx8GDB5UG/z179oStrS369OmD06dPY8+ePRgyZAh69eoFT0/PXC2/cuXK6NmzJ3r37o2NGzfiypUrOHjwIKKiorB58+Zcx+nv74+TJ0/i/PnzuHPnDp48eYIZM2bgu+++w7lz53DhwgWsW7cOXl5ecHFxycuuIKIigskZEeVbnz59MGvWLCxYsADVq1fHa6+9pvRk1Gg0+PHHH+Hq6orGjRsjLCwMFSpUwJo1a1RZ98SJE/H999+jZs2aWLVqFb777jvlipy9vT22b9+OxMRE1K1bF126dEGLFi0wb948o9axYsUK9O7dGx988AECAwPRsWNHHDp0COXKlcv1Mvr374/AwEDUqVMH7u7u+PPPP1GyZElMmzYNderUQd26dXH16lVs2bJFp50dERU/GnleowgiIjOl0Wjwww8/cOR9IipS+OcZERERkRlhckZERERkRjiUBhEVWmyVQURFEa+cEREREZkRJmdEREREZoTJGREREZEZYXJGREREZEaYnBERERGZESZnRERERGaEyRkRERGRGWFyRkRERGRGmJwRERERmZH/B/7niNYajRA5AAAAAElFTkSuQmCC\n"
- },
- "metadata": {}
- }
- ],
- "source": [
- "plt.plot(np.arange(pca.n_components_) + 1, pca.explained_variance_ratio_, 'ro-')\n",
- "plt.title('dependence of explained variance ratio on the number of components.')\n",
- "plt.xlabel('n components')\n",
- "plt.ylabel('explained variance ratio')\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "4_m5ji1CRrOB"
- },
- "source": [
- "Видим что большинство параметров дает распределение дисперсии близкое к нулю. Но их количество все ещё слишком велико."
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Попробуем установить конкретное количество компонент."
- ],
- "metadata": {
- "id": "fRK5Ut_IXyZt"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "pca = PCA(n_components=30)\n",
- "X_train_pca = pca.fit_transform(X_train_gd)\n",
- "X_test_pca = pca.transform(X_test_gd)\n",
- "X_train_pca"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "SQJDyhOAXlLg",
- "outputId": "22951ca3-dd32-46d3-b5d3-0aeac5256f23"
- },
- "execution_count": 192,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "array([[ 4.26507051e+00, -2.31516787e+00, 1.63172872e+00, ...,\n",
- " 5.05657142e-04, 3.32621442e-03, 6.09493572e-03],\n",
- " [-6.43751638e+00, 1.66052025e+00, -2.08758127e+00, ...,\n",
- " -3.35528178e-03, 1.48453024e-03, 1.42042476e-03],\n",
- " [-3.08530170e+01, 1.59344524e+00, -1.33581991e+00, ...,\n",
- " 1.46636958e-03, 3.41066691e-03, -1.85772109e-03],\n",
- " ...,\n",
- " [-2.78372126e+01, 5.59889241e+00, -4.34360135e-01, ...,\n",
- " -5.51559775e-03, 1.44925595e-03, 6.24520492e-03],\n",
- " [-3.28294277e+01, 3.58499107e+00, -2.86877737e-01, ...,\n",
- " -5.74142636e-03, 1.06299879e-03, 2.40827452e-03],\n",
- " [-3.48845942e+01, 2.58382951e+00, -2.20524267e+00, ...,\n",
- " 1.57198953e-02, 1.40492514e-02, 1.21808361e-02]])"
- ]
- },
- "metadata": {},
- "execution_count": 192
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "plt.plot(np.arange(pca.n_components_) + 1, pca.explained_variance_ratio_, 'ro-')\n",
- "plt.title('dependence of explained variance ratio on the number of components.')\n",
- "plt.xlabel('n components')\n",
- "plt.ylabel('explained variance ratio')\n",
- "plt.show()"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 472
- },
- "id": "BJhCUDZMXunC",
- "outputId": "a3e4f378-f6b1-4149-f3f3-f6eb7d693644"
- },
- "execution_count": 193,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHHCAYAAAD6Rv9iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABffUlEQVR4nO3dd1hT59sH8G+IQBgyFGUogoDiRPuiUtyDiqPurVVEq611U20dVURbqaNO3L86q9Zth1vraNWqdbduHLgQlQqKCpI87x+YlJAACQQTwvdzXbk0z1n3OTk5ubnPOc+RCCEEiIiIiMgkWBg7ACIiIiL6D5MzIiIiIhPC5IyIiIjIhDA5IyIiIjIhTM6IiIiITAiTMyIiIiITwuSMiIiIyIQwOSMiIiIyIUzOiIiIiEyIwZOzSZMmQSKRGHq2RmNu66OLU6dOoW7durCzs4NEIsG5c+eMHZIGb29v9O3bV+/pbt++DYlEgpUrVxo8Jl3kNe6CYuztUVg0btwYjRs3NnYYBqM8rj158sTYobxzhw4dgkQiwebNm40dik4ePXqEzp07o2TJkpBIJJgzZ46xQ6J3oJixAyDT8ubNG3Tp0gUymQyzZ8+Gra0tvLy8jB0WUYG7dOkSNm7ciL59+8Lb29vY4RjE1KlTUaVKFbRv397YoVAejRw5Env27EFkZCTc3NxQq1YtY4dUJK1btw4JCQkYMWLEO1kekzNSExsbizt37mDZsmX4+OOPjR2OwXl5eeHVq1ewtLQ0digmgdvjP5cuXUJUVBQaN26skZzt3bvXOEHl09SpU9G5c2cmZ4XYb7/9hnbt2mHUqFHGDqVIW7duHf7+++93lpzxmjNSk5CQAABwcnIybiAFRCKRQCaTQSqVGjsUo0pPT0daWppZb4+UlBSDzcvKygpWVlYGmx+ZP0PtfwkJCWZ7PKbs5Ss5++OPP1C7dm3IZDL4+vpiyZIl2Y77ww8/IDAwEDY2NihRogS6d++Ou3fvqo3TuHFjVKtWDadPn0bdunVhY2OD8uXLY/HixRrzS01NRWRkJPz8/GBtbQ1PT0988cUXSE1NVRtPIpFgyJAh2L59O6pVqwZra2tUrVoVu3fvfmfrc+nSJTRp0gS2trYoU6YMpk+frjG/169fY9KkSahYsSJkMhnc3d3RsWNHxMbGqsZRKBSYM2cOqlatCplMBldXV3zyySf4999/s40zs99++w0NGjSAnZ0dnJyc0K5dO1y+fFk1vG/fvmjUqBEAoEuXLpBIJLleZ/Ps2TOMGDECnp6esLa2hp+fH6ZNmwaFQgEAEEKgSZMmKFWqlCrxA4C0tDRUr14dvr6+qoOY8jqYK1euoGvXrnBwcEDJkiUxfPhwvH79Osc4EhMTMWrUKFSvXh329vZwcHBAy5Ytcf78ebXxtF1j1bdvX9jb2+P+/fto37497O3tUapUKYwaNQpyuVxtel0/AyEEvv76a5QtWxa2trZo0qQJ/vnnnxzXAcg4rVyiRAmEh4drDEtOToZMJlP9BZ2WloaJEyciMDAQjo6OsLOzQ4MGDXDw4EGt6zxz5kzMmTMHvr6+sLa2xqVLl7RujwsXLqBv377w8fGBTCaDm5sb+vXrh6dPn6rNV/l53bhxA3379oWTkxMcHR0RHh6Oly9fasT/ww8/oE6dOrC1tYWzszMaNmyoUZHatWuXah8tXrw4WrdurdN2W7lyJSQSCQ4fPozPPvsMpUuXRtmyZQEAd+7cwWeffQZ/f3/Y2NigZMmS6NKlC27fvq02fZcuXQAATZo0gUQigUQiwaFDhwBov+YsISEB/fv3h6urK2QyGWrUqIFVq1blGqvSwoULUbVqVVhbW8PDwwODBw/Gs2fP1MbR5xiSlUQiQUpKClatWqVan6zXOz579kznzy634502uu4jOV37KJFIMGnSJI15Xrt2DR999BEcHR1RqlQpTJgwAUII3L17F+3atYODgwPc3Nzw3XffaY1NLpdj3LhxcHNzg52dHdq2bat1nU6cOIEWLVrA0dERtra2aNSoEY4ePap1PS9duoSePXvC2dkZ9evXz3Hb3Lx5E126dEGJEiVga2uL999/Hzt27FANV+7TQggsWLBA9RnmRKFQYO7cuahevTpkMhlKlSqFFi1a4K+//lKNk56ejilTpqiOA97e3hg3bpzGb6e3tzc+/PBDHDp0CLVq1YKNjQ2qV6+u+k5s3bpVtZzAwECcPXtWbXrlcfXmzZsIDQ2FnZ0dPDw8MHnyZAgh1MZNSUnB559/rvod8ff3x8yZMzXG0+f3/P79++jXrx9cXV1V4y1fvlxtHOX1hxs3bsQ333yDsmXLQiaToVmzZrhx44ZqvMaNG2PHjh24c+eO6nPIXF2fP38+qlatqjq21apVC+vWrcvxs8qVyKMLFy4IGxsbUa5cOREdHS2mTJkiXF1dRUBAgMg626+//lpIJBLRrVs3sXDhQhEVFSVcXFyEt7e3+Pfff1XjNWrUSHh4eIjSpUuLIUOGiHnz5on69esLAOL7779XjSeXy0Xz5s2Fra2tGDFihFiyZIkYMmSIKFasmGjXrp3asgGIGjVqCHd3dzFlyhQxZ84c4ePjI2xtbcWTJ0/eyfp4enqK4cOHi4ULF4qmTZsKAGLnzp2q8dLT00WzZs0EANG9e3cRExMjoqOjRdOmTcX27dtV43388ceiWLFiYsCAAWLx4sXiyy+/FHZ2dqJ27doiLS0tx89r3759olixYqJixYpi+vTpqpidnZ3FrVu3hBBCHDt2TIwbN04AEMOGDRNr1qwRe/fuzXaeKSkpIiAgQJQsWVKMGzdOLF68WPTp00dIJBIxfPhw1Xg3b94U9vb2okOHDqq2MWPGCIlEIg4fPqxqi4yMFABE9erVRZs2bURMTIz46KOPBADRu3dvtWV7eXmJsLAw1ftTp04JX19fMWbMGLFkyRIxefJkUaZMGeHo6Cju37+vGu/WrVsCgFixYoWqLSwsTMhkMlG1alXRr18/sWjRItGpUycBQCxcuFBtubp+Bl999ZUAIFq1aiViYmJEv379hIeHh3BxcVGLW5t+/foJJycnkZqaqta+atUqAUCcOnVKCCHE48ePhbu7u4iIiBCLFi0S06dPF/7+/sLS0lKcPXtWY52rVKkifHx8xLfffitmz54t7ty5o3V7zJw5UzRo0EBMnjxZLF26VAwfPlzY2NiIOnXqCIVCofF5vffee6Jjx45i4cKF4uOPPxYAxBdffKEW+6RJkwQAUbduXTFjxgwxd+5c0bNnT/Hll1+qxlm9erWQSCSiRYsWYv78+WLatGnC29tbODk5qfbR7KxYsUK1jo0aNRLz588X3377rRBCiE2bNokaNWqIiRMniqVLl4px48YJZ2dn4eXlJVJSUoQQQsTGxophw4YJAGLcuHFizZo1Ys2aNSI+Pl4IkfFdbtSokWp5L1++FJUrVxaWlpZi5MiRYt68eaJBgwYCgJgzZ06OsWbediEhIWL+/PliyJAhQiqVauxHuh5DtFmzZo2wtrYWDRo0UK3PsWPH1Javy2en6/Eup/XMbTna9kMlACIyMlJjnjVr1hQ9evQQCxcuFK1btxYAxKxZs4S/v78YNGiQWLhwoahXr54AoHacOXjwoOo4ExAQIGbNmiXGjBkjZDKZqFixonj58qVq3AMHDggrKysRHBwsvvvuOzF79mwREBAgrKysxIkTJzRiqlKlimjXrp1YuHChWLBgQbbbJT4+Xri6uorixYuL8ePHi1mzZokaNWoICwsLsXXrViFExj65Zs0aAUB88MEHqs8wJ3379hUARMuWLcWcOXPEzJkzRbt27cT8+fNV44SFhQkAonPnzmLBggWiT58+AoBo37692ry8vLyEv7+/cHd3F5MmTRKzZ88WZcqUEfb29uKHH34Q5cqVE99++6349ttvhaOjo/Dz8xNyuVxtOTKZTFSoUEH07t1bxMTEiA8//FAAEBMmTFCNp1AoRNOmTYVEIhEff/yxiImJEW3atBEAxIgRIzT2BV1+z+Pj40XZsmWFp6enmDx5sli0aJFo27atACBmz56tsS+89957IjAwUMyePVtMmjRJ2Nraijp16qjG27t3r6hZs6ZwcXFRfQ7btm0TQgixdOlS1fZcsmSJmDt3rujfv78YNmxYjp9VbvKcnLVv317IZDJx584dVdulS5eEVCpVS2Zu374tpFKp+Oabb9Smv3jxoihWrJhae6NGjQQA8d1336naUlNTRc2aNUXp0qVVB601a9YICwsL8fvvv6vNc/HixQKAOHr06H8rCAgrKytx48YNVdv58+cFALUdtiDXZ/Xq1Wrr4+bmJjp16qRqW758uerAkpXyx/D3338XAMTatWvVhu/evVtre1bKbfj06VO17WBhYSH69OmjalPurJs2bcpxfkIIMWXKFGFnZyeuXbum1j5mzBghlUpFXFycqm3JkiUCgPjhhx/En3/+KaRSqcYXT3mAa9u2rVr7Z599JgCI8+fPq9qyJmevX79WOzAIkXHAt7a2FpMnT1Zr05acAVAbTwih+sIq6foZJCQkCCsrK9G6dWu1ZEaZ+OaWnO3Zs0cAEL/88otae6tWrYSPj4/qfXp6ukYC9++//wpXV1fRr18/jXV2cHAQCQkJauNr2x6Zf5yU1q9fLwCII0eOqNqUn1fmZQkhRIcOHUTJkiVV769fvy4sLCxEhw4dND4j5fZ5/vy5cHJyEgMGDFAbHh8fLxwdHTXas1ImZ/Xr1xfp6elqw7Stz/HjxzW+m5s2bRIAxMGDBzXGz5qczZkzR7U/K6WlpYng4GBhb28vkpOTs41VuX80b95cbXvExMQIAGL58uVqy9XlGJIdOzs7rfubrp+dPsc7bXRdTl6Ss4EDB6ra0tPTRdmyZYVEIlEl5UJkfB9sbGzUtoHyGFemTBm1z2njxo0CgJg7d64QImPfrFChgggNDVX7Hr98+VKUL19efPDBBxox9ejRI8ftoTRixAgBQO037Pnz56J8+fLC29tbbb8AIAYPHpzrPH/77TfVH9ZZKeM/d+6cACA+/vhjteGjRo0SAMRvv/2mavPy8hIAVAm9EP8dm2xsbNR+K5XH98zfHeVxdejQoWpxtG7dWlhZWYnHjx8LIYTYvn27ACC+/vprtZg6d+4sJBKJ2m+3rr/n/fv3F+7u7moJmxBCdO/eXTg6OqqOCcp9oXLlymrH0rlz5woA4uLFi6q21q1bCy8vr6ybVrRr105UrVpVoz2/8nRaUy6XY8+ePWjfvj3KlSunaq9cuTJCQ0PVxt26dSsUCgW6du2KJ0+eqF5ubm6oUKGCximYYsWK4ZNPPlG9t7KywieffIKEhAScPn0aALBp0yZUrlwZlSpVUptn06ZNAUBjniEhIfD19VW9DwgIgIODA27evFng62Nvb4+PPvpIbX3q1KmjWjYAbNmyBS4uLhg6dKjGtlaWsTdt2gRHR0d88MEHassNDAyEvb29xnIze/jwIc6dO4e+ffuiRIkSatvhgw8+wM6dO7OdNiebNm1CgwYN4OzsrBZTSEgI5HI5jhw5ohp34MCBCA0NxdChQ9G7d2/4+vpi6tSpWuc7ePBgtffK7ZJTnNbW1rCwyNid5XI5nj59Cnt7e/j7++PMmTM6rc+nn36q9r5BgwZqn5Oun8H+/fuRlpaGoUOHqp2G0PVC0qZNm8LFxQUbNmxQtf3777/Yt28funXrpmqTSqWq66AUCgUSExORnp6OWrVqaV3nTp06oVSpUrku38bGRvX/169f48mTJ3j//fcBQOt8tW23p0+fIjk5GQCwfft2KBQKTJw4UfUZKSm3z759+/Ds2TP06NFDbdtKpVIEBQXluH9nNmDAAI3r5zKvz5s3b/D06VP4+fnByclJ530jq507d8LNzQ09evRQtVlaWmLYsGF48eIFDh8+nO20yv1jxIgRattjwIABcHBwUDu1Beh2DMmr3D47fY93eV1OXmS+YUkqlaJWrVoQQqB///6qdicnJ/j7+2vdVn369EHx4sVV7zt37gx3d3fVcebcuXO4fv06evbsiadPn6rWPSUlBc2aNcORI0dUl29kt57Z2blzJ+rUqaN26tPe3h4DBw7E7du3cenSJd02QiZbtmyBRCJBZGSkxjDl90y5bhEREWrDP//8cwDQ2PeqVKmC4OBg1fugoCAAGceozL+VynZt23nIkCFqcQwZMgRpaWnYv3+/KiapVIphw4ZpxCSEwK5du9Tac/s9F0Jgy5YtaNOmDYQQavttaGgokpKSNL734eHhateUNmjQINv1ycrJyQn37t3DqVOnch1XH3m6W/Px48d49eoVKlSooDHM399f7Uf0+vXrEEJoHReAxl1iHh4esLOzU2urWLEigIzrEt5//31cv34dly9fzvaHJvO1TQDUdiIlZ2dn1XVCBbk+ZcuW1bhOwNnZGRcuXFC9j42Nhb+/P4oVy/7juH79OpKSklC6dGmtw7Ouc2Z37txRrUtWlStXxp49e5CSkqKx3XNz/fp1XLhwQefP4fvvv4evry+uX7+OY8eOqf1oZpZ12/r6+sLCwkLtGqGslNdaLFy4ELdu3VK7VqxkyZK5rovy+ozMMu8jgO6fgXJ7Z12PUqVKwdnZOddYihUrhk6dOmHdunVITU2FtbU1tm7dijdv3qglZwCwatUqfPfdd7hy5QrevHmjai9fvrzGfLW1aZOYmIioqCj8+OOPGp9hUlKSxvhZv1/Kdfz333/h4OCA2NhYWFhYoEqVKtku8/r16wCg+gMrKwcHB51i17aOr169QnR0NFasWIH79++rXceibX10cefOHVSoUEEj2axcubJqeE7TAprfRysrK/j4+GhMq8sxJK9y++z0Pd7ldTl5kXWejo6OkMlkcHFx0WjPer0koPn9lEgk8PPzUx1nlPtkWFhYtjEkJSWpfad1/Y7duXNHldBklnn/qVatmk7zUoqNjYWHh4faH+DalmthYQE/Pz+1djc3Nzg5OWnse9q2MQB4enpqbc967a2FhQV8fHzU2jL/nitj8vDwUEuUgey/S7r8nj979gxLly7F0qVLNcYFcs8RMu+fufnyyy+xf/9+1KlTB35+fmjevDl69uyJevXq5TptTgq8Kw2FQgGJRIJdu3ZpvSPM3t4+T/OsXr06Zs2apXV41h0nuzvRMh+k9Vm2PutjqGUrFAqULl0aa9eu1Tpcl4qIoSkUCnzwwQf44osvtA5XfgmVDh06pLro9OLFi2p/keVEl06Ap06digkTJqBfv36YMmUKSpQoAQsLC4wYMULjr1ttdLlb8V1+Bt27d8eSJUuwa9cutG/fHhs3bkSlSpVQo0YN1Tg//PAD+vbti/bt22P06NEoXbo0pFIpoqOj1W4kUcouGc6qa9euOHbsGEaPHo2aNWvC3t4eCoUCLVq00LotDbGPK+e7Zs0auLm5aQzP6Q+XzLSt49ChQ7FixQqMGDECwcHBcHR0hEQiQffu3XXaN4zNkMcvfedtqON3bsvJ7jue9Yac3OZp6GM9AMyYMQM1a9bUOk7W9df1O2Zsunasnt32LMh9Mje67LMA8NFHH2WbWAcEBOg1z5xUrlwZV69exa+//ordu3djy5YtWLhwISZOnIioqKhcp89OnpKzUqVKwcbGRvWXRWZXr15Ve+/r6wshBMqXL6/xY63NgwcPNKo4165dAwDV3RG+vr44f/48mjVrZpDe+wtyfXTh6+uLEydO4M2bN9n+Jerr64v9+/ejXr16eh8AlJ3IZl0XALhy5QpcXFz0rpopY3rx4gVCQkJyHffhw4cYOnQomjdvDisrK4waNQqhoaFaO7i9fv262l+gN27cgEKhyLFj0M2bN6NJkyb4/vvv1dqfPXum8Zd0Xun6GSjX6fr162p/NT5+/FjnO2sbNmwId3d3bNiwAfXr18dvv/2G8ePHq42zefNm+Pj4YOvWrWrfA22nNXT177//4sCBA4iKisLEiRNV7dq+G7ry9fWFQqHApUuXsv2RU56mKF26tE77kz42b96MsLAwtbv2Xr9+rXFnpD7HEi8vL1y4cAEKhUKtenblyhXV8JymBTK+j5n3j7S0NNy6dcug65/f42NBHO+0UVYqsn4mOVUg8yvrPi2EwI0bN1Q/3Mp90sHBweD7pJeXV7bHY+Vwffn6+mLPnj1ITEzMtnrm5eUFhUKB69evqypTQMZTCJ49e2bwDscVCgVu3ryptu9k/T338vLC/v378fz5c7XqWV63RalSpVC8eHHI5fJ39l2ys7NDt27d0K1bN6SlpaFjx4745ptvMHbsWMhksjwtL0/XnEmlUoSGhmL79u2Ii4tTtV++fBl79uxRG7djx46QSqWIiorSyEKFEBrl5vT0dLUuLNLS0rBkyRKUKlUKgYGBADL+sr9//z6WLVumEdurV6/07l+mINdHF506dcKTJ08QExOjMUy5jK5du0Iul2PKlCka46Snp2sc1DJzd3dHzZo1sWrVKrXx/v77b+zduxetWrXSO2ZlTMePH9fYRkDGQTY9PV31fsCAAVAoFPj++++xdOlSFCtWDP3799f6l8mCBQvU3s+fPx8A0LJly2xjkUqlGvPatGkT7t+/r9c65UTXzyAkJASWlpaYP3++Wkz6PHbFwsICnTt3xi+//II1a9YgPT1d45Sm8q+9zMs4ceIEjh8/rsdaqdM2T0C/2LNq3749LCwsMHnyZI1KlXI5oaGhcHBwwNSpU9VOzyo9fvw4z8vXtm/Mnz9foyqj/AMlp++SUqtWrRAfH692XWB6ejrmz58Pe3t7VZc02oSEhMDKygrz5s1Ti+v7779HUlISWrdurctq6cTOzk6n9clOQRzvtHFwcICLi4vadapARncjBWX16tV4/vy56v3mzZvx8OFD1XEmMDAQvr6+mDlzJl68eKExfX72yVatWuHkyZNq39WUlBQsXboU3t7eOV4CkJ1OnTpBCKG1WqP87JTH+qzfZ+VZKEPue0qZf9eEEIiJiYGlpSWaNWumikkul2v8/s2ePRsSiSTH4742UqkUnTp1wpYtW/D3339rDM/r52ZnZ6f1Mois3wErKytUqVIFQgjVsezly5e4cuWKXo9Ly/NpzaioKOzevRsNGjTAZ599pjowVa1aVe1aCF9fX3z99dcYO3Ysbt++jfbt26N48eK4desWtm3bhoEDB6r1fOzh4YFp06bh9u3bqFixIjZs2IBz585h6dKlqqpS7969sXHjRnz66ac4ePAg6tWrB7lcjitXrmDjxo3Ys2eP3o+4KKj10UWfPn2wevVqRERE4OTJk2jQoAFSUlKwf/9+fPbZZ2jXrh0aNWqETz75BNHR0Th37hyaN28OS0tLXL9+HZs2bcLcuXPRuXPnbJcxY8YMtGzZEsHBwejfvz9evXqF+fPnw9HRUa0PIX2MHj0aP//8Mz788EP07dsXgYGBSElJwcWLF7F582bcvn0bLi4uWLFiBXbs2IGVK1eq+p6aP38+PvroIyxatAifffaZ2nxv3bqFtm3bokWLFjh+/Dh++OEH9OzZU+2UXlYffvghJk+ejPDwcNStWxcXL17E2rVrNa53yA9dPwNlH2nR0dH48MMP0apVK5w9exa7du3Sq4rXrVs3zJ8/H5GRkahevbraX7rKdd66dSs6dOiA1q1b49atW1i8eDGqVKmi9cdEFw4ODmjYsCGmT5+ON2/eoEyZMti7dy9u3bqVp/kBgJ+fH8aPH48pU6agQYMG6NixI6ytrXHq1Cl4eHggOjoaDg4OWLRoEXr37o3/+7//Q/fu3VGqVCnExcVhx44dqFevntY/XnTx4YcfYs2aNXB0dESVKlVw/Phx7N+/X+NaxJo1a0IqlWLatGlISkqCtbU1mjZtqvUaw4EDB2LJkiXo27cvTp8+DW9vb2zevBlHjx7FnDlzNK6fyaxUqVIYO3YsoqKi0KJFC7Rt2xZXr17FwoULUbt2bbWL//MrMDAQ+/fvx6xZs+Dh4YHy5ctrvdYpOwVxvMvOxx9/jG+//RYff/wxatWqhSNHjqiqLAWhRIkSqF+/PsLDw/Ho0SPMmTMHfn5+GDBgAICMP5D+97//oWXLlqhatSrCw8NRpkwZ3L9/HwcPHoSDgwN++eWXPC17zJgxWL9+PVq2bIlhw4ahRIkSWLVqFW7duoUtW7ZoXMuoiyZNmqB3796YN28erl+/rroM4ffff0eTJk0wZMgQ1KhRA2FhYVi6dCmePXuGRo0a4eTJk1i1ahXat2+PJk2a5Gl9siOTybB7926EhYUhKCgIu3btwo4dOzBu3DjVZSBt2rRBkyZNMH78eNy+fRs1atTA3r178dNPP2HEiBFqF//r6ttvv8XBgwcRFBSEAQMGoEqVKkhMTMSZM2ewf/9+JCYm6j3PwMBAbNiwAREREahduzbs7e3Rpk0bNG/eHG5ubqhXrx5cXV1x+fJlxMTEoHXr1qrjwMmTJ9GkSRNERkbq/nubn1s9Dx8+LAIDA4WVlZXw8fERixcvVt1SnNWWLVtE/fr1hZ2dnbCzsxOVKlUSgwcPFlevXlWN06hRI1G1alXx119/ieDgYCGTyYSXl5eIiYnRmF9aWpqYNm2aqFq1qrC2thbOzs4iMDBQREVFiaSkJNV4yOY25KxdMRTk+mQVFhamcUvuy5cvxfjx40X58uWFpaWlcHNzE507dxaxsbFq4y1dulQEBgYKGxsbUbx4cVG9enXxxRdfiAcPHmgsJ6v9+/eLevXqCRsbG+Hg4CDatGkjLl26pDaOPl1pCJFx+/fYsWOFn5+fsLKyEi4uLqJu3bpi5syZIi0tTdy9e1c4OjqKNm3aaEzboUMHYWdnJ27evCmE+O929EuXLonOnTuL4sWLC2dnZzFkyBDx6tUrtWm1daXx+eefC3d3d2FjYyPq1asnjh8/rtEFQnZdadjZ2WnEl91nr8tnIJfLRVRUlCqexo0bi7///lvrfpcdhUIhPD09td5mrhw+depU4eXlJaytrcV7770nfv31V439S7nOM2bM0JiHtu1x79490aFDB+Hk5CQcHR1Fly5dxIMHD7Lt0kB5S7ySsluLrH2TLV++XLz33nuq72ujRo3Evn371MY5ePCgCA0NFY6OjkImkwlfX1/Rt29f8ddff+W4rZTLVPYBl9m///4rwsPDhYuLi7C3txehoaHiypUrWj+LZcuWCR8fH1UXOsquAbLuR0II8ejRI9V8raysRPXq1bV2BZGdmJgYUalSJWFpaSlcXV3FoEGDNPoN0+cYos2VK1dEw4YNhY2NjVo3Lvp+droc77TRZzkvX74U/fv3F46OjqJ48eKia9euIiEhQef9LrvvcdZtqDzGrV+/XowdO1aULl1a2NjYiNatW6t1D6F09uxZ0bFjR1GyZElhbW0tvLy8RNeuXcWBAwdyjSknsbGxonPnzsLJyUnIZDJRp04d8euvv2qMl91vmDbp6elixowZolKlSsLKykqUKlVKtGzZUpw+fVo1zps3b0RUVJTqt8bT01OMHTtWvH79Wm1eXl5eonXr1jrFo+0Yo/w8YmNjVf2Surq6isjISI0udZ4/fy5GjhwpPDw8hKWlpahQoYKYMWOGWhcmOW0Lbd/lR48eicGDBwtPT0/Vb2qzZs3E0qVLVeNk93un7bj44sUL0bNnT+Hk5CQAqL5/S5YsEQ0bNlTtH76+vmL06NFqeYhyOZn349xI3q6wSWjcuDGePHmitRRJ5m/SpEmIiorC48ePDXadGBERvXt9+/bF5s2b81zFL+r4bE0iIiIiE8LkjIiIiMiEMDkjIiIiMiEmdc0ZERERUVHHyhkRERGRCWFyRkRERGRCCvzZmqZGoVDgwYMHKF68uEEe/UREREQFTwiB58+fw8PDI08d9RYmRS45e/DggcaD0YmIiKhwuHv3ruppM+aqyCVnyscp3L17Fw4ODkaOhoiIiHSRnJwMT0/PHB+PZi6KXHKmPJXp4ODA5IyIiKiQKQqXJJn3SVsiIiKiQobJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkRERGRCmJwRERERmRAmZ0REREQmpMg9IaDAyOXA778DDx8C7u5AgwaAVGrsqIiIiKiQYXJmCFu3AsOHA/fu/ddWtiwwdy7QsaPx4iIiIqJCh6c182vrVqBzZ/XEDADu389o37rVOHERERFRocTkLD/k8oyKmRCaw5RtI0ZkjEdERESkAyZn+fH775oVs8yEAO7ezRiPiIiISAdMzvLj4UPDjkdERERFHpOz/HB3N+x4REREVOQxOcuPBg0y7sqUSLQPl0gAT8+M8YiIiIh0wOQsP6TSjO4yAM0ETfl+zhz2d0ZEREQ6Y3KWXx07Aps3A2XKqLeXLZvRzn7OiIiISA9MzgyhY0fg9m1AJst4/8MPwK1bTMyIiIhIb0zODEUqBZycMv5ftSpPZRIREVGeMDkzpOLFM/598cK4cRAREVGhxeTMkOztM/59/ty4cRAREVGhxeTMkJSVMyZnRERElEdMzgxJWTnjaU0iIiLKIyZnhsTKGREREeUTkzNDYuWMiIiI8onJmSGxckZERET5xOTMkFg5IyIionxicmZIrJwRERFRPjE5MyRWzoiIiCifmJwZEitnRERElE9MzgyJj28iIiKifGJyZkh8fBMRERHlE5MzQ2LljIiIiPKJyZkhsXJGRERE+cTkzJBYOSMiIqJ8YnJmSMrKWWoq8OaNcWMhIiKiQonJmSEpkzOApzaJiIgoT5icGZKVVcYL4KlNIiIiyhMmZ4bGjmiJiIgoH5icGRof4URERET5wOTM0Fg5IyIionxgcmZorJwRERFRPjA5MzRWzoiIiCgfmJwZGjuiJSIionxgcmZofIQTERER5QOTM0Nj5YyIiIjygcmZobFyRkRERPnA5MzQWDkjIiKifGByZmisnBEREVE+MDkzNHalQURERPnA5MzQ2AktERER5QOTM0Nj5YyIiIjygcmZobFyRkRERPnA5MzQWDkjIiKifGByZmisnBEREVE+MDkztMz9nCkUxo2FiIiICh0mZ4amTM4A4OVL48VBREREhRKTM0OzsQEs3m5WXndGREREemJyZmgSCa87IyIiojwzenK2YMECeHt7QyaTISgoCCdPnsxx/Dlz5sDf3x82Njbw9PTEyJEj8fr163cUrY74CCciIiLKI6MmZxs2bEBERAQiIyNx5swZ1KhRA6GhoUhISNA6/rp16zBmzBhERkbi8uXL+P7777FhwwaMGzfuHUeeCz78nIiIiPLIqMnZrFmzMGDAAISHh6NKlSpYvHgxbG1tsXz5cq3jHzt2DPXq1UPPnj3h7e2N5s2bo0ePHrlW2945Vs6IiIgoj4yWnKWlpeH06dMICQn5LxgLC4SEhOD48eNap6lbty5Onz6tSsZu3ryJnTt3olWrVtkuJzU1FcnJyWqvAseOaImIiCiPihlrwU+ePIFcLoerq6tau6urK65cuaJ1mp49e+LJkyeoX78+hBBIT0/Hp59+muNpzejoaERFRRk09lzxhgAiIiLKI6PfEKCPQ4cOYerUqVi4cCHOnDmDrVu3YseOHZgyZUq204wdOxZJSUmq1927dws+UFbOiIiIKI+MVjlzcXGBVCrFo0eP1NofPXoENzc3rdNMmDABvXv3xscffwwAqF69OlJSUjBw4ECMHz8eFhaauaa1tTWsra0NvwI5YeWMiIiI8sholTMrKysEBgbiwIEDqjaFQoEDBw4gODhY6zQvX77USMCkUikAQAhRcMHqi5UzIiIiyiOjVc4AICIiAmFhYahVqxbq1KmDOXPmICUlBeHh4QCAPn36oEyZMoiOjgYAtGnTBrNmzcJ7772HoKAg3LhxAxMmTECbNm1USZpJYOWMiIiI8sioyVm3bt3w+PFjTJw4EfHx8ahZsyZ2796tukkgLi5OrVL21VdfQSKR4KuvvsL9+/dRqlQptGnTBt98842xVkE7Vs6IiIgojyTCpM4HFrzk5GQ4OjoiKSkJDg4OBbOQJUuATz8F2rcHtm0rmGUQEREVIe/k99tEFKq7NQsNdkJLREREecTkrCDw8U1ERESUR0zOCgIrZ0RERJRHTM4KAitnRERElEdMzgoCK2dERESUR0zOCkLmrjSK1s2wRERElE9MzgqCsnKWng6kpRk3FiIiIipUmJwVBGVyBvDUJhEREemFyVlBKFYMkMky/s+bAoiIiEgPTM4KCh/hRERERHnA5Kyg8OHnRERElAdMzgoKK2dERESUB0zOCgo7oiUiIqI8YHJWUNgRLREREeUBk7OCwsoZERER5QGTs4LCyhkRERHlAZOzgsLKGREREeUBk7OCwsoZERER5QGTs4LCrjSIiIgoD5icFRR2QktERER5wOSsoLByRkRERHnA5KygsHJGREREecDkrKCwckZERER5wOSsoLByRkRERHnA5KygsHJGREREecDkrKCwE1oiIiLKAyZnBUV5WvPlS0AuN24sREREVGjkKzkTQkAIYahYzIuycgYAKSnGi4OIiIgKlTwlZ6tXr0b16tVhY2MDGxsbBAQEYM2aNYaOrXCztgak0oz/87ozIiIi0lExfSeYNWsWJkyYgCFDhqBevXoAgD/++AOffvopnjx5gpEjRxo8yEJJIsmonj17xuvOiIiISGd6J2fz58/HokWL0KdPH1Vb27ZtUbVqVUyaNInJWWb29hnJGStnREREpCO9T2s+fPgQdevW1WivW7cuHj58aJCgzAbv2CQiIiI96Z2c+fn5YePGjRrtGzZsQIUKFQwSlNlQ3rHJyhkRERHpSO/TmlFRUejWrRuOHDmiuubs6NGjOHDggNakrUhjR7RERESkJ70rZ506dcKJEyfg4uKC7du3Y/v27XBxccHJkyfRoUOHgoix8OIjnIiIiEhPelfOACAwMBA//PCDoWMxP6ycERERkZ50Ss6Sk5Ph4OCg+n9OlOMRWDkjIiIivemUnDk7O+Phw4coXbo0nJycIJFINMYRQkAikUDORxX9h5UzIiIi0pNOydlvv/2GEiVKAAAOHjxYoAGZFXalQURERHrSKTlr1KiR6v/ly5eHp6enRvVMCIG7d+8aNrrCjl1pEBERkZ70vluzfPnyePz4sUZ7YmIiypcvb5CgzAYrZ0RERKQnvZMz5bVlWb148QIymcwgQZkNVs6IiIhITzp3pREREQEAkEgkmDBhAmxtbVXD5HI5Tpw4gZo1axo8wEKNlTMiIiLSk87J2dmzZwFkVM4uXrwIKysr1TArKyvUqFEDo0aNMnyEhRkrZ0RERKQnnZMz5V2a4eHhmDt3Lvsz0wUrZ0RERKQnvZ8QsGLFioKIwzyxckZERER6ytPjm/766y9s3LgRcXFxSEtLUxu2detWgwRmFjJ3QisEoOVGCiIiIqLM9L5b88cff0TdunVx+fJlbNu2DW/evME///yD3377DY6OjgURY+GlrJwpFMDr18aNhYiIiAoFvZOzqVOnYvbs2fjll19gZWWFuXPn4sqVK+jatSvKlStXEDEWXnZ2//2fpzaJiIhIB3onZ7GxsWjdujWAjLs0U1JSIJFIMHLkSCxdutTgARZqUimg7HKENwUQERGRDvROzpydnfH8bRWoTJky+PvvvwEAz549w8uXLw0bnTngw8+JiIhID3onZw0bNsS+ffsAAF26dMHw4cMxYMAA9OjRA82aNTN4gIUeu9MgIiIiPeh9t2ZMTAxev724ffz48bC0tMSxY8fQqVMnfPXVVwYPsNBjdxpERESkB72Ss/T0dPz6668IDQ0FAFhYWGDMmDEFEpjZYOWMiIiI9KDXac1ixYrh008/VVXOSAesnBEREZEe9L7mrE6dOjh37lwBhGKmWDkjIiIiPeh9zdlnn32GiIgI3L17F4GBgbDL3JcXgICAAIMFZxZYOSMiIiI96J2cde/eHQAwbNgwVZtEIoEQAhKJBHK53HDRmQNWzoiIiEgPeidnt27dKog4zBcrZ0RERKQHvZMzLy+vgojDfLETWiIiItKD3jcEGNqCBQvg7e0NmUyGoKAgnDx5Msfxnz17hsGDB8Pd3R3W1taoWLEidu7c+Y6izQNl5YynNYmIiEgHelfODGnDhg2IiIjA4sWLERQUhDlz5iA0NBRXr15F6dKlNcZPS0vDBx98gNKlS2Pz5s0oU6YM7ty5Aycnp3cfvK5YOSMiIiI9GDU5mzVrFgYMGIDw8HAAwOLFi7Fjxw4sX75ca+e2y5cvR2JiIo4dOwZLS0sAgLe397sMWX+snBEREZEejHZaMy0tDadPn0ZISMh/wVhYICQkBMePH9c6zc8//4zg4GAMHjwYrq6uqFatGqZOnZrjHaKpqalITk5We71TrJwRERGRHvKUnD179gz/+9//MHbsWCQmJgIAzpw5g/v37+s8jydPnkAul8PV1VWt3dXVFfHx8VqnuXnzJjZv3gy5XI6dO3diwoQJ+O677/D1119nu5zo6Gg4OjqqXp6enjrHaBDsSoOIiIj0oPdpzQsXLiAkJASOjo64ffs2BgwYgBIlSmDr1q2Ii4vD6tWrCyJOAIBCoUDp0qWxdOlSSKVSBAYG4v79+5gxYwYiIyO1TjN27FhERESo3icnJ7/bBI1daRAREZEe9K6cRUREoG/fvrh+/TpkMpmqvVWrVjhy5IjO83FxcYFUKsWjR4/U2h89egQ3Nzet07i7u6NixYqQSqWqtsqVKyM+Ph5paWlap7G2toaDg4Pa651i5YyIiIj0oHdydurUKXzyySca7WXKlMn2dKQ2VlZWCAwMxIEDB1RtCoUCBw4cQHBwsNZp6tWrhxs3bkChUKjarl27Bnd3d1hZWemxFu+QsnL2+jWQnm7cWIiIiMjk6Z2cWVtba72o/tq1ayhVqpRe84qIiMCyZcuwatUqXL58GYMGDUJKSorq7s0+ffpg7NixqvEHDRqExMREDB8+HNeuXcOOHTswdepUDB48WN/VeHeUlTOA1TMiIiLKld7XnLVt2xaTJ0/Gxo0bAWQ8VzMuLg5ffvklOnXqpNe8unXrhsePH2PixImIj49HzZo1sXv3btVNAnFxcbCw+C9/9PT0xJ49ezBy5EgEBASgTJkyGD58OL788kt9V+PdsbICLC2BN28yrjsz5T7ZiIiIyOgkQgihzwRJSUno3Lkz/vrrLzx//hweHh6Ij49HcHAwdu7cCTs7u4KK1SCSk5Ph6OiIpKSkd3f9WcmSQGIicOkSULnyu1kmERGRGTHK77eR6F05c3R0xL59+3D06FGcP38eL168wP/93/+p9VdGWdjbZyRnvGOTiIiIcpHnJwTUq1cP9erVM2Qs5osd0RIREZGO9L4hYNiwYZg3b55Ge0xMDEaMGGGImMwPH+FEREREOtI7OduyZYvWilndunWxefNmgwRldlg5IyIiIh3pnZw9ffoUjo6OGu0ODg548uSJQYIyO6ycERERkY70Ts78/Pywe/dujfZdu3bBx8fHIEGZHVbOiIiISEd63xAQERGBIUOG4PHjx2jatCkA4MCBA/juu+8wZ84cQ8dnHvgIJyIiItKR3slZv379kJqaim+++QZTpkwBAHh7e2PRokXo06ePwQM0C3z4OREREekoT11pDBo0CIMGDcLjx49hY2MDe2XyQdqxckZEREQ6ynM/ZwD0fpZmkcXKGREREelI7xsCHj16hN69e8PDwwPFihWDVCpVe5EWrJwRERGRjvSunPXt2xdxcXGYMGEC3N3dIZFICiIu88LKGREREelI7+Tsjz/+wO+//46aNWsWQDhmipUzIiIi0pHepzU9PT0hhCiIWMwXK2dERESkI72Tszlz5mDMmDG4fft2AYRjptgJLREREelI79Oa3bp1w8uXL+Hr6wtbW1tYWlqqDU9MTDRYcGaDj28iIiIiHemdnPEpAHmQ+ZozIQDeREFERETZ0Ds5CwsLK4g4zJuyciYE8PIlYGdn3HiIiIjIZOWrE9rXr18jLS1Nrc3BwSFfAZklO7uMapkQGdedMTkjIiKibOh9Q0BKSgqGDBmC0qVLw87ODs7Ozmov0kIi4XVnREREpBO9k7MvvvgCv/32GxYtWgRra2v873//Q1RUFDw8PLB69eqCiNE8sDsNIiIi0oHepzV/+eUXrF69Go0bN0Z4eDgaNGgAPz8/eHl5Ye3atejVq1dBxFn4FS8OPHzIyhkRERHlSO/KWWJiInx8fABkXF+m7Dqjfv36OHLkiGGjMyesnBEREZEO9E7OfHx8cOvWLQBApUqVsHHjRgAZFTUnJyeDBmdW+AgnIiIi0oHeyVl4eDjOnz8PABgzZgwWLFgAmUyGkSNHYvTo0QYP0GywckZEREQ60Puas5EjR6r+HxISgitXruD06dPw8/NDQECAQYMzK6ycERERkQ7y1c8ZAHh5ecHLy8sQsZg3Vs6IiIhIBzolZ/PmzcPAgQMhk8kwb968HMcdNmyYQQIzO6ycERERkQ50Ss5mz56NXr16QSaTYfbs2dmOJ5FImJxlh5UzIiIi0oFOyZny7sys/yc9KCtnTM6IiIgoB3rdrfnmzRv4+vri8uXLBRWP+eLjm4iIiEgHeiVnlpaWeP36dUHFYt5YOSMiIiId6N3P2eDBgzFt2jSkp6cXRDzmizcEEBERkQ707krj1KlTOHDgAPbu3Yvq1avDzs5ObfjWrVsNFpxZ4Q0BREREpAO9kzMnJyd06tSpIGIxb6ycERERkQ70Ts5WrFhREHGYP1bOiIiISAd6X3NGecTKGREREekgT49v2rx5MzZu3Ii4uDikpaWpDTtz5oxBAjM7yspZWlrGy8rKuPEQERGRSdK7cjZv3jyEh4fD1dUVZ8+eRZ06dVCyZEncvHkTLVu2LIgYzYMyOQNYPSMiIqJs6Z2cLVy4EEuXLsX8+fNhZWWFL774Avv27cOwYcOQlJRUEDGaB0tLwNo64/+87oyIiIiyoXdyFhcXh7p16wIAbGxs8PxtotG7d2+sX7/esNGZG153RkRERLnQOzlzc3NDYmIiAKBcuXL4888/AWQ8c1MIYdjozA3v2CQiIqJc6J2cNW3aFD///DMAIDw8HCNHjsQHH3yAbt26oUOHDgYP0KzwEU5ERESUC73v1ly6dCkUCgWAjEc5lSxZEseOHUPbtm3xySefGDxAs8KHnxMREVEu9E7OLCwsYGHxX8Gte/fu6N69u0GDMlusnBEREVEu9D6t6efnh0mTJuHatWsFEY954w0BRERElAu9k7PBgwdjx44dqFy5MmrXro25c+ciPj6+IGIzP7whgIiIiHKhd3I2cuRInDp1CpcvX0arVq2wYMECeHp6onnz5li9enVBxGg+WDkjIiKiXOT52ZoVK1ZEVFQUrl27ht9//x2PHz9GeHi4IWMzP6ycERERUS7y9GxNpZMnT2LdunXYsGEDkpOT0aVLF0PFZZ5YOSMiIqJc6J2cXbt2DWvXrsX69etx69YtNG3aFNOmTUPHjh1hn/n5kaSJlTMiIiLKhd7JWaVKlVC7dm0MHjwY3bt3h6ura0HEZZ5YOSMiIqJc6J2cXb16FRUqVCiIWMwfK2dERESUC71vCGBilg+snBEREVEu8ny3JuUBK2dERESUCyZn7xIf30RERES5YHL2LvHB50RERJQLJmfvkrJylpICKBTGjYWIiIhMkk53a0ZEROg8w1mzZuU5GLOnTM6AjAQt83siIiIi6JicnT17Vu39mTNnkJ6eDn9/fwAZHdNKpVIEBgYaPkJzIpMBFhYZVbPnz5mcERERkQadTmsePHhQ9WrTpg0aNWqEe/fu4cyZMzhz5gzu3r2LJk2aoHXr1nkKYsGCBfD29oZMJkNQUBBOnjyp03Q//vgjJBIJ2rdvn6flvnMSCbvTICIiohzpfc3Zd999h+joaDg7O6vanJ2d8fXXX+O7777TO4ANGzYgIiICkZGROHPmDGrUqIHQ0FAkJCTkON3t27cxatQoNGjQQO9lGhW70yAiIqIc6J2cJScn4/Hjxxrtjx8/xvM8JByzZs3CgAEDEB4ejipVqmDx4sWwtbXF8uXLs51GLpejV69eiIqKgo+Pj97LNCpWzoiIiCgHeidnHTp0QHh4OLZu3Yp79+7h3r172LJlC/r374+OHTvqNa+0tDScPn0aISEh/wVkYYGQkBAcP3482+kmT56M0qVLo3///vqGb3ysnBEREVEO9H625uLFizFq1Cj07NkTb968yZhJsWLo378/ZsyYode8njx5ArlcrvHwdFdXV1y5ckXrNH/88Qe+//57nDt3TqdlpKamIjU1VfU+OTlZrxgNjpUzIiIiyoHeyZmtrS0WLlyIGTNmIDY2FgDg6+sLOzs7gweX1fPnz9G7d28sW7YMLi4uOk0THR2NqKioAo5MD6ycERERUQ70Ts6UHj58iIcPH6Jhw4awsbGBEAISiUSvebi4uEAqleLRo0dq7Y8ePYKbm5vG+LGxsbh9+zbatGmjalO87cy1WLFiuHr1Knx9fdWmGTt2rFo/bcnJyfD09NQrToNi5YyIiIhyoPc1Z0+fPkWzZs1QsWJFtGrVCg8fPgQA9O/fH59//rle87KyskJgYCAOHDigalMoFDhw4ACCg4M1xq9UqRIuXryIc+fOqV5t27ZFkyZNcO7cOa1Jl7W1NRwcHNReRsXKGREREeVA7+Rs5MiRsLS0RFxcHGxtbVXt3bp1w+7du/UOICIiAsuWLcOqVatw+fJlDBo0CCkpKQgPDwcA9OnTB2PHjgUAyGQyVKtWTe3l5OSE4sWLo1q1arCystJ7+e8cH35OREREOdD7tObevXuxZ88elC1bVq29QoUKuHPnjt4BdOvWDY8fP8bEiRMRHx+PmjVrYvfu3aqbBOLi4mBhYUaPAOXDz4mIiCgHeidnKSkpahUzpcTERFhbW+cpiCFDhmDIkCFahx06dCjHaVeuXJmnZRoNK2dERESUA71LUg0aNMDq1atV7yUSCRQKBaZPn44mTZoYNDizxBsCiIiIKAd6V86mT5+OZs2a4a+//kJaWhq++OIL/PPPP0hMTMTRo0cLIkbzwhsCiIiIKAd6V86qVauGa9euoX79+mjXrh1SUlLQsWNHnD17VqMbC9KClTMiIiLKQZ76OXN0dMT48eMNHUvRwMoZERER5SBPydmzZ89w8uRJJCQkqDqBVerTp49BAjNbrJwRERFRDvROzn755Rf06tULL168gIODg9pTASQSCZOz3LByRkRERDnQ+5qzzz//HP369cOLFy/w7Nkz/Pvvv6pXYmJiQcRoXjJXzoQwbixERERkcvROzu7fv49hw4Zp7euMdKCsnKWnA6mpxo2FiIiITI7eyVloaCj++uuvgoilaFAmZwCvOyMiIiINel9z1rp1a4wePRqXLl1C9erVYWlpqTa8bdu2BgvOLEmlgI0N8OpVxnVnLi7GjoiIiIhMiEQI/S58yuk5lxKJBHK5PN9BFaTk5GQ4OjoiKSkJDg4OxgnC1RVISADOnwcCAowTAxERUSFiEr/f74jelbOsXWdQHtjbZyRnPK1JREREWeh9zRkZAB9+TkRERNnQqXI2b948DBw4EDKZDPPmzctx3GHDhhkkMLPGjmiJiIgoGzolZ7Nnz0avXr0gk8kwe/bsbMeTSCRMznTBjmiJiIgoGzolZ7du3dL6f8ojVs6IiIgoG7zmzBhYOSMiIqJs5OnB5/fu3cPPP/+MuLg4pKWlqQ2bNWuWQQIza6ycERERUTb0Ts4OHDiAtm3bwsfHB1euXEG1atVw+/ZtCCHwf//3fwURo/lh5YyIiIiyofdpzbFjx2LUqFG4ePEiZDIZtmzZgrt376JRo0bo0qVLQcRoflg5IyIiomzonZxdvnwZffr0AQAUK1YMr169gr29PSZPnoxp06YZPECzxMoZERERZUPv5MzOzk51nZm7uztiY2NVw548eWK4yMwZK2dERESUDb2vOXv//ffxxx9/oHLlymjVqhU+//xzXLx4EVu3bsX7779fEDGaH1bOiIiIKBt6J2ezZs3Ci7cVn6ioKLx48QIbNmxAhQoVeKemrlg5IyIiomzonZz5+Pio/m9nZ4fFixcbNKAigZUzIiIiygY7oTUGPviciIiIsqFT5czZ2RkSiUSnGSYmJuYroCKBpzWJiIgoGzolZ3PmzCngMIoY5WnNV6+A9HSgWJ4e1EBERERmSKesICwsrKDjKFqUlTMASEkBHB2NFwsRERGZlDyVbORyObZt24bLly8DAKpUqYJ27dqhGCtAurGyyqiWpadnXHfG5IyIiIje0jub+ueff9C2bVvEx8fD398fADBt2jSUKlUKv/zyC6pVq2bwIM2ORJJRPfv3X153RkRERGr0vlvz448/RtWqVXHv3j2cOXMGZ86cwd27dxEQEICBAwcWRIzmid1pEBERkRZ6V87OnTuHv/76C87Ozqo2Z2dnfPPNN6hdu7ZBgzNrvGOTiIiItNC7claxYkU8evRIoz0hIQF+fn4GCapIYOWMiIiItNA7OYuOjsawYcOwefNm3Lt3D/fu3cPmzZsxYsQITJs2DcnJyaoX5YCVMyIiItJC79OaH374IQCga9euqo5phRAAgDZt2qjeSyQSyOVyQ8Vpflg5IyIiIi30Ts4OHjxYEHEUPaycERERkRZ6J2eNGjUqiDiKHlbOiIiISAu9rzmbNGkSFAqFRntSUhJ69OhhkKCKBD78nIiIiLTQOzn7/vvvUb9+fdy8eVPVdujQIVSvXh2xsbEGDc6s8bQmERERaaF3cnbhwgWULVsWNWvWxLJlyzB69Gg0b94cvXv3xrFjxwoiRvPE05pERESkhd7XnDk7O2Pjxo0YN24cPvnkExQrVgy7du1Cs2bNCiI+88XKGREREWmhd+UMAObPn4+5c+eiR48e8PHxwbBhw3D+/HlDx2beWDkjIiIiLfROzlq0aIGoqCisWrUKa9euxdmzZ9GwYUO8//77mD59ekHEaJ5YOSMiIiIt9E7O5HI5Lly4gM6dOwMAbGxssGjRImzevBmzZ882eIBmi5UzIiIi0kLva8727duntb1169a4ePFivgMqMlg5IyIiIi3ydM3Z77//jo8++gjBwcG4f/8+AGDNmjW4cuWKQYMza6ycERERkRZ6J2dbtmxBaGgobGxscPbsWaSmpgLI6IR26tSpBg/QbGWunL19NikRERGR3snZ119/jcWLF2PZsmWwtLRUtderVw9nzpwxaHBmTVk5UyiAV6+MGwsRERGZDL2Ts6tXr6Jhw4Ya7Y6Ojnj27JkhYioa7Oz++z+vOyMiIqK39E7O3NzccOPGDY32P/74Az4+PgYJqkiwsPgvQeN1Z0RERPSW3snZgAEDMHz4cJw4cQISiQQPHjzA2rVrMWrUKAwaNKggYjRffPg5ERERZaF3VxpjxoyBQqFAs2bN8PLlSzRs2BDW1tYYNWoUhg4dWhAxmq/ixYH4eJ7WJCIiIhW9kzOJRILx48dj9OjRuHHjBl68eIEqVarAXnmBO+mO3WkQERFRFnonZ0pWVlaoUqWKIWMpetgRLREREWWRp05oyUBYOSMiIqIsmJwZEytnRERElAWTM2Ni5YyIiIiyYHJmTKycERERURZMzoyJlTMiIiLKwiSSswULFsDb2xsymQxBQUE4efJktuMuW7YMDRo0gLOzM5ydnRESEpLj+CaNlTMiIiLKwujJ2YYNGxAREYHIyEicOXMGNWrUQGhoKBISErSOf+jQIfTo0QMHDx7E8ePH4enpiebNm+P+/fvvOHIDYOWMiIiIspAIIYQxAwgKCkLt2rURExMDAFAoFPD09MTQoUMxZsyYXKeXy+VwdnZGTEwM+vTpk+v4ycnJcHR0RFJSEhwcHPIdf76sWQP06QM0bw7s2WPcWIiIiEyYSf1+FzCjVs7S0tJw+vRphISEqNosLCwQEhKC48eP6zSPly9f4s2bNyhRokRBhVlwWDkjIiKiLPL8hABDePLkCeRyOVxdXdXaXV1dceXKFZ3m8eWXX8LDw0MtwcssNTUVqampqvfJycl5D9jQ+OBzIiIiysLo15zlx7fffosff/wR27Ztg0wm0zpOdHQ0HB0dVS9PT893HGUOeEMAERERZWHU5MzFxQVSqRSPHj1Sa3/06BHc3NxynHbmzJn49ttvsXfvXgQEBGQ73tixY5GUlKR63b171yCxGwRPaxIREVEWRk3OrKysEBgYiAMHDqjaFAoFDhw4gODg4Gynmz59OqZMmYLdu3ejVq1aOS7D2toaDg4Oai+TwcoZERERZWHUa84AICIiAmFhYahVqxbq1KmDOXPmICUlBeHh4QCAPn36oEyZMoiOjgYATJs2DRMnTsS6devg7e2N+Ph4AIC9vT3slZWowkIZb2oq8OYNYGlp3HiIiIjI6IyenHXr1g2PHz/GxIkTER8fj5o1a2L37t2qmwTi4uJgYfFfgW/RokVIS0tD586d1eYTGRmJSZMmvcvQ8y9zMvniBeDsbLxYiIiIyCQYvZ+zd83k+kmxtgbS0oA7d4By5YwdDRERkUkyud/vAlSo79Y0C7zujIiIiDJhcmZsvGOTiIiIMmFyZmysnBEREVEmTM6MjZUzIiIiyoTJmbGxckZERESZMDkzNlbOiIiIKBMmZ8bGyhkRERFlwuTM2JTJGStnREREBCZnxsfTmkRERJQJkzNj42lNIiIiyoTJmbGxckZERESZMDkzNlbOiIiIKBMmZ8bGyhkRERFlwuTM2Fg5IyIiokyYnBkbK2dERESUCZMzY2PljIiIiDJhcmZsrJwRERFRJkzOjE1ZOUtJARQK48ZCRERERsfkzNiUlTMhgJcvjRsLERERGR2TM2OztQUs3n4MvO6MiIioyGNyZmwSCa87IyIiIhUmZ6aAyRkRERG9xeTMFLA7DSIiInqLyZkpYOWMiIiI3mJyZgpYOSMiIqK3mJyZAlbOiIiI6C0mZ6aAlTMiIiJ6i8mZKWDljIiIiN5icmYKWDkjIiKit5icmQJWzoiIiOgtJmemgJUzIiIieovJmSlg5YyIiIjeYnJmClg5IyIioreYnJkCZXLGyhkREVGRx+TMFPC0JhEREb3F5MwU8LQmERERvcXkzBSwckZERERvMTkzBaycERER0VtMzkyBsnL25g2QmmrcWIiIiMiomJyZAmVyBrB6RkREVMQxOTMFxYoBMlnG/3ndGRERUZHG5MwUyOWAtXXG/w8ezHhPRERERRKTM2PbuhXw9gaSkjLe9+uX8X7rVmNGRUREREbC5MyYtm4FOncG7t1Tb79/P6OdCRoREVGRw+TMWORyYPhwQAjNYcq2ESN4ipOIiKiIYXJmLL//rlkxy0wI4O7djPGIiIioyGByZiwPHxp2PCIiIjILTM6Mxd3dsOMRERGRWWByZiwNGgBlywISSfbjeHpmjEdERERFBpMzY5FKgblzM/6fXYJWu3bGeERERFRkMDkzpo4dgc2bgTJl1NtLlMj4d+tWICbm3cdFRERERsPkzNg6dgRu3854MsC6dRn/JiQAU6ZkDB82LCOBIyIioiKhmLEDIGScumzcWL1t/HjgwQNg0SKgVy+gVCmgUSOjhEdERETvDitnpkoiAebPBzp0ANLSgHbtgIsXjR0VERERFTAmZ6ZMKgXWrgXq1ct49mbLlhkd0xIREZHZYnJm6mxsgJ9/BqpUyXjmZosWQGKisaMiIiKiAsLkrDAoUQLYvTvjrs5LlzJOcb56ZeyoiIiIqAAwOSssPD0zEjRHR+CPP4CePflQdCIiIjPE5KwwqVYN+OknwNoa2L4dGDo04wHpREREZDaYnBU2jRpl3CQgkWR0szF1akYF7dAhYP36jH9ZUSMiIiq0JEIUrdJLcnIyHB0dkZSUBAcHB2OHk3cxMRmVMwBwdgb+/fe/YWXLZjwaqmPH3OcjlwO//w48fJjxkPUGDfR7ZJQxp+eyi9ayC3PsXHbRWnZhjt3Y2y0HZvP7rQthAmJiYoSXl5ewtrYWderUESdOnMhx/I0bNwp/f39hbW0tqlWrJnbs2KHzspKSkgQAkZSUlN+wja9jRyEyTmyqvySSjNeWLTlPv2WLEGXLqk9btmzu05nC9Fx20Vp2YY6dyy5ayy7MsRt7u+XCrH6/c2H05OzHH38UVlZWYvny5eKff/4RAwYMEE5OTuLRo0daxz969KiQSqVi+vTp4tKlS+Krr74SlpaW4uLFizotz2w+3PR0zS9B1gTN0zNjPG22bMkYJz+JnbGm57KL1rILc+xcdtFadmGO3djbTQdm8/utA6Of1gwKCkLt2rUR8/YB3wqFAp6enhg6dCjGjBmjMX63bt2QkpKCX3/9VdX2/vvvo2bNmli8eHGuyzObsuihQ0CTJrmPV7p0Rmm5RImM058lSmTc8fm//2V0bKuNRJIx3a5dQLFiGe+VLwBQKIAPPgDi47Of3s0t4zmhxbQ8IUyhABo2zH36I0c0y+FyeUaZPLdpf/9deyldLgfq1899+j/+0L7s+vUzyvX6Tpvf6Yvqsgtz7Fx20Vp2YY79XSy7bFng1q18neI0m99vHRg1OUtLS4OtrS02b96M9u3bq9rDwsLw7Nkz/PTTTxrTlCtXDhERERgxYoSqLTIyEtu3b8f58+c1xk9NTUVqaqrqfXJyMjw9PQv/h7t+fUZ3GkRERIXBwYOaz5HWQ1FKzoz64PMnT55ALpfD1dVVrd3V1RVXrlzROk18fLzW8eOzqYRER0cjKirKMAGbEnd33cZbtAgoXz7jhoHExIx/jx0Ddu7MfVoHB0Am+69ADWT8+/o1kJKS+/QyGWBpqd4mBPDmDZApYc6WtXVG5S3z3w/p6RnPGs2NpaX2ql16esby8zK9PtNm99dlXqfPz7SFedn5nZ7L5rLf1bLzO31RWHZ2lTXSZMxzqvfv3xcAxLFjx9TaR48eLerUqaN1GktLS7Fu3Tq1tgULFojSpUtrHf/169ciKSlJ9bp79655nLNWXnOm7Rx/btecHTyY/bVqmV8HD2pftjGn57KL1rILc+xcdtFadmGO3djbTUdF6ZozGHPhqampQiqVim3btqm19+nTR7Rt21brNJ6enmL27NlqbRMnThQBAQE6LdOsPlzlBZhZE7TcLsDMT2Jn7Om57KK17MIcO5ddtJZdmGM39nbTkVn9fucCxg6gTp06YsiQIar3crlclClTRkRHR2sdv2vXruLDDz9UawsODhaffPKJTsszuw9X263Lnp6631mjb2JnCtNz2UVr2YU5di67aC27MMdu7O2mA7P7/c6B0ZOzH3/8UVhbW4uVK1eKS5cuiYEDBwonJycRHx8vhBCid+/eYsyYMarxjx49KooVKyZmzpwpLl++LCIjI4tmVxqZpadnlIvXrcv4V9e/TvKa2JnC9Fx20Vp2YY6dyy5ayy7MsRt7u+XCLH+/syERQgijXfD2VkxMDGbMmIH4+HjUrFkT8+bNQ1BQEACgcePG8Pb2xsqVK1Xjb9q0CV999RVu376NChUqYPr06WjVqpVOyypKd3voxNi9QRfWnqy5bO4vXDaXbY6xG3u75aAo/X6bRHL2LhWlD5eIiMhcFKXfbz74nIiIiMiEMDkjIiIiMiFMzoiIiIhMCJMzIiIiIhPC5IyIiIjIhDA5IyIiIjIhTM6IiIiITAiTMyIiIiITwuSMiIiIyIQUM3YA75rygQjJyclGjoSIiIh0pfzdLgoPNipyydnz588BAJ6enkaOhIiIiPT1/PlzODo6GjuMAlXknq2pUCjw4MEDFC9eHBKJRG1YcnIyPD09cffuXbN/bpchcbvlDbdb3nC76Y/bLG+43fKmoLabEALPnz+Hh4cHLCzM+6qsIlc5s7CwQNmyZXMcx8HBgV/EPOB2yxtut7zhdtMft1necLvlTUFsN3OvmCmZd+pJREREVMgwOSMiIiIyIUzOMrG2tkZkZCSsra2NHUqhwu2WN9xuecPtpj9us7zhdssbbrf8K3I3BBARERGZMlbOiIiIiEwIkzMiIiIiE8LkjIiIiMiEMDkjIiIiMiFMzjJZsGABvL29IZPJEBQUhJMnTxo7JJM2adIkSCQStVelSpWMHZbJOXLkCNq0aQMPDw9IJBJs375dbbgQAhMnToS7uztsbGwQEhKC69evGydYE5HbNuvbt6/GvteiRQvjBGsioqOjUbt2bRQvXhylS5dG+/btcfXqVbVxXr9+jcGDB6NkyZKwt7dHp06d8OjRIyNFbBp02W6NGzfW2N8+/fRTI0VsGhYtWoSAgABVR7PBwcHYtWuXajj3tfxhcvbWhg0bEBERgcjISJw5cwY1atRAaGgoEhISjB2aSatatSoePnyoev3xxx/GDsnkpKSkoEaNGliwYIHW4dOnT8e8efOwePFinDhxAnZ2dggNDcXr16/fcaSmI7dtBgAtWrRQ2/fWr1//DiM0PYcPH8bgwYPx559/Yt++fXjz5g2aN2+OlJQU1TgjR47EL7/8gk2bNuHw4cN48OABOnbsaMSojU+X7QYAAwYMUNvfpk+fbqSITUPZsmXx7bff4vTp0/jrr7/QtGlTtGvXDv/88w8A7mv5JkgIIUSdOnXE4MGDVe/lcrnw8PAQ0dHRRozKtEVGRooaNWoYO4xCBYDYtm2b6r1CoRBubm5ixowZqrZnz54Ja2trsX79eiNEaHqybjMhhAgLCxPt2rUzSjyFRUJCggAgDh8+LITI2K8sLS3Fpk2bVONcvnxZABDHjx83VpgmJ+t2E0KIRo0aieHDhxsvqELC2dlZ/O9//+O+ZgCsnAFIS0vD6dOnERISomqzsLBASEgIjh8/bsTITN/169fh4eEBHx8f9OrVC3FxccYOqVC5desW4uPj1fY9R0dHBAUFcd/LxaFDh1C6dGn4+/tj0KBBePr0qbFDMilJSUkAgBIlSgAATp8+jTdv3qjta5UqVUK5cuW4r2WSdbsprV27Fi4uLqhWrRrGjh2Lly9fGiM8kySXy/Hjjz8iJSUFwcHB3NcMoMg9+FybJ0+eQC6Xw9XVVa3d1dUVV65cMVJUpi8oKAgrV66Ev78/Hj58iKioKDRo0AB///03ihcvbuzwCoX4+HgA0LrvKYeRphYtWqBjx44oX748YmNjMW7cOLRs2RLHjx+HVCo1dnhGp1AoMGLECNSrVw/VqlUDkLGvWVlZwcnJSW1c7mv/0bbdAKBnz57w8vKCh4cHLly4gC+//BJXr17F1q1bjRit8V28eBHBwcF4/fo17O3tsW3bNlSpUgXnzp3jvpZPTM4oz1q2bKn6f0BAAIKCguDl5YWNGzeif//+RoyMzF337t1V/69evToCAgLg6+uLQ4cOoVmzZkaMzDQMHjwYf//9N68B1VN2223gwIGq/1evXh3u7u5o1qwZYmNj4evr+67DNBn+/v44d+4ckpKSsHnzZoSFheHw4cPGDsss8LQmABcXF0ilUo07SR49egQ3NzcjRVX4ODk5oWLFirhx44axQyk0lPsX97388fHxgYuLC/c9AEOGDMGvv/6KgwcPomzZsqp2Nzc3pKWl4dmzZ2rjc1/LkN120yYoKAgAivz+ZmVlBT8/PwQGBiI6Oho1atTA3Llzua8ZAJMzZOxggYGBOHDggKpNoVDgwIEDCA4ONmJkhcuLFy8QGxsLd3d3Y4dSaJQvXx5ubm5q+15ycjJOnDjBfU8P9+7dw9OnT4v0vieEwJAhQ7Bt2zb89ttvKF++vNrwwMBAWFpaqu1rV69eRVxcXJHe13LbbtqcO3cOAIr0/qaNQqFAamoq9zUD4GnNtyIiIhAWFoZatWqhTp06mDNnDlJSUhAeHm7s0EzWqFGj0KZNG3h5eeHBgweIjIyEVCpFjx49jB2aSXnx4oXaX9i3bt3CuXPnUKJECZQrVw4jRozA119/jQoVKqB8+fKYMGECPDw80L59e+MFbWQ5bbMSJUogKioKnTp1gpubG2JjY/HFF1/Az88PoaGhRozauAYPHox169bhp59+QvHixVXX9jg6OsLGxgaOjo7o378/IiIiUKJECTg4OGDo0KEIDg7G+++/b+TojSe37RYbG4t169ahVatWKFmyJC5cuICRI0eiYcOGCAgIMHL0xjN27Fi0bNkS5cqVw/Pnz7Fu3TocOnQIe/bs4b5mCMa+XdSUzJ8/X5QrV05YWVmJOnXqiD///NPYIZm0bt26CXd3d2FlZSXKlCkjunXrJm7cuGHssEzOwYMHBQCNV1hYmBAiozuNCRMmCFdXV2FtbS2aNWsmrl69atygjSynbfby5UvRvHlzUapUKWFpaSm8vLzEgAEDRHx8vLHDNipt2wuAWLFihWqcV69eic8++0w4OzsLW1tb0aFDB/Hw4UPjBW0CcttucXFxomHDhqJEiRLC2tpa+Pn5idGjR4ukpCTjBm5k/fr1E15eXsLKykqUKlVKNGvWTOzdu1c1nPta/kiEEOJdJoNERERElD1ec0ZERERkQpicEREREZkQJmdEREREJoTJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkT0DvTt27dIP5KLiHTH5IyIiIjIhDA5IyI1jRs3xrBhw/DFF1+gRIkScHNzw6RJk3Kdbvny5ahatSqsra3h7u6OIUOGqIbFxcWhXbt2sLe3h4ODA7p27YpHjx6phk+aNAk1a9bE8uXLUa5cOdjb2+Ozzz6DXC7H9OnT4ebmhtKlS+Obb75RW6ZEIsGiRYvQsmVL2NjYwMfHB5s3b1Yb5+LFi2jatClsbGxQsmRJDBw4EC9evFANV1a0Zs6cCXd3d5QsWRKDBw/GmzdvVOOkpqZi1KhRKFOmDOzs7BAUFIRDhw6phq9cuRJOTk7Ys2cPKleuDHt7e7Ro0QIPHz5Urd+qVavw008/QSKRQCKR4NChQ0hLS8OQIUPg7u4OmUwGLy8vREdH6/Q5EZH5YnJGRBpWrVoFOzs7nDhxAtOnT8fkyZOxb9++bMdftGgRBg8ejIEDB+LixYv4+eef4efnBwBQKBRo164dEhMTcfjwYezbtw83b95Et27d1OYRGxuLXbt2Yffu3Vi/fj2+//57tG7dGvfu3cPhw4cxbdo0fPXVVzhx4oTadBMmTECnTp1w/vx59OrVC927d8fly5cBACkpKQgNDYWzszNOnTqFTZs2Yf/+/WqJIwAcPHgQsbGxOHjwIFatWoWVK1di5cqVquFDhgzB8ePH8eOPP+LChQvo0qULWrRogevXr6vGefnyJWbOnIk1a9bgyJEjiIuLw6hRowAAo0aNQteuXVUJ28OHD1G3bl3MmzcPP//8MzZu3IirV69i7dq18Pb21vvzIiIzY+wnrxORaWnUqJGoX7++Wlvt2rXFl19+me00Hh4eYvz48VqH7d27V0ilUhEXF6dq++effwQAcfLkSSGEEJGRkcLW1lYkJyerxgkNDRXe3t5CLper2vz9/UV0dLTqPQDx6aefqi0vKChIDBo0SAghxNKlS4Wzs7N48eKFaviOHTuEhYWFiI+PF0IIERYWJry8vER6erpqnC5duohu3boJIYS4c+eOkEql4v79+2rLadasmRg7dqwQQogVK1YIAOLGjRuq4QsWLBCurq6q92FhYaJdu3Zq8xg6dKho2rSpUCgUWrcdERVNrJwRkYaAgAC19+7u7khISNA6bkJCAh48eIBmzZppHX758mV4enrC09NT1ValShU4OTmpKlwA4O3tjeLFi6veu7q6okqVKrCwsFBryxpHcHCwxnvlfC9fvowaNWrAzs5ONbxevXpQKBS4evWqqq1q1aqQSqVa1/fixYuQy+WoWLEi7O3tVa/Dhw8jNjZWNY2trS18fX21ziM7ffv2xblz5+Dv749hw4Zh7969OY5PREVDMWMHQESmx9LSUu29RCKBQqHQOq6NjU2BLVOfOAy9bOVyXrx4AalUitOnT6slcABgb2+f4zyEEDku9//+7/9w69Yt7Nq1C/v370fXrl0REhKicd0cERUtrJwRUb4UL14c3t7eOHDggNbhlStXxt27d3H37l1V26VLl/Ds2TNUqVIl38v/888/Nd5XrlxZtezz588jJSVFNfzo0aOwsLCAv7+/TvN/7733IJfLkZCQAD8/P7WXm5ubznFaWVlBLpdrtDs4OKBbt25YtmwZNmzYgC1btiAxMVHn+RKR+WFyRkT5NmnSJHz33XeYN28erl+/jjNnzmD+/PkAgJCQEFSvXh29evXCmTNncPLkSfTp0weNGjVCrVq18r3sTZs2Yfny5bh27RoiIyNx8uRJ1QX/vXr1gkwmQ1hYGP7++28cPHgQQ4cORe/eveHq6qrT/CtWrIhevXqhT58+2Lp1K27duoWTJ08iOjoaO3bs0DlOb29vXLhwAVevXsWTJ0/w5s0bzJo1C+vXr8eVK1dw7do1bNq0CW5ubnBycsrLpiAiM8HkjIjyLSwsDHPmzMHChQtRtWpVfPjhh6o7GSUSCX766Sc4OzujYcOGCAkJgY+PDzZs2GCQZUdFReHHH39EQEAAVq9ejfXr16sqcra2ttizZw8SExNRu3ZtdO7cGc2aNUNMTIxey1ixYgX69OmDzz//HP7+/mjfvj1OnTqFcuXK6TyPAQMGwN/fH7Vq1UKpUqVw9OhRFC9eHNOnT0etWrVQu3Zt3L59Gzt37lS7zo6Iih6JyO2iCCIiEyWRSLBt2zb2vE9EZoV/nhERERGZECZnRERERCaEXWkQUaHFqzKIyByxckZERERkQpicEREREZkQJmdEREREJoTJGREREZEJYXJGREREZEKYnBERERGZECZnRERERCaEyRkRERGRCWFyRkRERGRC/h/fG6fh5NTwwwAAAABJRU5ErkJggg==\n"
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 194,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "PPOGb3m22t0h",
- "outputId": "17b942fe-602e-4fbb-b831-1e02488bb0d9"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.98 0.98 0.98 526\n",
- " Red Blend 0.76 0.74 0.75 742\n",
- " Sangiovese 0.62 0.64 0.63 457\n",
- "\n",
- " accuracy 0.79 1725\n",
- " macro avg 0.78 0.79 0.78 1725\n",
- "weighted avg 0.79 0.79 0.79 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
- " 'max_depth': [5, 10, None],\n",
- "}\n",
- "clf = DecisionTreeClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_pca, Y_train)\n",
- "y_pred_dtc_pca = grid_search_clf.predict(X_test_pca)\n",
- "\n",
- "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_dtc_pca))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "BBCSipxwINo7"
- },
- "source": [
- "Видим, что после уменьшения размерности с помощью PCA модель неплохо справляется с предсказанием."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 195,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "KXjsGlcsg01u",
- "outputId": "54d80349-e02d-448e-fb56-93d05eb49a55"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for SGDClassifier: {'loss': 'hinge', 'max_iter': 100}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.97 0.98 0.97 526\n",
- " Red Blend 0.67 0.83 0.74 742\n",
- " Sangiovese 0.59 0.35 0.44 457\n",
- "\n",
- " accuracy 0.75 1725\n",
- " macro avg 0.74 0.72 0.72 1725\n",
- "weighted avg 0.74 0.75 0.73 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
- " 'max_iter': [100, 200, 400, 800, 1000]\n",
- "}\n",
- "clf = SGDClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_pca, Y_train)\n",
- "y_pred_sgdc_pca = grid_search_clf.predict(X_test_pca)\n",
- "\n",
- "\n",
- "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_sgdc_pca))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "kign9MkOJcdI"
- },
- "source": [
- "Такая модель так же неплохо справляется с предсказанием, но все же менее точно чем DecisionTreeClassifier."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 196,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "S1CpDRTxhLBG",
- "outputId": "95ece058-e7fd-4992-90bf-b471c88e23ff"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.85 0.93 0.88 526\n",
- " Red Blend 0.62 0.86 0.72 742\n",
- " Sangiovese 0.67 0.18 0.28 457\n",
- "\n",
- " accuracy 0.70 1725\n",
- " macro avg 0.71 0.65 0.63 1725\n",
- "weighted avg 0.70 0.70 0.65 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "clf = SVC()\n",
- "clf.fit(X_train_pca, Y_train)\n",
- "y_pred_svc_pca = clf.predict(X_test_pca)\n",
- "\n",
- "print(classification_report(Y_test, y_pred_svc_pca))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "oFIv_FUSHPFg"
- },
- "source": [
- "Такая модель неплохо справляется с предсказанием для Nebbiolo и Red Blend, но для Sngiovese предсказание получется слишком неточным, следовательно, общая точность модели достаточно низкая."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "kEYXLr8sJzql"
- },
- "source": [
- "# t-SNE"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 197,
- "metadata": {
- "id": "5EYwtlZrkyTV",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "42e116c4-e1d5-463c-de88-3b2ac96199c9"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "array([[ 8.697849 , 56.422546 ],\n",
- " [ 85.46976 , -6.209872 ],\n",
- " [-91.522644 , 3.429889 ],\n",
- " ...,\n",
- " [-31.943085 , 35.00665 ],\n",
- " [ 5.8764524, -20.747879 ],\n",
- " [-89.09723 , 19.900454 ]], dtype=float32)"
- ]
- },
- "metadata": {},
- "execution_count": 197
- }
- ],
- "source": [
- "tsne = TSNE(random_state=42)\n",
- "X_train_tsne = tsne.fit_transform(X_train_lbe)\n",
- "X_test_tsne = tsne.fit_transform(X_test_lbe)\n",
- "X_train_tsne"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 200,
- "metadata": {
- "id": "5iL9lCiGlnjH",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "d4e4d501-cff9-4417-9fc1-622c61907242"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.28 0.19 0.22 526\n",
- " Red Blend 0.42 0.35 0.38 742\n",
- " Sangiovese 0.30 0.49 0.37 457\n",
- "\n",
- " accuracy 0.34 1725\n",
- " macro avg 0.33 0.34 0.33 1725\n",
- "weighted avg 0.35 0.34 0.33 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
- " 'max_depth': [5, 10, None],\n",
- "}\n",
- "clf = DecisionTreeClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_tsne, Y_train)\n",
- "y_pred_dtc_tsne = grid_search_clf.predict(X_test_tsne)\n",
- "\n",
- "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_dtc_tsne))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "3dEtGnIkJ5kH"
- },
- "source": [
- "Модель предсказывает данные с очень низкой точностью, после применения t-SNE."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 201,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "shg3-6ZAzWVV",
- "outputId": "035d4ce7-1c79-43e2-d0de-32b74d562176"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for SGDClassifier: {'loss': 'modified_huber', 'max_iter': 100}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.29 0.37 0.32 526\n",
- " Red Blend 0.42 0.59 0.49 742\n",
- " Sangiovese 0.00 0.00 0.00 457\n",
- "\n",
- " accuracy 0.37 1725\n",
- " macro avg 0.24 0.32 0.27 1725\n",
- "weighted avg 0.27 0.37 0.31 1725\n",
- "\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_stochastic_gradient.py:744: ConvergenceWarning:\n",
- "\n",
- "Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
- " 'max_iter': [100, 200, 400, 800, 1000]\n",
- "}\n",
- "clf = SGDClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_tsne, Y_train)\n",
- "y_pred_sgdc_tsne = grid_search_clf.predict(X_test_tsne)\n",
- "\n",
- "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_sgdc_tsne))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "uIuYXlGsKDT9"
- },
- "source": [
- "После t-SNE точность модели сильно снизилась."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 202,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "mS7KSWX9zYB-",
- "outputId": "255f5776-375a-4bc6-da15-3533a8e04dc9"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.38 0.55 0.45 526\n",
- " Red Blend 0.46 0.59 0.52 742\n",
- " Sangiovese 0.00 0.00 0.00 457\n",
- "\n",
- " accuracy 0.42 1725\n",
- " macro avg 0.28 0.38 0.32 1725\n",
- "weighted avg 0.31 0.42 0.36 1725\n",
- "\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n",
- "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1531: UndefinedMetricWarning:\n",
- "\n",
- "Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "clf = SVC()\n",
- "clf.fit(X_train_tsne, Y_train)\n",
- "y_pred_svc_tsne = clf.predict(X_test_tsne)\n",
- "\n",
- "print(classification_report(Y_test, y_pred_svc_tsne))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "_o6olr86LPuk"
- },
- "source": [
- "После t-SNE у точность модели сильно снизилась."
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "# StandartScaler"
- ],
- "metadata": {
- "id": "c5HYyaDQk_FA"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "from sklearn.preprocessing import StandardScaler"
- ],
- "metadata": {
- "id": "8_5pvsWylDf7"
- },
- "execution_count": 203,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "scaler = StandardScaler()\n",
- "X_train_scal = scaler.fit_transform(X_train_lbe)\n",
- "X_test_scal = scaler.transform(X_test_lbe)\n",
- "X_train_scal"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "6_FpArVPlRmC",
- "outputId": "cdbcd123-c798-4082-9b35-3a211947ce67"
- },
- "execution_count": 204,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "array([[ 0.64223813, 0.1020881 , -0.79932341, 0.29019682, -0.24042572],\n",
- " [-0.83935434, -0.15453387, 0.68902728, 1.6211048 , 0.17319704],\n",
- " [-0.83935434, -0.7475537 , 1.18514418, -1.6511276 , 0.17319704],\n",
- " ...,\n",
- " [-0.46895622, -0.67472726, 0.68902728, -0.16611449, 0.58681979],\n",
- " [-0.46895622, -0.79610466, 0.68902728, 0.77652861, 0.38000841],\n",
- " [-1.20975246, -0.84465562, -0.30320652, -1.58107982, 0.27660272]])"
- ]
- },
- "metadata": {},
- "execution_count": 204
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 205,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "2d0bd8a9-07b1-435d-bff5-ce0aee53b692",
- "id": "Ooxr06_ll6xq"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for DecisionTreeClassifier: {'criterion': 'entropy', 'max_depth': None}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.99 0.98 0.99 526\n",
- " Red Blend 0.80 0.80 0.80 742\n",
- " Sangiovese 0.69 0.71 0.70 457\n",
- "\n",
- " accuracy 0.83 1725\n",
- " macro avg 0.83 0.83 0.83 1725\n",
- "weighted avg 0.83 0.83 0.83 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'criterion': ('entropy', 'gini', 'log_loss'),\n",
- " 'max_depth': [5, 10, None],\n",
- "}\n",
- "clf = DecisionTreeClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_scal, Y_train)\n",
- "y_pred_dtc_scal= grid_search_clf.predict(X_test_scal)\n",
- "\n",
- "print(\"best parameters for DecisionTreeClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_dtc_scal))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "CqRCrNacl6xs"
- },
- "source": [
- "Модель предсказывает данные с неплохой точностью, после применения масштабирования."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 207,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "517356ec-5a3b-408c-c7fa-b1ce76633ec4",
- "id": "zwAM4RXNl6xt"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "best parameters for SGDClassifier: {'loss': 'hinge', 'max_iter': 100}\n",
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.79 1.00 0.88 526\n",
- " Red Blend 0.59 0.80 0.68 742\n",
- " Sangiovese 0.49 0.07 0.12 457\n",
- "\n",
- " accuracy 0.67 1725\n",
- " macro avg 0.63 0.62 0.56 1725\n",
- "weighted avg 0.63 0.67 0.59 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "param_grid_clf = {\n",
- " 'loss': ['hinge', 'log_loss', 'modified_huber', 'squared_error'],\n",
- " 'max_iter': [100, 200, 400, 800, 1000]\n",
- "}\n",
- "clf = SGDClassifier(random_state=42)\n",
- "grid_search_clf = GridSearchCV(clf, param_grid_clf, n_jobs=-1, scoring='accuracy')\n",
- "grid_search_clf.fit(X_train_scal, Y_train)\n",
- "y_pred_sgdc_scal = grid_search_clf.predict(X_test_scal)\n",
- "\n",
- "print(\"best parameters for SGDClassifier:\", grid_search_clf.best_params_)\n",
- "print(classification_report(Y_test, y_pred_sgdc_scal))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "plhnClvOl6xu"
- },
- "source": [
- "Точность модели для Nebbiolo и Red Blend неплохая, но для Sangiovese предсказания очень неточные.\n",
- "\n",
- "Общая точность модели довольно низкая."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 208,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "eb870630-4335-4f98-8c5d-a6753e1a8af8",
- "id": "FFtQnBr-l6xv"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " precision recall f1-score support\n",
- "\n",
- " Nebbiolo 0.95 1.00 0.97 526\n",
- " Red Blend 0.70 0.80 0.75 742\n",
- " Sangiovese 0.63 0.44 0.52 457\n",
- "\n",
- " accuracy 0.77 1725\n",
- " macro avg 0.76 0.75 0.75 1725\n",
- "weighted avg 0.76 0.77 0.76 1725\n",
- "\n"
- ]
- }
- ],
- "source": [
- "clf = SVC()\n",
- "clf.fit(X_train_scal, Y_train)\n",
- "y_pred_svc_scal = clf.predict(X_test_scal)\n",
- "\n",
- "print(classification_report(Y_test, y_pred_svc_scal))"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "После масштабирования данных модель SVC показала себя лучше чем на предыдущих вариантах. Такую точность можно так же считать неплохой."
- ],
- "metadata": {
- "id": "00bHBluAnIjq"
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Графики и сравнения моделей"
- ],
- "metadata": {
- "id": "b6p5JvSinblz"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "fig, axes = plt.subplots(5, 3, figsize=(20, 30))\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_gd), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])\n",
- "axes[0, 0].set_title('confusion_matrix for DecisionTree after get_dummies')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 0])\n",
- "axes[1, 0].set_title('confusion_matrix for DecisionTree after LabelEncoder')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 1])\n",
- "axes[1, 1].set_title('confusion_matrix for SGDClassifier after LabelEncoder')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_lbe), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[1, 2])\n",
- "axes[1, 2].set_title('confusion_matrix for SVC after LabelEncoder')\n",
- "\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 0])\n",
- "axes[2, 0].set_title('confusion_matrix for DecisionTree after PCA')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 1])\n",
- "axes[2, 1].set_title('confusion_matrix for SGDClassifier after PCA')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_pca), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[2, 2])\n",
- "axes[2, 2].set_title('confusion_matrix for SVC after PCA')\n",
- "\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 0])\n",
- "axes[3, 0].set_title('confusion_matrix for DecisionTree after t-SNE')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 1])\n",
- "axes[3, 1].set_title('confusion_matrix for SGDClassifier after t-SNE')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_tsne), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[3, 2])\n",
- "axes[3, 2].set_title('confusion_matrix for SVC after t-SNE')\n",
- "\n",
- "\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_dtc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 0])\n",
- "axes[4, 0].set_title('confusion_matrix for DecisionTree after SandartScaler')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_sgdc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 1])\n",
- "axes[4, 1].set_title('confusion_matrix for SGDClassifier after SandartScaler')\n",
- "\n",
- "sns.heatmap(confusion_matrix(Y_test, y_pred_svc_scal), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[4, 2])\n",
- "axes[4, 2].set_title('confusion_matrix for SVC after SandartScaler')\n",
- "\n",
- "plt.tight_layout()\n",
- "plt.show()\n"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "id": "nETXJ9qLfdei",
- "outputId": "c2ec037a-9c8c-410e-d4c4-e6edef85053b"
- },
- "execution_count": 223,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAuuCAYAAABGADMTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gV1cE/8O9dytIXUFmwYokFa8SoxBpFiS0aW/Q1isYSFTVKYgyJsSuJSewtmsQWTSxRX3tDTWLEhtEf9i6KAiLCUhfYvb8/eFldKYqyu9fL5/M88zzeM2dmzlxmr/PMme85hWKxWAwAAAAAAAAAlKmKlm4AAAAAAAAAADQlHeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jAAAAAAAAAJQ1HeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jAAAAAAAAAJQ1HeMAAAAAAAAAlDUd4wAAAAAAAACUNR3jTeTaa6/NmmuumTZt2qRr166Lff+nnHJKCoXCYt9vOXn77bdTKBRy1VVXLbZ9PvXUU/n2t7+djh07plAo5Nlnn11s+y5FhUIhp5xyyiJtc+CBB6Z3795N0p5y9Nprr2X77bdPVVVVCoVCbrvttpZuUsl65JFHUigU8sgjj7R0U74UfxsAAAAAANBydIw3gZdffjkHHnhgVl111VxxxRW5/PLLW7pJX3t33333InfQLm6zZs3KXnvtlQkTJuTcc8/Ntddem5VWWqnJjje3E3DuUllZmerq6my99dY566yz8uGHHzbZsUvZp7+ThS1fl87TgQMHZuTIkTnzzDNz7bXXZqONNsr111+f8847r6Wb9pVMmzYtp5xyytfm3wEAAAAAAChvhWKxWGzpRpSbyy67LEcccURee+21rLbaak1yjNmzZ2f27Nlp165dk+y/1Bx11FG5+OKLsyiXa7FYTG1tbdq0aZNWrVp95Ta8/PLLWWuttXLFFVfkkEMO+cr7+zyPPPJIvvOd7+SYY47Jt771rdTV1eXDDz/MY489ljvuuCNVVVW58cYbs8022zRZG2bMmJHWrVundevWX3ibWbNmpb6+PpWVlU3Spr/+9a+NPl9zzTV54IEHcu211zYq32677VJdXd0kbVhcpk+fng4dOuRXv/pVzjjjjIbynXfeOc8//3zefvvtlmvcVzR+/Pgss8wyOfnkkxfbSy1z/yYefvjhbL311otln82pqf82AAAAAACABfvivV18YePGjUuSJhlCfa5F7axcksyePTv19fVp27btYn1xoCn+XadOnZqOHTsutM4WW2yRPffcs1HZc889l+233z577LFHXnzxxfTq1WuxtenTvsz316ZNmyZoySd++MMfNvr8+OOP54EHHpin/LOmTZuWDh06NGXTFtnc1H9T/lbMVV9fn5kzZy4xL9OUoqb+2wAAAAAAABas7IdSHz16dA4++OAsu+yyqayszMorr5wjjjgiM2fObKjz5ptvZq+99kr37t3ToUOHbLrpprnrrrsa7WfusNY33nhjzjzzzCy//PJp165dtt1227z++usN9Xr37p2TTz45SbLMMss0mqN5QfM19+7dOwceeGDD51mzZuXUU0/NN77xjbRr1y5LLbVUNt988zzwwAMNdeY3x/js2bNz+umnZ9VVV01lZWV69+6dX/7yl6mtrZ3neDvvvHMeffTRbLzxxmnXrl1WWWWVXHPNNYv03c49p6OOOio33XRT+vTpk/bt26dfv34ZOXJkkuSPf/xjVltttbRr1y5bb731PAnYf//739lrr72y4oorprKyMiussEKOO+64TJ8+vaHOgQcemIsvvrjheHOX5JN5xH//+9/nvPPOazj3F198cZ45xseNG5dlllkmW2+9daPk+euvv56OHTvmBz/4wQLP88ADD8xWW22VJNlrr71SKBQaJVYfeuihbLHFFunYsWO6du2aXXfdNS+99FKjfcz9N3vxxRfzP//zP+nWrVs233zzRfvC/8/666+f8847LxMnTsxFF13UaN3o0aPzox/9KNXV1amsrMzaa6+dv/zlL/PsY8aMGTnllFOy+uqrp127dunVq1d23333vPHGGw11PnvNTp48Occee2x69+6dysrK9OjRI9ttt12eeeaZRt/VZ+dRnjp1an76059mhRVWSGVlZdZYY438/ve/n2cEgLnX02233ZZ11lmnof333nvvIn0/W2+9ddZZZ52MGDEiW265ZTp06JBf/vKXSZLa2tqcfPLJWW211RquuZ///Ofz/J0kc9Lpffv2Tfv27dO9e/fss88+effddz/3+O+8806OPPLIrLHGGmnfvn2WWmqp7LXXXo2u/1NOOaVhKP7jjz8+hUIhvXv3ztZbb5277ror77zzTsO1/unv84u2f+53ed1112XttddOZWXlQr/H+vr6nHLKKVl22WXToUOHfOc738mLL744z+9TkkycODHHHntsw7/naqutlt/+9repr69PMufvcplllkmSnHrqqQ3nsSjJ8ffeey+77bZbOnbsmB49euS4446b77/R/NqXzLkGPv03+unf8FNPPTXLLbdcOnfunD333DOTJk1KbW1tjj322PTo0SOdOnXKQQcdtMDv9Mv+3s3vb6O+vj7nnXde1l577bRr1y7V1dX58Y9/nI8//rhRvaeffjoDBgzI0ksvnfbt22fllVfOj370oy/8fQIAAAAAwJKurCPH77//fjbeeONMnDgxhx12WNZcc82MHj06N998c6ZNm5a2bdtm7Nix+fa3v51p06blmGOOyVJLLZWrr7463/ve93LzzTfn+9//fqN9/uY3v0lFRUV+9rOfZdKkSTn77LOz33775YknnkiSnHfeebnmmmty66235tJLL02nTp2y3nrrLVK7TznllAwdOjSHHHJINt5449TU1OTpp5/OM888k+22226B2x1yyCG5+uqrs+eee+anP/1pnnjiiQwdOjQvvfRSbr311kZ1X3/99ey55545+OCDM3DgwPzlL3/JgQcemL59+2bttddepPb++9//zu23355BgwYlSYYOHZqdd945P//5z3PJJZfkyCOPzMcff5yzzz47P/rRj/LQQw81bHvTTTdl2rRpOeKII7LUUkvlySefzIUXXpj33nsvN910U5Lkxz/+cd5///35Dpc915VXXpkZM2bksMMOS2VlZbp3797QSTdXjx49cumll2avvfbKhRdemGOOOSb19fU58MAD07lz51xyySULPMcf//jHWW655XLWWWc1DG0+d5juBx98MDvssENWWWWVnHLKKZk+fXouvPDCbLbZZnnmmWfm6Qjba6+98o1vfCNnnXXWIg0N/1lz//3uv//+nHnmmUmSsWPHZtNNN23owFtmmWVyzz335OCDD05NTU2OPfbYJEldXV123nnnDBs2LPvss09+8pOfZPLkyXnggQfy/PPPZ9VVV53vMQ8//PDcfPPNOeqoo9KnT5989NFHefTRR/PSSy9lww03nO82xWIx3/ve9/Lwww/n4IMPzgYbbJD77rsvxx9/fEaPHp1zzz23Uf1HH300t9xyS4488sh07tw5F1xwQfbYY4+MGjUqSy211Bf+fj766KPssMMO2WefffLDH/4w1dXVqa+vz/e+9708+uijOeyww7LWWmtl5MiROffcc/Pqq6/mtttua9j+zDPPzK9//evsvffeOeSQQ/Lhhx/mwgsvzJZbbpn//ve/C015P/XUU3nssceyzz77ZPnll8/bb7+dSy+9NFtvvXVefPHFdOjQIbvvvnu6du2a4447Lvvuu2923HHHdOrUKR07dsykSZPy3nvvNXw3nTp1SpJFan8y54WNG2+8MUcddVSWXnrpea7FTxsyZEjOPvvs7LLLLhkwYECee+65DBgwIDNmzGhUb9q0adlqq60yevTo/PjHP86KK66Yxx57LEOGDMkHH3yQ8847L8sss0wuvfTSHHHEEfn+97+f3XffPUm+8G/h9OnTs+2222bUqFE55phjsuyyy+baa69t9NvxZQ0dOjTt27fPL37xi7z++uu58MIL06ZNm1RUVOTjjz/OKaeckscffzxXXXVVVl555Zx00kmNtv8qv3fz8+Mf/zhXXXVVDjrooBxzzDF56623ctFFF+W///1v/vOf/6RNmzYZN25ctt9++yyzzDL5xS9+ka5du+btt9/OLbfc8pW/DwAAAAAAWGIUy9gBBxxQrKioKD711FPzrKuvry8Wi8XiscceW0xS/Pe//92wbvLkycWVV1652Lt372JdXV2xWCwWH3744WKS4lprrVWsra1tqHv++ecXkxRHjhzZUHbyyScXkxQ//PDDRsdMUjz55JPnactKK61UHDhwYMPn9ddfv7jTTjst9NzmHmOuZ599tpikeMghhzSq97Of/ayYpPjQQw81Ol6S4r/+9a+GsnHjxhUrKyuLP/3pTxd63M9KUqysrCy+9dZbDWV//OMfi0mKPXv2LNbU1DSUDxkypJikUd1p06bNs8+hQ4cWC4VC8Z133mkoGzRoUHF+l+tbb71VTFLs0qVLcdy4cfNdd+WVVzYq33fffYsdOnQovvrqq8Xf/e53xSTF22677XPPde41cNNNNzUq32CDDYo9evQofvTRRw1lzz33XLGioqJ4wAEHNJTN/Tfbd999P/dYCzvep62//vrFbt26NXw++OCDi7169SqOHz++Ub199tmnWFVV1fB9/+UvfykmKZ5zzjnz7HPu30axOO81W1VVVRw0aNBC2z1w4MDiSiut1PD5tttuKyYpnnHGGY3q7bnnnsVCoVB8/fXXGx2vbdu2jcqee+65YpLihRdeON/jze/a2GqrrYpJipdddlmj8muvvbZYUVHR6O+9WCwWL7vssmKS4n/+859isVgsvv3228VWrVoVzzzzzEb1Ro4cWWzduvU85Z81v+t6+PDhxSTFa665pqFs7jX6u9/9rlHdnXbaqdF3uKjtLxbnfJcVFRXFF154YaFtLRaLxTFjxhRbt25d3G233RqVn3LKKcUkjX6fTj/99GLHjh2Lr776aqO6v/jFL4qtWrUqjho1qlgsFosffvjhAn/zPs95551XTFK88cYbG8qmTp1aXG211YpJig8//HBD+Wd/P+faaqutiltttVXD57l/T+uss05x5syZDeX77rtvsVAoFHfYYYdG2/fr12+ef4Ov+nv32b+Nf//738Ukxeuuu67Rce69995G5bfeemsxyXz/XwYAAAAAAHwxZTuUen19fW677bbssssu2WijjeZZP3co7rvvvjsbb7xxoyGtO3XqlMMOOyxvv/12XnzxxUbbHXTQQWnbtm3D5y222CLJnOHYF5euXbvmhRdeyGuvvfaFt7n77ruTJIMHD25U/tOf/jRJ5hkavk+fPg1tT+YM+77GGmt8qfPYdtttGyVRN9lkkyTJHnvskc6dO89T/uljtG/fvuG/p06dmvHjx+fb3/52isVi/vvf/37hNuyxxx4NQzd/nosuuihVVVXZc8898+tf/zr7779/dt111y98rE/74IMP8uyzz+bAAw9M9+7dG8rXW2+9bLfddg3/Lp92+OGHf6ljzU+nTp0yefLkJHOS2f/4xz+yyy67pFgsZvz48Q3LgAEDMmnSpIYhz//xj39k6aWXztFHHz3PPj87RP+nde3aNU888UTef//9L9zGu+++O61atcoxxxzTqPynP/1pisVi7rnnnkbl/fv3b5RYX2+99dKlS5dFvjYrKytz0EEHNSq76aabstZaa2XNNdds9P1ss802SZKHH344SXLLLbekvr4+e++9d6N6PXv2zDe+8Y2Gegvy6et61qxZ+eijj7Laaqula9eujYadX1RftP1zbbXVVunTp8/n7nfYsGGZPXt2jjzyyEbl87s+brrppmyxxRbp1q1bozb0798/dXV1+de//vWlz2+uu+++O7169cqee+7ZUNahQ4ccdthhX3nfBxxwQKO5vjfZZJMUi8V5hiXfZJNN8u6772b27NmNyr/K791n3XTTTamqqsp2223X6Lvs27dvOnXq1PDvOXd0gjvvvDOzZs1a9JMGAAAAAADKdyj1Dz/8MDU1NVlnnXUWWu+dd95p6MD4tLXWWqth/af3seKKKzaq161btySZZz7Yr+K0007LrrvumtVXXz3rrLNOvvvd72b//fdf6DDE77zzTioqKrLaaqs1Ku/Zs2e6du2ad955p1H5Z88jmXMuX+Y8PruvqqqqJMkKK6ww3/JPH2PUqFE56aSTcvvtt89z7EmTJn3hNqy88spfuG737t1zwQUXZK+99kp1dXUuuOCCL7ztZ839XtdYY4151q211lq57777MnXq1HTs2PFLtfXzTJkypaEz7sMPP8zEiRNz+eWX5/LLL59v/XHjxiVJ3njjjayxxhpp3XrRfgLOPvvsDBw4MCussEL69u2bHXfcMQcccEBWWWWVBW7zzjvvZNlll23UaZg0/hv7tMV1bS633HKNXmJJktdeey0vvfTSAl+imPv9vPbaaykWi/nGN74x33qf7lidn+nTp2fo0KG58sorM3r06EZD5i/Kdf1ZX7T9c33Ra23uv8Fnfz+6d+/e8Bv36Tb8v//3/75wG76Md955J6uttto8L2nM7+9sUS3K71V9fX0mTZrUaAj/r/J791mvvfZaJk2alB49esx3/dzvcquttsoee+yRU089Neeee2623nrr7Lbbbvmf//mfVFZWLnD/AAAAAADAJ8q2Y7yptGrVar7lxa8wV3RdXV2jz1tuuWXeeOON/O///m/uv//+/OlPf8q5556byy67LIcccshC97WwtO+nLc7zWNC+Pu8YdXV12W677TJhwoSccMIJWXPNNdOxY8eMHj06Bx544DxzhC/MpxO6X8R9992XZE6n1XvvvbfQ+aIXt0Vt64LMmjUrr776asOLG3O/rx/+8IcZOHDgfLdZ1PnuP2vvvffOFltskVtvvTX3339/fve73+W3v/1tbrnlluywww5fad9zLa5rc37fc319fdZdd92cc845891mbudmfX19CoVC7rnnnvm2Z+6c3wty9NFH58orr8yxxx6bfv36paqqKoVCIfvss88iXddftv1zLa5r7bNt2G677fLzn/98vutXX331xX7MhVnQb15dXd18/+2+7O/V4tr+0+rr69OjR49cd911810/9+WDQqGQm2++OY8//njuuOOO3HffffnRj36UP/zhD3n88cc/93oEAAAAAADKuGN8mWWWSZcuXfL8888vtN5KK62UV155ZZ7yl19+uWH94tKtW7dMnDixUdnMmTPzwQcfzFO3e/fuOeigg3LQQQdlypQp2XLLLXPKKacssGN8pZVWSn19fV577bWGJG6SjB07NhMnTlys57G4jBw5Mq+++mquvvrqHHDAAQ3lDzzwwDx1v2iH/xdx77335k9/+lN+/vOf57rrrsvAgQPzxBNPLHJ6Ovnk+ljQNbT00ks3SosvTjfffHOmT5+eAQMGJJlzzXfu3Dl1dXXp37//QrddddVV88QTT2TWrFmfm37+rF69euXII4/MkUcemXHjxmXDDTfMmWeeucCO8ZVWWikPPvhgJk+e3Cg13hR/Y59n1VVXzXPPPZdtt912odfUqquummKxmJVXXvlLdfTefPPNGThwYP7whz80lM2YMWOev/8FWVDbvmj7F9Xcf4PXX3+9Ucr8o48+mifxvOqqq2bKlCmfe419lfattNJKef7551MsFhvtZ35/Z/P7XU3mpM4XNpJBKVh11VXz4IMPZrPNNvtCLzFsuumm2XTTTXPmmWfm+uuvz3777Ze///3vn/vCFAAAAAAAkJTtHOMVFRXZbbfdcscdd+Tpp5+eZ/3cFN+OO+6YJ598MsOHD29YN3Xq1Fx++eXp3bv3F5qf94taddVV55l/9/LLL58nMf7RRx81+typU6esttpqqa2tXeC+d9xxxyTJeeed16h8brJ0p512+rLNbjJzE5afTlQWi8Wcf/7589Sd27n8RTsWF2TixIk55JBDsvHGG+ess87Kn/70pzzzzDM566yzvtT+evXqlQ022CBXX311o7Y9//zzuf/++xv+XRa35557Lscee2y6deuWQYMGJZnzfe6xxx75xz/+Md8XQj788MOG/95jjz0yfvz4XHTRRfPUW1DCta6ubp5hwHv06JFll132c6/Nurq6eY517rnnplAoLLak+Rex9957Z/To0bniiivmWTd9+vRMnTo1SbL77runVatWOfXUU+f5PorF4jx/o5/VqlWreba78MIL5/lbX5COHTvOd8j1L9r+RbXtttumdevWufTSSxuVz+/62HvvvTN8+PCGURc+beLEiQ1zcnfo0KGhbFHtuOOOef/993PzzTc3lE2bNm2+UwSsuuqqefzxxzNz5syGsjvvvDPvvvvuIh+3ue29996pq6vL6aefPs+62bNnN3x3H3/88TzX0wYbbJAkC/3bAwAAAAAAPlG2ifEkOeuss3L//fdnq622ymGHHZa11lorH3zwQW666aY8+uij6dq1a37xi1/kb3/7W3bYYYccc8wx6d69e66++uq89dZb+cc//pGKisX37sAhhxySww8/PHvssUe22267PPfcc7nvvvuy9NJLN6rXp0+fbL311unbt2+6d++ep59+OjfffHOOOuqoBe57/fXXz8CBA3P55Zdn4sSJ2WqrrfLkk0/m6quvzm677ZbvfOc7i+08Fpc111wzq666an72s59l9OjR6dKlS/7xj3/Md07evn37JkmOOeaYDBgwIK1atco+++yzyMf8yU9+ko8++igPPvhgWrVqle9+97s55JBDcsYZZ2TXXXfN+uuvv8j7/N3vfpcddtgh/fr1y8EHH5zp06fnwgsvTFVVVU455ZRF3t9n/fvf/86MGTNSV1eXjz76KP/5z39y++23p6qqKrfeemt69uzZUPc3v/lNHn744WyyySY59NBD06dPn0yYMCHPPPNMHnzwwUyYMCFJcsABB+Saa67J4MGD8+STT2aLLbbI1KlT8+CDD+bII4/MrrvuOk87Jk+enOWXXz577rln1l9//XTq1CkPPvhgnnrqqUbJ6M/aZZdd8p3vfCe/+tWv8vbbb2f99dfP/fffn//93//Nsccem1VXXfUrf0df1P77758bb7wxhx9+eB5++OFsttlmqaury8svv5wbb7wx9913XzbaaKOsuuqqOeOMMzJkyJC8/fbb2W233dK5c+e89dZbufXWW3PYYYflZz/72QKPs/POO+faa69NVVVV+vTpk+HDh+fBBx9sNFf1wvTt2zc33HBDBg8enG9961vp1KlTdtllly/c/kVVXV2dn/zkJ/nDH/6Q733ve/nud7+b5557Lvfcc0+WXnrpRqnt448/Prfffnt23nnnHHjggenbt2+mTp2akSNH5uabb87bb7+dpZdeOu3bt0+fPn1yww03ZPXVV0/37t2zzjrrNAz9vzCHHnpoLrroohxwwAEZMWJEevXqlWuvvbahs/3TDjnkkNx888357ne/m7333jtvvPFG/vrXvzbrdfVlbbXVVvnxj3+coUOH5tlnn83222+fNm3a5LXXXstNN92U888/P3vuuWeuvvrqXHLJJfn+97+fVVddNZMnT84VV1yRLl26NNnLNwAAAAAAUG7KumN8ueWWyxNPPJFf//rXue6661JTU5PlllsuO+ywQ0MHS3V1dR577LGccMIJufDCCzNjxoyst956ueOOOxZ7yvrQQw/NW2+9lT//+c+59957s8UWW+SBBx7Itttu26jeMccck9tvvz33339/amtrs9JKK+WMM87I8ccfv9D9/+lPf8oqq6ySq666qqHDdMiQITn55JMX63ksLm3atMkdd9yRY445JkOHDk27du3y/e9/P0cdddQ8HdS77757jj766Pz973/PX//61xSLxUXuGL/99ttzzTXX5A9/+EPWXHPNhvJzzjknDzzwQAYOHJinnnpqkYcW79+/f+69996cfPLJOemkk9KmTZtstdVW+e1vf9toWOov64ILLkgy5/vq2rVr1lprrZx66qk59NBDG+Ygnqu6ujpPPvlkTjvttNxyyy255JJLstRSS2XttdfOb3/724Z6rVq1yt13390wJPM//vGPLLXUUtl8882z7rrrzrcdHTp0yJFHHpn7778/t9xyS+rr67PaaqvlkksuyRFHHLHA9ldUVOT222/PSSedlBtuuCFXXnllevfund/97nf56U9/+pW/n0VRUVGR2267Leeee26uueaa3HrrrenQoUNWWWWV/OQnP2k0bPovfvGLrL766jn33HNz6qmnJpkzh/f222+f733vews9zvnnn59WrVrluuuuy4wZM7LZZpvlwQcfbBj2/vMceeSRefbZZ3PllVfm3HPPzUorrZRddtllkdq/qH7729+mQ4cOueKKK/Lggw+mX79+uf/++7P55punXbt2DfU6dOiQf/7znznrrLNy00035ZprrkmXLl2y+uqr59RTT01VVVVD3T/96U85+uijc9xxx2XmzJk5+eSTv1DHeIcOHTJs2LAcffTRufDCC9OhQ4fst99+2WGHHfLd7363Ud0BAwbkD3/4Q84555wce+yx2WijjXLnnXc2+7X1ZV122WXp27dv/vjHP+aXv/xlWrdund69e+eHP/xhNttssyRpeNHp73//e8aOHZuqqqpsvPHGue666xbLbwwAAAAAACwJCsUFjZsMwBJt4sSJ6datW84444z86le/aunmAAAAAAAAfGllO8c4AF/c9OnT5yk777zzkiRbb7118zYGAAAAAABgMSvrodT58saMGbPQ9e3bt280ZDLw9XbDDTfkqquuyo477phOnTrl0Ucfzd/+9rdsv/32DUN6f1UzZ85smOd+QaqqqtK+ffvFcjwAAAAAAIC5dIwzX7169Vro+oEDB+aqq65qnsYATW699dZL69atc/bZZ6empibV1dX5yU9+kjPOOGOxHeOxxx7Ld77znYXWufLKK3PggQcutmMCAAAAAAAk5hhnAR588MGFrl922WXTp0+fZmoNUA4+/vjjjBgxYqF11l577c99MQf4+vnXv/6V3/3udxkxYkQ++OCD3Hrrrdltt90Wus0jjzySwYMH54UXXsgKK6yQE0880YszAAAkcX8JAMCXIzHOfPXv37+lmwCUmW7duvltgSXU1KlTs/766+dHP/pRdt9998+t/9Zbb2WnnXbK4Ycfnuuuuy7Dhg3LIYcckl69emXAgAHN0GIAAEqZ+0sAAL4MiXEAAJpNoVD43ETPCSeckLvuuivPP/98Q9k+++yTiRMn5t57722GVgIA8HXh/hIAgC9KYhwAgJIyfPjweUaYGDBgQI499tgFblNbW5va2tqGz/X19ZkwYUKWWmqpFAqFpmoqAABJisViJk+enGWXXTYVFRUt3Zx5uL8EAPh6aar7y5LpGP/4zCNaugks4XYbsX9LNwFSN2tWSzcB8ugdW7XIce9qs0azHWunWa8027FYdGPGjEl1dXWjsurq6tTU1GT69Olp3779PNsMHTo0p556anM1EQCA+Xj33Xez/PLLt3Qz5uH+EgDg62lx31+WTMc4AAB8WUOGDMngwYMbPk+aNCkrrrhi3n333XTp0qUFWwYAUP5qamqywgorpHPnzi3dlMXG/SUAQMtpqvtLHeMAQEkotDEcIXP07NkzY8eObVQ2duzYdOnSZb5pniSprKxMZWXlPOVdunTx4BIAoJmU6hDj7i8BAL6eFvf9ZelN+gMAwBKtX79+GTZsWKOyBx54IP369WuhFgEA8HXm/hIAgETHOAAATWzKlCl59tln8+yzzyZJ3nrrrTz77LMZNWpUkjnDVB5wwAEN9Q8//PC8+eab+fnPf56XX345l1xySW688cYcd9xxLdF8AABKjPtLAAC+DEOpAwAloaJ1aQ67yFf39NNP5zvf+U7D57lzNQ4cODBXXXVVPvjgg4aHmEmy8sor56677spxxx2X888/P8svv3z+9Kc/ZcCAAc3edgAASo/7SwAAvoxCsVgstnQjkuTjM49o6SawhNttxP4t3QRI3axZLd0EyKN3bNUix723y1rNdqzv1rzUbMeiZdTU1KSqqiqTJk0yByQAQBNbEu69loRzBAAoFU117yUxDgCUhEIbM7wAAAAAANA0PIEGAAAAAAAAoKxJjAMAJcEc4wAAAAAANBWJcQAAAAAAAADKmsQ4AFASCm0kxgEAAAAAaBoS4wAAAAAAAACUNYlxAKAkmGMcAAAAAICmIjEOAAAAAAAAQFmTGAcASoI5xgEAAAAAaCoS4wAAAAAAAACUNYlxAKAkmGMcAAAAAICmIjEOAAAAAAAAQFmTGAcASkKhlcQ4AAAAAABNQ2IcAAAAAAAAgLImMQ4AlIQKiXEAAAAAAJqIxDgAAAAAAAAAZU1iHAAoCYUKiXEAAAAAAJqGxDgAAAAAAAAAZU1iHAAoCYVW3tcDAAAAAKBpeAINAAAAAAAAQFnTMQ4AAAAAAABAWTOUOgBQEipaFVq6CQAAAAAAlCmJcQAAAAAAAADKmsQ4AFASChUS4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAPgco0ePzg9/+MMstdRSad++fdZdd908/fTTDeuLxWJOOumk9OrVK+3bt0///v3z2muvNdrHhAkTst9++6VLly7p2rVrDj744EyZMqW5TwUAAAAAYImkYxwAKAmFVoVmWxbFxx9/nM022yxt2rTJPffckxdffDF/+MMf0q1bt4Y6Z599di644IJcdtlleeKJJ9KxY8cMGDAgM2bMaKiz33775YUXXsgDDzyQO++8M//6179y2GGHLbbvDwAAAACABTOUOgDAQvz2t7/NCiuskCuvvLKhbOWVV27472KxmPPOOy8nnnhidt111yTJNddck+rq6tx2223ZZ5998tJLL+Xee+/NU089lY022ihJcuGFF2bHHXfM73//+yy77LLNe1IAAAAAAEsYiXEAoCQUKiqabVkUt99+ezbaaKPstdde6dGjR775zW/miiuuaFj/1ltvZcyYMenfv39DWVVVVTbZZJMMHz48STJ8+PB07dq1oVM8Sfr375+Kioo88cQTX/GbAwAAAADg8+gYBwCWOLW1tampqWm01NbWzrfum2++mUsvvTTf+MY3ct999+WII47IMccck6uvvjpJMmbMmCRJdXV1o+2qq6sb1o0ZMyY9evRotL5169bp3r17Qx0AAAAAAJqOjnEAoCQUKgrNtgwdOjRVVVWNlqFDh863XfX19dlwww1z1lln5Zvf/GYOO+ywHHroobnsssua+RsCAAAAAODL0jEOACxxhgwZkkmTJjVahgwZMt+6vXr1Sp8+fRqVrbXWWhk1alSSpGfPnkmSsWPHNqozduzYhnU9e/bMuHHjGq2fPXt2JkyY0FAHAAAAAICmo2McACgJFa0KzbZUVlamS5cujZbKysr5tmuzzTbLK6+80qjs1VdfzUorrZQkWXnlldOzZ88MGzasYX1NTU2eeOKJ9OvXL0nSr1+/TJw4MSNGjGio89BDD6W+vj6bbLLJ4v4qAQAAAAD4jNYt3QAAgFJ23HHH5dvf/nbOOuus7L333nnyySdz+eWX5/LLL0+SFAqFHHvssTnjjDPyjW98IyuvvHJ+/etfZ9lll81uu+2WZE7C/Lvf/W7DEOyzZs3KUUcdlX322SfLLrtsC54dAAAAAMCSQcc4AFASChWFlm7CfH3rW9/KrbfemiFDhuS0007LyiuvnPPOOy/77bdfQ52f//znmTp1ag477LBMnDgxm2++ee699960a9euoc51112Xo446Kttuu20qKiqyxx575IILLmiJUwIAAAAAWOLoGAcA+Bw777xzdt555wWuLxQKOe2003LaaactsE737t1z/fXXN0XzAAAAAAD4HDrGAYCSUKioaOkmAAAAAABQpjyBBgAAAAAAAKCsSYwDACWhVOcYBwAAAADg609iHAAAAAAAAICyJjEOAJSEilYS4wAAAAAANA2JcQAAAAAAAADKmo5xAAAAAAAAAMqaodQBgJJQqDCUOgAAAAAATUNiHAAAAAAAAICyJjEOAJSEQoX39QAAAAAAaBqeQAMAAAAAAABQ1iTGAYCSYI5xAAAAAACaisQ4AAAAAAAAAGVNYhwAKAkS4wAAAAAANBWJcQAAAAAAAADKmsQ4AFASJMYBAAAAAGgqEuMAAAAAAAAAlDWJcQCgJBQqvK8HAAAAAEDT8AQaAAAAAAAAgLImMQ4AlISKVuYYBwAAAACgaUiMAwAAAAAAAFDWJMYBgJJQqJAYBwAAAACgaUiMAwAAAAAAAFDWJMYBgJJQqPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKzpGAcAAAAAAACgrBlKHQAoCYZSBwAAAACgqUiMAwAAAAAAAFDWJMYBgJJQqPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjAEBpKJhjHAAAAACApiExDgAAAAAAAEBZkxgHAEpCoUJiHAAAAACApiExDgAAAAAAAEBZkxhvRu222Cntt9y5UVnd+DGp+eOpSZK239w8bdf+Vlr3XCGFyvaZ+PvBKdZOn2c/rVdbJ+033zGteiyX4uzZmT3q1Uy9+Y8LP/aWO6fym5unUNk+s997M9PuuT71H3/YsL7QrkPaD/hB2n5j3RSLxcx6+b+Zdv9NyazaxXDmlLr1+nTJvrsum9VX7ZSlu7fNr37zch59ckKjOj/aZ4XsvF11OnVolZEvT845l7+Z0R/MWOh+d/tuz+yz27Lp3rVt3nh7as7/01t5+fUpDevbtinkyAN7Z5vNl06b1hV56tmJOffyN/PxpFlNcp58Pe2+47LZd/cV0r1b27zx1pSc+8fX89JrkxdY/zubLZ1DfrhyevZol/fen5ZLr3orj49ofD0fvF/v7LJ9z3Tu2DojX6rJ7y95Le99MO/vLc2rUOF9PQAAAAAAmoYn0M2sbtz7mXjeCQ3L5Gt+37Cu0LptZr3xQqb/594Fbt9mjW+m4/cOTO3/G56aP52Zydf8LjNfeGqhx6zst30qv/WdTLvn+ky+6uwUZ9Wm077HJK0+eS+i424/SqtlemXy9Rdkyg2XpPWK30jHHff76ifM10L7yoq8/vbUnHfFm/Ndv+/3l8vuO/XKHy57I4f/YmRm1Nbn97/uk7ZtFjzs8Xc2WyqDDuqdq298L4f+7Lm88fbU/P6kPula1aahzlEHrZxvb9Q9J//ulfzk189n6e5tc/oJayz28+Pra5vNl8lRh6yaK//2dg4+dkRef2tKzjlt3UbX0aets2aXnHx8n9x5/wf50U9G5N+Pf5Shv1o7K6/YoaHOfnuskD13Xi6/v+S1HPaz/2b6jLqcc9q6C72eAQAAAACArzcd482sWKxLcWrNJ8v0qQ3rap96KLXD70/d6Lfmv3GhIh223yvTh92Smc/8O/UTxqV+/JjMeumZhR6z3cbbZMaj92TWq/8vdeNGZ+rtV6Wic1XarLFBkqRiqZ5ps+ramXbXX1P3/tupe++NTLvvhrRZu28KnaoW16lTwp7478T8+W/v5t9PTJjv+r127pVrb34v/3nq47z5zrScdcFrWap722y+cfcF7nPvXZbNnQ+MzT0Pjcs7703PH/74ZmbU1mXHbXokSTp2aJUdt+2Ri696O/99viavvjk1v7no9ay7Zpf0Wb1Tk5wnXz/77LZ87rjvg9w9bGzefndafnfJa5lRW5+dt+s53/p7fW+5PPHMhPzt1vfyznvT8qfr3s6rb0zJHjsv16jONTe+k0ef+ChvvD01Z5z7cpbqXpktNl26uU6LBShUFJptAQAAAABgybLIQ6mPHz8+f/nLXzJ8+PCMGTMmSdKzZ898+9vfzoEHHphllllmsTeynLTq1iNVxwydMwT66Dcz/eHbUqz5+Itt22uFVHTplhSL6XzwL1PRqUvqxr6XacNuSf2H7893m4quS6eiU1Vmv/3yJ4W1MzJ79FtpvdzKmfXi02m9/Mqpnz4tdR+Maqgy+62Xk2IxrZfrnVmvPPeVzpmvt17VlVmqW9uMeG5iQ9nUaXV56bXJWXuNznnoPx/Ns03r1oWsvmqnXHfL6IayYjEZ8f8mZe01OidJVl+lY9q0qWi031Gjp2fMh7VZe/XOefHVKZ/dLUuY1q0LWX21zrn25k9+m4rF5OlnP87aa3SZ7zbrrNklf7/tvUZlT/x3Qrb8v07vZavbZenulXnq2U9+d6dOq8uLr9ZknTW7ZNi/PwwAAAAAAFB+Fikx/tRTT2X11VfPBRdckKqqqmy55ZbZcsstU1VVlQsuuCBrrrlmnn766aZq69fe7PffztQ7rsmUv1+Uafden1Zdl0rnA36atK38QttXdJ3z0kG7LXfKjEfvyZQbLklx+rR0/uFxKbTrMN9tCh3ndB7VT61pVF6cOjkVneasq+hYleK0z8zXW6xPcfq0FDpKjC/pundtmySZ8Jl5vz+eOCvdu7Wd7zZVnVundatCPp44c95tus4ZAnupbm0zc1Z9pkyr+0ydmQvcL0uWqi5t0rpVIRM+bnztTZg4K0st4Brp3rXtAq67OfXnXlsfT/zs9ey6KwWFiopmWwAAAAAAWLIsUmL86KOPzl577ZXLLrsshULjYUiLxWIOP/zwHH300Rk+fPhC91NbW5va2trGZbPrUtm61aI052tn9hsvfPJh3OhMGf12qo46M23X6puZzz32+Tv4v+98xn/uzaxX/pskmXrnNak6+qy0WWvDzPzvo03RbAAAAAAAAICvtUWKTD333HM57rjj5ukUT5JCoZDjjjsuzz777OfuZ+jQoamqqmq0nPvPhc+TXY6KtdNTN2FsKrp9seHni1MmJUnqPvzgk8K62amfOD4VVfOf67n4f0nxio6Nhx0udOyc+ilz1tVPnZRCh86NNyxUpNC+Q4pTJ32htlG+Jvxf+rZ7VZtG5d26tsmEj2fOb5NMmjw7s+uK6da17bzb/F9S96OPZ6Ztm4p06tDqM3XaLnC/LFkm1czK7LpiundrfO1179omHy3gGpkwceYCrrs59edeW926fvZ6dt2VAnOMAwAAAADQVBapY7xnz5558sknF7j+ySefTHV19efuZ8iQIZk0aVKj5bitNlyUppSHNpWp6LZMilNqPr9uktkfjEpx9qy0WupT33FFRSqqlkr9pAnz3aZ+4vjUT5mU1r3X+KSwbbu0Xm7lzB791pz9vvdWKtp3SKueKzZUad17jaRQyOzRby/yaVFePhhbm48+npkN1+vaUNahfaus9Y3OeeGVyfPdZvbsYl59Y0r6rvfJUPyFQrLhelUN27z65tTMmlWfDT9VZ4Vl26XnMpV54dX575cly+zZxbz6+uT0Xa9bQ1mhkPRdv1teeGX+v5vPv1yTjdbv1qjsWxt0y/Mvz6n//tgZGT+htlGdDu1bpc/qXRrqAAAAAAAA5WeRhlL/2c9+lsMOOywjRozItttu29AJPnbs2AwbNixXXHFFfv/733/ufiorK1NZ2Xhe7boyH0Y9Sdpvu3tmvTYy9ZM+SqFT17Tfcuekvj4zX3wqyZz5wCs6dUlF9x5JklY9lktx5ozUT5qQ4oxpycwZqX3m32m/5c6pr/k49ZMmpF2/7ZIks176JHHf5ccnZ/ojt2XWK88lSWY8+VDabbZj6id8mLqJ49N+q11SP3lSZr3ybJKk/qMxmfXGC+mw036Zds/1SUWrdBjwg8x6YURDSp3y1r5dRZbr2a7hc68elVmtd4fUTJmdceNn5qY7P8gBey6f9z6YnjFja/OjfVfIRxNm5tEnP3kh45xT+uTfT0zIrfeMSZLceMf7GXL0N/Ly61Py8mtTsucuvdK+slXueWhckmTqtLrcPWxcBh20ciZPmZ2p0+ryk0NWzvMv1+TFV6c07xdAyfr7be/lV8etmZdfn5yXXp2cvXddLu3bVeSuB+dcZycet0Y+/Ghm/njNnBd9brp9dC4aun722W35PPb0R+m/RY+suVrnnH3Rqw37vOn20Rn4gxXz7vvT88HYGTnkh73z0YTa/Pvx8S1yjnxCkhsAAAAAgKaySB3jgwYNytJLL51zzz03l1xySerq6pIkrVq1St++fXPVVVdl7733bpKGloOKzt3ScbcfpdC+Y4rTpmT2u29k8lVnpzhtTidg5YZbzOks/z+dD/hpkmTqHVdn5v97PEkyfdg/kvq6dPzegSm0aZPZo9/O5OvOm9Nx/n9aLd0zhcr2DZ9rh9+fQpu26bDj/6TQrkNmv/tGpvz9wqRudkOdqbf9JR0G7JPO/3NsUixm5iv/zbT7bmzKr4MSssaqnXL+6es0fD7qRysnSe55aFx+c9Hr+duto9O+siI/O3zVdOrYOiNfqsnxp7+YmbOKDdss27Ndqrp8Mjz1w//5KF27tMmP9l0x3bu2yetvTc3xp7+YjyfNaqhz0ZVvpb5YzGnHr5E2bSry1LMTc+7lbzbDGfN18dCjH6ZrVZscsl/vdO/WNq+/OSU/PXlkPv6/Ifmrl2mX+k8uwzz/ck1O/f1LOfSHK+ewA1bOe+9Pz5AzX8hboz75jbzuH++mXbtW+flRq8+5nl+clJ+ePLLR9QwAAAAAAJSXQrFY/FI9AbNmzcr48XPSdUsvvXTatGnzOVss3MdnHvGVtoevarcR+7d0EyB1s2Z9fiVoYo/esVWLHHfckAOa7Vg9hl7TbMeiZdTU1KSqqiqTJk1Kly5dWro5AABlbUm491oSzhEAoFQ01b3XIiXGP61Nmzbp1avXYmsIALCEq6ho6RYAAAAAAFCmPIEGAAAAAAAAoKx96cQ4AMDiVCgUWroJAAAAAACUKYlxAAAAAAAAAMqaxDgAUBIK5hgHAAAAAKCJeAINAAAAAAAAQFmTGAcASkKhwhzjAAAAAAA0DYlxAAAAAAAAAMqajnEAoDRUVDTfQrO7+OKL07t377Rr1y6bbLJJnnzyyYXWP++887LGGmukffv2WWGFFXLcccdlxowZzdRaAAC+DtxjAgCwKDwZBgCgSd1www0ZPHhwTj755DzzzDNZf/31M2DAgIwbN26+9a+//vr84he/yMknn5yXXnopf/7zn3PDDTfkl7/8ZTO3HACAUuUeEwCARaVjHAAoCYWKQrMtNK9zzjknhx56aA466KD06dMnl112WTp06JC//OUv863/2GOPZbPNNsv//M//pHfv3tl+++2z7777fm4CCACAJYd7TAAAFpWOcQAAmszMmTMzYsSI9O/fv6GsoqIi/fv3z/Dhw+e7zbe//e2MGDGi4SHlm2++mbvvvjs77rhjs7QZAIDS5h4TAIAvo3VLNwAAIEkKBe/rlaPx48enrq4u1dXVjcqrq6vz8ssvz3eb//mf/8n48eOz+eabp1gsZvbs2Tn88MMXOsxlbW1tamtrGz7X1NQsnhMAAKDkNMc9pvtLAIDy4wk0AAAl5ZFHHslZZ52VSy65JM8880xuueWW3HXXXTn99NMXuM3QoUNTVVXVsKywwgrN2GIAAErdot5jur8EACg/EuMAQGkw93dZWnrppdOqVauMHTu2UfnYsWPTs2fP+W7z61//Ovvvv38OOeSQJMm6666bqVOn5rDDDsuvfvWrVFTM+27nkCFDMnjw4IbPNTU1Hl4CAJSp5rjHdH8JAFB+JMYBAGgybdu2Td++fTNs2LCGsvr6+gwbNiz9+vWb7zbTpk2b58Fkq1atkiTFYnG+21RWVqZLly6NFgAAylNz3GO6vwQAKD8S4wBASSjMJwVMeRg8eHAGDhyYjTbaKBtvvHHOO++8TJ06NQcddFCS5IADDshyyy2XoUOHJkl22WWXnHPOOfnmN7+ZTTbZJK+//np+/etfZ5dddml4eAkAwJLNPSYAAItKxzgAAE3qBz/4QT788MOcdNJJGTNmTDbYYIPce++9qa6uTpKMGjWqUXrnxBNPTKFQyIknnpjRo0dnmWWWyS677JIzzzyzpU4BAIAS4x4TAIBFVSguaDzKZvbxmUe0dBNYwu02Yv+WbgKkbtaslm4C5NE7tmqR40763dHNdqyq4y9stmPRMmpqalJVVZVJkyYZ9hIAoIktCfdeS8I5AgCUiqa69zJmKQAAAAAAAABlzVDqAEBpKHhfDwAAAACApuEJNADAQpxyyikpFAqNljXXXLNh/YwZMzJo0KAstdRS6dSpU/bYY4+MHTu20T5GjRqVnXbaKR06dEiPHj1y/PHHZ/bs2c19KgAAAAAASyyJcQCAz7H22mvnwQcfbPjcuvUnt1DHHXdc7rrrrtx0002pqqrKUUcdld133z3/+c9/kiR1dXXZaaed0rNnzzz22GP54IMPcsABB6RNmzY566yzmv1cAAAAAACWRDrGAYCSUKgotHQTFqh169bp2bPnPOWTJk3Kn//851x//fXZZpttkiRXXnll1lprrTz++OPZdNNNc//99+fFF1/Mgw8+mOrq6mywwQY5/fTTc8IJJ+SUU05J27Ztm/t0AAAAAACWOIZSBwD4HK+99lqWXXbZrLLKKtlvv/0yatSoJMmIESMya9as9O/fv6HummuumRVXXDHDhw9PkgwfPjzrrrtuqqurG+oMGDAgNTU1eeGFF5r3RAAAAAAAllAS4wBAaahovvf1amtrU1tb26issrIylZWV89TdZJNNctVVV2WNNdbIBx98kFNPPTVbbLFFnn/++YwZMyZt27ZN165dG21TXV2dMWPGJEnGjBnTqFN87vq56wAAAAAAaHoS4wDAEmfo0KGpqqpqtAwdOnS+dXfYYYfstddeWW+99TJgwIDcfffdmThxYm688cZmbjUAAAAAAF+WjnEAoCQUCoVmW4YMGZJJkyY1WoYMGfKF2tm1a9esvvrqef3119OzZ8/MnDkzEydObFRn7NixDXOS9+zZM2PHjp1n/dx1AAAAAAA0PR3jAMASp7KyMl26dGm0zG8Y9fmZMmVK3njjjfTq1St9+/ZNmzZtMmzYsIb1r7zySkaNGpV+/folSfr165eRI0dm3LhxDXUeeOCBdOnSJX369Fm8JwYAAAAAwHyZYxwAKA3NOMf4ovjZz36WXXbZJSuttFLef//9nHzyyWnVqlX23XffVFVV5eCDD87gwYPTvXv3dOnSJUcffXT69euXTTfdNEmy/fbbp0+fPtl///1z9tlnZ8yYMTnxxBMzaNCgL9wZDwAAAADAV6NjHABgId57773su++++eijj7LMMstk8803z+OPP55lllkmSXLuueemoqIie+yxR2prazNgwIBccsklDdu3atUqd955Z4444oj069cvHTt2zMCBA3Paaae11CkBAAAAACxxdIwDACWhUFFo6SbM19///veFrm/Xrl0uvvjiXHzxxQuss9JKK+Xuu+9e3E0DAAAAAOALKs0xSwEAAAAAAABgMZEYBwBKQ8H7egAAAAAANA1PoAEAAAAAAAAoaxLjAEBpKNE5xgEAAAAA+PqTGAcAAAAAAACgrEmMAwAloWCOcQAAAAAAmogn0AAAAAAAAACUNYlxAKA0mGMcAAAAAIAmIjEOAAAAAAAAQFmTGAcASkKhwvt6AAAAAAA0DU+gAQAAAAAAAChrOsYBAAAAAAAAKGuGUgcASkOh0NItAAAAAACgTEmMAwAAAAAAAFDWJMYBgNJQ4X09AAAAAACahifQAAAAAAAAAJQ1iXEAoDSYYxwAAAAAgCYiMQ4AAAAAAABAWZMYBwBKQsEc4wAAAAAANBFPoAEAAAAAAAAoaxLjAEBpKHhfDwAAAACApuEJNAAAAAAAAABlTWIcACgNFYWWbgEAAAAAAGVKYhwAAAAAAACAsiYxDgCUhII5xgEAAAAAaCKeQAMAAAAAAABQ1iTGAYDSYI5xAAAAAACaiMQ4AAAAAAAAAGVNYhwAKA3mGAcAAAAAoIl4Ag0AAAAAAABAWZMYBwBKQ8Ec4wAAAAAANA2JcQAAAAAAAADKmsQ4AFAaKryvBwAAAABA0/AEGgAAAAAAAICypmMcAAAAAAAAgLJmKHUAoDQUvK8HAAAAAEDT8AQaAAAAAAAAgLImMQ4AlIaKQku3AAAAAACAMiUxDgAAAAAAAEBZkxgHAEqDOcYBAAAAAGginkADAAAAAAAAUNYkxgGA0lAwxzgAAAAAAE1DYhwAAAAAAACAsiYxDgCUhgrv6wEAAAAA0DQ8gQYAAAAAAACgrEmMAwClwRzjAAAAAAA0EYlxAAAAAAAAAMqaxDgAUBoK3tcDAAAAAKBpeAINAAAAAAAAQFmTGAcASkOF9/UAAAAAAGgankADAAAAAAAAUNYkxgGA0lAotHQLAAAAAAAoUyXTMb7r0/u1dBNYwp1w50Et3QTIHWc83tJNAAAAAAAAKDsl0zEOACzhCmZ4AQAAAACgaXgCDQAAAAAAAEBZkxgHAEqDOcYBAAAAAGgiEuMAAAAAAAAAlDUd4wAAAAAAAACUNUOpAwClocL7egAAAAAANA1PoAEAAAAAAAAoaxLjAEBJKBYKLd0EAAAAAADKlMQ4AAAAAAAAAGVNYhwAKA0F7+sBAAAAANA0PIEGAAAAAAAAoKxJjAMApUFiHAAAAACAJuIJNAAAAAAAAABlTWIcACgJxUKhpZsAAAAAAECZkhgHAAAAAAAAoKxJjAMApcEc4wAAAAAANBFPoAEAAAAAAAAoaxLjAEBpMMc4AAAAAABNRGIcAAAAAAAAgLKmYxwAKA0VFc23fAW/+c1vUigUcuyxxzaUzZgxI4MGDcpSSy2VTp06ZY899sjYsWMbbTdq1KjstNNO6dChQ3r06JHjjz8+s2fP/kptAQAAAADgi9ExDgDwBT311FP54x//mPXWW69R+XHHHZc77rgjN910U/75z3/m/fffz+67796wvq6uLjvttFNmzpyZxx57LFdffXWuuuqqnHTSSc19CgAAAAAASyQd4wBASSgWCs22fBlTpkzJfvvtlyuuuCLdunVrKJ80aVL+/Oc/55xzzsk222yTvn375sorr8xjjz2Wxx9/PEly//3358UXX8xf//rXbLDBBtlhhx1y+umn5+KLL87MmTMXy/cHAAAAAMCC6RgHAPgCBg0alJ122in9+/dvVD5ixIjMmjWrUfmaa66ZFVdcMcOHD0+SDB8+POuuu26qq6sb6gwYMCA1NTV54YUXmucEAAAAAACWYK1bugEAAEmSQvO9r1dbW5va2tpGZZWVlamsrJxv/b///e955pln8tRTT82zbsyYMWnbtm26du3aqLy6ujpjxoxpqPPpTvG56+euAwAAAACgaUmMAwBLnKFDh6aqqqrRMnTo0PnWfffdd/OTn/wk1113Xdq1a9fMLQUAAAAAYHGQGAcASkKxGRPjQ4YMyeDBgxuVLSgtPmLEiIwbNy4bbrhhQ1ldXV3+9a9/5aKLLsp9992XmTNnZuLEiY1S42PHjk3Pnj2TJD179syTTz7ZaL9jx45tWAcAAAAAQNOSGAcAljiVlZXp0qVLo2VBHePbbrttRo4cmWeffbZh2WijjbLffvs1/HebNm0ybNiwhm1eeeWVjBo1Kv369UuS9OvXLyNHjsy4ceMa6jzwwAPp0qVL+vTp07QnCwAAAACAxDgAwMJ07tw566yzTqOyjh07ZqmllmooP/jggzN48OB07949Xbp0ydFHH51+/fpl0003TZJsv/326dOnT/bff/+cffbZGTNmTE488cQMGjRogR3yAAAAAAAsPjrGAYDSUCi0dAu+tHPPPTcVFRXZY489UltbmwEDBuSSSy5pWN+qVavceeedOeKII9KvX7907NgxAwcOzGmnndaCrQYAAAAAWHLoGAcAWESPPPJIo8/t2rXLxRdfnIsvvniB26y00kq5++67m7hlAAAAAADMjznGAYCSUCxUNNtC87v44ovTu3fvtGvXLptsskmefPLJhdafOHFiBg0alF69eqWysjKrr766FwsAAGjEPSYAAItCYhwAgCZ1ww03ZPDgwbnsssuyySab5LzzzsuAAQPyyiuvpEePHvPUnzlzZrbbbrv06NEjN998c5Zbbrm888476dq1a/M3HgCAkuQeEwCARaVjHAAoDV/jOcZZuHPOOSeHHnpoDjrooCTJZZddlrvuuit/+ctf8otf/GKe+n/5y18yYcKEPPbYY2nTpk2SpHfv3s3ZZAAASpx7TAAAFpWxRAEAaDIzZ87MiBEj0r9//4ayioqK9O/fP8OHD5/vNrfffnv69euXQYMGpbq6Ouuss07OOuus1NXVNVezAQAoYe4xAQD4MiTGAYDSYO7vsjR+/PjU1dWlurq6UXl1dXVefvnl+W7z5ptv5qGHHsp+++2Xu+++O6+//nqOPPLIzJo1KyeffPJ8t6mtrU1tbW3D55qamsV3EgAAlJTmuMd0fwkAUH48gQYAoKTU19enR48eufzyy9O3b9/84Ac/yK9+9atcdtllC9xm6NChqaqqalhWWGGFZmwxAAClblHvMd1fAgCUHx3jAEBJKBYKzbbQfJZeeum0atUqY8eObVQ+duzY9OzZc77b9OrVK6uvvnpatWrVULbWWmtlzJgxmTlz5ny3GTJkSCZNmtSwvPvuu4vvJAAAKCnNcY/p/hIAoPzoGAcAoMm0bds2ffv2zbBhwxrK6uvrM2zYsPTr12++22y22WZ5/fXXU19f31D26quvplevXmnbtu18t6msrEyXLl0aLQAAlKfmuMd0fwkAUH50jAMApaFQ0XwLzWrw4MG54oorcvXVV+ell17KEUcckalTp+aggw5KkhxwwAEZMmRIQ/0jjjgiEyZMyE9+8pO8+uqrueuuu3LWWWdl0KBBLXUKAACUGPeYAAAsqtYt3QAAAMrbD37wg3z44Yc56aSTMmbMmGywwQa59957U11dnSQZNWpUKio+eWFhhRVWyH333Zfjjjsu6623XpZbbrn85Cc/yQknnNBSpwAAQIlxjwkAwKIqFIvFYks3Ikm2/P6jLd0ElnAn3HlwSzcBcscZj7d0EyCXndCtRY476ZkHm+1YVRv2b7Zj0TJqampSVVWVSZMmGfYSAKCJLQn3XkvCOQIAlIqmuvcyligAAAAAAAAAZc1Q6gBASSia+xsAAAAAgCbiCTQAAAAAAAAAZU1iHAAoDRLjAAAAAAA0EU+gAQAAAAAAAChrEuMAQEkoFgot3QQAAAAAAMqUxDgAAAAAAAAAZU3HOAAAAAAAAABlzVDqAEBJKBa8rwcAAAAAQNPwBBoAAAAAAACAsiYxDgCUhkKhpVsAAAAAAECZkhgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjAEBJKMYc4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASzDEOAAAAAEBT8QQaAAAAAAAAgLImMQ4AlIaCOcYBAAAAAGgaEuMAAAAAAAAAlDWJcQCgJBS9rwcAAAAAQBPxBBoAAAAAAACAsiYxDgCUhKI5xgEAAAAAaCIS4wAAAAAAAACUNYlxAKAkFAve1wMAAAAAoGl4Ag0AAAAAAABAWZMYBwBKQjHmGAcAAAAAoGlIjAMAAAAAAABQ1iTGAYCSYI5xAAAAAACaiifQAAAAAAAAAJQ1HeMAAAAAAAAAlDVDqQMAJaFYKLR0EwAAAAAAKFMS4wAAAAAAAACUNYlxAKAkFCMxDgAAAABA05AYBwAAAAAAAKCsSYwDACWhWPC+HgAAAAAATcMTaAAAAAAAAADKmsQ4AFASzDEOAAAAAEBTkRgHAAAAAAAAoKxJjAMAJcEc4wAAAAAANBVPoAEAAAAAAAAoaxLjJWjp7m1z+AG9s8mG3dKubUVGj5mRoRe+llfemLLAbTZYuypHHbRyeq/YIePG1+aam97NvQ+Pa1Tn+zv0yj67LZfuXdvmjben5vw/vZGXXlvwPilflcv2yFpDj88yA7ZIqw7tM/WNd/L/DvllJo14fp6661x8alY6bJ+88NOz8vYFVzeUf+e1YenQe/lGdV/+5e/zxu+uWOBxKyrbZq3f/SLL7r1jKirb5sP7H83zR5+ameM+aqjTboVeWfeiU7LU1ptk9pRpee/a2/LKr/6QYl3dYjhzSlll2+R7W7TPBt9ok84dKvLuuLrc+OC0vDNmzr/9Bqu3yZYbVGbFnq3SqX1FzriyJu+N+/zrYsM12uR7W7TPUlUVGfdxfW59ZFqef3N2ozq7bN4um69fmfaVhbwxenb+dv+0jPu4vknOkwUzxzgAAAAAAE1Fx3iJ6dSxVS4eul7+O3JSfn76C5k4aVaW79U+k6fOXuA2vXpU5rcn9snt943J6ee9kr7rds3PB30jH308M089OzFJss1mS2fQQSvnD5e9nhdfnZy9dlkuvz9pnex31IhMnDSrmc6OUtC6a5d8+59/y0f/fCJP7nJoZn74cTqutlJmfTxpnrrVu/ZP103Wz4zRY+e7r1dOPj/v/vnGhs+zJ09d6LH7/OGX6bHDVnlmn2Mzq2Zy1jn/1+l700UZvtW+cypUVORbt/8xtWPG57Et90llzx5Z/8rfpjhrVl759blf/qT5Wtj/ux2z7DKtcuWd0zJpSn02Wbttjt2nc07906RMnFJMZZtCXn9vdka8PDP779DxC+1zleVa5eDvdcxt/5yekW/Myrf6tM3hu3fKWVfV5P3xczq+t9+kMt/pW5mr75qW8ZPq870t2uXovTvl1D/VZLb3MQAAAAAAoCwYSr3E7Lf78hk3vja/uei1vPTalHwwrjZPPTcx74+ZscBtdh3QKx+Mm5GLr3or77w3Pbfc80H++dj47L3Lcg119v7ecrnzgTG556Fxeee96fnDZa9nRm1ddtq2ujlOixKy6vGHZsZ7Y+YkxJ8amelvv5fxD/4n0958t1G9ymV7ZO3zfp1nD/hZ6mfN/+WJ2VOmpnbs+Ialbtr0BR63dZdOWeGgPfLi8b/JR488nppnXshzh/wy3b+9Ybpusn6SZJntNk/ntVbLswOPT81zL+fD+/6VV085PysdsV8Kbdosvi+BktOmdfLNNdrkloen5fX3ZufDifW58z8zMu7jumz5zcokyRMvzMzdj83Iy28v+EWhz9qmb7u88OasPPBkbcZ8VJ87/j0jo8bWZesN2zXU2Xajdrln+Iw89/qsjP6wLlfeOTVdO1Vkg9Vdc82tWKhotgUAAAAAgCWLJ8MlZrNvLZVXXp+SU49fM/971cb50x82yM7bLbzzeu01OmfEcxMblT357MdZe43OSZLWrQtZfdVOefpTdYrFZMT/m9hQhyVH9c7bZOKI57Ph385P/9GPZfOnbs0KB+/VuFKhkA2u+l3ePOfPmfLi6wvc16rHH5rtxjyezZ+6NasMPjiFVq0WWLdqw3VS0bZtxg97rKFs6itvZto7o9Nt0w2SJN023SA1z7/aaGj1D+9/NG2qOqfz2qt9uRPma6GiImlVUciszyS0Z81OVlv+yw9usspyrfPyO4070l98a1ZWWW7Otbp0VUWqOlXkpU91ts+Ymbz1/uyssqxBVQAAAAAAoFx46l9ielW3y67f7ZUbbx+dv978btZcrVN+cvAqmT27OM+c4XN179Y2EyY2TvR+PHFWOnVsnbZtK9K5Y+u0blXIx58ZMn3CxFlZcbkOTXYulKYOq6yQlX68b94678q8/tvLUrXRuln73BNTP3NWRl97W5I5Hd7F2bPz9oXXLHA/b198bSY982JmfTwp3fp9M2ueMTiVvZbJS8f/Zr71K3sunbramZk9aXKj8pnjPkpl9TINdWaOHd9ofe3/fZ5T56UvedaUutqZyRujZ2enb7fLmI+mpmZqMd9aq21WWbbVV5rru0vHQmqmNt5+8tRiunSc815Yl05z5rSep860T+rQfMwxDgAAAABAU1nsHePvvvtuTj755PzlL39ZYJ3a2trU1tY2Kquvm5mKVm0Xd3O+dioKyStvTMkV172TJHntralZecWO+d6AngvsGIdFUagoZNKI5xvm7K559qV0XvsbWemwfTL62tvSZcO10/voA/LoxrsvdD9vnXdVw39PHvlK6mfOyrqXnJpXfvWH1M80bz2L7so7p+aAHTrkt4O6pq6+mHfH1OWpl2ZmxZ7e4QIAAAAAAL6axR6HmzBhQq6++uqF1hk6dGiqqqoaLe+++tfF3ZSvpY8+npm3353WqOyd96aleunKBW4z4eOZ6d618Vy43bq2yZSpszNzZn0mTZ6V2XXFdKtqXKd71zaZMHHm4ms8XwszPvgwk196o1HZlJffTPsVlk2SdN98o1T2WCrbvPlwdpj+QnaY/kI69F4+fc4+Id95bdgC9zvxyedS0aZN2vdefr7ra8eMT6vKtmld1Xj4/rY9lkrt2A8b6rStXrrR+sr/+zy3DuVr/MT6nPO3KTnmnI8z5JJJ+c21k9OqopDxE798Yrxm6rzJ786fSpHXTCkmybx1OsybNKfpFQuFZlsAAAAAAFiyLHIM7/bbb1/o+jfffPNz9zFkyJAMHjy4UdmOP3x6UZtSlka+XJMVlmvfqGyFZdtn7Ie1C9gieeGVydm0b7dGZRut3zUvvDJnyOrZs4t59Y0p6bte1zz65IQkSaGQbLhu19x6zweL+QwodR8/9kw6rb5yo7KO3+id6aNGJ0lG//V/G80DniSb3PXnvHfd/+a9q29Z4H67rL9WinV1qf3U/OCfNumZ51M/c2aW3qZfxtx6/5zjrr5yOqy0XD5+/Nk5bXv82aw25PC0XaZ7Zn4451pduv+3M2vS5IXOdU55mTkrmTmrmA6VhfRZuXVueWT6l97Xm6NnZ82VWuehpz/5DV2rd5u8OXrOZObjJ9Vn0pT6rLlS67w3bk5Zu7bJysu2zr+eXfDvLgAAAAAA8PWyyB3ju+22WwqFQorF4gLrFD4niVVZWZnKysYJaMOoz3HTHe/nkqHr5Yd7LJ+H/zM+a32jc3bZvmd+f+knnYKH/XClLN29Mmdd8GqS5H/v+yDf37FXDj+gd+4eNjYbrluV72y2TE4444WGbW68fXSGHLN6XnljSl56bXL22nnZtG/XKncPG9vs50jLeuuCq/Ptf/0tq57w43xw8z3p+q31suIhe2fkESclSWZNmJhZEyY22qZ+1qzUjh2fqa++lSTpuukG6brx+vnokccze/LUdNv0m+nz+yEZff3tmT2xJklSuWyPbHrf1Xn2Rz/PpKdGZnbNlLx75T+y1u9+kVkTJmXW5ClZ57wT8/HwZzLxieeSJB8+8Ggmv/R6Nrjq7Lw05HeprF4ma5x6bN659DrDsy8B+qw8539JYyfUp0e3iuy+dfuMmVCfx0bOGdmiQ7tCunepSNf/mxe8uvuclHfN1PrUTJ3z/6QDd+qQiZPrc9u/ZiRJHhoxIz/dt3P6f6syI9+YlW+t1TYr9WyV6+6d2nDcYU/PyA7fbpdxH9dn/MS6fG+L9pk4pT7Pvuqaa27FoiQ3AAAAAABNY5E7xnv16pVLLrkku+6663zXP/vss+nbt+9XbtiS6uXXp+RXv30pP/5h7wzce8WMGTcjF/7lzTzwr0+GkV6qW9tUL/PJiwUfjKvNCWe8mKN+tHL23HnZfPhRbc6++LU89ezEhjoP/Wd8unZpkx/ts2K6d2ub19+amp+d9nw+nqTjZ0kz6emRGbHnUVnjzMH5xomDMv2t9/LiT8/K+3+74wvvo752Zpbde8es/uujUlHZNtPeei9vnX9V3jrvyoY6FW3apNOaq6RV+09GQHjxp2dlrfr6bHjjBamobJvx9z+a548+9VM7rs/Tux6edS46JZv9+4bMnjo9o6+9Na+ecsFiOXdKW/vKQnbbsn26dq7ItBnF/PeVmbntX9NT/38jmq+/WpsM3KljQ/1Dd+2UJLnz0em58z9zOsK7d6nIp9/benN0Xf58x9R8b4v22XXL9hn3cX0uu2VK3h//yTDp9z9Rm8o2hew3oEM6tCvk9fdm58Ibp2R2XdOfMwAAAAAA0DwKxYVFv+fje9/7XjbYYIOcdtpp813/3HPP5Zvf/Gbq6xdtbtYtv//oItWHxe2EOw9u6SZA7jjj8ZZuAuSyE7p9fqUm8Nob7zTbsb6x6krNdixaRk1NTaqqqjJp0qR06dKlpZsDAFDWloR7ryXhHAEASkVT3XstcmL8+OOPz9SpUxe4frXVVsvDDz/8lRoFAAAAAAAAAIvLIneMb7HFFgtd37Fjx2y11VZfukEAAAAAAAAAsDgtcsc4AEBTKKbQ0k0AAAAAAKBMVbR0AwAAAAAAAACgKUmMAwAlQWIcAAAAAICmIjEOAAAAAAAAQFmTGAcASoLEOAAAAAAATUViHAAAAAAAAICyJjEOAJQEiXEAAAAAAJqKxDgAAAAAAAAAZU3HOABQEorFQrMti+LSSy/Neuutly5duqRLly7p169f7rnnnob1M2bMyKBBg7LUUkulU6dO2WOPPTJ27NhG+xg1alR22mmndOjQIT169Mjxxx+f2bNnL5bvDQAAAACAz6djHABgIZZffvn85je/yYgRI/L0009nm222ya677poXXnghSXLcccfljjvuyE033ZR//vOfef/997P77rs3bF9XV5eddtopM2fOzGOPPZarr746V111VU466aSWOiUAAAAAgCWOOcYBgJJQqnOM77LLLo0+n3nmmbn00kvz+OOPZ/nll8+f//znXH/99dlmm22SJFdeeWXWWmutPP7449l0001z//3358UXX8yDDz6Y6urqbLDBBjn99NNzwgkn5JRTTknbtm1b4rQAAAAAAJYoEuMAwBKntrY2NTU1jZba2trP3a6uri5///vfM3Xq1PTr1y8jRozIrFmz0r9//4Y6a665ZlZcccUMHz48STJ8+PCsu+66qa6ubqgzYMCA1NTUNKTOAQAAAABoWjrGAYCSUEyh2ZahQ4emqqqq0TJ06NAFtm3kyJHp1KlTKisrc/jhh+fWW29Nnz59MmbMmLRt2zZdu3ZtVL+6ujpjxoxJkowZM6ZRp/jc9XPXAQAAAADQ9AylDgAscYYMGZLBgwc3KqusrFxg/TXWWCPPPvtsJk2alJtvvjkDBw7MP//5z6ZuJgAAAAAAi4mOcQCgJDTnHOOVlZUL7Qj/rLZt22a11VZLkvTt2zdPPfVUzj///PzgBz/IzJkzM3HixEap8bFjx6Znz55Jkp49e+bJJ59stL+xY8c2rAMAAAAAoOkZSh0AYBHV19entrY2ffv2TZs2bTJs2LCGda+88kpGjRqVfv36JUn69euXkSNHZty4cQ11HnjggXTp0iV9+vRp9rYDAAAAACyJJMYBgJJQLDZfYnxRDBkyJDvssENWXHHFTJ48Oddff30eeeSR3HfffamqqsrBBx+cwYMHp3v37unSpUuOPvro9OvXL5tuummSZPvtt0+fPn2y//775+yzz86YMWNy4oknZtCgQYuUWgcAAAAA4MvTMQ4AsBDjxo3LAQcckA8++CBVVVVZb731ct9992W77bZLkpx77rmpqKjIHnvskdra2gwYMCCXXHJJw/atWrXKnXfemSOOOCL9+vVLx44dM3DgwJx22mktdUoAAAAAAEscHeMAQEmob8Y5xhfFn//854Wub9euXS6++OJcfPHFC6yz0kor5e67717cTQMAAAAA4AsyxzgAAAAAAAAAZU3HOAAAAAAAAABlzVDqAEBJKJboUOoAAAAAAHz9SYwDAAAAAAAAUNYkxgGAklAsSowDAAAAANA0JMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJQEc4wDAAAAANBUJMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJQEc4wDAAAAANBUJMYBAAAAAAAAKGsS4wBASahv6QYAAAAAAFC2JMYBAAAAAAAAKGsS4wBASTDHOAAAAAAATUViHAAAAAAAAICyJjEOAJSEYiTGAQAAAABoGhLjAAAAAAAAAJQ1iXEAoCSYYxwAAAAAgKYiMQ4AAAAAAABAWZMYBwBKgjnGAQAAAABoKhLjAAA0uYsvvji9e/dOu3btsskmm+TJJ5/8Qtv9/e9/T6FQyG677da0DQQA4GvHPSYAAItCxzgAAE3qhhtuyODBg3PyySfnmWeeyfrrr58BAwZk3LhxC93u7bffzs9+9rNsscUWzdRSAAC+LtxjAgCwqHSMAwAlob7YfAvN65xzzsmhhx6agw46KH369Mlll12WDh065C9/+csCt6mrq8t+++2XU089NausskozthYAgK8D95gAACwqHeMAADSZmTNnZsSIEenfv39DWUVFRfr375/hw4cvcLvTTjstPXr0yMEHH9wczQQA4GvEPSYAAF9G65ZuAABAkhRTaOkm0ATGjx+furq6VFdXNyqvrq7Oyy+/PN9tHn300fz5z3/Os88++4WPU1tbm9ra2obPNTU1X6q9AACUvua4x3R/CQBQfiTGAQAoGZMnT87++++fK664IksvvfQX3m7o0KGpqqpqWFZYYYUmbCUAAF8nX+Ye0/0lAED5kRgHAEpCsSgxXo6WXnrptGrVKmPHjm1UPnbs2PTs2XOe+m+88Ubefvvt7LLLLg1l9fX1SZLWrVvnlVdeyaqrrjrPdkOGDMngwYMbPtfU1Hh4CQBQpprjHtP9JQBA+dExDgBAk2nbtm369u2bYcOGZbfddksy5yHksGHDctRRR81Tf80118zIkSMblZ144omZPHlyzj///AU+jKysrExlZeVibz8AAKWnOe4x3V8CAJQfHeMAQEkoFlu6BTSVwYMHZ+DAgdloo42y8cYb57zzzsvUqVNz0EEHJUkOOOCALLfcchk6dGjatWuXddZZp9H2Xbt2TZJ5ygEAWHK5xwQAYFHpGAcAoEn94Ac/yIcffpiTTjopY8aMyQYbbJB777031dXVSZJRo0aloqKihVsJAMDXiXtMAAAWVaFYLI181pbff7Slm8AS7oQ7D27pJkDuOOPxlm4C5LITurXIcYeNnNFsx9p23XbNdixaRk1NTaqqqjJp0qR06dKlpZsDAFDWloR7ryXhHAEASkVT3Xt5bRIAAAAAAACAsmYodQCgJBSLhZZuAgAAAAAAZUpiHAAAAAAAAICyJjEOAJSEYrGlWwAAAAAAQLmSGAcAAAAAAACgrEmMAwAloRhzjAMAAAAA0DQkxgEAAAAAAAAoaxLjAEBJqDfHOAAAAAAATURiHAAAAAAAAICyJjEOAJSEYtEc4wAAAAAANA2JcQAAAAAAAADKmsQ4AFASiuYYBwAAAACgiUiMAwAAAAAAAFDWdIwDAAAAAAAAUNYMpQ4AlIT6FFq6CQAAAAAAlCmJcQAAAAAAAADKmsQ4AFASisWWbgEAAAAAAOVKYhwAAAAAAACAsiYxDgCUhGLRHOMAAAAAADQNiXEAAAAAAAAAyprEOABQEurNMQ4AAAAAQBORGAcAAAAAAACgrEmMAwAloSgxDgAAAABAE5EYBwAAAAAAAKCsSYwDACWhmEJLNwEAAAAAgDIlMQ4AAAAAAABAWZMYBwBKQr05xgEAAAAAaCIS4wAAAAAAAACUNYlxAKAkFCXGAQAAAABoIhLjAAAAAAAAAJS1kkmM18+ua+kmsIQbfsXIlm4C5IQtRrV0EyBJtxY5qsQ4AAAAAABNRWIcAAAAAAAAgLJWMolxAGDJVl8stHQTAAAAAAAoUxLjAAAAAAAAAJQ1HeMAAAAAAAAAlDVDqQMAJaFYbOkWAAAAAABQriTGAQAAAAAAAChrEuMAQEmQGAcAAAAAoKlIjAMALMTQoUPzrW99K507d06PHj2y22675ZVXXmlUZ8aMGRk0aFCWWmqpdOrUKXvssUfGjh3bqM6oUaOy0047pUOHDunRo0eOP/74zJ49uzlPBQAAAABgiaVjHAAoCfXF5lsWxT//+c8MGjQojz/+eB544IHMmjUr22+/faZOndpQ57jjjssdd9yRm266Kf/85z/z/vvvZ/fdd29YX1dXl5122ikzZ87MY489lquvvjpXXXVVTjrppMX19QEAAAAAsBCGUgcAWIh777230eerrroqPXr0yIgRI7Lllltm0qRJ+fOf/5zrr78+22yzTZLkyiuvzFprrZXHH388m266ae6///68+OKLefDBB1NdXZ0NNtggp59+ek444YSccsopadu2bUucGgAAAADAEkNiHAAoCcViodmW2tra1NTUNFpqa2u/UDsnTZqUJOnevXuSZMSIEZk1a1b69+/fUGfNNdfMiiuumOHDhydJhg8fnnXXXTfV1dUNdQYMGJCampq88MILi+srBAAAAABgAXSMAwBLnKFDh6aqqqrRMnTo0M/drr6+Pscee2w222yzrLPOOkmSMWPGpG3btunatWujutXV1RkzZkxDnU93is9dP3cdAAAAAABNy1DqAEBJKC7i3N9fxZAhQzJ48OBGZZWVlZ+73aBBg/L888/n0UcfbaqmAQAAAADQBHSMAwBLnMrKyi/UEf5pRx11VO68887861//yvLLL99Q3rNnz8ycOTMTJ05slBofO3Zsevbs2VDnySefbLS/sWPHNqwDAAAAAKBpGUodACgJ9cXmWxZFsVjMUUcdlVtvvTUPPfRQVl555Ubr+/btmzZt2mTYsGENZa+88kpGjRqVfv36JUn69euXkSNHZty4cQ11HnjggXTp0iV9+vT58l8aAAAAAABfiMQ4AMBCDBo0KNdff33+93//N507d26YE7yqqirt27dPVVVVDj744AwePDjdu3dPly5dcvTRR6dfv37ZdNNNkyTbb799+vTpk/333z9nn312xowZkxNPPDGDBg1a5OQ6AAAAAACLTsc4AFASmnOO8UVx6aWXJkm23nrrRuVXXnllDjzwwCTJueeem4qKiuyxxx6pra3NgAEDcskllzTUbdWqVe68884cccQR6devXzp27JiBAwfmtNNOa67TAAAAAABYoukYBwBYiOIX6LFv165dLr744lx88cULrLPSSivl7rvvXpxNAwAAAADgC9IxDgCUhFJNjAMAAAAA8PVX0dINAAAAAAAAAICmJDEOAJSEeolxAAAAAACaiMQ4AAAAAAAAAGVNYhwAKAnmGAcAAAAAoKlIjAMAAAAAAABQ1iTGAYCSUF/f0i0AAAAAAKBcSYwDAAAAAAAAUNZ0jAMAAAAAAABQ1gylDgCUhGKxpVsAAAAAAEC5khgHAAAAAAAAoKxJjAMAJUFiHAAAAACApiIxDgAAAAAAAEBZkxgHAEpCvcQ4AAAAAABNRGIcAAAAAAAAgLImMQ4AlIRis04yXmjGYwEAAAAA0NIkxgEAAAAAAAAoaxLjAEBJaNbAOAAAAAAASxSJcQAAAAAAAADKmsQ4AFAS6utbugUAAAAAAJQriXEAAAAAAAAAyprEOABQEswxDgAAAABAU5EYBwAAAAAAAKCsSYwDACWhXmIcAAAAAIAmIjEOAAAAAAAAQFmTGAcASoI5xgEAAAAAaCoS4wAAAAAAAACUNYlxAKAkFJt1kvFCMx4LAAAAAICWJjEOAAAAAAAAQFmTGAcASkKzBsYBAAAAAFiiSIwDAAAAAAAAUNZ0jAMAAAAAAABQ1gylDgCUhKKh1AEAAAAAaCIS4wAAAAAAAACUNYlxAKAk1NeLjAMAAAAA0DQkxgEAAAAAAAAoaxLjAEBJMMc4AAAAAABNRWIcAAAAAAAAgLImMQ4AlASJcQAAAAAAmorEOAAAAAAAAABlTWIcACgJ9SLjAAAAAAA0EYlxAAAAAAAAAMqaxDgAUBKK9S3dAgAAAAAAypXEOAAAAAAAAABlTWIcACgJRXOMAwAAAADQRCTGAQAAAAAAAChrEuMAQEmoN8c4AAAAAABNRGIcAAAAAAAAgLKmYxwAKAnFYrHZFprfxRdfnN69e6ddu3bZZJNN8uSTTy6w7hVXXJEtttgi3bp1S7du3dK/f/+F1gcAYMnkHhMAgEWhYxwAgCZ1ww03ZPDgwTn55JPzzDPPZP3118+AAQMybty4+dZ/5JFHsu++++bhhx/O8OHDs8IKK2T77bfP6NGjm7nlAACUKveYAAAsqkKxRGJTm+/yz5ZuAku4rffo19JNgBy8xaiWbgJk5VVXa5HjnnjVzGY71hkHtm22Y5Fssskm+da3vpWLLrooSVJfX58VVlghRx99dH7xi1987vZ1dXXp1q1bLrroohxwwAFf6Jg1NTWpqqrKpEmT0qVLl6/UfgAAFq4l7r2a+x7T/SUAQPNpqnsviXEAAJrMzJkzM+L/s3ff4VFUbR/Hf5veSAOSEEroHeERkV4UBKQo0qQoAUFQwIaV1wKIgAKKj4gFVFAUUVCwIdLsFOnSe5GSUEIKCal73j/yZGFJAgmmbr6f69pLOXNm5kzbvTNn7jObN6tDhw62MicnJ3Xo0EHr1q3L0TISEhKUkpKiwMDAbOskJSUpNjbW7gMAAADHVBAxJvElAACA46FjHAAAAPnm3LlzSktLU3BwsF15cHCwIiIicrSMZ599VqGhoXY3Pq82ZcoU+fn52T4VK1b8V+0GAABA0VUQMSbxJQAAgOOhYxwAABQJxmoK7IPi49VXX9XChQu1ZMkSeXh4ZFtv7NixiomJsX3++eefAmwlAAAAipOcxJjElwAAAI7HpbAbAAAAAMdVpkwZOTs7KzIy0q48MjJSISEh15x3+vTpevXVV7Vq1SrddNNN16zr7u4ud3f3f91eAAAAFH0FEWMSXwIAADgeMsYBAECRYEzBfVBw3Nzc1LhxY61evdpWZrVatXr1ajVv3jzb+aZOnaqJEydq+fLluuWWWwqiqQAAACgmiDEBAABwI8gYBwAAQL4aM2aMwsPDdcstt+jWW2/Vm2++qfj4eA0ZMkSSNGjQIJUvX15TpkyRJL322mt66aWXtGDBAlWuXNn2nkgfHx/5+PgU2nYAAACg6CDGBAAAQG7RMQ4AAIoEK+/+dlj33nuvzp49q5deekkRERFq1KiRli9fruDgYEnS8ePH5eR0eSCjd999V8nJyerdu7fdcsaNG6fx48cXZNMBAABQRBFjAgAAILcsxhSNAUVbdf+1sJuAEq5dr+yH2gIKytDWxwu7CYCqVKteKOt9bk5iga3r1Qc9CmxdKByxsbHy8/NTTEyMfH19C7s5AAAADq0kxF4lYRsBAACKivyKvcgYBwAARUIReVYPAAAAAAAAAOCAnK5fBQAAAAAAAAAAAACA4ouMcQAAUCQYa2G3AAAAAAAAAADgqMgYBwAAAAAAAAAAAAA4NDLGAQBAkWDlHeMAAAAAAAAAgHxCx3gR1LCenwb0rKha1XxUprS7xk7aqd/Xn7/mPP+p76fRw6qpSiVvnTmbpI+/PKYfV0fa1enZJVT9e1ZUYICbDh25qBnvH9SeA3H5uSkooioHW9SqvrNCS1vk62XRZ2tStOf45Q6p2xs5q0EVJ/l5SWlW6dR5o5Vb0nTi3OU6nm5St6bOqlXRSUbS7qNW/fBXmpJTs1+vi7PU+RZn3VTFSc7O0sGTRt+uT1V84uU6ft7SXc1cVKWcRckp0tZDVq3cnCYr/WUO5fsfftD3PyzTmcj076lKYWEa2L+/mjS5RXFxcZr/6afavGWrzp49Kz8/PzVv3kzh998vb29vu+WsWLlSXy9ZqpMnT8rLy0utW7XS6FEjs11vcnKyZs/5QL/+9ptSUlLU+OabNXrUSAUEBNjqnDlzRjNnzdLff++Qh4eHOnRorwcGD5azs3P+7AwAAAAAAAAAAJDv6Bgvgjw9nHXwyEX9sPK0Jj9f/7r1ywV7aOq4Bvrmx1N6efpeNW7or2cfqaXzUcn6a+sFSdLtrcpq9LBqmj5rv3bvj1Pfu8rrjZcbqP9DGxUdk5Lfm4QixtVFiogy2nwgTQNvd800/VyM0ffrUxUVZ+TqYlGLuk4a3NFFb3yVooSk9Dp92riolJc0b0WqnJ2ke1q56O4W0qLf0rJd751NnFWrgpMW/pKqxJT0jvUBt7lozo/pvekWi3R/BxddvCTNXpaqUp5S79YuslqllVuyXy6KnzJlyuiBIYNVPjRUxkirVq/ShIkT9fbMtyRjdP58lB4cNlSVKlXSmcgzmvn224o6H6UXnv8/2zK++nqJvl6yRMMeeEC1atdSYmKiIiMjr7FW6f3Zc/TXxo16fuxYeXt7ada772niK5P0xuvTJUlpaWl6adx4BQQE6I3p0xQVdUHTX39dLs4uGjI4PF/3CSRDxjgAAAAAAAAAIJ/wjvEiaP3mKM359Kh+u06WeIYencvpdGSi3v7osI6dSNDXP5zSL3+e1b13V7DV6dejgr776bSWrY7U0X8SNO2dA0pMsqrbHSH5tRkowg6cNFq1Nc0uS/xKfx+x6tBpowsXpTPRRj9uTJOHm0UhgRZJUlk/qWYFJy35Mz2L/NgZox82pKpBFSeV8sx6ne6uUuMaTvpxY6oORxidOm/09Z+pCgt2UoWy6cutHmpRkJ9Fi35LVUSUsbWzaW0nOfNt5VCaNW2qW5s0Ufny5VWhQnkNDg+Xh4eH9u7dq8qVK+vFF55Xs6ZNFVqunBo1aqjw8EHasGGD0tLSH5CIi4vTJ/Pn66knx+i229optFw5Va1SRc2bNct2nfHx8fppxQoNf3CYGjVqqBo1aujJJx7X7j17tGfvXknSli1bdfyff/TM00+pWrVqatLkFg26/3599/33SknhISIAAAAAAAAAAIorupocQL3avtq07YJd2V9bolSvtq8kycXFoprVS2nT9st1jJE2bbugerV8C7StKH6cnaRbajrpUrJRRFR6R3rFsk66lJTeuZ3h0CkjY2Tr5L5a+dIWuThbdOj05XnOxUjRF40q/W+eSmWdFBlt7IZWP3jSKg83i4L8s14uir+0tDT98uuvSkpMVJ06dbKsEx+fIC8vL9tw5lu3bpPVatX58+f14IgRuu/+QZo0eYrOnj2b7XoOHDio1NRU/adRI1tZxYoVFVS2rPbs2SNJ2rN3jypXDrMbWr1x45uVkJCgY8eP58HW4lqsVlNgHwAAAAAAAABAyZLrodQvXbqkzZs3KzAwUHXr1rWblpiYqC+//FKDBg3Kswbi+koHuCkqOtmuLCo6RT7eLnJzc1IpHxe5OFsUdSElU52wCl4F2VQUI7UqWNS3rYtcXaSLCdK8n1Jtw6iX8pQuJtrXtxrpUpJUytMiKXOnk4+nRalpRon2p6ouXjLy8bT8r4508dLV02WbBsdy5MhRPfHkk0pOTpanp6defPEFhVWqlKleTEyMPv/8c915Z2db2emI0zLGaOEXX+qhEcPl7e2tjz/5RGOff0Hvznpbrq6ZXxFw4cIFubq4yMfHx67cPyBAFy5csNXx9w+wn+7vnz4t6oJU7d9uNQAAAAAAAAAAKAy5yhjfv3+/6tSpozZt2qhBgwZq27atTp8+bZseExOjIUOGXHc5SUlJio2NtftY05KvOx+AgnM4wmjWtymavSxVB05a1a+di7w9CrtVcCQVKpTXO2/P1H9nvKGuXbro9dffyJSVHZ+QoJfGjVelSpV038CBtnJjjFJTU/XwQyN0S+PGqlO7tp579lmdOnVK2//+u6A3BXnEmIL7AAAAAAAAAABKllx1jD/77LOqX7++zpw5o3379qlUqVJq2bKljudyeNkpU6bIz8/P7nPi4Ge5WgYuO38hWYH+bnZlgf6uuhifquRkq2JiU5SaZhQY4JqpzvkLPJCArKWkSlFx0omzRkvWpinNpL8jXJLiLkk+V3WSO1kkT3cp7lLWPU4XLxm5OFvkYX+qysfToov/m+fipcyZ4Rn/vjqTHMWfq6urQkNDVaNGDT0wZLCqVK2ipd98Y5uekJCgF158UZ5ennrpxRfk4nJ5kJPAgEBJUqUrMsz9/fzk6+ub7XDqAQEBSklN1cWLF+3Koy9csA2dHhAQoOho+1dTREdHp08LtM8kBwAAAAAAAAAAxUeuOsbXrl2rKVOmqEyZMqpevbq+++47derUSa1bt9bhw4dzvJyxY8cqJibG7lOh+sDrz4gs7dobq8YN/e3KmvwnQLv2xkqSUlON9h+MU+ObLnfqWCxS44YB2rUvtiCbimLMSZKLc/qQ5/+ctcrT3aLQ0pff+121nEUWS3pHelZOnjdKTTOqWu7yPGV8JX8fi47/b57jZ60K9rfYZaZXC3VSYrLRmWhSPB2dsRqlpKS/8iE+IUH/98KLcnFx1fiXXpKbm/0TFRmv8jhx4oStLC4uTrGxsQoKCspy+TVqVJeLi4u2bdtuK/vnxAmdOXvW9m7zOrXr6OjRY7bOcEnasnWrvLy87DrhkT+M1RTYBwAAAAAAAABQsuSqY/zSpUt2GXsWi0XvvvuuunfvrrZt22r//v05Wo67u7t8fX3tPk7ObtefsYTw9HBS9Sreql7FW5JULthD1at4K7isuyRpxKAqeuGJWrb6S5efVmiIpx4eXFWVKnjqni6huq1VkL745nKH0cKlJ9S9Uzl1vj1YYRW89NTIGvL0cNIPqyIKduNQJLi5SCGBFoUEpndSB/ik/7+ft+TqIt1xs7MqlLXI31sKLW3RPS2dVcpb2nnUKkk6GyPtP2FVjxbOKl/GokpBFnVr6qIdR6yK+19mdykv6bF7XFW+TPo6klKkzQes6tLERVVC0jvVe7Zy0fEzVltn+sFTRmdijHq3dlFIgEXVQy3q8B9nbdhrVZq14PcT8s9Hc+dpx46dioiM1JEjR/XR3Hn6e8cO3d7uNsUnJOj5519QYmKinnj8MSUkJCgqKkpRUVFKS0uTlD4Me/NmzfTe+7O1e/duHT16VNNff0MVKlRQw5tukiSdO3dOw4aP0L59+yRJ3t7e6tSxo2bPmaPt27frwIEDemPGDNWpU1t1ateWJN18839UqWJFTZ3+ug4fPqxNmzfr40/mq3u3bnLL4r3lKBl+++03de/eXaGhobJYLFq6dKnddGOMXnrpJZUrV06enp7q0KGDDhw4YFcnKipKAwcOlK+vr/z9/TV06NBMoxcAAAAAAAAAAPKPy/WrXFa7dm1t2rTJllmX4e2335Yk3XXXXXnXshKsdvVSmjmlke3fjw6rLklatjpCk9/cp9KBbgouezml9nRkop6ZsEOPDKumPneV19lzSXpt5j79tfXycMBr/jgrfz9XDRtYWYEBbjp4+KKeHLdDF6JTCmy7UHSUL2PR0M6XO/m63Jr+VbDlYJq+XZemMn4WDajmIi8PKSFJOnnO6INlqXZZ24t+S1W3Zs56oJOLjJF2HbPqhw1ptunOTlJZP4vcrviW+XFjmoyR+t/mIhcn6cApo+/Wp9qmGyN9uipV3Zu7aHhXF6WkSlsPWrV66+XlwjFEx0Rr2uuv60JUlLy8vVWlSmVNmjhRN9/8H23/+2/t/V9n9gNDh9nNN2/uRwoJDpYkPfXUk3p/9my9NH68LBYnNWhQX5Mmvmx7gCs1LU0nTpxQYlKSbf4Rwx+UxWLRxEmTlZKSosaNb9bokSNt052dnTVh/Hi9PWuWnnjyKXm4u6tDh/YadP99+b1LIMlaRF/+HR8fr4YNG+qBBx5Qz549M02fOnWq3nrrLX388ceqUqWKXnzxRXXq1Em7d++Wh0f67/XAgQN1+vRprVy5UikpKRoyZIiGDx+uBQsWFPTmAAAAAAAAAECJZDEm53ehp0yZot9//13Lli3LcvrIkSP13nvvyWrNfWpnq+6/5noeIC+169W8sJsAaGjr44XdBEBVqlUvlPU+8mbBvd5j5uO+NzSfxWLRkiVL1KNHD0np2eKhoaF68skn9dRTT0mSYmJiFBwcrHnz5qlfv37as2eP6tatq40bN+qWW26RJC1fvlxdunTRiRMnFBoamifbBHuxsbHy8/NTTEyMfH1v7HgDAAAgZ0pC7FUSthEAAKCoyK/YK1dDqY8dOzbbTnFJeuedd26oUxwAAKAgJSUlKTY21u6TdMXoAjl15MgRRUREqEOHDrYyPz8/NW3aVOvWrZMkrVu3Tv7+/rZOcUnq0KGDnJyctGHDhn+/MQAAAAAAAACA68pVxzgAAEB+MVZTYJ8pU6bIz8/P7jNlypRctzkiIkKSFPy/If4zBAcH26ZFREQoKCjIbrqLi4sCAwNtdQAAAAAAAAAA+StX7xgHAABwBGPHjtWYMWPsytzd3QupNQAAAAAAAACA/EbHOAAAKBKM1RTYutzd3fOkIzwkJESSFBkZqXLlytnKIyMj1ahRI1udM2fO2M2XmpqqqKgo2/wAAAAAAAAAgPzFUOoAAAA3qEqVKgoJCdHq1attZbGxsdqwYYOaN28uSWrevLmio6O1efNmW501a9bIarWqadOmBd5mAAAAAAAAACiJyBgHAABFQgEmjOfKxYsXdfDgQdu/jxw5om3btikwMFCVKlXS448/rldeeUU1atRQlSpV9OKLLyo0NFQ9evSQJNWpU0edO3fWgw8+qPfee08pKSkaPXq0+vXrp9DQ0ELaKgAAAAAAAAAoWegYBwAAuIZNmzbptttus/07493k4eHhmjdvnp555hnFx8dr+PDhio6OVqtWrbR8+XJ5eHjY5vnss880evRotW/fXk5OTurVq5feeuutAt8WAAAAAAAAACip6BgHAABFQkG+Yzw32rVrJ2Oyb5vFYtHLL7+sl19+Ods6gYGBWrBgQX40DwAAAAAAAACQA7xjHAAAAAAAAAAAAADg0MgYBwAARcK1srIBAAAAAAAAAPg3yBgHAAAAAAAAAAAAADg0MsYBAECRYC2i7xgHAAAAAAAAABR/ZIwDAAAAAAAAAAAAABwaGeMAAKBI4B3jAAAAAAAAAID8QsY4AAAAAAAAAAAAAMChkTEOAACKBMM7xgEAAAAAAAAA+YSMcQAAAAAAAAAAAACAQyNjHAAAFAlkjAMAAAAAAAAA8gsZ4wAAAAAAAAAAAAAAh0bGOAAAKBKshoxxAAAAAAAAAED+IGMcAAAAAAAAAAAAAODQyBgHAABFAu8YBwAAAAAAAADkFzLGAQAAAAAAAAAAAAAOjY5xAAAAAAAAAAAAAIBDYyh1AABQJBjDUOoAAAAAAAAAgPxBxjgAAAAAAAAAAAAAwKGRMQ4AAIoEq5WMcQAAAAAAAABA/iBjHAAAAAAAAAAAAADg0MgYBwAARYIhYxwAAAAAAAAAkE/IGAcAAAAAAAAAAAAAODQyxgEAQJFgDBnjAAAAAAAAAID8QcY4AAAAAAAAAAAAAMChkTEOAACKBGO1FnYTAAAAAAAAAAAOioxxAAAAAAAAAAAAAIBDI2McAAAUCVYr7xgHAAAAAAAAAOQPMsYBAAAAAAAAAAAAAA6NjHEAAFAkGEPGOAAAAAAAAAAgf5AxDgAAAAAAAAAAAABwaGSMAwCAIsHwjnEAAAAAAAAAQD4hYxwAAAAAAAAAAAAA4NDIGAcAAEUCGeMAAAAAAAAAgPxCxjgAAAAAAAAAAAAAwKGRMQ4AAIoEq7EWdhMAAAAAAAAAAA6KjHEAAAAAAAAAAAAAgEOjYxwAAAAAAAAAAAAA4NAYSh0AABQJxmoKuwkAAAAAAAAAAAdFxjgAAAAAAAAAAAAAwKGRMQ4AAIoEMsYBAAAAAAAAAPmFjHEAAAAAAAAAAAAAgEMjYxwAABQJxpAxDgAAAAAAAADIH2SMAwAAAAAAAAAAAAAcGhnjAACgSLBarYXdBAAAAAAAAACAgyJjHAAAAAAAAAAAAADg0MgYBwAARYKx8o5xAAAAAAAAAED+IGMcAAAAAAAAAAAAAODQyBgHAABFgjG8YxwAAAAAAAAAkD/IGAcAAAAAAAAAAAAAODQyxgEAQJHAO8YBAAAAAAAAAPmFjHEAAAAAAAAAAAAAgEMjYxwAABQJZIwDAAAAAAAAAPILGeMAAAAAAAAAAAAAAIdGxjgAACgSrMZa2E0AAAAAAAAAADgoMsYBAAAAAAAAAAAAAA6NjHEAAFAk8I5xAAAAAAAAAEB+IWMcAAAAAAAAAAAAAODQyBgHAABFgrHyjnEAAAAAAAAAQP4gYxwAAAAAAAAAAAAA4NDoGAcAAAAAAAAAAAAAODSGUgcAAEWCsZrCbgIAAAAAAAAAwEGRMQ4AAAAAAAAAAAAAcGhkjAMAgCLBGGthNwEAAAAAAAAA4KDIGAcAAAAAAAAAAAAAODQyxgEAQJFg5R3jAAAAAAAAAIB8QsY4AAAAAAAAAAAAAMChkTEOAACKBGPlHeMAAAAAAAAAgPxBxjgAAAAAAAAAAAAAwKGRMQ4AAIoEwzvGAQAAAAAAAAD5hIxxAAAAAAAAAAAAAIBDI2McAAAUCcbwjnEAAAAAAAAAQP4gYxwAAAAAAAAAAAAA4NDoGAcAAEWCsZoC+9yIWbNmqXLlyvLw8FDTpk31119/5fEecGy53X+LFi1S7dq15eHhoQYNGmjZsmUF1FIAAAAUF8SYAAAAyA06xgEAAK7jiy++0JgxYzRu3Dht2bJFDRs2VKdOnXTmzJnCblqxkNv9t3btWvXv319Dhw7V1q1b1aNHD/Xo0UM7d+4s4JYDAACgqCLGBAAAQG5ZjDE3ljaVx1p1/7Wwm4ASrl2v5oXdBEBDWx8v7CYAqlKteqGstyBjgT++a5ur+k2bNlWTJk309ttvS5KsVqsqVqyoRx55RM8991x+NNGh5Hb/3XvvvYqPj9f3339vK2vWrJkaNWqk9957L0frjI2NlZ+fn2JiYuTr65s3GwIAAIAsFUbsVdAxJvElAABAwcmv2Mslz5YEAABQTCQlJSkpKcmuzN3dXe7u7pnqJicna/PmzRo7dqytzMnJSR06dNC6devyva3F3Y3sv3Xr1mnMmDF2ZZ06ddLSpUuzXc/VxzQmJkZSehANAACA/JURcxVU/k1BxJjElwAAAIUnv+LLItMxntvMLdhLSkrSlClTNHbs2Cxv6gP5jXMwrxROpq6j4Dws3goyFhg/frwmTJhgVzZu3DiNHz8+U91z584pLS1NwcHBduXBwcHau3dvfjbTIdzI/ouIiMiyfkRERLbrmTJlSqZjKkkVK1a8gVYDAADgRpw/f15+fn75vp6CiDGJLwEAAApfXseXRaZjHP9OUlKSJkyYoDFjxtAZhELBOYiigPMQOTV27NhM2SKcM8Xb1cc0OjpaYWFhOn78eIHcnEXBi42NVcWKFfXPP/8wnKkD4zg7Po6x4+MYlwwxMTGqVKmSAgMDC7speYb4smTiO8vxcYwdH8e4ZOA4O778ii/pGAcAACVOdsOmZ6VMmTJydnZWZGSkXXlkZKRCQkLyo3kO5Ub2X0hISK73d3bH1M/Pjz+QHJyvry/HuATgODs+jrHj4xiXDE5OTgWynoKIMYkvSza+sxwfx9jxcYxLBo6z48vr+LJgolUAAIBiys3NTY0bN9bq1attZVarVatXr1bz5s0LsWXFw43sv+bNm9vVl6SVK1eyvwEAACCJGBMAAAA3hoxxAACA6xgzZozCw8N1yy236NZbb9Wbb76p+Ph4DRkypLCbVixcb/8NGjRI5cuX15QpUyRJjz32mNq2bavXX39dXbt21cKFC7Vp0ybNnj27MDcDAAAARQgxJgAAAHKLjnEH4e7urnHjxvF+VBQazkEUBZyHyC/33nuvzp49q5deekkRERFq1KiRli9fruDg4MJuWrFwvf13/Phxu2GRWrRooQULFuiFF17Q//3f/6lGjRpaunSp6tevn+N18n3g+DjGJQPH2fFxjB0fx7hkKIzjXNAxJudyycBxdnwcY8fHMS4ZOM6OL7+OscUYY/J0iQAAAAAAAAAAAAAAFCG8YxwAAAAAAAAAAAAA4NDoGAcAAAAAAAAAAAAAODQ6xgEAAAAAAAAAAAAADo2OcQAAAAAAAAAAAACAQ6Nj3AHMmjVLlStXloeHh5o2baq//vqrsJuEEuS3335T9+7dFRoaKovFoqVLlxZ2k1ACTZkyRU2aNFGpUqUUFBSkHj16aN++fYXdLAD5LLcx0KJFi1S7dm15eHioQYMGWrZsWQG1FDcqN8d4zpw5at26tQICAhQQEKAOHToQFxcTN/r3zMKFC2WxWNSjR4/8bSD+tdwe4+joaI0aNUrlypWTu7u7atasyXd2EZfbY/zmm2+qVq1a8vT0VMWKFfXEE08oMTGxgFqL3LqRv/t/+eUX3XzzzXJ3d1f16tU1b968fG9nXiC+LBmIMR0f8aXjI74sGYgxHVthxZh0jBdzX3zxhcaMGaNx48Zpy5YtatiwoTp16qQzZ84UdtNQQsTHx6thw4aaNWtWYTcFJdivv/6qUaNGaf369Vq5cqVSUlLUsWNHxcfHF3bTAOST3MZAa9euVf/+/TV06FBt3bpVPXr0UI8ePbRz584CbjlyKrfH+JdfflH//v31888/a926dapYsaI6duyokydPFnDLkRs3+vfM0aNH9dRTT6l169YF1FLcqNwe4+TkZN1xxx06evSoFi9erH379mnOnDkqX758AbccOZXbY7xgwQI999xzGjdunPbs2aMPP/xQX3zxhf7v//6vgFuOnMrt3/1HjhxR165dddttt2nbtm16/PHHNWzYMP3000/53NJ/h/iyZCDGdHzEl46P+LJkIMZ0fIUWYxoUa7feeqsZNWqU7d9paWkmNDTUTJkypRBbhZJKklmyZElhNwMwZ86cMZLMr7/+WthNAZBPchsD9e3b13Tt2tWurGnTpmbEiBH52k7cuH8b56ampppSpUqZjz/+OL+aiDxwI8c5NTXVtGjRwnzwwQcmPDzc3H333QXQUtyo3B7jd99911StWtUkJycXVBPxL+X2GI8aNcrcfvvtdmVjxowxLVu2zNd2Im/k5O/+Z555xtSrV8+u7N577zWdOnXKx5b9e8SXJQMxpuMjvnR8xJclAzFmyVKQMSYZ48VYcnKyNm/erA4dOtjKnJyc1KFDB61bt64QWwYAhSsmJkaSFBgYWMgtAZAfbiQGWrdunV19SerUqRMxUxGVF3FuQkKCUlJS+C0owm70OL/88ssKCgrS0KFDC6KZ+Bdu5Bh/++23at68uUaNGqXg4GDVr19fkydPVlpaWkE1G7lwI8e4RYsW2rx5s20ozMOHD2vZsmXq0qVLgbQZ+a84xl3ElyUDMabjI750fMSXJQMxJrKSV7GXS142CgXr3LlzSktLU3BwsF15cHCw9u7dW0itAoDCZbVa9fjjj6tly5aqX79+YTcHQD64kRgoIiIiy/oRERH51k7cuLyIc5999lmFhoZm+qMJRceNHOc//vhDH374obZt21YALcS/dSPH+PDhw1qzZo0GDhyoZcuW6eDBgxo5cqRSUlI0bty4gmg2cuFGjvGAAQN07tw5tWrVSsYYpaam6qGHHmKYSweSXdwVGxurS5cuydPTs5Balj3iy5KBGNPxEV86PuLLkoEYE1nJqxiTjHEAgEMZNWqUdu7cqYULFxZ2UwAAheTVV1/VwoULtWTJEnl4eBR2c5BH4uLidP/992vOnDkqU6ZMYTcH+cRqtSooKEizZ89W48aNde+99+r555/Xe++9V9hNQx755ZdfNHnyZL3zzjvasmWLvv76a/3www+aOHFiYTcNAK6JGNPxEF+WDMSXJQMxJnKKjPFirEyZMnJ2dlZkZKRdeWRkpEJCQgqpVQBQeEaPHq3vv/9ev/32mypUqFDYzQGQT24kBgoJCSFmKkb+TZw7ffp0vfrqq1q1apVuuumm/Gwm/qXcHudDhw7p6NGj6t69u63MarVKklxcXLRv3z5Vq1YtfxuNXLmRa7lcuXJydXWVs7OzraxOnTqKiIhQcnKy3Nzc8rXNyJ0bOcYvvvii7r//fg0bNkyS1KBBA8XHx2v48OF6/vnn5eREDkdxl13c5evrWySzxSXiy5KCGNPxEV86PuLLkoEYE1nJqxiTM6EYc3NzU+PGjbV69WpbmdVq1erVq9W8efNCbBkAFCxjjEaPHq0lS5ZozZo1qlKlSmE3CUA+upEYqHnz5nb1JWnlypXETEXUjca5U6dO1cSJE7V8+XLdcsstBdFU/Au5Pc61a9fWjh07tG3bNtvnrrvu0m233aZt27apYsWKBdl85MCNXMstW7bUwYMHbTelJWn//v0qV64cNy2LoBs5xgkJCZluTGbcqDbG5F9jUWCKY9xFfFkyEGM6PuJLx0d8WTIQYyIreRZ7GRRrCxcuNO7u7mbevHlm9+7dZvjw4cbf399EREQUdtNQQsTFxZmtW7earVu3GknmjTfeMFu3bjXHjh0r7KahBHn44YeNn5+f+eWXX8zp06dtn4SEhMJuGoB8cr0Y6P777zfPPfecrf6ff/5pXFxczPTp082ePXvMuHHjjKurq9mxY0dhbQKuI7fH+NVXXzVubm5m8eLFdr8FcXFxhbUJyIHcHuerhYeHm7vvvruAWosbkdtjfPz4cVOqVCkzevRos2/fPvP999+boKAg88orrxTWJuA6cnuMx40bZ0qVKmU+//xzc/jwYbNixQpTrVo107dv38LaBFzH9f7uf+6558z9999vq3/48GHj5eVlnn76abNnzx4za9Ys4+zsbJYvX15Ym5AjxJclAzGm4yO+dHzElyUDMabjK6wYk45xBzBz5kxTqVIl4+bmZm699Vazfv36wm4SSpCff/7ZSMr0CQ8PL+ymoQTJ6hyUZObOnVvYTQOQj64VA7Vt2zbTb9GXX35patasadzc3Ey9evXMDz/8UMAtRm7l5hiHhYVl+Vswbty4gm84ciW31/KVuHFZPOT2GK9du9Y0bdrUuLu7m6pVq5pJkyaZ1NTUAm41ciM3xzglJcWMHz/eVKtWzXh4eJiKFSuakSNHmgsXLhR8w5Ej1/u7Pzw83LRt2zbTPI0aNTJubm6matWqxeZvM+LLkoEY0/ERXzo+4suSgRjTsRVWjGkxhjEEAAAAAAAAAAAAAACOi3eMAwAAAAAAAAAAAAAcGh3jAAAAAAAAAAAAAACHRsc4AAAAAAAAAAAAAMCh0TEOAAAAAAAAAAAAAHBodIwDAAAAAAAAAAAAABwaHeMAAAAAAAAAAAAAAIdGxzgAAAAAAAAAAAAAwKHRMQ4AAAAAAAAAAAAAcGh0jAMAAAAAAAAAAAAAHBod4wAAAAAAAAAAAAAAh0bHOAAAAAAAAAAAAADAodExDgAAAAAAAAAAAABwaHSMAwAAAAAAAAAAAAAcGh3jAAAAAAAAAAAAAACHRsc4AAAAAAAAAAAAAMCh0TEOAAAAAAAAAAAAAHBodIwDAAAAAAAAAAAAABwaHeP5ZP78+apdu7ZcXV3l7++f58sfP368LBZLni/XkRw9elQWi0Xz5s3Ls2Vu3LhRLVq0kLe3tywWi7Zt25Znyy6KLBaLxo8fn6t5Bg8erMqVK+dLexzRgQMH1LFjR/n5+clisWjp0qWF3aR/LeP76dy5c3m2TEc6r27kugJQchFTFj5iysJV2OfoL7/8IovFol9++cWuPKtrs127dmrXrl2Bt/F68vt7pDBUrlxZ3bp1y9NlOkqMNm/ePFksFh09erSwmwIAN4T4t/AR/xYNy5cvV6NGjeTh4SGLxaLo6OjCbtK/1q5dO9WvXz9Pl1m5cmUNHjw4T5dZGLL7uwNA3qNjPB/s3btXgwcPVrVq1TRnzhzNnj27sJtU7C1btqzQb1KkpKSoT58+ioqK0owZMzR//nyFhYXl2/oyfgwzPu7u7goODla7du00efJknT17Nt/WXZRduU+u9SkuQUR4eLh27NihSZMmaf78+brlllu0YMECvfnmmwXajvwITPPbtY7/Qw89VNjNA4B/jZgy75XEmFJKv7k5ZMgQVatWTR4eHgoJCVGbNm00bty4LOt/99136t69u4KDg+Xm5qbAwEC1adNGr7/+umJjY+3qVq5c2fb76+TkJH9/fzVo0EDDhw/Xhg0bsm1TYmKiZsyYoaZNm8rPz08eHh6qWbOmRo8erf379+fp9ue14nRtZtXWhIQEjR8/vkDj5Ywb7NOnTy+wdf5bGR3M2X3Wr19f2E0EAIdTnH5jiwvi36zj3zNnzsjFxUX33XdftsuIi4uTp6enevbsaVd+6NAhjRgxQlWrVpWHh4d8fX3VsmVL/fe//9WlS5fypP3nz59X37595enpqVmzZmn+/Pny9vbW5MmTCzypxmKxaPTo0QW6zn/j6nvqV38WLlxY2E0EUMhcCrsBjuiXX36R1WrVf//7X1WvXj1f1vHCCy/oueeey5dlF0XLli3TrFmzchXIhYWF6dKlS3J1dc2TNhw6dEjHjh3TnDlzNGzYsDxZZk48+uijatKkidLS0nT27FmtXbtW48aN0xtvvKEvv/xSt99+e76t+9KlS3Jxyd3XxJw5c2S1WvOpRelPDl/pk08+0cqVKzOV16lTJ9/akFcuXbqkdevW6fnnn7cLMBcsWKCdO3fq8ccfL7zGFRN33HGHBg0alKm8Zs2ahdAaAMhbxJR5ryTGlAcPHlSTJk3k6empBx54QJUrV9bp06e1ZcsWvfbaa5owYYKtrtVq1dChQzVv3jw1aNBAI0eOVMWKFRUXF6d169bphRde0LJly7R69Wq7dTRq1EhPPvmkpPQbiHv27NGiRYs0Z84cPfHEE3rjjTfs6p87d06dO3fW5s2b1a1bNw0YMEA+Pj7at2+fFi5cqNmzZys5OTnf901OtGnTRpcuXZKbm5utLLtrc8WKFYXRxGvKqq3nzp2zHfeimOFe1Lz88suqUqVKpvL8+l4GgJKM+DfvEf9mHf8GBQXpjjvu0DfffKOEhAR5eXllWs7XX3+txMREu87zH374QX369JG7u7sGDRqk+vXrKzk5WX/88Yeefvpp7dq1K08e6Ni4caPi4uI0ceJEdejQwVY+efJk9e7dWz169PjX63B0GffUr9a8efNCaA2AooSO8Xxw5swZScrXYepcXFxy3WFZUqSmpspqtcrNzU0eHh55ttz8OK7x8fHy9va+Zp3WrVurd+/edmXbt29Xx44d1atXL+3evVvlypXLszZd6Ub2X14Fzdm5+knO9evXa+XKldd8wlNStkFuYcrI+i+IIS2tVquSk5Pz9JooCmrWrHndY+/IEhMT5ebmJicnBoABHBExZeFylJhyxowZunjxorZt25YpMyejLRmmTp2qefPm6YknntDrr79uN8zoY489ptOnT+uTTz7JtI7y5ctn+j1+7bXXNGDAAM2YMUM1atTQww8/bJs2ePBgbd26VYsXL1avXr3s5ps4caKef/75nG14AXBycsp0/LM7hld2nv9beRW7FcT3SIac/G1THN1555265ZZbCrsZhcZRjyuAoon4t3CVtPh34MCBWr58ub799lv169cv03IWLFggPz8/de3aVZJ05MgR9evXT2FhYVqzZo3d/dhRo0bp4MGD+uGHH/Ji8wo0hnPUe0tZ3VMvSYjhgOw51rddFk6ePKmhQ4cqNDRU7u7uqlKlih5++GG7DITDhw+rT58+CgwMlJeXl5o1a5bpRyxjCI4vv/xSkyZNUoUKFeTh4aH27dvr4MGDtnqVK1e2DclStmxZu/eUZffOsqvfg5GSkqIJEyaoRo0a8vDwUOnSpdWqVSutXLnSVier9+GkpqZq4sSJqlatmtzd3VW5cmX93//9n5KSkjKtr1u3bvrjjz906623ysPDQ1WrVs3yJtf1ZAylsmjRItWtW1eenp5q3ry5duzYIUl6//33Vb16dXl4eKhdu3aZ3nP2+++/q0+fPqpUqZLc3d1VsWJFPfHEE3bDzgwePFizZs2yrS/jI9kPyffmm2/atn337t2Z3odz5swZlS1bVu3atZMxxrb8gwcPytvbW/fee2+22zl48GC1bdtWktSnTx9ZLBa77Io1a9aodevW8vb2lr+/v+6++27t2bPHbhkZx2z37t0aMGCAAgIC1KpVq9zt8P9p2LCh3nzzTUVHR+vtt9+2m3by5Ek98MADCg4Olru7u+rVq6ePPvoo0zISExM1fvx41axZUx4eHipXrpx69uypQ4cO2epcfc7GxcXp8ccfV+XKleXu7m57unLLli12++rqd0HHx8frySefVMWKFeXu7q5atWpp+vTpdschY32jR4/W0qVLVb9+fVv7ly9fnqv9kzEs+ObNm9WmTRt5eXnp//7v/yRJSUlJGjdunKpXr24755555plM14kkffrpp2rcuLE8PT0VGBiofv366Z9//rnu+o8dO6aRI0eqVq1a8vT0VOnSpdWnTx+783/8+PG24Pzpp5+WxWJR5cqV1a5dO/3www86duyY7Vy/cn/mtP0Z+/Kzzz5TvXr15O7unuv9eLW///5bgwcPtg0VFRISogceeEDnz5/Psv65c+fUt29f+fr6qnTp0nrssceUmJiYqd6N7uecyjgfdu/erdtuu01eXl4qX768pk6dmqluTq6LnJ7PSUlJeuKJJ1S2bFmVKlVKd911l06cOJFlG3Ny3Wb8Di1cuFAvvPCCypcvLy8vr0xD2gLIH8SUxJTFNaY8dOiQKlSokOVwlUFBQbb/T0hI0GuvvaZ69epp2rRpWb57s1y5cnr22WezXdeVPD09NX/+fAUGBmrSpEm2fbVhwwb98MMPGjp0aKZOcUlyd3e/7nDbc+fO1e23366goCC5u7urbt26evfddzPV27Rpkzp16qQyZcrI09NTVapU0QMPPGBXZ+HChWrcuLFKlSolX19fNWjQQP/9739t069+19+1rs2s3jGeX7HbN998o65du9q+k6pVq6aJEycqLS3NViertg4ePFhly5aVJE2YMMF2HVz5nbJ371717t1bgYGB8vDw0C233KJvv/3Wbv0Zw4z/+uuvGjlypIKCglShQoVs25tTOT22GVasWGF792bdunX19ddfZ6oTHR2txx9/3Ba7Va9eXa+99lqejXJ15ffH7Nmzbd8fTZo00caNGzPV37t3r/r27auyZcvK09NTtWrVyvQwyNatW3XnnXfK19dXPj4+at++fZZDt+/atUu33367PD09VaFCBb3yyivZbtePP/5o+34pVaqUunbtql27dtnVGTx4sHx8fHTo0CF16dJFpUqV0sCBA//F3gFQnBH/Ev86evx7zz33yNvbWwsWLMhU78yZM1q9erV69+4td3d3SekPkV68eFEffvhhlklK1atX12OPPZZtu6ScHbd27dopPDxcktSkSRNbDGexWBQfH6+PP/7YdiyvPP8L895STmLTK23evFktWrSwxejvvfdepjq5uYd7o3JzLzqvvhMl6cSJE+rRo4e8vb0VFBSkJ554Itvt2rBhgzp37iw/Pz95eXmpbdu2+vPPP+3q5GW/A1ASOPTjcadOndKtt96q6OhoDR8+XLVr19bJkye1ePFiJSQkyM3NTZGRkWrRooUSEhL06KOPqnTp0vr444911113afHixbrnnnvslvnqq6/KyclJTz31lGJiYjR16lQNHDjQ9v68N998U5988omWLFmid999Vz4+Prrpppty1e7x48drypQpGjZsmG699VbFxsZq06ZN2rJli+64445s5xs2bJg+/vhj9e7dW08++aQ2bNigKVOmaM+ePVqyZIld3YMHD6p3794aOnSowsPD9dFHH2nw4MFq3Lix6tWrl6v2/v777/r22281atQoSdKUKVPUrVs3PfPMM3rnnXc0cuRIXbhwQVOnTtUDDzygNWvW2OZdtGiREhIS9PDDD6t06dL666+/NHPmTJ04cUKLFi2SJI0YMUKnTp3KcrjsDHPnzlViYqKGDx8ud3d3BQYGZrohEBQUpHfffVd9+vTRzJkz9eijj8pqtWrw4MEqVaqU3nnnnWy3ccSIESpfvrwmT55sG4YlODhYkrRq1Srdeeedqlq1qsaPH69Lly5p5syZatmypbZs2ZKpk7hPnz6qUaOGJk+enKkjLTcyjt+KFSs0adIkSVJkZKSaNWtm+1EvW7asfvzxRw0dOlSxsbG2obnT0tLUrVs3rV69Wv369dNjjz2muLg4rVy5Ujt37lS1atWyXOdDDz2kxYsXa/To0apbt67Onz+vP/74Q3v27NHNN9+c5TzGGN111136+eefNXToUDVq1Eg//fSTnn76aZ08eVIzZsywq//HH3/o66+/1siRI1WqVCm99dZb6tWrl44fP67SpUvneP+cP39ed955p/r166f77rtPwcHBslqtuuuuu/THH39o+PDhqlOnjnbs2KEZM2Zo//79du/omTRpkl588UX17dtXw4YN09mzZzVz5ky1adNGW7duveYTmxs3btTatWvVr18/VahQQUePHtW7776rdu3aaffu3fLy8lLPnj3l7++vJ554Qv3791eXLl3k4+Mjb29vxcTE6MSJE7Z94+PjI0m5ar+U/sfFl19+qdGjR6tMmTKZzsXcWrlypQ4fPqwhQ4YoJCTENjzUrl27tH79+kx/WPbt21eVK1fWlClTtH79er311lu6cOGC3R+M/2Y/S+kd2efOnctU7uvra5e1deHCBXXu3Fk9e/ZU3759tXjxYj377LNq0KCB7rzzTkk5uy5ycz4PGzZMn376qQYMGKAWLVpozZo1tqeMr5TT6zbDxIkT5ebmpqeeekpJSUl5mp0GIGvElMSUVypuMWVYWJhWrVqlNWvWXPMVPH/88Yeio6P11FNPydnZOdt6ueHj46N77rlHH374oXbv3q169erZOljvv//+G17uu+++q3r16umuu+6Si4uLvvvuO40cOVJWq9V2/pw5c0YdO3ZU2bJl9dxzz8nf319Hjx616zhduXKl+vfvr/bt2+u1116TJO3Zs0d//vlntjc1c3Nt5mfsNm/ePPn4+GjMmDHy8fHRmjVr9NJLLyk2NlbTpk3Ltq0NGjRQs2bN9PDDD+uee+6xvTMzYxt27dqlli1bqnz58nruuefk7e2tL7/8Uj169NBXX32V6bts5MiRKlu2rF566SXFx8dn296cysmxzXDgwAHde++9euihhxQeHq65c+eqT58+Wr58ue07LiEhQW3bttXJkyc1YsQIVapUSWvXrtXYsWN1+vRpvfnmm9dtU0xMTKZ402KxZPrbZMGCBYqLi9OIESNksVg0depU9ezZU4cPH7aNqvX333+rdevWcnV11fDhw1W5cmUdOnRI3333ne1vul27dql169by9fXVM888I1dXV73//vtq166dfv31VzVt2lSSFBERodtuu02pqam2YzV79mx5enpm2ob58+crPDxcnTp10muvvaaEhAS9++67atWqlbZu3Wp3rqWmpqpTp05q1aqVpk+fXuRG3QJQMIh/iX+v5Kjxr7e3t+6++24tXrxYUVFRCgwMtE374osvlJaWZveA2HfffaeqVauqRYsW2S7zenJy3J5//nnVqlVLs2fPtr3SpVq1aurQoYPt3B4+fLgk2e7hFva9pZzEphkuXLigLl26qG/fvurfv7++/PJLPfzww3Jzc7M9xJrbODorcXFxWd4zLF26tN09zJzci87L78RLly6pffv2On78uB599FGFhoZq/vz5dtd3hjVr1ujOO+9U48aNNW7cODk5OdkeJP39999166232tXPq34HwOEZBzZo0CDj5ORkNm7cmGma1Wo1xhjz+OOPG0nm999/t02Li4szVapUMZUrVzZpaWnGGGN+/vlnI8nUqVPHJCUl2er+97//NZLMjh07bGXjxo0zkszZs2ft1inJjBs3LlNbwsLCTHh4uO3fDRs2NF27dr3mtmWsI8O2bduMJDNs2DC7ek899ZSRZNasWWO3Pknmt99+s5WdOXPGuLu7myeffPKa672aJOPu7m6OHDliK3v//feNJBMSEmJiY2Nt5WPHjjWS7OomJCRkWuaUKVOMxWIxx44ds5WNGjXKZHW6HjlyxEgyvr6+5syZM1lOmzt3rl15//79jZeXl9m/f7+ZNm2akWSWLl163W3NOAcWLVpkV96oUSMTFBRkzp8/byvbvn27cXJyMoMGDbKVZRyz/v37X3dd11rflRo2bGgCAgJs/x46dKgpV66cOXfunF29fv36GT8/P9v+/uijj4wk88Ybb2RaZsa1YUzmc9bPz8+MGjXqmu0ODw83YWFhtn8vXbrUSDKvvPKKXb3evXsbi8ViDh48aLc+Nzc3u7Lt27cbSWbmzJlZri+rc6Nt27ZGknnvvffsyufPn2+cnJzsrndjjHnvvfeMJPPnn38aY4w5evSocXZ2NpMmTbKrt2PHDuPi4pKp/GpZndfr1q0zkswnn3xiK8s4R6dNm2ZXt2vXrnb7MLftNyZ9Xzo5OZldu3Zds60Z2rZta+rVq3fNOllt1+eff57p+yTjXL/rrrvs6o4cOdJIMtu3bzfG5G4/X31eZWxjdp/PP//cbtuu3vdJSUkmJCTE9OrVy1aWk+sip+dzxnfyyJEj7eoNGDAg03WV0+s24zuhatWqWR4LAPmHmJKYsjjHlDt37jSenp5GkmnUqJF57LHHzNKlS018fLxdvYxz8OptSE1NNWfPnrX7XBkvhoWFXfM8mzFjhpFkvvnmG2OMMffcc4+RZC5cuJCj9l99jhqT9fHu1KmTqVq1qu3fS5YsMZKyvG4zPPbYY8bX19ekpqZmWyfjeP3888+Z2nT1tdm2bVvTtm1b27/zM3bLah+MGDHCeHl5mcTExGu29ezZs9l+j7Rv3940aNDAbhlWq9W0aNHC1KhRw1Y2d+5cI8m0atXqmvsvQ3Zxb0626+pja8zl75+vvvrKVhYTE2PKlStn/vOf/9jKJk6caLy9vc3+/fvt5n/uueeMs7OzOX78uK3s6n2SsY1Zfdzd3TNtW+nSpU1UVJSt/JtvvjGSzHfffWcra9OmjSlVqpTd95Ix9n+D9ejRw7i5uZlDhw7Zyk6dOmVKlSpl2rRpYyvL+N3ZsGGDrezMmTPGz8/P7jsyLi7O+Pv7mwcffNBunREREcbPz8+uPDw83Egyzz33nAFQshH/Ev+WhPjXGGN++OEHI8m8//77duXNmjUz5cuXt53HMTExRpK5++67c9SG7OT0uGXEIVdfg97e3nbnfIb8vLck6br3g3Mam2bco3v99ddtZUlJSbZzITk52RiTuzj66u+BjG3M7nP69Gm7bcvJvei8/E588803jSTz5Zdf2urFx8eb6tWr2/3dYbVaTY0aNUynTp3sYsWEhARTpUoVc8cdd9jKcnuNACWdww6lbrVatXTpUnXv3j3L94FlPBW0bNky3XrrrXZDS/j4+Gj48OE6evSodu/ebTffkCFD7J6gat26taT0YTLyir+/v3bt2qUDBw7keJ5ly5ZJksaMGWNX/uSTT0pSpiE76tata2u7lD5EUa1atW5oO9q3b2/3BF/GE+y9evVSqVKlMpVfuY4rn2aPj4/XuXPn1KJFCxljtHXr1hy3oVevXrYhAa/n7bfflp+fn3r37q0XX3xR999/v+6+++4cr+tKp0+f1rZt2zR48GC7pwpvuukm3XHHHbbjcqWHHnrohtaVFR8fH8XFxUmSjDH66quv1L17dxljdO7cOdunU6dOiomJsQ15/tVXX6lMmTJ65JFHMi0zq2EzM/j7+2vDhg06depUjtu4bNkyOTs769FHH7Urf/LJJ2WM0Y8//mhX3qFDB7uM9Ztuukm+vr65Pjfd3d01ZMgQu7JFixapTp06ql27tt3+yXh69Oeff5Ykff3117Jarerbt69dvZCQENWoUcNWLztXntcpKSk6f/68qlevLn9/f7th53Mrp+3P0LZtW9WtW/eG13e1K7crI1O7WbNmkpTldl2d1ZNxvmVcF/92P0vS3XffrZUrV2b63HbbbXb1fHx87N596ubmpltvvdXuvMrJdZHT8zljG6+ud/UTurm5bjOEh4dnmQkEIH8QU6YjpsysuMSU9erV07Zt23Tffffp6NGj+u9//6sePXooODhYc+bMsdXLGD4xY6SaDDt27FDZsmXtPtm9RiUrGcvLiFkz1nPlMc2tK493RjZv27ZtdfjwYcXExEi6/D7G77//XikpKVkux9/fX/Hx8XbDq+al/IzdrtwHGdkwrVu3VkJCgvbu3XtD7Y2KitKaNWvUt29f2zLPnTun8+fPq1OnTjpw4IBOnjxpN8+DDz6YZyMMSDk7thlCQ0PtshF9fX01aNAgbd26VREREZLSj0Hr1q0VEBBgdww6dOigtLQ0/fbbb9dt06xZszLFmlf/DSNJ9957rwICAmz/vvp7/ezZs/rtt9/0wAMPqFKlSnbzZvyWpKWlacWKFerRo4eqVq1qm16uXDkNGDBAf/zxh+0aWrZsmZo1a2aXKVS2bNlMQ5+vXLlS0dHR6t+/v90+cHZ2VtOmTbOMuR9++OHr7hcAjov4Nx3xb2aOFv9Kso0wdOVw6keOHNH69evVv39/23u38yKGlfLuuF2pKNxbyk1s6uLiohEjRtj+7ebmphEjRujMmTPavHmzpNzH0Vl56aWXsrxneOX5Jl3/XnRefycuW7ZM5cqVs3v/uZeXl20UgAzbtm3TgQMHNGDAAJ0/f962D+Lj49W+fXv99ttvmUZ3yMt+B8CROexQ6mfPnlVsbKzq169/zXrHjh2zBRdXqlOnjm36lcu4+g/YjD98L1y48G+bbPPyyy/r7rvvVs2aNVW/fn117txZ999//zWHDzp27JicnJxUvXp1u/KQkBD5+/vr2LFjduVXb4eUvi03sh1XL8vPz0+SVLFixSzLr1zH8ePH9dJLL+nbb7/NtO6rb3xcS5UqVXJcNzAwUG+99Zb69Omj4OBgvfXWWzme92oZ+7VWrVqZptWpU0c//fST4uPj5e3tfUNtvZ6LFy/aArKzZ88qOjpas2fP1uzZs7Osf+bMGUnp79qpVauWXFxy9xUwdepUhYeHq2LFimrcuLG6dOmiQYMG2d20udqxY8cUGhqaKXC88hq7Ul6dm+XLl880DNCBAwe0Z8+ebAP+jP1z4MABGWNUo0aNLOtlDIWYnUuXLmnKlCmaO3euTp48aTd0TW7O66vltP0Z8vJck9Jvlk6YMEELFy7MtK6stuvq/VetWjU5OTnZ3ov1b/ezJFWoUEEdOnTIUb2rH/oICAjQ33//bft3Tq6LnJ7PGd/JV7+W4Orvitxctxny+rgCuDZiynTElJkVp5iyZs2amj9/vtLS0rR79259//33mjp1qoYPH64qVaqoQ4cOtt+2ixcv2s1bvXp1W8fxJ598ku0wnNnJWF7G8n19fSWl3zC73itTsvPnn39q3LhxWrdunRISEuymxcTEyM/PT23btlWvXr00YcIEzZgxQ+3atVOPHj00YMAA23siR44cqS+//FJ33nmnypcvr44dO6pv377q3LnzDbXravkZu+3atUsvvPCC1qxZk+mdkDcabx48eFDGGL344ot68cUXs6xz5swZlS9f/obanBM5ObYZqlevnim+q1mzpqT096aGhITowIED+vvvv3N8DLJy6623ZnkT9GrX+17PuLl6rd+Ts2fPKiEhIdvvAqvVqn/++Uf16tXL9nfn6nkzOoeyG0o245rM4OLikifviwdQfBH/piP+zczR4l8p/Xfv3nvv1TvvvKOTJ0+qfPnytk7yKx82uzKG/Tfy6rhdqSjcW8pNbBoaGmp3XCX7GK5Zs2a5jqOz0qBBgxzdM7zeNZ3X34nHjh3LMo7NLobLeN98VmJiYuwezOSeIZAzDtsxnl+yexr+yo6v3EpLS7P7d5s2bXTo0CF98803WrFihT744APNmDFD7733noYNG3bNZV0r2/dKebkd2S3reutIS0vTHXfcoaioKD377LOqXbu2vL29dfLkSQ0ePDjTE0/Xktsn3H766SdJ6QHliRMnbvim3I3Iq6fxUlJStH//ftuPcsb+uu+++7L9wcztu5mu1rdvX7Vu3VpLlizRihUrNG3aNL322mv6+uuvbe9p/rfy6tzMaj9brVY1aNBAb7zxRpbzZPzhYbVaZbFY9OOPP2bZnqszqa72yCOPaO7cuXr88cfVvHlz+fn5yWKxqF+/frk6r2+0/RnyOqu4b9++Wrt2rZ5++mk1atRIPj4+slqt6ty5c4626+rvp3+7n3MjP76788KNXLdkiwOOgZgy58sipszajfweODs7q0GDBmrQoIGaN2+u2267TZ999pk6dOig2rVrS5J27txpl/nj4+Nju6H0xx9/5HqdO3fulCTbzeaM9ezYscMu2yqnDh06pPbt26t27dp64403VLFiRbm5uWnZsmWaMWOG7XhbLBYtXrxY69ev13fffaeffvpJDzzwgF5//XWtX79ePj4+CgoK0rZt2/TTTz/pxx9/1I8//qi5c+dq0KBB+vjjj3PdtqvlV+wWHR2ttm3bytfXVy+//LKqVasmDw8PbdmyRc8+++wNx5sZ8z311FPq1KlTlnWu7jTIy7gkp8c2N6xWq+644w4988wzWU7PuAmbF4p6vDl//nyFhIRkmn71Q6Hu7u627DgAyEvEvzlfFvFv1vI6/s1w33336e2339bnn3+up556Sp9//rnq1q2rRo0a2er4+voqNDTUFtveiLw8blcq7HtL+RGb5jaO/jeKegw3bdo0u3PxSlffO+WeIZAzDtsxXrZsWfn6+l73xyosLEz79u3LVJ4xxEdYWFietSkgIEDR0dF2ZcnJyTp9+nSmuoGBgRoyZIiGDBmiixcvqk2bNho/fny2QVxYWJisVqsOHDhgewpJkiIjIxUdHZ2n25FXduzYof379+vjjz/WoEGDbOVZDWWY0+A0J5YvX64PPvhAzzzzjD777DOFh4drw4YNuc6eli6fH9mdQ2XKlMn0BFxeWbx4sS5dumS7aVW2bFmVKlVKaWlp130arlq1atqwYYNSUlJylJV7pXLlymnkyJEaOXKkzpw5o5tvvlmTJk3KtmM8LCxMq1atUlxcnF2WbX5cY9dTrVo1bd++Xe3bt7/mOVWtWjUZY1SlSpUbulm2ePFihYeH6/XXX7eVJSYmZrr+s5Nd23La/vxw4cIFrV69WhMmTNBLL71kK7/W8GQHDhywe1Lx4MGDslqttmHC/u1+zms5uS5yej5nfCdnZKFnuPq7IjfXLYDCQUyZjpgys+IeU2ZkwGacN61bt5afn58WLlyosWPH5knH2MWLF7VkyRJVrFjRdj51795dU6ZM0aeffnpDHePfffedkpKS9O2339pld2Q3nGKzZs3UrFkzTZo0SQsWLNDAgQO1cOFC2zXg5uam7t27q3v37rJarRo5cqTef/99vfjii5k6gXMrv2K3X375RefPn9fXX3+tNm3a2MqPHDmSo/mza0vGKFCurq6FEpfk9thmZLhfuT379++XJLt48+LFi0UizsrYv9f6PSlbtqy8vLyy/S5wcnKy3QgOCwvLMha/et6MEYyCgoKKxH4AUPQR/6Yj/s3M0eLfDE2bNlW1atW0YMEC3XHHHdq1a5cmTZqUaf5u3bpp9uzZWrdunZo3b57r9efmuGUnq+NZ2PeWchubnjp1KtNoAFnFcIV1D/Rqef2dGBYWpp07d2aKY7OL4Xx9fYnhgDzmsI8BOzk5qUePHvruu++0adOmTNMznvjp0qWL/vrrL61bt842LT4+XrNnz1blypXz9P281apVy/QOs9mzZ2d6uvHqd/b5+PioevXqSkpKynbZXbp0kSS9+eabduUZT1V17dr1RpudbzKexrry6StjjP773/9mqpvxQ5nTjsXsREdHa9iwYbr11ls1efJkffDBB9qyZYsmT558Q8srV66cGjVqpI8//tiubTt37tSKFStsxyWvbd++XY8//rgCAgJs73F2dnZWr1699NVXX2X5Q3327Fnb//fq1Uvnzp3T22+/naledk/DpaWlZRr6JigoSKGhodc9N9PS0jKta8aMGbJYLHmWaZ4Tffv21cmTJzO9T0hKH/48Pj5ektSzZ085OztrwoQJmfaHMea679V0dnbONN/MmTMzXevZ8fb2znL4pJy2Pz9kdb1Kmb9zrjRr1iy7f8+cOVOSbMf83+7nvJaT6yKn53PGf68eVuzq/ZWb6xZA4SCmTEdMaa84xZS///57lu/YznhvY8YDXF5eXnrmmWe0c+dOPffcc1nGhLnJmrh06ZLuv/9+RUVF6fnnn7fd9GnevLk6d+6sDz74QEuXLs00X3Jysp566qlsl5vV8Y6JidHcuXPt6l24cCFTezMyLTKugauvEScnJ1s2zbWuk5zKr9gtq32QnJysd955J0fze3l5Scp8HQQFBaldu3Z6//33s+xoyO+4JKfHNsOpU6e0ZMkS279jY2P1ySefqFGjRrbM6L59+2rdunW27LYrRUdHKzU1NS834ZrKli2rNm3a6KOPPtLx48ftpmVss7Ozszp27KhvvvnG9vohKb1zZsGCBWrVqpVtKNcuXbpo/fr1+uuvv2z1zp49q88++8xu2Z06dZKvr68mT56c5XcB8SaAqxH/piP+teeI8e+VBg4cqK1bt2rcuHGyWCwaMGBApjrPPPOMvL29NWzYMEVGRmaafujQoSyPQYbcHLfseHt7ZzqWhX1vKbexaWpqqt5//327uu+//77Kli2rxo0bSyrce6BXy+vvxC5duujUqVNavHixrV5CQkKmYfAbN26satWqafr06ZledyURwwH/hsNmjEvS5MmTtWLFCrVt21bDhw9XnTp1dPr0aS1atEh//PGH/P399dxzz+nzzz/XnXfeqUcffVSBgYH6+OOPdeTIEX311Vd5OoTYsGHD9NBDD6lXr1664447tH37dv30008qU6aMXb26deuqXbt2aty4sQIDA7Vp0yYtXrxYo0ePznbZDRs2VHh4uGbPnm0bvuSvv/7Sxx9/rB49eui2227Ls+3IK7Vr11a1atX01FNP6eTJk/L19dVXX32V5Tt5Mn4UH330UXXq1EnOzs7q169frtf52GOP6fz581q1apWcnZ3VuXNnDRs2TK+88oruvvtuNWzYMNfLnDZtmu688041b95cQ4cO1aVLlzRz5kz5+flp/PjxuV7e1X7//XclJiYqLS1N58+f159//qlvv/1Wfn5+WrJkid1weK+++qp+/vlnNW3aVA8++KDq1q2rqKgobdmyRatWrVJUVJQkadCgQfrkk080ZswY/fXXX2rdurXi4+O1atUqjRw50m74zAxxcXGqUKGCevfurYYNG8rHx0erVq3Sxo0b7TKjr9a9e3fddtttev7553X06FE1bNhQK1as0DfffKPHH3880zuY89P999+vL7/8Ug899JB+/vlntWzZUmlpadq7d6++/PJL/fTTT7rllltUrVo1vfLKKxo7dqyOHj2qHj16qFSpUjpy5IiWLFmi4cOHX/OGbbdu3TR//nz5+fmpbt26WrdunVatWqXSpUvnqJ2NGzfWF198oTFjxqhJkyby8fFR9+7dc9z+G3X27Fm98sormcqrVKmigQMHqk2bNpo6dapSUlJUvnx5rVix4pqZSUeOHNFdd92lzp07a926dfr00081YMAA23X2b/ezlP5E6aeffpqpPDg4WHfccUeutj8n10VOz+dGjRqpf//+eueddxQTE6MWLVpo9erVOnjwYKb15vS6BVB4iCmJKa9WnGLK1157TZs3b1bPnj1tnb5btmzRJ598osDAQD3++OO2us8995z27NmjadOmacWKFerVq5cqVKigCxcuaMuWLVq0aJGCgoLk4eFht46TJ0/afo8vXryo3bt3a9GiRYqIiNCTTz6pESNG2NX/5JNP1LFjR/Xs2VPdu3dX+/bt5e3trQMHDmjhwoU6ffq0pk+fnuX2dOzY0ZblPWLECF28eFFz5sxRUFCQXWfuxx9/rHfeeUf33HOPqlWrpri4OM2ZM0e+vr62G63Dhg1TVFSUbr/9dlWoUEHHjh3TzJkz1ahRI7uMsRuVX7FbixYtFBAQoPDwcD366KOyWCyaP39+jh9c8PT0VN26dfXFF1+oZs2aCgwMVP369VW/fn3NmjVLrVq1UoMGDfTggw+qatWqioyM1Lp163TixAlt37491+290urVq5WYmJipvEePHjk+thlq1qypoUOHauPGjQoODtZHH32kyMhIu470p59+Wt9++626deumwYMHq3HjxoqPj9eOHTu0ePFiHT16NNN359V+/PFHW6bPlVq0aGHLAs+pt956S61atdLNN99se8fp0aNH9cMPP2jbtm2SpFdeeUUrV65Uq1atNHLkSLm4uOj9999XUlKSpk6dalvWM888o/nz56tz58567LHH5O3trdmzZyssLEx///23rZ6vr6/effdd3X///br55pvVr18/lS1bVsePH9cPP/ygli1bZvlgKICSjfiX+Pdqjhr/Zrjvvvv08ssv65tvvlHLli1tmctXysgqv/fee1WnTh0NGjRI9evXV3JystauXatFixZp8ODB2bYrN8ctO40bN9aqVav0xhtvKDQ0VFWqVFHTpk3z/d7Spk2bsrxn2K5du1zHpqGhoXrttdd09OhR1axZU1988YW2bdum2bNn20ZwzIs4OuOe+tVuuummXL9uNC+/Ex988EG9/fbbGjRokDZv3qxy5cpp/vz5todXMzg5OemDDz7QnXfeqXr16mnIkCEqX768Tp48qZ9//lm+vr767rvvcrUdAP7HOLhjx46ZQYMGmbJlyxp3d3dTtWpVM2rUKJOUlGSrc+jQIdO7d2/j7+9vPDw8zK233mq+//57u+X8/PPPRpJZtGiRXfmRI0eMJDN37lxb2bhx44wkc/bsWbu6aWlp5tlnnzVlypQxXl5eplOnTubgwYMmLCzMhIeH2+q98sor5tZbbzX+/v7G09PT1K5d20yaNMkkJydnWseVUlJSzIQJE0yVKlWMq6urqVixohk7dqxJTEy0qxcWFma6du2aaV+1bdvWtG3b9pr782qSzKhRo7LcJ9OmTbMrz2of7t6923To0MH4+PiYMmXKmAcffNBs37490z5NTU01jzzyiClbtqyxWCy2bc9uXVdOy1jON998YySZ119/3a5ebGysCQsLMw0bNrTbx1fL7hwwxphVq1aZli1bGk9PT+Pr62u6d+9udu/ebVcnu/PieuvL+Li6upqyZcuaNm3amEmTJpkzZ85kOV9kZKQZNWqUqVixonF1dTUhISGmffv2Zvbs2Xb1EhISzPPPP287X0JCQkzv3r3NoUOHbHUkmXHjxhljjElKSjJPP/20adiwoSlVqpTx9vY2DRs2NO+8847dcsPDw01YWJhdWVxcnHniiSdMaGiocXV1NTVq1DDTpk0zVqvVrl5W55MxJtM1cqVRo0Zluhbatm1r6tWrl2X95ORk89prr5l69eoZd3d3ExAQYBo3bmwmTJhgYmJi7Op+9dVXplWrVsbb29t4e3ub2rVrm1GjRpl9+/ZluewMFy5cMEOGDDFlypQxPj4+plOnTmbv3r2ZtiO78/fixYtmwIABxt/f30iy2585bX92+zI7bdu2tTvfrvy0b9/eGGPMiRMnzD333GP8/f2Nn5+f6dOnjzl16pTdeWLM5XN99+7dpnfv3qZUqVImICDAjB492ly6dCnTunOyn7M6r7JrryS777LszoeslpmT6yKn5/OlS5fMo48+akqXLm28vb1N9+7dzT///JNpfxmTs+v2Wt9BAPIfMSUxZXGNKf/8808zatQoU79+fePn52dcXV1NpUqVzODBg+1+3660ZMkS06VLF1O2bFnj4uJi/P39TatWrcy0adNMdHS0Xd2wsDDb76/FYjG+vr6mXr165sEHHzQbNmzItl0JCQlm+vTppkmTJsbHx8e4ubmZGjVqmEceecQcPHgw0/Ze6dtvvzU33XST8fDwMJUrVzavvfaa+eijj4wkc+TIEWOMMVu2bDH9+/c3lSpVMu7u7iYoKMh069bNbNq0ybacxYsXm44dO5qgoCDj5uZmKlWqZEaMGGFOnz5tq5NxvH7++edMbbr6GGR17udX7Pbnn3+aZs2aGU9PTxMaGmqeeeYZ89NPP+W4rWvXrjWNGzc2bm5umWKTQ4cOmUGDBpmQkBDj6upqypcvb7p162YWL15sqzN37lwjyWzcuDFH7c24jrL7zJ8/3xiTs2NrzOXvn59++sncdNNNxt3d3dSuXTvL6youLs6MHTvWVK9e3bi5uZkyZcqYFi1amOnTp9tdq1fvh4xtzO6T8Z1wre+PrOK+nTt32mJqDw8PU6tWLfPiiy/a1dmyZYvp1KmT8fHxMV5eXua2224za9euzbT8v//+27Rt29Z4eHiY8uXLm4kTJ5oPP/ww0/4yJv1c7tSpk/Hz8zMeHh6mWrVqZvDgwXbXRHh4uPH29s60HgAlE/Ev8W9Jin+NMaZJkyZGUqZ7nVfbv3+/efDBB03lypWNm5ubKVWqlGnZsqWZOXNmpnPmajk9btnFWnv37jVt2rQxnp6eRpLd+Z9f95auFQ9NnDjRGJPz2DTjHt2mTZtM8+bNjYeHhwkLCzNvv/12pvXmNI6++nvg6nvqV3+ujM1ycy86r74TM5Z11113GS8vL1OmTBnz2GOPmeXLl2faX8YYs3XrVtOzZ09TunRp4+7ubsLCwkzfvn3N6tWrbXVye40AJZ3FmFyMhwcAAAAAAAAAAAAAQDHjsO8YBwAAAAAAAAAAAABAcvB3jOPGRUREXHO6p6en/Pz8Cqg1AAAAKI6IKQEAAFCSEP8CAFC0MZQ6smSxWK45PTw8XPPmzSuYxgAAAKBYIqYEAABASUL8CwBA0UbGOLK0cuXKa04PDQ0toJYAAACguCKmBAAAQElC/AsAQNFGxjgAAAAAAAAAAAAAwKE5FXYDAAAAAAAAAAAAAADIT3SMAwAAAAAAAAAAAAAcWpF5x/jRYXcXdhNQwg2Ofq6wmwAoNSm5sJsA6I/v2hbKen9wrVVg6+qasq/A1oXCk/jl9MJuAqAO85sUdhMAoNAVVnwpFVyMSXxZMjw+82JhNwHQxOZ/FHYTAN05wbOwmwBwDxM3hIxxAAAAAAAAAAAAAIBDKzIZ4wAAoGSzuFoKuwkAAABwMMSYAAAAyEvEl8UbGeMAAAAAAAAAAAAAAIdGxzgAAAAAAAAAAAAAwKExlDoAACgSnFwYhggAAAB5ixgTAAAAeYn4sngjYxwAAAAAAAAAAAAA4NDIGAcAAEWCxZXn9QAAAJC3iDEBAACQl4gvizeOHgAAAAAAAAAAAADAoZExDgAAigTezwMAAIC8RowJAACAvER8WbyRMQ4AAAAAAAAAAAAAcGhkjAMAgCLB4srTlgAAAMhbxJgAAADIS8SXxRsZ4wAAAAAAAAAAAAAAh0bGOAAAKBJ4Pw8AAADyGjEmAAAA8hLxZfFGxjgAAAAAAAAAAAAAwKGRMQ4AAIoE3s8DAACAvEaMCQAAgLxEfFm8kTEOAAAAAAAAAAAAAHBoZIwDAIAigffzAAAAIK8RYwIAACAvEV8Wb2SMAwAAAAAAAAAAAAAcGhnjAACgSLA487QlAAAA8hYxJgAAAPIS8WXxRsY4AAAAAAAAAAAAAMChkTEOAACKBCeetgQAAEAeI8YEAABAXiK+LN7IGAcAAAAAAAAAAAAAODQyxgEAQJFgceJpSwAAAOQtYkwAAADkJeLL4o2McQAAAAAAAAAAAACAQyNjHAAAFAkWZ57XAwAAQN4ixgQAAEBeIr4s3jh6AAAAAAAAQAGpXLmyLBZLps+oUaMkSYmJiRo1apRKly4tHx8f9erVS5GRkXbLOH78uLp27SovLy8FBQXp6aefVmpqamFsDgAAAFBs0DEOAAAAAAAAFJCNGzfq9OnTts/KlSslSX369JEkPfHEE/ruu++0aNEi/frrrzp16pR69uxpmz8tLU1du3ZVcnKy1q5dq48//ljz5s3TSy+9VCjbAwAAABQXDKUOAACKBCdnS2E3AQAAAA6mKMaYZcuWtfv3q6++qmrVqqlt27aKiYnRhx9+qAULFuj222+XJM2dO1d16tTR+vXr1axZM61YsUK7d+/WqlWrFBwcrEaNGmnixIl69tlnNX78eLm5uRXGZgEAAJQIRTG+RM6RMQ4AAAAAAAAUguTkZH366ad64IEHZLFYtHnzZqWkpKhDhw62OrVr11alSpW0bt06SdK6devUoEEDBQcH2+p06tRJsbGx2rVrV4FvAwAAAFBckDEOAACKBIsTT1sCAAAgbxVUjJmUlKSkpCS7Mnd3d7m7u19zvqVLlyo6OlqDBw+WJEVERMjNzU3+/v529YKDgxUREWGrc2WneMb0jGkAAADIP9zDLN7IGAcAAAAAAAD+hSlTpsjPz8/uM2XKlOvO9+GHH+rOO+9UaGhoAbQSAAAAKNnIGAcAAEUC7+cBAABAXiuoGHPs2LEaM2aMXdn1ssWPHTumVatW6euvv7aVhYSEKDk5WdHR0XZZ45GRkQoJCbHV+euvv+yWFRkZaZsGAACA/MM9zOKNjHEAAAAAAADgX3B3d5evr6/d53od43PnzlVQUJC6du1qK2vcuLFcXV21evVqW9m+fft0/PhxNW/eXJLUvHlz7dixQ2fOnLHVWblypXx9fVW3bt083jIAAADAcZAxDgAAigQLT1sCAAAgjxXVGNNqtWru3LkKDw+Xi8vl23N+fn4aOnSoxowZo8DAQPn6+uqRRx5R8+bN1axZM0lSx44dVbduXd1///2aOnWqIiIi9MILL2jUqFHX7YwHAADAv1NU40vkDB3jAAAAAAAAQAFatWqVjh8/rgceeCDTtBkzZsjJyUm9evVSUlKSOnXqpHfeecc23dnZWd9//70efvhhNW/eXN7e3goPD9fLL79ckJsAAAAAFDt0jAMAgCLB4sQbXgAAAJC3imqM2bFjRxljspzm4eGhWbNmadasWdnOHxYWpmXLluVX8wAAAJCNohpfImc4egAAAAAAAAAAAAAAh0bGOAAAKBIsTryfBwAAAHmLGBMAAAB5ifiyeCNjHAAAAAAAAAAAAADg0MgYBwAARYKTM09bAgAAIG8RYwIAACAvEV8Wb2SMAwAAAAAAAAAAAAAcGhnjAACgSOD9PAAAAMhrxJgAAADIS8SXxRsZ4wAAAAAAAAAAAAAAh0bGOAAAKBIsTjyvBwAAgLxFjAkAAIC8RHxZvHH0AAAAAAAAAAAAAAAOjYxxAABQJPB+HgAAAOQ1YkwAAADkJeLL4o2McQAAAAAAAAAAAACAQyNjHAAAFAlOzjxtCQAAgLxFjAkAAIC8RHxZvJExDgAAAAAAAAAAAABwaHSMAwAAAAAAAAAAAAAcGkOpAwCAIsHixDBEAAAAyFvEmAAAAMhLxJfFGxnjAAAAAAAAAAAAAACHRsY4AAAoEixOPK8HAACAvEWMCQAAgLxEfFm8cfQAAAAAAAAAAAAAAA6NjHEAAFAk8H4eAAAA5DViTAAAAOQl4svijYxxAAAAAAAAAAAAAIBDI2McAAAUCTxtCQAAgLxGjAkAAIC8RHxZvJExDgAAAAAAAAAAAABwaGSMAwCAIoGnLQEAAJDXiDEBAACQl4gvizcyxgEAAAAAAAAAAAAADo2McQAAUCRYnHheDwAAAHmLGBMAAAB5ifiyeOPoAQAAAAAAAAAAAAAcGhnjAACgSHBy5v08AAAAyFvEmAAAAMhLxJfFGxnjAAAAAAAAAAAAAFCMnTx5Uvfdd59Kly4tT09PNWjQQJs2bbJNN8bopZdeUrly5eTp6akOHTrowIEDdsuIiorSwIED5evrK39/fw0dOlQXL14s6E3JN3SMAwCAIsHiZCmwDwAAAEoG4ksAAADkpaJ6D/PChQtq2bKlXF1d9eOPP2r37t16/fXXFRAQYKszdepUvfXWW3rvvfe0YcMGeXt7q1OnTkpMTLTVGThwoHbt2qWVK1fq+++/12+//abhw4fn2f4rbAylDgAAAAAAAAAAAADF1GuvvaaKFStq7ty5trIqVarY/t8YozfffFMvvPCC7r77bknSJ598ouDgYC1dulT9+vXTnj17tHz5cm3cuFG33HKLJGnmzJnq0qWLpk+frtDQ0ILdqHxAxjgAACgSLE5OBfYBAABAyUB8CQAAgLxUkPcwk5KSFBsba/dJSkrKsl3ffvutbrnlFvXp00dBQUH6z3/+ozlz5timHzlyRBEREerQoYOtzM/PT02bNtW6deskSevWrZO/v7+tU1ySOnToICcnJ23YsCGf9mjBInIHAAAAAAAAAAAAgCJkypQp8vPzs/tMmTIly7qHDx/Wu+++qxo1auinn37Sww8/rEcffVQff/yxJCkiIkKSFBwcbDdfcHCwbVpERISCgoLspru4uCgwMNBWp7hjKHUAAFAk8G5GAAAA5DViTAAAAOSlgowvx44dqzFjxtiVubu7Z1nXarXqlltu0eTJkyVJ//nPf7Rz50699957Cg8Pz/e2FhdkjAMAAAAAAAAAAABAEeLu7i5fX1+7T3Yd4+XKlVPdunXtyurUqaPjx49LkkJCQiRJkZGRdnUiIyNt00JCQnTmzBm76ampqYqKirLVKe7oGAcAAAAAAAAAAACAYqply5bat2+fXdn+/fsVFhYmSapSpYpCQkK0evVq2/TY2Fht2LBBzZs3lyQ1b95c0dHR2rx5s63OmjVrZLVa1bRp0wLYivzHUOoAAKBIYJhLAAAA5DViTAAAAOSlohpfPvHEE2rRooUmT56svn376q+//tLs2bM1e/ZsSZLFYtHjjz+uV155RTVq1FCVKlX04osvKjQ0VD169JCUnmHeuXNnPfjgg3rvvfeUkpKi0aNHq1+/fgoNDS3Ercs7dIwDAAAAAAAAAAAAQDHVpEkTLVmyRGPHjtXLL7+sKlWq6M0339TAgQNtdZ555hnFx8dr+PDhio6OVqtWrbR8+XJ5eHjY6nz22WcaPXq02rdvLycnJ/Xq1UtvvfVWYWxSvqBjHAAAFAkWJ97wAgAAgLxFjAkAAIC8VJTjy27duqlbt27ZTrdYLHr55Zf18ssvZ1snMDBQCxYsyI/mFQlF9+gBAAAAAAAAAAAAAJAHyBgHAABFQlF9Pw8AAACKL2JMAAAA5CXiy+KNjHEAAAAAAAAAAAAAgEMjYxwAABQJRfn9PAAAACieiDEBAACQl4gvizeOHgAAAAAAAAAAAADAodExDgAAigaLpeA+uTB+/HhZLBa7T+3atW3TExMTNWrUKJUuXVo+Pj7q1auXIiMj7ZZx/Phxde3aVV5eXgoKCtLTTz+t1NTUPNltAAAAuIYiGF8CAACgGCui9zCRMwylDgAAcB316tXTqlWrbP92cbkcQj3xxBP64YcftGjRIvn5+Wn06NHq2bOn/vzzT0lSWlqaunbtqpCQEK1du1anT5/WoEGD5OrqqsmTJxf4tgAAAAAAAABASUTHOAAAKBIsTkX3KUgXFxeFhIRkKo+JidGHH36oBQsW6Pbbb5ckzZ07V3Xq1NH69evVrFkzrVixQrt379aqVasUHBysRo0aaeLEiXr22Wc1fvx4ubm5FfTmAAAAlBhFOcYEAABA8UN8WbwxlDoAAChxkpKSFBsba/dJSkrKtv6BAwcUGhqqqlWrauDAgTp+/LgkafPmzUpJSVGHDh1sdWvXrq1KlSpp3bp1kqR169apQYMGCg4OttXp1KmTYmNjtWvXrnzaQgAAAAAAAADAlcgYL0D+d/WT/1397cpSTp/QyRdHSZJ82nSUT9M2cqtUTU6eXjr+yABZL8VnWo5ng8by795PrhXCZFJSlLR/p87MmnLtdd89QD6t75CTl7eSDu7V+U/fVeqZ07bpTt4+Cuw/XF4Nm0jGqvjN6xS18AOZpMQ82HIUdTfVKaV+d4eqZlUflQl00wuv7dUfGy/Y1Rlyb0V16xAkHy8X7dwXqzdmH9HJiGufHz06B6vfXaEK9HfTwWPxeuvDo9p78KJtupurRQ+HV9btLUvLzcVJf22P1ptzjuhCTEq+bCeKp55dQtW/Z0UFBrjp0JGLmvH+Qe05EJdt/dtaltGw+6ooJMhDJ04l6N15R7R+c5RdnaEDK6t7xxCV8nbRjj2xmv7OAZ04fSm/NwXXYXEquOf1pkyZogkTJtiVjRs3TuPHj89Ut2nTppo3b55q1aql06dPa8KECWrdurV27typiIgIubm5yd/f326e4OBgRURESJIiIiLsOsUzpmdMA/6td9ds1ns/b7Erq1zGT9881lcxCYl6Z81mrTt4UhExFxXg7aHb6lTWqPa3qJSH/WgF32zZr/lrd+jY+Rh5u7uqY72q+r/uLbNdb1JKql5fvkHLdxxSclqaWlSvoOe7t1RpHy9bndPRFzXpuz+08cgpebq56q5GNfXoHU3k4szzuSUVv+soCjgPS5aCjDEBR1I11Em33+ymimWd5OfjpA9/uKQdh9Ns02+q5qwW9V1VsayzvD0tmvZ5gk6es2a7vBF3eahOmEum5WTlzqZualbPRZ7uFh05naZFPyfpXIyxTfdyl3q2dVf9Ki4yRtp+MFVf/56kZG4nObR5367U2198r/6d2+rJ+3tKkr5es1bL127WviP/KD4xST/PnqJS3pf/Hjl19rw+WPKTNu0+oPPRcSoT4KsuLW/RAz06ytUl+66RpOQUvfnZUq1Yv0XJKalqdlNtPTekj0r7+drqRJyL0pS5i7Rp9wF5ebirW+tbNerebnJxds6/nYAii/iyZCG+LN44egUs+eQx/TMm3PY5/dpztmlObu66tHOrYpYtznZ+r5ubq8ywJ3Txz9U6NeFxRbz6nC5u+O2a6/Tt3FO+7bvq/Kfv6vTkp2WSEhX8xHhZXFxtdcoMGyO30IqKeGOcIt96RR4166n0oJH/foNRLHh4OOvQ0QS9+cGRLKf37xGqXl1C9Mbsw3r4/3boUpJV016sIzfX7IcMua1FaY0Mr6x5i07owWf+1qGjCZr2Qh35+14OOkcNrqwWjQM0/vX9emzcLpUJcNPLT9fM8+1D8XV7q7IaPaya5n5+VEMf36yDRy7qjZcbyN/PNcv69Wv7atzTdfX9itN64LHN+n39eU15vp6qVLr8R9HAXhXVu1t5TX/ngIY/tVWXEtP0xssNrnk+w/GMHTtWMTExdp+xY8dmWffOO+9Unz59dNNNN6lTp05atmyZoqOj9eWXXxZwq4HsVQsK0OpnBto+84bdJUk6E5egs3EJGtO5qb56pLde7tlWfx74R+OX2MePn/z5t2au2qgHWjfU14/01uzBXdSieoVrrnPaj+v1675jmtavvT56oFv6ej5fZZueZrVq9PzlSkmz6uMH79YrPdvp26379c6azXm/A1As8LuOooDzEAByxt3VolPnrFr8a9Yja7m5WHTkVJq+W5v9yFsZ2jZylTHXrSZJan+zq9o0dNWin5M048tLSk6RHrrbUy5X9DXe38lD5QKd9O7SS5r93SVVK++se29zz9kKUCztOnRMX69ZqxqVQu3KE5OS1eKm2hpy9x1Zznf01BkZY/R/D9yrL6Y+pzH33aOvVv+pWV98f831vfHpEv22dadefXSIZr/4qM5diNXTMz6yTU+zWvXYtNlKSU3VR+Me1/gRA/Xdbxv0/uJl/35jUewQXwLFCx3jBS0tTWmx0baP9eLlp4ZiV32nmB+/UtLhfVnP6+SkwH7DdGHRPMX9ulypkaeUcvofJWz685qr9O3QXdHfL9KlbX8p5cQxnf3oTbn4B8rrP80kSa7lKsirQWOd+3iWko/sV9LBPYpaMFveTVrL2S8wzzYdRddfW6P14cJ/9MdfUVlO7921nOZ/dUJ/brygw8cSNGXmQZUJcFOrW7M/P/p0L6cfVp3R8p/P6tiJS3pj9mElJlnV5fYgSZK3l7O63B6kdz4+qq07Y7X/cLxem3VQDWr7qm4Nn3zZThQ//XpU0Hc/nday1ZE6+k+Cpr1zQIlJVnW7I/O7niWpz13ltWFLlD5fckLHTiTog8+Oav+hi+rVrbxdnU++PKY/NpzXoaPxemXGXpUOdFfrZmUKarOQDYuTpcA+7u7u8vX1tfu4u+fsRoq/v79q1qypgwcPKiQkRMnJyYqOjrarExkZaXsneUhIiCIjIzNNz5gG5AUXJ4vKlPKyfQK8PSRJNYID9Ub/O9SudpgqBvqqadXyeqRDE/2675hS09IzemIvJWnW6k2a1KudujSsroqBvqoZUlrt6oRlu764xGQt2bJPT3VupqZVy6tu+bJ6+Z622nY8Un//k35+rzt4UofPRmty73aqXa60WtWsqJHtG+uLDbuUknrtLCE4Jn7XURRwHpY8BRVfAo5mz7E0LVufnG1296Z9qfppY4r2/3PtuK58GSfd9h9Xfb76+h3oktSmkatWbEzWziNpOn3eqs9WJsrP26IGVdMTLYIDLKoT5qKFa5J0LNKqI6et+urXJP2npot8vbkWHVFCYpJefGe+nh/Wzy4bXJIG3NlOg++6Q/WrV85y3hYN62jciIFqdlNtVQgqo7aNG+i+rrfr541/Z7u+iwmX9M0v6/XEwHvUpF5N1alSUeNGDNDfB45ox4GjkqT1f+/VkZMRmjjyftWqXEEtG9XVQ7276MuVfyglNTWvNh3FBPFlyVOQ9zCR93LdMX7u3DlNnTpV99xzj5o3b67mzZvrnnvu0bRp03T27Nn8aKNDcQkOVYXpc1V+yvsqM2yMnANz/kXmFlZNLoFlJGNU7qUZqjB9roIee0muoZWyX1+ZYLn4Bypxz3ZbmbmUoKTD++VerZYkyb1qLaXFX1TysYO2Opf2bJeMkXtVsndLunJB7iod4KbNf8fYyuIT0rT7wEXVrVkqy3lcXCyqVdVHm/+OtpUZI23eEa26tdLnqVnVW66uTnbLPX4qURFnk2x1ULK5uFhUs3opbdp+eVh/Y6RN2y6oXi3fLOepX9tXm7bZvwZgw9Yo1a+dXj802ENlAt218Yo68Qlp2r0/1lYHuJ6LFy/q0KFDKleunBo3bixXV1etXr3aNn3fvn06fvy4mjdvLklq3ry5duzYoTNnztjqrFy5Ur6+vqpbt26Bt78oIr78946dj1WHqZ+pyxsLNXbRGp2Ovpht3YuJyfJxd7MNZ77u4AlZjXQmNl49/rtId0xboKcXrlJETPbL2H3qrFLTrGpa7fIf7lXK+qucn4+2/5N+rm//J1I1ggPshlZvUaOCLial6OCZC5mWCcfG7zqKAs5DoGQhxix8ri7p2d2Lf0lSXML1U8ZL+1rk5+1k19memCwdi7Sqckh67Fo5xFkJiUb/nLk8bPv+f9JkjBQWTA6YI3pt3iK1bFRXTevXypPlXUxIlK+PV7bT9xz5R6lpaWpa//J98cqhwQopHaC/D6aPtrnj4FFVrxhqN7R685vqKP5Sog6d4JVpJQnxJVD85Cpa2Lhxo2rWrKm33npLfn5+atOmjdq0aSM/Pz+99dZbql27tjZt2pRfbS32kg7v17mP/qvIN8fr/KfvyaVMsMo9O0UWd88cze9aJv0JI/+7+inm+y91ZuYrsiZcVMjTk+TknXWGrbNfgCQpLTbarjwtNto2zdkvQNa4GPsZrVZZ4+Pk7Oef8w2EQwoMSB/yJSra/kVNF2KSFeif9XAwfqVc5OxsUdRV7wq/EJ1imyfQ303JKVZdTEjLtg5KNj9fV7k4WxR1wf48iopOUekAtyznCfR304XoZLuy9HMqvX7g/+a7cPX5HJ1sm4bCY3FyKrBPbjz11FP69ddfdfToUa1du1b33HOPnJ2d1b9/f/n5+Wno0KEaM2aMfv75Z23evFlDhgxR8+bN1axZ+sgsHTt2VN26dXX//fdr+/bt+umnn/TCCy9o1KhROc5Sd2TEl/9egwpBmtizrd4Z1FnPd2+pkxfiNOSD7xSflJyp7oX4RM3+Zat63VLbVnbiQpysxuiD37bp6S7N9Hq/9oq5lKQR85Zlm9l9Pu6SXJ2d5Otpfw4H+njqXFxCep2LlxToYx/nlv5fhsf5i7wXraThdx1FAedhyVQU40vkP2LMouGe1u46cjpNO4/kbLSgUl7pmXFXd6LHJVht2eClvC26eMl+utVICYlGvl5k1jman9Zt0d4jJzT63u55srx/Is7qixW/qeftLbKtcz46Vq4uzpmy0wP9Sul8dJytTqCffWJP6f/9+3x0bJ60FcUD8WXJVFTvYSJnXK5f5bJHHnlEffr00XvvvSeLxT7QMMbooYce0iOPPKJ169ZdczlJSUlKSrIfPicpLU3uzs7ZzOEYLu3cYvv/lBPHdObwflV4bY68m7TUxT9WXWPO//nfPo/+YZEStqTv43Nz31LFaR/Jq3FLXfztp3xpNwAAJdmJEyfUv39/nT9/XmXLllWrVq20fv16lS1bVpI0Y8YMOTk5qVevXkpKSlKnTp30zjvv2OZ3dnbW999/r4cffljNmzeXt7e3wsPD9fLLLxfWJhUp+RlfmpRUubvmKtwtllrVrGj7/5ohpdWgQpDufP1z/bTzsHo2vtwBfjExWaM/Xa6qQf566PbGtnJjjFLTrHq2awvbe8Vf7Xu72r/2mf46ckota1xePgAAQHGQFzFmVvFlakqKXFx5uDUn6lVxVo0Kzpq2MKGwm4JiKuL8Bb3+yVeaNXak3N3+fRLNmahoPTL1PXVo2kj3XKNjHADg2HJ1p3D79u2aN29epoBSkiwWi5544gn95z//ue5ypkyZogkTJtiVPfafmnr85trZzOGYrJfilRJ5Si5B5XJUPy0mfeiMlFP/XC5MTVXq2Ui5lC57zXmcff1t/5/x7+R/jtjqOJXys5/RyUlO3qWUFhOdw62Bo8p42i3Q39UuazzAz00Hj8ZnOU9MXKrS0owC/eyD1oArlhEVnSw3Vyf5eDnbZY0HXLUelFwxsSlKTTO2UQsyBPq76vyFzFmQUvp5FeBv/+Rk+jmVXj/qf/MFXLWMAH83HTyc/ZDBKBhF9b05CxcuvOZ0Dw8PzZo1S7Nmzcq2TlhYmJYtW5bXTXMI+RlfPt/7Dr3Qp2OetbW48PV0V1gZP/1z/nKmQnxSskZ+8qO83Vw1o/8dcnW+/NRxmVLpmRDVyvrbygK9PeXv5aGImKx/60uX8lRKmlWxl5LsssajLl6yLa+0j6d2njhjN9/5+ATbNJQs/K6jKOA8LJmKaoyJ/JUXMWZW8WXTzmPVrMv/5WlbHVXNCs4q7WfRlOHeduVD7vTQ4VNWvb0k8whCGZnipbwsir0ia7yUl5NOnk2/dxQXb+TjaX9cnSySl4f9PCj+9h75R1GxF3Xf89NtZWlWq7buPaQvV/yutR+/LuccZlOevRCjhya9rZtqVNHzQ++9Zt3S/r5KSU1TXHyCXdZ4VEycSvuXstXZdei43XznY+Js01ByEF+WTMSXxVuu8vBDQkL0119/ZTv9r7/+UnBw8HWXM3bsWMXExNh9Hm5YIzdNcQgWdw+5BIXYdVhfS9KxgzIpyXINufwuRzk7y6VMkFLPn8lyntRzkUqNjpJHnZsur9fDU+5Vayrp0L705R7eJ2dvH7mFVbPV8ah9k2SxKOnw/hvYMjiS02eSdP5Csm5ucPnhCS9PZ9Wt4aPd++OynCc11Wjf4Yt281gsUuMGftq9L32e/YfjlZJitatTMdRDIWXdbXVQsqWmGu0/GKfGNwXYyiwWqXHDAO3al/WwVDv3xuqWhgF2ZU0aBWjn3vT6pyITdS4qya6Ol6ez6tb0tdUBULDyM758usftednUYiMhKUX/RMXZOqgvJibroY9/lKuzs/47sFOmLPpGldL379Fzl1+tE5OQqOiERJXzz/p1PXVDy8rF2Ul/HT5lKzt6NlqnYy6qYcUgSVLDisE6EHnBbtj09QdPysfdVdWCAjItE46N33UUBZyHQMmRFzFmVvHlLXc8mddNdVirNqdo6oJLmvb55Y8kLf09WQtWJ2Y5z/lYo5h4q2pUvDyqqLtr+rvDj0akv1P8aESavDwsqlD28m3tGhWcZbGkv4scjqNJvZpa+Oqz+mzy07ZP3aoV1blFY302+ekcd4qfiYrWiFdmqnaViho3YoCcrjNfnSoV5eLsrL92Xb4vfvRUpCLOX9BN1atIkhpUr6yD/5xSVMzle5gbdu6Tt6eHqpYPuYGtRXFFfAkUP7nKGH/qqac0fPhwbd68We3bt7cFkJGRkVq9erXmzJmj6dOnX2cpkru7e6Z3akY5+DDqkhTQZ7AStm9U2vmzcvYPlP/d/SWrVfEbfpOUnsXt7BdgyyB3rRAmk3hJqVFnZY2/KJN4SXG/LJf/Xf2VGnVOqefPyq/zPZKkhE1/2tZTfuIsXfh6vhK2rpckxa76Tn5d+yol8rRSz0UqoMcApUZH2aannD6hhB2bVXrQKJ3/9F1ZnJ1VesBwxW/8XWkxUQW5i1BIPD2cVD7Ew/bvkGAPVa/spdiLqTpzLlmLfzit+3tV0InTiTp9JklD+1XUuQvJ+uOvy+fH6+Pq6o8NUVqyPEKStOi70xo7urr2HYrXnoMX1btrOXm4O+vHn89KkuIT0rRszRmNHFxZsRdTlXApTY8OraKd++K0+wBPviHdwqUn9PwTtbX3YJz27I9T37vLy9PDST+sSj/PXniils6eT9b7n6SPgLHo25N6e0pD9etRQWs3nVeH1kGqXb2Upr59+Y+ZRd+eVPi9lfTPqUs6HZmoYfdV1vmoJP2+/lyhbCMu42nLkik/48vEEjCMuiS9vny92tYKUzl/H52NS9C7azbL2WLRnTdVs3WKJ6akavKA2xSflGx793iAt4ecnZxUuYy/bqsdpteWrdNLd7eWt7ur3lq5UZXL+KlJlVBJUmRsvIbP/UGv9GqnBhWCVMrDTffcXEvTf1wvX093+bi76tUf1qphxSDdVDH9GDavXl5Vy/rr+a9+1hMdm+rcxQS9vXqT7m1aT24ujh/7IzN+11EUcB6WPMSYJVNexJhZxZcuriXnfoWbq1TW73IHYqCvk8qXMYpPNIq+aOTlLgWUcrK9+zsoIL1ubIJR3BWfq124aFVU7OXysfd56fu1SdpxOD0j/LdtKep4i5vORqfX69LMTTHxRjsOp0qSIi8Y7TmWqntvd9eiX5Lk7CT1auuurftTFRtPxrgj8fb0UPWKoXZlHu7u8i/lbSs/Fx2r89GxOhGZ/pt78J/T8vJwV0iZAPn5eNs6xcuVCdTjA+7WhdjL13CZ/2V2n4mK1sOTZ2nCw/epfrUw+Xh56u52zTTj06Xy8/aWt5eHpn28WDfVqKwGNSpLkprdVFtVyofopXc/1aP979L5mFi9u+gH9b2jldxKyN+huIz4suQhvizecvUtPWrUKJUpU0YzZszQO++8o7S09IDF2dlZjRs31rx589S3b998aagjcAkoo7LDn5KzdymlxcUo6eAenZ78jKwX05/yKdWus/zv6m+rX+7ZKZKkcx/9VxfXrpEkRS2eJ2NNU9lhT8ji6qakI/sVMf0FWRMuD3PpWq6CnDwvD/MSu/xrObl7qMygkXLy8lbigT2KfHOCTOrl4arPffCGAgcMV8iTE9M767esU9Tnc/J1f6DoqFXNR29OqGf79+jBlSVJy38+o1dnHdLnS0/Jw91ZT42oKh9vF+3YG6tnXtmj5JTLf3CUD3aXn+/lr5Sf156Xv6+rhvSrqEB/Vx08Gq9nJu3RhZjL592seUdlNdLLT9WSq6tFG7dH6805R/J/g1FsrPnjrPz9XDVsYGUFBqQPF/TkuB268L/h9oPLesh6xd+9O/fGasL0PXrwvioaPqiKTpy6pLGTdunI8cvvNPvsq3/k4eGsZ0bXTD+fd8foyXE77M5nAAWH+PLfi4yJ13OL1ig6IVEB3p76T6VgzR9xtwK9PbXxyCnt+N9w5t1mfGE337Ix/VQ+IH0owFd6tdO0H9dp9PzlcrJY1LhyOb0bfqdtyPXUNKuOnotRYkqqbf6n72wmJ4tFTy5cpeTUNLWoXkHPd29pm+7s5KSZ93fSpG//1KA538jT1VXd/1NDI694vzlKFn7XURRwHgIlAzHmv1cpyFmje15+/c09rdMfEvhrT4oWrEpS/SouGnDH5SSL8M7p/798Q7KW/5X18MFZCQ5wkqfb5Q6G1VtS5OZq0b23ucvT3aLDp/+fvfsOj6rK/zj+mUlvkwZJaEGUGgiiQcmIFZGIUWHJ2hYBFRsbUGBFZH+ILKhR1hVbwMYCFmRFF1cQKaKCSkKJgpESOgFCEiCkEMikze+PyOBIAqiTZGbyfj3PfR5yz7l3zp0Zku+953zPqdIbn55U5elV+PTusjIlXeOjvw70k9Uq/birUh+vttRydri7j1d+p7f+u9T28wNTX5EkPfXgX3TLNb20NjNL+/OOaH/eEd006im7Yze8/7IkqbKqSvsO5avMcvp7O/buP8loMOjxl/+t8spKmWM7a/y9t9nKPYxGvfTYg0qZ/aHunTxdfj7euvmqy/XQn2+qz8uFkyK+BFyLwWq1/q7/SRUVFTpypGZ0SrNmzeTl5XWOI85u7/0D/tDxwB91T+ETjd0EQJWW8795BOrLt4uuaZTXzZ8wtMFeKyLlnQZ7LZw/R8eXZR+eO9McqG99372ssZsAAI2useJLqeFiTOJL5+XIGHP0q00nYxzOa6r528ZuAqD+//A7dyWgnvEME7/H757Xw8vLSy1atHBkWwAAQFN2nuuDwX0RXwIAAIcjxmzyiDEBAIBDEV+6ND49AAAAAAAAAAAAAIBb+90Z4wAAAI5kMBjOXQkAAAD4DYgxAQAA4EjEl66NjHEAAAAAAACgAR08eFB33323wsPD5efnp9jYWG3YsMFWbrVaNWnSJLVo0UJ+fn7q27evduzYYXeOgoICDR48WCaTSSEhIRo+fLiOH2cNbAAAAKAuZIwDAACnYGB9HgAAADiYM8aYx44dU+/evXXdddfp888/V/PmzbVjxw6Fhoba6kybNk2vvPKK5s6dq3bt2unJJ59UQkKCtmzZIl9fX0nS4MGDdejQIa1YsUIVFRW699579eCDD2revHmNdWkAAABuzxnjS5w/OsYBAAAAAACABvL888+rTZs2mj17tm1fu3btbP+2Wq166aWXNHHiRA0YMECS9M477ygyMlKffPKJ7rzzTm3dulVLly7V+vXr1bNnT0nSq6++qptuukkvvPCCWrZs2bAXBQAAALgAhjUAAACnYDAaGmwDAABA0+CM8eWnn36qnj176rbbblNERIQuueQSvfXWW7byPXv2KDc3V3379rXtCw4OVq9evZSWliZJSktLU0hIiK1TXJL69u0ro9GotWvX/sF3DQAAAHXhGaZro2McAAAAAAAA+AMsFouKi4vtNovFUmvd3bt3a+bMmerQoYOWLVumESNG6JFHHtHcuXMlSbm5uZKkyMhIu+MiIyNtZbm5uYqIiLAr9/T0VFhYmK0OAAAAAHt0jAMAAOdgNDbcBgAAgKahgeLLlJQUBQcH220pKSm1Nqm6ulqXXnqpnn32WV1yySV68MEH9cADD+j1119v4DcHAAAAvxnPMF0a7yoAAAAAAADwB0yYMEFFRUV224QJE2qt26JFC8XExNjt69Kli7KzsyVJUVFRkqS8vDy7Onl5ebayqKgo5efn25VXVlaqoKDAVgcAAACAPc/GbgAAAIAk1s0BAACAwzVUjOnj4yMfH5/zqtu7d29lZWXZ7du+fbvatm0rSWrXrp2ioqK0cuVK9ejRQ5JUXFystWvXasSIEZIks9mswsJCZWRkKC4uTpL05Zdfqrq6Wr169XLQVQEAAODXeIbp2ugYBwAAAAAAABrImDFjdMUVV+jZZ5/V7bffrnXr1unNN9/Um2++KUkyGAwaPXq0nn76aXXo0EHt2rXTk08+qZYtW2rgwIGSajLMb7zxRtsU7BUVFRo5cqTuvPNOtWzZshGvDgAAAHBedIwDAACnYDCwwgsAAAAcyxljzMsuu0wLFy7UhAkTNGXKFLVr104vvfSSBg8ebKvz+OOPq7S0VA8++KAKCwt15ZVXaunSpfL19bXVef/99zVy5Ehdf/31MhqNSkpK0iuvvNIYlwQAANBkOGN8ifNHxzgAAAAAAADQgG6++WbdfPPNdZYbDAZNmTJFU6ZMqbNOWFiY5s2bVx/NAwAAANwSHeMAAMA5sD4PAAAAHI0YEwAAAI5EfOnSyPcHAAAAAAAAAAAAALg1MsYBAIBTMBgZrwcAAADHIsYEAACAIxFfujY+PQAAAAAAAAAAAACAWyNjHAAAOAUD6/MAAADAwYgxAQAA4EjEl66NjHEAAAAAAAAAAAAAgFsjYxwAADgHA+P1AAAA4GDEmAAAAHAk4kuXxqcHAAAAAAAAAAAAAHBrdIwDAAAAAAAAAAAAANwaU6kDAACnYDAaGrsJAAAAcDPEmAAAAHAk4kvXRsY4AAAAAAAAAAAAAMCtkTEOAACcg5HxegAAAHAwYkwAAAA4EvGlS+PTAwAAAAAAAAAAAAC4NTLGAQCAUzAYWJ8HAAAAjkWMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMA5sD4PAAAAHI0YEwAAAI5EfOnS+PQAAAAAAAAAAAAAAG6NjHEAAOAUDEbW5wEAAIBjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcA4GxusBAADAwYgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NbIGAcAAM6B9XkAAADgaMSYAAAAcCTiS5dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyCgfV5AAAA4GDEmAAAAHAk4kvXxqcHAAAAAAAAAAAAAHBrZIwDAADnwPo8AAAAcDRiTAAAADgS8aVLI2McAAAAAAAAAAAAAODWyBgHAABOwWBkvB4AAAAcixgTAAAAjkR86dr49AAAAAAAAAAAAAAAbo2OcQAAAAAAAAAAAACAW2MqdQAA4BwMhsZuAQAAANwNMSYAAAAcifjSpZExDgAAAAAAAAAAAABwa2SMAwAA52BkvB4AAAAcjBgTAAAAjkR86dL49AAAAAAAAAAAAADARU2ePFkGg8Fu69y5s628rKxMycnJCg8PV2BgoJKSkpSXl2d3juzsbCUmJsrf318REREaN26cKisrG/pS6hUZ4wAAwDmwPg8AAAAcjRgTAAAAjuTE8WXXrl31xRdf2H729DzdDTxmzBh99tlnWrBggYKDgzVy5EgNGjRI3333nSSpqqpKiYmJioqK0po1a3To0CENHTpUXl5eevbZZxv8WuoLHeMAAAAAAAAAAAAA4MI8PT0VFRV1xv6ioiLNmjVL8+bNU58+fSRJs2fPVpcuXZSenq74+HgtX75cW7Zs0RdffKHIyEj16NFDU6dO1fjx4zV58mR5e3s39OXUC6ZSBwAATsFgNDbYBgAAgKaB+BIAAACO1JDPMC0Wi4qLi+02i8VSZ9t27Nihli1b6sILL9TgwYOVnZ0tScrIyFBFRYX69u1rq9u5c2dFR0crLS1NkpSWlqbY2FhFRkba6iQkJKi4uFibN2+up3ez4RG5AwAAAAAAAAAAAIATSUlJUXBwsN2WkpJSa91evXppzpw5Wrp0qWbOnKk9e/boqquuUklJiXJzc+Xt7a2QkBC7YyIjI5WbmytJys3NtesUP1V+qsxdMJU6AABwDgbG6wEAAMDBiDEBAADgSA0YX06YMEFjx4612+fj41Nr3f79+9v+3b17d/Xq1Utt27bVhx9+KD8/v3ptpyvh7gAAAAAAAAAAAAAAnIiPj49MJpPdVlfH+K+FhISoY8eO2rlzp6KiolReXq7CwkK7Onl5ebY1yaOiopSXl3dG+akyd0HHOAAAcA5GQ8NtAAAAaBqILwEAAOBILvIM8/jx49q1a5datGihuLg4eXl5aeXKlbbyrKwsZWdny2w2S5LMZrMyMzOVn59vq7NixQqZTCbFxMT8obY4E6ZSBwAAAAAAAAAAAAAX9dhjj+mWW25R27ZtlZOTo6eeekoeHh666667FBwcrOHDh2vs2LEKCwuTyWTSqFGjZDabFR8fL0nq16+fYmJiNGTIEE2bNk25ubmaOHGikpOTzztL3RXQMQ4AAJyCgfUfAQAA4GDEmAAAAHAkZ40vDxw4oLvuuktHjx5V8+bNdeWVVyo9PV3NmzeXJE2fPl1Go1FJSUmyWCxKSEjQjBkzbMd7eHho8eLFGjFihMxmswICAjRs2DBNmTKlsS6pXtAxDgAAAAAAAAAAAAAuav78+Wct9/X1VWpqqlJTU+us07ZtWy1ZssTRTXMqdIwDAADnwNqMAAAAcDRiTAAAADgS8aVLc858fwAAAAAAAAAAAAAAHISMcQAA4BycdH0eAAAAuDBiTAAAADgS8aVL49MDAAAAAAAAAAAAALg1MsYBAIBzMLA+DwAAAByMGBMAAACORHzp0sgYBwAAAAAAAAAAAAC4NTLGAQCAczAyXg8AAAAORowJAAAARyK+dGl8egAAAAAAAAAAAAAAt0bHOAAAAAAAAAAAAADArTGVOgAAcA4GxusBAADAwYgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NbIGAcAAM7BaGjsFgAAAMDdEGMCAADAkYgvXRoZ4wAAAAAAAAAAAAAAt0bGOAAAcA6szwMAAABHI8YEAACAIxFfujQ+PQAAAAAAAAAAAACAWyNjHAAAOAcD6/MAAADAwYgxAQAA4EjEly6NjHEAAAAAAAAAAAAAgFujYxwAADgHo7Hhtj/gueeek8Fg0OjRo237ysrKlJycrPDwcAUGBiopKUl5eXl2x2VnZysxMVH+/v6KiIjQuHHjVFlZ+YfaAgAAgHNwgfgSAAAALsRFnmGidryrAAAA52n9+vV644031L17d7v9Y8aM0aJFi7RgwQKtWrVKOTk5GjRokK28qqpKiYmJKi8v15o1azR37lzNmTNHkyZNauhLAAAAQCObPHmyDAaD3da5c2dbOYMuAQAAgPpBxzgAAHAOBkPDbb/D8ePHNXjwYL311lsKDQ217S8qKtKsWbP04osvqk+fPoqLi9Ps2bO1Zs0apaenS5KWL1+uLVu26L333lOPHj3Uv39/TZ06VampqSovL3fI2wcAAIBaOGl82bVrVx06dMi2ffvtt7YyBl0CAAA4MSd/homzo2McAADgPCQnJysxMVF9+/a125+RkaGKigq7/Z07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+aGuQAAAAA4DU9PT0VFRdm2Zs2aSWLQJQAAAFCf6BgHAADOwWBssM1isai4uNhus1gsdTZt/vz5+v7775WSknJGWW5urry9vRUSEmK3PzIyUrm5ubY6v+wUP1V+qgwAAAD1xEnjyx07dqhly5a68MILNXjwYGVnZ0ti0CUAAIDTa8BnmHA83lUAANDkpKSkKDg42G6rrdNbkvbv369HH31U77//vnx9fRu4pQAAAHAFvyW+7NWrl+bMmaOlS5dq5syZ2rNnj6666iqVlJQw6BIAAACoR56N3QAAAABJkrHhxutNmDBBY8eOtdvn4+NTa92MjAzl5+fr0ksvte2rqqrS6tWr9dprr2nZsmUqLy9XYWGh3QPMvLw8RUVFSZKioqK0bt06u/Pm5eXZygAAAFBPGijG/C3xZf/+/W3/7t69u3r16qW2bdvqww8/lJ+fX722EwAAAH9QAz7DhOPx6QEAgCbHx8dHJpPJbqvrweX111+vzMxMbdy40bb17NlTgwcPtv3by8tLK1eutB2TlZWl7Oxsmc1mSZLZbFZmZqby8/NtdVasWCGTyaSYmJj6vVgAAADUu98SX/5aSEiIOnbsqJ07dyoqKso26PKXfj3o8tQgy1+WnyoDAAAAUDs6xgEAgHMwGBpu+w2CgoLUrVs3uy0gIEDh4eHq1q2bgoODNXz4cI0dO1ZfffWVMjIydO+998psNis+Pl6S1K9fP8XExGjIkCHatGmTli1bpokTJyo5Ofm8H5gCAADgd3DC+PLXjh8/rl27dqlFixaKi4tj0CUAAIAzc9JnmDg/TjOV+tCj4xq7CWjixi++p7GbAGjrf7Y2dhMA/A7Tp0+X0WhUUlKSLBaLEhISNGPGDFu5h4eHFi9erBEjRshsNisgIEDDhg3TlClTGrHV7m/l4LcauwmAdONljd0CAICTeeyxx3TLLbeobdu2ysnJ0VNPPSUPDw/ddddddoMuw8LCZDKZNGrUqDoHXU6bNk25ubkMumwgB3bmn7sSUM9Wj320sZsASDe+2dgtAIDfxWk6xgEAQBNncJ2JbL7++mu7n319fZWamqrU1NQ6j2nbtq2WLFlSzy0DAACAHSeMMQ8cOKC77rpLR48eVfPmzXXllVcqPT1dzZs3l8SgSwAAAKfmhPElzh8d4wAAAAAAAEADmT9//lnLGXQJAAAA1A86xgEAgHNg3RwAAAA4GjEmAAAAHIn40qWR7w8AAAAAAAAAAAAAcGt0jAMAAAAAAAAAAAAA3BpTqQMAAOdgZLweAAAAHIwYEwAAAI5EfOnS+PQAAAAAAAAAAAAAAG6NjHEAAOAUrAZDYzcBAAAAboYYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBzMDBeDwAAAA5GjAkAAABHIr50aXx6AAAAAAAAAAAAAAC3RsY4AABwDoy2BAAAgKMRYwIAAMCRiC9dGp8eAAAAAAAAAAAAAMCtkTEOAACcgtVgaOwmAAAAwM0QYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwDqzPAwAAAEcjxgQAAIAjEV+6ND49AAAAAAAAAAAAAIBbI2McAAA4B9bnAQAAgKMRYwIAAMCRiC9dGhnjAAAAAAAAAAAAAAC3RsY4AABwDkbG6wEAAMDBiDEBAADgSMSXLo1PDwAAAAAAAAAAAADg1sgYBwAATsHK+jwAAABwMGJMAAAAOBLxpWsjYxwAAAAAAAAAAAAA4NbIGAcAAM7BwHg9AAAAOBgxJgAAAByJ+NKl8ekBAAAAAAAAAAAAANwaGeMAAMApWBltCQAAAAcjxgQAAIAjEV+6Nj49AAAAAAAAAAAAAIBbo2McAAAAAAAAAAAAAODWmEodAAA4B4OhsVsAAAAAd0OMCQAAAEcivnRpZIwDAAAAAAAAAAAAANwaGeMAAMApWA2M1wMAAIBjEWMCAADAkYgvXRufHgAAAAAAAAAAAADArZExDgAAnAPr8wAAAMDRiDEBAADgSMSXLo2McQAAAAAAAAAAAACAWyNjHAAAOAfW5wEAAICjEWMCAADAkYgvXRqfHgAAAAAAAAAAAADArZExDgAAnIKV9XkAAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwD6/MAAADA0YgxAQAA4EjEly6NTw8AAAAAAAAAAAAA4NboGAcAAE7BKkODbQAAAGgaiC8BAADgSK7wDPO5556TwWDQ6NGjbfvKysqUnJys8PBwBQYGKikpSXl5eXbHZWdnKzExUf7+/oqIiNC4ceNUWVn5u9vhjOgYBwAAAAAAAAAAAAAXt379er3xxhvq3r273f4xY8Zo0aJFWrBggVatWqWcnBwNGjTIVl5VVaXExESVl5drzZo1mjt3rubMmaNJkyY19CXUKzrGAQCAU7AajA22AQAAoGkgvgQAAIAjOfMzzOPHj2vw4MF66623FBoaattfVFSkWbNm6cUXX1SfPn0UFxen2bNna82aNUpPT5ckLV++XFu2bNF7772nHj16qH///po6dapSU1NVXl7usPevsRG5AwAAAAAAAAAAAIATsVgsKi4uttssj7kP+AABAABJREFUFkud9ZOTk5WYmKi+ffva7c/IyFBFRYXd/s6dOys6OlppaWmSpLS0NMXGxioyMtJWJyEhQcXFxdq8ebODr6zx0DEOAACcg8HYcBsAAACaBuJLAAAAOFIDPsNMSUlRcHCw3ZaSklJrs+bPn6/vv/++1vLc3Fx5e3srJCTEbn9kZKRyc3NtdX7ZKX6q/FSZu/Bs7AYAAAAAAAAAAAAAAE6bMGGCxo4da7fPx8fnjHr79+/Xo48+qhUrVsjX17ehmueS6BgHAABOwWowNHYTAAAA4GaIMQEAAOBIDRlf+vj41NoR/msZGRnKz8/XpZdeattXVVWl1atX67XXXtOyZctUXl6uwsJCu6zxvLw8RUVFSZKioqK0bt06u/Pm5eXZytwFcz0BAAAAAAAAAAAAgAu6/vrrlZmZqY0bN9q2nj17avDgwbZ/e3l5aeXKlbZjsrKylJ2dLbPZLEkym83KzMxUfn6+rc6KFStkMpkUExPT4NdUX8gYBwAAAAAAAAAAAAAXFBQUpG7dutntCwgIUHh4uG3/8OHDNXbsWIWFhclkMmnUqFEym82Kj4+XJPXr108xMTEaMmSIpk2bptzcXE2cOFHJycnnlbXuKugYBwAATsFqYCIbAAAAOBYxJgAAABzJVePL6dOny2g0KikpSRaLRQkJCZoxY4at3MPDQ4sXL9aIESNkNpsVEBCgYcOGacqUKY3YasejYxwAAAAAAAAAAAAA3MTXX39t97Ovr69SU1OVmppa5zFt27bVkiVL6rlljYuOcQAA4BwMhsZuAQAAANwNMSYAAAAcifjSpblmvj8AAAAAAAAAAAAAAOeJjHEAAOAUXHV9HgAAADgvYkwAAAA4EvGla+PTAwAAAAAAAAAAAAC4NTLGAQCAU7CK9XkAAADgWMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwC6/MAAADA0YgxAQAA4EjEl66NTw8AAAAAAAAAAAAA4NbIGAcAAM7BwPo8AAAAcDBiTAAAADgS8aVLI2McAAAAAAAAAAAAAODWyBgHAABOwcp4PQAAADgYMSYAAAAcifjStfHpAQAAAAAAAAAAAADcGh3jAADAKVgNhgbbAAAA0DS4Qnz53HPPyWAwaPTo0bZ9ZWVlSk5OVnh4uAIDA5WUlKS8vDy747Kzs5WYmCh/f39FRERo3Lhxqqys/ENtAQAAwNnxDNO10TEOAAAAAAAANIL169frjTfeUPfu3e32jxkzRosWLdKCBQu0atUq5eTkaNCgQbbyqqoqJSYmqry8XGvWrNHcuXM1Z84cTZo0qaEvAQAAAHAZdIwDAACnYDUYG2wDAABA0+DM8eXx48c1ePBgvfXWWwoNDbXtLyoq0qxZs/Tiiy+qT58+iouL0+zZs7VmzRqlp6dLkpYvX64tW7bovffeU48ePdS/f39NnTpVqampKi8vd8h7BwAAgDPxDNO18a4CAAAAAAAAf4DFYlFxcbHdZrFYznpMcnKyEhMT1bdvX7v9GRkZqqiosNvfuXNnRUdHKy0tTZKUlpam2NhYRUZG2uokJCSouLhYmzdvduCVAQAAAO6DjnEAAOAUrDI02AYAAICmoaHiy5SUFAUHB9ttKSkpdbZr/vz5+v7772utk5ubK29vb4WEhNjtj4yMVG5urq3OLzvFT5WfKgMAAED94Bmma/Ns7AYAAAAAAAAArmzChAkaO3as3T4fH59a6+7fv1+PPvqoVqxYIV9f34ZoHgAAAADRMQ4AAJwE6+YAAADA0RoqxvTx8amzI/zXMjIylJ+fr0svvdS2r6qqSqtXr9Zrr72mZcuWqby8XIWFhXZZ43l5eYqKipIkRUVFad26dXbnzcvLs5UBAACgfvAM07Xx6QEAAAAAAAAN5Prrr1dmZqY2btxo23r27KnBgwfb/u3l5aWVK1fajsnKylJ2drbMZrMkyWw2KzMzU/n5+bY6K1askMlkUkxMTINfEwAAAOAKyBgHAAAAAAAAGkhQUJC6detmty8gIEDh4eG2/cOHD9fYsWMVFhYmk8mkUaNGyWw2Kz4+XpLUr18/xcTEaMiQIZo2bZpyc3M1ceJEJScnn3fmOgAAANDU0DEOAACcgtVgaOwmAAAAwM24aow5ffp0GY1GJSUlyWKxKCEhQTNmzLCVe3h4aPHixRoxYoTMZrMCAgI0bNgwTZkypRFbDQAA4P5cNb5EDTrGAQAAAAAAgEb09ddf2/3s6+ur1NRUpaam1nlM27ZttWTJknpuGQAAAOA+6BgHAABOwSpGWwIAAMCxiDEBAADgSMSXrs3Y2A0AAAAAAAAAAAAAAKA+kTEOAACcgtXAeD0AAAA4FjEmAAAAHIn40rXx6QEAAAAAAAAAAAAA3BoZ4wAAwCmwPg8AAAAcjRgTAAAAjkR86drIGAcAAAAAAAAAAAAAuDUyxgEAgFNgfR4AAAA4GjEmAAAAHIn40rXx6QEAAJzFzJkz1b17d5lMJplMJpnNZn3++ee28rKyMiUnJys8PFyBgYFKSkpSXl6e3Tmys7OVmJgof39/RUREaNy4caqsrGzoSwEAAAAAAACAJouMcSdz7x3RuvfOaLt9+w6c0JBR39d5zLVXhGv4XW0VFeGrg4dO6vV39ir9+2N2de67K1q39I1SYICHMreV6MU3durAobJ6uQY4tw5PjlTHSaPs9h3ftlurYvtLkvwvbKMuz49XaO84GX28dXjZN9o8eqrK84/a6vf870yZLu4s74hwVRwr0pEv07RtwguyHMqv83WNPt7q8s8n1PL2m2rOu/xb/TTqH3bn9W3TQrGvTVb4tb1UefyEDrz7ibL+71+yVlU5+F2AMzi0Z71+XP1vHTm4WSdKDuuGu1/VBV371lr3m4WTtW3dfxSf+IRirxx2RnlVZbk+mXGHCg5t06BR/1V4yy51vm5lhUVrlzyvXZuWqKqqQq079FbvAZPkH9TMVud4YY6+/eQfytm9Tl7e/up46UBdljBGRg/+bNYnZ12fp3Xr1nruuefUoUMHWa1WzZ07VwMGDNAPP/ygrl27asyYMfrss8+0YMECBQcHa+TIkRo0aJC+++47SVJVVZUSExMVFRWlNWvW6NChQxo6dKi8vLz07LPPNvLVwR1ct2Ol/C9ofcb+vTPf1+ZHptjtu2zRW4q48WptSPqr8j5dKUkK6t5JF417UGG94+TdLFQn9x7Uvrfma++r75z1db1Cg9X15ScVkXidVF2t3IXLtXnMM6oqPWGrExTbSd1emaTgnrEqP1ygvanvafe/3nbAVcNVDbqppe4a1EZhod7atee4pr+xU1t3lNRZ/7rezXT/3e0UFeGrAzknNHPOHqVnFNjVGT74At3SL0pBAZ7K3FqsF2bs0IFDJ+v7UuDC+B42Lc4aYwKu5vYbQ3V7/1C7fQfzyvXoswckSf8Y2UJdO/jZlS//rlhvfnjkrOe9o3+o+pqD5O9nVNaeMr254IhyD58eRBzob9TwpHDFdQuQtdqq9B9LNfvjoyortzroyuDMfFpGqEvKODVPuEoe/n4q3bVPP97/dxVl/CRJ8gjwV+dn/6bIW/vKOzxEJ/Yc0N7Ud5X95nxJkl/bVuqz88taz51x56PK/Xhpna/d8alH1Gb4bfIKMenYmu+VOXKyTuzcZys/n/shNB3El00L8aVrI2PcCe3OLtXAe9fatpF//7HOut06BWnS2M76bGWe7v/bD/pm7VE980QXtYv2t9X5y59aKSmxpf71xk49NH6TyixVemFSN3l78Z+3qSr5abu+aN3btq259i+SJA9/P12+5N+S1aq1/YYp7Zq7ZPT20mWfvC4ZTn9fjq5K1/d/Ga1VXW/U93c8ooAL2yjuPy+f9TVj/vV3RSZep+/vHK2064fIt2WE4ha8drqC0ajLPn1DBm8vrbn6Tm267wm1HvondZz8SL28B2h8leUnFdaik64Y8ORZ6+3ZvEL5+zfJ3xRRZ521n7+ggKDm5/W66Z+laN/Wr3X94Jd084Pv6ERxvr54//T3rLq6SkvnPKzqqgoNeHierr0tRdu/X6iML149vwuD27nlllt00003qUOHDurYsaOeeeYZBQYGKj09XUVFRZo1a5ZefPFF9enTR3FxcZo9e7bWrFmj9PR0SdLy5cu1ZcsWvffee+rRo4f69++vqVOnKjU1VeXl5Y18dXAH35n/bPd3PT3hHknSoY/sH/K0e3SYZD3zAWLwpd1UfrhAG4eN06qLE7XzudfV+emxavvXwWd93R7vvKDAmPZa1/9erR/4sMKu7KnYmac74j2DAnT5klk6mZ2jb3sN0tYnpqnjpJFqc//tf/yi4ZL6XNlcI++/SLM/2KvhozO0c89xvTglViHBXrXW79bZpKfGxWjx8kO679EMfZN+VCn/19XuXmdwUhv9+eZWemHGDj342A86WValF6fEcq+DOvE9BIDfL/tQue6fuM+2TXw5x658xZpiu/J3/3e0jjPVGHh9sG662qQ3Pzyiv0/PkaXcqicfbiEvz9O/Px8dEqHWUd6aOuOQUt7KVcxFfnrozvO7/4dr8wwx6YpVH6i6okLrbnlAq7onauu451VxrMhWJ+aFJ9S831U19zKxN2nPq3NrOqtv7iNJOrn/kN290heteytr8iuqLCnV4aWr63ztCx97QBeMHKKfkifru963q7L0pHp9NktGH29bnXPdD6HpIL4EXAsd406oqsqqgsIK21ZUUvdUq3++uaXW/XBM8z85qH0HTmrWB9navvu4Bt3Uwlbntptb6d0F+/XtugLt3ndCz7y8XeFh3rqyV3hDXA6cUHVVlSx5R2xbxdGaGQZCr7hU/he00qbhT6jkp+0q+Wm7Nt03XsFx3RR+Xbzt+D0vz1Xh2k06mZ2jY2k/aOe0txTSq4cMnrVn03qaAtXm3iRtGfecjn6druLvN2vT/X9X2BWXKqTXxZKk5jdcqaAu7bVx2DgVb9qmw8tWa/vkl9V2xGAZvGoPIuDa2nS6Wpf1G612XW+os05pUZ7SPn1G190xTUZj7d+v/VmrdXDHd+p10+PnfM3yshJlbfiv4hPHq9VF8Wreqquu+fOzytv3g/KyN0qSDu74ToX5u3Tt7dMU3rKL2nS6WnE3PKLNafNUVUknZn2yGowNtlksFhUXF9ttFovlnG2sqqrS/PnzVVpaKrPZrIyMDFVUVKhv39OzHXTu3FnR0dFKS0uTJKWlpSk2NlaRkZG2OgkJCSouLtbmzZsd/0aiySk/cszu73pk4nUq3blPBavX2eqYLu6sdqPv048P/P2M4w/M+Vhbxj6jgm/W6+SeAzo471Ptn/tfRQ3sV+drBna+UBE3Xq3MhyaqcN2POvZdhjaPflot70iUT4uagUwt/3KrjN5e2nT/33V8y04d+nCJ9rz2ri589F7HvwlwCXcObK1Fyw5pyco87d1/Qv+csUNllmrdfENUrfVvu7WV1n5foA8WHtC+Ayf09vt7tX3XcSXd3Mquzjsf7tO3a49q195SPT19m8LDfHRVfLNazwnwPWx6Giq+BJqCqiqrCkuqbFtJabVduaXcvvyk5exZ3YnXBOvj5YVa/9MJ7csp16vv5Ss02EOXx9Z0DrWK9NIlMf56ff5h7dhn0bbdFs366Ih6XxKgUJNHvV0nnMNF4x5Q2YHcmgzx9Zk6ufeAjnzxnU7s3m+rExp/iQ68+4kKVq/TyX0Htf/tD1Xy4zaFXNa9pkJ1td29kiXviKIG9tWhjz4/a2Z3u0eGauezM5W3aKVKMrO06d7H5dMyQpEDau79z+d+CE0H8WXT05DPMOF4vKtOqHULP/131mWaP7OnnhzdURHNfOqs27VTkDI2FdrtW7exUF07miRJLSJ9FB7mrQ2/qFN6okpbd5SoWydTfTQfLiCgfVtdv+8bXZf1hXq884J829QMpDD6eMtqtaracrrzr7rMImt1tcJ6x9V6Lq/QYLW66xYdS/tB1jrWyw2+tJuM3t46snKNbV9p1m6d2HdQofE9JEmh8T1U/NN2u6nVDy//Vl7BQQrq2v6PXjJckLW6Wl99OF7dr75PYZEdaq1zouSIvvnvJF17+/Py9Partc4vHT64WdVVFWrV3mzbFxJxoQJDWij/547xvOyNCo3qaDe1eusOV6rCclzH8nf+sYuC00hJSVFwcLDdlpKSUmf9zMxMBQYGysfHRw8//LAWLlyomJgY5ebmytvbWyEhIXb1IyMjlZubK0nKzc216xQ/VX6qDHAkg5eXWv3lVu2f87Ftn9HPVz3e+Zc2PzJFlryzT2V5ildwkCoKCussD4m/RBXHimxTGErSkZVrZK2uVsjlNQ+hQuN7qOCbDbJWVJyus/xbBXa+UJ4hxKFNjaenQR3bB2nDptNLPlmt0oaNx9S1jvuSbp1N2rDRfomotT8UqFvnmvotI33VLMxH639Rp/RElbZsL7bVAX6J7yEA/DEtmnvpzSnRSn2yjR4d0lzNQu07p6/qGah/P9NWLz7RWn+5OfSsmY0R4Z4KDfbUj9tPTwt8osyqHfss6tjOV5LU6QJfHT9RpV37Tz+n+nH7SVmtUocL6n5eCvcQeXMfFWb8pEs/eFl9D67RlesXqs3w2+zqHEv/QZG39JFPy5rO6PBreimgQzsdWfFtrec0XdpVwT1itH/2R3W+rl+71vJtEaEjX55+jllZfFyF6zYpNP4SSed3P4SmgfgScD0slupktuwoUcqr25V98KTCQ7117x3Reu2ZWA17tGa6jF8LC/FWQaF9BuOxwnKFhdZk2IaH1EzvcqzIvk5BYbnCQsjCbYoK1/2oTcMnqHT7HvlENVfHJ5Nl/up9re5xiwrXblRV6Ul1ThmnbRNflMFgUOdn/yajp6d8WthPU9X52cfU9q+D5Rngr2PpP2j9gIfrfE2fqGaqspSrssh+XZXy/KPyiWxuq1P+q4f1px7e19TZ6oCrhyvZtPptGY0e6nrFkFrLrVarVn30d3XudYeat+6mkmMHz3nOkyVHZPTwko+ffRDpF9hMJ0qO2Or4BdrPqOH/888nS86vQwm/T0OuzzNhwgSNHTvWbp+PT90PVjp16qSNGzeqqKhIH330kYYNG6ZVq1bVdzOB3yxqQF95hgTpwDsLbfti/jVBx9J/UN6iled1jlDzJWpxW3+tv/WhOuv4RDaTJd9+/TNrVZUqCorkE9XcVufE3gN2dSz5Nb9HfaOa6Xhh8Xm1B+4h2OQlTw+DCo5V2O0vKKxQ29b+tR4TFuKtY2fc61Qo7Od7nLBQb9s++zrltjLgl/geNk2sAQk4xo59ZUqdV66c/AqFmDx0+42hmvpIS4157oDKLFZ9k3Fch49V6lhRpdq29NHdt4apVYS3/vnvvFrPFxpU06leWGL/vLOopEohP5eFmDxU9Kvy6mrp+IlqWx24L/8L26jtQ3dpz0uztfP51xXcM1Zdp09UdXmFDr77iSRp86NTFfv6VPXd942qKypkrbYq8+GJKvh2Q63njL73zyrZslPH0n6o83V9f76fseTZLwVgyTsqn8iaJIrzuR9C00B82TQRX7o2h2eM79+/X/fdd99Z69Q2fWl1FdPTStLa74/p6zVHtXvfCa3fWKjHp25WYICn+vRmigw4xuFlq5X78VKVZGbpyIpvte6WB+UVYlLL2/qr/MgxfX/no4pIvE43Fv6gfkc3yDPEpKLvf5Kq7ae/2vWvWfr2sj9p7Y33ylpVrR6zn2+kK4I7Onxws3767l1dc1uKDIbaA43Na95ThaVUPa59sIFbB3fg4+Mjk8lkt52tY9zb21vt27dXXFycUlJSdPHFF+vll19WVFSUysvLVVhYaFc/Ly9PUVE1U2ZFRUUpLy/vjPJTZTi33xtfVlirz3qMO2pzb5IOL10ty6F8SVLEzX3U7Np4bRn77HkdH9i1g+I+nqEdU1N15Ivv6rOpAAAAjeb3xpdVledefsld/bD1pNI2lmpfTrk2bTupZ97Ilb+fh664JFCS9EVaiTZtO6nsQxX6JuO4Xn0vX70uDlBkOHlZ+H0MRoOKf9isrCenq3jjVu1/+0Nlz/pQbR+801bnguQhCrm8h9YPfFjf9krS1sefU7dXnlJ4H/MZ5zP6+qjlnTefNVscAOD+HN4xXlBQoLlz5561Tm3Tl+7f/p6jm+IWjp+o0v6ck2rVwrfW8prMb/tRQqEh3rYRSkd/HnkUGmxfpybT3H7EEZqmyqISle7YK/+LoiVJR774Tl93vkErWl6hFVHx2nTP4/JpGWm3fo8kVRw9ptIde3Vk5Rr9MHiMIm66ViE/T4v+a5bcI/Lw8ZZncJDdfu+IcFnyDtvqeEfaDwA5NQrzVB00Hbl7Nuhk6VF98Hwfvf1/3fT2/3XT8cIcrV0yTR88f70kKWf3WuVnb9S/n7xYb/9fN/3nhQRJ0sLU2/T1h0/Uel6/oGaqrqqQ5aR9luLJ40dsU6f7BTXTyeP2o4JP/PyzXxCDlOqT1WBosO2Pqq6ulsViUVxcnLy8vLRy5elM3KysLGVnZ8tsrrkRN5vNyszMVH5+vq3OihUrZDKZFBMT84fb0hT83vjyw+qCsx7jbvyiW6rZ9Vdo/79PP+hpdl28/C+KVr8j69X/5Gb1P1mzrn3ch68q/ot37I4P7HKR4pfN0f63/6OdKTPP+lqWvCPyiQiz22fw8JBXWLAsuYd/UedXf9t//rkslxk4mpqi4gpVVlltM1udEhbipaPHah8kXVBYrtAz7nW8bDNmFfx8XOivZsKquR9i4DXOxPewaXKV+BIN6/fGl1kbXm+gFjq/EyerdehwuaKa1d7xvWNfzSCCqOa1z1h57OdM8F9nfgcHediyyAuLqxT8q3KjUQr0N56RaQ73U3bosEq27rLbd3zbbvm1aSmppqO709NjtHVcivI/+0olmVnaN+N95SxYogvHDj/jfC2SbpSHv68OvvfJ2V/35/sZn0j72QR9IsNts1uez/0Qmgbiy6bJlZ5h4ky/ecjep59+etby3bt3n/MctU1fetPdtU9v0tT5+RrVKspXy1fV/gtvc1aJLu0eogWLc2z7Lrs4RJu313T6HMqz6GhBueK6h2jn3lJJkr+fh7p0CNInSw/V/wXA6XkE+Mv/wjayvG8ftFUcrVnDJPzaePlEhCtv8Zd1n8RYM8bG6F37VC5F3/+k6vJyNetjVu7C5ZKkgI7t5N+2lY6lb5QkHUvfqPYTHpZ38zCVH67pyGjW9wpVFJXo+BbWdW5qOlxyq9064JL0+ewH1OGSW9UxbpAk6Ypb/q6eNzxiKz9RfFifz75f19/1opq3qX09p+atusro4aWcXelq162fJKnw8B4dLzykiOgekqTI6B7a+NUbOnn8qG1K9YM718jLJ1ChEax33xRNmDBB/fv3V3R0tEpKSjRv3jx9/fXXWrZsmYKDgzV8+HCNHTtWYWFhMplMGjVqlMxms+Lj4yVJ/fr1U0xMjIYMGaJp06YpNzdXEydOVHJy8lmz1JuS+oovvwyL+0PtcjWthw2SJf+o8pd8bdu3a9qbyv73Art612xcrC2PpShv8Ve2fYEx7RW/fK4OvPuJsia9dM7XKkz/QV6hwTJd2lXF39d0todfFy+D0ajCdT9Kqvnb3mnKaBk8PWWtrJRU87f9+LbdqmQa9SanstKq7TtLFNc9VN+k1ww4MxikuItD9d/Pal8O5adtxep5cagWfHq6/LIeofppW833JyevTEcKLOp5cah27jl9rxPT0aRPluTUek40bXwPgaajvuLLYRPOvYRXU+HrbVBkuJcKi4/XWn5Bq5pnRIXFtXdg5x+tmXY9tqOf9h6see7p52NQh7Y+Wv5tze/YrL1lCvT30IWtvbX7QE2d2A5+MhikHXubbvZ+U3FszfcK7NjObl9Ahwt0Mrvm/6HRy1NGb29ZfzXLpbWqSgbjmZ1Jbe5NUt6iL1V+5NgZZb90cs8BlR3KV/h1ZhVv2iZJ8gwKUMjlF2vfGx9IOr/7ITQNxJeA6/nNHeMDBw6UwWCQ1Wqts05d096e4uPjc8aDYKMHayNI0l+HXaDvNhQoL9+iZmHeuvfOaFVXS198U9Np+fdHOupIgUVvvrdPkvTR4hy98nSs7ri1ldIyCnT9lc3V6aJA/XPm6Y7EBYsPauhtbXTg0EkdyivT8L+01dGCcn279mitbYB76/L848pb/JVOZufIt2WEOkwaJWtVtXLmL5ZU81D9+LZdKj9coND4SxTz4t+15+U5Kt2+R5IUcnl3BfeM1bHvMlRxrFj+F0ar4z8eVenOfSpMr1mfx6dlhOKXzdXG+x5X0fpMVRYf1/7ZH6vLP59QRUGRKkqOq9tLE3Us7XsVrt0kSTq84luVbN2pHnOmaeuEf8onsrk6/WO09s18X9XlzG7gjiospSo+mm37ueTYAR3N2Sof/2AFhrSUb0CoXX2j0VN+gc0U0rzmpigwpKVduZdPgCTJFNZGgcE101OXFuXps1n36trbnlNEm+7y9g1Sp56DlP7Zc/LxC5aXb6DWfPq0IqJ7KPLnjvFWHXorJOIiffXhePXq/5hOlBzRhuUvq6v5L/Lw5G9VfbJanXMUZH5+voYOHapDhw4pODhY3bt317Jly3TDDTdIkqZPny6j0aikpCRZLBYlJCRoxowZtuM9PDy0ePFijRgxQmazWQEBARo2bJimTJnSWJfkdOorvvQyOHxyJOdlMKj1sEE68O4nsladfvhoyTtiy2r4pZPZOTr58/rfgV07KH75XB1e8a32vDTbNmOLtarK9tAo+LJY9fj3NKUnDJMlJ1/Ht+1W/tLV6v76VGUmPyWjl5e6vvykcv7zmW0a95wPFqnDxGR1f+sZ7frnWwrq2kEXjBqqLY+l1Pe7ASc1/5MD+r8xnbVtZ4m2bi/R7QNayc/XqM++yJUkTRzTSYePluuNd2rizgWfHtRrKRfrzoGttWbDUfW9KkKd2wdp2mvbbedc8OlBDbsjWvtzau517r/7Ah0tsOibdGYlQO34HjY9zhpjon7VV3zp4dl0/18PHRCmDT+d0OFjlQozeej2m0JVbZW+zTiuyHBPXRUXqO+3nFDJiWq1bemte/4Urs07T2pfzulkn5f/3lrvLy7Quh9PSJI+W1WkpH4hOnS4QvlHK3TnTWE6VlSldZk15QfzKvTDlhN6+M7mevPDI/LwkIb/OVzf/VCqY3V0uMN97Hllrq5Y/YEuGv+QDn30uUIu667o+29X5ohJkqTKklIdXbVWXZ4bp6qTZTqZnaPwqy9T67sHasu45+zO5X9RtMKuukzrb6l9Ob5rMj/Xton/Ut7/vvj5td9Rh7+PUOnOfTq594A6Tn5Ulpx8W/n53A+h6SC+bHqIL13bb+4Yb9GihWbMmKEBAwbUWr5x40bFxTWt7BxHah7uo6fGdpIpyEuFRRXK3Fqsh5/YpKLimiybyOY+dkH9T1klmjI9S/f/pa0euLutDhw6qf97bqv2ZJ+w1Zm38KB8fT302Ij2CgzwVObWYj029SeVV9R9cwD35dsqSpe896K8wkNUfrhAx77L0Jorb7c9+A7o2E6dnh4r77Bgndh7UDufe117XppjO77qRJmiBvZTx0mj5BHgL8uhwzq8/Bt9/+wMWwe20ctLgZ0vlIefn+24LX97Vl2qq3Xph6/I6OOtI8u/1U+j/nG6YdXV2jDgYXV7bbJ6f/MfVZae1MF3F2r75Fca5H1Bwzt8cLM+e2uY7ef0z2rWqe9w6UBde5tjOk2qqytVdHiPKivKbPviEyfIYDDqi/cfVVVluVp37K3eAybZyo1GDyUMm6nvPvmH/jfzLnl5+6nDpQMV13eUQ9oE1zNr1qyzlvv6+io1NVWpqal11mnbtq2WLFni6Ka5DeLLP67Z9VfIv20rHZjz8W8+tsWgBPlEhKv14AFqPfj0Z3Bi7wF91aFm+QoPPz8Fdr5QRq/TU7ltHPqYur78pOKXzZW1ulq5C5dr8+inbeWVxce17qbh6vbKJF259r8qP3JMO56eof1vf/gHrhSu7MtvDysk2Ev3D75AYaHe2rn7uP72VKaO/bzEU2RzX/0y4eenbcX6xwtb9cDd7fTg0HY6kHNSE57ZbHev8/7H++Xr66HHR3asudfZUqS/PZXJvQ7qxPcQaBqILx0vPMRTo4dFKCjAQ8XHq7Rtd5n+/uJBFZdWy8vLoNhOfkq8Nlg+3gYdLaxS+qZSfbzMPjO3VaS3/H1PD179ZGWRfLyNeuiOZgrwM2rb7jI9/XquKipP//58+d18Df9zMz2V3ELVVmntplL9+2M6hpqCog2ZyvjzSHV6Zqw6TEzWyT0HtOVvzyrng0W2Oj8MHqtOz4zVJe+8IK+wYJ3cl6OsSdOV/XNm9ylt7klS2YFcHV7xba2vFdj5Qnn9YgnI3S+8Jc8AP8XOnCKvEJOOfZehdTffr2rL6YEe57ofQtNBfAm4FoP1bEMna3HrrbeqR48edWY5bdq0SZdccomqq6t/U0Ou/lPtf5SAhjJ+8ZlrzwANbet/tjZ2EwA9Nqhxsmx37NrXYK/V4aK2DfZaOLf6ii8/8+rkiOYBf0jKjW82dhMAoNF9u+iaRnvthooxiS+dS33Fl39+9NxTsAP17d4Z/Ru7CQD3OXAKjRVj8gzTtf3mjPFx48aptLS0zvL27dvrq6++qrMcAAAA+CXiSwAAADgS8SUAAABq85s7xq+66qqzlgcEBOiaaxpvJDAAAABcC/ElAAAAHIn4EgAAALX5zR3jAAAA9cEqQ2M3AQAAAG6GGBMAAACORHzp2hpnEVEAAAAAAAAAAAAAABoIGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApMNoSAAAAjkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApWK2MtgQAAIBjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcAqszwMAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BQYbQkAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BQYbQkAAABHI8YEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BSsVkZbAgAAwLGIMQEAAOBIxJeujYxxAAAAAAAAAAAAAIBbI2McAAA4hWrW5wEAAICDEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bHOAAAAAAAAAAAAADArTGVOgAAcApWpiECAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxzgAAHAKVquhwTYAAAA0DcSXAAAAcCRnfYY5c+ZMde/eXSaTSSaTSWazWZ9//rmtvKysTMnJyQoPD1dgYKCSkpKUl5dnd47s7GwlJibK399fERERGjdunCorKx3yvjkLOsYBAAAAAAAAAAAAwEW1bt1azz33nDIyMrRhwwb16dNHAwYM0ObNmyVJY8aM0aJFi7RgwQKtWrVKOTk5GjRokO34qqoqJSYmqry8XGvWrNHcuXM1Z84cTZo0qbEuqV6wxjgAAHAKrM8DAAAARyPGBAAAgCM5a3x5yy232P38zDPPaObMmUpPT1fr1q01a9YszZs3T3369JEkzZ49W126dFF6erri4+O1fPlybdmyRV988YUiIyPVo0cPTZ06VePHj9fkyZPl7e3dGJflcGSMAwAAAAAAAAAAAIATsVgsKi4uttssFss5j6uqqtL8+fNVWloqs9msjIwMVVRUqG/fvrY6nTt3VnR0tNLS0iRJaWlpio2NVWRkpK1OQkKCiouLbVnn7oCOcQAA4BScdX0eAAAAuC7iSwAAADhSQz7DTElJUXBwsN2WkpJSZ9syMzMVGBgoHx8fPfzww1q4cKFiYmKUm5srb29vhYSE2NWPjIxUbm6uJCk3N9euU/xU+akyd8FU6gAAAAAAAAAAAADgRCZMmKCxY8fa7fPx8amzfqdOnbRx40YVFRXpo48+0rBhw7Rq1ar6bqZLoWMcAAA4BWddnwcAAACuixgTAAAAjtSQ8aWPj89ZO8J/zdvbW+3bt5ckxcXFaf369Xr55Zd1xx13qLy8XIWFhXZZ43l5eYqKipIkRUVFad26dXbny8vLs5W5C6ZSBwAAAAAAAAAAAAA3Ul1dLYvFori4OHl5eWnlypW2sqysLGVnZ8tsNkuSzGazMjMzlZ+fb6uzYsUKmUwmxcTENHjb6wsZ4wAAwCmwNiMAAAAcjRgTAAAAjuSs8eWECRPUv39/RUdHq6SkRPPmzdPXX3+tZcuWKTg4WMOHD9fYsWMVFhYmk8mkUaNGyWw2Kz4+XpLUr18/xcTEaMiQIZo2bZpyc3M1ceJEJScn/6asdWdHxzgAAAAAAAAAAAAAuKj8/HwNHTpUhw4dUnBwsLp3765ly5bphhtukCRNnz5dRqNRSUlJslgsSkhI0IwZM2zHe3h4aPHixRoxYoTMZrMCAgI0bNgwTZkypbEuqV7QMQ4AAJxCdWM3AAAAAG6HGBMAAACO5Kzx5axZs85a7uvrq9TUVKWmptZZp23btlqyZImjm+ZUWGMcAAAAAAAAAAAAAODWyBgHAABOwVnX5wEAAIDrIsYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BSsYrQlAAAAHIsYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTYH0eAAAAOBoxJgAAAByJ+NK1kTEOAAAAAAAANJCZM2eqe/fuMplMMplMMpvN+vzzz23lZWVlSk5OVnh4uAIDA5WUlKS8vDy7c2RnZysxMVH+/v6KiIjQuHHjVFlZ2dCXAgAAALgUMsYBAIBTYH0eAAAAOJozxpitW7fWc889pw4dOshqtWru3LkaMGCAfvjhB3Xt2lVjxozRZ599pgULFig4OFgjR47UoEGD9N1330mSqqqqlJiYqKioKK1Zs0aHDh3S0KFD5eXlpWeffbaRrw4AAMC9OWN8ifNHxzgAAAAAAADQQG655Ra7n5955hnNnDlT6enpat26tWbNmqV58+apT58+kqTZs2erS5cuSk9PV3x8vJYvX64tW7boiy++UGRkpHr06KGpU6dq/Pjxmjx5sry9vRvjsgAAAACnx1TqAAAAAAAAQCOoqqrS/PnzVVpaKrPZrIyMDFVUVKhv3762Op07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+YGvwYAAADAVZAxDgAAnEK1tbFbAAAAAHfTUDGmxWKRxWKx2+fj4yMfH59a62dmZspsNqusrEyBgYFauHChYmJitHHjRnl7eyskJMSufmRkpHJzcyVJubm5dp3ip8pPlQEAAKD+8AzTtZExDgAAAAAAAPwBKSkpCg4OtttSUlLqrN+pUydt3LhRa9eu1YgRIzRs2DBt2bKlAVsMAAAAND1kjAMAAKdglaGxmwAAAAA301Ax5oQJEzR27Fi7fXVli0uSt7e32rdvL0mKi4vT+vXr9fLLL+uOO+5QeXm5CgsL7bLG8/LyFBUVJUmKiorSunXr7M6Xl5dnKwMAAED94RmmayNjHAAAAAAAAPgDfHx8ZDKZ7LazdYz/WnV1tSwWi+Li4uTl5aWVK1fayrKyspSdnS2z2SxJMpvNyszMVH5+vq3OihUrZDKZFBMT47iLAgAAANwMGeMAAMApWK2MtgQAAIBjOWOMOWHCBPXv31/R0dEqKSnRvHnz9PXXX2vZsmUKDg7W8OHDNXbsWIWFhclkMmnUqFEym82Kj4+XJPXr108xMTEaMmSIpk2bptzcXE2cOFHJycm/qTMeAAAAv50zxpc4f3SMAwAAAAAAAA0kPz9fQ4cO1aFDhxQcHKzu3btr2bJluuGGGyRJ06dPl9FoVFJSkiwWixISEjRjxgzb8R4eHlq8eLFGjBghs9msgIAADRs2TFOmTGmsSwIAAABcAh3jAADAKVitjd0CAAAAuBtnjDFnzZp11nJfX1+lpqYqNTW1zjpt27bVkiVLHN00AAAAnIMzxpc4f6wxDgAAAAAAAAAAAABwa2SMAwAAp1At1ucBAACAYxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxjgAAHAKViujLQEAAOBYxJgAAABwJOJL10bGOAAAAAAAAAAAAADArZExDgAAnILV2tgtAAAAgLshxgQAAIAjEV+6NjLGAQAAAAAAAAAAAABujYxxAADgFKxifR4AAAA4FjEmAAAAHIn40rWRMQ4AAAAAAAAAAAAAcGtkjAMAAKdQzfo8AAAAcDBiTAAAADgS8aVrI2McAAAAAAAAAAAAAODWyBgHAABOwWplfR4AAAA4FjEmAAAAHIn40rWRMQ4AAAAAAAAAAAAAcGtkjAMAAKdgZX0eAAAAOBgxJgAAAByJ+NK1kTEOAAAAAAAAAAAAAHBrdIwDAAAAAAAAAAAAANwaU6kDAACnUC1DYzcBAAAAboYYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTsFobuwUAAABwN8SYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyC1cr6PAAAAHAsYkwAAAA4EvGlayNjHAAAAAAAAAAAAADg1sgYBwAATqGa9XkAAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyCldGWAAAAcDBiTAAAADgS8aVrI2McAADgLFJSUnTZZZcpKChIERERGjhwoLKysuzqlJWVKTk5WeHh4QoMDFRSUpLy8vLs6mRnZysxMVH+/v6KiIjQuHHjVFlZ2ZCXAgAAAAAAAABNFh3jAADAKVhlaLDtt1i1apWSk5OVnp6uFStWqKKiQv369VNpaamtzpgxY7Ro0SItWLBAq1atUk5OjgYNGmQrr6qqUmJiosrLy7VmzRrNnTtXc+bM0aRJkxz2/gEAAOBMzhhfAgAAwHU56zNMnB+mUgcAADiLpUuX2v08Z84cRUREKCMjQ1dffbWKioo0a9YszZs3T3369JEkzZ49W126dFF6erri4+O1fPlybdmyRV988YUiIyPVo0cPTZ06VePHj9fkyZPl7e3dGJcGAAAAAAAAAE0GGeMAAMApVFsbbvsjioqKJElhYWGSpIyMDFVUVKhv3762Op07d1Z0dLTS0tIkSWlpaYqNjVVkZKStTkJCgoqLi7V58+Y/1iAAAADUyRXiSwAAALgOV3mGidqRMQ4AAJoci8Uii8Vit8/Hx0c+Pj5nPa66ulqjR49W79691a1bN0lSbm6uvL29FRISYlc3MjJSubm5tjq/7BQ/VX6qDAAAAAAAAABQv8gYBwAATsFqbbgtJSVFwcHBdltKSso525icnKyffvpJ8+fPb4B3BAAAAH9UQ8WXAAAAaBoa8hkmHI+McQAA0ORMmDBBY8eOtdt3rmzxkSNHavHixVq9erVat25t2x8VFaXy8nIVFhbaZY3n5eUpKirKVmfdunV258vLy7OVAQAAAAAAAADql9N0jFdXVjV2E9DEbXpvS2M3AdDwLj80dhMASXGN8qoNOQryfKZNP8VqtWrUqFFauHChvv76a7Vr186uPC4uTl5eXlq5cqWSkpIkSVlZWcrOzpbZbJYkmc1mPfPMM8rPz1dERIQkacWKFTKZTIqJiXHgleGXrvnmn43dBEApzzR2CwCgaSPTBo5UVcXzSzS+q9JfaewmAEqZ3NgtABoP8aVrc5qOcQAAAGeUnJysefPm6X//+5+CgoJsa4IHBwfLz89PwcHBGj58uMaOHauwsDCZTCaNGjVKZrNZ8fHxkqR+/fopJiZGQ4YM0bRp05Sbm6uJEycqOTn5vDvoAQAAAAAAAAC/Hx3jAADAKVRbDY3dhFrNnDlTknTttdfa7Z89e7buueceSdL06dNlNBqVlJQki8WihIQEzZgxw1bXw8NDixcv1ogRI2Q2mxUQEKBhw4ZpypQpDXUZAAAATZKzxpgAAABwTcSXro2OcQAAgLOwnsf8SL6+vkpNTVVqamqdddq2baslS5Y4smkAAAAAAAAAgPNkbOwGAAAAAAAAAAAAAABQn8gYBwAATuE8ErMBAACA34QYEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTYLQlAAAAHI0YEwAAAI5EfOnayBgHAAAAAAAAAAAAALg1MsYBAIBTqGa0JQAAAByMGBMAAACORHzp2sgYBwAAAAAAAAAAAAC4NTLGAQCAU7BaDY3dBAAAALgZYkwAAAA4EvGlayNjHAAAAAAAAAAAAADg1sgYBwAATsHK+jwAAABwMGJMAAAAOBLxpWsjYxwAAAAAAAAAAAAA4NbIGAcAAE6hmtGWAAAAcDBiTAAAADgS8aVrI2McAAAAAAAAAAAAAODWyBgHAABOgfV5AAAA4GjEmAAAAHAk4kvXRsY4AAAAAAAAAAAAALiolJQUXXbZZQoKClJERIQGDhyorKwsuzplZWVKTk5WeHi4AgMDlZSUpLy8PLs62dnZSkxMlL+/vyIiIjRu3DhVVlY25KXUKzrGAQCAU7BaG24DAABA00B8CQAAAEdy1meYq1atUnJystLT07VixQpVVFSoX79+Ki0ttdUZM2aMFi1apAULFmjVqlXKycnRoEGDbOVVVVVKTExUeXm51qxZo7lz52rOnDmaNGmSo96+RsdU6gAAAAAAAAAAAADgopYuXWr385w5cxQREaGMjAxdffXVKioq0qxZszRv3jz16dNHkjR79mx16dJF6enpio+P1/Lly7VlyxZ98cUXioyMVI8ePTR16lSNHz9ekydPlre3d2NcmkORMQ4AAJxCtbXhNgAAADQNxJcAAABwpIZ8hmmxWFRcXGy3WSyW82pnUVGRJCksLEySlJGRoYqKCvXt29dWp3PnzoqOjlZaWpokKS0tTbGxsYqMjLTVSUhIUHFxsTZv3uyot7BR0TEOAAAAAAAAAAAAAE4kJSVFwcHBdltKSso5j6uurtbo0aPVu3dvdevWTZKUm5srb29vhYSE2NWNjIxUbm6urc4vO8VPlZ8qcwdMpQ4AAJwCazMCAADA0YgxAQAA4EgNGV9OmDBBY8eOtdvn4+NzzuOSk5P1008/6dtvv62vprksOsYBAAAAAAAAAAAAwIn4+PicV0f4L40cOVKLFy/W6tWr1bp1a9v+qKgolZeXq7Cw0C5rPC8vT1FRUbY669atsztfXl6ercwdMJU6AABwCtXVDbcBAACgaSC+BAAAgCM56zNMq9WqkSNHauHChfryyy/Vrl07u/K4uDh5eXlp5cqVtn1ZWVnKzs6W2WyWJJnNZmVmZio/P99WZ8WKFTKZTIqJifn9b5oTIWMcAAAAAAAAAAAAAFxUcnKy5s2bp//9738KCgqyrQkeHBwsPz8/BQcHa/jw4Ro7dqzCwsJkMpk0atQomc1mxcfHS5L69eunmJgYDRkyRNOmTVNubq4mTpyo5OTk35y57qzoGAcAAAAAAAAAAAAAFzVz5kxJ0rXXXmu3f/bs2brnnnskSdOnT5fRaFRSUpIsFosSEhI0Y8YMW10PDw8tXrxYI0aMkNlsVkBAgIYNG6YpU6Y01GXUOzrGAQCAU7BaG7sFAAAAcDfEmAAAAHAkZ40vrefRMF9fX6Wmpio1NbXOOm3bttWSJUsc2TSnwhrjAAAAAAAAQANJSUnRZZddpqCgIEVERGjgwIHKysqyq1NWVqbk5GSFh4crMDBQSUlJysvLs6uTnZ2txMRE+fv7KyIiQuPGjVNlZWVDXgoAAADgUugYBwAATsFqbbgNAAAATYMzxperVq1ScnKy0tPTtWLFClVUVKhfv34qLS211RkzZowWLVqkBQsWaNWqVcrJydGgQYNs5VVVVUpMTFR5ebnWrFmjuXPnas6cOZo0aZKj3joAAADUgmeYro2p1AEAAAAAAIAGsnTpUruf58yZo4iICGVkZOjqq69WUVGRZs2apXnz5qlPnz6SataG7NKli9LT0xUfH6/ly5dry5Yt+uKLLxQZGakePXpo6tSpGj9+vCZPnixvb+/GuDQAAADAqZExDgAAnEK1teE2AAAANA2uEF8WFRVJksLCwiRJGRkZqqioUN++fW11OnfurOjoaKWlpUmS0tLSFBsbq8jISFudhIQEFRcXa/PmzX+sQQAAAKgTzzBdGxnjAAAAAAAAwB9gsVhksVjs9vn4+MjHx+esx1VXV2v06NHq3bu3unXrJknKzc2Vt7e3QkJC7OpGRkYqNzfXVueXneKnyk+VAQAAADgTGeMAAMApWK3WBtsAAADQNDRUfJmSkqLg4GC7LSUl5ZztS05O1k8//aT58+c3wLsBAACAP4pnmK6NjHEAAAAAAADgD5gwYYLGjh1rt+9c2eIjR47U4sWLtXr1arVu3dq2PyoqSuXl5SosLLTLGs/Ly1NUVJStzrp16+zOl5eXZysDAAAAcCYyxgEAgFOwWhtuAwAAQNPQUPGlj4+PTCaT3VZXx7jVatXIkSO1cOFCffnll2rXrp1deVxcnLy8vLRy5UrbvqysLGVnZ8tsNkuSzGazMjMzlZ+fb6uzYsUKmUwmxcTE1MM7CQAAAIlnmK6OjHEAAAAAAACggSQnJ2vevHn63//+p6CgINua4MHBwfLz81NwcLCGDx+usWPHKiwsTCaTSaNGjZLZbFZ8fLwkqV+/foqJidGQIUM0bdo05ebmauLEiUpOTj5npjoAAADQVNExDgAAnEJ1dWO3AAAAAO7GGWPMmTNnSpKuvfZau/2zZ8/WPffcI0maPn26jEajkpKSZLFYlJCQoBkzZtjqenh4aPHixRoxYoTMZrMCAgI0bNgwTZkypaEuAwAAoElyxvgS54+OcQAAAAAAAKCBWM9jXkxfX1+lpqYqNTW1zjpt27bVkiVLHNk0AAAAwK3RMQ4AAJwC6+YAAADA0YgxAQAA4EjEl67N2NgNAAAAAAAAAAAAAACgPpExDgAAnEI1oy0BAADgYMSYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJwC6/MAAADA0YgxAQAA4EjEl66NjHEAAAAAAAAAAAAAgFsjYxwAADgFa4Mu0GNowNcCAABAY2m4GJP4EgAAoCngGaZrI2McAAAAAAAAAAAAAODWyBgHAABOoUEHWwIAAKBJIMYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2OcQAAAAAAAAAAAACAW2MqdQAA4BSsTEMEAAAAByPGBAAAgCMRX7o2MsYBAAAAAAAAAAAAAG6NjHEAAOAUqqsZbgkAAADHIsYEAACAIxFfujYyxgEAAAAAAAAAAAAAbo2McQAA4BRYnwcAAACORowJAAAARyK+dG1kjAMAAAAAAAAAAAAA3BoZ4wAAwCkw2hIAAACORowJAAAARyK+dG1kjAMAAAAAAAAAAAAA3BoZ4wAAwClUM9wSAAAADkaMCQAAAEcivnRtZIwDAAAAAAAAAAAAANwaGeMAAMApWKsbuwUAAABwN8SYAAAAcCTiS9dGxjgAAAAAAAAAAAAAwK2RMQ4AAJyClfV5AAAA4GDEmAAAAHAk4kvXRsY4AAAAAAAAAAAAAMCtkTEOAACcQjXr8wAAAMDBiDEBAADgSMSXro2McQAAAAAAAAAAAACAWyNjHAAAOAXW5wEAAICjEWMCAADAkYgvXRsZ4wAAAAAAAAAAAAAAt0bGOAAAcArVDLYEAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxzgAAAAAAAAAAAAAwK0xlToAAHAKVuYhAgAAgIMRYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwClYGWwIAAMDBiDEBAADgSMSXro2McQAAAAAAAAAAAACAWyNjHAAAOIVq1ucBAACAgxFjAgAAwJGIL10bGeMAAAAAAAAAAAAAALdGxjgAAHAKVhboAQAAgIMRYwIAAMCRiC9dGxnjAAAAAAAAAAAAAAC3RsY4AABwCtbqxm4BAAAA3A0xJgAAAByJ+NK1kTEOAAAAAAAAAAAAAHBrZIwDAACnUM36PAAAAHAwYkwAAAA4EvGla6Nj3EkNuqml7hrURmGh3tq157imv7FTW3eU1Fn/ut7NdP/d7RQV4asDOSc0c84epWcU2NUZPvgC3dIvSkEBnsrcWqwXZuzQgUMn6/tS4ITaNJfiOxkVFSYF+Rn00bdV2n7wdPlVXQ2KiTYoyF+qqpZyC6RVmdXK+cVX6q83GxUSYLA771ebqpW2re4/Ch5GqW8Pg7pEG+RplHbnSssyqlVqOV3H5C/dGGdU2wipvFLK3GvVVz9axd8a9/LJ5yv0ydIvlJt/RJLULrqVht0+SPFxPVRcclz//uAjrd+YqbwjRxRiMumqXj01/C+3KTDAX5K0c88+vf/fT/XjliwVlZQoKqK5BiRcr9tu6X/W1y0uOa6X3pqjNet/kNFg0NXmy/XI/UPl7+drq7Nrb7amvzFb23buVrApSEmJCfrLoFvq782A01u9erX++c9/KiMjQ4cOHdLChQs1cOBAW7nVatVTTz2lt956S4WFherdu7dmzpypDh062OoUFBRo1KhRWrRokYxGo5KSkvTyyy8rMDCwEa4I7m724i/12oLPdVe/K/XY4AGSpAdTZipj2267eknXxevv9yRJkj79Zr3+8faHtZ5vxatPKcxU+3e16PgJTXvvE33zwxYZjAZd3zNWjw0eIH9fH1udHdk5eu7dT7Rlz36FBgXojr69NSzxOkdcKlwQ9zlwBnwPAeCPGXRDqIYMaKZFXx3Tvz+uua+PaualYX9qpi4X+srL06Aftp7QWwsOq6ik6qzn6n91sAZeH6oQk4f2HizX2wvytWPf6QdFXp4G3Tuoma6MC5Knp0Ebt57QG//JP+d54X7mfLpCqfMX6c4br9Hfhtbcx1jKK/TS+wu1Iu17lVdUKr57F42/7zaFB5tsx23etU+vzV+kbXv2yyCp60VtNeovA9Sxbas6X+t8zpt7pEDP/ftDbdiyQ/6+Pkq86nIl33mLPD086u09gPMivgRcB1OpO6E+VzbXyPsv0uwP9mr46Azt3HNcL06JVUiwV631u3U26alxMVq8/JDuezRD36QfVcr/dVW7aH9bncFJbfTnm1vphRk79OBjP+hkWZVenBIrby9DreeEe/PykPILrVqWUftiGEdLpGXfV+vtpdV6d2W1ik5Ydec1Rvn72NdblVmtl/9XZds27Dh77/UNlxjUvqVBC9dU672vqhXoJw268vSvIYNBuv0qozyM0tyV1Vq0tlrdLzDo6m58T91N8/AwPTTkTr31r6f11gtP69LYrvp7yr+0J/uAjhQc05GCY/rrPX/R3JenacIjD2vtD5v0/Gtv2o7P2rVHIcEmPTkmWe+8Mk1D/zxQb777H3382bKzvu7U6anam31QL/5jgp6b+Jg2bdmqF2a8bSsvPXFCf5ucosiIZnrrX8/or/f8RbPnf6xPl62st/cCp1mt1gbbfovS0lJdfPHFSk1NrbV82rRpeuWVV/T6669r7dq1CggIUEJCgsrKymx1Bg8erM2bN2vFihVavHixVq9erQcffPAPvV9AbTbv3q//fpWuDm1anFH2p2t6adnLT9q2R+5ItJX169XDrmzZy0/KHNtRcZ0vrLNTXJImvj5Puw/mKvXxB/XSmPv0fdYePT37I1v58ZNlSn7hLbUID9F7kx/Vo3fcrDc+WaH/fpXu2AuHS+A+B86A72HT44zxJeDK2kf7qF/vYO05cLrz2sfboKeSW0pWadKrBzVh+gF5ehj0fw+1lOEsvwp7Xxqoe//UTP/5vEB/e36/9h60aFJyKwUHnu5YvC+pmXp2C9A/Zx3SxJcOKCzYQ+PvPzPWhXvbvGufFq78Th2iW9rtn/7uf/XN95uV8uh9euPJR3TkWJEenz7LVn6izKJHn5+pqPBQzZ4yVm9NHi1/Px+Nem6GKivrHlxxrvNWVVdr9D/fUEVllWZNHqOnHr5bi1ev1RsLljj+4uH0iC+bHmd9honzQ8e4E7pzYGstWnZIS1bmae/+E/rnjB0qs1Tr5huiaq1/262ttPb7An2w8ID2HTiht9/fq+27jivp5lZ2dd75cJ++XXtUu/aW6unp2xQe5qOr4ps11GXBiezOlVb9ZLXLEv+lLdlW7c2TCkulI8XSFz9Y5ettUESwfb3ySqm07PRWcZbBuj5e0sXtDFq5sVr78qXcY9Jn66rVpplBLcNr6rSLlJqZpE/Tq5VfeLqdce0NMvLbyq30vjxO5p6XqE3LFmrTqoUeuPsO+fn6anPWDl3Yto2efmKMel8ep1YtIhXXvaseGHy71qz/XpVVNV+yxL7X6tH7h6lHty5qGRWpftdeqf7XX6PV6evrfM29+w9q7feb9PjIBxTTsb26x3TW6Afu0cpv03Sk4JgkacWq71RRWaknRj6kdtGtdf1VVyjp5gR9+Ck3Nk1Z//799fTTT+tPf/rTGWVWq1UvvfSSJk6cqAEDBqh79+565513lJOTo08++USStHXrVi1dulRvv/22evXqpSuvvFKvvvqq5s+fr5ycnAa+GrizE2UWTXx9nibe92eZAvzOKPf18VKzEJNtC/zFbBm+3vZlHkaj1m/ZpQFXX17n6+3JydOazCw9ed9tir0oWpd0bKfH7x6g5Ws36fCxIknS52u+V0VllZ66/3Zd1DpKCfE9dOcNV+q9Zasd/wbA6XGfA2fA9xAAfj9fb4PG3BOlGR/kqfTk6YdAnS/0U/NwL73yXp6yc8qVnVOuV97N00XRPorteGZcesqtfUK1Yk2xvkwv1oHccr0+P1+WcquuN9dk5fr7GnW9OViz/3tEmdtPavd+i159L09dLvJTxwt86zwv3MuJMosmpb6jv99/l4ICTnccHj9xUv/7Ol1j7h6oy7p2VJcLozXpocH6cfseZe7YI0nam5OnouMn9NBtN+mClpG6qHULPTCovwqKSnToSEGtr3c+503/cZv2HMjVlOQh6nRBa/XuEaOHb0vUghXfqKKysv7fFDgV4kvAtdDV5GQ8PQ3q2D5IGzYds+2zWqUNG4+paydTrcd062zSho3H7Pat/aFA3TrX1G8Z6atmYT5a/4s6pSeqtGV7sa0OUBejUbrkIoPKyq3KK7QvM3c2aPRAo+7rZ1SvToazjgKOCpU8PAzak3d639ESqajUqlbhNQe2bmbQ4SLZTa2+O7emU745X1W3VVVVrZXfrFFZmUXdOneotU7piZPy9/c763RUpSdOyHSWaak3Z+1QYIC/Ore/0LYv7uJuMhoM2rJ9p63OxTGd5eV1eqWRyy/pruyDh1Ry/PhvvTT8RtXV1gbbHGXPnj3Kzc1V3759bfuCg4PVq1cvpaWlSZLS0tIUEhKinj172ur07dtXRqNRa9eudVhbgOfeWagrL+6iXl071lr+edoP6pP8lG7/+wt69cMlOmkpr/Nci7/LkK+Pl66/rHuddX7cuU9B/n6KadfGtu/yrh1kNBiUuStbkpS5c58u6XShvDxP/141x3bUvkOHVVx64rdeIlwY9zlwBnwPmyZXiy8BZ/bgHRHa8FOpfsyyn8rXy9MgWaWKytP/F8ora5bF63JR7R3jnh7SRW18tCnrdExotUo/Zp1Qp3Y1nd4XRfvIy9NgV+dgXoXyCypsdeD+ps1eoN6XdFWv2E52+7fu2a/Kqipd3u30/gtaRSqqWagyd+yVJLVtEaHgwAB9+lWaKiorVVZerv99naZ2rSLVonlYra93PufN3LFHF0W3tJtaPb57F5WeLNPuA4ccdOVwBcSXTZMrPsPEab95jfGTJ08qIyNDYWFhiomJsSsrKyvThx9+qKFDhzqsgU1NsMlLnh4GFRyrsNtfUFihtq39az0mLMRbxwrtH2weK6xQWIh3TXmot22ffZ1yWxnwa+1bSAPNRnl5SsdPSh+sqtbJX3zNNmy3KveYVSfLazq0r+1uUKCftHJj7b+sA3wNqqyyymL/NVRpmRToe6pOzc+/Lj9VBveya2+2/vrEUyovr5Cfr6+efmKMLmjT+ox6hcXFmvvhQt3ar0+d58rctl1ffpuu5yeOq7NOwbFChQbbT3vg6eGhoKBAFRwrlCQdPVakFpHN7eqEhQTbyoJYD9ptWCwWWSwWu30+Pj7y8fGp44ja5ebmSpIiIyPt9kdGRtrKcnNzFRERYVfu6empsLAwW52mjvjyj1uWvlHb9h3Uu089Umv5jfGXKKpZqJqHmLRj/yG9+uES7cs9rBceGVZr/f+tXqcb4y+Rr3ftU79J0tGikjOmWff08JApwE9Hi2rWUjtSVKJWv3rgFG4Ksh1vCqg9voX74T4HzoDvIdC0EGM61pVxgbqwjY/GTdt/Rtn2vWUqK6/W0AHheu/TozIYpCEDmsnDw6BQU+2Pn4MCPeThYThjrfDC4kq1iqz5nRxi8lRFRbVOnLRfCrCouEohJtZxbgqWr8nQtr37NXfqY2eUHS0slpenh10WuSSFmYJ0tKhYkhTg56vXnxylcS++rVkLa5bfaxPVXK8+8dc6ky/O57xHC0ts9zWnhAfX/HyksET2XfhwZ8SXgOv5TRnj27dvV5cuXXT11VcrNjZW11xzjQ4dOj0CqqioSPfee+85z2OxWFRcXGy3VVfVnbECoOHty5dmLa/W3JXV2pVr1Z/M9muMr9tuVfZh6XCR9MMuq1ZutKpnB4M8mIcC5ym6VUvNmp6i16dN0YD+ffXsK69r7/4DdnVKT5zQ+Kn/1AVtWuneO5NqPc/uffv192f/pXvuGKTLL6k7sxHOz2ptuC0lJUXBwcF2W0pKSmO/BU1SfcaXlvKKcx7nDnKPFuqF9/+nZx66Sz51dGQPui5eV8R2Uoc2LXTTFZfqHw/eqa8yftL+vCNn1P1x517tycnXwLNMow4AgKtoqPgSzsURMWZt8WVVE31+GR7iqeFJzTV9Tq5dVvgpxcer9M9ZubqsW4A++NdFev+fFynAz6hd2WWsj4rfLffoMf3rnf9qavLQOu9zzqWsvFxPv/mBLu54of49ZazenjxaF7VpodH/fENl5U3z/zOAP64hn2HC8X5TF9b48ePVrVs35efnKysrS0FBQerdu7eys7N/04vW9jD6wM73f9M53FVRcYUqq6wKC7X/Yx8W4qWjx2r/Y11QWK7QEPuRQqEhXir4edRRwc/HhYZ4/aqOt60M+LWKKunYcSnnqLRkvVXVVuniC+ueKz3nqFUeRoOCA2ovLy2zytPDIJ9fxbEBvtLxslN1zswMP/XzrzPJ4fq8vDzVukWUOrW/UA8NuVPtL4jWgkVLbeUnTp7UY/94Xv5+Ndnknp5njjLfu/+Axkx6Rrf266Nht5+5/vMvhYWG6FhRkd2+yqoqlZQcV1hoiCQpPDRYxwrt6xT8/HN4qH22OVzbhAkTVFRUZLdNmDDhN58nKqpmvai8vDy7/Xl5ebayqKgo5efn25VXVlaqoKDAVqcpq8/48l/vfFRPrXYuW/ceUEHxcQ1+6mVdfu94XX7veGVs2635K77T5feOV1V19RnHxF4ULUnan3/0jLJPVq1Tp+iW6tLuzFk8fik8OEgFxfbLTFRWVam49KQtW6JZcJCO/qrO0eIS2/FoOrjPgTPgewg0HY6IMWuLL7dnvF6PrXZeF0X7KMTkqX+Nj9ZHL7fXRy+3V7cO/kq8JkQfvdxeRoO0adsJjfjHPt0zYbeGPrFbL7+Tp7AQT+UdqX2wasnxKlVVWRUcZJ+1G2LyVGFxzRrNhcWV8vIyyt/P/hF2sMlDhcX2meZwP9t271dBcYmG/P2fir97tOLvHq3vt+7Uf5atVvzdoxUWHKSKyiqV/GqJpoLiEtsU58u+y9ChwwWa9NBf1PWitort0E5PjxymnMNHtXpDZq2vGx5iOud5w0OCbPc1p5yaNatZCPc5TQnxJeB6flPH+Jo1a5SSkqJmzZqpffv2WrRokRISEnTVVVdp9+7d532e2h5Gt24/+Dc33h1VVlq1fWeJ4rqH2vYZDFLcxaHanFVc6zE/bStWz4tD7fZd1iNUP22rqZ+TV6YjBRa7Ov5+HorpaLLVAc7FYJA8z/IbIzLUoOpqq07U0YGde0yqqrLqgl/MNhwWJAUHGHTwaM3QpwNHrGoeLLvM9HaRNeubH+Gr6vaqrVZVVNTc/JaeOKG/TU6Rl6enUv7vMfl4nzlN0J7sA3p04tO68bqr9cDdd5zz/F07ddDx0hPK2nn679X3P25WtdWqmI7tbXU2bdmmyspKW50NGzMV3aoF06g3AGu1tcE2Hx8fmUwmu+23TqMuSe3atVNUVJRWrlxp21dcXKy1a9fKbDZLksxmswoLC5WRkWGr8+WXX6q6ulq9evX642+ci6vP+PJvQ/9cjy13HpfHtNd/nvmb5k0dY9ti2rVWf/Mlmjd1jDyMZ/4Bz9p3UJLU/Fed0yfKLFqx7kcNOI9s8e7t26rkxElt3XN6to/1W3aq2mq1dbzHtm+rH7J2q6Ly9IPLtT/tUNsWzZlGvYnhPgfOgO9h09RQ8SWciyNizNriy45xD9dzy53Tj1kn9Ogz+zT2uWzbtmNfmVZvKNHY57L1y/8CJaU1U5/HdvRTcKCH1mWW1nrOyipp136Lunc6HRMaDFJsRz9l7al5uLQr26KKSqtdnZYRXooI87LVgfu6rFtHffD8E3ov5XHb1uXCaN3YO07vpTyumAuj5enhofWbt9uO2ZuTp9wjxxTb4QJJNRnjBqNBBsPpZB+DwSCDap5D1aZLuzbnPG9sh3balZ2jgqLTneNrM7cpwM9X7VoxAL4pIb5smhryGSYc7zd1jJ88edIuY89gMGjmzJm65ZZbdM0112j79u1nOfq02h5GGz1YG+GU+Z8c0C0JLXRjn0i1be2vx/7aQX6+Rn32Rc06pBPHdNJDQ9vZ6i/49KB6XRqqOwe2VnRrP913V1t1bh+kjxcftKsz7I5o9b48XBe2DdDEsZ11tMCib9LPnD4T7s/LU4oIqdmkms7piBDJ5C95eUjXxBrUMrzm56hQKfEyg4L8pK37a34RtwqXLutYc0xIgNS1rUF9exj00z6ryn4eCBzoJz3U36gWPy8raqmQNu2xqm8Po9pG1Jz35suNOnDEqpyfk9X25ElHiqVbexkVESK1i6ppS8ZOq6rOTHaDC3vj3fnauHmrDuUd1q692TU//7RVN1zT++dO8ed0ssyi8SMfVOmJkzp6rFBHjxWq6ucvwu59+/Xok0/rsh7ddfuAm2zlhUWng8Mt23fq7uS/6fDRAknSBW1aqdelF2vajLe1ZftOZW7N0ktvzdH1V5rVLKwm0Ox7dW95eXrq+dfe1J7sA1r5bZo+WrxMt996U8O/SXAax48f18aNG7Vx40ZJ0p49e7Rx40ZlZ2fLYDBo9OjRevrpp/Xpp58qMzNTQ4cOVcuWLTVw4EBJUpcuXXTjjTfqgQce0Lp16/Tdd99p5MiRuvPOO9WyZcvGuzAnUZ/x5e+dbs/VBPj5qn3rKLvNz8dbwYH+at86Svvzjuit/63Q1j0HlHO4QKu+36xJb87XpZ0uVIdo++/g8rWbVFVVpZuuuPSM1/lpV7YGPTFN+QU1M2m0axmpK2I7aersj/TTrmxt3L5H0979RP16XazmP8+ycaP5Enl5emjqrA+160Culq/dqA+Wf6O7E66u/zcGTof7HDgDvodA0+CIGLO2+NKjiT6/LLNYlX2o3G6zlFerpLRK2Ydqshf7xJvU8QJfRTXz0jWXBWnc8BZa9FWhcvJPZ4z/Y1Qr9b/69Gxsn355TDdcYdJ1vYLUOtJLD90RIV8fo1am19zbnyir1sq0It07qJm6dfDThW18NOruSG3bfVLb99Ix7u4C/HzVvk1Lu63mPidA7du0VKC/nwZcG6/p7y3Uhs3btXV3tqa88b5iO1yg2A41f8t7deusktITen72Au05mKtdBw5pyhvvy8PDQz1jOkiS8gsK9ee/Pa3NO/dJ0nmdN757Z7VrHaWnZryr7fsOKm3TVr2+4DPddsNV8vZqGvehOI34EnAtZ85LexadO3fWhg0b1KVLF7v9r732miTp1ltvdVzLmrAvvz2skGAv3T/4AoWFemvn7uP621OZOlZYE0hGNve1G4n507Zi/eOFrXrg7nZ6cGg7Hcg5qQnPbNae7NPTvbz/8X75+nro8ZEdFRjgqcwtRfrbU5kqr2DESVPUIlS6u8/pqapuuKRmjMyPe6r1+QarmpkM6n6BQX4+0sly6VCB9O6X1bas7cpqKSbaoKu61qwpXlRas+b4uqzT3ycPgxRuMsjrFzNirfjBKqtVGnSFUR4e0p5caWnG6R5vq1X68Jtq3Rhn1LDrjaqolH7ca9Xqn/ieuptjhcV69qWZOnqsUAEB/rqobRu98NQTuqxHrH7I3KIt23dKku4aMcbuuP+88bJaRDbX12vWqrCoWMtXfavlq761lUc1b6YP33pFkmSxlCv74CFV/iJL8ckxyXrpzTkaM+lZGY0GXWO+XI/cP8xWHhjgr39NnqDpb8zWA3/7PwWbgjTsjj/p1oTr6/PtwM/qGq3d2DZs2KDrrrvO9vPYsWMlScOGDdOcOXP0+OOPq7S0VA8++KAKCwt15ZVXaunSpfL1Pb02xPvvv6+RI0fq+uuvl9FoVFJSkl555ZUGvxZnRHxZ/7w8PbVu8059sOxbnSwvV2RYiK6/LFbDb+17Rt3/rV6n63rGKijA74yysvIK7Tt0WJVVp3+vPv3wX/T8uws1YtqbMhgMur5nrMbdPcBWHuTvp9THHtBz736iuye/rJDAAD0w8AYNui6+fi4WTo37HDgDvodNj7PGmKhfxJgNr1WEl+6+NVyB/h46XFChj5YV6NMvC+3qRDXzkinw9IOi774/LlOgh+5MDFdokIf2HCzXlNSDKio5HW/+++Mjslqlx+9vIS9PgzZuPaE3/mO/VBWarjFDBslgNGj8S/9WeWWl4rt31vh7b7eVX9AqUi8+9qDe+nip7ntquowGgzpe0FqvjH9YzX4ezFtZVaV9h/Lt1hw/13k9jEZNf+whPffvD3XfUy/Kz8dbiVf30kO3kVjRFBFfNj3El67NYLWe/yeYkpKib775RkuWLKm1/K9//atef/11VdeyjuG5XHnLqt98DOBIN919ZWM3AdDw7hsbuwmAIrvENcrrjnqp4aaDenW0qcFeC2dXn/Hl8fRP/2jzgD/sxmeCz10JANzct4uuabTXbqgYk/jSudRXjPmnkTsc0TzgD5l77/kvOQXUl5sm+567ElDPGivG5Bmma/tNU6lPmDChzoBSkmbMmPG7HloCAACgaSK+BAAAgKMRYwIAAKA2v2kqdQAAgPpirWYaIgAAADgWMSYAAAAcifjStf2mjHEAAAAAAAAAAAAAgPNYvXq1brnlFrVs2VIGg0GffPKJXbnVatWkSZPUokUL+fn5qW/fvtqxw36ZmIKCAg0ePFgmk0khISEaPny4jh8/3oBXUf/oGAcAAE7BWm1tsA0AAABNA/ElAAAAHMlZn2GWlpbq4osvVmpqaq3l06ZN0yuvvKLXX39da9euVUBAgBISElRWVmarM3jwYG3evFkrVqzQ4sWLtXr1aj344IN/6P1yNkylDgAAAAAAAAAAAAAuqn///urfv3+tZVarVS+99JImTpyoAQMGSJLeeecdRUZG6pNPPtGdd96prVu3aunSpVq/fr169uwpSXr11Vd100036YUXXlDLli0b7FrqExnjAADAKVRbG24DAABA00B8CQAAAEdqyGeYFotFxcXFdpvFYvnNbd6zZ49yc3PVt29f277g4GD16tVLaWlpkqS0tDSFhITYOsUl6f/Zu+/wKKq+jeP3bjoJSQikEEoo0kFQQIigiEQQAUVABVGKIIqgAiLKa6Eo8FgQBEGsgAqiqKAi0vWx0RGkNylSktBCSCD9vH/kycKSBBLcJLvJ93Nde11k5szsmdnZcGfO/GaioqJktVq1du3af7/jnAQD4wAAAAAAAAAAAADgRCZMmKCAgAC714QJE/K9nujoaElSaGio3fTQ0FDbvOjoaIWEhNjNd3d3V1BQkK1NccCt1AEAgFPg2YwAAABwNDImAAAAHKkw8+XIkSM1bNgwu2leXl6F9v7FERXjAAAAAAAAQCH65Zdf1KlTJ4WHh8tisWjhwoV2840xevnll1W+fHn5+PgoKipKe/futWtz+vRp9ezZU/7+/goMDFS/fv2UkJBQiFsBAACAguTl5SV/f3+717UMjIeFhUmSYmJi7KbHxMTY5oWFhSk2NtZuflpamk6fPm1rUxwwMA4AAJyCMabQXgAAACgZnDVfJiYmqmHDhpo2bVqO819//XVNmTJFM2bM0Nq1a+Xr66t27dopKSnJ1qZnz57avn27li9frkWLFumXX37RgAEDrnlfAQAA4Opc8Rxm1apVFRYWppUrV9qmxcfHa+3atYqMjJQkRUZGKi4uThs3brS1WbVqlTIyMtSsWTOH9aWocSt1AAAAAAAAoBC1b99e7du3z3GeMUaTJ0/Wiy++qHvuuUeS9Mknnyg0NFQLFy5U9+7dtXPnTi1ZskTr169XkyZNJElTp07VXXfdpTfffFPh4eGFti0AAAAoegkJCdq3b5/t5wMHDmjz5s0KCgpS5cqVNWTIEL366quqUaOGqlatqpdeeknh4eHq3LmzJKlOnTq688479eijj2rGjBlKTU3V4MGD1b1792KVLRkYBwAATiGD5z8CAADAwQorYyYnJys5OdlumpeX1zXd6vLAgQOKjo5WVFSUbVpAQICaNWum1atXq3v37lq9erUCAwNtg+KSFBUVJavVqrVr1+ree++99o0BAABArpz1HOaGDRvUunVr289Zzybv3bu3Zs2apREjRigxMVEDBgxQXFycWrZsqSVLlsjb29u2zJw5czR48GC1adNGVqtVXbt21ZQpUwp9WwoSA+MAAAAAAADAvzBhwgSNGTPGbtqoUaM0evTofK8rOjpakhQaGmo3PTQ01DYvOjpaISEhdvPd3d0VFBRkawMAAICS47bbbrvi7dctFovGjh2rsWPH5tomKChIc+fOLYjuOQ0GxgEAgFPg2d8AAABwtMLKmCNHjrRV5WS5lmpxAAAAODfOYbo2BsYBAAAAAACAf+Fab5uek7CwMElSTEyMypcvb5seExOjRo0a2drExsbaLZeWlqbTp0/blgcAAABgz1rUHQAAAJAkk2EK7QUAAICSwRXzZdWqVRUWFqaVK1fapsXHx2vt2rWKjIyUJEVGRiouLk4bN260tVm1apUyMjLUrFkzh/YHAAAAF3EO07VRMQ4AAAAAAAAUooSEBO3bt8/284EDB7R582YFBQWpcuXKGjJkiF599VXVqFFDVatW1UsvvaTw8HB17txZklSnTh3deeedevTRRzVjxgylpqZq8ODB6t69u8LDw4toqwAAAADnxsA4AABwClwFCQAAAEdz1oy5YcMGtW7d2vZz1vPJe/furVmzZmnEiBFKTEzUgAEDFBcXp5YtW2rJkiXy9va2LTNnzhwNHjxYbdq0kdVqVdeuXTVlypRC3xYAAICSxFnzJfKGgXEAAAAAAACgEN12220yJveTqhaLRWPHjtXYsWNzbRMUFKS5c+cWRPcAAACAYomBcQAA4BQyrnBiEAAAALgWZEwAAAA4EvnStVmLugMAAAAAAAAAAAAAABQkKsYBAIBT4Pk8AAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrDIwDAAAAAAAAAAAAAIo1bqUOAACcgjHchggAAACORcYEAACAI5EvXRsV4wAAAAAAAAAAAACAYo2KcQAA4BQyMrjaEgAAAI5FxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFAxXWwIAAMDByJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIIxXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKJiOjqLsAAACAYoaMCQAAAEciX7o2KsYBAAAAAAAAAAAAAMUaFeMAAMApZGTwfB4AAAA4FhkTAAAAjkS+dG1UjAMAAAAAAAAAAAAAijUqxgEAgFMwhqstAQAA4FhkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwfB8HgAAADgYGRMAAACORL50bVSMAwAAAAAAAAAAAACKNSrGAQCAU+BqSwAAADgaGRMAAACORL50bVSMAwAAAAAAAAAAAACKNSrGAQCAU8gwGUXdBQAAABQzZEwAAAA4EvnStVExDgAAAAAAAAAAAAAo1hgYBwAAAAAAAAAAAAAUa9xKHQAAOAWTYYq6CwAAAChmyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnAJXWwIAAMDRyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIIxXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKGRkZRd0FAAAAFDNkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwWTwfB4AAAA4FhkTAAAAjkS+dG1UjAMAAAAAAAAAAAAAijUqxgEAgFMwhufzAAAAwLHImAAAAHAk8qVro2IcAAAAAAAAAAAAAFCsUTEOAACcAs/nAQAAgKORMQEAAOBI5EvXRsU4AAAAAAAAAAAAAKBYo2IcAAA4Ba62BAAAgKORMQEAAOBI5EvXRsU4AAAAAAAAAAAAAKBYo2IcAAA4hQyTUdRdAAAAQDFDxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFHg+DwAAAByNjAkAAABHIl+6NirGAQAAAAAAAAAAAADFGhXjAADAKZgMns8DAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFjjVuoAAMApmAxT1F0AAABAMUPGBAAAgCORL10bFeMAAAAAAAAAAAAAgGKNinEAAOAUjMko6i4AAACgmCFjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxTgAAHAKGTyfBwAAAA5GxgQAAIAjkS9dGxXjAAAAAAAAAAAAAIBijYpxAADgFEwGz+cBAACAY5ExAQAA4EjkS9dGxTgAAAAAAAAAAAAAoFijYhwAADgFw/N5AAAA4GBkTAAAADgS+dK1UTEOAAAAAAAAAAAAACjWqBgHAABOwRiezwMAAADHImMCAADAkciXro2KcQAAAAAAAAAAAABAscbAOAAAcAomwxTa61pMmzZNVapUkbe3t5o1a6Z169Y5eA8AAADA0ciXAAAAcCRnPodJvrw6BsYBAACu4osvvtCwYcM0atQobdq0SQ0bNlS7du0UGxtb1F0DAACACyJfAgAAwJHIl3nDwDgAAHAKJiOj0F759dZbb+nRRx9V3759VbduXc2YMUOlSpXSxx9/XAB7AgAAAI5CvgQAAIAjOes5TPJl3jAwDgAASpzk5GTFx8fbvZKTk3Nsm5KSoo0bNyoqKso2zWq1KioqSqtXry6sLgMAAMCJkS8BAADgaHnNmOTLvHMv6g5k+e37VkXdBZeWnJysCRMmaOTIkfLy8irq7qAE4hh0lMZF3QGXxnHo2gozC4wePVpjxoyxmzZq1CiNHj06W9uTJ08qPT1doaGhdtNDQ0O1a9euguwm/iW/5ncXdRdcGr9THeO374u6B66N4xBFjWPQ9RVWxiRflgwL3qlR1F1wafxOdRSOw3+D49Ax+Dvn3+E4dG3OeA6TfJl3FmNM/p/eDqcTHx+vgIAAnT17Vv7+/kXdHZRAHINwBhyHyKvk5ORsV1d6eXnl+MfIsWPHVKFCBf3xxx+KjIy0TR8xYoT++9//au3atQXeX6Ao8DsVzoDjEEWNYxB5Rb4Ero7fqXAGHIdwBhyHyKu8ZkzyZd45TcU4AABAYcntJGVOypUrJzc3N8XExNhNj4mJUVhYWEF0DwAAAC6GfAkAAABHy2vGJF/mHc8YBwAAuAJPT081btxYK1eutE3LyMjQypUr7a7ABAAAAPKCfAkAAABHIl/mHRXjAAAAVzFs2DD17t1bTZo00U033aTJkycrMTFRffv2LequAQAAwAWRLwEAAOBI5Mu8YWC8mPDy8tKoUaPyfNsuwNE4BuEMOA5RUB544AGdOHFCL7/8sqKjo9WoUSMtWbJEoaGhRd01oMDwOxXOgOMQRY1jEAWFfImSiN+pcAYch3AGHIcoCOTLvLEYY0xRdwIAAAAAAAAAAAAAgILCM8YBAAAAAAAAAAAAAMUaA+MAAAAAAAAAAAAAgGKNgXEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFhjYLwYmDZtmqpUqSJvb281a9ZM69atK+ouoQT55Zdf1KlTJ4WHh8tisWjhwoVF3SWUQBMmTFDTpk1VunRphYSEqHPnztq9e3dRdwsAXBb5EkWNjImiRr4EAMcjY6IokS9R1MiXgHNgYNzFffHFFxo2bJhGjRqlTZs2qWHDhmrXrp1iY2OLumsoIRITE9WwYUNNmzatqLuCEuy///2vBg0apDVr1mj58uVKTU1V27ZtlZiYWNRdAwCXQ76EMyBjoqiRLwHAsciYKGrkSxQ18iXgHCzGGFPUncC1a9asmZo2bap33nlHkpSRkaFKlSrpySef1PPPP1/EvUNJY7FYtGDBAnXu3Lmou4IS7sSJEwoJCdF///tf3XrrrUXdHQBwKeRLOBsyJpwB+RIA/h0yJpwJ+RLOgHwJFA0qxl1YSkqKNm7cqKioKNs0q9WqqKgorV69ugh7BgBF6+zZs5KkoKCgIu4JALgW8iUA5Ix8CQDXjowJANmRL4GiwcC4Czt58qTS09MVGhpqNz00NFTR0dFF1CsAKFoZGRkaMmSIWrRoofr16xd1dwDApZAvASA78iUA/DtkTACwR74Eio57UXcAAABHGjRokLZt26bffvutqLsCAACAYoB8CQAAAEciXwJFh4FxF1auXDm5ubkpJibGbnpMTIzCwsKKqFcAUHQGDx6sRYsW6ZdfflHFihWLujsA4HLIlwBgj3wJAP8eGRMALiJfAkWLW6m7ME9PTzVu3FgrV660TcvIyNDKlSsVGRlZhD0DgMJljNHgwYO1YMECrVq1SlWrVi3qLgGASyJfAkAm8iUAOA4ZEwDIl4CzoGLcxQ0bNky9e/dWkyZNdNNNN2ny5MlKTExU3759i7prKCESEhK0b98+288HDhzQ5s2bFRQUpMqVKxdhz1CSDBo0SHPnztW3336r0qVL255RFhAQIB8fnyLuHQC4FvIlnAEZE0WNfAkAjkXGRFEjX6KokS8B52Axxpii7gT+nXfeeUdvvPGGoqOj1ahRI02ZMkXNmjUr6m6hhPj555/VunXrbNN79+6tWbNmFX6HUCJZLJYcp8+cOVN9+vQp3M4AQDFAvkRRI2OiqJEvAcDxyJgoSuRLFDXyJeAcGBgHAAAAAAAAAAAAABRrPGMcAAAAAAAAAAAAAFCsMTAOAAAAAAAAAAAAACjWGBgHAAAAAAAAAAAAABRrDIwDAAAAAAAAAAAAAIo1BsYBAAAAAAAAAAAAAMUaA+MAAAAAAAAAAAAAgGKNgXEAAAAAAAAAAAAAQLHGwDgAAAAAAAAAAAAAoFhjYBwAAAAAAAAAAAAAUKwxMA4AAAAAAAAAAAAAKNYYGAcAAAAAAAAAAAAAFGsMjAMAAAAAAAAAAAAAijUGxgEAAAAAAAAAAAAAxRoD4wAAAAAAAAAAAACAYo2BcQAAAAAAAAAAAABAscbAOAAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrDEwXkJ9+umnql27tjw8PBQYGOjw9Y8ePVoWi8Xh6y1ODh48KIvFolmzZjlsnevXr9fNN98sX19fWSwWbd682WHrdkYWi0WjR4/O1zJ9+vRRlSpVCqQ/xdHevXvVtm1bBQQEyGKxaOHChUXdJQCAEyFTFj0yZdEq6mP0559/lsVi0c8//2w3Pafv5m233abbbrut0Pt4NQX9ewQAAEci/xY98q9zWLJkiRo1aiRvb29ZLBbFxcUVdZcAIE8YGC+Bdu3apT59+qh69er64IMP9P777xd1l1ze4sWL8z1A62ipqam67777dPr0aU2aNEmffvqpIiIiCuz9sk7CZb28vLwUGhqq2267TePHj9eJEycK7L2d2aX75Eqvy09eOqvevXtr69atGjdunD799FM1adJEc+fO1eTJkwu1H7fddpvd/gsKClLTpk318ccfKyMjI1v7n3/+WV26dFFYWJg8PT0VEhKiTp066Ztvvslx/Tt37pTFYpG3tzdBHgDyiEzpeCUxU0qZJzf79u2r6tWry9vbW2FhYbr11ls1atSoHNt///336tSpk0JDQ+Xp6amgoCDdeuutmjhxouLj4+3aVqlSxZYfrFarAgMD1aBBAw0YMEBr167NtU9JSUmaNGmSmjVrpoCAAHl7e6tmzZoaPHiw9uzZ49DtdzRX+m7m1Nfz589r9OjRhZqXs06wZ73c3NxUuXJl3XvvvTmeGL+W42PEiBGyWCx64IEHCnhrAAAFxZX+j3UV5N+c829sbKzc3d310EMP5bqOc+fOycfHR126dLGbvn//fj322GOqVq2avL295e/vrxYtWujtt9/WhQsXHNL/U6dO6f7775ePj4+mTZumTz/9VL6+vho/fnyhF9VcmuGsVqvCw8PVtm3bHLNkenq6Zs6cqdtuu01BQUHy8vJSlSpV1LdvX23YsCHH9U+fPl0Wi0XNmjUr4C0BUFgsxhhT1J1A4ZoxY4YGDhyovXv36rrrriuQ90hLS1NaWpq8vb0LZP3OZvDgwZo2bZry83Uyxig5OVkeHh5yc3P7133YtWuX6tSpow8++ED9+/f/1+u7mp9//lmtW7fWU089paZNmyo9PV0nTpzQH3/8oe+//14BAQH68ssvdfvttxdYH5KSkuTu7i53d/c8L5OamqqMjAx5eXkVSJ8+++wzu58/+eQTLV++XJ9++qnd9DvuuEOhoaEF0gdHuXDhgkqVKqUXXnhBr776qm16x44dtW3bNh08eLDQ+nLbbbdp//79mjBhgiTpxIkT+uSTT7R582Y999xz+s9//mNrO2rUKI0dO1Y1atRQjx49FBERoVOnTmnx4sX6+eefNWfOHD344IN263/hhRf08ccf68yZM3rnnXcK5TsEAK6OTOl4JTFT7tu3T02bNpWPj48eeeQRValSRcePH9emTZv0448/KikpydY2IyND/fr106xZs9SgQQN17dpVlSpV0rlz57R69Wp9++23uvnmm7Vy5UrbMlWqVFGZMmX0zDPPSMo8gbhz507Nnz9f0dHRGjp0qN566y27Pp08eVJ33nmnNm7cqI4dOyoqKkp+fn7avXu35s2bp+joaKWkpEjKrOoaM2ZMvj4zR8rIyFBKSoo8PT1ltWZe957bdzOrz56enkXS15zk1NeTJ08qODhYo0aNKrQT5QcPHlTVqlXVo0cP3XXXXUpPT9fOnTv17rvvKjk5WWvWrFGjRo1s/cvr8ZHFGKPKlSvL3d1dMTExiomJUenSpQtl2wAAjkP+dTzyb+75t3379vrtt98UExOjUqVKZVvP7Nmz1adPH3399de2wfEffvhB9913n7y8vNSrVy/Vr19fKSkp+u233/T111+rT58+DrmgY8mSJWrfvr2WL1+uqKgo23Q/Pz9169bNodX8V2OxWHTHHXeoV69eMsbowIEDmj59umJjY/XDDz+offv2kjLPc3bp0kVLlizRrbfeqk6dOikoKEgHDx7Ul19+qT179ujw4cOqWLGi3fpbtGihY8eO6eDBgwX63QdQePI+moRiIzY2VpIK9DZ1+R2sLEnS0tKUkZEhT09Ph4bcgvhcExMT5evre8U2t9xyi7p162Y3bcuWLWrbtq26du2qHTt2qHz58g7r06WuZf95eHgUQE8uuvxKzjVr1mj58uVXvMJTks6fP59jyC1KWVX/hXFLy6yTulf6TAMCAuz242OPPaZatWrpnXfe0SuvvCIPDw999dVXGjt2rLp166a5c+fafd7PPvusli5dqtTUVLv1GmM0d+5cPfjggzpw4IDmzJnDwDgA5AGZsmgVl0w5adIkJSQkaPPmzdkqc7L6kuX111/XrFmzNHToUE2cONHuNqNPP/20jh8/rk8++STbe1SoUCFbFnvttdf04IMPatKkSapRo4YGDhxom9enTx/9+eef+uqrr9S1a1e75V555RW98MILedvwQmC1WrN9/rl9ho4cEM9LdsuLwvg9kiUvf9vceOONdsdKixYtdPfdd+vdd9/Ve++9J+najo+ff/5ZR44c0apVq9SuXTt988036t27twO2CgBQmMi/Rauk5d+ePXtqyZIl+u6779S9e/ds65k7d64CAgLUoUMHSdKBAwfUvXt3RUREaNWqVXbnYwcNGqR9+/bphx9+cMTmFWqGS0pKsrsINCc1a9a0y3D33nuvrr/+ek2ePNk2MP7ss89qyZIlmjRpkoYMGWK3/KhRozRp0qRs6z1w4ID++OMPffPNN3rsscc0Z86cXO9qBcCFGBSpI0eOmEceecSUL1/eeHp6mipVqpjHH3/cJCcn29rs37/fdOvWzZQpU8b4+PiYZs2amUWLFtmt56effjKSzBdffGFeffVVU6FCBePl5WVuv/12s3fvXlu7iIgII8nuNWrUKGOMsfv3pSIiIkzv3r1tP6ekpJjRo0eb6667znh5eZmgoCDTokULs2zZMlubUaNGmcsPr9TUVDN27FhTrVo14+npaSIiIszIkSNNUlJStvfr0KGD+fXXX03Tpk2Nl5eXqVq1qpk9e3Z+d6+RZAYNGmS+/PJLU6dOHePt7W2aN29u/vrrL2OMMTNmzDDVq1c3Xl5eplWrVubAgQN2y//yyy+mW7duplKlSsbT09NUrFjRDBkyxJw/f97Wpnfv3tn2ada2HzhwwEgyb7zxhpk0aZKpVq2asVqt5s8//7TNmzlzpjHGmJiYGFOuXDnTqlUrk5GRYVv/3r17TalSpcz999+f63bm1IdWrVrZ5q9cudK0bNnSlCpVygQEBJi7777b7Nixw24dWZ/Z9u3bTY8ePUxgYKBp1KhRru+ZdczNnz8/x/lz5841ksz//d//2U0/cuSI6du3rwkJCTGenp6mbt265qOPPsq2/IULF8yoUaNMjRo1jJeXlwkLCzP33nuv2bdvn63N5cdsfHy8efrpp01ERITx9PQ0wcHBJioqymzcuNFuX0VERNi9V0JCghk2bJipWLGi8fT0NDVr1jRvvPGG3eeQ9X6DBg0yCxYsMPXq1bP1/8cff8x1Pw0aNCjbd6FVq1amXr16ZsOGDeaWW24xPj4+5umnnzbGGJOUlGRefvllU716ddsx9+yzz2b7nhhjzKeffmpuvPFG4+3tbcqUKWMeeOABc/jw4Vz7kuXgwYNm4MCBpmbNmsbb29sEBQWZbt262R3/WcfDpa+IiAjTqlWrHKdnyWv/s/blZ599ZurWrWvc3d3NggULcu1z1j67XLdu3Ywkc/ToUWOMMbVr1zZBQUEmPj7+qvshy6+//mokmXXr1pkvvvjCWK1W888//+R5eQBwBmRKMqWrZsp27dqZKlWqXHH/G2NMYmKiCQwMNPXq1TNpaWlXbZ8l6zjIyblz50xQUJCpUKGCbV+tWbPGSDKPPvpontaf0zH68ccfm9atW5vg4GDj6elp6tSpY6ZPn55t2fXr15u2bduasmXLGm9vb1OlShXTt29fuzaff/65ufHGG42fn58pXbq0qV+/vpk8ebJtftZ39qeffrJtb27fzVatWtl9nsYUXHZbuHChueuuu2y/k6pVq2bGjh1r99nl1NfcvgeX/k7ZuXOn6dq1qylTpozx8vIyjRs3Nt9++63d+8+cOdNIMj///LMZOHCgCQ4ONoGBgbn299Lv2KUSEhKMJHPHHXcYY/J/fGTp16+fqVu3rjHGmPbt29vWBwC4duRf8m9xz78JCQnG19fXdOrUKdu8mJgY4+bmZvr162eb9vjjjxtJ5vfff7/qunOTl88tp3ODuX2Wlx7/eTknnPV9/Pzzz80LL7xgwsPDjcViMWfOnMm1z1nH6uXKlStnatSoYYwx5p9//jHu7u75zmCvvPKKKVOmjElOTjYDBw60rQ+Aa+PysyJ07Ngx3XTTTYqLi9OAAQNUu3ZtHT16VF999ZXOnz8vT09PxcTE6Oabb9b58+f11FNPqWzZspo9e7buvvtuffXVV7r33nvt1vmf//xHVqtVw4cP19mzZ/X666+rZ8+etufnTZ48WZ988okWLFigd999V35+frr++uvz1e/Ro0drwoQJ6t+/v2666SbFx8drw4YN2rRpk+64445cl+vfv79mz56tbt266ZlnntHatWs1YcIE7dy5UwsWLLBru2/fPnXr1k39+vVT79699fHHH6tPnz5q3Lix6tWrl6/+/vrrr/ruu+80aNAgSdKECRPUsWNHjRgxQtOnT9cTTzyhM2fO6PXXX9cjjzyiVatW2ZadP3++zp8/r4EDB6ps2bJat26dpk6dqiNHjmj+/PmSMqtWjx07luPtsrPMnDlTSUlJGjBggLy8vBQUFJTtucghISF69913dd9992nq1Kl66qmnlJGRoT59+qh06dKaPn16rtv42GOPqUKFCho/frzt1uZZt+lesWKF2rdvr2rVqmn06NG6cOGCpk6dqhYtWmjTpk2qUqWK3bruu+8+1ahRQ+PHj/9Xt4TM+vyWLVumcePGSZJiYmLUvHlzWSwWDR48WMHBwfrxxx/Vr18/xcfH267WS09PV8eOHbVy5Up1795dTz/9tM6dO6fly5dr27Ztql69eo7v+fjjj+urr77S4MGDVbduXZ06dUq//fabdu7cqRtvvDHHZYwxuvvuu/XTTz+pX79+atSokZYuXapnn31WR48ezXa14G+//aZvvvlGTzzxhEqXLq0pU6aoa9euOnz4sMqWLZvn/XPq1Cm1b99e3bt310MPPaTQ0FBlZGTo7rvv1m+//aYBAwaoTp062rp1qyZNmqQ9e/bYPaNn3Lhxeumll3T//ferf//+OnHihKZOnapbb71Vf/755xWv2Fy/fr3++OMPde/eXRUrVtTBgwf17rvv6rbbbtOOHTtUqlQpdenSRYGBgRo6dKjtlpJ+fn7y9fXV2bNndeTIEdu+8fPzk6R89V+SVq1apS+//FKDBw9WuXLlsh2LefH333/Lzc1NgYGB2rt3r3bt2qVHHnkkX7emnDNnjqpXr66mTZuqfv36KlWqlD7//HM9++yz+e4PABQFMiWZ8lKulikjIiK0YsUKrVq16oqP4Pntt98UFxen4cOHO+SWmVJmhrn33nv10UcfaceOHapXr56+++47SdLDDz98zet99913Va9ePd19991yd3fX999/ryeeeEIZGRm24yc2NlZt27ZVcHCwnn/+eQUGBurgwYP65ptvbOtZvny5evTooTZt2ui1116TJO3cuVO///67nn766RzfOz/fzYLMbrNmzZKfn5+GDRsmPz8/rVq1Si+//LLi4+P1xhtv5NrXBg0aqHnz5ho4cKDuvfde221Bs7Zh+/btatGihSpUqKDnn39evr6++vLLL9W5c2d9/fXX2X6XPfHEEwoODtbLL7+sxMTEXPubm/3790uSLedfy/GRnJysr7/+2nY7/x49eqhv376Kjo5WWFhYvvsEACD/kn9LRv719fXVPffco6+++kqnT59WUFCQbd4XX3yh9PR09ezZ0zbt+++/V7Vq1XTzzTfnus6rycvn9sILL6hWrVp6//33NXbsWFWtWlXVq1dXVFSU7dgeMGCAJNnO4eb1nHCWV155RZ6enho+fLiSk5PzfeejM2fO6MyZM7bbnv/4449KS0vLd8afM2eOunTpIk9PT/Xo0UPvvvuu1q9fr6ZNm+ZrPQCcTNGOy5dsvXr1Mlar1axfvz7bvKyr24YMGWIkmV9//dU279y5c6Zq1aqmSpUqJj093Rhz8WqqOnXq2F0Z+fbbbxtJZuvWrbZpWVexnThxwu49lcerGxs2bJhr1cXl75Fl8+bNRpLp37+/Xbvhw4cbSWbVqlV27yfJ/PLLL7ZpsbGxxsvLyzzzzDNXfN/LSTJeXl52Vy2+9957RpIJCwuzqyodOXKkkWTX9tKr4bJMmDDBWCwWc+jQIdu0nKqCjbl4daO/v7+JjY3NcV7W1Y1ZevToYUqVKmX27Nlj3njjDSPJLFy48KrbmlsFd6NGjUxISIg5deqUbdqWLVuM1Wo1vXr1sk3L+sx69Ohx1fe60vtdqmHDhqZMmTK2n/v162fKly9vTp48adeue/fuJiAgwLa/P/74YyPJvPXWW9nWeemVn5cfswEBATleIXipyyvGFy5caCSZV1991a5dt27djMViyVah7unpaTdty5YtRpKZOnVqju+XW8W4JDNjxgy76Z9++qmxWq1233djMq/C1SVXfB48eNC4ubmZcePG2bXbunWrcXd3zzb9cjkd16tXrzaSzCeffGKbllvlTIcOHbJV3een/8Zk7kur1Wq2b99+xb5madWqlaldu7Y5ceKEOXHihNm5c6d56qmnjCTblbPffvutkWQmTZqUp3Uak3m1dtmyZc0LL7xgm/bggw+ahg0b5nkdAFDUyJRkSlfOlNu2bTM+Pj5GkmnUqJF5+umnzcKFC01iYqJdu6xj8PJtSEtLs+WDrNelefFKFePGGDNp0iQjyVZxfO+99xpJV6xKuVROVV05fd7t2rUz1apVs/28YMECIynH722Wp59+2vj7+1+xQv7yivFL+3T5d/PyivGCzG457YPHHnvMlCpVyq66Lae+njhxItffI23atDENGjSwW0dGRoa5+eab7Sp4sirGW7Zsmac7DGR9j8aMGWNOnDhhoqOjzc8//2xuuOEGI8l8/fXXxpj8Hx/GGPPVV18ZSbaqw/j4eOPt7Z2vzAoAsEf+Jf+WhPxrjDE//PCDkWTee+89u+nNmzc3FSpUsB3HZ8+eNZLMPffck6c+5Cavn1tW1rr8O+jr62t3zGfJ6znhrM+iWrVqOfYlJ5JMv379zIkTJ0xsbKxZu3atadOmjZFkJk6caIwxZujQoUaS+fPPP/O0TmOM2bBhg5Fkli9fbozJ/N1SsWJF210/Abiu3B/MgAKVkZGhhQsXqlOnTmrSpEm2+VnPy1u8eLFuuukmtWzZ0jbPz89PAwYM0MGDB7Vjxw675fr27Wt3BdUtt9wiKbOq0lECAwO1fft27d27N8/LLF68WJI0bNgwu+lZV81f/nyTunXr2vouScHBwapVq9Y1bUebNm3sruBr1qyZJKlr1652VaVZ0y99Dx8fH9u/ExMTdfLkSd18880yxujPP//Mcx+6du2q4ODgPLV95513FBAQoG7duumll17Sww8/rHvuuSfP73Wp48ePa/PmzerTp4/dVYXXX3+97rjjDtvncqnHH3/8mt4rJ35+fjp37pykzMrsr7/+Wp06dZIxRidPnrS92rVrp7Nnz2rTpk2SpK+//lrlypXTk08+mW2dlz5L8nKBgYFau3atjh07luc+Ll68WG5ubnrqqafspj/zzDMyxujHH3+0mx4VFWVXsX799dfL398/38eml5eX+vbtazdt/vz5qlOnjmrXrm23f7KuHv3pp58kSd98840yMjJ0//3327ULCwtTjRo1bO1yc+lxnZqaqlOnTum6665TYGCg7TO4Fnntf5ZWrVqpbt26eV7/rl27FBwcrODgYNWpU0dTp05Vhw4d9PHHH0uS4uPjJSlf1eI//vijTp06pR49etim9ejRQ1u2bNH27dvzvB4AKCpkykxkyuxcJVPWq1dPmzdv1kMPPaSDBw/q7bffVufOnRUaGqoPPvjA1i7r//msO9Vk2bp1qy0fZL1OnTqV523LWl9WZr2WPHG5Sz/vs2fP6uTJk2rVqpX+/vtvnT17VtLF5zEuWrRIqampOa4nMDBQiYmJWr58+TX35UoKMrtdug/OnTunkydP6pZbbtH58+e1a9eua+rv6dOntWrVKt1///22dZ48eVKnTp1Su3bttHfvXh09etRumUcffTRfdxgYNWqUgoODFRYWpttuu0379+/Xa6+9Zqtcv5bjY86cOWrSpImtYql06dLq0KGD5syZk+d1AAAuIv9mIv9mV9zyryTbHYbmzp1rm3bgwAGtWbNGPXr0sD132xEZVnLc53ap/JwTztK7d2+7vlzNRx99pODgYIWEhKhZs2b6/fffNWzYMFsl+rVmuNDQULVu3VpS5u+WBx54QPPmzVN6enqe1wPA+TAwXkROnDih+Ph41a9f/4rtDh06pFq1amWbXqdOHdv8S1WuXNnu5zJlykjKvH2Io4wdO1ZxcXGqWbOmGjRooGeffVZ//fXXFZc5dOiQrFar7WRAlrCwMAUGBl51O6TMbbmW7bh8XQEBAZKkSpUq5Tj90vc4fPiwLQD5+fkpODhYrVq1kiTbSa28qFq1ap7bBgUFacqUKfrrr78UEBCgKVOm5HnZy2Xt19yOoZMnT2a7pWB++no1CQkJtsBx4sQJxcXF6f3338928jJrgDg2NlZS5i0La9WqJXf3/D3t4fXXX9e2bdtUqVIl3XTTTRo9evRVg/+hQ4cUHh6eLRjl9TsmXduxWaFChWy3Adq7d6+2b9+ebf/UrFlT0sX9s3fvXhljVKNGjWxtd+7caWuXmwsXLujll19WpUqV5OXlpXLlyik4OFhxcXH5Oq4vl9f+Z8nvsValShUtX75cK1as0G+//abo6GgtWrRI5cqVkyT5+/tLunhiOy8+++wzVa1aVV5eXtq3b5/27dun6tWrq1SpUpysBOASyJSZyJTZuVKmrFmzpj799FOdPHlSf/31l8aPHy93d3cNGDBAK1askHTxJFZCQoLdstddd52WL1+u5cuXX9Ptz7PWl7X+a8kTl/v9998VFRUlX19fBQYGKjg4WP/3f/8n6eLn3apVK3Xt2lVjxoxRuXLldM8992jmzJlKTk62reeJJ55QzZo11b59e1WsWFGPPPKIlixZcs39ulxBZrft27fr3nvvVUBAgPz9/RUcHKyHHnpIUv6O+Uvt27dPxhi99NJL2fo8atSof91nSRowYICWL1+ulStXauPGjYqNjdWIESNs8/N7fMTFxWnx4sVq1aqVLWvu27dPLVq00IYNG7Rnz5589Q8AQP7NQv7NrrjlX0lyd3fXAw88oF9//dV2AWDWIPmlt1F3RIaVHPe5XSo/54Sz5DfD3XPPPbZzhmvXrtXJkyc1ceJE24UD+d0/6enpmjdvnlq3bq0DBw7YMlyzZs0UExOjlStX5qt/AJwLzxgvZnK7Gt78i2dFX34F1K233qr9+/fr22+/1bJly/Thhx9q0qRJmjFjhvr373/FdV2p2vdSjtyO3NZ1tfdIT0/XHXfcodOnT+u5555T7dq15evrq6NHj6pPnz7ZnmdzJfm5wk2Sli5dKikzUB45cuSKz4t2tPz2NTepqanas2eP7Q+VrP310EMPqXfv3jkuk99nM13u/vvv1y233KIFCxZo2bJleuONN/Taa6/pm2++Ufv27f/VurM46tjMaT9nZGSoQYMGeuutt3JcJusPj4yMDFksFv3444859ufySqrLPfnkk5o5c6aGDBmiyMhIBQQEyGKxqHv37vk6rq+1/1nye6z5+voqKioq1/m1a9eWlFk5lhfx8fH6/vvvlZSUpBo1amSbP3fuXI0bNy7Pv7cAoDghU+Z9XWTKnF1LpnRzc1ODBg3UoEEDRUZGqnXr1pozZ46ioqJs/89v27bNrvLHz8/Plg9+++23fL/ntm3bJMl2svnSPHFptVVe7d+/X23atFHt2rX11ltvqVKlSvL09NTixYs1adIk2+dtsVj01Vdfac2aNfr++++1dOlSPfLII5o4caLWrFkjPz8/hYSEaPPmzVq6dKl+/PFH/fjjj5o5c6Z69eql2bNn57tvlyuo7BYXF6dWrVrJ399fY8eOVfXq1eXt7a1Nmzbpueeeu+a8mbXc8OHD1a5duxzbXD5okN/jsEaNGnnOm3k5PubPn6/k5GRNnDhREydOzDZ/zpw5GjNmTL76CAAoGOTfvK+L/JszR+ffLA899JDeeecdff755xo+fLg+//xz1a1bV40aNbK18ff3V3h4uC3bXgtHfm6XupZzwvndlxUrVsxzhrt0v+Vm1apVOn78uObNm6d58+Zlmz9nzhy1bds2X30E4DwYGC8iwcHB8vf3v+p/VhEREdq9e3e26Vm3n4uIiHBYn8qUKaO4uDi7aSkpKTp+/Hi2tkFBQerbt6/69u2rhIQE3XrrrRo9enSuIS4iIkIZGRnau3ev7cpMSYqJiVFcXJxDt8NRtm7dqj179mj27Nnq1auXbXpOtzJ05MDZkiVL9OGHH2rEiBGaM2eOevfurbVr1+a7elq6eHzkdgyVK1dOvr6+/7rPOfnqq6904cIF20mr4OBglS5dWunp6VcMKpJUvXp1rV27VqmpqfLw8MjX+5YvX15PPPGEnnjiCcXGxurGG2/UuHHjch0Yj4iI0IoVK3Tu3Dm7qvGC+I5dTfXq1bVlyxa1adPmisdU9erVZYxR1apVbRU9+fHVV1+pd+/edifnkpKSsn3/c5Nb3/La/4JSs2ZN1apVS99++63efvvtq14g8M033ygpKUnvvvuureo8y+7du/Xiiy/q999/t7vtGgA4GzJlJjJldq6eKbNujZp13Nxyyy0KCAjQvHnzNHLkSFv1x7+RkJCgBQsWqFKlSrbjqVOnTpowYYI+++yzaxoY//7775WcnKzvvvvOrsoqt0fdNG/eXM2bN9e4ceM0d+5c9ezZU/PmzbN9Bzw9PdWpUyd16tRJGRkZeuKJJ/Tee+/ppZdeyjYInF8Fld1+/vlnnTp1St98841uvfVW2/QDBw7kafnc+lKtWjVJkoeHx1X/nigo+T0+5syZo/r169sq2i/13nvvae7cuQyMA0A+kX8zkX+zK275N0uzZs1UvXp1zZ07V3fccYe2b9+ucePGZVu+Y8eOev/997V69WpFRkbm+/3z87nlJqfPMz/nhAtK+/bt5ebmps8++yxPd5maM2eOQkJCNG3atGzzvvnmGy1YsEAzZsxwWIEZgMLFrdSLiNVqVefOnfX9999rw4YN2eZnXWF31113ad26dVq9erVtXmJiot5//31VqVIlX8/nvZrq1avrl19+sZv2/vvvZ7u68fJn9vn5+em6666zu+3f5e666y5J0uTJk+2mZ1UndOjQ4Vq7XWCyrn689IpKY4zefvvtbG2zglBeBxZzExcXp/79++umm27S+PHj9eGHH2rTpk0aP378Na2vfPnyatSokWbPnm3Xt23btmnZsmW2z8XRtmzZoiFDhqhMmTIaNGiQpMz92bVrV3399dc5/vFy4sQJ27+7du2qkydP6p133snWLrcrXNPT07Pd0ickJETh4eFXPTbT09OzvdekSZNksVgcVmmeF/fff7+OHj2a7XlCUubtz7Nu0dSlSxe5ublpzJgx2faHMeaqz9V0c3PLttzUqVPz/HwcX1/fHG+flNf+F6QxY8bo1KlT6t+/v9LS0rLNX7ZsmRYtWiQp8zbq1apV0+OPP65u3brZvYYPHy4/Pz9upw7A6ZEpM5Ep7blSpvz1119zfMZ21nMbs25fWapUKY0YMULbtm3T888/n2MmzE8l1IULF/Twww/r9OnTeuGFF2wn8SIjI3XnnXfqww8/1MKFC7Mtl5KSouHDh+e63pw+77Nnz2rmzJl27c6cOZOtv1nVK1nfgcu/I1ar1VZNc6XvSV4VVHbLaR+kpKRo+vTpeVq+VKlSkrJ/D0JCQnTbbbfpvffey3Gg4dK/JwpKfo6Pf/75R7/88ovuv//+bFmzW7du6tu3r/bt26e1a9cWeL8BoDgh/2Yi/9orjvn3Uj179tSff/6pUaNGyWKx6MEHH8zWZsSIEfL19VX//v0VExOTbf7+/ftz/Ayy5Odzy42vr2+2zzI/54QLSqVKlfToo49q2bJlmjp1arb5GRkZmjhxoo4cOaILFy7om2++UceOHXPMcIMHD9a5c+f03XffFXi/ARQMKsaL0Pjx47Vs2TK1atVKAwYMUJ06dXT8+HHNnz9fv/32mwIDA/X888/r888/V/v27fXUU08pKChIs2fP1oEDB/T11187pFIiS//+/fX444+ra9euuuOOO7RlyxYtXbo0WyVl3bp1ddttt6lx48YKCgrShg0b9NVXX2nw4MG5rrthw4bq3bu33n//fdut9datW6fZs2erc+fOat26tcO2w1Fq166t6tWra/jw4Tp69Kj8/f319ddf5/hMnsaNG0uSnnrqKbVr105ubm7q3r17vt/z6aef1qlTp7RixQq5ubnpzjvvVP/+/fXqq6/qnnvuUcOGDfO9zjfeeEPt27dXZGSk+vXrpwsXLmjq1KkKCAjQ6NGj872+y/36669KSkpSenq6Tp06pd9//13fffedAgICtGDBAoWFhdna/uc//9FPP/2kZs2a6dFHH1XdunV1+vRpbdq0SStWrNDp06clSb169dInn3yiYcOGad26dbrllluUmJioFStW6IknnrC7fWaWc+fOqWLFiurWrZsaNmwoPz8/rVixQuvXr8/xtoVZOnXqpNatW+uFF17QwYMH1bBhQy1btkzffvuthgwZourVq//rfZRXDz/8sL788ks9/vjj+umnn9SiRQulp6dr165d+vLLL7V06VI1adJE1atX16uvvqqRI0fq4MGD6ty5s0qXLq0DBw5owYIFGjBgwBVP2Hbs2FGffvqpAgICVLduXa1evVorVqxQ2bJl89TPxo0b64svvtCwYcPUtGlT+fn5qVOnTnnuf0F64IEHtHXrVo0bN05//vmnevTooYiICJ06dUpLlizRypUrNXfuXB07dkw//fSTnnrqqRzX4+XlpXbt2mn+/PmaMmVKvu9cAACFiUxJprycK2XK1157TRs3blSXLl1sg76bNm3SJ598oqCgIA0ZMsTW9vnnn9fOnTv1xhtvaNmyZeratasqVqyoM2fOaNOmTZo/f75CQkLk7e1t9x5Hjx7VZ599JimzSnzHjh2aP3++oqOj9cwzz+ixxx6za//JJ5+obdu26tKlizp16qQ2bdrI19dXe/fu1bx583T8+HG9+eabOW5P27ZtbVXejz32mBISEvTBBx8oJCTEbjB39uzZmj59uu69915Vr15d586d0wcffCB/f3/bidb+/fvr9OnTuv3221WxYkUdOnRIU6dOVaNGjewqxq5VQWW3m2++WWXKlFHv3r311FNPyWKx6NNPP83zhQs+Pj6qW7euvvjiC9WsWVNBQUGqX7++6tevr2nTpqlly5Zq0KCBHn30UVWrVk0xMTFavXq1jhw5oi1btuS7v/mV1+Nj7ty5Msbo7rvvznE9d911l9zd3TVnzhw1a9aswPsNAMUJ+Zf8e7nimn+zPPTQQxo7dqy+/fZbtWjRQlWqVMnWJquq/IEHHlCdOnXUq1cv1a9fXykpKfrjjz80f/589enTJ9d+5edzy03jxo21YsUKvfXWWwoPD1fVqlXVrFmzPJ8TLkgTJ07U/v379dRTT9kGvsuUKaPDhw9r/vz52rVrl7p3767vvvtO586dyzXDNW/eXMHBwZozZ44eeOCBAu83gAJgUKQOHTpkevXqZYKDg42Xl5epVq2aGTRokElOTra12b9/v+nWrZsJDAw03t7e5qabbjKLFi2yW89PP/1kJJn58+fbTT9w4ICRZGbOnGmbNmrUKCPJnDhxwq5tenq6ee6550y5cuVMqVKlTLt27cy+fftMRESE6d27t63dq6++am666SYTGBhofHx8TO3atc24ceNMSkpKtve4VGpqqhkzZoypWrWq8fDwMJUqVTIjR440SUlJdu0iIiJMhw4dsu2rVq1amVatWl1xf15Okhk0aFCO++SNN96wm57TPtyxY4eJiooyfn5+ply5cubRRx81W7ZsybZP09LSzJNPPmmCg4ONxWKxbXtu73XpvKz1fPvtt0aSmThxol27+Ph4ExERYRo2bGi3jy+X2zFgjDErVqwwLVq0MD4+Psbf39906tTJ7Nixw65NbsfF1d4v6+Xh4WGCg4PNrbfeasaNG2diY2NzXC4mJsYMGjTIVKpUyXh4eJiwsDDTpk0b8/7779u1O3/+vHnhhRdsx0tYWJjp1q2b2b9/v62NJDNq1ChjjDHJycnm2WefNQ0bNjSlS5c2vr6+pmHDhmb69Ol26+3du7eJiIiwm3bu3DkzdOhQEx4ebjw8PEyNGjXMG2+8YTIyMuza5XQ8GWOyfUcuNWjQoGzfhVatWpl69erl2D4lJcW89tprpl69esbLy8uUKVPGNG7c2IwZM8acPXvWru3XX39tWrZsaXx9fY2vr6+pXbu2GTRokNm9e3eO685y5swZ07dvX1OuXDnj5+dn2rVrZ3bt2pVtO3I7fhMSEsyDDz5oAgMDjSS7/ZnX/ue2L3NzpX2Wk5UrV5p77rnHhISEGHd3dxMcHGw6depkvv32W2OMMRMnTjSSzMqVK3Ndx6xZs4wk2zIA4MzIlGRKV82Uv//+uxk0aJCpX7++CQgIMB4eHqZy5cqmT58+drnvUgsWLDB33XWXCQ4ONu7u7iYwMNC0bNnSvPHGGyYuLs6ubUREhC2vWiwW4+/vb+rVq2ceffRRs3bt2lz7df78efPmm2+apk2bGj8/P+Pp6Wlq1KhhnnzySbNv375s23up7777zlx//fXG29vbVKlSxbz22mvm448/NpLMgQMHjDHGbNq0yfTo0cNUrlzZeHl5mZCQENOxY0ezYcMG23q++uor07ZtWxMSEmI8PT1N5cqVzWOPPWaOHz9ua5P1ef3000/Z+nT5Z5DTsV9Q2e333383zZs3Nz4+PiY8PNyMGDHCLF26NM99/eOPP0zjxo2Np6enXeY3JvN3Wa9evUxYWJjx8PAwFSpUMB07djRfffWVrc3MmTONJLN+/fo89fdK37Gc5OX4aNCggalcufIV13PbbbeZkJAQk5qamqf3BQBcRP4l/5ak/GuMMU2bNjWSsp3rvNyePXvMo48+aqpUqWI8PT1N6dKlTYsWLczUqVOzHTOXy+vnllvW2rVrl7n11luNj4+PkWR3/OflnPCVPovc5CenpqWlmQ8//NDccssttn0fERFh+vbta/78809jjDGdOnUy3t7eJjExMdf19OnTx3h4eJiTJ0/muZ8AnIfFmHzcbw4AAAAAAAAAAAAAABfDM8YBAAAAAAAAAAAAAMUazxiHS4qOjr7ifB8fHwUEBBRSbwAAAOCKyJQAAAAoSci/AICSjlupwyVZLJYrzu/du7dmzZpVOJ0BAACASyJTAgAAoCQh/wIASjoqxuGSli9ffsX54eHhhdQTAAAAuCoyJQAAAEoS8i8AoKSjYhwAAAAAAAAAAAAAUKxZi7oDAAAAAAAAAAAAAAAUJAbGAQAAAAAAAAAAAADFmtM8Y3xj6xZF3QWUcMOD3yrqLgBKvZBU1F0A9Nv3rYrkfX/wqFVo79UhdXehvReKzvFnHizqLgDqcejJou4CoLTklKLuAkq4osqXUuFlTPJlyZAw/fmi7gKg7n/2KuouAIqLPlHUXQA4h4lrQsU4AAAAAAAAAAAAAKBYc5qKcQAAULJZPCxF3QUAAAAUM2RMAAAAOBL50rVRMQ4AAAAAAAAAAAAAKNYYGAcAAAAAAAAAAAAAFGvcSh0AADgFqzu3IQIAAIBjkTEBAADgSORL10bFOAAAAAAAAAAAAACgWKNiHAAAOAWLB9frAQAAwLHImAAAAHAk8qVr49MDAAAAAAAAAAAAABRrDIwDAACnYHW3FNoLAAAAJYOz5sujR4/qoYceUtmyZeXj46MGDRpow4YNtvnGGL388ssqX768fHx8FBUVpb1799qt4/Tp0+rZs6f8/f0VGBiofv36KSEh4V/vMwAAAOSOc5iujYFxAAAAAAAAoJCcOXNGLVq0kIeHh3788Uft2LFDEydOVJkyZWxtXn/9dU2ZMkUzZszQ2rVr5evrq3bt2ikpKcnWpmfPntq+fbuWL1+uRYsW6ZdfftGAAQOKYpMAAAAAl8AzxgEAgFOweHAVJAAAABzLGTPma6+9pkqVKmnmzJm2aVWrVrX92xijyZMn68UXX9Q999wjSfrkk08UGhqqhQsXqnv37tq5c6eWLFmi9evXq0mTJpKkqVOn6q677tKbb76p8PDwwt0oAACAEsIZ8yXyjopxAAAAAAAA4F9ITk5WfHy83Ss5OTnHtt99952aNGmi++67TyEhIbrhhhv0wQcf2OYfOHBA0dHRioqKsk0LCAhQs2bNtHr1aknS6tWrFRgYaBsUl6SoqChZrVatXbu2gLYSAAAAcG0MjAMAAKfA83kAAADgaIWVLydMmKCAgAC714QJE3Ls099//613331XNWrU0NKlSzVw4EA99dRTmj17tiQpOjpakhQaGmq3XGhoqG1edHS0QkJC7Oa7u7srKCjI1gYAAACOxzlM18at1AEAAAAAAIB/YeTIkRo2bJjdNC8vrxzbZmRkqEmTJho/frwk6YYbbtC2bds0Y8YM9e7du8D7CgAAAJRUDIwDAACnwPN5AAAA4GiFlTG9vLxyHQi/XPny5VW3bl27aXXq1NHXX38tSQoLC5MkxcTEqHz58rY2MTExatSoka1NbGys3TrS0tJ0+vRp2/IAAABwPM5hujZupQ4AAAAAAAAUkhYtWmj37t120/bs2aOIiAhJUtWqVRUWFqaVK1fa5sfHx2vt2rWKjIyUJEVGRiouLk4bN260tVm1apUyMjLUrFmzQtgKAAAAwPVQMQ4AAJwCz80BAACAozljxhw6dKhuvvlmjR8/Xvfff7/WrVun999/X++//74kyWKxaMiQIXr11VdVo0YNVa1aVS+99JLCw8PVuXNnSZkV5nfeeaceffRRzZgxQ6mpqRo8eLC6d++u8PDwItw6AACA4s0Z8yXyjoFxAAAAAAAAoJA0bdpUCxYs0MiRIzV27FhVrVpVkydPVs+ePW1tRowYocTERA0YMEBxcXFq2bKllixZIm9vb1ubOXPmaPDgwWrTpo2sVqu6du2qKVOmFMUmAQAAAC6BgXEAAOAULG5cbQkAAADHctaM2bFjR3Xs2DHX+RaLRWPHjtXYsWNzbRMUFKS5c+cWRPcAAACQC2fNl8gbnjEOAAAAAAAAAAAAACjWqBgHAABOwcrVlgAAAHAwMiYAAAAciXzp2qgYBwAAAAAAAAAAAAAUa1SMAwAAp2CxcrUlAAAAHIuMCQAAAEciX7o2KsYBAAAAAAAAAAAAAMUaFeMAAMApWNy4Xg8AAACORcYEAACAI5EvXRufHgAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrHErdQAA4BSsbpai7gIAAACKGTImAAAAHIl86dqoGAcAAAAAAAAAAAAAF3b06FE99NBDKlu2rHx8fNSgQQNt2LDBNt8Yo5dfflnly5eXj4+PoqKitHfvXrt1nD59Wj179pS/v78CAwPVr18/JSQkFPamFBgGxgEAgFOwWC2F9gIAAEDJQL4EAACAIznrOcwzZ86oRYsW8vDw0I8//qgdO3Zo4sSJKlOmjK3N66+/rilTpmjGjBlau3atfH191a5dOyUlJdna9OzZU9u3b9fy5cu1aNEi/fLLLxowYIDD9l9R41bqAAAAAAAAAAAAAOCiXnvtNVWqVEkzZ860Tatatart38YYTZ48WS+++KLuueceSdInn3yi0NBQLVy4UN27d9fOnTu1ZMkSrV+/Xk2aNJEkTZ06VXfddZfefPNNhYeHF+5GFQAqxgEAgFOwulkK7QUAAICSgXwJAAAAR3LWc5jfffedmjRpovvuu08hISG64YYb9MEHH9jmHzhwQNHR0YqKirJNCwgIULNmzbR69WpJ0urVqxUYGGgbFJekqKgoWa1WrV279l/uOefAwDgAAAAAAAAAAAAAOJHk5GTFx8fbvZKTk3Ns+/fff+vdd99VjRo1tHTpUg0cOFBPPfWUZs+eLUmKjo6WJIWGhtotFxoaapsXHR2tkJAQu/nu7u4KCgqytXF1DIwDAACnYHGzFNoLAAAAJQP5EgAAAI5UmOcwJ0yYoICAALvXhAkTcuxXRkaGbrzxRo0fP1433HCDBgwYoEcffVQzZswo5D3k3BgYBwAAAAAAAAAAAAAnMnLkSJ09e9buNXLkyBzbli9fXnXr1rWbVqdOHR0+fFiSFBYWJkmKiYmxaxMTE2ObFxYWptjYWLv5aWlpOn36tK2Nq3Mv6g4AAABIksXK9XoAAABwLDImAAAAHKkw86WXl5e8vLzy1LZFixbavXu33bQ9e/YoIiJCklS1alWFhYVp5cqVatSokSQpPj5ea9eu1cCBAyVJkZGRiouL08aNG9W4cWNJ0qpVq5SRkaFmzZo5aKuKFgPjAAAAAAAAAAAAAOCihg4dqptvvlnjx4/X/fffr3Xr1un999/X+++/L0myWCwaMmSIXn31VdWoUUNVq1bVSy+9pPDwcHXu3FlSZoX5nXfeabsFe2pqqgYPHqzu3bsrPDy8CLfOcRgYBwAATsFi5dmMAAAAcCwyJgAAABzJWfNl06ZNtWDBAo0cOVJjx45V1apVNXnyZPXs2dPWZsSIEUpMTNSAAQMUFxenli1basmSJfL29ra1mTNnjgYPHqw2bdrIarWqa9eumjJlSlFsUoFgYBwAAAAAAAAAAAAAXFjHjh3VsWPHXOdbLBaNHTtWY8eOzbVNUFCQ5s6dWxDdcwoMjAMAAKdgdXPOqy0BAADgusiYAAAAcCTypWsrvCfEAwAAAAAAAAAAAABQBKgYBwAATsFZn88DAAAA10XGBAAAgCORL10bFeMAAAAAAAAAAAAAgGKNinEAAOAULFau1wMAAIBjkTEBAADgSORL18anBwAAcAWjR4+WxWKxe9WuXds2PykpSYMGDVLZsmXl5+enrl27KiYmxm4dhw8fVocOHVSqVCmFhITo2WefVVpaWmFvCgAAAAAAAACUWFSMAwAAp+DMz+epV6+eVqxYYfvZ3f1ihBo6dKh++OEHzZ8/XwEBARo8eLC6dOmi33//XZKUnp6uDh06KCwsTH/88YeOHz+uXr16ycPDQ+PHjy/0bQEAAChJnDljAgAAwPWQL10bA+MAAABX4e7urrCwsGzTz549q48++khz587V7bffLkmaOXOm6tSpozVr1qh58+ZatmyZduzYoRUrVig0NFSNGjXSK6+8oueee06jR4+Wp6dnYW8OAAAAAAAAAJQ43EodAAA4BaubpdBe+bV3716Fh4erWrVq6tmzpw4fPixJ2rhxo1JTUxUVFWVrW7t2bVWuXFmrV6+WJK1evVoNGjRQaGiorU27du0UHx+v7du3/8u9BgAAgCtx1nwJAAAA1+TM5zBxdVSMAwCAEic5OVnJycl207y8vOTl5ZWtbbNmzTRr1izVqlVLx48f15gxY3TLLbdo27Ztio6OlqenpwIDA+2WCQ0NVXR0tCQpOjrablA8a37WPAAAAAAAAABAwaNiHAAAlDgTJkxQQECA3WvChAk5tm3fvr3uu+8+XX/99WrXrp0WL16suLg4ffnll4XcawAAAAAAAADAtaJiHAAAOAWLtfBuDzRy5EgNGzbMblpO1eI5CQwMVM2aNbVv3z7dcccdSklJUVxcnF3VeExMjO2Z5GFhYVq3bp3dOmJiYmzzAAAAUHAKM2MCAACg+CNfujYqxgEAQInj5eUlf39/u1deB8YTEhK0f/9+lS9fXo0bN5aHh4dWrlxpm797924dPnxYkZGRkqTIyEht3bpVsbGxtjbLly+Xv7+/6tat69gNAwAAAAAAAADkiIpxAADgFCxW57xeb/jw4erUqZMiIiJ07NgxjRo1Sm5uburRo4cCAgLUr18/DRs2TEFBQfL399eTTz6pyMhINW/eXJLUtm1b1a1bVw8//LBef/11RUdH68UXX9SgQYPyPBgPAACAa+OsGRMAAACuiXzp2hgYBwAAuIIjR46oR48eOnXqlIKDg9WyZUutWbNGwcHBkqRJkybJarWqa9euSk5OVrt27TR9+nTb8m5ublq0aJEGDhyoyMhI+fr6qnfv3ho7dmxRbRIAAAAAAAAAlDgMjAMAAKfgrM/nmTdv3hXne3t7a9q0aZo2bVqubSIiIrR48WJHdw0AAABX4awZEwAAAK6JfOnaqPcHAAAAAAAAAAAAABRrVIwDAACnwNWWAAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrVIwDAACnwNWWAAAAcDQyJgAAAByJfOnaqBgHAAAAAAAAAAAAABRrVIwDAACnYLFyvR4AAAAci4wJAAAARyJfujY+PQAAAAAAAAAAAABAsUbFOAAAcApWN57PAwAAAMciYwIAAMCRyJeujYpxAAAAAAAAAAAAAECxRsU4AABwChYrV1sCAADAsciYAAAAcCTypWujYhwAAAAAAAAAAAAAUKxRMQ4AAJyCxcr1egAAAHAsMiYAAAAciXzp2vj0AAAAAAAAAAAAAADFGhXjAADAKfB8HgAAADgaGRMAAACORL50bVSMAwAAAAAAAAAAAACKNQbGAQAAAAAAAAAAAADFGrdSBwAAToHbEAEAAMDRyJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnILFyvV6AAAAcCwyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMAp8HweAAAAOBoZEwAAAI5EvnRtVIwDAAAAAAAAAAAAAIo1KsYBAIBT4Pk8AAAAcDQyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMA5WHg+DwAAAByMjAkAAABHIl+6NCrGAQAAAAAAAAAAAADFGhXjAADAKVisXG0JAAAAxyJjAgAAwJHIl66NinEAAAAAAAAAAAAAQLFGxXghK9/7EYX36Wc3LenwIW3v/aAkqVzHuxXU5g6VqlFLbr6+2tyxndITE3Jcl8XDQ7Wnf6BS19XQjv59dGH/3lzf1+LhqYpPDFZQ6yhZPD0Uv36dDk9+U2lnztjaeISEKmLocJVudKPSL1zQqaU/6ugHM6SMdAdsOZzZ9XVK64G7y6tmVV+VC/LUi2/s0e/rM48NNzeL+nWvqGY3BKp8iJcSz6dr09azen/uPzp1JvWK6+3cLlQPdCqvoEAP7T90XlM+Pqhd+xNt8z08LHqiV4Ra3xwkTw+r1m85q8kfHtCZs2kFur1wLV3uClePLpUUVMZT+w8kaNJ7+7Rz77lc27duUU79H6qqsBBvHTl2Xu/OOqA1G0/btenXs4o6tQ1TaV93bd0Zrzen79WR4xcKelNwFRYr1+sB18KvbVeVbtfVblpa7DGdeG24JMmn+e3yueFmeVSsIqt3KUW/0F8m6Xy29XjVaSS/O7rII7yyTGqqUv7eqTMz37rye7frplLNW8vq46uUA3t09uuPlX4y2jbf4uOrgC595FX3BskYJf21TvELP5FJSXbAlsPZXV+ntLrfE66a1fwyM+Zru/Tb+jN2bfo+UEkdo0LkV8pd23bH6633D+hodNIV19v5zlB1vztcQYGe2ncoUVM+Oqhd+y7+zeTpYdHA3lV0e4uy8nS3at2WOE3+4IDOnL1ydkXJQb4sWciYwL83c/1uvfPHDvVoVF3DW10vSTqZmKS3f9umtYdjlZiSpogyfurXtJba1KggSdpw5IQe+/q3HNf3yQO3qV5YmRznJaela9KvW7VszxGlpGcosnKonm/dUGV9vW1tjsef14SfNmvDkZMq5eGmjnUqa3CLenLn+16stW9VRnfdVkahZT0kSYePJevzRSe1cVtmDgz0d9Mj3UJ1Q10/+XhbdSQ6WV8uPqk/NuX+f7wkdbitjLq0K6syAe468E+y3vv8uPYcvJhHPdwt6nd/qG5t6i8Pd6s2bU/Qu3OOK+4c58yRqWG9AD3YpZJqVfdTubJeGjlum35dc+qKy9xQP0CD+1dX1cq+ij2RrNlfHtKPK2Ps2uQ3s6LwkC9dG59eEbhw4G9t6dLJ9tr15EDbPKuXt86uW6vjcz656noqPPaEUk+ezNN7Vhr0lAIjW+jvMS9qz5DB8ihbTtXHjr/YwGpVjQlvyOLuoV2DH9fB/7yqsne2V/gj/fO9fXA93l5W7T94Xm9/dDD7PE+ralT11adfH9Vjz23TyxP3qlK4j8aNqHnFdbaODNLAXpU1+6sjGvDcNu0/dF6vv1Bbgf4Xr8cZ1DtCkY0DNeatfRoyaofKlvHQ2GeuvF6ULLe3DNbg/tU18/OD6jdko/YdSNBbYxsoMMAjx/b1a/tr1LN1tWjZcT3y9Eb9uuaUJrxQT1Url7K16dm1krp1rKA3p+/VgOF/6kJSut4a20CeHtwCB4DrSj3+j2JGD7S9Tr4zxjbP4uGp5N1blLDy21yX927QVIEPPqEL6/+rE28+r1PvjNaFTb9f8T19W3eS7y3tdParj3Xy7ZdkUpIUNOB5yf3i7+jAnoPkHlpBp9+boNMfvSnPanUUcB/5sqTw9nbT/oPnNfnDAznO79E5XF3vCtNb7/+tgf+3VReSM/TGS3Wu+H9y65vL6oneVTRr/hE9OuIv7T94Xm+8WMc+Y/apopsbl9HoiXv09KjtKlfGU2OfJWMiE/kSAPJne/QZfbPtoGqU87eb/vKyjTp0JkFvdWquLx5qo9uvC9fzP67Trtg4SVLD8mW1tH97u1fnehGq4F9KdUMDc32/ib9s1S9/R+s/dzXTB11v0YnEC3r2h7W2+ekZRk9/t1pp6Rmaef+tGtO2sb7feVgzVu8siM2HEzl1JlWzv47VkFcPaMi4A9qyK1EvDqqkyuFekqRhj1RQxTAvvfLOYQ0avV+r/zyn5x6rqGqVvHNd5y1N/NX//lB9/v0JPf3K3zpwJEljh0QooLSbrc2jD4TqputL6z/vHdHzbxxU2UB3/d8TlQp8e+E6fLzdMjPljNwLFy9VPtRbr49qoD//ilPfpzbqy++O6Lkna+mmGy5eMJTfzAog7xgYLwImPV1pZ07bXunxZ23zYr/+UjGff6bEHduvuA7/m5rLv8lNOjLjnau+n9XXV2Xv6qh/pk/VuT836fye3Tr42jj51b9evnXqZa6vyU3yjqiiA+PH6ML+vYpft0bHPv5QIfd0kcWdGwsUd+s2n9XHXxzJVsEjSYkX0vXsq7v08+rT+ud4knbuTdDbHx9Urep+Cinrmes67+tYXj+sjNWSn0/q0NELeuuDA0pKyVD71sGSJF8fN911e7Cmzz6sP7fHa8+B83pt+t+qX7u06tTwK7BthWvp3rmivl96XItXxujgP+f1xvS9SkrOUMc7wnJsf9/dFbR202l9vuCIDh05rw/nHNSe/Qnq2rGCXZtPvjyk39ae0v6DiXp10i6VDfLSLc3LFdZmIRcWq6XQXkCxk5GujHNnbS+TePEq8vO/LlHiqu+VemhfzstarfLv3Evx38/V+dUrlX4yWmkxR5W0ZW3O7f/H99Y7lbBioZK3b1Ta8X8U9/m7cvMPlHf9JpIk95BweddppLNffqDUw/uVemC34hfMknejSFn9Ax215XBi6/6M00fz/tFv607nOL9bh/L69Osj+n39Gf196LwmTN2ncmU81fKmoFzXeV+n8vphRayW/HRCh45c0Fvv/62k5AzddXuIJMm3lJvuuj1E02cf1J/b4rXn70S9Nm2fGtT2V10yJkS+LInIl8C1O5+SpheXrteLbW6Qv5f9OaC/jp/SAw2rqX5YkCoG+Kr/TbVV2stDO/83MO7hZlU5X2/bK8DbU//9+7g61Y2QxZLzd+Zccqq+3X5Qw25toJsqBatOaBmNuqOxthw/ra3HM/PEmsMxOnA6Xq+0a6JawYFqUSVMA5vX1Zd//a3U9IwC3R8oWuv+StCGbQk6FpuiYzEp+nThCSUlZ6hWNR9JUp3qpfT9qtPaczBJMSdT9cUPJ5V4Pl3XReQ+MN75jrJa+mucVvxxVv8cT9G0z44rOSVDd7QIlCSV8rHqjpZl9NGX0fpr13ntP5ykybOOqe51pWzvC6zZeFoffHZQv1ylSjxL5zvL63hMkt75+G8dOnJe3/xwTD//fkIP3FPR1ia/mRWFi3OYri3fA+MnT57U66+/rnvvvVeRkZGKjIzUvffeqzfeeEMnTpwoiD4WO14VKqrB/G9Vf86XqvLCKHmEhOZrefcyZRQx/DkdHP+KMpKufJtBSfKtWUtWDw+d27jBNi35n8NKjo6Wb736mW3q1deFA3/b3Vo9fv1aufn5ybtK1Xz1D8Wfbyk3ZWQYJZzP+ZZB7m4W1azmq41b423TjJE2bT2rejVLS5JqVvOVh7tVG7devDDkn2NJij6RrHo1OWkJyd3doprXldaGLRd/Lxkjbdh8RvVq+ee4TP3a/tqw2f4Cj7V/nlb92pntw0O9VS7IS+svaZN4Pl079sTb2gAofOTLf8+tXJhCXp6m4P+brMCeg2QNLJvnZT0qVJVbYFnJGJUbNl4ho6apTP8Rcg+rmOsybkEhcvMvo+Q922zTTNIFpRzeL8+IGpnrrVJDGecTlXrkYrVw8t5tkjHyqHzdNWwlipPyIV4qW8ZTG/+6mAUTz6drx94E1f1fXrycu7tFtar5aeNfcbZpxkgbt8apbq1LMqaH1W69h/+XMbPaoOQiXwIlCxnz3/vPz5vVskqYmlUOyTbv+vJltWzPEZ1NSlGGMVq6+4iS0zLUpGLOFwX98vdxnU1K0d11I3J9v52xcUrLMGpWOdg2rWpQaYWV9tFf/xsY/+v4aV1XNsDu1uqRESFKTEnT/lPx2daJ4slqkW5t6i9vT4t27c98TNTO/ed1S1N/+ZWyyvK/+Z4eVm3dnZjjOtzdpOsivLV558X5xkibdyaqdvXMO8NcF+EtD3eLXZsj0SmKPZWi2gyM4xrVyyFfrtt0WvX+lx2vJbMCyLt8lQKvX79e7dq1U6lSpRQVFaWaNTNvRxcTE6MpU6boP//5j5YuXaomTZoUSGeLg8SdO3TwtXFK/uewPMqWVflej6jW29O145GHlXEh+7Mec1LluRd04ruFOr9nlzxDr36FkHtQWWWkpGR7VnnamdPyCMqsxvAIClLqGftKjqyfPYLK6oLydhsQFH8eHhY91rOyVv1+Sucv5DwwHuDvLjc3i87E2T/H8UxcqiqHZ4bGoEAPpaRmKPGywfUzZ1MVFMgtYSAF+HvI3c2i05c9y/50XKoiKpbKcZmgQE+diUuxm3YmLlVBgZlXtgeV8bRNs2+TYpuHosPzeUom8uW/l3p4n87Oe09pJ47J6l9Gpdt2UdlBL+vkm8/JJF/9Ikq3spknOv3adtG57z5T2pmT8mt1l8o+8ZJiJwyTuZD9RJLVP0CSlHHurN30jHNnbfOspQOVkWA/XxkZyjifILfSgdewpShOgspk5r3Tl/+ffDYl1ywYUDozY54+m0PGrJCVMT2VkpqR7QLOzDxAxizpyJclExmzZCJj/ntLdx/Rrtiz+rT7bTnOf+2upnp+8Xrd/t4PcrNa5O3upjc7NlOlwJyLHb7dfkiRlUMVWjr3wcRTiUnycLOq9GXV6WVLeevU+cxce+p8soJKednNz/o5qw2Kr4gKXnrz+ary9LDoQnKGxk0/on+OZ/4//dp7R/TcYxU17+3aSkszSk7J0Ljp/+j4idQc1+Xvl5kt4+LT7KbHxaepYljmMVXG312pqRlKvJBxWZt0lQngLqu4NmXLeOr0ZfnydFyq/Hzd5elpVWk/93xnVhQu8qVry9dv7yeffFL33XefZsyYke2WN8YYPf7443ryySe1evXqK64nOTlZycnJdtNSMjLkWQIOpvh1a2z/vvD3fiXu2KEG875Wmda369TiRVddPrhLN7mVKqXouZ8WZDeBHLm5WTRqaGYV2KQPDxZtZwAAxUJB5svktHR5ubvlskTxkbxry8Ufjv+j04f2KeTFKfJu2FwX1v189RX8b78nrPxWSVvXS5Li5r2nkJffkU/DZjq/ZlUB9BoAAKDgOCJj5pQvU1PT5OVR/AfDos+d15v//UvT722Ra55+d/VOnUtO1bv3tlCgj5d+3n9Mzy9erw/vu0U1ygXYtY05d0GrD8foP+1vKozuoxg7Gp2sp8buVykfN7Vs7K+hj4Tr+TcO6p/jKXqoc4h8fdz0wsRDik9IU/MbSuu5xyrqudcP6tDR5KuvHABQIuRrJHrLli0aOnRojs+BsVgsGjp0qDZv3nzV9UyYMEEBAQF2r5mHjuSnK8VGemKCko78I6/w3G9VeSn/GxrLt2593bjsJ9244r+qP+cLSVKd9z5UledfzHGZtNOnZPX0lJuv/RWb7mWClHo6syo89fRpeZSxf5Zf1s+pp/P2bAwUb5mD4tcprJynnn11V67V4pJ0Nj5N6elGZS6ryikT6GGrCjodlypPD6t8S9n/gVUmwCNb5RBKprPxqUpLN7aKsixBgR46dSYlx2VOx6WoTKD9leWZx11m+9P/Wy77selpm4eiw/N5SqaCzJdT1+0ogB47P5N0Xmknjsu9XN4e15MRHydJSos5enFieprST8XKrUzOt8LMiM+sBLeWtj/paS0dYJuXcS5OVj/7+bJaZS3lp/RzcXnqG4qvrOqHy6u4ywR45poFz57LzJhBAVfKmCny9LDK7/KMGUjGBPmypCJflkyOyJg55cuJy9ZccZniYmdsnE5fSFbPz3/STVMW6qYpC7Xx6EnN27xfN01ZqH/iEvTFlr816o4bdVPlENUMDtCA5nVUNzRQ87f8nW193+04pABvT91arfwV37esr7dS0zN0Ltn+9+ep80kqWyrz1ullS3np9Hn7Qc6sn7PaoPhKS5eOn0jV/sNJmr0gVgf+SdLdbcoqLNhDnW4P0tuzj2nLrkQdOJKsz78/qX0HL6hj6zI5ris+ITNbBvrbX+wS6O+uM/+rIj8TnyYPD6t8fayXtXHTmbP2leZAXp06k2K7+1CWoEAPJSSmKSUl45oyKwoX5zBdW74GxsPCwrRu3bpc569bt06hoVc/ATdy5EidPXvW7tU3Im8Dw8WN1dtHXuEVlHr6ZJ7aH546WTv699aO/n20o38f7X3+WUnS32NH6eiH7+W4TOKe3cpITVXpxhdvD+VVqbK8wsKUuD3zuZCJ27fJp2o1uQcG2tr4N2mq9IQEJR06eG0bh2Ija1C8Ypi3nnlll+ITrhz80tKN9vydqBvrX3zmicUi3Vg/QNv3nJMk7fk7UalpGWrc4GKbSuW9FRbspe17ErKtEyVPWprRnn3n1Pj6i3/AWCxS44ZltH13zs8N27YrXk0a2v/B07RRGW3bldn+WEySTp5OtmtTysdNdWv629oAKFwFmS+fvKmuI7vqMiyeXnIvF6r0/w14X03qkQMyqSlyD77kRKXVTW5BwUo7k3NGTT8dq/T4M/KqUe/i+3r5yLNydaUcynwET+rBvbKW8pV7xaq2Np7X1ZMsFqUe3pf/DUOxcjw2WafOpOjGBhcvnijl46a6Nfy043958XJpaUa7/06wW8ZikRo3CNCO3ZdkzNQMuzaVwjMzZlYblFzkS6DkcETGzClfPtO2uaO76pRuqhSsL3q20dwHb7e96oYEqn3tSpr74O1KSssslrj8fL3VYlHGZesyxuj7HYfUoU5lebhd+VR0nZBAuVstWnf44jPgD545p+hzF3R9+cwCnuvLB2nfqbN2g+NrD8fK19Nd1YJKX/tGwyVZrBZ5eFjk5Zl5bGVkGLv5GUY5XiAjZQ6y7zuUpIZ1fC+uzyI1rONre275vkNJSk0zdm0qhHoqpKyndv19wdGbgxJi+654NW4YaDet6Q1ltP1/2fFaMiuAvMvXvX+GDx+uAQMGaOPGjWrTpo0tQMbExGjlypX64IMP9Oabb151PV5eXvLysn8WTEm4jbokVXh8kM6u/l0p0dHyKFdO4X36y2Sk68zKFZIyq7g9gsrKq0LmhQI+1aor/fx5pcRGK/3cOaXGxujSOoeMC5n/AScfParUk5mh0aNcOdWcOEUHJryi87t2KiMxUacWL1LFgU8qLT5eGecTVenJoUrYtlWJO7dLkuI3rFPSoYOq8n8v6+h70+URFKTwRwYo9ttvZFKprCjuvL2sqhB28ara8iFeqh5RSucS0nQqLlVjhtVQjaql9H+v7ZHValGZ/1XpnEtIU1p6ZuCc+FJt/brujBYujZEkzV90XM8Pqq49fydq574EdbsrTN5eVi35OfM4TbyQrsWrTmhgrwjFJ6Tr/Pk0PflIFW3bfU479zIwjkzzFh7RC0Nra9e+c9q555zuv6eCfLyt+mFFtCTpxaG1dOJUit775IAkaf53R/XOhIbq3rmi/thwSlG3hKj2daX1+jt7bOuc/91R9X6gsv45dkHHY5LU/6EqOnU6Wb+uydsFSig4XAVZMhVkvkwsAbdRl6TSnR5U8vZNSj9zUtaAMirdrptMRoaS/vxDUmYVt7V0oNz+V0HuXr6STHKS0s+clLmQKJN8QedXr1Tpdl2VHndK6WdOyq91R0lS0pa1tvcJfu5Nxf8wT8nbNkiSEn9ZIr+oe5V2Mlrpp06odPv7lB4fp6T/zU+LPaaknZsVeF9/nf3qY8nNTQFd+ihp82pblTqKNx9v+4wZFuqt66qUUnxCmmJPpuirH47r4a4VdeR4ko7HJqtf90o6eSZFv607bVtm4qi6+m3taS1Ykvl///zvj2vk4Ou0e///MmaH8vL2ctOPP/0vY55P1+JVsXqiTxXFJ6Tp/IV0PdWvqrbtPqcdZEyIfFkSkTFLJkdkzJzyZUIJuI26JPl6eui6cvaVij4e7grw9tR15fyVmp6hSgG+Grdys4bcUl8B3p76+e/jWns4VpPvjrRbbv0/J3Q0/rw616uS7X1iEy7o8W9+09i2jVU/LEilvTx0T70qeuvXrfL39pSfp7te/+9fur58kBr8b2C8eeVQVQ3y10tLN+jplvV18nySpq/eofuvrybPEpL/S6re94Zow7YEnTidKh9vq267KUANapbSy5MP60h0so7FJGvww+X18fwYxSemK7JRaTWq46uxU/+xrWPcsAit/jNei346I0lauPyUhj4Srr0HL2jPgQu6J6qsvD2tWvF7nCTp/IUMLf/tjPrfH6pziek6fyFDj/cI085957WbgXH8j4+3VRXK+9h+Lh/qreuq+upcQppiTiTrsV5VFVzWU69O2i1JWrjkuLp0rKCBfarphxXH1fj6MmrdMkQjxmy1reNqmRVFi3zp2vKV5gYNGqRy5cpp0qRJmj59utLTM68OdHNzU+PGjTVr1izdf//9BdLR4sIzOERVXxwjd39/pZ2NU8LWv7Rr0GNKOxsnSQq+u7PC+/Szta81Zbok6eB/xunU0sV5eg+Lm7u8K0fI6nXxJNQ/06aooslQ9THjZPHwUPz6dTo8+ZI/ADIytO//nlXlIc+q9jvvKT3pgk4t/VHHPv7w3280nF6t6r6aPPpiVd2g3hGSpCU/n9Cs+UfUomnm1WkfvtHAbrkho3doy47MypvwUG8FXHLroZ9Wn1aAv4f63F9RQYEe2n/wvJ4bv8vuNkPTZh+SMdKYZ2rIw92i9VvOajLPLsclVv12QoEBHurfs4qCynhq398JembUVp35361QQ4O9denFwNt2xWvMmzv16ENVNaBXVR05dkEjx23XgcPnbW3mfP2PvL3dNGJwTfn5umvrjrN6ZtRWpaSay98eQCEgX/57bgFlFfjQk7L6+ikjIV4pB/bo1JSXlZGY+X90qcgolW7X1da+3OBRkqS4eTN0Yf0vkqT47+fKZKQr8MEnZPHwUOrh/Tr97qsyFxJty7mHhMvqU8r2c+JP38vi6aWAbv1l9SmllAN7dPr9/0hpFy+qjJszTQFd+ijo8f+TjFHS1nWKXzC7QPcHnEet6n6aPObiXQUG96kiSVryU6z+M22/Pl94TN5ebhr+WLXM/5N3xWvEqzvt/k+uEOplnzH/OKVAfw/17V5JQYEe2ncwUSPG7dSZsxePu2mzDirDSGOH15KHh0Xrt8Rp8gcHCn6D4RLIl0DJQMYsWB5uVk2552ZN/X27hn63RudT01Qp0Fdj2jZWy6phdm0Xbj+khuWDVDWHau60jAwdOpNgq0CXpGdubSCrRRrxw1qlpGcoMiJEz7duZJvvZrXo7bsjNWHVZvX58r/y8XBTxzqV9XhknQLbXjiHAH83DXskXEEB7kq8kKGDR5L08uTD2rwz82+W0VP+Ue8uIXrpycry8bLqeGyKJs08pg3bLl4cGRbsIX+/i9ny1w3xCijtpofuCVYZf3f9/U+yXn77sOLOXTwmP/giRhlG+r+BleThbtGm7QmaPud44W04nF7t60pr6oRGtp+f6n+dJGnxymiNn7xbZYM8FRp8cazmeEySRozZqif7V9d9d1fQiZPJem3qbq3784ytzdUyK4BrZzHGXNNfaqmpqTp5MvPq53LlysnDw+MqS1zZxtYt/tXywL81PPitou4CoNQLSUXdBUC/fd+qSN43dmSvQnuvkAmfFNp7Ie8cnS+PP/OgI7oF/Cs9Dj1Z1F0AlJbMswhRtIoqX0qFlzHJl87LkRkzYfrzjuoWcM26/1l4fzsDuYmLPnH1RkAB4xwmrsU13//Hw8ND5cuXv3pDAACAvCghj1VB7siXAADA4ciYJR4ZEwAAOBT50qXx6QEAAAAAAACFZPTo0bJYLHav2rVr2+YnJSVp0KBBKlu2rPz8/NS1a1fFxMTYrePw4cPq0KGDSpUqpZCQED377LNKS0u7/K0AAAAAXOKaK8YBAAAcyWKxFHUXAAAAUMw4a8asV6+eVqxYYfvZ3f3iKbqhQ4fqhx9+0Pz58xUQEKDBgwerS5cu+v333yVJ6enp6tChg8LCwvTHH3/o+PHj6tWrlzw8PDR+/PhC3xYAAICSxFnzJfKGgXEAAAAAAACgELm7uyssLCzb9LNnz+qjjz7S3Llzdfvtt0uSZs6cqTp16mjNmjVq3ry5li1bph07dmjFihUKDQ1Vo0aN9Morr+i5557T6NGj5enpWdibAwAAALgEbqUOAACcgsVqLbQXAAAASgZnzZd79+5VeHi4qlWrpp49e+rw4cOSpI0bNyo1NVVRUVG2trVr11blypW1evVqSdLq1avVoEEDhYaG2tq0a9dO8fHx2r59+7/cYwAAALgSzmG6NirGAQAAAAAAgH8hOTlZycnJdtO8vLzk5eWVrW2zZs00a9Ys1apVS8ePH9eYMWN0yy23aNu2bYqOjpanp6cCAwPtlgkNDVV0dLQkKTo62m5QPGt+1jwAAAAAOWNgHAAAOAWLlefzAAAAwLEKK2NOmDBBY8aMsZs2atQojR49Olvb9u3b2/59/fXXq1mzZoqIiNCXX34pHx+fgu4qAAAA/gXOYbo26vABAAAAAACAf2HkyJE6e/as3WvkyJF5WjYwMFA1a9bUvn37FBYWppSUFMXFxdm1iYmJsT2TPCwsTDExMdnmZ80DAAAAkDMGxgEAgHOwWgvvBQAAgJKhkPKll5eX/P397V453UY9JwkJCdq/f7/Kly+vxo0by8PDQytXrrTN3717tw4fPqzIyEhJUmRkpLZu3arY2Fhbm+XLl8vf319169Z17P4DAACAPc5hujRupQ4AAAAAAAAUkuHDh6tTp06KiIjQsWPHNGrUKLm5ualHjx4KCAhQv379NGzYMAUFBcnf319PPvmkIiMj1bx5c0lS27ZtVbduXT388MN6/fXXFR0drRdffFGDBg3K82A8AAAAUBIxMA4AAJwCz+cBAACAozljxjxy5Ih69OihU6dOKTg4WC1bttSaNWsUHBwsSZo0aZKsVqu6du2q5ORktWvXTtOnT7ct7+bmpkWLFmngwIGKjIyUr6+vevfurbFjxxbVJgEAAJQYzpgvkXcMjAMAAAAAAACFZN68eVec7+3trWnTpmnatGm5tomIiNDixYsd3TUAAACgWGNgHAAAOAWLhefmAAAAwLHImAAAAHAk8qVr49MDAAAAAAAAAAAAABRrVIwDAADnwPN5AAAA4GhkTAAAADgS+dKlUTEOAAAAAAAAAAAAACjWqBgHAABOwWLlej0AAAA4FhkTAAAAjkS+dG18egAAAAAAAAAAAACAYo2BcQAA4BQsVkuhvQAAAFAykC8BAADgSM56DnP06NGyWCx2r9q1a9vmJyUladCgQSpbtqz8/PzUtWtXxcTE2K3j8OHD6tChg0qVKqWQkBA9++yzSktLc8h+cxbcSh0AAAAAAAAAAAAAXFi9evW0YsUK28/u7heHgYcOHaoffvhB8+fPV0BAgAYPHqwuXbro999/lySlp6erQ4cOCgsL0x9//KHjx4+rV69e8vDw0Pjx4wt9WwoKA+MAAMA5WLiRDQAAAByMjAkAAABHcuJ86e7urrCwsGzTz549q48++khz587V7bffLkmaOXOm6tSpozVr1qh58+ZatmyZduzYoRUrVig0NFSNGjXSK6+8oueee06jR4+Wp6dnYW9OgXDeTw8AAAAAAAAAAAAAcFV79+5VeHi4qlWrpp49e+rw4cOSpI0bNyo1NVVRUVG2trVr11blypW1evVqSdLq1avVoEEDhYaG2tq0a9dO8fHx2r59e+FuSAGiYhwAAAAAAAAAAAAAnEhycrKSk5Ptpnl5ecnLyytb22bNmmnWrFmqVauWjh8/rjFjxuiWW27Rtm3bFB0dLU9PTwUGBtotExoaqujoaElSdHS03aB41vysecUFA+MAAMApWKyWou4CAAAAihkyJgAAABypMPPlhAkTNGbMGLtpo0aN0ujRo7O1bd++ve3f119/vZo1a6aIiAh9+eWX8vHxKeiuugxupQ4AAAAAAAAAAAAATmTkyJE6e/as3WvkyJF5WjYwMFA1a9bUvn37FBYWppSUFMXFxdm1iYmJsT2TPCwsTDExMdnmZ80rLhgYBwAAzsFqLbwXAAAASgbyJQAAABypEM9henl5yd/f3+6V023Uc5KQkKD9+/erfPnyaty4sTw8PLRy5Urb/N27d+vw4cOKjIyUJEVGRmrr1q2KjY21tVm+fLn8/f1Vt25dx+7DIsSt1AEAAAAAAAAAAADARQ0fPlydOnVSRESEjh07plGjRsnNzU09evRQQECA+vXrp2HDhikoKEj+/v568sknFRkZqebNm0uS2rZtq7p16+rhhx/W66+/rujoaL344osaNGhQngfjXQED4wAAwClYLDz/EQAAAI5FxgQAAIAjOWu+PHLkiHr06KFTp04pODhYLVu21Jo1axQcHCxJmjRpkqxWq7p27ark5GS1a9dO06dPty3v5uamRYsWaeDAgYqMjJSvr6969+6tsWPHFtUmFQgGxgEAAAAAAAAAAADARc2bN++K8729vTVt2jRNmzYt1zYRERFavHixo7vmVBgYBwAAzoFnMwIAAMDRyJgAAABwJPKlS+PTAwAAAAAAAAAAAAAUa1SMAwAAp2CxOufzeQAAAOC6yJgAAABwJPKla6NiHAAAAAAAAAAAAABQrFExDgAAnIOF6/UAAADgYGRMAAAAOBL50qXx6QEAAAAAAAAAAAAAijUqxgEAgHPg+TwAAABwNDImAAAAHIl86dKoGAcAAAAAAAAAAAAAFGtUjAMAAKdg4fk8AAAAcDAyJgAAAByJfOna+PQAAAAAAAAAAAAAAMUaFeMAAMA58HweAAAAOBoZEwAAAI5EvnRpVIwDAAAAAAAAAAAAAIo1KsYBAIBTsFi5Xg8AAACORcYEAACAI5EvXRufHgAAAAAAAAAAAACgWGNgHAAAAAAAAAAAAABQrHErdQAA4BwslqLuAQAAAIobMiYAAAAciXzp0qgYBwAAAAAAAAAAAAAUa1SMAwAA52Dlej0AAAA4GBkTAAAAjkS+dGl8egAAAAAAAAAAAACAYo2BcQAA4BwslsJ7/Qv/+c9/ZLFYNGTIENu0pKQkDRo0SGXLlpWfn5+6du2qmJgYu+UOHz6sDh06qFSpUgoJCdGzzz6rtLS0f9UXAAAAXIUL5EsAAAC4EBc5h4mcMTAOAACQR+vXr9d7772n66+/3m760KFD9f3332v+/Pn673//q2PHjqlLly62+enp6erQoYNSUlL0xx9/aPbs2Zo1a5Zefvnlwt4EAAAAAAAAACiRGBgHAABOwWK1FtrrWiQkJKhnz5764IMPVKZMGdv0s2fP6qOPPtJbb72l22+/XY0bN9bMmTP1xx9/aM2aNZKkZcuWaceOHfrss8/UqFEjtW/fXq+88oqmTZumlJQUh+w/AAAAZOfM+RIAAACux9nPYeLK2KsAAKDESU5OVnx8vN0rOTn5issMGjRIHTp0UFRUlN30jRs3KjU11W567dq1VblyZa1evVqStHr1ajVo0EChoaG2Nu3atVN8fLy2b9/uwC0DAAAAAAAAAOSEgXEAAOAcLNZCe02YMEEBAQF2rwkTJuTatXnz5mnTpk05tomOjpanp6cCAwPtpoeGhio6OtrW5tJB8az5WfMAAABQQAorYwIAAKBkKMRzmHA896LuAAAAQGEbOXKkhg0bZjfNy8srx7b//POPnn76aS1fvlze3t6F0T0AAAAAAAAAgIMxMA4AAJyD1VJob+Xl5ZXrQPjlNm7cqNjYWN144422aenp6frll1/0zjvvaOnSpUpJSVFcXJxd1XhMTIzCwsIkSWFhYVq3bp3demNiYmzzAAAAUEAKMWMCAACgBCBfujTq8AEAAK6gTZs22rp1qzZv3mx7NWnSRD179rT928PDQytXrrQts3v3bh0+fFiRkZGSpMjISG3dulWxsbG2NsuXL5e/v7/q1q1b6NsEAAAAAAAAACUNFeMAAMApWJz0uTmlS5dW/fr17ab5+vqqbNmytun9+vXTsGHDFBQUJH9/fz355JOKjIxU8+bNJUlt27ZV3bp19fDDD+v1119XdHS0XnzxRQ0aNCjPlesAAADIP2fNmAAAAHBN5EvXxsA4AADAvzRp0iRZrVZ17dpVycnJateunaZPn26b7+bmpkWLFmngwIGKjIyUr6+vevfurbFjxxZhrwEAAAAAAACg5GBgHAAAOAcXej7Pzz//bPezt7e3pk2bpmnTpuW6TEREhBYvXlzAPQMAAIAdF8qYAAAAcAHkS5dGvT8AAAAAAAAAAAAAoFijYhwAADgHns8DAAAARyNjAgAAwJHIly6NTw8AAAAAAAAAAAAAUKxRMQ4AAJyDhefzAAAAwMHImAAAAHAk8qVLo2IcAAAAAAAAAAAAAFCsUTEOAACcg5Xr9QAAAOBgZEwAAAA4EvnSpfHpAQAAAAAAAAAAAACKNQbGAQAAAAAAAAAAAADFGrdSBwAAzsHC9XoAAABwMDImAAAAHIl86dL49AAAAAAAAAAAAAAAxRoV4wAAwDlYLUXdAwAAABQ3ZEwAAAA4EvnSpVExDgAAAAAAAAAAAAAo1qgYBwAAzoHn8wAAAMDRyJgAAABwJPKlS+PTAwAAAAAAAP6fvfsOj6rK/zj+mbRJnUmBJEAIvYUWQIRYERFERFFcdRcBFRsGFHARcRFZUKNYsFEsCFhYlP0tFlSqCgqhBYOhd0JLAqSHZFJmfn9EJo4mFB2SyfB+Pc99Huaec++cOwmT7z3nfs8BAAAA4NbIGAcAAK7BwPo8AAAAcDJiTAAAADgT8WWtRsY4AAAAAAAAAAAAAMCtkTEOAABcgwfP6wEAAMDJiDEBAADgTMSXtRo/PQAAAAAAAAAAAACAWyNjHAAAuAbW5wEAAICzEWMCAADAmYgvazUyxgEAAAAAAAAAAAAAbo2McQAA4BoMPK8HAAAAJyPGBAAAgDMRX9Zq/PQAAAAAAAAAAAAAAG6NjHEAAOAaPHheDwAAAE5GjAkAAABnIr6s1fjpAQAAAAAAAAAAAADcGhnjAADANRgMNd0CAAAAuBtiTAAAADgT8WWt5jID40+EvVLTTcAlbuyiITXdBEAFq3fUdBMAwG3cc3RUTTcB0NgvBtd0EwCteiu5ppsAAG7hodQRNd0EQMPnXl/TTQA0895FNd0EAPhTXGZgHAAAXOIMrPACAAAAJyPGBAAAgDMRX9Zq/PQAAAAAAAAAAAAAAG6NjHEAAOAaWJ8HAAAAzkaMCQAAAGcivqzVyBgHAAAAAAAAasiLL74og8GgUaNG2fcVFRUpPj5eYWFhCgwM1MCBA5Wenu5wXGpqqvr16yd/f3+Fh4dr7NixKi0trebWAwAAALUHA+MAAAAAAABADdi4caPeeecddejQwWH/6NGj9dVXX2nhwoVatWqVjh07pttvv91eXlZWpn79+qm4uFhr167VvHnzNHfuXE2cOLG6LwEAAACoNRgYBwAArsHDo/o2AAAAXBpcOL7Mz8/XoEGD9N577ykkJMS+PycnR7Nnz9Zrr72mnj17qkuXLpozZ47Wrl2rdevWSZKWLVum7du36+OPP1ZsbKz69u2rKVOmaPr06SouLnbKRwcAAIBK0IdZq/GpAgAAAAAAANUsPj5e/fr1U69evRz2JyUlqaSkxGF/69atFR0drcTERElSYmKi2rdvr4iICHudPn36KDc3V9u2baueCwAAAABqGa+abgAAAIAk2QyGmm4CAAAA3Ex1xZgWi0UWi8Vhn9FolNForLT+ggULtHnzZm3cuPEPZWlpafLx8VFwcLDD/oiICKWlpdnr/HZQ/Ez5mTIAAABcHPRh1m5kjAMAAAAAAAB/QUJCgsxms8OWkJBQad3Dhw/r8ccf1yeffCJfX99qbikAAABw6SJjHAAAuAYDz+sBAADAyaopxhw/frzGjBnjsK+qbPGkpCRlZGSoc+fO9n1lZWVavXq13n77bS1dulTFxcXKzs52yBpPT09XZGSkJCkyMlIbNmxwOG96erq9DAAAABcJfZi1Gj89AAAAAAAA4C8wGo0ymUwOW1UD49dff71SUlKUnJxs3y677DINGjTI/m9vb2+tXLnSfsyuXbuUmpqquLg4SVJcXJxSUlKUkZFhr7N8+XKZTCbFxMRc3IsFAAAAaikyxgEAgGvgaUsAAAA4mwvGmEFBQWrXrp3DvoCAAIWFhdn3Dxs2TGPGjFFoaKhMJpNGjhypuLg4de/eXZLUu3dvxcTEaPDgwZo6darS0tI0YcIExcfHVzkgDwAAACdwwfgS54+BcQAAAAAAAMCFTJs2TR4eHho4cKAsFov69OmjGTNm2Ms9PT21ePFiDR8+XHFxcQoICNDQoUM1efLkGmw1AAAA4NoYGAcAAC7BZjDUdBMAAADgZmpLjPnDDz84vPb19dX06dM1ffr0Ko9p1KiRvvnmm4vcMgAAAPxWbYkvUTny/QEAAAAAAAAAAAAAbo2McQAA4BpYnwcAAADORowJAAAAZyK+rNX46QEAAAAAAAAAAAAA3BoD4wAAwDUYDNW3AQAA4NJAfAkAAABnqgV9mC+++KIMBoNGjRpl31dUVKT4+HiFhYUpMDBQAwcOVHp6usNxqamp6tevn/z9/RUeHq6xY8eqtLT0T7fDFTEwDgAAAAAAAAAAAAC13MaNG/XOO++oQ4cODvtHjx6tr776SgsXLtSqVat07Ngx3X777fbysrIy9evXT8XFxVq7dq3mzZunuXPnauLEidV9CRcVA+MAAMA1eHhU3wYAAIBLA/ElAAAAnMmF+zDz8/M1aNAgvffeewoJCbHvz8nJ0ezZs/Xaa6+pZ8+e6tKli+bMmaO1a9dq3bp1kqRly5Zp+/bt+vjjjxUbG6u+fftqypQpmj59uoqLi5328dU0IncAAAAAAAAAAAAAqMXi4+PVr18/9erVy2F/UlKSSkpKHPa3bt1a0dHRSkxMlCQlJiaqffv2ioiIsNfp06ePcnNztW3btuq5gGrgVdMNAAAAkCQbazMCAADAyYgxAQAA4EzVGV9aLBZZLBaHfUajUUaj8Q91FyxYoM2bN2vjxo1/KEtLS5OPj4+Cg4Md9kdERCgtLc1e57eD4mfKz5S5CzLGAQAAAAAAAAAAAMCFJCQkyGw2O2wJCQl/qHf48GE9/vjj+uSTT+Tr61sDLa09yBgHAACuwcDzegAAAHAyYkwAAAA4UzXGl+PHj9eYMWMc9lWWLZ6UlKSMjAx17tzZvq+srEyrV6/W22+/raVLl6q4uFjZ2dkOWePp6emKjIyUJEVGRmrDhg0O501PT7eXuQvuDgAAAAAAAAAAAADAhRiNRplMJoetsoHx66+/XikpKUpOTrZvl112mQYNGmT/t7e3t1auXGk/ZteuXUpNTVVcXJwkKS4uTikpKcrIyLDXWb58uUwmk2JiYi7+xVYTMsYBAIBLsJHNAwAAACcjxgQAAIAzuWJ8GRQUpHbt2jnsCwgIUFhYmH3/sGHDNGbMGIWGhspkMmnkyJGKi4tT9+7dJUm9e/dWTEyMBg8erKlTpyotLU0TJkxQfHx8pYPxtRUD4wAAAAAAAAAAAADgpqZNmyYPDw8NHDhQFotFffr00YwZM+zlnp6eWrx4sYYPH664uDgFBARo6NChmjx5cg222vkYGAcAAAAAAAAAAAAAN/HDDz84vPb19dX06dM1ffr0Ko9p1KiRvvnmm4vcsprFwDgAAHANBkNNtwAAAADuhhgTAAAAzkR8Wau53kT4AAAAAAAAAAAAAAA4ERnjAADAJdgMPK8HAAAA5yLGBAAAgDMRX9Zu/PQAAAAAAAAAAAAAAG6NjHEAAOAaWJ8HAAAAzkaMCQAAAGcivqzVyBgHAAAAAAAAAAAAALg1MsYBAIBrYH0eAAAAOBsxJgAAAJyJ+LJW46cHAAAAAAAAAAAAAHBrZIwDAACXYGN9HgAAADgZMSYAAACcifiydiNjHAAAAAAAAAAAAADg1sgYBwAAroH1eQAAAOBsxJgAAABwJuLLWo2fHgAAAAAAAAAAAADArZExDgAAXIJNrM8DAAAA5yLGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAl2FifBwAAAE5GjAkAAABnIr6s3fjpAQAAAAAAAAAAAADcGhnjAADANfC0JQAAAJyNGBMAAADORHxZq/HTAwAAAAAAAAAAAAC4NTLGAQCAS7AZDDXdBAAAALgZYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArTEwDgAAAAAAAAAAAABwa0ylDgAAXILNwPN6AAAAcC5iTAAAADgT8WXtxk8PAAAAAAAAAAAAAODWyBgHAACuwWCo6RYAAADA3RBjAgAAwJmIL2s1MsYBAAAAAAAAAAAAAG6NjHEAAOASWJ8HAAAAzkaMCQAAAGcivqzd+OkBAAAAAAAAAAAAANwaGeMAAMAl2MT6PAAAAHAuYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXALr8wAAAMDZiDEBAADgTMSXtRs/PQAAAAAAAAAAAACAWyNjHAAAuAYD6/MAAADAyYgxAQAA4EzEl7UaGeMAAABnMXPmTHXo0EEmk0kmk0lxcXH69ttv7eVFRUWKj49XWFiYAgMDNXDgQKWnpzucIzU1Vf369ZO/v7/Cw8M1duxYlZaWVvelAAAAAAAAAMAli4xxAADgEmwu+rxeVFSUXnzxRbVo0UI2m03z5s3Trbfeqp9//llt27bV6NGj9fXXX2vhwoUym80aMWKEbr/9dq1Zs0aSVFZWpn79+ikyMlJr167V8ePHNWTIEHl7e+uFF16o4asDAABwb64aYwIAAKB2Ir6s3RgYBwAAOIv+/fs7vH7++ec1c+ZMrVu3TlFRUZo9e7bmz5+vnj17SpLmzJmjNm3aaN26derevbuWLVum7du3a8WKFYqIiFBsbKymTJmicePGadKkSfLx8amJywIAAAAAAACASwqPNQAAAJdgMxiqbbNYLMrNzXXYLBbLOdtYVlamBQsWqKCgQHFxcUpKSlJJSYl69eplr9O6dWtFR0crMTFRkpSYmKj27dsrIiLCXqdPnz7Kzc3Vtm3bnP9BAgAAwK664ksAAABcGqqzDxPOx8A4AAC45CQkJMhsNjtsCQkJVdZPSUlRYGCgjEajHnnkES1atEgxMTFKS0uTj4+PgoODHepHREQoLS1NkpSWluYwKH6m/EwZAAAAAAAAAODiYyp1AADgEmyG6nteb/z48RozZozDPqPRWGX9Vq1aKTk5WTk5Ofrvf/+roUOHatWqVRe7mQAAAPiLqjPGBAAAgPsjvqzdGBgHAACXHKPReNaB8N/z8fFR8+bNJUldunTRxo0b9cYbb+iuu+5ScXGxsrOzHbLG09PTFRkZKUmKjIzUhg0bHM6Xnp5uLwMAAAAAAAAAXHw81gAAAFyCTYZq2/4qq9Uqi8WiLl26yNvbWytXrrSX7dq1S6mpqYqLi5MkxcXFKSUlRRkZGfY6y5cvl8lkUkxMzF9uCwAAAKpWW+JLAAAA1A61qQ8Tf0TGOAAAwFmMHz9effv2VXR0tPLy8jR//nz98MMPWrp0qcxms4YNG6YxY8YoNDRUJpNJI0eOVFxcnLp37y5J6t27t2JiYjR48GBNnTpVaWlpmjBhguLj4y8oax0AAAAAAAAA8OcxMA4AAFyCq67Pk5GRoSFDhuj48eMym83q0KGDli5dqhtuuEGSNG3aNHl4eGjgwIGyWCzq06ePZsyYYT/e09NTixcv1vDhwxUXF6eAgAANHTpUkydPrqlLAgAAuGS4aowJAACA2on4snZjYBwAAOAsZs+efdZyX19fTZ8+XdOnT6+yTqNGjfTNN984u2kAAAAAAAAAgPPEYw0AAAAAAAAAAAAAALdGxjgAAHAJNoOhppsAAAAAN0OMCQAAAGcivqzdyBgHAAAAAAAAAAAAALg1MsYBAIBLsImnLQEAAOBcxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuASbgef1AAAA4FzEmAAAAHAm4svajZ8eAAAAAAAAAAAAAMCtkTEOAABcAuvzAAAAwNmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCazPAwAAAGcjxgQAAIAzEV/Wbvz0AAAAAAAAAAAAAABujYxxF+Tn66Fhd0frqm6hCjF5a8/BAr31wQHt2ldQ5TGxbU16dGgjNW7orxMni/XR/x3Rkh9OONQZcGOE7r6lvkKDfbT3UIHenH1QO/fmX+zLgYtp8cwItZw40mFf/s79WtW+rySp+4oPFXZtN4fyQ+8u0Nb4Z+2vY6b9S6FXdFZg25bK37lPP1024Jzv62H0UZuXn1L9O2+Sh9FHJ5b9pK0j/63ijFP2Or4N66n925MU1qObSvNP68hHn2vXv16VrazsL1wxXNXBXRv10zcf6NihbcrLPqG/j3xLMV162cstRQVavvA17di8UqfzsxVSN0rde92jy3veLUk6nZ+t7xa9rb3b1ijn1HEFBIWqTefrdf3tj8nXP6jK97XZbPpu0VvatGqhik7nKbpFJ90y5FmFRTa21zmdn62vP35eu5K/l8HgoZjLbtBNg56W0Tfgon0eYH0ewJnatw7SXf0j1aJJgOqE+mjiK7u1ZlO2vfzJ4U3U59q6DsdsSM7W+Bd3n/W8t/YO15396ynU7K19qaf11pxDDjGqt7dBw++J1nVXhMnb26CNW3L05gcHlZVT6tTrg2sy1g9Xm4Sxqtvnann6+6lg3yH98sDTyknaKkmKHHCDoh+6W+bObeUTFqIfL7tVuVt2OpzjfGLRyrR89jE1HPY3eQeblLV2s1JGTNLpvYfs5d4hZrV94xmF97tOslqVtmiZto1+XmUFp5109XAFTep56NqOXoqq6yFTgEHzlli07aDVXt6uiYe6x3ipQV0PBfgaNG1hkY6fstnL/YxS78u81bKhh4IDDcovtGnbQauWbSxRUfHZ37v3ZV66vI2X/IzSwTSrFv1YopM5jucecJW32jTylM0mpewv05drSlTM1+NFR4wJOE+IyUN/72tWx5a+Mvp4KO1Uqd5ZmKkDR0v+UPf+AcHq1T1QH36VrSVrzt7/eEP3AN18bZDMgZ5KPV6ieV9mad+RinN6e0mD+gUrroOfvL0M+mVPkT74PFu5+daznBXu4Fzx5W+1m/5vNXrobm174gUdfHOeff+fiQPpx0RV+l4bopt6hCgizFuSlHrMov8sPqmkreXfc8EmT91/R4Q6xQTKz9dDR9Is+uybk1q7Oe+s5+3XI0S39wlTiNlLBw5b9M5/jmv3wSJ7ubeXQcPujNA1XU3y9vLQ5m35mvnJcWXn8ftWE4gvazcyxl3Q2OHN1KWjWS+8uUf3P7FFm7Zk69WJMaoT6lNp/chwoxLGt9bPW3P1wD9/0X+/Pq6xw5upa0ezvc51V4Tp0aGNNXfhET345C/ad/C0Xp7QRsEmno24FOVt3a0VUVfat7U9/uFQnvr+pw7lO5+a+odzHJ77fzq+8Jvzfs+YV59WRL/rtPnuUUq8frB864ery8K3Kyp4eKjrl+/I4OOttdfcrS33P6WoIbep5aTH/vR1wrUVWwoVGd1KNw9+ptLyJf95SXtSftIdD03VYy98rbjeQ/T1x89px8/fSZLysjOUl52hG+96UiOf/1K3P/CC9qT8qEUfTDjr+/74zftat/xj3TJ0kh6e+Kl8jP6a9+qDKim22Ov8950nlXF0r4aOna17Rs/Uwd2b9MXcs3fIA4Ar8fP10L5Dp/XmnENV1tmQnK07Hv7Zvj3/1r6znrNHXKgeGRytD/97VI+M36p9h07rpfGtHOLJR4dEq3uXYP379T0a/e8dqhPio0ljWjjtuuC6vIJNumLVf2QtKdGG/g9qVYd+2jH2JZVk5djreAb4K3PNZu18+pWznut8YtHfavrPB9V4xGBtjZ+kNVfeqdKCQnX7erY8jBX3T7EfvqLAmOba0Pc+bRzwiEKvukztZ07+axcNl+PjJR0/ZdWiHysfxfbxMuhgmlXfrvvjAI4kmfwNMgUYtDixRK9+ZtFn35eoVUMP3XFt5ffiZ/SI9dKV7b30vx+L9db/LCoukYb185GXZ0Wdv1/vo4gQD7232KI53xaraX0PDbzW+09fKwBUtwA/gyYND1dZmTR1zkmNfS1Nn3ydrYLCPw5OX9bWV82jfZSZc+4Bm+4d/HTPzcH634pc/eutdKUeL9ZTw+rKFFDRbT345mB1buOrN+Znasq7JxQS5KnR94Q59frges4nvjwj4tZeCu7WUUVH0/9Q9mfiQPoxUZVTWSWa938ZGvXcAY16/oC27CzQhPiGiq5vlCSNub+BoiKNmvJ2quIn7VPiz3ka93CUmjb0rfKcV19m0gN3Rug/X53Q41P268CRIk0e1UjmoIpg8sG7InR5hyC9+M4RPfXyQYUFe+npRxte9OsF3BED4y7Gx8dD13YP0zsfHdIvO/J0NK1Icz87oqNpRbq1d0Slx9zSO0JpGRbN/PCQUo8WatGSNK1ad0p/u7m+vc7f+tfT1ysytOT7Ezp0pFCvvbtfRRarbuoZXl2XBhdiLSuTJf2kfSs5leVQXna6yKG8NM9xtoLto5/XoZnzdXr/4fN6Py9ToBreN1Dbx76oUz+sU+7mbdrywNMKvaKzgrt1lCTVveEqBbVpruShY5W7ZadOLF2t3ZPeUKPhg2TwpsPIHbXscI16DRylmC43VFqeuvdnxV55q5q0uVwhdRuoa487FdmwlY7u/0WSFBHVUn8f+aZad7pOoeHRahrTXb0GjtKu5O9VVlZ56o3NZlPisg917S2PqE3n6xXZsJUGPvii8rIytGPzCklSxrF92pPyowbcP0UNm3VUo5ZddPOgCdq6/hvlZmVcnA8DksrX56muDXB3G5JzNOezo1qzMavKOiUlNmXllNi3/IKzd1ze0S9S33x3QktXndSho0V6/f2DshRbdWOP8szzAD9P9b2urmZ9lKrkbXnac+C0ps7ar3atgtSmOTNuuLtmYx9U0ZG08gyejSkqPHhEJ1escYgXj37yhfY+P10nVyae9VznikV/r8ljQ7T3hZlK/2ql8lJ2act9T8pYP1wRt5bPRBPYuqnCb7xGKQ9PUPaGX5S1JknbRj2n+nf1k7Ee90PuZNdhq5ZuLHXIEv+tzXvKtCKpVHuOVl6enmXTR8uKteOQVZm5Nu07ZtWSDSWKaewhj7MkhVzV3ksrN5dq+0Gr0jJt+vT7Ypn8DWrbuLwzMzzYoNbRnvrvqmIdzrDpYJpVn/9Uoo7NPWXy/8uXjXMgvgSco/+1QTqVXaZ3/luezX0iq0wpeyzKyHSMIUNMHhp6S7CmL8hUmdVWxdkq3HRVkL7fUKBVSad1NKNUsz/PlqXYpmsvK48f/YwG9bgsQB8vztH2fRYdOFqid/6bpVaNjWre8OwPLqF2O5/4UirPKm/7+jNKHvJPWUscH377M3Eg/Zg4mw2/5GvT1nwdyyjWsfRiffT5CRVZrGrV1E+S1KaZv776LlO7DxYp/WSJPv36pApOl6l5o6oHxgfcEKalP2ZrxdocHT5erOkfH5el2KobrgyWJPn7eeiGq0I0+7M0/bLztPalFun1uccU09zf/r6oXvRh1m58qi7G00Py9DSouMTxRr242Kr2bSqfGrhtyyAl/eL4pNyG5GzFtAyUJHl5GdSqaaCSfsm2l9tsUlJKtmJaVT3dMNxXQPNGuv7Qj7pu1wrFfviKfBvWcyiv//f+uuH4Ol3z81dq9dwYefhV/Yf7fJg7t5OHj49Orlxr31ewa79OHzqqkO6xkqSQ7rHK3brbYUqiE8t+krc5SEFtm/+l90ftFN28k3Ylf6/crHTZbDbt37FeJ9MPqnm7K6s8pqgwT0a/QHl6Vj4bRtaJI8rPOalmMXH2fb7+QYpq1kGH922RJB3emyxff5MaNGlnr9O0bZwMBg8d2b/FSVcHADWvY0yQ/vtOJ819rb0eH9ZIpsCqZxLy8jSoZZMAbU6piDltNmlzSq495mzR1F/eXh5KSsm11zl8rEjpJyz2OnBfETf3VHbSVnX+zxvqdXStrtq4SA2H/e1PnetCYlG/JlHyrReuk99VxJmlufnK3rBFId07SZKCu3dSSVaOw5SbJ1eulc1qVfDlHf5UG3Hp8PMxqKhYqmpsJzSoPMt8z5GKgaGiYulwhlWNIsu7XKIjPHTaYtORExUn2XvEKptNahhOtwyA2qFzGz/tP1qsx/8RqpkT6umFx8J1XVfHhx8NBunRu0L19ep8Hc0491oRnp5Skwbe2rq3Yrpgm03aurdILRqVD3o3ifKRl5fBoc6xE6U6kVVqrwP3dF7xpcGg2Lkva/9rs5W/fe8fzvFn4kD6MXG+PAzSNV1N8vUxaOe+8qn5d+w7rau7mhTo7yHDr+U+3h5K2VX5w75enlLzRr5K3lFRbrNJyTsK1LpZ+ROUzRv5ytvL4FDnSFqxMk4VqzUD48AFYx5tF1NYZNXWXXkackeUDh3Zo6ycEl1/ZR3FtAzS0bSiSo8JDfZWZo7jVHFZ2SUKDPCSj4+HggI85elpUGZOyR/qRDfgi/NSk73hF20ZNl4Fuw/IGFlXLZ+JV9z3n2h1bH+V5Rfo6ILFKjx0TJbjGQpq30qtX/inAls2UdKdI8998ioYI+uozFKs0hzHtVSKM07JGFHXXqc4/aRDueXX1+V1dvzp90ft1O+eCfpi7kS9PLqHPDy9ZDAYdOt9k9W4VddK6xfkZemHL2fqsmvvrPKc+Tnlv1OBZscp1wJMdZSfc8JeJ8AU6lDu6eklvwCz/XhcHKzPA1Sfjck5+nFDltIyLKofYdSwuxsq4akAjXxme6WDP2aTlzw9DX9YKzwrp0QNG5QPWoYG+6i4xKqC02V/qBMaTNaEu/Nv2lCNHv67Drw+R3tfmiXzZe3VdtoEWYtLdPSjz8/7PBcai/pGlseSlvRTDvst6adkjKgjSTJG1JElI9Oh3FZWppLMHBl/PR6ojL+vdH0XL63fUfXgTpB/efySX+j45ZlXaFOQX0Wdgt+VW21SoaXieFw8xJiAc4SHeqlXt0B9+1OePv8hT82ifDT0lmCVltn04+byAaH+1waprEznXFP8jCB/D3l6GpTzu7XCc/Ktql+3PH4MDvRQSalNp4scv0dz860yB3oK7ut84stmYx+UrbRUB9/6sNJz/Jk4kH5MnEujBka98lQT+XgbVGix6vkZR3T4ePn4zEvvHNG4h6O04I3WKi21yVJs1fMzDuv4iSqW8gksv9fOznWMN7NzSxUVWT49e4jJSyUl1j8sXZGdW6YQM0N8NYH4snZz+v+aw4cP69lnn9UHH3xQZR2LxSKLxeKwz1pWLA9PnvKTpBfe3KMnH22u/3vvMpWV2bR7f4G+W3NSLZsyBSX+uhNLV9v/nZeyS9kbtqjnvu9V/299dXjOf3X4/c8qyrfuluX4CXVfPk/+TRue99TpgDOsW/GxDu/bokGPz1Bwnfo6uGuTFn80RabgcDVre4VD3aLCfH087RGF12+ungPia6jFAC4W4kvn+z6xonPowOFC7U8t1MdvdlTHtib9vDX3LEcClTN4GJSTtFW7npkmScpN3qGgti3U6KG7L2hgnFgUrsLoLd3f16j0LJuWbzp31iOA2uXPxpdlpRZ5ehkvdvNckodB2n+0WJ8uLY8VDx0rUVSEl3p1C9CPm0+rSQNv3XhloJ5+849rPAN/xrniS1Pntmo8coh+uvz2Gm4pLjVH0yx6bPI++ft56qouJo2+v76eevmgDh8v1j0DwhXg56l/vXpIufml6t4pSOMejtK4qQd16Kjl3CcHcNE5fc6uzMxMzZs376x1EhISZDabHbbUXZU/1XUpOpZu0ahnt+nGQev1t4eTNHx8ijw9DTqWXvkXZ2Z2iULNjp2+IcHeyi8oVXGxVTl5pSorsynU7P2HOpnZlT+phEtHaU6eCvYclH+z6ErLszeUTx3t36zRn34PS9pJeRp95GV2nLrfJzxMlvQT9jo+v2b1nHEmy+dMHVw6SoqLtOK/r6vv3ePUutN1imzYSt17DVL7y/vqp2/nONS1FBbow1cflI+vv/4+8i15elWdlRhoLv+dys9xzCoryD2pQHNde52CXMenicvKSlVYkGM/HheHzWCotg21y5+NLw/uOPsxqHA8w6Ls3BI1iKi8ozcntzye/P3T6CHmingyM7tYPt4eCvD3rLIO3FfR8RPK27HPYV/+zv3ya1j/L533XLFoUVp5nGiMcJwNxhgRZs/asaSflDHccTYYg6envEPNsqQRZ+KPjN7SsH4+spTY9OHSYlkrX5JckpR3ujyDMdDPMb4I8jMor7CiTsDvyj0Mkp+x4nhcPMSXqMyfjS+3r5teTS10PVl5ZX+YHv1YRqnCgsvjw1aNjTIFeOitp+rpo+cb6KPnG6huiJfu6WfWG+MiKz1n3mmryspsMgc6dlGbAz2UnV8+C1F2vlXeXgb5+zr+PzMFeign33GmIriXc8WXoVddJmN4mHru/159C7epb+E2+TeOUszUcbpuz0pJfy4OpB8T51JaJh0/UaJ9qUWatyhDBw4X6ZbrwxRZ11v9e4bqjXnHtGVngQ4cseg/X53U3oOFuvm6kErPlZtffq8dbHK81w42eSnr1yzyrNxSeXt7KMDP43d1PP8wqxuqB32YtdsFZ4x/+eWXZy3fv3//Oc8xfvx4jRkzxmHfzUN/vtCmuL0ii1VFFqsCAzx1eWywZn10qNJ623bnqXsnxy/WyzoEa/vu8mmLSktt2rU/X53bm/XTxixJ5Wv+dGlv1qJv0y7uRcDleQb4y79pQ1k+qTxoM8W2kaS/1GmYs3mrrMXFqtMzTmmLlkmSAlo2kX+jBspalyxJylqXrObjH5FP3VAVnygflKzT6wqV5ORVukYQ3FtZWanKykpk8HAM+AwenrLZKnomiwrz9eErD8jTy0eDHp8hb5+zP7kfUjdKgeY62r99neo1amM/x5F9v6jrdXdLkho2j1XR6VwdPbhNDRq3lSQd2LFeNptVUU07OvMyAfzqYsWXtw775S+161JSJ9RbpkAvnapiALu0zKbdBwrUqZ1ZazZlSyqPJzu1M+nzpeVZQXv2n1ZJqVWd25n044bymDOqnq8i6hrtcSncV9bazQps2cRhX0CLxipMPfqXznuuWLTwwBEVHc9Q2HVxyt2yU5LkFRSg4Ms76tA7/5EkZa/7Wd4hZpk6t1Xu5m2SpLDrusvg4aHsDXxPwJHRW3qgn1GlVpvmLilW6TnGXDLzbMotsKlFA08dP1VqP0fDcA8lbiv/Tk1Nt8rfaFCDOgYdPVk+EN6sQfm6k4czzjLqDuBPu1jx5YOTL90Br92HilWvjmNXcmRdL53MLv/u++nn0w7rgEvSU/fX1U8/F2jVptOVnrOsTDpwtERtm/tq0/byYw0GqW1zo5atLV9L98CRYpWW2tS2ua82bi1/4qheHS/VDfHSnkPFlZ4X7uFc8eXRj79wWAdckrp9PVtHPvlCR+b9T9KfiwPpx8SFMngY5O1tkNGnvB/Tav3jEjqGKgY4S8ukvYeK1LFNgNYll0/fbzBIHdsEaPF35b9bew8VqaTUpo5tArR2c3mdBhE+Cg/z0c79hRfrsgC3dcED4wMGDJDBYJDNVvVTzVX9Jz/DaDTKaHQcvGCaywpdO5plMBiUeqxQDSJ9NXxwI6UeLdS335cH3w/+I1p1wnyU8Fb5H9kvl6Xrthsj9fA90fr2uwx1am/WdVeE6akXKtYyWfjVcY0f0Vy79hVox9583dGvnnyNnvZz4tLR5qUnlb74exWmHpNv/XC1mDhStjKrji1YLP+mDVX/7v7KWLJKJaeyFdS+lWJeGa9TqzcoL2WX/Rz+zaLlFegvY2Rdefr6ytSxtSQpb/s+2UpKZKwfru5L5yn5/ieVszFFpbn5Ojzn/9Tm5adUkpmjkrx8tXt9grISNyt7fXkW0InlPylvx17Fzp2qHeNfljGirlr9e5QOzfxE1mKyzNyRpahAmemp9tfZJ4/o+KEd8gs0Kzisvhq36qqln74sb29fBdeprwM7Nyp5zRfq+/dxksoHtOe9PEwlxUX6x8NTZSnMl6WwfOAlwBQqD4/yjMU3nrpJN/xttGK63CCDwaC43kP0w1ezFBrZSCF1orTyf28qKCRcbTr3kiSF12+mFu2v1hdzntEtQyeprKxUiz+aonbdbpIpJLyaP6VLi83GU5CXKuJL5/M1eqhBpK/9dWS4Uc0a+Ssvv1S5+aUackcD/bg+U5k5Jaof4auH/tFQx9It2rQlx37MyxNa6aeNWfpiaYYk6b9fp2nc8Kbavb9AO/fma+BNkfI1emjpqvJ4sqCwTN9+f0LDB0crL79UBYVlGnlfI23bnacdewuq9wNAtTvw5jxdsfo/ajbuYR3/77cK7tpB0Q/cqZThE+11vEPM8ouuJ2O98r+nAb92dFrSTsqSfl55NmgAAQAASURBVPK8Y9FrU77VzgmvKv2LFb++94dq8fRwFew9pMKDR9Ry0uOyHMuwl+fv3K+MJavVYdYUpcQ/Kw9vb7V94xkd+/RrWY5nVNdHhGrg4yWFmSv+XoSaDKoXZlChRcrOt8nPKAUHGmQOKK8THuwhyaq80zblF/46KH6zUT5e0n+WlsjoXb5PkgqKpDN/pv55l1Hfri/RtoPlg9o/pZSqZxcvncyxKjPPpt5dvZV72qZtB8tH1TOybdqZWqY7rvXR/34sloeHQQOu8taWvWXKrXysCE7kijHmzJkzNXPmTB08eFCS1LZtW02cOFF9+/aVJBUVFemJJ57QggULZLFY1KdPH82YMUMRERH2c6Smpmr48OH6/vvvFRgYqKFDhyohIUFeXqw1Kl28+NLT69Jdcubbn/I0aXi4bu0RpHUpp9Usykc9Lw/Q7P+VPxCZf9qq/NOOD/uUWW3KzrPq+MmKjManH6ijTdsKtSyxPD785qc8PfK3UO0/Uqx9h4vV96pA+fp4aFVSeXmhxaYfNhXonn5mFZy2qtBi1dBbgrX7kEV7DzMw7s7OFV+WZGarJDPb4RhrSYks6SdVsPuApPOLA+nHxIUYelu4Nm3N14nMEvn5eqjH5Wa1b+mvia+n6kiaRcfSLRoxuJ4+WJiu3IIyxcUGKbZNgCa/VbEs1PNjGinx51wt/r78+/Pz5ac0+v762nOwULsPFOrWXmHy9fHQijXZkqTThVYt/ylLD9wZobyCMp0utOqRv0dqx97T2sXAeI1wxfgS5++Co+V69eppxowZuvXWWystT05OVpcuXf5ywy5lAf5eenBQtOqG+Sgvv1Sr12Xq/f+kqqysPJgPC/FWRJ2Kjt60DIvGJ+xU/L2NNbBfPZ04VayXZ+7Txt90bH6/9pSCTd667+6GCg321t6DBXry+R3KyuEP9aXGt0GkOn38mrzDglV8IlNZa5K09qo7VXwySx6+RtW5Pk5NHhsizwB/FR0+rrRFy7T3hRkO5+jwznMKu7ab/fXVm76QJH3XvKcKDx2Vh7e3Als3laefn73O9ideUBurVZ0/e1MeRh+dXPaTto78d8VJrVZtuvURtXt7kq788VOVFhTq6EeLtHvSmxf3A0GNOXZgmz54aaj99bf/eUmS1OnKAbr9wQTdOfxVLf/vNC18Z6wKC3IUHFZfvQaOsmd2Hz+4XUf2lz/dO+3JPg7nHvPyCoXUbSBJOpl2QEWnKzIVr77pAZVYCvXlnGdVdDpX0S07a8gT7zpkm9/x8FQt/vg5zZl6nwwGD7W9rLduGvT0xfkgABBfXgStmgXotYlt7K8fHVI+DfXSVSf0+vsH1TTaX72vqaPAAE+dyirRpl9yNPezIyopreg8rh/hK3NQxfIUPyRmymzy0r1/a6CQYG/tO3RaT724y2HqthkfpspmlZ4d00LeXgZt+iVHb8yufNYjuJecTSlKumOEWj0/Ri0mxKvwwBFtf+IFHfvPV/Y6Ef17quPsF+2vO89/XZK0e/Jb2jPlbVmLS84rFg1s3VTev5nacv8r78krwE/tZ06Wd7BJWWuStOHmB2S1VHSWJw/5p9q+8Yy6L50nm9WqtEXLtG3Ucxfp00BNiQr30CO3VMR0/a8ov2/etKtUn31fopjGnrrruop76UE3lP97+aYSLd9UqgZ1PdQoojzT56l/+Oq3Ej4pUlZe+XdkeIiHfI0VnWE/JJfKx0saeK2PfH2kg2lWzf7aMdv8PyuLNeAqbz10s1FWm7T1QJm++In78UtVVFSUXnzxRbVo0UI2m03z5s3Trbfeqp9//llt27bV6NGj9fXXX2vhwoUym80aMWKEbr/9dq1Zs0aSVFZWpn79+ikyMlJr167V8ePHNWTIEHl7e+uFF16o4atzDcSXzrf/SImmfXRKd91o1m3Xm3Qiq1QffZWjNckXNigTEealoICKpXfW/VIoU0C27rjBpOAgTx06VqIXPzip3PyKQfaPFmfLagvWqHvC5OUl/bLbojmfZznt2uCazie+PB/nigPpx8SFMJs8Neb++go1e6mg0KqDR4o08fVUJe8of5hn0puHNfT2cD0zMlp+Rg8dzyjWtDnHtGlrRd9kZN3yGdvO+HFTrsxBnrrn1roKMXlp/2GLJr6Rquy8imDyvU/TZbVJTw9vKG8vgzZvy9eMT45X34UDbsRgO9ujk5W45ZZbFBsbq8mTJ1davmXLFnXq1EnWsy3CVYkedyReUH3A2cZ+cW9NNwFQweod564EXGR3xnmcu9JFsGdf9Q2etahirVrUjIsVX15/9wZnNA/4S8b83+CabgKgVW8l13QTcImb+ojfuStdJNUVY/7V+DI0NFQvv/yy7rjjDtWtW1fz58/XHXfcIUnauXOn2rRpo8TERHXv3l3ffvutbr75Zh07dsyeRT5r1iyNGzdOJ06ckI/PpTtrzhkXK778x1NHnNE84C8Z9Or1Nd0EQDPvXVTTTQC0+L2YGnlf+jBrtwvu+R47dqyuuOKKKsubN2+u77///i81CgAAAJcO4ksAAHCpKisr04IFC1RQUKC4uDglJSWppKREvXr1stdp3bq1oqOjlZhYnlSSmJio9u3bO0yt3qdPH+Xm5mrbtm3Vfg2uiPgSAAAAlbngqdSvvvrqs5YHBATo2muv/dMNAgAAwKWF+BIAANR2FotFFovFYV9la1SfkZKSori4OBUVFSkwMFCLFi1STEyMkpOT5ePjo+DgYIf6ERERSktLkySlpaU5DIqfKT9TBuJLAAAAVK5m5koFAAD4HZsM1bYBAADg0lBd8WVCQoLMZrPDlpCQUGW7WrVqpeTkZK1fv17Dhw/X0KFDtX379mr8ZAAAAPBn0IdZu11wxjgAAAAAAACACuPHj9eYMWMc9lWVLS5JPj4+at68uSSpS5cu2rhxo9544w3dddddKi4uVnZ2tkPWeHp6uiIjIyVJkZGR2rBhg8P50tPT7WUAAAAAKkfGOAAAcAk8bQkAAABnq6740mg0ymQyOWxnGxj/PavVKovFoi5dusjb21srV660l+3atUupqamKi4uTJMXFxSklJUUZGRn2OsuXL5fJZFJMTIzzPjwAAAD8AX2YtRsZ4wAAAAAAAEA1GT9+vPr27avo6Gjl5eVp/vz5+uGHH7R06VKZzWYNGzZMY8aMUWhoqEwmk0aOHKm4uDh1795dktS7d2/FxMRo8ODBmjp1qtLS0jRhwgTFx8df0GA8AAAAcKlhYBwAALgEnoIEAACAs7lijJmRkaEhQ4bo+PHjMpvN6tChg5YuXaobbrhBkjRt2jR5eHho4MCBslgs6tOnj2bMmGE/3tPTU4sXL9bw4cMVFxengIAADR06VJMnT66pSwIAALhkuGJ8ifPHwDgAAAAAAABQTWbPnn3Wcl9fX02fPl3Tp0+vsk6jRo30zTffOLtpAAAAgFtjjXEAAOASWJ8HAAAAzkZ8CQAAAGdy1T7MmTNnqkOHDjKZTDKZTIqLi9O3335rLy8qKlJ8fLzCwsIUGBiogQMHKj093eEcqamp6tevn/z9/RUeHq6xY8eqtLTUKZ+bq2BgHAAAAAAAAAAAAABqqaioKL344otKSkrSpk2b1LNnT916663atm2bJGn06NH66quvtHDhQq1atUrHjh3T7bffbj++rKxM/fr1U3FxsdauXat58+Zp7ty5mjhxYk1d0kXBVOoAAMAl2Gxk2gAAAMC5iDEBAADgTK4aX/bv39/h9fPPP6+ZM2dq3bp1ioqK0uzZszV//nz17NlTkjRnzhy1adNG69atU/fu3bVs2TJt375dK1asUEREhGJjYzVlyhSNGzdOkyZNko+PT01cltORMQ4AAAAAAAAAAAAALsRisSg3N9dhs1gs5zyurKxMCxYsUEFBgeLi4pSUlKSSkhL16tXLXqd169aKjo5WYmKiJCkxMVHt27dXRESEvU6fPn2Um5trzzp3BwyMAwAAl+Cq6/MAAACg9iK+BAAAgDNVZx9mQkKCzGazw5aQkFBl21JSUhQYGCij0ahHHnlEixYtUkxMjNLS0uTj46Pg4GCH+hEREUpLS5MkpaWlOQyKnyk/U+YumEodAAAAAAAAAAAAAFzI+PHjNWbMGId9RqOxyvqtWrVScnKycnJy9N///ldDhw7VqlWrLnYzaxUGxgEAgEsg0wYAAADORowJAAAAZ6rO+NJoNJ51IPz3fHx81Lx5c0lSly5dtHHjRr3xxhu66667VFxcrOzsbIes8fT0dEVGRkqSIiMjtWHDBofzpaen28vcBVOpAwAAAAAAAAAAAIAbsVqtslgs6tKli7y9vbVy5Up72a5du5Samqq4uDhJUlxcnFJSUpSRkWGvs3z5cplMJsXExFR72y8WMsYBAIBLIJsHAAAAzkaMCQAAAGdy1fhy/Pjx6tu3r6Kjo5WXl6f58+frhx9+0NKlS2U2mzVs2DCNGTNGoaGhMplMGjlypOLi4tS9e3dJUu/evRUTE6PBgwdr6tSpSktL04QJExQfH39BWeuujoFxAAAAAAAAAAAAAKilMjIyNGTIEB0/flxms1kdOnTQ0qVLdcMNN0iSpk2bJg8PDw0cOFAWi0V9+vTRjBkz7Md7enpq8eLFGj58uOLi4hQQEKChQ4dq8uTJNXVJFwUD4wAAwCXYbK75tCUAAABqL2JMAAAAOJOrxpezZ88+a7mvr6+mT5+u6dOnV1mnUaNG+uabb5zdNJfCGuMAAAAAAAAAAAAAALdGxjgAAHAJVhddnwcAAAC1FzEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NYYGAcAAAAAAAAAAAAAuDWmUgcAAC7BxjREAAAAcDJiTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgs3G05YAAABwLmJMAAAAOBPxZe1GxjgAAAAAAAAAAAAAwK2RMQ4AAFwC6/MAAADA2YgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJrM8DAAAAZyPGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAlsD4PAAAAnI0YEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXwPo8AAAAcDZiTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgrWmGwAAAAC3Q4wJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEtgfR4AAAA4GzEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NbIGAcAAC7BJp62BAAAgHMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgElifBwAAAM5GjAkAAABnIr6s3cgYBwAAAAAAAAAAAAC4NTLGAQCAS2B9HgAAADgbMSYAAACcifiydiNjHAAAAAAAAAAAAADg1hgYBwAAAAAAAAAAAAC4NaZSBwAALsFqq+kWAAAAwN0QYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgEmwy1HQTAAAA4GaIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCTYbT1sCAADAuYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJNltNtwAAAADuhhgTAAAAzkR8WbuRMQ4AAAAAAAAAAAAAcGtkjAMAAJdgFevzAAAAwLmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCTYbT1sCAADAuYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJNltNtwAAAADuhhgTAAAAzkR8WbuRMQ4AAAAAAAAAAAAAcGtkjAMAAJdgE+vzAAAAwLmIMQEAAOBMxJe1GxnjAAAAAAAAAAAAAAC3RsY4AABwCVbW5wEAAICTEWMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2BcQAA4BJsNkO1bRciISFBXbt2VVBQkMLDwzVgwADt2rXLoU5RUZHi4+MVFhamwMBADRw4UOnp6Q51UlNT1a9fP/n7+ys8PFxjx45VaWnpX/7cAAAAUDVXjC8BAABQe7lqHybODwPjAAAAZ7Fq1SrFx8dr3bp1Wr58uUpKStS7d28VFBTY64wePVpfffWVFi5cqFWrVunYsWO6/fbb7eVlZWXq16+fiouLtXbtWs2bN09z587VxIkTa+KSAAAAAAAAAOCSwxrjAADAJdhcdH2eJUuWOLyeO3euwsPDlZSUpGuuuUY5OTmaPXu25s+fr549e0qS5syZozZt2mjdunXq3r27li1bpu3bt2vFihWKiIhQbGyspkyZonHjxmnSpEny8fGpiUsDAABwe64aYwIAAKB2Ir6s3cgYBwAAuAA5OTmSpNDQUElSUlKSSkpK1KtXL3ud1q1bKzo6WomJiZKkxMREtW/fXhEREfY6ffr0UW5urrZt21aNrQcAAAAAAACASxMZ4wAA4JJjsVhksVgc9hmNRhmNxrMeZ7VaNWrUKF155ZVq166dJCktLU0+Pj4KDg52qBsREaG0tDR7nd8Oip8pP1MGAAAAAAAAALi4yBgHAAAuwSpDtW0JCQkym80OW0JCwjnbGB8fr61bt2rBggXV8IkAAADgr6qu+BIAAACXhursw4TzkTEOAAAuOePHj9eYMWMc9p0rW3zEiBFavHixVq9eraioKPv+yMhIFRcXKzs72yFrPD09XZGRkfY6GzZscDhfenq6vQwAAAAAAAAAcHGRMQ4AAFyCzVZ9m9FolMlkctiqGhi32WwaMWKEFi1apO+++05NmjRxKO/SpYu8vb21cuVK+75du3YpNTVVcXFxkqS4uDilpKQoIyPDXmf58uUymUyKiYm5CJ8mAAAApOqLLwEAAHBpqM4+TDgfGeMAAABnER8fr/nz5+uLL75QUFCQfU1ws9ksPz8/mc1mDRs2TGPGjFFoaKhMJpNGjhypuLg4de/eXZLUu3dvxcTEaPDgwZo6darS0tI0YcIExcfHnzNTHQAAAAAAAADw1zEwDgAAXILN5prr5sycOVOS1KNHD4f9c+bM0b333itJmjZtmjw8PDRw4EBZLBb16dNHM2bMsNf19PTU4sWLNXz4cMXFxSkgIEBDhw7V5MmTq+syAAAALkmuGmMCAACgdiK+rN0YGAcAADgL23nMW+Tr66vp06dr+vTpVdZp1KiRvvnmG2c2DQAAAAAAAABwnhgYBwAALsHKujkAAABwMmJMAAAAOBPxZe3mUdMNAAAAAAAAAAAAAADgYiJjHAAAuITzmLEcAAAAuCDEmAAAAHAm4svajYxxAAAAAAAAAAAAAIBbI2McAAC4BJsMNd0EAAAAuBliTAAAADgT8WXtRsY4AAAAAAAAAAAAAMCtkTEOAABcgpX1eQAAAOBkxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuAQbT1sCAADAyYgxAQAA4EzEl7UbGeMAAAAAAABANUlISFDXrl0VFBSk8PBwDRgwQLt27XKoU1RUpPj4eIWFhSkwMFADBw5Uenq6Q53U1FT169dP/v7+Cg8P19ixY1VaWlqdlwIAAADUKi6TMV5qKa7pJuASl7Fs17krARdZ77CUmm4CIKl9jbwrT1vC2SwFhTXdBEBNd35X000AtH+nb003Aagxrhhjrlq1SvHx8eratatKS0v19NNPq3fv3tq+fbsCAgIkSaNHj9bXX3+thQsXymw2a8SIEbr99tu1Zs0aSVJZWZn69eunyMhIrV27VsePH9eQIUPk7e2tF154oSYvz62dPHqippsA6PItH9V0EwD938I6Nd0EoMa4YnyJ8+cyA+MAAAAAAACAu1uyZInD67lz5yo8PFxJSUm65pprlJOTo9mzZ2v+/Pnq2bOnJGnOnDlq06aN1q1bp+7du2vZsmXavn27VqxYoYiICMXGxmrKlCkaN26cJk2aJB8fn5q4NAAAAMClMZU6AABwCVabodo2AAAAXBpqQ3yZk5MjSQoNDZUkJSUlqaSkRL169bLXad26taKjo5WYmChJSkxMVPv27RUREWGv06dPH+Xm5mrbtm1/qT0AAACoGn2YtRsZ4wAAAAAAAMBfYLFYZLFYHPYZjUYZjcazHme1WjVq1ChdeeWVateunSQpLS1NPj4+Cg4OdqgbERGhtLQ0e53fDoqfKT9TBgAAAOCPyBgHAAAAAAAA/oKEhASZzWaHLSEh4ZzHxcfHa+vWrVqwYEE1tBIAAAC4tJExDgAAXILNVtMtAAAAgLuprhhz/PjxGjNmjMO+c2WLjxgxQosXL9bq1asVFRVl3x8ZGani4mJlZ2c7ZI2np6crMjLSXmfDhg0O50tPT7eXAQAA4OKgD7N2I2McAAAAAAAA+AuMRqNMJpPDVtXAuM1m04gRI7Ro0SJ99913atKkiUN5ly5d5O3trZUrV9r37dq1S6mpqYqLi5MkxcXFKSUlRRkZGfY6y5cvl8lkUkxMzEW4QgAAAKD2Y2AcAAC4BJut+jYAAABcGlwxvoyPj9fHH3+s+fPnKygoSGlpaUpLS1NhYaEkyWw2a9iwYRozZoy+//57JSUl6b777lNcXJy6d+8uSerdu7diYmI0ePBgbdmyRUuXLtWECRMUHx9/zkx1AAAA/Hmu2oeZkJCgrl27KigoSOHh4RowYIB27drlUKeoqEjx8fEKCwtTYGCgBg4caJ916IzU1FT169dP/v7+Cg8P19ixY1VaWvpXPzaXwcA4AAAAAAAAUE1mzpypnJwc9ejRQ/Xq1bNvn376qb3OtGnTdPPNN2vgwIG65pprFBkZqf/973/2ck9PTy1evFienp6Ki4vTPffcoyFDhmjy5Mk1cUkAAACoYatWrVJ8fLzWrVun5cuXq6SkRL1791ZBQYG9zujRo/XVV19p4cKFWrVqlY4dO6bbb7/dXl5WVqZ+/fqpuLhYa9eu1bx58zR37lxNnDixJi7pomCNcQAA4BKsZHIDAADAyVwxxrSdR/qPr6+vpk+frunTp1dZp1GjRvrmm2+c2TQAAACcgyvGl5K0ZMkSh9dz585VeHi4kpKSdM011ygnJ0ezZ8/W/Pnz1bNnT0nSnDlz1KZNG61bt07du3fXsmXLtH37dq1YsUIRERGKjY3VlClTNG7cOE2aNEk+Pj41cWlORcY4AAAAAAAAAAAAALgQi8Wi3Nxch81isZzXsTk5OZKk0NBQSVJSUpJKSkrUq1cve53WrVsrOjpaiYmJkqTExES1b99eERER9jp9+vRRbm6utm3b5qzLqlEMjAMAAJdgsxmqbQMAAMClgfgSAAAAzlSdfZgJCQkym80OW0JCwjnbaLVaNWrUKF155ZVq166dJCktLU0+Pj4KDg52qBsREaG0tDR7nd8Oip8pP1PmDphKHQAAAAAAAAAAAABcyPjx4zVmzBiHfUaj8ZzHxcfHa+vWrfrpp58uVtNqLQbGAQCASziPpRYBAACAC0KMCQAAAGeqzvjSaDSe10D4b40YMUKLFy/W6tWrFRUVZd8fGRmp4uJiZWdnO2SNp6enKzIy0l5nw4YNDudLT0+3l7kDplIHAAAAAAAAAAAAgFrKZrNpxIgRWrRokb777js1adLEobxLly7y9vbWypUr7ft27dql1NRUxcXFSZLi4uKUkpKijIwMe53ly5fLZDIpJiamei7kIiNjHAAAuAQr2TwAAABwMmJMAAAAOJOrxpfx8fGaP3++vvjiCwUFBdnXBDebzfLz85PZbNawYcM0ZswYhYaGymQyaeTIkYqLi1P37t0lSb1791ZMTIwGDx6sqVOnKi0tTRMmTFB8fPwFZ667KgbGAQAAAAAAAAAAAKCWmjlzpiSpR48eDvvnzJmje++9V5I0bdo0eXh4aODAgbJYLOrTp49mzJhhr+vp6anFixdr+PDhiouLU0BAgIYOHarJkydX12VcdAyMAwAAl8D6jwAAAHA2YkwAAAA4k6vGl7bzaJivr6+mT5+u6dOnV1mnUaNG+uabb5zZNJfCGuMAAAAAAAAAAAAAALdGxjgAAHAJrvq0JQAAAGovYkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXIKVpy0BAADgZMSYAAAAcCbiy9qNjHEAAAAAAAAAAAAAgFsjYxwAALgE1ucBAACAsxFjAgAAwJmIL2s3MsYBAAAAAAAAAAAAAG6NjHEAAOASrNaabgEAAADcDTEmAAAAnIn4snYjYxwAAAAAAAAAAAAA4NYYGAcAAAAAAAAAAAAAuDWmUgcAAC7BZqvpFgAAAMDdEGMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2McQAA4BJ42hIAAADORowJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEuw8rQlAAAAnIwYEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXYKvWBXoM1fheAAAAqCnVF2MSXwIAAFwK6MOs3cgYBwAAAAAAAAAAAAC4NTLGAQCAS6jWhy0BAABwSSDGBAAAgDMRX9ZuZIwDAAAAAAAAAAAAANwaGeMAAMAlWK013QIAAAC4G2JMAAAAOBPxZe1GxjgAAAAAAAAAAAAAwK2RMQ4AAFwC6/MAAADA2YgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALdGxjgAAHAJVp62BAAAgJMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgElifBwAAAM5GjAkAAABnIr6s3cgYBwAAAAAAAAAAAAC4NTLGAQCAS7BV6wI9hmp8LwAAANSU6osxiS8BAAAuBfRh1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVU68OWAAAAuCQQYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYFxAAAAAAAAAAAAAIBbYyp1AADgEmxMQwQAAAAnI8YEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYrTxuCQAAAOcixgQAAIAzEV/WbmSMAwAAAAAAAAAAAADcGhnjAADAJbA+DwAAAJyNGBMAAADORHxZu5ExDgAAAAAAAAAAAABwa2SMAwAAl8DTlgAAAHA2YkwAAAA4E/Fl7UbGOAAAAAAAAAAAAADArZExDgAAXIKVxy0BAADgZMSYAAAAcCbiy9qNjHEAAAAAAAAAAAAAgFsjYxwAALgEm7WmWwAAAAB3Q4wJAAAAZyK+rN3IGAcAAAAAAAAAAAAAuDUyxgEAgEuwsT4PAAAAnIwYEwAAAM5EfFm7kTEOAAAAAAAAAAAAAHBrZIwDAACXYGV9HgAAADgZMSYAAACcifiydiNjHAAAAAAAAAAAAADg1sgYBwAALoH1eQAAAOBsxJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuAQrD1sCAADAyYgxAQAA4EzEl7UbGeMAAAAAAAAAAAAAALfGwDgAAAAAAAAAAAAAwK0xlToAAHAJNuYhAgAAgJMRYwIAAMCZiC9rNzLGAQAAAAAAAAAAAABujYxxAADgEmw8bAkAAAAnI8YEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYWZ8HAAAATkaMCQAAAGcivqzdyBgHAAA4i9WrV6t///6qX7++DAaDPv/8c4dym82miRMnql69evLz81OvXr20Z88ehzqZmZkaNGiQTCaTgoODNWzYMOXn51fjVQAAAAAAAADApY2BcQAA4BJsNlu1bReioKBAHTt21PTp0ystnzp1qt58803NmjVL69evV0BAgPr06aOioiJ7nUGDBmnbtm1avny5Fi9erNWrV+uhhx76S58XAAAAzs0V40sAAADUXq7ah4nzw1TqAAAAZ9G3b1/17du30jKbzabXX39dEyZM0K233ipJ+vDDDxUREaHPP/9cd999t3bs2KElS5Zo48aNuuyyyyRJb731lm666Sa98sorql+/frVdCwAAAAAAAABcqsgYBwAALsFmrb7NYrEoNzfXYbNYLBfc5gMHDigtLU29evWy7zObzerWrZsSExMlSYmJiQoODrYPiktSr1695OHhofXr1//1Dw4AAABVqq74EgAAAJeG6uzDhPMxMA4AAC45CQkJMpvNDltCQsIFnyctLU2SFBER4bA/IiLCXpaWlqbw8HCHci8vL4WGhtrrAAAAAAAAAAAuLqZSBwAALsFajevmjB8/XmPGjHHYZzQaq+39AQAAUD2qM8YEAACA+yO+rN0YGHdBHdua9Y/bG6pVs0DVCTNq/PNb9eO6U2c9plM7s0Y80ExNogOUccKieZ8d0rcr0x3q3H5Tff399oYKDfHRvgP5mvbOXu3Yk3cxLwUuKnXPRq1fNlvpqVuVn3NCtz8yXS1jeznUOXl8n35Y9LIO794oq7VMYfWa6baH35I5tHwt3E9eHazDezY4HBN79V26cdDkKt/XZrPpx6/e1JafFspSmKsGzTqrz98nKTSisb1OYUG2li+Yor0p38tg8FCrTr3V685/ycc3wHkfAGrc/IX/049r1yv16FEZfXzUtnUrPXjvPYqOamCvc/R4mmZ98KG2bt+pkpISde0cq5EPD1NoSLC9zsef/p/WbUrSvv0H5eXtpa8WfHjO97bZbJr7yaf6etkK5RecVrs2rTTq0YcUVb+evU5uXp7eeme2EjckyeBh0DVXdNeIB++Tn5+fUz8H1Byj0eiUgfDIyEhJUnp6uurVq/gdSk9PV2xsrL1ORkaGw3GlpaXKzMy0Hw9cbPfc0VDXXlFHjRr4y1JsVcrOXM2cu1+Hjxae9bjrrqyjB+5poshwXx05dloz5x7QuqRMhzrDBjVW/96RCgrwUsqOXL0yY4+OHD/7eeF+/vvpfK1b+6OOHEmV0ceoVm3aauj9D6pBVLS9zvHjRzX3/VnasW2rSkpK1KlLVz00fKSCQ0LtdZ7/9790YP8+5WRnKTAwSB1iO2vo/Q8pNKxOle9dXFysOe/N1E+rv1dJSbFiO3fVI/GPO5z3REa6Zk1/XSm/JMvP10/X9eqtwfc+KE9Pz4vzgaBGHN23UT9/P1sZR7bpdO4J3XTf22ra3vE+JzN9n9YufkXH9pXf54RGNFPfe99UUEh9FRVka/3St3R41xrlZR2XX2Comra7Xt36Pi6jX1CV72uz2bRhyVvatq78Pqdek87qccezCq7b2F6nqCBbqxc9pwPbyu9zmnXoratve1o+Ru5zANQOd/eP0JWXmdWwnq+KS6zavqdA7y84piNplS9J9fw/m6lrR5Mmvb5fa5NyznruIbdHqu91dRTo76ltuwv05tzDOpZecd6gAE/FD4lSt05m2aw2/bQpRzM+OqIiC3PMurNFS1bo8yXf6XjGCUlSk4ZRuvfOAYrr0lGSNGLC80rettPhmFt799TY4fdJknJy8/Tv12dq38HDys3LV4jZpKsu76yH77lTAf5V9+/k5uVr2vsfas3Gn+Vh8NC1cZfp8WGD5e/na6+z92CqXnt3nnbuPaBgU5AG9rtBg2672dkfAVyQwSAN6BGg7u19ZQ70UHaeVWu2FOqr1acd6g3oEaBrOvvK39dDew+X6MOv85SRWXbWc/fs6qcbr/CXOdBDh9NK9cm3eTpwrNRe7uUp3d0nUJe39ZWXl7R1b7E+/iZPuQUM0gIXgqnUXZCfr6f2HsjXa7P2nFf9ehG+mvpse/38S7bueyxJn315RONGttLlnULsdXpeVVcjHmimOf85qGGjksrPP7m9gs3eF+sy4MJKLKcVEdVKN9z9bKXlWSdS9fEr/1BYRFP9fcxHuv+ZL3XlTY/Ky8txEKnjVXdqxEs/2bfrbn/yrO+7ftl7Svr+I/X5xyQNGfeZvH389Olbw1RaUnGz89UH/9TJ43t19+NzdEf8LB3es0lLPpn41y8aLmXL1u26td+NevvlBL08ZaJKy8r05MQpKiwqkiQVFhXpyYlTZDBIrz7/rN6c+pxKS0v1rykvymqtuPEtLS3VtVfG6Zab+pz3ey/4v8/1v8XfaPSjD2n6Ky/I19eocROnqLi42F7nhVfe0MHUI3p5yjN64Znx+mXrdr369jvO+wBQKZvNVm2bszRp0kSRkZFauXKlfV9ubq7Wr1+vuLg4SVJcXJyys7OVlJRkr/Pdd9/JarWqW7duTmsLcDad2gXrf18f08Njf9boZ36Rl6dB0yZ3kK+x6tuBdq1NenZsjBYvO677H0/Sj+tOKeFfbdUk2t9eZ9DAhrrj5gZ6ZcYePfTPn1VYVKbXJreXj7ehOi4LLmTb1i3qe/Otmvra25r0/MsqKyvVpH89qaKi8ockiooKNelfT8pgMGhywqtKeOVNlZaW6vl//8vhb3v7DrEaO36ipr87T+P+NUlpacf00guTzvreH7w7XRs3JGrs+Il67qXXlZV5Si8+VxHnlpWVacqzT6u0pFQvvvKWHhszTt8tX6r5H825KJ8Fak5pcaHq1G+ta2+v/P4h52Sq/u+tfygkvKlue/RD/f2fX6jrDY/K89f7nILcDBXkZOjKW57UP578Sr3+nqBDu37Ud5/+66zvu/m797Xlx4/U42+T9LdR5fc5X77zgMN9zrJPxiozba9ufeQD3fzALB3bv0nff8Z9TnWobfEl4Kratw7UlytO6vF/79ZTL+2Tp6dBCeOaVxpP3n5jXdl0fv8v7uwXrgG96+rNOYf12KRdKrKUKeHJZvL+TTz51PDGatTAV+Nf2qtnXtuv9q0CNOr+hk67NrimumGhemTwnZr9yhS9//JkdW4fo/EvTtP+1CP2Ov1v6KEvPnjLvj069G57mcHDQ1df3lkvPT1a/5n+sp5+7CFt+mWbXp519hjw39Nm6kDqUU2bNE4v/WuMtmzfpakzP7CXF5wu1Jh/T1Vk3Tp6/5XJenTo3fpgwSJ9sew7538IcDk3XemvHpf56ZNv8/Sv6ae0cEW++l7hr16XVzxs0fdKf/Xq5qcPv87Tc+9nylJs0xP3BMvrLM/kdm1r1F29A/XlqgL9+51MHU4v1Zh7ghXkX/Fd+PcbA9WxpVEzFubopbnZCg7yVPyd5ot5uahCbezDRAUGxl3QuqRMvffxQa0+R5b4GQNurKfj6UV6+4P9OnTktP739TH9sOaE7ro1yl7n7gFR+mrpcX2zMl0HD5/WyzP2qMhi1c03kKl2KWrW7lpdc+totep0Q6Xlq7+YpmbtrtF1A59UZHSMQupGq0XH6xVgCnOo5+3jq0BzXftm9Aus8j1tNps2rvxQV/QdrpaxvRQe1Vo33zdV+dkZ2p28QlJ5lvr+bT+q7+DnVL9JRzVsfpluuHuCtm/6WnnZ6VWeG7XPS/+eoBt7XacmjRqqWZPGGjcqXhknTmr33v2SpK3bdyo944TGjRqhpo0bqWnjRho3eoR2792nn3/Zaj/PvYPu0t8G9FeTRtFVvZUDm82m//vya91z50Bd2f1yNWvSWE+NHqmTmVn6aV35DAiHDh/Rhs3J+ufIR9SmVUu1b9tGIx8epu9/XKOTpzLP8Q5wR/n5+UpOTlZycrIk6cCBA0pOTlZqaqoMBoNGjRql5557Tl9++aVSUlI0ZMgQ1a9fXwMGDJAktWnTRjfeeKMefPBBbdiwQWvWrNGIESN09913q379+jV3YbikPDEpRd+uTNeB1NPae7BAL7y+S5HhvmrVvOoMyL/d0kDrN2fqP4uO6NCR03r/k4PavS9fA29u4FDnw88O6af1p7TvYIGem7ZTYaFGXd296uxeuKdnp7yk62+4UdGNmqhJ02Z6bMw4nTiRoX17dkuSdmzfqhMZ6XpszDg1btJUjZs01eNPjNPePbuVsuVn+3luue1vatU6RuERkWod004D//Z37d65Q6WlpZW+b0FBvlYs+1b3PzhcHWI7q3mLlho5+knt3LFNu3ZulyQlb96kI4cPafTY8WrarLm6dO2mfwy+T98u/kIlJSUX/8NBtWnU5hp1v2mUmnWo/D5n3Tevq3Gba3Vl/7GqGxUjc51oNWnXU/5B5fc5YfVa6qb73lKTtj1lrhOtqBbdFdd3tA5s+17Wssp/B202m7as/lCX3fCImra7XnXqt1Kvf7ykgtwM7d9afp+Tmb5PqTt/1HV3TVFko46q37SLrrltgvYkf6P8HO5zANQO/3p5n5b/mKlDR4u0P7VQr7ybqog6PmrR2DHztmm0nwb2Dder76We13lvuzFc879MV+LmHB04XKSp7xxSWLC3ruxSPtjTsL5RXTua9NrsVO3cd1rbdhdo+odH1KN7iEKDmQzVnV3VtbPiusSqYf1IRTeop4fv+Zv8fH21ffdeex1fo1FhIcH27beZ4KbAAN12Yy+1bt5UkeF1dFmHtrrtxuv1y/ZdVb7nwcNHtf7nX/RU/DC1bdlcHWNaadQDQ7Typ3U6mZklSVq2eo1KSks1fsSDahodpV5Xx+mOfr316ZdLLt6HAZfRvKG3kndZ9MueYp3KsSpph0Vb9xWrSYOKBMQbuvnpq9UFSt5VrCMZZXr/81wFB3moc+uqZy7s091fqzcX6qfkIh07WaYPF+epuMSmqzuV/077GQ26upOfFizN186DJTp0vFQffJGrFtE+atqA70LgQjAw7gbatjZpU3KWw74NmzPVtrVJkuTlZVDL5kHatKWijs0mbUrOUttWpmptK1yfzWrVvpQfFBreWJ++OUxvjo3TvBf/Zh+8/q1tG77SG0900/uTb9YPi15VSXHV06bmnDyigtwTatzmCvs+X78g1W/SUUf3l3eGHt3/s4z+JtVr1N5ep3HrK2QweOjYgV+cd5FwOQUF5dMNmYLKH64o+bXz29u7Iqj08fGRwWBQyvYdf/p9jqdnKDMrW11iO9j3BQYEqE3LFtq+s7zjfvvOXQoMCFCrFs3tdbrEdpDBYNCO3ec3kwf+HKvVVm3bhdi0aZM6deqkTp06SZLGjBmjTp06aeLE8iyvJ598UiNHjtRDDz2krl27Kj8/X0uWLJGvb8U0a5988olat26t66+/XjfddJOuuuoqvfvuu8778IALFBBQ/qh6bl7Vg4LtKokx1/+cqXa/xpj1I3xVJ9Sojb+pU3C6TNt359rr4NJ1uqBAkhQYVP67cGYAurK/7du3pVR6jry8XK36fqVat2krL6/KO3v27dmt0tJSdYjtYt8X1TBadeuGa9eObZKkXTu3K7pxE4ep1Tt16arTpwt0OPXgn79I1Co2q1UHd/yg4LqN9cU7wzR74hVa+Pqd2p/yx/uc37IU5cnHN1AenpX/DuZmHtHpvBNq2LLiPsfoF6SI6A5KO5gsSUo7mCyjn0kRDSvucxq2jJPB4KH0Q9znXGyuGF8C7iDAr7xbOa+gYmpgo49B4x9tpLfnHVFWTuUPFP1WZF0fhQV7a/PWiqUeTxdatXN/gdo0L19qIqZ5gPIKSrXnQEWf0+ZtebLZpDbNWI7iUlFWZtWKHxNVVGRR21Yt7PuXr16rfkOGa/BjT2nWR5+qyFL51P6SdDIzS6vWbVJs29ZV1tm6a68CA/zVunlT+77LOraVh8Ggbbv32evExrSSt3dFbNCtU3ulHj2u3PyCv3KZqAX2Hi5RmyY+iggtv6duGOGlFtE+Stlb/rtXN9hDwUGe2r6/4l670GLT/iMlataw8tl7PT2kRvW9tH1/xWyWNknb9xerWVT5MY3qecnL0+BQJ+1UmU5ml1V5Xlw8rtqHifNzwQPjhYWF+umnn7R9+/Y/lBUVFenDD8+9viucKyzER5nZxQ77MrNLFBjgJR8fD5lN3vLyNCgzq+QPdcJCfKqzqagFCvJOqdhyWuuWvqcmMVfrrsc+UMvYG/S/d0YodXfFmuJtL79Z/e97WX8f86Hi+jykbeu/0FcfjK3yvPm55esB/T7rPCAoTAW5J8vfO/ekAoJCHco9PL3kF2BWwa/Hw/1YrVZNf2+O2rVpbc/8jmnVQn6+vnp37scqKrKosKhIsz74UFarVZmZ2X/6vTKzygdvQoKDHfaHBJuVmZX9a51sBQc7TkPk6ekpU1CgvQ4uLT169Kh0KqO5c+dKUvm0wJMnKy0tTUVFRVqxYoVatmzpcI7Q0FDNnz9feXl5ysnJ0QcffKDAwKpn2bjUEF9WL4NBeuzB5vple44OpJ6usl5osI+yfhdjZmWXKDS4PH4M/TWOzMou+V2dYnsZLk1Wq1Wz35muNjHt1KhxE0lSq9Yx8vX107wP3pWlqEhFRYWa8/4sWa1WZWU5zsgy74N3dddtN2nwXQN08kSGxk+cUuV7ZWVlycvL+w/fqcEhIcr69e9+VlamgoNDHMt/fZ2VyWwwl4rT+adUYjmtpO/eU6PWV+uWh2erafte+mbuSB3du6HSYwrzs7Rp+Uy1jbuz6vP+ep9yJuv8DP+gOjqdV36fczrvhPwC/3if4+tvttfBpWf16tXq37+/6tevL4PBoM8//9yh3GazaeLEiapXr578/PzUq1cv7dnj+KBuZmamBg0aJJPJpODgYA0bNkz5+fnVeBWujRjz4jEYpEfuidLWXfk6eKTIvv+RQVHavqdAiZvPvqb4GaHB5YM52Tm/iydzShXy6/KPIWZvZec6DrJbrVJeQalCghkMcnf7Dh3WDX9/QD3vvE+vzJqrF556XE0als9gdcM1cXpm1CN6c8rTGjywv5auWqPJ02b94RzPvjpd1981TAOGPaYAfz+Nix9W5ftlZucoxOz4kK+Xp6eCAgOUmZ1dXicrRyG/6zc685p+I/f3zU+ntWFrkZ4fEap3J9TVsw+HaPn601qXUj4wbgosH3LLLbA6HJdbYJU5oPLhuCB/D3l6GCo/5tfzmQM9VFJqU6HFVmUdAOfngv7H7N69W23atNE111yj9u3b69prr9Xx48ft5Tk5ObrvvvvOeR6LxaLc3FyHzVpWfM7jAFx8Nlv5H+AWHa/X5b3uVUTDNoq78SE1b99DP69eYK8Xe/Vdatr2aoU3aKW23W5Rv3tf0u7k5co6cX5TZQFnvDHrfR1IPaxnnhxt3xdsNmviuDFK3LBJ/e68R/3vGqL8/AK1aNZUBg/WrXVXNlv1bXAdxJfVb8wjLdQ0OkDPTv1jJzHgDO/OeEOHDh3QE089Y99nNgdr7NMTtXF9ou4e2E//uKO/CvLz1bR5C3kYHP+23zbwLr321jua9NxUeXh46I1XX2RtNfxlZ+5zmrTtqdhr71XdBm3U5fqH1Dimh7YmLvhD/eKifC1+/2GFRDTT5X1GVHdz4USuGl8WFBSoY8eOmj59eqXlU6dO1ZtvvqlZs2Zp/fr1CggIUJ8+fVRUVDEIOWjQIG3btk3Lly/X4sWLtXr1aj300EN/9qNyK86IMYkvqzZiaJQaR/nqhekH7fu6dzIpNiZQMz8+WnMNg9uJrl9Pc157Xu9MnaQBN/bU82++qwOHy3/Hbu3dU906dVCzRg3V+9orNeGxh7V6/SYdPe64TMlj9w/SB69O0YvjR+toWobemjO/Ji4FbqJrW6O6t/fVu/+Xq3+/m6nZn+fpxjh/XdHR99wHw23Qh1m7XdDA+Lhx49SuXTtlZGRo165dCgoK0pVXXqnU1AsbCEtISJDZbHbYjuz95ILOgQqnsortmTtnhAZ7K7+gVMXFVuXklqi0zKbQEO8/1DmVRUAPR/6BIfLw8FJYvWYO+8Mimyk381iVx9Vv0lGSlJVxqNLyQFNdSVJB7imH/QV5pxRgKl+HNMBURwV5jlk71rJSFRbkKODX4+Fe3pj1vtZtTNJrz09S3TqOWTZdO8fqk/em638fzdbnn8zR0088ppOnMlUvMuJPv19oyK/ZYb8+5XtGVnaOQkOCf60TrOxsx6fby8rKlJuXb68DwHmIL6vX6Ieb64quoXrsX1t04tTZ48DM7GKF/C7GDAn2ts9UlPlrHPn7TJ2QYB97GS497854Qxs3rNNzL76mOnUc47dOnbvqnQ8+0bz5/9OHCz7X6LFPK/PUSUVE1nOoZzKb1SCqoWI7X6YnnnpGSRvX29cL/72QkBCVlpb8IUMyOytLIb/+3Q8JCVV2tuOyAGdeh4Q6ZvHCffkFlN/nhEY2d9gfGt5MeVnHHfYVF+Xry3cfkLcxQDfd97Y8PavOSPT/9T7ldJ7jfc7pvJPyDyq/z/EPqqvC/D/e5xSdzrHXwaWnb9++eu6553Tbbbf9ocxms+n111/XhAkTdOutt6pDhw768MMPdezYMXtm+Y4dO7RkyRK9//776tatm6666iq99dZbWrBggY4dq/re/VLhjBizsvjywNYPLmKra4f4IVHqHmvWkwl7dfI3s1PGxgSpXrhRi97poG/nxurbubGSpGcea6KXn25e6bkyf515KNj8u3jS7KWsX7PIs3JKFGxyXM7Cw0MKCvD6w8xFcD/e3l6Kqheh1s2a6JHBd6lZ42gtXLy00roxLcv7Mo+kOQ6Mh4UEq1FUfV11eWeNfeQ+fb5kpU5WMRthaLBZWTm5DvtKy8qUl1+g0F9nHwwNMSvrd/1GZ17Tb+T+7rwhUN+sOa0N2yw6mlGmxF+KtGzdafW7yl+SlJtf/jCm6XfZ4aYAD+X8LiP8jLzTVpVZbZUf8+v5cvKt8vYyyM9oqLIOgPNzQQPja9euVUJCgurUqaPmzZvrq6++Up8+fXT11Vdr//79532e8ePHKycnx2GLaj7oghuPctt25qpLx2CHfV07hWjbzvI/4qWlNu3em6cuHSqmDzQYpC4dQ7Rtl+MfesDTy0f1GrdXZvoBh/2Z6QdlDmtQ5XEZh8vXfQ40Vz6Aba4TpQBTXR3cmWjfZynM17EDW9Sgafm6vQ2adpLldK7SDm211zm0a51sNqvqN+nwh3Oi9rLZbHpj1vv6KXGDXn1+0lkHu81mkwIDA7R5S4qyc3J0xeWX/en3rRcRrtCQYG3eUrGWacHp09qxe49iWpdPfR3TupXyCwq0e+8+e53NW1Jks9nUpmWLP5wTzmOz2qptg+sgvqw+ox9urmvi6ujxf/2i4+lF56y/dWeuLuvoOP1019gQbf01xjyWXqSTmRaHOv5+noppabLXwaXDZrPp3RlvaF3iT5qS8OofBrt/y2Q2KzAwUL8kb1ZOdrYu735FlXVt1vJOnjNrlP9esxYt5eXlpV+SN9v3HT2SqhMnMtSqTVtJ5dO4px484DA4nvxzkvz9A9QwutEFXSdqL08vH4VHt1N2huN9TvaJgwoKqW9/XVyUry/eGSYPT2/1GzZDXt7Gs57XFBol/6C6OrKn4j6nuChf6am/KLJxrCQpsnGsLIW5yjhccZ9zZG/5fU5EI+5zLrbqii8ryy62nGWt27M5cOCA0tLS1KtXL/s+s9msbt26KTGx/HctMTFRwcHBuuyyivujXr16ycPDQ+vXr/9rH5obcEaMWVl82aTd/Re55a4tfkiUruxi1tiEvUo74fgg5KeL0/XIv3Zq+ISKTZLe+eSoXn2v8gcS0k4U61R2iTq1DbLv8/f1UOumAdqxt3yt5u17CxQU4KUWjf3sdTrFBMlgkHbsYz3nS43Naq0yLtxzoPz3LOwsg9NnZiEqKa38HO1aNVd+wWnt3FcRL2xO2S6rzaa2vw68t2vVXMnbd6m0tGKK/41btiq6QT2ZAln33t35eBv0+24lq618vEWSTmRblZ1XppimFQ/8+PoY1DTKW/sOV/57V2aVDh0rVZumFQ+mGyS1aeqjfUfKjzl0vFSlZTbF/KZOZJin6gR7VnleXDz0YdZuFzQwXlhYKC+viif0DAaDZs6cqf79++vaa6/V7t27z+s8RqNRJpPJYfPwZB3CM/x8PdS8SYCaNyn/Q1ovwlfNmwQoom75DfnDQ5powuhW9vqfLzmu+pF+Gn5vU0VH+em2m+rruqvC9ekXR+x1Fnx+RP371NONPSPUKMpf/3y0hfx8PfT1irTqvTi4hOKiAqUf3qH0Xwezs08eUfrhHcr5NSP88huGacemb5X842fKyjikpO8/1t6U79Xp2r9LkrJOpGrN19OVdmirsk8e0Z4tK7V47jg1bNFV4VGt7e/z7rM3atfPyyWVf190vX6I1n47U3u2rFTG0V1aPPdJBQaHq2Vs+c1+nXrN1LTt1fr242d07MAvOrI3ScsWTFHMZf0UFPzns4Thet6Y+b5W/LBaE/75uPz9fJWZlaXMrCyHjqNvV3yn7Tt36+jxNC3/frUmv/Sq7rj1ZkVHVTygkZ5xQnv3H1DGiZOyWq3au/+A9u4/oMLCQnudoY88ph8TyzuGDAaDBt7STx9/+n9as36j9h88pBdfe0t1QkN0VffLJUmNGkbp8s6xeuWtWdqxe4+2bt+pt96ZreuuvlJ1wsgqA5yN+LJ6PDG8uXr3iNC/X9mh04WlCg32Vmiwt3x8Km4HJoxupYeHNLG/XvjlUXXrHKK7B0QpOspP9/+9kVo3D9L/LT7qUGfoXdG68vIwNW0UoAljWutUpkU/rmPN3EvNOzPe0A/fr9CYJyfIz89fWZmZysrMdPjbvnLZt9q1c7uOHz+qH75brpcTJqv/gDvUICpakrR75w59/dUi7d+3VxnpafolebNefek5Rdarr9ZtYiRJp06eUPxDQ7V7V3kcGxAQqF69+2rOezOUsuVn7d2zW29Om6pWbWLUqnX5MbGdL1NUw0Z6/ZUEHdi/Tz8nbdT8Dz9Q35tvlbc33xPupNhSoBNHd+jE0fLfj9zMIzpxdIfyssrvczr1GKY9yd9qW+Jnyj5xSL/8+LEObP9e7a/8R/nxRfn6YtYwlRYX6vq7nldxUb4Kck+oIPeErNYy+/t8/GJf7ful4j6n4zVDtGn5LB3Y+p1OHtul5fPHKcAUrqbtyu9zQiOaKbr11fr+s4lKP/SLjh/YrFX/m6IWsTcp0Mx9jruoLLs4ISHhT50rLa28ryYiwvH3IyIiwl6Wlpam8PBwh3IvLy+Fhoba61zKnBFjEl86Gjk0StdfEaKEmYdUWFSmELOXQsxe8vEuHw3KyinVwSNFDpskZZwqdhhEn/1SG13ZpWJ95kVLMvSPWyPUvZNJjaN89eQjjXQqu0RrksozcA8fs2jjllyNGhatVk39FdMiQPFDovTDuixlZjuuPQ73MuujT5W8baeOZ5zQvkOHNeujT/Xztp3qfc0VOno8XXM/+1w79x3Q8YwT+mnDZj33xjuKjWml5o3LY8vEpGR9vXK19h86rOMZJ7R2U7JemTVH7Vu3VL3w8sSe7bv36R8jntSJU+UzuzRu2EDdOnXQ1BmztX33Pv2yY7dee/dDXX9Vd9UJLX8g+Iarr5C3l5cSpr+v/alHtPKndVq4eKnuuuXGmvmgUK2Sd1t089X+6tDCR2FmD3Vu7aM+3f21eWfFfc/y9YW6+eoAxbb0UYNwTz1wm0nZeVaHOv8cHKyeXSse+Fm67rSu7eynKzr6ql4dTw2+OUhGb4N+Si7v4yy02PTjz4W6q3egWjf2VqN6Xrr/VpP2Hi7R/qN8F6Lc6tWr1b9/f9WvX18Gg8E+09AZNptNEydOVL169eTn56devXppz549DnUyMzM1aNAgmUwmBQcHa9iwYX+Yoa228zp3lQqtW7fWpk2b1KZNG4f9b7/9tiTplltucV7LLmGtmwfprYRY++vHHiifbuiblWl64fVdCgv1UUTdijUrjqcX6cl/p2jkA830t1sa6MRJi156a5c2/FyREfHdTycUbPbWA4MaKzTER3v35+uJZ1OYcugSdfzQVv1n2hD76+/+W36z3q77bbr53hfVqtMN6vOPSVq35F2t+Ow5hUY00W0PvamGzcufRPf09NbBnYna+N2HKrGclimknlp16q0rbnrU4X0y0w/IUphnf92t94MqthRqyScTVXQ6V1HNu+iuke87ZGH0v/8VLV8wRQteHyqDwUMtO/fWDXdOuJgfB2rAl9+WT3s1+ulnHfY/+Xi8bux1nSTp8JFjen/efOXl5ysyvK4G3TlQd9x6s0P9uZ98qqXf/WB//dDjYyVJr70wSbHt25Wf5+gxFRSctte5e+AAFRVZ9Nrb7yi/oEDtY1rrxX9PkI9PRQfH0/98XG/Omq1/Tvi3PAweuvqKbhr50KWdGVAdrCycc0kivqwet91U/lDR27+JMSXp+dd36tuV5VMNRtT1dXjyfevOXP37lR168J4memhIEx05Vqjxz2/TgdSK79RP/u+wfH099eSIlgoM8FLK9hw98WyKikv4/3ypWfL1l5KkCeNGO+wfOfpJXX9DeSfh0aOH9dG895Wfl6fw8Ejdcdcg3XLbHfa6Pkaj1q35UQs+nqeiokKFhIapc5eu+tvd99gHsEvLynT0yGGHAff7H4qXweChl56fpJKSEnXqcpkefnSUvdzT01MTJj2vWdNf17gnRsjX6KvrevXWPwaffW1Z1D4Zh7fq8xlD7a9/+uJFSVLrrgPU6+8vqlmHG9TjjklKWvmuVi96XiHhTdT33jdVv2mX8uOPbFN66hZJ0kcv9HY495AJK2QKjZIkZWccUHFRxX1O554PqLS4UN8vnChLYa7qNemi/g+953Cf03vQy1r1vyn6fNa9Mhg81KxDb119278uzgcBB9UVY44fP15jxoxx2Gc0nn3GAVw8xJjO179X+UDiq/9ynEnt5XcPafmPmZUdUqmG9X3l7+9pf/3Z1xnyNXpo1P3RCvT31NbdBXr65X0q+U08+eLMg4ofEqWXnmoum036cWO2Znx0pLLTw41k5eTquTfe0amsbAX4+6lZ42i9NnGsusa2V/rJU9q0Zas++2qpiiwWhdcJVY+4yzT0bwPsxxt9fPTV8u/11gefqLi0ROFhYbq2+2W6Z2BF31JRcbFSjx5XaVnFA3DPjh6u1977UI8/+6I8PAy6tntXjXpgsL08MMBfrz37pF57d54e+OdEmU2BuvfO23Rr757V8rmgZs3/Nl+3XRege24KkinAQ9l5Vv2QVKgvV1XMYPHtmtMyehs0tH+Q/H09tCe1RK99nK3Sil8zhYd6Ksi/4kH1jdssCvLP14AeATIHeuhwWqmmfZKt3IKK78L/LMmXrY/06J1meXsatHWfRR997V4DlrWFq/ZhFhQUqGPHjrr//vt1++23/6F86tSpevPNNzVv3jw1adJEzzzzjPr06aPt27fL17d8zHHQoEE6fvy4li9frpKSEt1333166KGHNH/+/Oq+nIvGYLOd/08wISFBP/74o7755ptKyx999FHNmjVLVuuFr2lwVf9VF3wM4EzDxlxb000A1LtByrkrARdZg5bta+R9R75efVMvvzXKVG3vhbMjvoS7e+/1ytfUBKrTip31z10JuIhG9jOcu9LFeu9qijH/SnxpMBi0aNEiDRgwQJK0f/9+NWvWTD///LNiY2Pt9a699lrFxsbqjTfe0AcffKAnnnhCWVkVSRGlpaXy9fXVwoULK127/FJysWLM3oN/dkbzgL/kk/EkOqHmjVvYuKabAOiDZ8PPXekiqA19mL+PL202m+rXr68nnnhC//znPyVJOTk5ioiI0Ny5c3X33Xdrx44diomJ0caNG+3L9SxZskQ33XSTjhw5ovr13eO+8oKmUh8/fnyVAaUkzZgx4091WgIAAODSRHwJAADgqEmTJoqMjNTKlSvt+3Jzc7V+/XrFxcVJkuLi4pSdna2kpCR7ne+++05Wq1XdunWr9ja7GmJMAADgDiwWi3Jzcx22386gdr4OHDigtLQ09erVy77PbDarW7duSkxMlCQlJiYqODjYPiguSb169ZKHh4fWr1//1y/GRVzQwDgAAMDFYrPaqm0DAADApcFV48v8/HwlJycrOTlZUnlnZXJyslJTU2UwGDRq1Cg999xz+vLLL5WSkqIhQ4aofv369qyfNm3a6MYbb9SDDz6oDRs2aM2aNRoxYoTuvvtut8nmAQAAcEXV2YeZkJAgs9nssCUkJFxwm9PS0iRJERERDvsjIiLsZWlpaQoPd8zC9/LyUmhoqL2OO7igNcYBAAAAAAAA/DWbNm3SddddZ399Zn3yoUOHau7cuXryySdVUFCghx56SNnZ2brqqqu0ZMkS+/qPkvTJJ59oxIgRuv766+Xh4aGBAwfqzTffrPZrAQAAwMUxfvx4e5x4htForKHWuAcGxgEAgEsgkxsAAADO5qoxZo8ePWSzVd02g8GgyZMna/LkyVXWCQ0N1fz58y9G8wAAAFCF6owvjUajUwbCIyMjJUnp6emqV6+efX96erpiY2PtdTIyMhyOKy0tVWZmpv14d8BU6gAAAAAAAAAAAADghpo0aaLIyEitXLnSvi83N1fr169XXFycJCkuLk7Z2dlKSkqy1/nuu+9ktVrVrVu3am/zxULGOAAAcAkumswDAACAWowYEwAAAM7kqvFlfn6+9u7da3994MABJScnKzQ0VNHR0Ro1apSee+45tWjRQk2aNNEzzzyj+vXra8CAAZKkNm3a6MYbb9SDDz6oWbNmqaSkRCNGjNDdd9+t+vXr19BVOR8D4wAAAAAAAAAAAABQS23atEnXXXed/fWZtcmHDh2quXPn6sknn1RBQYEeeughZWdn66qrrtKSJUvk6+trP+aTTz7RiBEjdP3118vDw0MDBw7Um2++We3XcjExMA4AAFyCq67/CAAAgNqLGBMAAADO5KrxZY8ePWSzVd02g8GgyZMna/LkyVXWCQ0N1fz58y9G81wGa4wDAAAAAAAAAAAAANwaGeMAAMAlnO2JRgAAAODPIMYEAACAMxFf1m5kjAMAAAAAAAAAAAAA3BoZ4wAAwCVYXXR9HgAAANRexJgAAABwJuLL2o2McQAAAAAAAAAAAACAWyNjHAAAuATW5wEAAICzEWMCAADAmYgvazcyxgEAAAAAAAAAAAAAbo2McQAA4BJsrM8DAAAAJyPGBP6fvTuPs7H8/zj+PrObfQYzYx2MdWxTiEkhS5KEaJelkIw9LX4ttlBUSJZSX6S0UIpKlkgLskX2Lfu+zxhmxsxcvz80J8fMMDicxev5eJzHw9z3de77Oue+z/E+931/rhsAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnwNWWAAAAsDcyJgAAAOyJfOnaqBgHAAAAAAAAAAAAALg1KsYBAIBTyDRcbQkAAAD7ImMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAXuzwMAAAB7I2MCAADAnsiXro2KcQAAAAAAAAAAAACAW+PEOAAAAAAAAAAAAADArTGUOgAAcArGMAwRAAAA7IuMCQAAAHsiX7o2KsYBAAAAAAAAAAAAAG6NinEAAOAUMjO52hIAAAD2RcYEAACAPZEvXRsV4wAAAAAAAAAAAAAAt0bFOAAAcAqGqy0BAABgZ2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDFdbAgAAwL7ImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOwWRmOroLAAAAcDNkTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnkJnJ/XkAAABgX2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDFdbAgAAwL7ImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOwXB/HgAAANgZGRMAAAD2RL50bVSMAwAAAAAAAAAAAADcGhXjAADAKXC1JQAAAOyNjAkAAAB7Il+6NirGAQAAAAAAAAAAAABujYpxAADgFDJNpqO7AAAAADdDxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3xolxAAAAAAAAAAAAAIBbYyh1AADgFEymcXQXAAAA4GbImAAAALAn8qVro2IcAAAAAAAAAAAAAODWqBgHAABOgastAQAAYG9kTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnYAxXWwIAAMC+yJgAAACwJ/Kla6NiHAAAAAAAAAAAAADg1qgYBwAATiEzM9PRXQAAAICbIWMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAWTyf15AAAAYF9kTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrVIwDAACnYAz35wEAAIB9kTEBAABgT+RL10bFOAAAAAAAAAAAAADArVExDgAAnAL35wEAAIC9kTEBAABgT+RL10bFOAAAAAAAAAAAAADArVExDgAAnAJXWwIAAMDeyJgAAACwJ/Kla6NiHAAAAAAAAAAAAADg1qgYBwAATiHTZDq6CwAAAHAzZEwAAADYE/nStVExDgAAAAAAAAAAAABwa1SMAwAAp8D9eQAAAGBvZEwAAADYE/nStVExDgAAAAAAAAAAAABwa1SMAwAAp2AyuT8PAAAA7IuMCQAAAHsiX7o2KsYBAAAAAAAAAAAAAG6NE+MAAAAAAAAAAAAAALfGUOoAAMApmEzj6C4AAADAzZAxAQAAYE/kS9dGxTgAAAAAAAAAAAAAwK1RMQ4AAJyCMZmO7gIAAADcDBkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClkcn8eAAAA2BkZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMApmEzuzwMAAAD7ImMCAADAnsiXro2KcQAAAAAAAAAAAACAW6NiHAAAOAXD/XkAAABgZ2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdgDPfnAQAAgH2RMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtcWIcAAA4BZNpbtrjWowdO1YlSpSQn5+fatasqeXLl9v5HQAAAIC9kS8BAABgT85+DBOXx4lxAACAK/jyyy/Vp08f9e/fX6tXr1bVqlXVuHFjHTlyxNFdAwAAgAsiXwIAAAA3HyfGAQCAUzCZmTftcbXeffddderUSR06dFBsbKwmTJggf39//e9//7sB7wQAAADshXwJAAAAe3LmY5i4Mk6MAwCAW05qaqoSExNtHqmpqTm2TUtL06pVq9SwYUPrNA8PDzVs2FBLly69WV0GAACAEyNfAgAAAM7Py9EdyPL77LqO7oJLS01N1bBhw9SvXz/5+vo6uju4BbEP2ktlR3fApbEfurabmQUGDBiggQMH2kzr37+/BgwYkK3tsWPHlJGRocjISJvpkZGR2rx5843sJq4T+fL68J0KZ8B+aB8VYhzdA9fFPuj6blYeIF/eGuZNvc3RXXBpfKfCGbAf2sf/+ju6B66N/dC1cbzJtVmMMdy93Q0kJiYqJCREp0+fVnBwsKO7g1sQ+yCcAfsh8io1NTVbBY+vr2+OP0YOHDigIkWKaMmSJYqPj7dOf/HFF7V48WL9+eefN7y/gCPwnQpnwH4IR2MfRF6RL4Er4zsVzoD9EM6A/RBwHKepGAcAALhZcjtImZMCBQrI09NThw8ftpl++PBhRUVF3YjuAQAAwMWQLwEAAADnxz3GAQAALsPHx0fVqlXTzz//bJ2WmZmpn3/+2abCBwAAAMgL8iUAAADgGFSMAwAAXEGfPn3Url07Va9eXXfccYdGjRql5ORkdejQwdFdAwAAgAsiXwIAAAA3HyfG3YSvr6/69++f52G7AHtjH4QzYD/EjfLoo4/q6NGjev3113Xo0CHFxcXpp59+UmRkpKO7BtwwfKfCGbAfwtHYB3GjkC9xK+I7Fc6A/RDOgP0QcByLMcY4uhMAAAAAAAAAAAAAANwo3GMcAAAAAAAAAAAAAODWODEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1TowDAAAAAAAAAAAAANwaJ8bdwNixY1WiRAn5+fmpZs2aWr58uaO7hFvIr7/+qmbNmqlw4cKyWCz69ttvHd0l3IKGDRumGjVqKCgoSBEREWrRooW2bNni6G4BgMsiX8LRyJhwNPIlANgfGROORL6Eo5EvAefAiXEX9+WXX6pPnz7q37+/Vq9erapVq6px48Y6cuSIo7uGW0RycrKqVq2qsWPHOroruIUtXrxYCQkJWrZsmebPn6/z58/r3nvvVXJysqO7BgAuh3wJZ0DGhKORLwHAvsiYcDTyJRyNfAk4B4sxxji6E7h2NWvWVI0aNfT+++9LkjIzM1WsWDF1795dL7/8soN7h1uNxWLRzJkz1aJFC0d3Bbe4o0ePKiIiQosXL1adOnUc3R0AcCnkSzgbMiacAfkSAK4PGRPOhHwJZ0C+BByDinEXlpaWplWrVqlhw4bWaR4eHmrYsKGWLl3qwJ4BgGOdPn1akhQeHu7gngCAayFfAkDOyJcAcO3ImACQHfkScAxOjLuwY8eOKSMjQ5GRkTbTIyMjdejQIQf1CgAcKzMzU7169VLt2rVVqVIlR3cHAFwK+RIAsiNfAsD1IWMCgC3yJeA4Xo7uAAAA9pSQkKD169fr999/d3RXAAAA4AbIlwAAALAn8iXgOJwYd2EFChSQp6enDh8+bDP98OHDioqKclCvAMBxunXrpu+//16//vqrihYt6ujuAIDLIV8CgC3yJQBcPzImAPyHfAk4FkOpuzAfHx9Vq1ZNP//8s3VaZmamfv75Z8XHxzuwZwBwcxlj1K1bN82cOVMLFy5UyZIlHd0lAHBJ5EsAuIB8CQD2Q8YEAPIl4CyoGHdxffr0Ubt27VS9enXdcccdGjVqlJKTk9WhQwdHdw23iDNnzmj79u3Wv3fu3Kk1a9YoPDxcxYsXd2DPcCtJSEjQtGnT9N133ykoKMh6j7KQkBDly5fPwb0DANdCvoQzIGPC0ciXAGBfZEw4GvkSjka+BJyDxRhjHN0JXJ/3339fI0aM0KFDhxQXF6f33ntPNWvWdHS3cIv45ZdfdM8992Sb3q5dO02ePPnmdwi3JIvFkuP0SZMmqX379je3MwDgBsiXcDQyJhyNfAkA9kfGhCORL+Fo5EvAOXBiHAAAAAAAAAAAAADg1rjHOAAAAAAAAAAAAADArXFiHAAAAAAAAAAAAADg1jgxDgAAAAAAAAAAAABwa5wYBwAAAAAAAAAAAAC4NU6MAwAAAAAAAAAAAADcGifGAQAAAAAAAAAAAABujRPjAAAAAAAAAAAAAAC3xolxAAAAAAAAAAAAAIBb48Q4AAAAAAAAAAAAAMCtcWIcAAAAAAAAAAAAAODWODEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1TowDAAAAAAAAAAAAANwaJ8YBAAAAAAAAAAAAAG6NE+MAAAAAAAAAAAAAALfGiXEAAAAAAAAAAAAAgFvjxDgAAAAAAAAAAAAAwK1xYtzNTZ06VeXLl5e3t7dCQ0PtvvwBAwbIYrHYfbnuZNeuXbJYLJo8ebLdlrlixQrdeeedCggIkMVi0Zo1a+y2bGdksVg0YMCAq3pO+/btVaJEiRvSH3e0bds23XvvvQoJCZHFYtG3337r6C4BAJwImdLxyJSO5eh99JdffpHFYtEvv/xiMz2nz2a9evVUr169m97HK7nR3yMAANgL2dfxyL7O4aefflJcXJz8/PxksVh06tQpR3cJAK4bJ8bd2ObNm9W+fXvFxMRo4sSJ+vDDDx3dJZf3448/XvUJWns7f/68Hn74YZ04cUIjR47U1KlTFR0dfcPWl3UQLuvh6+uryMhI1atXT0OHDtXRo0dv2Lqd2cXvyeUelx68dFbt2rXTunXrNGTIEE2dOlXVq1fXtGnTNGrUqJvaj3Hjxl31j55169apdevWio6Olp+fn4oUKaJGjRppzJgxNu1KlCghi8Wi7t27Z1tG1n4+Y8YM67TJkydfdtsuW7bsml4jALgaMqX93YqZUrpwgLNDhw6KiYmRn5+foqKiVKdOHfXv3z/H9rNnz1azZs0UGRkpHx8fhYeHq06dOnrnnXeUmJho0zbr/3mLxSIPDw+FhoaqcuXK6ty5s/78889c+5SSkqKRI0eqZs2aCgkJkZ+fn8qWLatu3bpp69atdn399uZKn82c+nr27FkNGDDgpublAwcOaMCAAVd1IDwzM1OffPKJatasqfDwcAUFBals2bJq27atTR68+HfTqlWrsi2nffv2CgwMtJlWr169XLNm+fLlr/l1AgCunSv9/+oqyL45Z98jR47Iy8tLbdq0yXUZSUlJypcvnx566CGb6Tt27NCzzz6rUqVKyc/PT8HBwapdu7ZGjx6tc+fO2aX/x48f1yOPPKJ8+fJp7Nixmjp1qgICAjR06NCbWlBzrZlx9uzZqlu3riIiIuTv769SpUrpkUce0U8//WRtk3UBhsVi0ddff51tGVkXsRw7dsw6rX379rnmNz8/v2t+nQBuHi9HdwA3zi+//KLMzEyNHj1apUuXviHrePXVV/Xyyy/fkGU7ox9//FFjx469qjAXHR2tc+fOydvb2y592LFjh3bv3q2JEyeqY8eOdllmXvTo0UM1atRQRkaGjh49qiVLlqh///5699139dVXX6l+/fo3bN3nzp2Tl9fVfV1NnDhRmZmZN6hHF64evtgnn3yi+fPnZ5teoUKFG9YHezl37pyWLl2qV155Rd26dbNOnzZtmtavX69evXrdtL6MGzdOBQoUUPv27fPUfsmSJbrnnntUvHhxderUSVFRUdq7d6+WLVum0aNH53gSfOLEierXr58KFy6cp3UMGjRIJUuWzDb9Rn2vAoCzIVPa362YKbdv364aNWooX758evrpp1WiRAkdPHhQq1ev1ltvvaWBAwda22ZmZuqZZ57R5MmTVblyZXXt2lXFihVTUlKSli5dqldffVU//vijfv75Z5t1xMXF6fnnn5d04SDipk2bNH36dE2cOFG9e/fWu+++a9P+2LFjuu+++7Rq1So98MADeuKJJxQYGKgtW7boiy++0Icffqi0tLQb/t7kRZ06dXTu3Dn5+PhYp+X22Zw3b54junhZOfX12LFj1u1+syrcDxw4oIEDB6pEiRKKi4vL03N69OihsWPHqnnz5nryySfl5eWlLVu2aM6cOSpVqpRq1aqV7TkDBgzQ7Nmz87T8okWLatiwYdmmh4SE5On5AAD7IvvaH9k35+wbERGhRo0a6bvvvtPZs2fl7++fbTnffPONUlJSbE6e//DDD3r44Yfl6+urtm3bqlKlSkpLS9Pvv/+uF154QRs2bLDLBR0rVqxQUlKSBg8erIYNG1qnDx06VK1bt1aLFi2uex15cfbs2avOjG+//bZeeOEF1a1bV/369ZO/v7+2b9+uBQsW6IsvvtB9992X7TmDBg3SQw89lKfRHHx9ffXRRx9lm+7p6Zmn/gFwLE6Mu7EjR45I0g0dps7Ly+uqT1jeKtLT05WZmSkfHx+7Xi12I7ZrcnKyAgICLtvm7rvvVuvWrW2mrV27Vvfee69atWqljRs3qlChQnbr08Wu5f2zV3DOzaVXcy5btkzz58+/7FWeknINuo6UVfV/M4a0zMzMVFpamt0+E0OGDFFISIhWrFiRrf9Zn5WLVaxYUVu2bNGbb76p9957L0/raNKkiapXr26P7gKASyJTOpa7ZMqRI0fqzJkzWrNmTbbqnEv/zx4+fLgmT56s3r1765133rE5ONWzZ08dPHhQn3zySbZ1FClSJFsWe+utt/TEE09o5MiRKlOmjJ577jnrvPbt2+uvv/7SjBkz1KpVK5vnDR48WK+88kreXvhN4OHhkW3757YNLz55fr3sld1uxvdIlrz8tsmrw4cPa9y4cerUqVO2A8yjRo3KcfSsuLg4ff/991q9erVuv/32K64jJCTkir8hAAA3D9nXsW617Pvkk0/qp59+0qxZs/TYY49lW860adMUEhKipk2bSpJ27typxx57TNHR0Vq4cKHNsdiEhARt375dP/zwgz1e3k3NbykpKfLx8ZGHx/UPcJyenq7BgwerUaNGOV4wmtPxwri4OK1Zs0YzZ87MVp2fkytV+gNwcgY3xb59+8zTTz9tChUqZHx8fEyJEiVMly5dTGpqqrXNjh07TOvWrU1YWJjJly+fqVmzpvn+++9tlrNo0SIjyXz55ZfmjTfeMEWKFDG+vr6mfv36Ztu2bdZ20dHRRpLNo3///sYYY/Pvi0VHR5t27dpZ/05LSzMDBgwwpUuXNr6+viY8PNzUrl3bzJs3z9qmf//+5tLd6Pz582bQoEGmVKlSxsfHx0RHR5t+/fqZlJSUbOtr2rSp+e2330yNGjWMr6+vKVmypJkyZcrVvr1GkklISDBfffWVqVChgvHz8zO1atUyf//9tzHGmAkTJpiYmBjj6+tr6tata3bu3Gnz/F9//dW0bt3aFCtWzPj4+JiiRYuaXr16mbNnz1rbtGvXLtt7mvXad+7caSSZESNGmJEjR5pSpUoZDw8P89dff1nnTZo0yRhjzOHDh02BAgVM3bp1TWZmpnX527ZtM/7+/uaRRx7J9XXm1Ie6deta5//888/mrrvuMv7+/iYkJMQ8+OCDZuPGjTbLyNpmGzZsMI8//rgJDQ01cXFxua4za5+bPn16jvOnTZtmJJn/+7//s5m+b98+06FDBxMREWF8fHxMbGys+fjjj7M9/9y5c6Z///6mTJkyxtfX10RFRZmWLVua7du3W9tcus8mJiaanj17mujoaOPj42MKFixoGjZsaFatWmXzXkVHR9us68yZM6ZPnz6maNGixsfHx5QtW9aMGDHCZjtkrS8hIcHMnDnTVKxY0dr/OXPm5Po+JSQkZPss1K1b11SsWNGsXLnS3H333SZfvnymZ8+exhhjUlJSzOuvv25iYmKs+9wLL7yQ7XNijDFTp041t99+u/Hz8zNhYWHm0UcfNXv27Mm1L1l27dplnnvuOVO2bFnj5+dnwsPDTevWrW32/6z94eJHdHS0qVu3bo7Ts+S1/1nv5aeffmpiY2ONl5eXmTlzZo79zel76+L9OyflypUz9erVu+J7kbX8pk2bmqefftr4+fmZ/fv3W+fltJ9PmjTJSDIrVqzI0/IB4GYgU5IpXTVTNm7c2JQoUeKy778xxiQnJ5vQ0FBTsWJFk56efsX2WbL2g5wkJSWZ8PBwU6RIEet7tWzZMiPJdOrUKU/Lz2kf/d///mfuueceU7BgQePj42MqVKhgxo0bl+25K1asMPfee6/Jnz+/8fPzMyVKlDAdOnSwafP555+b22+/3QQGBpqgoCBTqVIlM2rUKOv8rM/sokWLrK83t89m3bp1s2WoG5HdjDHm22+/Nffff7/1O6lUqVJm0KBBNtsup77m9jm4+Dtl06ZNplWrViYsLMz4+vqaatWqme+++85m/Vl57ZdffjHPPfecKViwoAkNDc2xr1nv4aWPrM9UTpYuXWokmcmTJ+fa5tLlf/zxxyYsLMw0a9bMZn67du1MQECAzbSs3wsAgJyRfcm+7p59z5w5YwICArLlhqzX7OnpaZ555hnrtC5duhhJ5o8//rjisnOTl+2W03HB3Lblxft/Xo4HZ30eP//8c/PKK6+YwoULG4vFYk6ePJmtr1n7weUy46UOHjxoJJkBAwZc8b3IWv6bb75pypYta6pWrWqzf2Vt96NHj1qn5ZTpALgWLk27CQ4cOKA77rhDp06dUufOnVW+fHnt379fM2bM0NmzZ+Xj46PDhw/rzjvv1NmzZ9WjRw/lz59fU6ZM0YMPPqgZM2aoZcuWNst888035eHhob59++r06dMaPny4nnzySev980aNGqVPPvlEM2fO1Pjx4xUYGKgqVapcVb8HDBigYcOGqWPHjrrjjjuUmJiolStXavXq1WrUqFGuz+vYsaOmTJmi1q1b6/nnn9eff/6pYcOGadOmTZo5c6ZN2+3bt6t169Z65pln1K5dO/3vf/9T+/btVa1aNVWsWPGq+vvbb79p1qxZSkhIkCQNGzZMDzzwgF588UWNGzdOXbt21cmTJzV8+HA9/fTTWrhwofW506dP19mzZ/Xcc88pf/78Wr58ucaMGaN9+/Zp+vTpkqRnn31WBw4cyHG47CyTJk1SSkqKOnfuLF9fX4WHh2cbzjsiIkLjx4/Xww8/rDFjxqhHjx7KzMxU+/btFRQUpHHjxuX6Gp999lkVKVJEQ4cOtQ5tHhkZKUlasGCBmjRpolKlSmnAgAE6d+6cxowZo9q1a2v16tUqUaKEzbIefvhhlSlTRkOHDpUx5qre64tlbb958+ZpyJAhki5UVtSqVUsWi0XdunVTwYIFNWfOHD3zzDNKTEy0Ds2dkZGhBx54QD///LMee+wx9ezZU0lJSZo/f77Wr1+vmJiYHNfZpUsXzZgxQ926dVNsbKyOHz+u33//XZs2bcq1KsMYowcffFCLFi3SM888o7i4OM2dO1cvvPCC9u/fr5EjR9q0//333/XNN9+oa9euCgoK0nvvvadWrVppz549yp8/f57fn+PHj6tJkyZ67LHH1KZNG0VGRiozM1MPPvigfv/9d3Xu3FkVKlTQunXrNHLkSG3dutXmPj1DhgzRa6+9pkceeUQdO3bU0aNHNWbMGNWpU0d//fXXZa/aXLFihZYsWaLHHntMRYsW1a5duzR+/HjVq1dPGzdulL+/vx566CGFhoaqd+/eevzxx3X//fcrMDBQAQEBOn36tPbt22d9b7LuiXg1/ZekhQsX6quvvlK3bt1UoECBbPtillGjRql79+4KDAy0Vmhl7d+5iY6O1tKlS7V+/XpVqlTp8hvjX6+88oo++eSTPFeNnz592uZeQtKFe8xfzX4AAPZApiRTXszVMmV0dLQWLFighQsXXvYWPL///rtOnTqlvn372m0owsDAQLVs2VIff/yxNm7cqIoVK2rWrFmSpKeeeuqalzt+/HhVrFhRDz74oLy8vDR79mx17dpVmZmZ1v3nyJEjuvfee1WwYEG9/PLLCg0N1a5du/TNN99YlzN//nw9/vjjatCggd566y1J0qZNm/THH3+oZ8+eOa77aj6bNyq7SdLkyZMVGBioPn36KDAwUAsXLtTrr7+uxMREjRgxIte+Vq5cWbVq1dJzzz2nli1bWitzsl7Dhg0bVLt2bRUpUkQvv/yyAgIC9NVXX6lFixb6+uuvs32Xde3aVQULFtTrr7+u5OTkHPtaoUIFDRo0SK+//ro6d+6su+++W5J055135vr6siq8pk+frocffjhPIz8FBwerd+/eev311/NUNZ6RkZEta0pSvnz57Fb5DgCuiOxL9r2Yu2bfgIAANW/eXDNmzNCJEycUHh5unffll18qIyNDTz75pHXa7NmzVapUqcvmlyvJy3Z75ZVXVK5cOX344YfWWwzGxMSoYcOG1n27c+fOkmQ9fpvX48FZBg8eLB8fH/Xt21epqak5jnpUsGBBjR8/PtfMmJOIiAjly5dPs2fPVvfu3W3e09x4enrq1VdfVdu2bfNcNZ5TfvPx8VFwcPAVnwvAwRx7Xv7W0LZtW+Ph4ZFj1WHWFUi9evUyksxvv/1mnZeUlGRKlixpSpQoYTIyMowx/11RVaFCBZurI0ePHm0kmXXr1lmn5XRFkzF5v8KxatWquVZdXLqOLGvWrDGSTMeOHW3a9e3b10gyCxcutFmfJPPrr79apx05csT4+vqa559//rLrvZQk4+vra3Pl4gcffGAkmaioKJOYmGid3q9fPyPJpu3FV8RlGTZsmLFYLGb37t3WaTlVBRvz39VlwcHB5siRIznOu7QS4fHHHzf+/v5m69atZsSIEUaS+fbbb6/4WnOr4I6LizMRERHm+PHj1mlr1641Hh4epm3bttZpWdvs8ccfv+K6Lre+i1WtWtWEhYVZ/37mmWdMoUKFzLFjx2zaPfbYYyYkJMT6fv/vf/8zksy7776bbZkXX5136T4bEhJiEhISLtvvSyvGv/32WyPJvPHGGzbtWrdubSwWS7YKdR8fH5tpa9euNZLMmDFjclxfbhXjksyECRNspk+dOtV4eHjYfN6NuXAlri666nPXrl3G09PTDBkyxKbdunXrjJeXV7bpl8ppv86qevnkk0+s0y6+QvdiTZs2zVZ1fzX9N+bCe+nh4WE2bNhw2b5mqVix4hWrxC82b9484+npaTw9PU18fLx58cUXzdy5c01aWlq2thdXknXo0MH4+fmZAwcOGGMuXzGe08PX1zfPfQQAeyFTkildOVOuX7/e5MuXz0gycXFxpmfPnubbb781ycnJNu2y9sFLX0N6ero5evSozePivHi5inFjjBk5cqSRZK04btmypZGUY2VKTnKq7Mppezdu3NiUKlXK+vfMmTONdPkRaHr27GmCg4MvWyF/acX4xX269LN5acX4jcxuOb0Hzz77rPH397epcMupr0ePHs31e6RBgwamcuXKNsvIzMw0d955pylTpox1WlZeu+uuu/I0wsCKFSuuWCV+qbZt2xpJJiwszLRs2dK8/fbbZtOmTdnaXfyZOnXqlAkLCzMPPvigdX5uFeO55c1nn302z30EAHdE9iX73grZ1xhjfvjhByPJfPDBBzbTa9WqZYoUKWLdj0+fPm0kmebNm+epD7nJ63bLbSTFgIAAm30+S16PB2dti1KlSuXYl0tdLjPm5vXXXzeSTEBAgGnSpIkZMmSIzUijWS4+Jpqenm7KlCljUzWeW8V4bvmtcePGee4jAMe5/ps24LIyMzP17bffqlmzZjneozbrfnk//vij7rjjDt11113WeYGBgercubN27dqljRs32jyvQ4cONldRZV3t/s8//9it76GhodqwYYO2bduW5+f8+OOPkqQ+ffrYTH/++eclKds9TmJjY619ly5cBVauXLlreh0NGjSwuYqvZs2akqRWrVopKCgo2/SL15EvXz7rv5OTk3Xs2DHdeeedMsbor7/+ynMfWrVqpYIFC+ap7fvvv6+QkBC1bt1ar732mp566ik1b948z+u62MGDB7VmzRq1b9/e5iq4KlWqqFGjRtbtcrEuXbpc07pyEhgYqKSkJEkXKrO//vprNWvWTMYYHTt2zPpo3LixTp8+rdWrV0uSvv76axUoUEDdu3fPtsyL7yV5qdDQUP355586cOBAnvv4448/ytPTUz169LCZ/vzzz8sYozlz5thMb9iwoU3FepUqVRQcHHzV+6avr686dOhgM2369OmqUKGCypcvb/P+ZF1BumjRIknSN998o8zMTD3yyCM27aKiolSmTBlru9xcvF+fP39ex48fV+nSpRUaGmrdBtcir/3PUrduXcXGxl7z+i6nUaNGWrp0qR588EGtXbtWw4cPV+PGjVWkSBFrJVhOXn31VaWnp+vNN9+84jrGjh2r+fPn2zwu3V8A4EYjU15ApszOVTJlxYoVtWbNGrVp00a7du3S6NGj1aJFC0VGRmrixInWdomJiZL+G6kmy7p161SwYEGbx/Hjx/P82rKWl5VZs9Zz8Ta9Whdv76wRZurWrat//vlHp0+flvTfPRm///57nT9/PsflhIaGKjk5WfPnz7/mvlzOjcxuF78HSUlJOnbsmO6++26dPXtWmzdvvqb+njhxQgsXLtQjjzxiXeaxY8d0/PhxNW7cWNu2bdP+/fttntOpUye7jTBwqUmTJun9999XyZIlNXPmTPXt21cVKlRQgwYNsvUjS0hIiHr16qVZs2Zd8bNfokSJbFlz/vz52aqqAOBWQva9gOybnbtlX0nW0YWmTZtmnbZz504tW7ZMjz/+uPW+2/bIr5L9ttvFruZ4cJZ27drZ9MWeBg4cqGnTpum2227T3Llz9corr6hatWq6/fbbtWnTphyfk1U1vnbt2mwjKl3Kz88vx/yWl+OMAByPE+M32NGjR5WYmHjFIX53796tcuXKZZteoUIF6/yLFS9e3ObvsLAwSdLJkyevp7s2Bg0apFOnTqls2bKqXLmyXnjhBf3999+Xfc7u3bvl4eGh0qVL20yPiopSaGjoFV+HdOG1XMvruHRZISEhkqRixYrlOP3idezZs8caggIDA1WwYEHVrVtXkqwHtfKiZMmSeW4bHh6u9957T3///bdCQkLyNKRzbrLe19z2oWPHjmUbUvBq+nolZ86csYayo0eP6tSpU/rwww+zHbzMOkF85MgRSdKOHTtUrlw5eXld3V0dhg8frvXr16tYsWK64447NGDAgCuG/927d6tw4cLZwmNeP2PSte2bRYoUyTYU0LZt27Rhw4Zs70/ZsmUl/ff+bNu2TcYYlSlTJlvbTZs2Wdvl5ty5c3r99ddVrFgx+fr6qkCBAipYsKBOnTp1Vfv1pfLa/yzXu69lZGTo0KFDNo+0tDTr/Bo1auibb77RyZMntXz5cvXr109JSUlq3bp1th/BWUqVKqWnnnpKH374oQ4ePHjZ9d9xxx1q2LChzeOee+65rtcEAFeLTHkBmTI7V8qUZcuW1dSpU3Xs2DH9/fffGjp0qLy8vNS5c2ctWLBA0n8H+s6cOWPz3NKlS1sPOF3L8OdZy8taftYQh1knyq/FH3/8oYYNGyogIEChoaEqWLCg/u///k/Sf9u7bt26atWqlQYOHKgCBQqoefPmmjRpklJTU63L6dq1q8qWLasmTZqoaNGievrpp/XTTz9dc78udSOz24YNG9SyZUuFhIQoODhYBQsWVJs2bSRd3T5/se3bt8sYo9deey1bn/v373/dfc7JmTNnbLLm0aNHrfM8PDyUkJCgVatW6dixY/ruu+/UpEkTLVy4UI899liuy+zZs6dCQ0M1YMCAy647ICAgW9Zs2LChypcvf12vCQBcGdn3ArJvdu6WfSXJy8tLjz76qH777TfrRXdZJ8kvHkbdHvlVst92u9jVHA/Ocr357dy5c9mOF17s8ccf12+//aaTJ09q3rx5euKJJ/TXX3+pWbNmSklJyXGZTz75pEqXLq1BgwZddqh8T0/PHPNbXFzcdb0mADcH9xh3UbldDX+5L+wrycjIsPm7Tp062rFjh7777jvNmzdPH330kUaOHKkJEyaoY8eOl13W5ap9L2bP15Hbsq60joyMDDVq1EgnTpzQSy+9pPLlyysgIED79+9X+/bts93T5nKu9iq3uXPnSroQKvft23fZ+0Xbm72uyDt//ry2bt1q/bGS9X61adNG7dq1y/E5V3t/pks98sgjuvvuuzVz5kzNmzdPI0aM0FtvvaVvvvlGTZo0ua5lZ7HXvpnT+5yZmanKlSvr3XffzfE5WT8+MjMzZbFYNGfOnBz7c2kl1aW6d++uSZMmqVevXoqPj1dISIgsFosee+yxq9qvr7X/Wa53X9u7d2+2sLxo0SLVq1fPZpqPj49q1KihGjVqqGzZsurQoYOmT59uPYB6qVdeeUVTp07VW2+9pRYtWlxXHwHAVZEp874sMmXOruX/eU9PT1WuXFmVK1dWfHy87rnnHn322Wc2JwPXr19vU/0TGBiohg0bSrpwH/KrtX79ekmyHnDOWs+6detsKq7yaseOHWrQoIHKly+vd999V8WKFZOPj49+/PFHjRw50rq9LRaLZsyYoWXLlmn27NmaO3eunn76ab3zzjtatmyZAgMDFRERoTVr1mju3LmaM2eO5syZo0mTJqlt27aaMmXKVfftUjcqu506dUp169ZVcHCwBg0apJiYGPn5+Wn16tV66aWXrjlvZj2vb9++aty4cY5tLj1xcL158+2339bAgQOtf0dHR2vXrl3Z2uXPn18PPvigHnzwQdWrV0+LFy/W7t27rfciv1hW1fiAAQOuufoKAGBfZN+8L4vsmzN7Z98sbdq00fvvv6/PP/9cffv21eeff67Y2FibE63BwcEqXLiwNddeC3tut4tdy/Hg681vX375ZbZROnP6DAQHB6tRo0Zq1KiRvL29NWXKFP3555/WiwEullU13r59e3333XfX1T8AzosT4zdYwYIFFRwcfMX/sKKjo7Vly5Zs07OGn8vph/a1CgsL06lTp2ympaWl5Vg1GR4erg4dOqhDhw46c+aM6tSpowEDBuQa5KKjo5WZmalt27ZZr86UpMOHD+vUqVN2fR32sm7dOm3dulVTpkxR27ZtrdNzGsowrwE1L3766Sd99NFHevHFF/XZZ5+pXbt2+vPPP6+6elr6b//IbR8qUKCAAgICrrvPOZkxY4bOnTtnPWhVsGBBBQUFKSMjwybg5SQmJkZ//vmnzp8/L29v76tab6FChdS1a1d17dpVR44c0e23364hQ4bkemI8OjpaCxYsUFJSkk3V+I34jF1JTEyM1q5dqwYNGlx2n4qJiZExRiVLlrRW9FyNGTNmqF27dnrnnXes01JSUrJ9/nOTW9/y2v9rkdPyoqKisn0eq1atetnlZA21drlq8JiYGLVp00YffPCBdUgwAHBWZMoLyJTZuXqmvPT/7LvvvlshISH64osv1K9fP+vQkdfjzJkzmjlzpooVK2bdn5o1a6Zhw4bp008/vaYT47Nnz1ZqaqpmzZplU2mV261uatWqpVq1amnIkCGaNm2annzySX3xxRfWz4CPj4+aNWumZs2aKTMzU127dtUHH3yg1157LdtJ4Kt1o7LbL7/8ouPHj+ubb75RnTp1rNN37tyZp+fn1pdSpUpJkry9va/4e+Jq5bbOtm3b2gzDm5cDtdWrV9fixYt18ODBXL+TevXqpVGjRmngwIE39aA9ALg6su8FZN/s3C37ZqlZs6ZiYmI0bdo0NWrUSBs2bNCQIUOyPf+BBx7Qhx9+qKVLlyo+Pv6q13812y03OW3PqzkefLVy238aN2581bciql69uqZMmXLZ44Vt2rTRG2+8oYEDB+rBBx+8quUDcA0MpX6DeXh4qEWLFpo9e7ZWrlyZbX7WVUz333+/li9frqVLl1rnJScn68MPP1SJEiXsen/emJgY/frrrzbTPvzww2xXOF56z77AwECVLl3aZti/S91///2SpFGjRtlMz6pOaNq06bV2+4bJugLy4ivKjDEaPXp0trZZYSivJxZzc+rUKXXs2FF33HGHhg4dqo8++kirV6/W0KFDr2l5hQoVUlxcnKZMmWLTt/Xr12vevHnW7WJva9euVa9evRQWFqaEhARJF97PVq1a6euvv87xB8zFwxK2atVKx44d0/vvv5+tXW5XuWZkZGQb1iciIkKFCxe+4r6ZkZGRbV0jR46UxWKxW6V5XjzyyCPav39/tnsKSReGAcoapumhhx6Sp6enBg4cmO39MMZc8b6anp6e2Z43ZsyYbJ/13AQEBOQ4hFJe+38tAgICsn2+/Pz8sg1NlDXc2aJFi3LcV7LuA5XTcFgXe/XVV3X+/HkNHz78mvsMADcDmfICMqUtV8qUv/32W4732L70/2x/f3+9+OKLWr9+vV5++eUc/5+/mmqoc+fO6amnntKJEyf0yiuvWA+sxcfH67777tNHH32U4z0E09LS1Ldv31yXm9P2Pn36tCZNmmTT7uTJk9n6m1X5k/UZuPQz4uHhYa2oudznJK9uVHbL6T1IS0vTuHHj8vR8f39/Sdk/BxEREapXr54++OCDHA9aXvx74mrl9tkrVaqUTdasXbu2JOnQoUM53ponLS1NP//8c47D3l4sq2r8u+++05o1a6653wBwqyH7XkD2teWO2fdiTz75pP766y/1799fFotFTzzxRLY2L774ogICAtSxY0cdPnw42/wdO3bkuA2yXM12y01Ox+6u5njw1cotMxYqVCjb8UJJOnv2rM13wsXmzJkj6fLHC7OqxtesWaNZs2Zdc78BOC8qxm+CoUOHat68eapbt646d+6sChUq6ODBg5o+fbp+//13hYaG6uWXX9bnn3+uJk2aqEePHgoPD9eUKVO0c+dOff3113aplMjSsWNHdenSRa1atVKjRo20du1azZ07VwUKFLBpFxsbq3r16qlatWoKDw/XypUrNWPGDHXr1i3XZVetWlXt2rXThx9+aB1ab/ny5ZoyZYpatGjhlPflLV++vGJiYtS3b1/t379fwcHB+vrrr3O8L0+1atUkST169FDjxo3l6el52fvK5aZnz546fvy4FixYIE9PT913333q2LGj3njjDTVv3vyK1bA5GTFihJo0aaL4+Hg988wzOnfunMaMGaOQkJAr3tcuL3777TelpKQoIyNDx48f1x9//KFZs2YpJCREM2fOVFRUlLXtm2++qUWLFqlmzZrq1KmTYmNjdeLECa1evVoLFizQiRMnJF2ozPjkk0/Up08fLV++XHfffbeSk5O1YMECde3a1Wb4zCxJSUkqWrSoWrdurapVqyowMFALFizQihUrbCqjL9WsWTPdc889euWVV7Rr1y5VrVpV8+bN03fffadevXopJibmut+jvHrqqaf01VdfqUuXLlq0aJFq166tjIwMbd68WV999ZXmzp2r6tWrKyYmRm+88Yb69eunXbt2qUWLFgoKCtLOnTs1c+ZMde7c+bIHbB944AFNnTpVISEhio2N1dKlS7VgwQLlz58/T/2sVq2avvzyS/Xp00c1atRQYGCgmjVrluf+X4tq1app/PjxeuONN1S6dGlFRESofv36ubbv3r27zp49q5YtW6p8+fJKS0vTkiVL9OWXX6pEiRLZhlS6VFbV+OWGKZ0zZ471avOL3XnnndaKJgC4GciUZMpLuVKmfOutt7Rq1So99NBD1pO+q1ev1ieffKLw8HD16tXL2vbll1/Wpk2bNGLECM2bN0+tWrVS0aJFdfLkSa1evVrTp09XRESE/Pz8bNaxf/9+ffrpp5IuVIlv3LhR06dP16FDh/T888/r2WeftWn/ySef6N5779VDDz2kZs2aqUGDBgoICNC2bdv0xRdf6ODBg3r77bdzfD333nuvtcr72Wef1ZkzZzRx4kRFRETYnMydMmWKxo0bp5YtWyomJkZJSUmaOHGigoODrQdbO3bsqBMnTqh+/foqWrSodu/erTFjxiguLs6mauxa3ajsdueddyosLEzt2rVTjx49ZLFYNHXq1DxfuJAvXz7Fxsbqyy+/VNmyZRUeHq5KlSqpUqVKGjt2rO666y5VrlxZnTp1UqlSpXT48GEtXbpU+/bt09q1a6+6v9KF7BcaGqoJEyYoKChIAQEBqlmzZq73uNy3b5/uuOMO1a9fXw0aNFBUVJSOHDmizz//3HqR8KXfeZfq2bOnRo4cqbVr1+ZYdXb69GnrfnuprPu1A8CtiOxL9r2Uu2bfLG3atNGgQYP03XffqXbt2ipRokS2NllV5Y8++qgqVKigtm3bqlKlStbjYdOnT1f79u1z7dfVbLfcVKtWTQsWLNC7776rwoULq2TJkqpZs2aejwdfrctlxpycPXtWd955p2rVqqX77rtPxYoV06lTp/Ttt9/qt99+U4sWLXTbbbdddp1PPvmkBg8enOuFjenp6bnmt5YtW96wkVsB2InBTbF7927Ttm1bU7BgQePr62tKlSplEhISTGpqqrXNjh07TOvWrU1oaKjx8/Mzd9xxh/n+++9tlrNo0SIjyUyfPt1m+s6dO40kM2nSJOu0/v37G0nm6NGjNm0zMjLMSy+9ZAoUKGD8/f1N48aNzfbt2010dLRp166dtd0bb7xh7rjjDhMaGmry5ctnypcvb4YMGWLS0tKyreNi58+fNwMHDjQlS5Y03t7eplixYqZfv34mJSXFpl10dLRp2rRptveqbt26pm7dupd9Py8lySQkJOT4nowYMcJmek7v4caNG03Dhg1NYGCgKVCggOnUqZNZu3Zttvc0PT3ddO/e3RQsWNBYLBbra89tXRfPy1rOd999ZySZd955x6ZdYmKiiY6ONlWrVrV5jy+V2z5gjDELFiwwtWvXNvny5TPBwcGmWbNmZuPGjTZtctsvrrS+rIe3t7cpWLCgqVOnjhkyZIg5cuRIjs87fPiwSUhIMMWKFTPe3t4mKirKNGjQwHz44Yc27c6ePWteeeUV6/4SFRVlWrdubXbs2GFtI8n079/fGGNMamqqeeGFF0zVqlVNUFCQCQgIMFWrVjXjxo2zWW67du1MdHS0zbSkpCTTu3dvU7hwYePt7W3KlCljRowYYTIzM23a5bQ/GWOyfUYulpCQkO2zULduXVOxYsUc26elpZm33nrLVKxY0fj6+pqwsDBTrVo1M3DgQHP69Gmbtl9//bW56667TEBAgAkICDDly5c3CQkJZsuWLTkuO8vJkydNhw4dTIECBUxgYKBp3Lix2bx5c7bXkdv+e+bMGfPEE0+Y0NBQI8nm/cxr/3N7L3Nz6NAh07RpUxMUFGQkXfG7YM6cOebpp5825cuXN4GBgcbHx8eULl3adO/e3Rw+fNimbW7fOdu2bTOenp7ZPleTJk2y2fcvfVz83QAANwuZkkzpqpnyjz/+MAkJCaZSpUomJCTEeHt7m+LFi5v27dvb5L6LzZw509x///2mYMGCxsvLy4SGhpq77rrLjBgxwpw6dcqmbXR0tPX/aIvFYoKDg03FihVNp06dzJ9//plrv86ePWvefvttU6NGDWuWKFOmjOnevbvZvn17ttd7sVmzZpkqVaoYPz8/U6JECfPWW2+Z//3vf0aS2blzpzHGmNWrV5vHH3/cFC9e3Pj6+pqIiAjzwAMPmJUrV1qXM2PGDHPvvfeaiIgI4+PjY4oXL26effZZc/DgQWubrO21aNGibH26dBvktO/fqOz2xx9/mFq1apl8+fKZwoULmxdffNHMnTs3z31dsmSJqVatmvHx8bHJ/MZc+C5r27atiYqKMt7e3qZIkSLmgQceMDNmzLC2ycprK1asyHOfv/vuOxMbG2u8vLyumOkSExPN6NGjTePGjU3RokWNt7e3CQoKMvHx8WbixIk2vyMu95nKev0BAQE20+vWrXvZvAkAtzqyL9n3Vsq+xhhTo0YNIynbcc5Lbd261XTq1MmUKFHC+Pj4mKCgIFO7dm0zZsyYbPvMpfK63XLLWZs3bzZ16tQx+fLlM5Js9v+8HA++3LbIzeUy46XOnz9vJk6caFq0aGGio6ONr6+v8ff3N7fddpsZMWKEzffH5fbBi48LXrzd27Vrd9n8lvU7AIDzshhzFePQAQAAAAAAAAAAAADgYrjHOAAAAAAAAAAAAADArXGPcTi1Q4cOXXZ+vnz5FBIScpN6AwAAAFdEpgQAAMCtguwLAEDuGEodTs1isVx2frt27TR58uSb0xkAAAC4JDIlAAAAbhVkXwAAckfFOJza/PnzLzu/cOHCN6knAAAAcFVkSgAAANwqyL4AAOSOinEAAAAAAAAAAAAAgFvzcHQHAAAAAAAAAAAAAAC4kTgxDgAAAAAAAAAAAABwa05zj/G6Dy1xdBdwi/tmkKN7AEjH8xV1dBcAlY0p7pD1/uBd7qatq+n5LTdtXXCc1VuPO7oLgMoufNvRXQB03w/3OboLuMX9Pruuw9Z9szIm+fLWkDJvkqO7AOhEdDVHdwHQI31POroLgMMyJscwXRsV4wAAAAAAAAAAAAAAt+Y0FeMAAODWZvG2OLoLAAAAcDNkTAAAANgT+dK1UTEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1hlIHAABOwcOLYYgAAABgX2RMAAAA2BP50rVRMQ4AAAAAAAAAAAAAcGtUjAMAAKdg8eZ6PQAAANgXGRMAAAD2RL50bWw9AAAAAAAAAAAAAIBbo2IcAAA4Be7PAwAAAHsjYwIAAMCeyJeujYpxAAAAAAAAAAAAAIBbo2IcAAA4BYs3V1sCAADAvsiYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE6B+/MAAADA3siYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE7B4snVlgAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU/DgaksAAADYGRkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClYPLjaEgAAAPZFxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3RsU4AABwChZPrtcDAACAfZExAQAAYE/kS9fG1gMAAAAAAAAAAAAAuDVOjAMAAAAAAAAAAAAA3BpDqQMAAKfg4WlxdBcAAADgZsiYAAAAsCfypWujYhwAAAAAAAAAAAAA4NaoGAcAAE7B4sHVlgAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU+D+PAAAALA3MiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAU7BwtSUAAADsjIwJAAAAeyJfujYqxgEAAAAAAAAAAAAAbo2KcQAA4BQsHlyvBwAAAPsiYwIAAMCeyJeuja0HAAAAAAAAAAAAAHBrVIwDAACnYPHg/jwAAACwLzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDUqxgEAgFPw8ORqSwAAANgXGRMAAAD2RL50bVSMAwAAAAAAAAAAAADcGhXjAADAKXB/HgAAANgbGRMAAAD2RL50bVSMAwAAAAAAAA7y5ptvymKxqFevXtZpKSkpSkhIUP78+RUYGKhWrVrp8OHDNs/bs2ePmjZtKn9/f0VEROiFF15Qenr6Te49AAAA4DqoGAcAAE7B4sH1egAAALAvZ8+YK1as0AcffKAqVarYTO/du7d++OEHTZ8+XSEhIerWrZseeugh/fHHH5KkjIwMNW3aVFFRUVqyZIkOHjyotm3bytvbW0OHDnXESwEAALglOHu+xOWx9QAAAAAAAICb7MyZM3ryySc1ceJEhYWFWaefPn1aH3/8sd59913Vr19f1apV06RJk7RkyRItW7ZMkjRv3jxt3LhRn376qeLi4tSkSRMNHjxYY8eOVVpamqNeEgAAAJwAIxLljhPjAADAKVg8LDftAQAAgFuDM+fLhIQENW3aVA0bNrSZvmrVKp0/f95mevny5VW8eHEtXbpUkrR06VJVrlxZkZGR1jaNGzdWYmKiNmzYcE39AQAAwJU5+zHMy41INHv2bE2fPl2LFy/WgQMH9NBDD1nnZ41IlJaWpiVLlmjKlCmaPHmyXn/99et6v5wNJ8YBAAAAAACA65CamqrExESbR2pqaq7tv/jiC61evVrDhg3LNu/QoUPy8fFRaGiozfTIyEgdOnTI2ubik+JZ87PmAQAA4NbDiERXxolxAADgFDw8LTftcTXGjx+vKlWqKDg4WMHBwYqPj9ecOXOs8xmGCAAAwHndrHw5bNgwhYSE2DxyOuktSXv37lXPnj312Wefyc/P7ya/IwAAALgeN/MY5tVefMmIRFfGiXEAAIDLKFq0qN58802tWrVKK1euVP369dW8eXNrIGQYIgAAAPTr10+nT5+2efTr1y/HtqtWrdKRI0d0++23y8vLS15eXlq8eLHee+89eXl5KTIyUmlpaTp16pTN8w4fPqyoqChJUlRUVLaLMbP+zmoDAAAA13Y1F18yIlHeeDm6AwAAAM6sWbNmNn8PGTJE48eP17Jly1S0aFF9/PHHmjZtmurXry9JmjRpkipUqKBly5apVq1a1mGIFixYoMjISMXFxWnw4MF66aWXNGDAAPn4+DjiZQEAAMCOfH195evrm6e2DRo00Lp162ymdejQQeXLl9dLL72kYsWKydvbWz///LNatWolSdqyZYv27Nmj+Ph4SVJ8fLyGDBmiI0eOKCIiQpI0f/58BQcHKzY21o6vDAAAAI7Sr18/9enTx2ZaTpkza0Si+fPnMyLRFXBiHAAAOAWLx9UNcX49UlNTsw07lJeDmRkZGZo+fbqSk5MVHx9/xWGIatWqleswRM8995w2bNig2267zb4vDgAAAFY3M2PmVVBQkCpVqmQzLSAgQPnz57dOf+aZZ9SnTx+Fh4crODhY3bt3V3x8vGrVqiVJuvfeexUbG6unnnpKw4cP16FDh/Tqq68qISEhzyfoAQAAcPVuZr7M68WXF49IlCUjI0O//vqr3n//fc2dO9c6ItHFVeOXjki0fPlym+W644hEDKUOAABuOVczDJEkrVu3ToGBgfL19VWXLl00c+ZMxcbGMgwRAAAAboiRI0fqgQceUKtWrVSnTh1FRUXpm2++sc739PTU999/L09PT8XHx6tNmzZq27atBg0a5MBeAwAAwBGyRiRas2aN9VG9enU9+eST1n9njUiUJacRidatW6cjR45Y27jjiERUjAMAAKdg8bh51+vldRiiLOXKldOaNWt0+vRpzZgxQ+3atdPixYtvdDcBAABwnW5mxrwev/zyi83ffn5+Gjt2rMaOHZvrc6Kjo/Xjjz/e4J4BAADgYs6YLxmRKO84MQ4AAG45V3MPSEny8fFR6dKlJUnVqlXTihUrNHr0aD366KMMQwQAAAAAAADAqY0cOVIeHh5q1aqVUlNT1bhxY40bN846P2tEoueee07x8fEKCAhQu3bt3G5EIk6MAwAAp+CM93/MTWZmplJTU1WtWjXrMEStWrWSlPMwREOGDNGRI0cUEREhyT2HIQIAAHBGrpQxAQAA4PxcJV8yIlHOODEOAABwGf369VOTJk1UvHhxJSUladq0afrll180d+5chYSEMAwRAAAAAAAAALgATowDAACn4KxXWx45ckRt27bVwYMHFRISoipVqmju3Llq1KiRJIYhAgAAcGbOmjEBAADgmsiXro0T4wAAAJfx8ccfX3Y+wxABAAAAAAAAgPPjxDgAAHAKXG0JAAAAeyNjAgAAwJ7Il67Nw9EdAAAAAAAAAAAAAADgRqJiHAAAOAWLB9frAQAAwL7ImAAAALAn8qVrY+sBAAAAAAAAAAAAANwaFeMAAMApeHhyfx4AAADYFxkTAAAA9kS+dG1UjAMAAAAAAAAAAAAA3BoV4wAAwClYPLjaEgAAAPZFxgQAAIA9kS9dGxXjAAAAAAAAAAAAAAC3RsU4AABwChYPrtcDAACAfZExAQAAYE/kS9fG1gMAAAAAAAAAAAAAuDUqxgEAgFPg/jwAAACwNzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDVOjAMAAAAAAAAAAAAA3BpDqQMAAKfAMEQAAACwNzImAAAA7Il86dqoGAcAAAAAAAAAAAAAuDUqxgEAgFOweHC9HgAAAOyLjAkAAAB7Il+6NrYeAAAAAAAAAAAAAMCtUTEOAACcAvfnAQAAgL2RMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtUTEOAACcAvfnAQAAgL2RMQEAAGBP5EvXxtYDAAAAAAAAAAAAALg1KsYBAIBzsHB/HgAAANgZGRMAAAD2RL50aVSMAwAAAAAAAAAAAADcGhXjAADAKVg8uNoSAAAA9kXGBAAAgD2RL10bFeMAAAAAAAAAAAAAALdGxbgTyOfnoWeeKK67a+ZXWLCXtu1M1pj/7dLm7Wes8zu3idZdNcMVEuilg0dS9fUPBzVr3uHLLrdefH49/XgxRUX4af/Bc5owdbf+XH3Kps3TjxXTA40iFejvqXWbk/Tuh/9o/8GUG/VS4QQ++eZ7/bJslfbsPyQfH29VLldaXZ96WNFFCkmSEpPO6KMvv9XytRt06NhxhQUH6e47blfnx1oqMMBfknQ66YwGjPpAO3bv0+mkMwoLCdLdNW5TlydbK8A/X67rTkw6o3c//ky/r1wjD4tF9WpVV6+nn5B/Pj9rm+279uqdj6Zq0/adCg0OUuv7G6pNi/tv7JuCm276l59ryZLftX/fXvn4+Kp8hVi1f7qjihYtZm2TlpamjydO0G+//qLz58/rttur67mEHgoLC7O2aXZ/o2zLfuGl/1Oduvfkuu6kpER9MH6slv+5TB4eFt1Z+251erar8uX7b9/dufMfTRg3Rtu2blFISKgeaNZcrR5+1E6vHrmxeHC9HnAtNq3/S99/M03/7NiiUyeOqc//DVON+LrW+adOntDnk8fp7zXLdfZMkspXilP7Z/uoUOH/vnMH9UvQpvV/2Sy3wX0t1DHhxVzXa4zRjM8+0sJ5s5ScnKRyFaro6a4v2Cz3TFKiJn/wrlYv/10WDw/dcWc9tevUS375/O34DsAZTF/7j2b8/Y8OJp6VJJXKH6xONcurdskoSdKQBav1556jOnbmnPL5eKlqofzqfncllQwPsi5j+KK1WnvguHYcT1TJ8CB93qbBFdebmp6hkb+u07wt+5SWkaH46Ei9XD9O+QP+y5cHE89q2MK/tHLvMfl7e+mB2OLqdldFefH/zi3rofsL6/GHiik8zEc7dp7RyA+2a9O2pFzb31O7gDq2KamoCD/tO3BW4yfv1LJVJ2zaPPNkCTW7N0pBAV5atylRb4/bpn0Hz93ol4I8IGMCV+/jeUv189ot2nn4hHy9vRRXsoh6Na+nEpH5rW32Hj2pd75dqDX/7FNaeoZqVyill1s3Uv7gAGubiXOX6LcNO7Rl32F5e3nq9+G9r7huY4zG/fibvlmyVknnUhVXsoheebSxoiPCrW1OJ5/TmzPma/H67fKwWNSgajm91Lqh/H197PtGwKE+mz5Tvy39U3v275evj48qli+nzu2eVPGiRaxt3hn7gVavXadjJ04on5+fKpYvp2fbt7Fpc8+DD2db9mt9e6l+ndq5rjsxKUnvffg/LV2+ShYPi+rE11T3Th1sjh3t2Llboz/4SJu37VBoSLBaNm2ix1s1t9Orh6shX95ayJeuja3nBF5MKK3qVUI1ZPQ2dei9VivWntY7/WNVIPxCmEtoX0J33BaqIaO2qW2PNZrx/UH17FRKd9YIy3WZFcsF6bU+ZfXjz0fU6fm1+m35CQ15qbxKFv/vIOTjLYvooaaF9M6EHery8jqlpGbq7ddi5ePNMBDu7K8NW9Tqvgb6cNirGt2/r9IzMtRr0Ds6l5IqSTp68pSOnTilbm0f1acj39Ar3Z7Rn3+t09Bxk6zLsFgsurvGbXrr5R76Yswwvdqto1b8vVHDP5hy2XUPGP2hdu7dr9Gv99WI/+ulNRu36K0Jk63zk8+eU6/BbyuyYH79b/gAJbR9VB9/+Z2+nffLjXgr4EDr1/+tpg88qBHvvqfBQ95URka6Xn/lZaWk/BfuPvpwvJYvX6aX+r2mYW+9oxMnjmvYGwOyLatn77765NMvrY9a8bn/sJGkt4e/qT17dmnwkDf12oA3tH7933r/vZHW+WfPJuv1V19WRESkRr43Th2e6aRp06bqpzk/2O31A4A9paakqHjJ0nq6y/PZ5hlj9O6Ql3Tk8H71feVNDRs9WQULRmnoqz1svnMlqX7jBzX+k9nWxxMdEi673tlff6qfvp+uZ7q+oMFvfyRfPz+9+XpvpaWlWtu8//YA7duzU/83eLReeG2ENq9fo4nvv2WfFw6nEhmYT93vqqRPn6ivqU/coxrFCqrPrKXacSxRklQhIkwD7q2mGe0a6f2WtWVklPDN78rINDbLaV4xWveWLZrn9b6z+G/9+s9Bvdn0Dk18uI6OJqfohdnLrPMzMo16frtE6RlGkx6tq4GNq2n2xt2asGSjfV44XE79uwqqW8cYTfp8l57ptUrbd57Ru4MqKzTEO8f2lcoHq/8Lsfp+3kE93XOVflt2XMNeqWjz2/rJVsXU+oEienvcNnXu+5fOpWTo3UGV+W0NwGWt3L5Hj959u6Y+/5Q+SHhU6RmZ6jL2S51NTZMknU1NU5dxX8oiiyZ2f1xTerfR+fQMdf9ghjIv+r/9fHqGGsWV08N33ZbndU9a8Kc+X7xKrz7aWJ8+31b5fL313LgvlXo+3dqm35TZ2nHwmCYkPKb3nm2t1Tv2atDnP9nvDYBTWLt+g1o0bayxI4ZqxKDXlJ6Rrhf7v6FzKf8VdZWNKaUXe3TVlLGjNHzgq5KMXnh9sDIyMmyW9VLPrvp6yofWx121alx23UPeeU+79uzViEGvadhrL+vvDZv09tgPrPOTz57VC/0HK7JgQX0w8i11af+Upnz+lWb/NN+u7wFcA/kScC2cGHcwHx8P1amVXxOm7tbfGxO1/1CKJn+5V/sPpah540hJUsXywZr7y1Gt2ZCoQ0dTNXv+Ye3YlawKpQNzXW7rBwpp+V8n9cV3B7R7/zn97/O92rozWS2bRFnbPPxAIU2dsU9/rDipf3af1dD3til/uI/uuiM81+XC9Y187Xk1rX+XShUvojIliuvVbs/o8LHj2rxjlyQppnhRDX2xm+6qEaeiURGqXjlWzz7RSn+sXKP0f0NlcGCAHrqvviqULqlCEQVUvUqsHrqvvtZu2prrenftO6Blf63Ty891UMWyMapaoaz6dGyjBX8s19ETJyVJc39dqvPpGXql6zMqVbyIGt1VUw/f31BfzJ57w98X3FwDBw9Tw0aNFR1dQiVLxahXnxd09OgRbd+2TZKUnJys+fN+UsdOXVQ17jaVLlNWPXv31aZNG7V5s+2B7ICAQIWFh1sfPj65XyG+d89urV61Qt179FG58hVUsWIlPdulm3779RcdP35MkvTLooVKP5+uHr2eV3R0CdWpe4+aPdhC3878+sa9IZB04f48N+sBuJO46vF69KlnbarEsxw6sFfbtmzQ08+9oJiysSpcNFpPd31BaWmpWrLY9qCNj6+fQsPyWx/+/gHZlpfFGKM5s75Sy0faq3qtOoouWVpde7+ukyeOaeWyXyVJ+/fu0trVy9Sp+8sqXa6iylesqnbP9tHS3xboxPGj9n0T4HB1YgrprpJRKh4WqOiwICXUrih/by+tO3Sh6uGhKiV1e9ECKhwSoAqRYep6Z0UdTjqnA4nJ1mW8eE9VPRIXoyIheRtRICn1vL5bv0t96lTRHcUjVCEyTP3vraa1B09o3cEL6122+7B2nkjU4Puqq1xEqGqXjNJz8bH6au0/Op+Raf83Ak7vsRZFNXvuQf3482Ht2ntWI8ZtU0pqph5oFJVj+4cfLKI/V5/Q5zP3afe+s/ros13auuOMWj1QxKbNJ1/t1u9/HteOXcl6Y+Rm5Q/31d21Ctysl4XLIF8CV29810fVvFYVlS5UUOWKRmpQm6Y6eDJRm/YekiSt+We/Dhw/rcFtmqpM4QiVKRyhwU811ca9B7V8627rcro2vVtP1b9DZQoXzNN6jTH67JcV6tT4Tt1TpazKFonQG089oKOnz2jh3xeOOf1z6Jj+2PSP+j/RRFVKFNbtMcX0cutG+mn1Rh05nXt1JlzP8IGv6r4G96hk8WIqXbKEXu6ZoMNHj2nr9n+sbZrd10hVK8UqKjJCZWNK6eknH9eRY8d16Ijt743AgACFh4VZH5c7drR77z4tX71GL3R7TrHlyqhybAX16Py0Fv22RMeOX8iYC375Tenp6Xqxx3MqWbyY6teprYeaNdH0776/MW8GnBr58tbDMUzXdtUnxo8dO6bhw4erZcuWio+PV3x8vFq2bKkRI0bo6FEOcF0tTw/Jy9OitDTbgzKpaZmqXCFYkrRhc6Jq1wi3VpDfVilYxQrn04q1p3NdbsWyQVr1t+38FX+dUsVyF4YqLBTpq/xhPlq19pR1fvLZDG3almRtg1tD8tkL1WLBQbkf/D5z9qwC/P3k5emZ4/yjJ05q8Z+rFFexXK7LWL9lu4IC/FWhdEnrtOpVYuVhsWjjtguBdv3WHYqrUFbe3v/d5aFmXCXtOXBIiWeSsy0T7iM5+cL2DQq68P2zfdtWpaenq2rc7dY2xYoVV8GCEdq8aZPNcyeMH6MnHmulPr26af68n2SMbeXZxTZv3qSAwECVKfvfvhp32+2yWCzaumXzhTabNqpipcry9v7vqs7bb6+u/fv26kwSP7KBG4F8eeOcP39ekmwO/Hh4eMjL20dbNv5t0/aPX+ap0xNN9ELCk/p8ynilpuR+e50jhw/o1MnjqhRX3TrNPyBQMWVjtW3zeknS1s3rFRAQpJgyFaxtKsdVl8XioR1bqdZ1ZxmZRnO37NW59AxVKZT9ottz59M1a8NuFQn2V1TQtQ+rv+nwSaVnGtUs/t/B9pLhQYoKyqe/Dx6XJP198IRKFwixGVo9vkSkktPSteN44jWvG67Jy8uisqWDtHLtSes0Y6SVa06qYrngHJ9TqXywVq45aTPtz79OqFL5C+0LR/qpQLivVlzUJvlshjZuTbS2AeAYZEz7OfPvKIPB/94+Ly09XRaL5OP133EiXy8veVgs+uufvde8nv3HT+tYYrJqlithnRaUz0+VSxTW3zv3S5LW7tyvoHy+qli8kLVNzXIl5GGxaN2uA9e8bji/5OQLt+wJDsq5WOxcSop++nmRCkVGKKJAfpt5oyd8pOZPPq3nnn9ZP85feNljRxs2b1VgQIDKlYmxTqsWV0UWi0Wbtl4o6NiwZauqVIy1OXZU47Y47d1/QElnzlzza4TrIV8Crueq7jG+YsUKNW7cWP7+/mrYsKHKli0rSTp8+LDee+89vfnmm5o7d66qV69+hSUhy7mUTK3fnKi2DxfV7n1ndfL0eTW4q4Aqlg3S/kMXDkaO/min+j4Xo68/qq709ExlGunt8Tv098bcD+SEh3rr5KnzNtNOnj6v8FDvf+dfODh64vQlbU6dV3gY9+O5VWRmZmrUpM9VpXwZxRTPecjKU4lJmjR9th5sWC/bvNffnaDfVvyl1LQ03VU9Tv2eezrXdR0/laiwENv/uL08PRUUGKDjJ0//2+a0CkfYXvUWHnrhOSdOnVZwYO4n7+G6MjMzNfGD8aoQW1HRJS5cOHHy5El5eXkrMND2x05oWJhOnfzvfjtPtmmnKlXj5Ovnp79Wr9T4se/p3LlzerB5yxzXdfLkCYWGhNpM8/T0VFBQsE6ePGltExlVyKZN6L/3NT958oQCg7h46Ebh/jy3JvLljVW4aLQKFIzU51MmqGO3F+Xnm08/fveFThw7olMnj1nb1a7bSAUiohQWXlB7dm3X55PH6eD+Perzf8NyXO7pf7+LQ0JtT3qGhIZbv6dPnzyu4FDbW/94enopMChIp04et+fLhJPYduy0Onzxi9LSM5XPx0tvN6ulUvn/y39frd2h935br3PnMxQdFqixre6St+e1f/cfP5sqb08PBfnZ/n7J7++n48kXDuAfT05RuL+vzfysv48n537xB9xTSLC3vDwtOnHS9nfwiVPnFV0054s0wkN9dPJUms20k6fOW39TZ/1+zvb7+1Qav62dBBnz1kTGtJ/MTKPhXy9QXKmi1srvKiWKKJ+Pj0bN+kXdm9WVMUajZ/2ijEyjo4nXXthwLPHCCcX8lxRv5A8K0LF/l3s8MVnhl8z38vRQsH8+Hb+OdcO5ZWZm6v2PJqtShXIqGV3cZt63P87VB5OnKiUlVcWKFNaIQa/ZnLDu8MSjuq1KJfn5+mrlmrUaNeEjnUtJUatm9+e4rhMnTyks1PYYpqenp4KDAnXi5ClJ0smTpxQVGWHTJiw0xPr8oMDcR3qFeyFf3prIl67tqk6Md+/eXQ8//LAmTJggi8W2hN8Yoy5duqh79+5aunTpZZeTmpqq1NRUm2mZGWny8Lw1P9RDRm/TS91K65uPayg9w2jbP2f08+/HVC7mQsh7qGkhxZYNUr+hm3ToaKqqxgarV6dSOnYiLVtVOHA13pn4qf7Zs08ThvxfjvOTz55T36GjVLJYYXV8tHm2+T07PK6nH2muvQcPacKnM/Te5M/1Que2N7rbcDMTxo3Rnt279NbbI6/c+BKPPdHG+u+YmNJKSUnRzK+n53piHIDzuZH5Mi0tVT4+vrk849bg5eWl3v83TB++N0ydHr9PHh6eqhRXXXHV4m2qJBrc18L67+IlYhQall9DXu2hwwf3KbJQ3u/3jFtbibAgfd6mgc6knteCbfvVf+5KTXy4jvXkeJPyxVWreKSOJado6qqtevmH5frfo3Xl65XzqEQAAFwre2TMnPKlSTsvX5+c7xnrroZOn6cdB49qcq//fn+HB/lrxNMtNOSruZq2eKU8LBbdVy1WFYpFysPCsK+wv9ETPtLOPXs15s3B2eY1rHuXqsdV0fETJ/XVt7M0cPi7ev+tN6yjZrV9rLW1bZmYkjqXkqIvZ87K9cQ4AMC9XdVlDWvXrlXv3r2zBUpJslgs6t27t9asWXPF5QwbNkwhISE2jz1bp15NV9zKgcOp6vnaBjV+fJke7rxSXV5aJy8viw4cTpWPj4c6PVFcYyfv0pKVF+4FPnPOIS3845gebV4412WeOHVeYaG2QT0sxFsn/r3K6MS/VySFh1zSJtRbJ07aXq0E9/TOxKn6Y9UavT/wJUXkzz7EZfK5c+r9xjvy9/PTsBe7y8sr+3U0+cNCVKJoId1d4za92KWdZs5dpGP/XjmZrW1osE6eth3lID0jQ0lnkpU/LOTfNiE6ccq2Tdbf4f9edQn3MmHcGK1Y/qeGvDlCBQr8NwxqWFiY0tPP68wlw0+dOnlSoWHZ99cs5cpV0LFjR3X+fM7fY2Fh4Tp1+pTNtIyMDCUlJSrs36rwsLBwnTppO5xR1t9hl1k3rh/357k13ch8OemDUfbvsAsqVbq83nxvij7+Yp7GfzJL/QaOVFLSaUVE5Z4lS5erKEk6dHBfjvND/v0+PH3qhM3006dOWL+nQ8LyK/GU7fdpRka6ziQlKTTMdmhDuAdvTw8VCw1Uhcgwdb+rksoWCNHnf223zg/y9VbxsEDdXrSAhj9QS7tOJGnR9msf8jS/v6/OZ2QqKcX2//3jZ1OUP+DCRTH5A/x04qztSY2svy8eXh23htOJ55WeYRQeZvs7ODzUW8dz+R184lSawkJtL+IPC/W2/qbO+v2c7fd3qA+/rZ0E+fLWZI+MmVO+HPHlDzeox85p6Ffz9Ov67ZrY/QlFhtlW0N5ZoaR+6N9Fi4b20C/Dempo22Y6cuqMiuYPveb1FQi+UGV7PMm28vt4UrIKBF8oIMofHKATl8xPz8hU4tlzyh/MSIPuaPSEj7R05WqNfKO/ChbI/jsiMCBARQsXUtVKsRrw0vPau++Aflu6PNflVShbRkePHVfa+fM5zg8PC9XJS45PZmRkKDHpjMLDQiVJYWGhOnnKtmAt6++sNrg1kC9vTRzDdG1XdWI8KipKy5fn/p/K8uXLFRkZecXl9OvXT6dPn7Z5FC/71NV0xS2lpGbqxMnzCgzwVI24UP2x/IS8PC3y9vaQybS970lmprnsFZgbtiapWmXbE4nVq4Zow5YL98c9eDhVx0+m6fYqodb5/vk8VaFMkLUN3JMxRu9MnKrFy1drzIAXVTiyYLY2yWfPqdegd+Tt5aXh/Xrk6WrozH/30fPn03OcX6lcaSUln9XmHbus01at26RMYxRbptSFNmVjtGbThXtLZ1nx9wYVLxzFMOpuxhijCePGaOnSPzRk2HBFXTJ0eekyZeXl5aW1a/6yTtu3b6+OHj2i8hUqXLo4q3/+2a7AwCB5e+c8Akn58hWUfOaMtm/bap22du1fMsaobLnyF9pUiNWG9ets9sM1f61SkaLFGEYduAFuZL7s8GwvO/bU9fkHBCo4JEwHD+zVP9s3q3rNu3Ntu/ufC/fOCw0rkOP8iMjCCg3Lr/VrV1qnnT2brB1bN6pM+UqSpLLlKyk5OUn/bN9sbbNh7SoZk6mYsrH2eElwcpmS0jIyc5xnjJG5zPy8qBAZJi8Pi5bv/e8+sbtOJOlQ0jlVKXThoGmVQuHafuy0Tpz9b9j0P3cfUYCPl0qF8//6rSY93Wjr9iRVq/LfbR4sFqla1TBt2JLzrcrWb05U9aq2t4WoERem9ZsvtD9wOEXHTqTatPHP56nYssHWNgBuPntkzJzy5QuPNrV3V52SMUZDv5qnhX9v1cTuj6togdBc24YF+ivY309/btmlE2eSVa9y6Wteb5H8ISoQHKA/t+yyTjtzLlXrdh1QlZJFJElVSxZR0rlUbdxzyNpm+dbdyjRGlUvkfuEnXI8xRqMnfKTfly3Xu2/0V6GoK/8uNP8+73x6zie9JWnHzl0KCgyQj3fOxzsrli+rM8nJ2rJ9h3Xa6r/XyxijCmXLXGhTrqz+3rDR5tjRyjV/q1iRwgyjfoshXwKu56qGUu/bt686d+6sVatWqUGDBtYAefjwYf3888+aOHGi3n777Ssux9fXV76+tsNa3qrDqEtSjbhQWSzSnv3nVLSQn7q0LaE9+8/px4VHlJFh9Nf60+rSroRS0/7RoaOpiqsYrMZ1C2rs5F3WZfxfj9I6ejxNEz/bI0ma8f1BvTe4oh55sLCWrTqp+ncVULmYQL094R/rc6Z/f1BtWxfVvoPndOhwqp5+vJiOn0jT78tPXNpFuJG3J07V/N+W6a2Xe8g/Xz7r/b0D/fPJ19fn35PibyslNU39e3ZW8tkUJf97IDE0OEienh5asmqtTpxOVIXSJeXv56d/9u7X2E++UpXyZVTo33uEb9z2jwa9N1FjBryogvnDVKJoYdW6rbLeHD9JLz7bTukZGXr3o0/VsPYdKhh+4T/5e++upf9N/05Dx01Smxb365+9+/TVD/PVo/3jjnmzcMOMHzdGv/6yUK+8PlD58vnr5IkL3zv+AQHy9fVVQECAGt17nz6eOEFBQUHy9/fXBxPGqnyFWJUvf+FkyvI/l+rkyZMqX76CvH18tOav1Zr+5Rdq2eq/IbK2btmsd98ZriFDhyt/gQIqVjxat1eroTHvjVRCt55KT0/XB+Pe19116il//gv7bt169fX5tKl6b9Q7avXwo9qza5dmffetOnbucvPfqFsMV0Hemm5kvvTxyf1giDtJOXfWprL76OGD2vXPVgUGBqtARJSW/b5QwSGhyl8wUnt37dCUiaNUo2YdVbm9piTp8MF9+mPxfMVVj1dQUIh279quqR+NVvmKcYou+d+Bzee7PKbH2j2nGvF1ZbFY1OTBR/Ttl1MUVbiYIiILa/qnHyosvICq16ojSSpSrISq3l5LE8e8qWcSXlRGeromffCu4u9uqPD82S/Mg2sb8/t61S4RpaigfEo+n66fNu/Vqr1H9f5DtbXvVLLmbd2n+OgIhebz1ZEz5zR5xRb5eXnqrpL/HeDce+qMzqal63hyqlLTM7TlyClJUqn8wfL29NCRM+fUZcZvGnRfdVWKCleQr7eaVyqhdxf/rWA/HwX6eGn4orWqUihclQtdGLmgVnSkSoYH67WfVqrn3ZV0LDlV45Zs1CNVS8mHIdxvSV98u0+v9C6vzduTtGlrkh5pXkT5/Dz0w4ILJ1he7V1OR4+n6YNPdkqSps/ar/eHVdVjLYpqycrjanh3hMqXDtLw9/+70HL6rP1q92hx7T1wTgcPp6hjmxI6fiJVvy075pDXCFtkzFuTPTJmTvky5RYZRn3oV/M0Z9VGjerUSgF+PtZ7fwf6+crv3/fg22V/q1RkfoUF+mvtrv0aPmOB2tSroRKR/1X0HjxxWqfPpujgyURlZBpt3ndYklS8YJj8fS8cC24++EP1eLCuGlQtJ4vFoifr1dDEuUsUHRGuIvlDNPb731QwJFD1q1y4T3ypqAKqXaGUBn4+R68+2ljpmZkaNn2e7rs9VhEhXPTmTkZN+Eg///q73njlRfnn89OJf0fzC/D3l6+vrw4cOqxFvy1R9duqKDQkWEePndDnX8+Ur6+Pala7XZK0ZPlKnTx1WrHlysjH21sr1/ytz6bP1CMtm1nXs2nrNg0b+b7eeeN1FcyfX9HFiuqO2+P0zvsfqHfXTkpPz9B7H3yse+6+UwX+HXWzQd27NOWL6Ro+Zrweb9VCO3fv0Tezf1TXZ9rd/DcKDke+vPWQL13bVZ0YT0hIUIECBTRy5EiNGzdOGRkZkiRPT09Vq1ZNkydP1iOPPHJDOurOAv091alNtArm91HSmXQtXnpcH03bo4yMCxW4g97dqs5tovVqrzIKDvTSoaOp+mjaHn0397B1GREFfJV5UbHFhi1JGjxym555org6PVlc+w6m6JW3NmvnnrPWNp/P3K98vh7q2yVGgQFeWrcpUS8M3qi087bV6XAvM+cukiQlvP6WzfRXEp5R0/p3acs/u7Vh24ULKB5JeMmmzdfjR6hQRAH5+vho1oLFem/S50pLT1dk/nDVrVlNTz3035XTKalp2nPgkNL//Z6QpAE9O+udjz5VjwEjZPGwqF6taur99JPW+YEB/hr1Wl+989FUPf3iAIUEBanDww+qxb317P02wMHm/DBbkvR/L/W1md6zd181bNRYktSx83OyWCwaNmSQzp8/r9urVdNzXXtY23p6eunH72fp44kTZIxRocKF9UynZ9X4vv/uEZWamqr9+/YqPeO/K3j7vviyJox7X6/+34uyWCy6s/bd6twlwTo/ICBAg954UxPGjVHvHl0VHByix554Uvc1uTUqA4CbjXx5/f7ZvlmD/6+b9e+pH78nSapT/3491/tVnTpxTFM/fk+nT51QWFh+3V2/iR56tIO1vZeXt9atWaE5s75UakqK8heI0B133qOWj7a3Wc+B/Xt0Nvm/W1w0a9VGqSkp+uj9t3Q2+YzKxVbRywPftbmve7e+AzRpwjsa8moPWSwW3XFnPbXv3PsGvRNwpJNnU/X63JU6lpyiQB9vlSkQrPcfqq1a0ZE6euac1uw/ps//2q7ElDTl9/fTbUUL6H+P1lW4/3/DmQ+ev1qr9v13oOeJzxZKkmY/3ViFQwKUnpGp3SfPKOX8f/ny+bpV5GGx6MXZy5SWkan4EpF6uX6cdb6nh0WjW9ypYT//pfZfLFY+b089EButLncyasGtauHvRxUa4q2OT5ZQeJiPtv9zRs/3X6eT/952LLKgny4esG395kQNfHuTOrUpqc5tS2rfgXPqN2SDzW/rz77eKz8/T73YreyF39YbT+v5/uv4bQ04EBnz+nz1+4XR2555b5rN9EFP3q/mtapIknYdPqH3Zi3W6bPnVDg8RB0b36mn7qlh037cD79p1vL11r8ffWuSJOmjHo+rRpnoC8s5ckJnzv1325MODWvqXFqaBn3+k5LOpei2UkU1ruuj8vX+7zD2sHbNNGz6fHV+/wt5WCxqEFdWL7duZMd3AM5g1px5kqTe/zfAZvpLPbvqvgb3yMfbW+s2btLXs35QUvIZhYWGqkrFChrz1hsK+/eWjF6envr2h5809uPJMsaoSKEoPfdMOz1wbwPr8lJT07R3/wFlpP+XMV95vodGf/Cxnn9tkDwsFt0dX0s9Ov/3GyowIEAjBr6m0R98pGd7v6SQ4CC1fay1mt3HfngrIl8CrsVijLmmT9L58+d17NiFgxYFChSQdy5Dj+RV3YeWXNfzgev1zSBH9wCQjucr6uguACobU9wh6z3Sr+1NW1fEsE9u2rqQd/bOl6u3HrdHt4DrUnbhlUc8AG60+364z9FdwC3u99l1Hbbum5UxyZfOy54ZM2XeJHt1C7hmJ6KrOboLgB7pe9LRXQAcljE5hunarqpi/GLe3t4qVKjQlRsCAADkhYeHo3sAByNfAgAAuyNj3vLImAAAwK7Ily6NrQcAAAAAAAAAAAAAcGvXXDEOAABgTxaLxdFdAAAAgJshYwIAAMCeyJeujYpxAAAAAAAAAAAAAIBbo2IcAAA4BQv35wEAAICdkTEBAABgT+RL18bWAwAAAAAAAAAAAAC4NSrGAQCAU7B4cH8eAAAA2BcZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMA5cH8eAAAA2BsZEwAAAPZEvnRpbD0AAAAAAADgJhk/fryqVKmi4OBgBQcHKz4+XnPmzLHOr1evniwWi82jS5cuNsvYs2ePmjZtKn9/f0VEROiFF15Qenr6zX4pAAAAgEvhxDgAAHAKFg/LTXsAAADg1uCM+bJo0aJ68803tWrVKq1cuVL169dX8+bNtWHDBmubTp066eDBg9bH8OHDrfMyMjLUtGlTpaWlacmSJZoyZYomT56s119/3W7vGwAAAHLmrMcwufgybxhKHQAAAAAAALhJmjVrZvP3kCFDNH78eC1btkwVK1aUJPn7+ysqKirH58+bN08bN27UggULFBkZqbi4OA0ePFgvvfSSBgwYIB8fnxv+GgAAAOBcsi6+LFOmjIwxmjJlipo3b66//vrLmjE7deqkQYMGWZ/j7+9v/XfWxZdRUVFasmSJDh48qLZt28rb21tDhw696a/nRqFiHAAAOAWLxeOmPQAAAHBrcPZ8mZGRoS+++ELJycmKj4+3Tv/ss89UoEABVapUSf369dPZs2et85YuXarKlSsrMjLSOq1x48ZKTEy0qToHAACA/TnrMcxmzZrp/vvvV5kyZVS2bFkNGTJEgYGBWrZsmbVN1sWXWY/g4GDrvKyLLz/99FPFxcWpSZMmGjx4sMaOHau0tDS7vX+OxpFhAAAAAAAA4DqkpqYqMTHR5pGamppr+3Xr1ikwMFC+vr7q0qWLZs6cqdjYWEnSE088oU8//VSLFi1Sv379NHXqVLVp08b63EOHDtmcFJdk/fvQoUM34NUBAADAlXDxZe4YSh0AADgH7v0NAAAAe7tJGXPYsGEaOHCgzbT+/ftrwIABObYvV66c1qxZo9OnT2vGjBlq166dFi9erNjYWHXu3NnarnLlyipUqJAaNGigHTt2KCYm5ka+DAAAAFzJTTyGmZqamu1iS19fX/n6+ubYft26dYqPj1dKSooCAwOzXXwZHR2twoUL6++//9ZLL72kLVu26JtvvpF061x8yYlxAAAAAAAA4Dr069dPffr0sZmW2wFLSfLx8VHp0qUlSdWqVdOKFSs0evRoffDBB9na1qxZU5K0fft2xcTEKCoqSsuXL7dpc/jwYUnK9b7kAAAAcD1cfGl/nBgHAABOweLBHV4AAABgXzcrY16ucicvMjMzcx16fc2aNZKkQoUKSZLi4+M1ZMgQHTlyRBEREZKk+fPnKzg42FoRBAAAgBvjZh7D5OJL++PEOAAAAAAAAHCT9OvXT02aNFHx4sWVlJSkadOm6ZdfftHcuXO1Y8cOTZs2Tffff7/y58+vv//+W71791adOnVUpUoVSdK9996r2NhYPfXUUxo+fLgOHTqkV199VQkJCdd1ch4AAADOhYsv7Y8T4wAAwClYuMc4AAAA7MwZM+aRI0fUtm1bHTx4UCEhIapSpYrmzp2rRo0aae/evVqwYIFGjRql5ORkFStWTK1atdKrr75qfb6np6e+//57Pffcc4qPj1dAQIDatWunQYMGOfBVAQAA3BqcMV9KXHyZV5wYBwAAAAAAAG6Sjz/+ONd5xYoV0+LFi6+4jOjoaP3444/27BYAAABcGBdf5g0nxgEAgHOwcI9xAAAA2BkZEwAAAPbkpPmSiy/zxjm3HgAAAAAAAAAAAAAAdsKJcQAAAAAAAAAAAACAW2ModQAA4BQsHhZHdwEAAABuhowJAAAAeyJfujYqxgEAAAAAAAAAAAAAbo2KcQAA4Bw8uF4PAAAAdkbGBAAAgD2RL10aWw8AAAAAAAAAAAAA4NaoGAcAAE7BYuH+PAAAALAvMiYAAADsiXzp2qgYBwAAAAAAAAAAAAC4NSrGAQCAc+D+PAAAALA3MiYAAADsiXzp0th6AAAAAAAAAAAAAAC3RsU4AABwChYP7s8DAAAA+yJjAgAAwJ7Il66NinEAAAAAAAAAAAAAgFujYhwAADgHC9frAQAAwM7ImAAAALAn8qVLY+sBAAAAAAAAAAAAANwaFeMAAMA5cH8eAAAA2BsZEwAAAPZEvnRpVIwDAAAAAAAAAAAAANwaFeMAAMApWLg/DwAAAOyMjAkAAAB7Il+6NrYeAAAAAAAAAAAAAMCtUTEOAACcA/fnAQAAgL2RMQEAAGBP5EuXRsU4AAAAAAAAAAAAAMCtUTEOAACcgsWD6/UAAABgX2RMAAAA2BP50rWx9QAAAAAAAAAAAAAAbo0T4wAAAAAAAAAAAAAAt8ZQ6gAAwDlYLI7uAQAAANwNGRMAAAD2RL50aVSMAwAAAAAAAAAAAADcGhXjAADAOXhwvR4AAADsjIwJAAAAeyJfujS2HgAAAAAAAAAAAADArVExDgAAnAP35wEAAIC9kTEBAABgT+RLl0bFOAAAAAAAAAAAAADArVExDgAAnIKF+/MAAADAzsiYAAAAsCfypWtj6wEAAAAAAAAAAAAA3BoV4wAAwDlYuF4PAAAAdkbGBAAAgD2RL10aWw8AAAAAAAAAAAAA4NaoGAcAAM7Bw+LoHgAAAMDdkDEBAABgT+RLl0bFOAAAAAAAAAAAAADArVExDgAAnIKF+/MAAADAzsiYAAAAsCfypWtj6wEAAAAAAAAAAAAA3BoV4wAAwDlwfx4AAADYGxkTAAAA9kS+dGlUjAMAAAAAAAAAAAAA3BoV4wAAwDlwfx4AAADYGxkTAAAA9kS+dGlsPQAAAAAAAAAAAACAW6NiHAAAOAcL9+cBAACAnZExAQAAYE/kS5dGxTgAAAAAAAAAAAAAwK1RMQ4AAJyDB9frAQAAwM7ImAAAALAn8qVLY+sBAAAAAAAAAAAAANwaJ8YBAAAAAAAAAAAAAG6NodQBAIBzsHC9HgAAAOyMjAkAAAB7Il+6NLYeAAAAAAAAAAAAAMCtUTEOAACcg4fF0T0AAACAuyFjAgAAwJ7Ily6NinEAAAAAAAAAAAAAgFvjxDgAAHAOFo+b97gKw4YNU40aNRQUFKSIiAi1aNFCW7ZssWlTr149WSwWm0eXLl1s2uzZs0dNmzaVv7+/IiIi9MILLyg9Pf263zYAAABchhPmy/Hjx6tKlSoKDg5WcHCw4uPjNWfOHOv8lJQUJSQkKH/+/AoMDFSrVq10+PBhm2WQLQEAABzESY9hkjHzhhPjAAAAl7F48WIlJCRo2bJlmj9/vs6fP697771XycnJNu06deqkgwcPWh/Dhw+3zsvIyFDTpk2VlpamJUuWaMqUKZo8ebJef/31m/1yAAAA4GBFixbVm2++qVWrVmnlypWqX7++mjdvrg0bNkiSevfurdmzZ2v69OlavHixDhw4oIceesj6fLIlAAAALkXGzBuLMcY4uhOSVPehJY7uAm5x3wxydA8A6Xi+oo7uAqCyMcUdst6UWWNv2rr8Hky45ucePXpUERERWrx4serUqSPpQsV4XFycRo0aleNz5syZowceeEAHDhxQZGSkJGnChAl66aWXdPToUfn4+Fxzf5C71VuPO7oLgMoufNvRXQB03w/3OboLuMX9Pruuw9Z9szLm9eRLSQoPD9eIESPUunVrFSxYUNOmTVPr1q0lSZs3b1aFChW0dOlS1apVi2zpQCnzJjm6C4BORFdzdBcAPdL3pKO7ADgsY7rKMUyJjJkTKsYBAMAtJzU1VYmJiTaP1NTUPD339OnTki4Ey4t99tlnKlCggCpVqqR+/frp7Nmz1nlLly5V5cqVraFSkho3bqzExETrVZsAAABwXdeaLzMyMvTFF18oOTlZ8fHxWrVqlc6fP6+GDRta25QvX17FixfX0qVLJZEtAQAAcHlkzNxxYhwAADgHD4+b9hg2bJhCQkJsHsOGDbtiFzMzM9WrVy/Vrl1blSpVsk5/4okn9Omnn2rRokXq16+fpk6dqjZt2ljnHzp0yCZUSrL+fejQITu9gQAAAMjGSfPlunXrFBgYKF9fX3Xp0kUzZ85UbGysDh06JB8fH4WGhtq0j4yMtOZGsiUAAIAD3cRjmFd78SUZ88q8HN0BAACAm61fv37q06ePzTRfX98rPi8hIUHr16/X77//bjO9c+fO1n9XrlxZhQoVUoMGDbRjxw7FxMTYp9MAAABwWlebL8uVK6c1a9bo9OnTmjFjhtq1a6fFixff6G4CAADAhQwbNkwDBw60mda/f38NGDAgx/ZkzCvjxDgAAHAOFstNW5Wvr2+eToRfrFu3bvr+++/166+/qmjRopdtW7NmTUnS9u3bFRMTo6ioKC1fvtymzeHDhyVJUVFRV9UPAAAAXIWblDGvNl/6+PiodOnSkqRq1appxYoVGj16tB599FGlpaXp1KlTNhU9hw8ftuZGsiUAAIAD3cRjmFd78SUZ88oYSh0AAOAyjDHq1q2bZs6cqYULF6pkyZJXfM6aNWskSYUKFZIkxcfHa926dTpy5Ii1zfz58xUcHKzY2Ngb0m8AAAC4jszMTKWmpqpatWry9vbWzz//bJ23ZcsW7dmzR/Hx8ZLIlgAAALcKX19fBQcH2zyu5mJMMmZ2VIwDAADnYHHO6/USEhI0bdo0fffddwoKCrLeUyckJET58uXTjh07NG3aNN1///3Knz+//v77b/Xu3Vt16tRRlSpVJEn33nuvYmNj9dRTT2n48OE6dOiQXn31VSUkJFx15ToAAACughNmzH79+qlJkyYqXry4kpKSNG3aNP3yyy+aO3euQkJC9Mwzz6hPnz4KDw9XcHCwunfvrvj4eNWqVUsS2RIAAMChnDBfSmTMvOLEOAAAwGWMHz9eklSvXj2b6ZMmTVL79u3l4+OjBQsWaNSoUUpOTlaxYsXUqlUrvfrqq9a2np6e+v777/Xcc88pPj5eAQEBateunQYNGnQzXwoAAACcwJEjR9S2bVsdPHhQISEhqlKliubOnatGjRpJkkaOHCkPDw+1atVKqampaty4scaNG2d9PtkSAAAAlyJj5o3FGGMc3QlJqvvQEkd3Abe4b9zrsw0XdTzf5e9bDNwMZWOKO2S9KT99dNPW5Xdfx5u2LjjO6q3HHd0FQGUXvu3oLgC674f7HN0F3OJ+n13XYeu+WRmTfHlrSJk3ydFdAHQiupqjuwDokb4nHd0FwGEZk2OYrs056/0BAAAAAAAAAAAAALAThlIHAADOwWJxdA8AAADgbsiYAAAAsCfypUtzmhPjj3S609FdwC0u3/L+ju4CoG3PfuHoLgAqe36Lo7sA2EXsps8d3QVAP3f/xtFdAKT7GEodAOwi5ayjewDor0oPO7oLgHTfh47uAQBcE6c5MQ4AAG5xFu7wAgAAADsjYwIAAMCeyJcuja0HAAAAAAAAAAAAAHBrVIwDAADnwP15AAAAYG9kTAAAANgT+dKlUTEOAAAAAAAAAAAAAHBrnBgHAAAAAAAAAAAAALg1hlIHAADOwYPr9QAAAGBnZEwAAADYE/nSpbH1AAAAAAAAAAAAAABujYpxAADgFIzF4uguAAAAwM2QMQEAAGBP5EvXRsU4AAAAAAAAAAAAAMCtUTEOAACcg4Xr9QAAAGBnZEwAAADYE/nSpbH1AAAAAAAAAAAAAABujYpxAADgHLjaEgAAAPZGxgQAAIA9kS9dGlsPAAAAAAAAAAAAAODWqBgHAABOwVgsju4CAAAA3AwZEwAAAPZEvnRtVIwDAAAAAAAAAAAAANwaFeMAAMA5cH8eAPh/9u47Oqpqb+P4M+m9k0Yv0quUEIqCRJqCKBa4qIgIFlARRS++KMUSu1gotis2VPQKCnoRBGnSg3QIvZNAEtJ7Zt4/AoMDCXXIlHw/a521nHP2nNkzGcOTs89vbwCAtZExAQAAYE3kS4fGTw8AAAAAAAAAAAAA4NSoGAcAAPaB9XkAAABgbWRMAAAAWBP50qFRMQ4AAAAAAAAAAAAAcGpUjAMAAPvgwv16AAAAsDIyJgAAAKyJfOnQ+OkBAAAAAAAAAAAAAJwaFeMAAMAumFifBwAAAFZGxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwDwbu1wMAAICVkTEBAABgTeRLh8ZPDwAAAAAAAAAAAADg1KgYBwAAdsHE3ZYAAACwMjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoD4wAAAAAAAAAAAAAAp8ZU6gAAwD4YDLbuAQAAAJwNGRMAAADWRL50aFSMAwAAAAAAAAAAAACcGhXjAADALpgM3K8HAAAA6yJjAgAAwJrIl46Nnx4AAAAAAAAAAAAAwKlRMQ4AAOwD6/MAAADA2siYAAAAsCbypUOjYhwAAAAAAAAAAAAA4NSoGAcAAPaB9XkAAABgbWRMAAAAWBP50qHx0wMAAAAAAAAAAAAAODUqxgEAgF0wsT4PAAAArIyMCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAfWJ8HAAAA1kbGBAAAgDWRLx0aPz0AAAAAAAAAAAAAgFOjYhwAANgFk1ifBwAAANZFxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwCybW5wEAAICVkTEBAABgTeRLx8ZPDwAAAAAAAAAAAADg1KgYBwAA9oG7LQEAAGBtZEwAAABYE/nSofHTAwAAAAAAAAAAAAA4NSrGAQCAXTAZDLbuAgAAAJwMGRMAAADWRL50bFSMAwAAAAAAABUkPj5ebdu2lb+/v8LDw9WvXz8lJiZatOnSpYsMBoPF9sgjj1i0OXTokG655Rb5+PgoPDxcY8aMUXFxcUW+FQAAANgJMualoWIcAAAAAAAAqCBLly7ViBEj1LZtWxUXF+v5559X9+7dtX37dvn6+prbDRs2TJMmTTI/9vHxMf93SUmJbrnlFkVGRmrlypU6fvy47r//frm7u+vVV1+t0PcDAAAA2yNjXhoGxgEAgF0wGZjIBgAAANZljxlz/vz5Fo9nzJih8PBwJSQk6IYbbjDv9/HxUWRkZJnnWLBggbZv364//vhDERERatmypV566SU999xzmjBhgjw8PK7pewAAAKis7DFfSmTMS2WfPz0AAAAAAADAQRQUFCgzM9NiKygouKTnZmRkSJJCQkIs9n/zzTcKCwtT06ZNNXbsWOXm5pqPrVq1Ss2aNVNERIR5X48ePZSZmalt27ZZ4R0BAADAkZExy0bFOAAAsA8Gg617AAAAAGdTQRkzPj5eEydOtNg3fvx4TZgw4YLPMxqNGjVqlDp27KimTZua9//rX/9SzZo1FR0drc2bN+u5555TYmKifvrpJ0lSUlKSxQVLSebHSUlJVnhHAAAAKFMFXsMsKCg472ZLT09PeXp6XvB5ZMzyMTAOAAAAAAAAXIWxY8dq9OjRFvsudsFSkkaMGKGtW7dqxYoVFvuHDx9u/u9mzZopKipK3bp10969e1W3bl3rdBoAAAB27UpvviRjlo+BcQAAYBfsdX0eAAAAOK6KypiXUrlzrpEjR2revHlatmyZqlWrdsG2MTExkqQ9e/aobt26ioyM1Nq1ay3aJCcnS1K5a0YCAADg6lXkNcwrufmSjHlhXIEGAAAAAAAAKojJZNLIkSM1e/ZsLV68WLVr177oczZu3ChJioqKkiTFxsZqy5YtOnHihLnNwoULFRAQoMaNG1+TfgMAAKBieXp6KiAgwGIrb2CcjHlpqBgHAAB2wSTWGAcAAIB12WPGHDFihGbOnKmff/5Z/v7+5vUaAwMD5e3trb1792rmzJnq3bu3QkNDtXnzZj311FO64YYb1Lx5c0lS9+7d1bhxY91333164403lJSUpHHjxmnEiBGXXbkOAACAS2eP+VIiY14qKsYBAAAAAACACjJt2jRlZGSoS5cuioqKMm/ff/+9JMnDw0N//PGHunfvroYNG+rpp59W//79NXfuXPM5XF1dNW/ePLm6uio2Nlb33nuv7r//fk2aNMlWbwsAAAA2RMa8NFSMAwAAu8Aa4wAAALA2e8yYJpPpgserV6+upUuXXvQ8NWvW1G+//WatbgEAAOAS2GO+lMiYl8o+f3oAAAAAAAAAAAAAAFgJFeMAAMA+GOxzfR4AAAA4MDImAAAArIl86dCoGAcAAAAAAAAAAAAAODUqxgEAgF0wcb8eAAAArIyMCQAAAGsiXzo2fnoAAAAAAAAAAAAAAKdGxTgAALALJtbnAQAAgJWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsgsnA/XoAAACwLjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoV4wAAwC6YxPo8AAAAsC4yJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdYH0eAAAAWBsZEwAAANZEvnRs/PQAAAAAAAAAAAAAAE6NgXEAAAAAAAAAAAAAgFNjKnUAAGAXTAaDrbsAAAAAJ0PGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALJnG3JQAAAKyLjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF0wG7tcDAACAdZExAQAAYE3kS8fGTw8AAAAAAAAAAAAA4NSoGAcAAHaB9XkAAABgbWRMAAAAWBP50rFRMQ4AAAAAAAAAAAAAcGpUjAMAALvA+jwAAACwNjImAAAArIl86dj46QEAAAAAAAAAAAAAnBoV4xXs6N51Slj8mU4e3qqczJO65cEpqts8znx84Tf/1o51sy2eU6NhJ/V75DNJ0pHda/TTlPvLPPc9o39QRI3mZR4rLirQ8p9f0+4Nv6mkuFA1GnZS17vGy8c/zNwm69Qx/fnDBB3ZvUbunj5q1LafOtz6tFxc+Zo4k89WbdfiXUd0IC1Tnm6ualE1TE/e2EK1QgMs2m06mqIpyzZry/FUuRoMqh8erKl33ygv99Lvw5P/XaZdyelKy81XgJeHYmpF6IkbWyrc37vc1y4oLtE7i//W7zsOqbDEqNjakXq+exuF+nqZ2xzPzNGrv6/X+kMn5O3hpj5Na+vxG5vLzYX7eJxJjYcHqubDA+Vds6okKXv7bu1+eapO/r5M7sGBqj/+cYXFdZJ3jSgVnkxT0i9/aNf491ScmS1J8m/eQHXHDFdIx9byCAtW3oGjOvjJdzrwwZcXfF334EA1ee8Fhd/SVTIalTR7gbY99YpKcnLNbfybNVDT919UYJtmKjyZpgNTvta+tz+9dh8GzFifB7gys1Zt0axVW3TsVKYkqW5EqB6Oa6tODWtJkgqKivX2vBWav2m3CotL1KF+Df3f7V0U6u8jSUrPydPYbxdo9/FUpefmKcTPR12a1NYTPTvIz8uj3NfNyM3Xa3OWaumO/XIxGNStWT0917ezfDzPPmfX8RS9OnuJth05oWBfbw3s2FxDurS+Zp8F7EPdMcPU8NVntP/9L7T96VclSU2nTlTYTR3kFR2u4uxcnVr1t3Y+/5ZyEveZnxfatb0aTHxS/k0bqDgnV0e/mqPEF96VqaSk3Ndy8fRQozf/rei7e8vF00MnF6zQ1scnqvBEqrmNV/UoNftwgkK7xKg4O1dHvpqjxP97+4LnhXO7o3e0Bt5RXSHBHtq7P1vvfrRHO3Znldu+a8cwPXRvbUWGe+nIsVxNm7FfqxPSLNoMHVRLfbpHyt/XTVt2ZOqtqbt15HjetX4ruARkTODyzVq5+fx8eXM7y3w5d7llvryjqzlfJh47qf/8maC/9x9Tek6eokMCdFf7ZhrUueUFX9ecL7fvO5svb7vBMl8eS9Grc5Zo2+Hk0/myhYZ0JV9WBmVlzH9qO/cThfe8Qev7P6bkXxaZ919JFuT6ES4X+bJyIV86NkY8K1hRQa6qRDdQk5j++vU/I8tsU7NhZ8X9K9782NXtbPiLqt1KQyetsGi/+rf3dHj3KoVXb1bu6y6f/ar2b1+qXg9Mlqe3v5b8+JJ+/c9I3fXkd5Iko7FEv3z8sHz8w3TXk98pJ/OEFnzznFxc3dXh1tFX85ZhZzYcPqF7rq+nJpGhKjYZ9eHSzXp01hL9NLS3vD1KfyVsOpqikbOWakhsIz0X11quLgbtOpEuF8PZX/hta0RoaPvGCvPz1omsPL37598aM2eFvrjv5nJf+61Ff2vF3mN6o19H+Xm667WFCXp69grNuLf05pASo1FP/LBMob5emnFvnE5m5+mFX9fIzcWgx29scW0/GFSo/CNJpRfD9xyUwWBQtfv6qc1PU7S87e2SwSDPqHDteO51Ze/YI+8aVdV0ygR5RYVrw4AnJUmB1zdV4ck0bRw8RnlHjisk9no1mzZJppISHZz6Tbmv2/LLt+QZVUVrew2Rwd1dLT55Vc2mTdLG+5+RJLn5+6rdb58pdfEqbRkxXv5N66vFJ6+qKCNThz+dVSGfDQBcrvBAPz3Zq4NqhAXJJJPmJuzUk1/8qu+fHKB6kaF6c+5yLd95QG/e21P+Xp6Kn7NUo7/8TV+MuFOS5GIwqGuTOhrZo72C/bx1OCVDr85Zopdz/9Rr/+pR7uuO/fZ3pWTmavqwfiouMWr8rD806b9nn5OdX6hHPvlZMddV17g7ump3Uqom/LBI/l6eurN90wr5bFDxAts0U41hA5S5eafF/owN23Rs5lzlHT4u95BA1X/hccX89pkWX9dNMhrl37yB2s79RHvip2vjkOfkFR2hZlMmyuDqoh3PvVHu6zV++3mF97pRGwaMUlFmlpq+94Ja//ChVt04sLSBi4va/vKRCpJStPKGAfKMDFeLz1+XqahIiS+8ey0/CtipmzpV0ciH6uqtKbu0fVeW7u5bVe9MaqaBj6xTekbRee2bNgzQ+DGN9dEX+7RyXZpuvjFc8f/XRA+OStD+Q6UXxwf1r647b62qVybv1PHkfD00qJbemdRM9z62ToVFpop+iwBw1cKD/PRk745n8+X6HXpyxjx9P2pgab78ZbmW79yvN+/rVZovZy/R6C9+1Rcj75IkbT9yQiF+3np1YHdFBvlr44Hjeum/i+XiYtDAjuVf3xk783elZOZo+vDbT+fLhZr042K9NqinJCk7v0CPfDLHMl/O+kP+3uRLZ1dexjyj9pODJVMZ/+ZeYRbk+hEuB/kScCyUYFawWo1vVOwtT6lu8/IHD13dPOQbUMW8efkEln/MN0j7ti5S43Z3yGAo+y6VgrwsbVvzX3Xu929Vrx+r8OpNFfevV3V8/986fmCjJOnQzhVKS9qjHve9qSrVGpX2s/eT2rziG5UUF1r1M4BtTbm7i/o2q6O6VQLVIDxYE2+JUVJmrrYnn70j7e1Ff2tA6+v0YPvGqlslULVCA9S9UQ15uLma29zbtoGaVw1TdKCvWlYL05D2jbXlWKqKSoxlvm5WQaHmbN6n0Te1UruaEWocGaKJvWO06WiKNh9NkSSt2p+kfamZeqVPrBpEBKtT3Wg91rmZZm3YoyIqepzKiV//1Mn5y5S756Bydh9Q4ouTVZydq+CYlsretlsb7nlCJ379U7n7Dit1yWolvjhZ4bfeJINr6XfwyIz/avvoV5S2fJ3y9h/R0Zm/6PAXPymyX/dyX9OvYR2F97xBWx4ep/S1m3XqrwRtG/Wyou+5RZ5R4ZKk6H/1lYuHuzY99Lyyt+/R8Vm/af+HX6nOk0Mq5HOp7EwGlwrbAGfSpXFtdW5USzWrBKlWlWA93jNWPh7u2nwoSVl5BZq9brueubWzYupVV+Nq4Zp0dzdtPHhcmw8mSZICfLx0d2wzNakeoejgAMVcV113xzbXhv3Hyn3Nfclp+ivxkMbfeZOa14jU9bWj9e9+N2r+pl06kVE6u8dvfyeqqKREk+7qpnqRoerVsr4Gdmyur5b/XSGfCyqeq6+PWn7xpjY/Mk5FpzIsjh3+dJbSVqxX3sGjyvx7uxLHT5Z3jWj51CqdPSb6rt7K2pKoPa9MUe7eQ0pbvk47xr6pmo8Okqufb5mv5xbgp+pD+mv7mNeUumS1Mjds06aHnldIh+sVFFN60b3KzZ3k36ieNg4eo8xNO3Xy92XaNeE91Xx0kAzu7tf2A4FdGtCvmub+fly/LUrWgcO5enPqbuUXGHXrzZFltr+rb1Wt2ZCmb2cf0cEjufr0mwPatTdb/W+tatHmy1kHtWJNqvYeyNHL7+5UaIinOrcPK/OcqFjkS+DydWlcxzJf9upwTr7cpmf6/CNf3hN3Ol8elyTd3q6JnrvtRrWpW03VQgN1a+uGuq1NIy3asrfc1yzNlwc1/q5uZ/Plbefkyw2n8+XdcWfzZacW+moZ+dKZXShjSlJAi4aqPepBbR72/HnHriQLcv0Il4t8WflwDdOx8anaoSN71uqTcbH68pUe+nPWeOXlnCq37f6ti5Wfk65GMf3LbXPi8FYZS4pUo34H876QiLryD45W0umB8aQDGxUaVd9iavUaDTupMD9bqUl7rv5NwW5lF5TetRZ4eqrUtJx8bTmeqhBfLw3+aqG6fTBbQ2cu0t9HTpZ7joy8Av1v+wG1qBomd9eyf63sSDqlYqNR7WtFmPfVDg1QZICPNh8rnepy87FU1asSaDG1eofakcouLNLelMyrfq+wUy4uirq7t1x9fXRqddl/zLoH+qk4M/vC01wF+qsoLb3c40HtW6noVIYyEraa96UsWimT0aigdqXLUAS3b6m05etlKjp7N2fKghXya1hHbkEB550TAOxNidGo/23cpbzCIrWoGaXtR0+ouMSomOuqm9vUDg9RVJC/Np2+cHmuExnZWrx1r1rXqVrmcUnadChJ/t6ealL97L/rMfWqy8Vg0JbDyaVtDh5X6zrRcv/HjXUd6tfUgZPpyszNv9q3CjvU9IMXdeJ/S5W6eNUF27n6eKva4DuUu++w8g6X3qDh4ukhY36BRbuSvHy5ensp8PomZZ4n8PqmcvHwUMqileZ9OYn7lHvwqILbt5RU+m975tZdFlOrn1ywQu6B/vJvUu9K3iYcmJubQfXr+Wv9prN/Y5tM0vqNp9SkQdlZr2nDAK3faPk3+Zq/09S0YWn76AgvhYV4at0/2uTklmj7rkxzGwBwZJb5MvIf+bKGuc3ZfJlU7nmy8gsV6ONZ7vFNB4+fny+vq1GaLw+dyZdJal2n6jn5soYOnDxFvnRiF8qYLt5eavnl29r2xCQVJKecd/xKsiDXj3A5yJeA42EqdTtTs1Fn1W1xswJCqikj5bBW/vqOfvlomO4a9b1cXFzPa79t9Y+q0bCT/IPKvvtIknKzUuTi6i5PH8tfmj7+ocrNLB3szMlKsRgULz1e+vhMGzgfo8mktxb9rZZVw1SvSpAk6Uh66V24H63Yqqe6tlSDiGDN27pfD3/3p354sJdqhvibn//eko36bsNu5ReVqFl0qN6/84ZyXys1J0/uri7yP2et0lBfL6Xm5JnbhPp4WRwPOT1InpKdJ0UEX/V7hv3wb1pfHZZ/JxcvT5Vk5yrhzhHK3nH+3ePuocGq9/xjOvzp9+WeKzi2laLu6qV1fR8ut41nRJgKTliu1WMqKVFRWoY8I6uY2+QeOGLRpuBE6R9WXpFhyk7nBo1rifV5gCu3+3iK7pvyowqLi+Xj4a53779FdSNClHjspNxdXRTgbXkRMsTfWynZuRb7nvtmvpZs36/8omLd2Ki2Jtx5U7mvl5qVoxBfb4t9bq4uCvD2UmpW6XlTsnJVNcQyf55ZdzIlK1cB5/ybD8cWdXdvBbRqrL/a31lum5qP/EsN45+Rm5+vsnfu05peQ8wXE08uWKHaTwxW9D236NgP/5NnZJiuGzdCkuQVVaXM83lGhqmkoFDFGZZr9xWeSJVnRBVzm8JzLpKeuWha2mbHFb1fOKbAAHe5uRqUdspySsu09CLVrOZT5nNCgjx0Kt1yFrVT6UUKCSr9uyYk2MO8z7JNofkYbIuMCVyZ3cdTdN+HP5zNl4NvVd2IUCUeSyknX/ooJSu3zHNtPHBcCzbt1gcP9in39VKzchXiV16+zJEkpWTlqGpIoEUb8qVzu1jGbPz2WJ1a/beS5y4q8/iVZEGuH+FykC8rJ/KlY7N6xfjhw4f14IMPXrBNQUGBMjMzLbaiooILPqeyqH/9LarTtJvCohuobvM49R32kZIPbdHRPWvPa5uVnqRDO1eoyQUuPgEXEr8gQXtOpuu1vmdnEzCeXqKkf8u6uq15HTWMCNYz3a5XrRB//bxln8Xz72/XSN890EPT7u4iV4NBL8xbLVNZ6/kAZchO3K/lbfrpr4536+BH36rFf16XX6O6Fm3c/H3V9pePlL1jr3ZN+rDM8/g1uU6t/ztVu1+aopQ//qqIrgOoYFeaLwuKzl/Ly1nVqhKsWaMG6OuRd+uu2GZ6YdZC7U1Ou/gT/2FM38767sl79N7gW3Q4LUNvzVtxjXoLZ+NVLVJN3vk/bbx/jIwF5S/DdHTmL1re9nat6jpIObsP6PpvJ8vFs/TCTsoff2nHv99Q0ykT1Stni7ps/10n/7dUkmQylr1UDwAAV4p8eXG1qgRr1lMD9fXj95Tmy+8XaG9y6sWfeI7dSakaNWOuHr65nTo0qHkNegpndbGMGX7rTQrr0l7bR79qg94BAByV1QfG09LS9MUXX1ywTXx8vAIDAy22Bd/HW7srTiEwrLq8fIOVfvLgecd2rPmvvHyDVLtp+dU8Umnlt7GkSAW5lneq5Walyieg9C43X/8w5WalnHO89PGZNnAury1M0PK9R/XJwJsUEXD27rUqfqV319YJs7wDt3ZogJIyLe/8DfbxVM2QALWvHanX+nbQin3HzdOinyvU11tFJUZl5VsG2dScfIWerjgL9fVW6jlTX6XllD4OO+euYTg+U1GRcvceUuaGbUoc946yNu9UrcfvNx939fNVu18/VUlWjhLuHCFTcfF55/BrVFftf5+hw59+rz3x0y74egXJKfIMD7HYZ3B1lXtIoAqSTv6jjeXsGWce5yedPyUXrMtkMFTYBsdypfnyzR8XVlAPbc/dzVU1woLUuFq4nuzVQfWjwvTNio0K9fdRUYlRmXmWN6GmZeUpzM/y7vUwf1/VDg9RlyZ19MIdXTVr1RadzMwp8/VC/X2VdnrGlzOKS4zKzMs3V+2E+fso7Zyq9DPV5GH+Zd85D8cUeH0TeUaEqdPan9Qrb5t65W1T6I0xqjXyPvXK2ya5lP7ZWZyZrdw9B5W2Yr0S7nlCvg3qKLLfzebz7J88QwvC2mhxna5aGNneXPmTu/9Ima9bkJQiV08PuQX6W+z3CA9VQfJJcxuPiHP+bT/9+EwbVB4ZmUUqLjEpJNhyTdGQIHelnir7po609EIFB1lW5gQHuSvtdJVP2unnBQe5n9PGw3wMtkW+RFmuPF8uqKAe2p5FvuzdUfWjquib5ZsukC9zz8t4e5NTNfyjn9Q/pqmGx7W74OuF+vsoLbu8fOkrqTSvki8rj4tlzCpxHeRTt4a6p6wzH5ek1rM+UPs/vpR0ZVmQ60e4HOTLyolrmI7tsqdS/+WXXy54fN++fRc8Lkljx47V6NGjLfb9Z0n5a8xUZlnpScrPTZdvoOXgtMlk0va1P6lh235ydXUv59mlwqs3lYuruw7vXqV6LXpIkk4l71PWqWOKrNVSkhRZq6XWLZxeOljuHypJOpy4Uh5efgqJZO09Z2IymfT6Hxu0eNcRfTLwJlUN8rM4Hh3oqyp+3jqQankjxcG0LHWsE1XueY0qrRQvKmcN6EaRwXJzcdGag8mKa1C6zumB1EwlZeaqeXTpd655dKg+W7VdaTn55inUVx9Ikp+Hu+qEsn6K03NxMVeNufn7qt1vn8lYUKh1tz9a5p3Bfo3rqf2CL3TkqzlKfHHyRU+fvvpvuQcHKuD6JsrcUPrHUmjX9jK4uCh97WZJ0qnVG9Vg0igZ3NzMA/FhcR2UvXOfipkGC7hmrlW+NC347Kr65ciMJqmouESNq4bLzdVFa/ccVlyz0kx34MQpHU/PUoua5f+7fmYGmMLisv9db1EjUll5Bdp+5IQaVwuXJK3de0RGk0nNTq8L2aJmlD6Yv0pFJSVydy1dEmj17kOqVSWIaS6dTMri1Vra8laLfS0+jVd24j7tffMTqYyKb4NBMhgM5n/7/6ng+AlJUvQ9tyrv0DFlnP53+1wZG7bKWFiosJtilTS7dKDCt35t+dSsqlOrN0oq/be93thH5FElRIUnS2dRCIvroKKMLGVv33PF7xmOqbjYpF17stS6ebCWry69oddgkFq3CNZPvx4t8zlbd2aqTYtg/fDL2eNtWwZr687SbHgsOV8paQVq0yJYe/aX3kzk4+2qxvUDNOe3Y9f4HQEozzXLlwv/c1X9cmRGk8kyX+4+rLjm5+bLs0s97klK1bCPflLf1o30eK8O5Z3WrEXNqPPz5Z7Dpfmyxpl8GVlGvjysWlWCyZdO6GIZsyjllA5+Yrns3o0b52n7M/FKnvenpCvLglw/wuUgXwKO57IHxvv16yeDwXDB6ZINF7mLwdPTU56elgPh7hce23UahQU5yjh5yPw4M+2ITh7ZIS/fQHn6BGrt/A9Vt0UP+fqHKSP1sFb88qaCwmqqRsPOFuc5snu1MlOPlDmNenZ6smZPHaybB72hyJrN5entryYx/bV8zmvy9AmUp5eflvz3ZUXWaqWo0wPjNRp2UkhkPS34+ll17DtGuZknteq3yWreaZDc3Fi3wpnEL0zQ/7Yf1Lt3dJavh1vp2t2S/Dzd5eXuJoPBoMHtGmr6iq2qHx6sBhFBmrtlvw6kZenNfh0lSVuOpWrb8VS1qlZF/l4eOpKeranLt6h6kJ+aR5feHXkiK1cPf/enXrqlvZpGh8rf00P9mtfR24v/VqCXh3w93fX6wgQ1jw5V86qlz4mtHak6oQEaN2+1nuzaQqnZ+ZqyfIvuvr6ePNxcbfOB4Zpo8PJonZy/THmHj8vN31fRA25V6I3ttLb30NJB8f/9R64+3to4eIzcA/ykgNIbOApOpklGo/yaXKf2C77QyYUrtH/y5+a7fU0lJSpMOSVJCmzbTC3/84ZW9xisgmMnlL1zn07MX6bm01/SlhHj5eLuribvvaBj3/9qvgB/7Nu5um7cCDX/5BXtffMT+Te5TrUev1/bn2FWk4pgMnEXZGV1rfJlfiUJmO/9b6U6NaipyCB/5RYU6reNu7R+3xFNG3qb/L09dXvbxnpr7goFeHvJz8tDr/28VC1qRqr56QuXy3ccUGp2rppUj5CPh7v2Jqfq3V//UstaUeY1wrccStK47xfq4+G3KyLQT3UiQtSxQQ1N/HGxxt3RRcVGo+LnLFXPFvUVHlj6O7tXy/qavnCtJvywSEO6tNaepFR9s2KTxvTpXO57gWMqyc5R9rbdlvtyclWUmq7sbbvlXbuaou/qrZN//KXCk2nyrhapumOGqyQvXydOT5cuSXVGD9XJBctlMhoV2a+76j47TBsGjjIPrHtGh6v9719o44PPKmPdFhVnZuvw5/9Vozf/raK0DBVlZavp5HE6tWqD0tdskiSdXLhCWTv2qOWMN7Rj7JvyjKiiBhNH6eC0b2QsrDzT4eKs7+Yc0f891VA792Rpx64s3X1bVXl7uejXP5IkSeOeaqCTqYX66Mv9kqQffjmqD+NbaEC/alq5PlVxncPVsJ6/3vhwl/mcP/xyVIPvqaHDx/J0PDlfD91bS6lpBVq+mooxe0DGrJzIl1fnvd/+UqeGtc7my78TS/PlQ/1O58smemvucgX4eMrPy1OvzVlyOl+W3ni5OylVw6b/pA4Naui+G1op5fQsRC4uBoWcnrVoy6EkjftuoT5++J/5sqYm/rhI4+7oquKSMvJlqwal+XLWIg3pejpfLt+oMX1vsM0HhWvqYhlTOrte+D/lHTqmvNPrf19KFuT6Ea4W+bLyIV86tsseGI+KitLUqVN12223lXl848aNat269VV3zFmdOLRVP005O1Xw8jml/1g2anu7ut41QSnHdmnHujkqyMuSb0C4ajTsqNjeT543OL1t9Y+Kqt1KIRGW6/FKkrGkSKdO7Fdx4dnphzrf/rzk4qLfPn9CJcWFqtmwk7rcOd583MXFVX2GTdefP0zQD5PvkZuHtxq1u13tez1h7Y8ANvbD36V3Qw77drHF/om926lvszqSpEFtG6igpERvL96gjPxC1a8SpGn3dFH14NJpKr3cXbV41xFNX7FVeUXFCvPzVofaURp2W2PzAHax0agDaVnK/8f01890ayUXg/TMnL9UWFKiDrWjNPbms78vXF1c9N6dN+jVBev1wFd/yMvdTX2a1tKjnZtd088EFc8zPFQtPn9dnlHhKs7IUtaWRK3tPVQpi1Yq5IZ2Co5pKUnqmviHxfMW17tJeQePKuqOHvIMD1W1Qbep2qCz/x7lHjiiP6/rJkly9faWX8M6cvnHhYuN9z+jJu+9oPa/fyGT0aik2Qu0bdTL5uPFmdla23uomr7/ojqt+UmFKae0++WpOvzprGv4aQAgX16dtOw8jft+oU5m5sjPy1P1o0I1behtiq1fQ5I0pk9nuRgMevqr31RYXKIODWro/27vYn6+p7ubflq7TW/NXa7C4hJFBPmrW9M6erBrG3Ob/KJiHTiZruKSs5W/8QN7KH7OUg3/eI5cXAzq1rSu/n3b2YuS/t6emj7sNr06e4kGvv+9gny99HBcO93Zvuk1/0xgX4z5hQrp1Ea1nxgs9+AAFSSnKm3Feq28YaC5ckeSqvS8QfXGPiIXTw9lbt6p9XeM0Mnfl5mPu7i7y69hHbl6n11iZ/vTr6qR0ajrZ70vF08PpSxYoa2PT/zHixu1/rZH1PTDCeq4/HsV5+Tp6FeztWvC+xXy3mF/Fq84qaBAdz00qJZCgj20Z1+2nh6/RafSSy+OR1TxkvEf42hbd2Zq4ls7NOze2hp+f20dOZansa9s0/5DZ6fy/ea/h+Xl5apnR9aXn6+btmzP0NPjt6iwqPwBOQDXFvny6qRl52ncdwv+kS/DNO2hfmfzZd/OcjFIT395Jl/WtMiXf2zerVM5efp1Q6J+3ZBo3h8d7K//PT9E0pl8ecoyX/6rh+JnL9Hwj2fLxWBQt2b1ysiX/fTqnCUa+N53pfnyZvIlLuASsiDXj3C1yJeAYzGYLnTrZBn69u2rli1batKkSWUe37Rpk1q1aiVjGdPlXciU/11Wc8Dqhhwff/FGwDX258Pf2boLgG4pSrx4o2tg996DFfZa19WtWWGvhYu7Vvky/+cPrdE94KosuvMDW3cBUHzPj23dBVRyK+beaLPXrqiMSb60L9csX/4yxRrdA67Kov7c4AfbI1/CHtgqY3IN07FddsX4mDFjlJOTU+7xevXq6c8//7yqTgEAAKDyIF8CAADAmsiXAAAAKMtlD4x37nzhNQF9fX114422uxMYAAAAjoV8CQAAAGsiXwIAAKAslz0wDgAAcC2YZLB1FwAAAOBkyJgAAACwJvKlY3OxdQcAAAAAAAAAAAAAALiWqBgHAAB2gbstAQAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7wN2WAAAAsDYyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBd4G5LAAAAWBsZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAumEzcbQkAAADrImMCAADAmsiXjo2KcQAAgAuIj49X27Zt5e/vr/DwcPXr10+JiYkWbfLz8zVixAiFhobKz89P/fv3V3JyskWbQ4cO6ZZbbpGPj4/Cw8M1ZswYFRcXV+RbAQAAAAAAAIBKi4FxAABgF0wyVNh2OZYuXaoRI0Zo9erVWrhwoYqKitS9e3fl5OSY2zz11FOaO3eufvjhBy1dulTHjh3THXfcYT5eUlKiW265RYWFhVq5cqW++OILzZgxQy+++KLVPj8AAACczx7zJQAAAByXvV7DxKVhKnUAAIALmD9/vsXjGTNmKDw8XAkJCbrhhhuUkZGhzz77TDNnztRNN90kSfr888/VqFEjrV69Wu3bt9eCBQu0fft2/fHHH4qIiFDLli310ksv6bnnntOECRPk4eFhi7cGAAAAAAAAAJUGFeMAAMAuVOTdlgUFBcrMzLTYCgoKLqmfGRkZkqSQkBBJUkJCgoqKihQXF2du07BhQ9WoUUOrVq2SJK1atUrNmjVTRESEuU2PHj2UmZmpbdu2WesjBAAAwDmo5gEAAIA1UTHu2BgYBwAAlU58fLwCAwMttvj4+Is+z2g0atSoUerYsaOaNm0qSUpKSpKHh4eCgoIs2kZERCgpKcnc5p+D4meOnzkGAACAyiM+Pl5t27aVv7+/wsPD1a9fPyUmJlq0yc/P14gRIxQaGio/Pz/1799fycnJFm0OHTqkW265RT4+PgoPD9eYMWNUXFxckW8FAAAAdoKMeWkYGAcAAHahIu+2HDt2rDIyMiy2sWPHXrSPI0aM0NatW/Xdd99VwCcCAACAq2WP1TxLly7ViBEjtHr1ai1cuFBFRUXq3r27cnJyzG2eeuopzZ07Vz/88IOWLl2qY8eO6Y477jAfLykp0S233KLCwkKtXLlSX3zxhWbMmKEXX3zRap8dAAAAzmevFeNkzEvDGuMAAKDS8fT0lKen52U9Z+TIkZo3b56WLVumatWqmfdHRkaqsLBQ6enpFlXjycnJioyMNLdZu3atxfnO3I15pg0AAAAqh/nz51s8njFjhsLDw5WQkKAbbrhBGRkZ+uyzzzRz5kzddNNNkqTPP/9cjRo10urVq9W+fXstWLBA27dv1x9//KGIiAi1bNlSL730kp577jlNmDBBHh4etnhrAAAAsBEy5qWhYhwAANgFk8lQYdvl9cukkSNHavbs2Vq8eLFq165tcbx169Zyd3fXokWLzPsSExN16NAhxcbGSpJiY2O1ZcsWnThxwtxm4cKFCggIUOPGja/iUwMAAMCFVFS+LCgoUGZmpsVWUFBwSX3MyMiQJIWEhEiSEhISVFRUpLi4OHObhg0bqkaNGlq1apUkadWqVWrWrJnFcj09evRQZmamtm3bZq2PDwAAAOew12uY5yJjlo2BcQAAgAsYMWKEvv76a82cOVP+/v5KSkpSUlKS8vLyJEmBgYEaOnSoRo8erT///FMJCQkaMmSIYmNj1b59e0lS9+7d1bhxY913333atGmTfv/9d40bN04jRoy47Mp1AAAA2J/4+HgFBgZabPHx8Rd9ntFo1KhRo9SxY0c1bdpUkpSUlCQPDw+L2YgkKSIiQklJSeY2/7xgeeb4mWMAAABwfFd68yUZs3xMpQ4AAOyC8TLXzako06ZNkyR16dLFYv/nn3+uBx54QJL07rvvysXFRf3791dBQYF69OihqVOnmtu6urpq3rx5evTRRxUbGytfX18NHjxYkyZNqqi3AQAAUClVVMYcO3asRo8ebbHvUm6AHDFihLZu3aoVK1Zcq64BAADAiiryGmZ8fLwmTpxosW/8+PGaMGHCBZ9HxiwfA+MAAAAXYDKZLtrGy8tLU6ZM0ZQpU8ptU7NmTf3222/W7BoAAADshKen52XPBDRy5EjNmzdPy5YtU7Vq1cz7IyMjVVhYqPT0dIuKnuTkZEVGRprbrF271uJ8ycnJ5mMAAABwfFdy8yUZ88KYSh0AAAAAAACoICaTSSNHjtTs2bO1ePFi1a5d2+J469at5e7urkWLFpn3JSYm6tChQ4qNjZUkxcbGasuWLTpx4oS5zcKFCxUQEKDGjRtXzBsBAADANeXp6amAgACLrbyBcTLmpaFiHAAA2AWTnU6lDgAAAMdljxlzxIgRmjlzpn7++Wf5+/ub12sMDAyUt7e3AgMDNXToUI0ePVohISEKCAjQ448/rtjYWLVv316S1L17dzVu3Fj33Xef3njjDSUlJWncuHEaMWLEZVeuAwAA4NLZY76UyJiXioFxAAAAAAAAoIJMmzZNktSlSxeL/Z9//rkeeOABSdK7774rFxcX9e/fXwUFBerRo4emTp1qbuvq6qp58+bp0UcfVWxsrHx9fTV48GBNmjSpot4GAAAA7AgZ89IwMA4AAOyCyWSfd1sCAADAcdljxjSZTBdt4+XlpSlTpmjKlCnltqlZs6Z+++03a3YNAAAAF2GP+VIiY14q1hgHAAAAAAAAAAAAADg1KsYBAIBdsNf1eQAAAOC4yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsFe1+cBAACA4yJjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgF1ucBAACAtZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOwC6/MAAADA2siYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbBaOsOAAAAwOmQMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsAuvzAAAAwNrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wSTutgQAAIB1kTEBAABgTeRLx0bFOAAAAAAAAAAAAADAqVExDgAA7ALr8wAAAMDayJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdoH1eQAAAGBtZEwAAABYE/nSsVExDgAAAAAAAAAAAABwagyMAwAAAAAAAAAAAACcGlOpAwAAu2A02boHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YJLB1l0AAACAkyFjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFk4m7LQEAAGBdZEwAAABYE/nSsVExDgAAAAAAAAAAAABwalSMAwAAu2Ay2boHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YBTr8wAAAMC6yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsFk4m5LAAAAWBcZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAumEy27gEAAACcDRkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC6YxPo8AAAAsC4yJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMLI+DwAAAKyMjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF0wm1ucBAACAdZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOyCifV5AAAAYGVkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAAAAAAAAAAAAJwaU6kDAAC7YJTB1l0AAACAkyFjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFk8nWPQAAAICzIWMCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWTifV5AAAAYF1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YGR9HgAAAFgZGRMAAADWRL50bFSMAwAAAAAAABVo2bJl6tOnj6Kjo2UwGDRnzhyL4w888IAMBoPF1rNnT4s2aWlpGjRokAICAhQUFKShQ4cqOzu7At8FAAAA7AX58tIwMA4AAOyCyVRxGwAAACoHe82XOTk5atGihaZMmVJum549e+r48ePm7dtvv7U4PmjQIG3btk0LFy7UvHnztGzZMg0fPvzyOwMAAIBLZq/XMMmXl4ap1AEAAAAAAIAK1KtXL/Xq1euCbTw9PRUZGVnmsR07dmj+/Plat26d2rRpI0n64IMP1Lt3b7311luKjo62ep8BAABgv8iXl4aKcQAAYBdMMlTYBgAAgMqhovJlQUGBMjMzLbaCgoKr6vuSJUsUHh6uBg0a6NFHH1Vqaqr52KpVqxQUFGS+aClJcXFxcnFx0Zo1a67qdQEAAFA+R76GSb5kYBwAAAAAAAC4KvHx8QoMDLTY4uPjr/h8PXv21JdffqlFixbp9ddf19KlS9WrVy+VlJRIkpKSkhQeHm7xHDc3N4WEhCgpKemq3gsAAADsgzVvviRflmIqdQAAYBeMrP0NAAAAK6uojDl27FiNHj3aYp+np+cVn2/AgAHm/27WrJmaN2+uunXrasmSJerWrdsVnxcAAABXpyKvYcbHx2vixIkW+8aPH68JEyZc9rnIl6WoGAcAAAAAAACugqenpwICAiy2qxkYP1edOnUUFhamPXv2SJIiIyN14sQJizbFxcVKS0srd91IAAAAOJaxY8cqIyPDYhs7dqxVzl1Z8yUV4wAAwC6YqBgHAACAlTlLxjxy5IhSU1MVFRUlSYqNjVV6eroSEhLUunVrSdLixYtlNBoVExNjy64CAAA4tYrMl56enla92fIKjtp7AAEAAElEQVSfKmu+ZGAcAAAAAAAAqEDZ2dnm6hxJ2r9/vzZu3KiQkBCFhIRo4sSJ6t+/vyIjI7V37149++yzqlevnnr06CFJatSokXr27Klhw4Zp+vTpKioq0siRIzVgwABFR0fb6m0BAADARsiXl8ZuBsa/nbrU1l1AJXe03/O27gKgp//uYesuADbjLNU8sB8b6g+2dRcAdV0SZesuAIp/zdY9AGzHXjPm+vXr1bVrV/PjM+uTDx48WNOmTdPmzZv1xRdfKD09XdHR0erevbteeukli4qhb775RiNHjlS3bt3k4uKi/v376/3336/w91KZrKr9oK27AOimBUG27gKg+Hds3QPAdsiXjs1uBsYBAAAAAACAyqBLly4yXeCq6u+//37Rc4SEhGjmzJnW7BYAAAAcFPny0jAwDgAA7ILRZLB1FwAAAOBkyJgAAACwJvKlY3OxdQcAAAAAAAAAAAAAALiWGBgHAAAAAAAAAAAAADg1plIHAAB24QJL4AAAAABXhIwJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2KcQAAYBe42xIAAADWRsYEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAtG7rYEAACAlZExAQAAYE3kS8dGxTgAAAAAAAAAAAAAwKlRMQ4AAOyCyWSwdRcAAADgZMiYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbBxPo8AAAAsDIyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMHK3JQAAAKyMjAkAAABrIl86NirGAQAAAAAAAAAAAABOjYpxAABgF1ifBwAAANZGxgQAAIA1kS8dGxXjAAAAAAAAAAAAAACnRsU4AACwC9xtCQAAAGsjYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBSN3WwIAAMDKyJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdoH1eQAAAGBtZEwAAABYE/nSsVExDgAAAAAAAAAAAABwalSMAwAAu2A02roHAAAAcDZkTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAAAAAAAAAAAAJwaU6kDAAC7YDLZugcAAABwNmRMAAAAWBP50rFRMQ4AAAAAAAAAAAAAcGpUjAMAALvA3ZYAAACwNjImAAAArIl86dioGAcAAAAAAAAAAAAAODUqxgEAgF0wcrclAAAArIyMCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAXTBW6QI+hAl8LAAAAtlJxGZN8CQAAUBlwDdOxUTEOAAAAAAAAAAAAAHBqVIwDAAC7UKE3WwIAAKBSIGMCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWj0dY9AAAAgLMhYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBdbnAQAAgLWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsgpG7LQEAAGBlZEwAAABYE/nSsVExDgAAAAAAAAAAAABwagyMAwAAu2AyVdx2OZYtW6Y+ffooOjpaBoNBc+bMsTj+wAMPyGAwWGw9e/a0aJOWlqZBgwYpICBAQUFBGjp0qLKzs6/yEwMAAMDF2GO+BAAAgOOy12uYuDQMjAMAAFxATk6OWrRooSlTppTbpmfPnjp+/Lh5+/bbby2ODxo0SNu2bdPChQs1b948LVu2TMOHD7/WXQcAAAAAAAAAnMYa4wAAwC6YKnSBHsMlt+zVq5d69ep1wTaenp6KjIws89iOHTs0f/58rVu3Tm3atJEkffDBB+rdu7feeustRUdHX3q3AQAAcFkqLmNeer4EAACA47LXa5i4NFSMAwCASqegoECZmZkWW0FBwRWfb8mSJQoPD1eDBg306KOPKjU11Xxs1apVCgoKMg+KS1JcXJxcXFy0Zs2aq3ofAAAAAAAAAIBLw8A4AACwC0ZTxW3x8fEKDAy02OLj46+o3z179tSXX36pRYsW6fXXX9fSpUvVq1cvlZSUSJKSkpIUHh5u8Rw3NzeFhIQoKSnpqj83AAAAlK+i8iUAAAAqh4q8hgnrYyp1AABQ6YwdO1ajR4+22Ofp6XlF5xowYID5v5s1a6bmzZurbt26WrJkibp163ZV/QQAAAAAAAAAWAcV4wAAoNLx9PRUQECAxXalA+PnqlOnjsLCwrRnzx5JUmRkpE6cOGHRpri4WGlpaeWuSw4AAAAAAAAAsC4qxgEAgF0wOcn0QEeOHFFqaqqioqIkSbGxsUpPT1dCQoJat24tSVq8eLGMRqNiYmJs2VUAAACn5ywZEwAAAPaBfOnYqBgHAAC4gOzsbG3cuFEbN26UJO3fv18bN27UoUOHlJ2drTFjxmj16tU6cOCAFi1apNtuu0316tVTjx49JEmNGjVSz549NWzYMK1du1Z//fWXRo4cqQEDBig6OtqG7wwAAAC2smzZMvXp00fR0dEyGAyaM2eOxXGTyaQXX3xRUVFR8vb2VlxcnHbv3m3RJi0tTYMGDVJAQICCgoI0dOhQZWdnV+C7AAAAgL0gX14aBsYBAIBdMBpNFbZdjvXr16tVq1Zq1aqVJGn06NFq1aqVXnzxRbm6umrz5s3q27ev6tevr6FDh6p169Zavny5xdTs33zzjRo2bKhu3bqpd+/e6tSpkz7++GOrfn4AAAA4nz3mS0nKyclRixYtNGXKlDKPv/HGG3r//fc1ffp0rVmzRr6+vurRo4fy8/PNbQYNGqRt27Zp4cKFmjdvnpYtW6bhw4df8WcFAACAi7PXa5jky0vDVOoAAAAX0KVLF5kuMEfS77//ftFzhISEaObMmdbsFgAAABxYr1691KtXrzKPmUwmTZ48WePGjdNtt90mSfryyy8VERGhOXPmaMCAAdqxY4fmz5+vdevWqU2bNpKkDz74QL1799Zbb73FzEQAAACVDPny0lAxDgAA7ILJVHEbAAAAKoeKypcFBQXKzMy02AoKCq6oz/v371dSUpLi4uLM+wIDAxUTE6NVq1ZJklatWqWgoCDzRUtJiouLk4uLi9asWXN1HxoAAADKVZHXMK2VMcmXZzEwDgAAAAAAAFyF+Ph4BQYGWmzx8fFXdK6kpCRJUkREhMX+iIgI87GkpCSFh4dbHHdzc1NISIi5DQAAABybtTIm+fIsplIHAAB2gUpuAAAAWFtFZcyxY8dq9OjRFvs8PT0r5sUBAABQYSryGiYZ0/oYGAcAAAAAAACugqenp9UuUkZGRkqSkpOTFRUVZd6fnJysli1bmtucOHHC4nnFxcVKS0szPx8AAACOzVoZk3x5FlOpAwAAu2A0mSpsAwAAQOXgiPmydu3aioyM1KJFi8z7MjMztWbNGsXGxkqSYmNjlZ6eroSEBHObxYsXy2g0KiYmxqr9AQAAwFmOeA2TfHkWFeMAAAAAAABABcrOztaePXvMj/fv36+NGzcqJCRENWrU0KhRo/Tyyy/ruuuuU+3atfXCCy8oOjpa/fr1kyQ1atRIPXv21LBhwzR9+nQVFRVp5MiRGjBggKKjo230rgAAAGAr5MtLw8A4AACwCyajrXsAAAAAZ2OvGXP9+vXq2rWr+fGZtSMHDx6sGTNm6Nlnn1VOTo6GDx+u9PR0derUSfPnz5eXl5f5Od98841Gjhypbt26ycXFRf3799f7779f4e8FAACgMiFfOjYGxgEAAAAAAIAK1KVLF5kuMD2mwWDQpEmTNGnSpHLbhISEaObMmdeiewAAAHAw5MtLw8A4AACwCxcKbgAAAMCVIGMCAADAmsiXjs3F1h0AAAAAAAAAAAAAAOBaomIcAADYBaOdrs8DAAAAx0XGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALrM8DAAAAayNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFIzdbAgAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUGBgHAAAAAAAAAAAAADg1plIHAAB2wcQ8RAAAALAyMiYAAACsiXzp2KgYBwAAAAAAAAAAAAA4NSrGAQCAXTBxsyUAAACsjIwJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2KcQAAYBeMrM8DAAAAKyNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFEwv0AAAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wWS0dQ8AAADgbMiYAAAAsCbypWOjYhwAAAAAAAAAAAAA4NSoGAcAAHbByPo8AAAAsDIyJgAAAKyJfOnYGBi3A97erho2qJZuiA1TcKC7du3L1nuf7NXO3VmSpOdHNVDvbpEWz1mTkKanJ2y54Hnv6B2tgXdUV0iwh/buz9a7H+3RjtPnlCQPd4NGDq2rbp3D5e7uorV/p+ntabt1Kr3I+m8SdqVWpEGdm7mqaqiLAnwN+uqPIu04eHb+j26tXNW8josCfQ0qMUpHU0xakFCsIyfP/sKPDjWoR1s3VQszyGSSth4w6rc1xSosvvBrx13vqjYNXOXtIR1MNunnlcVKzTx7Xm8PqU+smxrWcJHJJG07YNS81Rc/LxzLlz/N05LVCTp0NEkeHu5q1qCeHrvvLtWsGiVJyszK1qffz9HaTduUlJKq4AB/dW53vYYPuF1+vj6SpIysbE2Y/JH2HjyijKxsBQf6q3PbVnpk0J3y9fEu97Uzs7L1zmffaMX6jXIxGNSlfRuNevBf8vH2MrfZc+Cw3v70K+3Ys19BAf66s3ec7u3X+9p+KABwhRK3bdD/Zn+lg3t3KP1Uih7/91u6vn0X8/H8vFz98NUH+nvNUmVnZahKeLTibr1HXXveKUnKzsrQnG8/0raNq5Wakiz/gCBdH9NFt//rUfn4+pX7uiaTSXO+/UhLF85Wbk62rmvYQvc98m9FRtcwt8nOytA3n7ypjeuWy2AwqE3sTfrXQ8/Iy9vnmn0esI3Pfl2ixQnbdOD4SXl6uKtFvRp68s6eqhVVRZJ0LOWUbnn2zTKf+8ajA3Vz22aSpFYPPn/e8fiH71HPmBblvnZGdq5enzlXyzbulMFgULfWTfTsv26Vj5enuc2uw8f12te/aNv+owr299WAuFg90OuGq3nLcGAX+1v5XF07humhe2srMtxLR47latqM/VqdkGbRZuigWurTPVL+vm7asiNTb03drSPH8671WwGAa2b39gQt+PkLHdq3QxmnTuqRZ99Ry3Y3mY8/cmfLMp93x32j1P22ByRJU197UocPJCorI00+vgFq1DxGt9/7pIJCwst93aLCAv34xdta/9fvKi4uVOMWHTRw2PMKCAo1t0k7eVwzP3lFiVvXy8vLW+279FG/QU/I1ZVL3c7ks/krtOjvnTqQlCJPDze1qFNdo27vplqRYeY2KRnZevenhVq9Y59y8gtVKyJUD/XqrLjrG513vsKiYt37+mfadSRZ3/3fcDWsHnlemzMKior19o8L9Pv6bSosLlaHxnX1/MDeCg04+/fR8bQMvTLzV61PPCBvLw/1ad9CT/TrJjdXJumtjMiXgOMgLdiBfz9eX3Vq+uqld3YqJa1APbpEaPJLzXXvY+uUklYoSVqdkKZXJ+80P6eo6MJ3pNzUqYpGPlRXb03Zpe27snR336p6Z1IzDXxkndIzSge+H3+onjq0DdELr29XTk6xnnrkOr0ytokee27jNXuvsA8ebgYlpZmUsKtY98a5n3c8JcOkX1YVKy3LJHdXgzo2ddWDPd319g+FysmX/H2kB3u5a8s+o+auKpanu3RrezfdeYObZi4ufwT7huauim3sqh+XFetUlklxrV01pIe7Jv9UqOKS0jZ3d3GXv4/0n/lFcnWR+nd20+2d3PT9EkbGncnf2xLVv2c3NapXWyXGEk3/5r8aNeltzXzvFXl7eerkqXSlpKVr5P33qFb1aCWdTNGbH32plLR0vTpmhCTJYDCoc9tWGj7wDgUF+Oto0gm99clXysz+QhOfeqTc157w3sdKPZWu9158RsUlJXrlw8/0+vQZ5ufk5OZp1EtvqU3zxhozfLD2HjqiV6f8R34+PurXvUtFfDyVlom7LYErUpCfp+q1r1PnuL768LUx5x3/7j/vaseWdRo+apLCwqO1deNqffXR6woKqaJW7W5UetpJpaed1D0PjFJ09TpKOXlcX06PV3raSY147o1yX/e32V9o4bzv9NCTE1Qloqp+mjlN70x8XK98MEvuHqUDkh+/+4LS01L0zMQpKiku1mcfTNSMqa/okadfuWafB2xjQ+J+3XNTezWpXU3FJUZ9+NMCPfrO5/rp5VHy9vRQREigFr471uI5/126Vl/+b7k6NqtvsX/ig/3V4R/7/H28dCHPfzxLKRlZmvb0gyouKdH4//xXL30xW/EPD5AkZefl67G3P1dM43r6v/v7afeRJE38/Cf5e3upf5d2VvoE4Cgu5W/lf2raMEDjxzTWR1/s08p1abr5xnDF/18TPTgqQfsP5UqSBvWvrjtvrapXJu/U8eR8PTSolt6Z1Ez3PrZOhRf52x3XHhkTuDIF+XmqVqu+OtzUTx+9Ofq8469/8ofF421/r9BX0yaqVfs48776Tdqo5x1DFRgcpvTUE/rvl+/o47ee0bOvflnu6/4w4y1t2bBcw55+U94+fvrus9c0/c3RevaVLyRJxpISfRj/uAKCQvXsKzOUcSpFMz58Qa6ubuo36AkrvXvYg4RdB3XPjW3UpFa0SoxGfTBnsR59/xv9NP5ReXt6SJLGzZijrNx8TX50gIL9fPS/dVv07Cc/aubYh9SwRpTF+d796Q9VCfTXriPJF33tt374Xcu37Nabw+6Un7enXvvufxo9fZa+ePZBSVKJ0ajHP/xWoQG+mvHsg0rJyNILM36Wm6uLnujXzfofBuwa+bLyIV86Nm5fsjEPDxfd2KGKpn6+T5u2Zejo8Xz959uDOno8T7f3jja3KywyKi29yLxl5Vx4kHBAv2qa+/tx/bYoWQcO5+rNqbuVX2DUrTeX3gnn6+OqW2+O1Aef7tWGzelK3JutV9/bqeaNA9Wkgf81fc+wvV1HjFqYUKLt/6gS/6dN+4zae8ykU1nSiXSTfltTLC8PgyKDDZKkhtVdZDRKv6wsVkqGSUdTTJrzV7Ga1nZVyAW+Ph2auOrPjSXacciopFMm/bC0WP4+UuOapb+KqgQa1KC6i2avKK1OP5hs0txVxWpWx0X+FJY5lXdfeFq33NRJdWpU1XW1amjcyKFKTknVzr0HJEl1a1TTq8+OVKe2LVUtMlxtmjXWw//qr7/Wb1RxSeldFAF+vrqj501qVK+2osLD1KZ5Y93R8yZt2rGr3Nc9cOSYVv+9Rf9+dIia1K+rFo3qa/RD9+qPv9bqZNopSdLvy1apqLhE//fYUNWpUVU3d4rRXb3j9N3c36/55wIAV6J5647qP+gxtW7ftczjexI3qWPXW9WwWRuFRUSrS487VL3Wddq3e5skqVrNehr57zfVst0NCo+qpsbN26r/oMe0cd1ylZSUnTlNJpMWzv1Wfe4equtjuqh6res07MlJOpV2UhvWLJEkHTu8X1s2rNSQkeNUt35T1W/cUvcOG6O1KxboVNrJa/JZwHamjB6ivp1aq27VCDWoEaWJD/ZXUmq6th84KklydXFRWKC/xfbnhu26uW0zi8puSfL38bZo5+l+/o2cZ+w7dkIrt+7Siw/crmZ1q6tV/Vp6blAf/b52i06cypQk/bZ6o4pKSjThwTtUt2qEesa00IBusfp6wYpr94HAbl3sb+Vz3dW3qtZsSNO3s4/o4JFcffrNAe3am63+t1a1aPPlrINasSZVew/k6OV3dyo0xFOd24eVeU4AcARNr++k2waOVKuYm8o8HhgcZrFtWrdE9Zu0VZWIauY2cX3uU536zRVaJVp1G7ZUj9sf1P7dW1RSXPZslXk5Wfpr8WzdOfhpNWzWTjXrNtbgERO1L3GT9u3aLEnavmmVjh/ZpwefeFXVazdU0+s7qe89j2nJ77NUXMQsmM5k6hODdFuHlqoXHa4G1SI1afBtOp6Woe2HjpvbbNp3WAO7tlOz2lVVrUqwhvW+Qf4+XhZtJGnF1t1avWOfRve/+aKvm5WXr9l//a2n7+yudg1rq3HNaE0cfJs27TuizfuOSJJWbd+rfcdP6tUHb1fD6pHq1PQ6Pda3i2YtWa+iM9U/qDTIl4BjYWDcxlxdDXJzNaiw0HKAsqDQqOaNA82PWzUN0tyvYjVzWls9/eh1CvAvv9jfzc2g+vX8tX7TKfM+k0lav/GUmjQIkCQ1qOcvd3cXizaHjuQp6US+mjQMsNbbgxNwdZHaNnBVXoFJx9NK74Ryc5WKS6R/3hdVVFz6qFZk2b9Wgv2lAB+D9h47+10vKJKOnDSpRnjpgHuNcIPyCkoH2s/Ye8wkk0mqXoVfV84sJ7d0GqAAf99y22Tn5srXx0turq5lHj+ZdkpL1ySoZZMG5Z5ja+Ie+fv6qFG92uZ9bZo3lovBoO2795W22bVXLRvVl7v72d+zMS2b6tCxJGVm51zW+8LlMRpNFbYBlUm9Bi3097plOpV6QiaTSTu2rFfysUNq2rJ9uc/Jzc2Wl49vudNRnkw+qoxTqWrS/Gy1rY+vn+rWb6o9iaXL/exJ3CwfX3/VrtfY3KZxi3YyGFy0b9dWK7072KvsvAJJUqBv2cubbD9wVImHjqvfDW3OOxb/9S/q+sTLuvelqZqzfP0F78bfvPeQ/H281KT22YvwMY3rysVg0NZ9h0vb7Dms6+vXkrvb2e9zh6bX6UBSijJzmIqwMrmUv5XP1bRhgNZvPGWxb83faWp6+u/m6AgvhYV4at0/2uTklmj7rkxzG9gW+RK49jLTU7Vlwwp17Nav3DY5WRlau/w31WnQQq5uZd/0dnDfDpUUF6tR8xjzvsiqtRUSFqV9iZskSft2bVbVGvUsplZv3LKD8nOzdezwXuu8Idglc778x/J5LepU1+8J25SRkyej0aT567aqoKhYberXMrdJzczWpK/n6eUh/eTlUf4Nl2fsOHhcxSVGxTSqY95XOzJMUSGB2nR6YHzzviOqVzXcYmr1Do3rKju/QHuPnbjatwoHQr6snLiG6dgueyr1vLw8JSQkKCQkRI0bN7Y4lp+fr1mzZun++++3WgedXV5eibbsyNADA2rqwJFcnUovVNwN4WrSIEBHT68XsSYhTUtXpuh4cr6qRnlp+H219daEZnpkzN8yllHwGxjgLjdXg9JOWd4lmZZepJrVSstuQ4M9VFhkVHZOyTltChUa5HFt3iwcSoPqLhrQ1U3ublJWbunU5rml+VN7j5nUO0bq3MxVK7eVyN1N6tm29NeJv7ehzPOd2Z+dZ/nLPDvPJL/Tx/x8DOcdN5qkvALJv/wlo+HgjEajJn/+rZo3vE51a1Qrs016ZpY+/2Gu+sZ1Oe/Yi+9M1/J1f6ugsFCd2rTU2EcfLPe1UtMzFRxoGSDdXF3l7+er1FMZp9tkKDrc8u7LkKDS56SlZyjAr/zBewBXhnx5bQ0aPkYzpr6i0UN7y9XVVQaDix4Y8X9q0OT6MttnZaZr7qxP1aX77eWeMyM9VZIsLkhKUkBgiDJOlR7LPJWqgMBgi+Ourm7y9Q8wt4FzMhqNeuvbeWpZr6bqVSu7SmLO8vWqHVVFLevVtNj/aL84tWtUV14e7lq1bbfiv/pFufmF+tfNHco8T2pGtkL8/Sz2ubm6KsDXWymZpWv6pWZmqWqY5Xcx5PRFzJSMLAWUM3gP53MpfyufKyTIQ6fSCy32nUovUsjpv5tDgj3M+yzbFJqPAbANMmbFWbXkF3l5+6hVzPlTSP/01WQtmf+dCgvyVbt+c40Y+36558lMT5Gbm7t8fC3/bvcPClHm6fyZmZ6igMBzMmhQiPkYnJPRaNKbP/yulnWrq17Vs2vUvzHsTj336Y+68ek35ebiIi8Pd73zyN2qEV76nTCZTHrxi5911w2t1aRmtI6mpF/0tVIys+Xu5qqAc5bzCfH3VWpm9uk2OQoNsLw+ZM6Xp9ugciBfAo7nsgbGd+3ape7du+vQoUMyGAzq1KmTvvvuO0VFla7XkZGRoSFDhlw0VBYUFKigoMBin7GkUC6ulfN/6pfe2amxTzbQz1/EqrjEpF17s/THshNqUK/0H9NFy89ONbnvYI727s/RrE9j1KppkBI2p9uo13B2+44b9cHsQvl6GdS2gasG3uSuab+UrjF+It2kH5cWq3eMm7q3cZXJJK3cVqKsXJO4hwmX6+1Pvta+Q0c0/ZXnyzyek5unZ16drNrVo/XQPbedd/zJIQP14N236fDxJE3/+ke9P+NbjRnOxQ1HxPI8ldO1zJeFhYXy8PAs5xmVxx+/fq99iVv05PPvKDQ8SonbNujrj95QUEgVNWkRY9E2Lzdbk196UtHV6+i2AQ/bqMdwdPFf/6I9R5P1+diyv0P5hUX63+pNGtbn/On/h/c9O11rw5rRyiso1Jfzl5c7MA4AF0PGrJyskTHLzpdG8mUZVi7+We0695Z7GZ9N99sGq2O325V68ph+/eEjzfhgnEaM/UAGQ9mFFUBZ4r/7TXuOntCMMUMs9k/95U9l5ebro1H3KsjPR39uTNSzn/yoz595QNdVjdC3f65VTn6hHuzZyUY9B+CMyJeO7bLmJn7uuefUtGlTnThxQomJifL391fHjh116NChy3rR+Ph4BQYGWmxH9nxzWedwJseS8vX42E2Ku3O5+g9ZreFP/y03N4OOJeWX3T45X6cyClUtuuzKhozMIhWXmBQSbDk1TEiQu1JPld6JlHqqUB7uLvLzdT2njYdSz7lbCZVTUbGUliUdPmnSTyuKZTSa1Kb+2e/Lpn1GxX9bqNe/LdTLXxdq0d8l8vWS0jLL/lch63QluN85FeV+3merxLNzTecddzFI3p5SFrNcOqW3P/lKfyVs1IcTn1N4aMh5x3Py8vTUy2/Lx8tL8c8+Lje38+/nCg0OVK1qUerctpWefWSwZv/+p1JOpZf5eqFBATqVkWmxr7ikRFnZOQoNDjzdJlBp6ZZtzjwOCQoUAOu6lvnyq4/fvka9dhyFBfn679dTNODB0WrZ7gZVr3Wd4m65R2073az5c762aJuXl6O3Jz4hL29fPf7vN8v8nXtG4OlK8TOVO2dkZqQpMLj0WEBwqDIzLKeHKykpVk5WprkNnM9rX/+i5ZsS9cmzDykipOx/N/9Yv1X5hUW6tUOri56vWZ3qSj6VocKiste7Dw30U1qWZVVOcUmJMnPyFBbgX9omwN9c3XNG2unHYYH+F+0DnMel/K18rrT0QgWfM6tacJC70k7/3Zx2+nnBQe7ntPEwHwNQ8ayRMcvKlzM/ffMa9tox7d6+QcnHDqhTt7JnG/ILCFZEdE01bhGrh556XVs3rND+0+uFnysgKEzFxUXKzbH8mzwrPc08U1FAUJgyM87JoOlp5mNwPvHf/k/LtuzWp6PvV0Tw2dkEDp9M03dL1mnC/X0V07COGlSL1CO33qgmNaP1/ZL1kqS1iQe0ed8RtRv5ilo/9pL6vviBJGlQ/CcaN2NOma8XFuCnouISZeZaXptPy8oxT50eFuCr1EzL5fbM+TLAcjYjODfyJeB4LmtgfOXKlYqPj1dYWJjq1aunuXPnqkePHurcubP27dt3yecZO3asMjIyLLZq9QZdduedTX6BUamnCuXv66Z2rUK0Yk3ZU0xWCfVQoL+7UtLK/iVYXGzSrj1Zat387HSBBoPUukWwtiWWBsvEPVkqKjKqdYuzbapX9VZkuJe27cw875yAwWCQWxlLO2fnS4XFUvPaLioukfYcK2N+f0mnsqTMXJPqRp/9tePpLlWrYtChE6UD44dOmOTtaVB06NnB8TrRBhkM0uGTZZ8XjslkMuntT77S0rUb9MGEZxUdUeW8Njm5eRo16W25u7npjbFPyPMS1oE6s+5KUTkXz5s2qKesnFzt3HvAvC9hyw4ZTSY1vq507aim9etq445dKi4+e451m7epRnQk06hfYyajqcI22I9rmS/vG/70Ney5YygpKVZJcfF5FTkuLi4y/WNNnrzcbL09YaTc3Nz0xP+9U2a1zz9ViaiqwOBQbd+8zuIce3dtVb0GzSRJ9Ro0V25Olg7s2WFus2PzeplMRtWp39Qabw92xGQy6bWvf9HiDdv10bNDVbXK+Te8nTFn+Xrd2LKhebrJC0k8dFwBvt7ycC/7Ro3mdWsoKzdf2w8cNe9bt2OfjCaTmtapXtqmXnVt2HVARcVnl5FavX2PakWGMY16JXMpfyufa+vOTLVpYTkVf9uWwdp6+u/mY8n5SkkrsGjj4+2qxvUDzG1gW+TLyskaGbOsfPmvh8Zc4547nr8Wz1aNOo1VrVaDi7Y9kz+Lisq+plmzTiO5urlp55a15n1JRw8oLeW46jRoIUmqU7+5jh7ao8yMNHObHZtXycvHT1HV65x3Tjguk8mk+G//p8Ubd+rjUfedtzROfmHpNNMu5/2tY5DxdDnnc/f01KxxD+v7/yvdPhj5L0nS6w/dqcdvu0llaVQzSm6uLlq7c79534GkFB1Py1CLOqVLADavU017jp5Q2j8Gx1ft2Cc/L0/ViTr/GhecF/mycuIapmO7rIHxvLw8i8oRg8GgadOmqU+fPrrxxhu1a9euSzqPp6enAgICLLbKOo26JLVrFayY64MVFeGlNi2D9f6rLXToSK5+/SNJ3l4uemxIHTVp4K/IcE+1bh6k18Y11dHjeVq74WwAnPxyc91xS7T58XdzjqhPjyj1vClCNav56JnHrpO3l4t+/SNJkpSTW6J5C5P0+NC6atUsSA3q+un5Jxtoy44MbUvMqvDPABXLw02KCjEoKqQ0OIb4lf53oK/k7iZ1b+2q6lUMCvKTokMNuqOzmwJ8pC37z15Ab9/IRdGhBoUGGNS+kYv6dHDT7+tLlP+Pv22e6u+uxjXP/ppZua1EXVu6qmENF0UEG3TXjW7KypW2Hyw978kMkxIPG3V7JzdVCzOoRrhBfWPdtGWfUVm5FfPZoGK89clX+n3ZKk0c9bB8vL2VeipDqacyVFBQ+gUqHRR/S/n5BRr72IPKyc03tykpKf2+rEzYpHmLl2vvoSM6fiJFfyVs0psff6nmDa9T1Ok1wrfv3qcBj4/VydTSisVa1aLVvlUzvTbtc23fvU+bd+7WO59+rbiO7VQlpDRsdu/cXu5urnp16ufad+io/vhrjWb9ulAD+vSwwScFOL9rmS8ryzSX+Xm5OrQvUYf2JUqSTp44qkP7EpV6MknePn5q0OR6zfriPe3csl4nk49qxaK5WrnkN13fvnQa67zcbL01YaQK8vP04MgXlZ+brYxTKco4lSJjydmBxLEj+ith9Z+SSn9ON/cZqLk/fKa/1y7V4QN79Mnk8QoOqaLrY7pIkqKr11az6zvo86kva9+urdq9Y6O+/uQNtevUXcEhXCxyNvFf/6JfV23Uqw/fLV8vT6VkZCklI8t8wfKMQ8mp2rDrgG6/oe1551i6cYd+WrZOe44k6VByqmb9uVqf/bpEA7rFmtts3XdYtz//jk6cypAk1YkOV4em9fXSjNnauu+wNu4+qNe++UU92jVT+OmKol4xLeXu6qqJn/+kvUeT9fvazZq5cKXu7c6UmpXRxf5WHvdUAz18f21z+x9+OaqY64M1oF811ajmrQcH1lTDev7677yjFm0G31NDHduFqk5NX40b3VCpaQVavpq1bgFbsUbGrMz5UirNmIf379Th/TslSSnJR3V4/06lnTxubpOXm60NqxaWWS2+f9cW/fm/73R4/06lnjymnVvW6tPJ/1aVyOrmQe5Tqcka/0Q/7d+9RZLk7euvjjfdrh9nvK3Eret0cO92fTnlRdWp31x16jeXJDVuEauoanU04/3/05EDidq2caV++XaKuvS4W+7ulff6sjN69dv/6de1mxU/9PbT+TJbKRnZ5nxZKzJM1auE6OVvftWW/Ud1+GSavly4Sqt37FPXFqU3akSFBKpe1XDzVjO8dOaBalWCzdXnyacy1W/8FG3ZX/pvu7+3l27v2Epv/7hA6xL3a/vBY3rxy1/UvE41NT89MB7buK7qRFXR/82YrcQjSVq5bY+m/PKn7u7SptwbOuG8yJeAY7ms39INGzbU+vXr1ahRI4v9H374oSSpb9++1utZJeLn66aH76+tKmGeyswq0tKVKfr4q/0qKTGpxNWgurV81eumCPn5uiklrVDr/k7TJ98cUFHx2btFqkZ6KyjgbDXl4hUnFRTorocG1VJIsIf27MvW0+O36FT62QtTH3y6RyZTXb0ytrHc3V20dkOa3p62u0LfO2yjaphBw245+8fCLe1LfxUk7CrRzyuLVSXIoFbXucvXS8rNl46kGPXxr0U6kX72O1etiovirneRh7t0Mt2kOX8Va+Mey6ruKkEu8vI4e0F92eYSebhJt3d0k5eHdDDZpM9/L9I/inc0a0mR+nZw09Be7jJJ2nrAqHmryq7+heOa/XvpwMqIF1+32P9/I4bqlps6KXHfQW3bXXoX/90jnrNo899pbyoqPEyeHh765Y+lev/zb1VYXKyI0BDdGNNa991xi7ltfkGhDh1LUvE/BnYmPDlcb3/6tZ6Y8KYMLgZ1ad9aTz14dtYSP18fTX7hGb396Vd68NkJCvT315C7+qpf9y7W/hhwDiML9FRK5Murd2DPdr3+wiPmx9/9511JUseut+qhJyfo0Wde1Y9fTdFH776gnOxMhVaJVP9Bj6prz/6SpIN7d2rfrq2SpOce7Wdx7jc/+kVhEaU3XyYdPai8nLPTUfe+fbAK8/M1Y+qrys3JUv1GLTX6xfctqs2HP/WSvv74Db354mMyuBjUOvYmDaLSyin98OcaSdKw1z+12D/xwf7q26m1+fHPK9YrIjhAsU3qnXcON1dXzVq8Wm9/+6tMkqqHh+rpAb11xz8G0fMLi3QgKUXFJWdz56vD79Zr3/yih9/8TC4uBnVr3VTP/utW83F/Hy9NfXqIXvv6F/1r4hQF+ftoeN+b1L9LO2u9fTiQi/2tHFHFS/8szNi6M1MT39qhYffW1vD7a+vIsTyNfWWb9h86e+fuN/89LC8vVz07sr78fN20ZXuGnh6/RYVFZBt7QMasnMiYV+/g3m16d8Iw8+Mfvyhdpqh9lz56YORLkqT1f82XySS17dTzvOd7eHpp45pFmvf9NBUU5CkwOExNWnZUr/4PmQewS0qKlXzsgAoLzk5ZfdcDz8hgMOijt55WcVGhGrfooIHDnjcfd3F11Yix72vmx6/o9ecHy9PLW+1v7KM+Ax67Jp8DbOeHZaXToT/0zpcW+yfe31e3dSi98fHDkQP1/pxFenLqd8otKFSNKiF6aXA/dW523SW/TnGJUQeSUy1u6Hzmrh4yGAx6+qMfVFhcog6N6+r5gb3Nx11dXPT+iAF6ZeZvGvz6f+Tt6aE+7ZvrsT5dr/JdwxGRLysf8qVjM5hMl/4TjI+P1/Lly/Xbb7+Vefyxxx7T9OnTZTRe/pTHnfosveznANZ0Q7/2tu4CoKdjEmzdBUChTTvY5HUfn1xx00F9MCrg4o1QIa5lvly5g1lwYHst0xbYuguAur/GmquwrRVzb7TZa1dUxiRf2pdrlTH/3JJnje4BV6V9yk+27gKgm9+pZusuADbLmFzDdGyXNZX62LFjyw2UkjR16tQrumgJAACAyol8CQAAAGsjYwIAAKAsLHgBAADsgsnINEQAAACwLjImAAAArIl86dguq2IcAAAAAAAAAAAAAABHQ8U4AACwC9xtCQAAAGsjYwIAAMCayJeOjYpxAAAAAAAAAAAAAIBTo2IcAADYBW62BAAAgLWRMQEAAGBN5EvHRsU4AAAAAAAAAAAAAMCpUTEOAADsAuvzAAAAwNrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2wWTibksAAABYFxkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC4YWZ8HAAAAVkbGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALrM8DAAAAayNjAgAAwJrIl46NinEAAAAAAAAAAAAAgFOjYhwAANgFE+vzAAAAwMrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2gbstAQAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqDIwDAAC7YDSZKmwDAABA5WCP+XLChAkyGAwWW8OGDc3H8/PzNWLECIWGhsrPz0/9+/dXcnKytT8aAAAAXAF7vYZJxrw0DIwDAAAAAAAAFahJkyY6fvy4eVuxYoX52FNPPaW5c+fqhx9+0NKlS3Xs2DHdcccdNuwtAAAAHAEZ8+JYYxwAANgF1ucBAACAtdlrxnRzc1NkZOR5+zMyMvTZZ59p5syZuummmyRJn3/+uRo1aqTVq1erffv2Fd1VAAAA/IO95kuJjHkpqBgHAAAAAAAArkJBQYEyMzMttoKCgnLb7969W9HR0apTp44GDRqkQ4cOSZISEhJUVFSkuLg4c9uGDRuqRo0aWrVq1TV/HwAAALAfZEzrY2AcAAAAAAAAuArx8fEKDAy02OLj48tsGxMToxkzZmj+/PmaNm2a9u/fr86dOysrK0tJSUny8PBQUFCQxXMiIiKUlJRUAe8EAAAA9oKMaX1MpQ4AAOyCyWS/0xABAADAMVVUxhw7dqxGjx5tsc/T07PMtr169TL/d/PmzRUTE6OaNWtq1qxZ8vb2vqb9BAAAwNWpyGuYZEzro2IcAAAAAAAAuAqenp4KCAiw2Mq7aHmuoKAg1a9fX3v27FFkZKQKCwuVnp5u0SY5ObnM9SIBAADgvMiY1sfAOAAAsAtGo6nCNgAAAFQOjpAvs7OztXfvXkVFRal169Zyd3fXokWLzMcTExN16NAhxcbGXu3HAQAAgKvkKNcwyZhlYyp1AAAAAAAAoII888wz6tOnj2rWrKljx45p/PjxcnV11cCBAxUYGKihQ4dq9OjRCgkJUUBAgB5//HHFxsaqffv2tu46AAAA7BQZ89IwMA4AAOyCiUpuAAAAWJk9ZswjR45o4MCBSk1NVZUqVdSpUyetXr1aVapUkSS9++67cnFxUf/+/VVQUKAePXpo6tSpNu41AAAAJPvMlxIZ81IxMA4AAAAAAABUkO++++6Cx728vDRlyhRNmTKlgnoEAAAAR0fGvDQMjAMAALtgMtnn3ZYAAABwXGRMAAAAWBP50rG52LoDAAAAAAAAAAAAAABcS1SMAwAAu2AyGm3dBQAAADgZMiYAAACsiXzp2KgYBwAAAAAAAAAAAAA4NSrGAQCAXTAaWZ8HAAAA1kXGBAAAgDWRLx0bFeMAAAAAAAAAAAAAAKdGxTgAALALJhN3WwIAAMC6yJgAAACwJvKlY6NiHAAAAAAAAAAAAADg1KgYBwAAdsHE+jwAAACwMjImAAAArIl86dioGAcAAAAAAAAAAAAAODUqxgEAgF3gbksAAABYGxkTAAAA1kS+dGxUjAMAAAAAAAAAAAAAnBoV4wAAwC4YTUZbdwEAAABOhowJAAAAayJfOjYqxgEAAAAAAAAAAAAATo2BcQAAAAAAAAAAAACAU2MqdQAAYBdMRpOtuwAAAAAnQ8YEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAvcbQkAAABrI2MCAADAmsiXjo2KcQAAAAAAAAAAAACAU6NiHAAA2AWTibstAQAAYF1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7YDQabd0FAAAAOBkyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMBlZnwcAAADWRcYEAACANZEvHRsV4wAAAAAAAAAAAAAAp0bFOAAAsAsmE+vzAAAAwLrImAAAALAm8qVjo2IcAAAAAAAAAAAAAODUqBgHAAB2gfV5AAAAYG1kTAAAAFgT+dKxUTEOAAAAAAAAAAAAAHBqVIwDAAC7wN2WAAAAsDYyJgAAAKyJfOnYqBgHAAAAAAAAAAAAADg1KsYBAIBdMJqMtu4CAAAAnAwZEwAAANZEvnRsVIwDAAAAAAAAAAAAAJwaFeMAAMAusD4PAAAArI2MCQAAAGsiXzo2KsYBAAAAAAAAAAAAAE6NinEAAGAXTEbW5wEAAIB1kTEBAABgTeRLx0bFOAAAAAAAAAAAAADAqTEwDgAAAAAAAAAAAABwagyMAwAAu2AymipsuxzLli1Tnz59FB0dLYPBoDlz5lj222TSiy++qKioKHl7eysuLk67d++2aJOWlqZBgwYpICBAQUFBGjp0qLKzs6/2IwMAAMBF2GO+BAAAgOOy12uYuDQMjAMAAFxATk6OWrRooSlTppR5/I033tD777+v6dOna82aNfL19VWPHj2Un59vbjNo0CBt27ZNCxcu1Lx587Rs2TINHz68ot4CAAAAAAAAAFR6brbuAAAAgCSZTEZbd6FMvXr1Uq9evco8ZjKZNHnyZI0bN0633XabJOnLL79URESE5syZowEDBmjHjh2aP3++1q1bpzZt2kiSPvjgA/Xu3VtvvfWWoqOjK+y9AAAAVDb2mjEBAADgmMiXjo2KcQAAUOkUFBQoMzPTYisoKLjs8+zfv19JSUmKi4sz7wsMDFRMTIxWrVolSVq1apWCgoLMg+KSFBcXJxcXF61Zs+bq3wwAAAAAAAAA4KIYGAcAAHbBaDRV2BYfH6/AwECLLT4+/rL7nJSUJEmKiIiw2B8REWE+lpSUpPDwcIvjbm5uCgkJMbcBAADAtVFR+RIAAACVQ0Vew4T1MZU6AACodMaOHavRo0db7PP09LRRbwAAAAAAAAAA1xoD4wAAwC6YjBW3Po+np6dVBsIjIyMlScnJyYqKijLvT05OVsuWLc1tTpw4YfG84uJipaWlmZ8PAACAa6MiMyYAAACcH/nSsTGVOgAAwBWqXbu2IiMjtWjRIvO+zMxMrVmzRrGxsZKk2NhYpaenKyEhwdxm8eLFMhqNiomJqfA+AwAAAAAAAEBlRMU4AACwCyY7XTcnOztbe/bsMT/ev3+/Nm7cqJCQENWoUUOjRo3Syy+/rOuuu061a9fWCy+8oOjoaPXr10+S1KhRI/Xs2VPDhg3T9OnTVVRUpJEjR2rAgAGKjo620bsCAACoHOw1YwIAAMAxkS8dGwPjAAAAF7B+/Xp17drV/PjM2uSDBw/WjBkz9OyzzyonJ0fDhw9Xenq6OnXqpPnz58vLy8v8nG+++UYjR45Ut27d5OLiov79++v999+v8PcCAAAAAAAAAJUVA+MAAMAumEz2uT5Ply5dZDKVfyeowWDQpEmTNGnSpHLbhISEaObMmdeiewAAALgAe82YAAAAcEzkS8fGGuMAAAAAAAAAAAAAAKfGwDgAALALJqOpwjYAAABUDvacL6dMmaJatWrJy8tLMTExWrt2rZXfPQAAAKzNnq9hki8vjoFxAAAAAAAAoAJ9//33Gj16tMaPH68NGzaoRYsW6tGjh06cOGHrrgEAAMABkS8vDQPjAADALpiMxgrbAAAAUDnYa7585513NGzYMA0ZMkSNGzfW9OnT5ePjo//85z/X4FMAAACAtdjrNUzy5aVhYBwAAAAAAAC4CgUFBcrMzLTYCgoKymxbWFiohIQExcXFmfe5uLgoLi5Oq1atqqguAwAAwM5dasYkX146N1t34IwVc2+0dRccWkFBgeLj4zV27Fh5enraujuohPgOWksHW3fAofE9dGxkAVhbh0b+tu6CQ+N3qrX0t3UHHBrfQ+tYMdfWPXBcfAcdX0VlzAkTJmjixIkW+8aPH68JEyac1zYlJUUlJSWKiIiw2B8REaGdO3dey27iKnVt5m3rLjg0fqdayyBbd8Ch8T20jhVdbd0Dx8b30LFV5DXMS82Y5MtLZzCZTJe/ejvsTmZmpgIDA5WRkaGAgABbdweVEN9B2AO+hwBgPfxOhT3gewhb4zuIS1VQUHBe9Y6np2eZF7uPHTumqlWrauXKlYqNjTXvf/bZZ7V06VKtWbPmmvcXsAV+p8Ie8D2EPeB7iEt1qRmTfHnp7KZiHAAAAAAAAHBE5Q2ClyUsLEyurq5KTk622J+cnKzIyMhr0T0AAAA4oEvNmOTLS8ca4wAAAAAAAEAF8fDwUOvWrbVo0SLzPqPRqEWLFllU+AAAAACXgnx56agYBwAAAAAAACrQ6NGjNXjwYLVp00bt2rXT5MmTlZOToyFDhti6awAAAHBA5MtLw8C4k/D09NT48eMvedouwNr4DsIe8D0EAOvhdyrsAd9D2BrfQVwr99xzj06ePKkXX3xRSUlJatmypebPn6+IiAhbdw24ZvidCnvA9xD2gO8hrgXy5aUxmEwmk607AQAAAAAAAAAAAADAtcIa4wAAAAAAAAAAAAAAp8bAOAAAAAAAAAAAAADAqTEwDgAAAAAAAAAAAABwagyMAwAAAAAAAAAAAACcGgPjTmDKlCmqVauWvLy8FBMTo7Vr19q6S6hEli1bpj59+ig6OloGg0Fz5syxdZdQCcXHx6tt27by9/dXeHi4+vXrp8TERFt3CwAcFvkStkbGhK2RLwHA+siYsCXyJWyNfAnYBwbGHdz333+v0aNHa/z48dqwYYNatGihHj166MSJE7buGiqJnJwctWjRQlOmTLF1V1CJLV26VCNGjNDq1au1cOFCFRUVqXv37srJybF11wDA4ZAvYQ/ImLA18iUAWBcZE7ZGvoStkS8B+2AwmUwmW3cCVy4mJkZt27bVhx9+KEkyGo2qXr26Hn/8cf373/+2ce9Q2RgMBs2ePVv9+vWzdVdQyZ08eVLh4eFaunSpbrjhBlt3BwAcCvkS9oaMCXtAvgSAq0PGhD0hX8IekC8B26Bi3IEVFhYqISFBcXFx5n0uLi6Ki4vTqlWrbNgzALCtjIwMSVJISIiNewIAjoV8CQBlI18CwJUjYwLA+ciXgG0wMO7AUlJSVFJSooiICIv9ERERSkpKslGvAMC2jEajRo0apY4dO6pp06a27g4AOBTyJQCcj3wJAFeHjAkAlsiXgO242boDAABY04gRI7R161atWLHC1l0BAACAEyBfAgAAwJrIl4DtMDDuwMLCwuTq6qrk5GSL/cnJyYqMjLRRrwDAdkaOHKl58+Zp2bJlqlatmq27AwAOh3wJAJbIlwBw9ciYAHAW+RKwLaZSd2AeHh5q3bq1Fi1aZN5nNBq1aNEixcbG2rBnAFCxTCaTRo4cqdmzZ2vx4sWqXbu2rbsEAA6JfAkApciXAGA9ZEwAIF8C9oKKcQc3evRoDR48WG3atFG7du00efJk5eTkaMiQIbbuGiqJ7Oxs7dmzx/x4//792rhxo0JCQlSjRg0b9gyVyYgRIzRz5kz9/PPP8vf3N69RFhgYKG9vbxv3DgAcC/kS9oCMCVsjXwKAdZExYWvkS9ga+RKwDwaTyWSydSdwdT788EO9+eabSkpKUsuWLfX+++8rJibG1t1CJbFkyRL9P3v3HR1F9bBx/NlNL6SSQg29N0WlCSiKiDQRQUGlKAKKigVUfhZABFRUbIANaYq+gqKiKM0GUqVJ70VagEA66ff9I2ZhSQIJLLC7fD/n5ByYuTNzZ6fsszP3ztx88835hvfq1UtTpky5/BXCVclisRQ4fPLkyerdu/flrQwAuAHyJa40MiauNPIlADgeGRNXEvkSVxr5EnAO3BgHAAAAAAAAAAAAALg13jEOAAAAAAAAAAAAAHBr3BgHAAAAAAAAAAAAALg1bowDAAAAAAAAAAAAANwaN8YBAAAAAAAAAAAAAG6NG+MAAAAAAAAAAAAAALfGjXEAAAAAAAAAAAAAgFvjxjgAAAAAAAAAAAAAwK1xYxwAAAAAAAAAAAAA4Na4MQ4AAAAAAAAAAAAAcGvcGAcAAAAAAAAAAAAAuDVujAMAAAAAAAAAAAAA3Bo3xgEAAAAAAAAAAAAAbo0b4wAAAAAAAAAAAAAAt8aNcQAAAAAAAAAAAACAW+PGOAAAAAAAAAAAAADArXFjHAAAAAAAAAAAAADg1rgxDgAAAAAAAAAAAABwa9wYd7Dp06erRo0a8vLyUkhIiMPnP3z4cFksFofP153s3btXFotFU6ZMcdg8V61apaZNmyogIEAWi0Xr1q1z2LydkcVi0fDhw4s1Te/evVWhQoVLUh93tGPHDt12220KDg6WxWLRd999d6Wr5DRuuukm3XTTTVe6GpdchQoV1Lt37ytdDQBOikx55ZEpr6wrvY/+/vvvslgs+v333+2GF3RsOmt2udTnEVd1KY5tZ1TYPgwAzor8e+WRf53DL7/8ogYNGsjX11cWi0Xx8fFXukpO40KuWbuaqyWrAlcSN8YdaOvWrerdu7cqV66sTz75RB9//PGVrpLLmzt37hX/ssvMzFTXrl114sQJjRs3TtOnT1dMTMwlW17eBYy8Px8fH0VFRemmm27S6NGjdezYsUu2bGd25mdyrj9XufDTq1cvbdiwQaNGjdL06dN13XXXacaMGXrnnXcuaz1ycnI0bdo0NWrUSGFhYSpRooSqVaumnj17avny5Ze1LpfSoUOHNHz48EJ/gM2ZM0ctW7ZUZGSk/P39ValSJXXr1k2//PLL5a0oAIhMeSlcjZlSyr2o0qdPH1WuXFm+vr6Kjo5WixYtNGzYsALLz5kzRx06dFBUVJS8vb0VFhamFi1a6K233lJiYqJd2QoVKtjyl9VqVUhIiOrWrat+/fppxYoVhdYpLS1N48aNU6NGjRQcHCxfX19Vq1ZNjz32mLZv3+7Q9Xc0Vzo2C6pramqqhg8fftnz8rFjxzRo0CDVqFFDfn5+ioyM1A033KDnnntOycnJl7Uul9K5zjPJyckaNmyY6tSpo4CAAIWHh6tBgwYaNGiQDh06dHkrCgBOyJW+Y10F+bfg/Hv06FF5enrq/vvvL3QeSUlJ8vPz01133WU3fNeuXerfv78qVaokX19fBQUFqVmzZnr33Xd16tQph9Q/Li5O3bp1k5+fn8aPH6/p06crICBAo0ePvuydaq6W/LJ06VINHz68wAYIGRkZevfdd3XNNdcoKChIISEhql27tvr166etW7de/soCcAjPK10Bd/L7778rJydH7777rqpUqXJJlvHiiy/q+eefvyTzdkZz587V+PHjixXkYmJidOrUKXl5eTmkDrt27dK+ffv0ySefqG/fvg6ZZ1E88cQTuv7665Wdna1jx45p6dKlGjZsmN5++219/fXXatWq1SVb9qlTp+TpWbzTwyeffKKcnJxLVKPclsNnmjZtmhYsWJBveM2aNS9ZHRzl1KlTWrZsmV544QU99thjtuEzZszQxo0b9eSTT162ujzxxBMaP368OnXqpPvuu0+enp7atm2bfv75Z1WqVEmNGze+bHW5lA4dOqQRI0aoQoUKatCggd24N998U0OGDFHLli01dOhQ+fv7a+fOnVq4cKG++uor3X777Vem0gCuWmRKx7saM+XOnTt1/fXXy8/PTw8++KAqVKigw4cPa82aNXr99dc1YsQIW9mcnBw99NBDmjJliurWratHH31U5cqVU1JSkpYtW6YXX3xRc+fO1aJFi+yW0aBBAz3zzDOSci8gbtmyRTNnztQnn3yip556Sm+//bZd+ePHj+v222/X6tWr1b59e/Xo0UOBgYHatm2bvvrqK3388cfKyMi45J9NUbRo0UKnTp2St7e3bVhhx+b8+fOvRBXPqaC6Hj9+3LbdL1cP9xMnTui6665TYmKiHnzwQdWoUUNxcXH6559/NHHiRD3yyCMKDAy8LHW51Ao7z2RmZqpFixbaunWrevXqpccff1zJycnatGmTZsyYoc6dO6t06dJXptIA4CTIv45H/i04/0ZGRqp169b6/vvvlZqaKn9//3zz+fbbb5WWlmZ38/ynn35S165d5ePjo549e6pOnTrKyMjQkiVLNGTIEG3atMkhDTpWrVqlpKQkjRw5Urfeeqtt+OjRo3X33XfrzjvvvOhlFMXVlF+WLl2qESNGqHfv3vmeVtGlSxf9/PPP6t69ux5++GFlZmZq69at+vHHH9W0aVPVqFHjylQawEXhxrgDHT16VJIu6WPqPD09i33D8mqRlZWlnJwceXt7y9fX12HzvRTbNSUlRQEBAecs07x5c9199912w9avX6/bbrtNXbp00ebNm1WqVCmH1elMF/L5OSo0F+bslpzLly/XggULztnCU1KhIfdKyuv1fzkeaZmTk6OMjIwCt2lsbKwmTJighx9+OF94f+edd9zi6QR554VzjR85cqRat25d4EXtvOPf2Z15/gPg+siUV5a7ZMpx48YpOTlZ69aty9cz5+zvtzfeeENTpkzRU089pbfeesvuMaODBg3S4cOHNW3atHzLKFOmTL4s9vrrr6tHjx4aN26cqlatqkceecQ2rnfv3lq7dq1mzZqlLl262E03cuRIvfDCC0Vb8cvAarXm2/6FbUNHfv+eK7sVx+U4j+Q51344adIk7d+/X3/99ZeaNm1qNy4xMdEtssv5ftt99913Wrt2rb744gv16NHDblxaWprTNAY5n6L8hgWAC0X+vbKutvx733336ZdfftEPP/yge++9N998ZsyYoeDgYLVr106StGfPHt17772KiYnRr7/+anc9duDAgdq5c6d++uknR6zeZc1waWlp8vb2ltWa/6HC7pJfzuV82WbVqlX68ccfNWrUKP3vf/+zG/fBBx+4zCPuyXBAAYybOnDggHnwwQdNqVKljLe3t6lQoYIZMGCASU9Pt5XZtWuXufvuu01oaKjx8/MzjRo1Mj/++KPdfH777Tcjyfzf//2fefXVV02ZMmWMj4+PadWqldmxY4etXExMjJFk9zds2DBjjLH795liYmJMr169bP/PyMgww4cPN1WqVDE+Pj4mLCzMNGvWzMyfP99WZtiwYebszZaZmWleeeUVU6lSJePt7W1iYmLM0KFDTVpaWr7ltWvXzixevNhcf/31xsfHx1SsWNFMnTq1uB+vkWQGDhxovv76a1OzZk3j6+trGjdubP755x9jjDEffvihqVy5svHx8TEtW7Y0e/bssZv+zz//NHfffbcpV66c8fb2NmXLljVPPvmkSU1NtZXp1atXvs80b9337NljJJmxY8eacePGmUqVKhmr1WrWrl1rGzd58mRjjDGxsbGmZMmSpmXLliYnJ8c2/x07dhh/f3/TrVu3QtezoDq0bNnSNn7RokXmxhtvNP7+/iY4ONh07NjRbN682W4eedts06ZNpnv37iYkJMQ0aNCg0GXm7XMzZ84scPyMGTOMJPO///3PbviBAwdMnz59TGRkpPH29ja1atUykyZNyjf9qVOnzLBhw0zVqlWNj4+PiY6ONp07dzY7d+60lTl7n01MTDSDBg0yMTExxtvb20RERJhbb73VrF692u6ziomJsVtWcnKyefrpp03ZsmWNt7e3qVatmhk7dqzddshb3sCBA83s2bNN7dq1bfX/+eefC/2cBg4cmO9YaNmypaldu7b5+++/TfPmzY2fn58ZNGiQMcaYtLQ08/LLL5vKlSvb9rkhQ4bkO06MMWb69Onm2muvNb6+viY0NNTcc889Zv/+/YXWJc/evXvNI488YqpVq2Z8fX1NWFiYufvuu+32/7z94cy/mJgY07JlywKH5ylq/fM+y88//9zUqlXLeHp6mtmzZxdY32XLlhlJZsqUKeddt7i4OPPMM8+YOnXqmICAAFOiRAlz++23m3Xr1tmVK+o5M89HH31kKlWqZHx9fc31119v/vzzT9OyZUu74yw9Pd289NJL5tprrzVBQUHG39/f3HjjjebXX3+1m1dh54Vx48YVeC6ZPHmyOXz4sJFkhg8fft7PwJiiHT9jx441TZo0MWFhYcbX19dce+21BR7PZ38HGGPMyZMnzaBBg2zHTOXKlc1rr71msrOzz7uea9euLdI6ACgeMiWZ0lUzZZs2bUyFChXO+fkbY0xKSooJCQkxtWvXNllZWectnydvPyhIUlKSCQsLM2XKlLF9VsuXLzeSzMMPP1yk+Re0j3722Wfm5ptvNhEREcbb29vUrFnTTJgwId+0q1atMrfddpsJDw83vr6+pkKFCqZPnz52Zb788ktz7bXXmsDAQFOiRAlTp04d884779jG5x2zv/32m219Czs2z84uxlya7GaMMd9995254447bOekSpUqmVdeecVu2xVU18KOgzPPKVu2bDFdunQxoaGhxsfHxzRs2NB8//33dsufPHmykWR+//1388gjj5iIiAgTEhJSaH379+9vPDw87LJMYYpyPBuTezwFBASYAwcOmE6dOpmAgABTsmRJ88wzz+Tbh0+ePGl69eplgoKCTHBwsOnZs6dZu3at3bFtjDHr1683vXr1MhUrVjQ+Pj4mKirK9OnTxxw/ftxufoUdh+c6z4wZM8ZIMnv37j3vZ2BM7nbo2rWrKVmypPH19TXVqlWz++1XlN8cxuTfh/MsX77ctGnTxgQFBRk/Pz/TokULs2TJkiKtJ4CrA/mX/Ovu+Tc5OdkEBASYDh065BsXGxtrPDw8zEMPPWQbNmDAACPJ/PXXX+edd2GKst0KujZY2LY8c/8vyjXhvOPxyy+/NC+88IIpXbq0sVgs5uTJkwXWtzj5pbg5aseOHaZXr14mODjYBAUFmd69e5uUlBS7smlpaebJJ580JUuWNIGBgaZDhw7m33//zXdOKGouKizDFnSdVpLZs2eP+fLLL23TFMX5zp1FvbZ69nGY51JkdeBq5ZbN5A4dOqQbbrhB8fHx6tevn2rUqKGDBw9q1qxZSk1Nlbe3t2JjY9W0aVOlpqbqiSeeUHh4uKZOnaqOHTtq1qxZ6ty5s908X3vtNVmtVg0ePFgJCQl64403dN9999nen/fOO+9o2rRpmj17tiZOnKjAwEDVq1evWPUePny4xowZo759++qGG25QYmKi/v77b61Zs0atW7cudLq+fftq6tSpuvvuu/XMM89oxYoVGjNmjLZs2aLZs2fbld25c6fuvvtuPfTQQ+rVq5c+++wz9e7dWw0bNlTt2rWLVd/Fixfrhx9+0MCBAyVJY8aMUfv27fXss89qwoQJevTRR3Xy5Em98cYbevDBB/Xrr7/app05c6ZSU1P1yCOPKDw8XCtXrtT777+vAwcOaObMmZKk/v3769ChQwU+LjvP5MmTlZaWpn79+snHx0dhYWH5eodGRkZq4sSJ6tq1q95//3098cQTysnJUe/evVWiRAlNmDCh0HXs37+/ypQpo9GjR9sebR4VFSVJWrhwodq2batKlSpp+PDhOnXqlN5//301a9ZMa9asUYUKFezm1bVrV1WtWlWjR4+WMaZYn/WZ8rbf/PnzNWrUKEm5PX8bN24si8Wixx57TBEREfr555/10EMPKTEx0fZo7uzsbLVv316LFi3Svffeq0GDBikpKUkLFizQxo0bVbly5QKXOWDAAM2aNUuPPfaYatWqpbi4OC1ZskRbtmzRtddeW+A0xhh17NhRv/32mx566CE1aNBA8+bN05AhQ3Tw4EGNGzfOrvySJUv07bff6tFHH1WJEiX03nvvqUuXLtq/f7/Cw8OL/PnExcWpbdu2uvfee3X//fcrKipKOTk56tixo5YsWaJ+/fqpZs2a2rBhg8aNG6ft27fbvaNn1KhReumll9StWzf17dtXx44d0/vvv68WLVpo7dq152yxuWrVKi1dulT33nuvypYtq71792rixIm66aabtHnzZvn7++uuu+5SSEiInnrqKXXv3l133HGHAgMDFRAQoISEBB04cMD22eQ9VrI49ZekX3/9VV9//bUee+wxlSxZMt++mCev9ezMmTPVtWvXc/as3717t7777jt17dpVFStWVGxsrD766CO1bNlSmzdvzvf4pPOdM6XcHkT9+/dX06ZN9eSTT2r37t3q2LGjwsLCVK5cOVu5xMREffrpp7bHFiUlJWnSpElq06aNVq5cme/R6GefFzp37qykpCS9/PLL6tevn5o3by5Jatq0qSIjI+Xn56c5c+bo8ccfV1hYWKGfQVGPn3fffVcdO3bUfffdp4yMDH311Vfq2rWrfvzxR1tr44KkpqaqZcuWOnjwoPr376/y5ctr6dKlGjp0qA4fPpzv/fMFnf8AOBaZkkx5JlfLlDExMVq4cKF+/fXXc76CZ8mSJYqPj9fgwYPl4eFRaLniCAwMVOfOnTVp0iRt3rxZtWvX1g8//CBJeuCBBy54vhMnTlTt2rXVsWNHeXp6as6cOXr00UeVk5Nj23+OHj2q2267TREREXr++ecVEhKivXv36ttvv7XNZ8GCBerevbtuueUWvf7665KkLVu26K+//tKgQYMKXHZxjs1Lld0kacqUKQoMDNTTTz+twMBA/frrr3r55ZeVmJiosWPHFlrXunXrqnHjxnrkkUfUuXNn2zsz89Zh06ZNatasmcqUKaPnn39eAQEB+vrrr3XnnXfqm2++yXcue/TRRxUREaGXX35ZKSkphdY3JiZG2dnZmj59unr16lVoOalox3Oe7OxstWnTRo0aNdKbb76phQsX6q233lLlypVtTykwxqhTp05asmSJBgwYoJo1a2r27NkF1mPBggXavXu3+vTpo+joaNvjUDdt2qTly5fbPUVByn8cXnPNNYWeZ/Iy97Rp0/Tiiy/mm9eZ/vnnHzVv3lxeXl7q16+fKlSooF27dmnOnDm2335F+c1RmF9//VVt27ZVw4YNNWzYMFmtVk2ePFmtWrXS4sWLdcMNN5xzPQG4P/Iv+fdM7pp/AwIC1KlTJ82aNUsnTpywu57yf//3f8rOztZ9991nGzZnzhxVqlQp39NviqMo2+2FF15Q9erV9fHHH+uVV15RxYoVVblyZd166622fbtfv36SZLsGVdRrwnlGjhwpb29vDR48WOnp6YU+vac4+aW4Oapbt26qWLGixowZozVr1ujTTz9VZGSkLZdLucfm559/rh49eqhp06b69ddfC7ymVtxcdHaGbdu2rbZv364vv/xS48aNU8mSJSVJERERts/giy++ULNmzc75xIminDuLe231TJcqqwNXrSt4U/6S6dmzp7FarWbVqlX5xuW1bnvyySeNJLN48WLbuKSkJFOxYkVToUIFW4v2vNZUNWvWtGsZ+e677xpJZsOGDbZheS2Mjh07ZrdMFbF1Y/369QvtdXH2MvKsW7fOSDJ9+/a1Kzd48GAjya5HZV4LzD///NM27OjRo8bHx8c888wz51zu2SQZHx8fu9ZXH330kZFkoqOjTWJiom340KFDbS2t8pzd6t+Y3JZoFovF7Nu3zzasoF7BxpxuORUUFGSOHj1a4LizW1V1797d+Pv7m+3bt5uxY8caSea7774777oW1oO7QYMGJjIy0sTFxdmGrV+/3litVtOzZ0/bsLxt1r179/Mu61zLO1P9+vVNaGio7f8PPfSQKVWqVL6WePfee68JDg62fd6fffaZkWTefvvtfPM8s+Xn2ftscHCwGThw4DnrfXaP8e+++85IMq+++qpdubvvvttYLJZ8PdS9vb3thq1fv95IMu+//36Byyusx7gk8+GHH9oNnz59urFarXbHuzG5rXB1RovPvXv3Gg8PDzNq1Ci7chs2bDCenp75hp+toP06r1f2tGnTbMPObJ17pnbt2uXrdV+c+huT+1larVazadOmc9Y1T8+ePY0kExoaajp37mzefPNNs2XLlnzl0tLS8vX02bNnj/Hx8TGvvPKKbVhRz5kZGRkmMjLSNGjQwK7cxx9/nK8VcVZWll0ZY3J7/0RFRZkHH3zQrj6FnRdWrVpV4HnBGGNefvllI8kEBASYtm3bmlGjRtk9DSFPUY+fs/eDjIwMU6dOHdOqVSu74Wd/B4wcOdIEBASY7du325V7/vnnjYeHh+2pBedaTwCORaYkU7pypty4caPx8/MzkkyDBg3MoEGDzHfffZevN0bePnj2OmRlZZljx47Z/Z35fXeuHuPGGNsTW/J6MXTu3NlIKrRXytkK6tVV0PZu06aNqVSpku3/s2fPNpIKPG7zDBo0yAQFBZ2zh3xBvW0LOzbP7jF+KbNbQZ9B//79jb+/v13vtoLqeuzYsULPI7fccoupW7eu3TxycnJM06ZNTdWqVW3D8nqh3HjjjUV6wsCRI0dMRESEkWRq1KhhBgwYYGbMmGHi4+OLtG4FHc95PafOzKDGGHPNNdeYhg0b2v6f93vkjTfesA3LysoyzZs3z3dsF7TsvF5CZ57rznUcFnaeSU1NNdWrVzdS7hOhevfubSZNmmRiY2PzlW3RooUpUaKE3foac+6saUzBvznO3odzcnJM1apVTZs2bfLNr2LFiqZ169ZFWk8A7o38S/69GvKvMcb89NNPRpL56KOP7IY3btzYlClTxrYfJyQkGEmmU6dORapDYYq63fKy1tnHYEBAQL6nDhpT9GvCeduiUqVKBdaloPoWNb8UN0edeS3PmNzfCeHh4bb/5x2bjz76qF25Hj165DsnFDUXnSvD5u3TZ/cyz8nJsV1rjoqKMt27dzfjx4/Pl9OMKdq5s6jXVgs6Di9VVgeuVvlfIOHicnJy9N1336lDhw667rrr8o3Pa6E0d+5c3XDDDbrxxhtt4wIDA9WvXz/t3btXmzdvtpuuT58+di2o8noc7t6922F1DwkJ0aZNm7Rjx44iTzN37lxJ0tNPP203/JlnnpGkfO83qVWrlq3uUm7rp+rVq1/Qetxyyy12LfgaNWokSerSpYtKlCiRb/iZy/Dz87P9OyUlRcePH1fTpk1ljNHatWuLXIcuXbooIiKiSGU/+OADBQcH6+6779ZLL72kBx54QJ06dSryss50+PBhrVu3Tr1797ZrVVivXj21bt3atl3ONGDAgAtaVkECAwOVlJQkKbcnxDfffKMOHTrIGKPjx4/b/tq0aaOEhAStWbNGkvTNN9+oZMmSevzxx/PN81wt/0JCQrRixQodOnSoyHWcO3euPDw89MQTT9gNf+aZZ2SM0c8//2w3/NZbb7XrsV6vXj0FBQUVe9/08fFRnz597IbNnDlTNWvWVI0aNew+n7zWo7/99psk6dtvv1VOTo66detmVy46OlpVq1a1lSvMmft1Zmam4uLiVKVKFYWEhNi2wYUoav3ztGzZUrVq1SrSvCdPnqwPPvhAFStW1OzZszV48GDVrFlTt9xyiw4ePGgr5+PjY3vnUHZ2tuLi4hQYGKjq1asXuG7nO2f+/fffOnr0qAYMGGBXrnfv3goODrabl4eHh61MTk6OTpw4oaysLF133XUFLrs45wVJGjFihGbMmKFrrrlG8+bN0wsvvKCGDRvq2muv1ZYtW2zlinr8nLkfnDx5UgkJCWrevPl594GZM2eqefPmCg0NtdvOt956q7Kzs/Xnn39e1HoCKB4yZS4yZX6ukilr166tdevW6f7779fevXv17rvv6s4771RUVJQ++eQTW7nExERJp59Uk2fDhg2KiIiw+4uLiyvyuuXNLy+z5i3nzG1aXGdu74SEBB0/flwtW7bU7t27lZCQIOn0+xh//PFHZWZmFjifkJAQpaSkaMGCBRdcl3O5lNntzM8gKSlJx48fV/PmzZWamqqtW7deUH1PnDihX3/9Vd26dbPN8/jx44qLi1ObNm20Y8cOu1woSQ8//HCRnjAQFRWl9evXa8CAATp58qQ+/PBD9ejRQ5GRkRo5cqRdr6/iHs9nHwvNmze3Oz/MnTtXnp6edu+59/DwKDDLnbnstLQ0HT9+XI0bN5akAjNccX7b+fn5acWKFRoyZIik3F7/Dz30kEqVKqXHH39c6enpkqRjx47pzz//1IMPPqjy5cvbzaOwrFmc3xzr1q3Tjh071KNHD8XFxdm2c0pKim655Rb9+eef+XoKOvI3LADnR/7NRf7Nz93yryTbE4ZmzJhhG7Znzx4tX75c3bt3t10Dc0SGlRy33c5UnGvCeXr16mVXl3PVtyj55ex1u5Ac1bx5c8XFxdk+67x94Oxrymf3fj972UXJRUXNsFLuOW/evHl69dVXFRoaqi+//FIDBw5UTEyM7rnnHts7xot67izutdU8lzKrA1crt7sxfuzYMSUmJqpOnTrnLLdv3z5Vr1493/CaNWvaxp/p7B+moaGhknJvejjKK6+8ovj4eFWrVk1169bVkCFD9M8//5xzmn379slqtapKlSp2w6OjoxUSEnLe9ZBy1+VC1uPseeXdzDrzEchnDj9zGfv377cFoMDAQEVERKhly5aSZLuoVRQVK1YsctmwsDC99957+ueffxQcHKz33nuvyNOeLe9zLWwfyrvAcKF1PZ/k5GRbIDt27Jji4+P18ccf57t4mXeD+OjRo5KkXbt2qXr16ud89EtB3njjDW3cuFHlypXTDTfcoOHDh583+O/bt0+lS5fOFxyLeoxJF7ZvlilTJt9jgHbs2KFNmzbl+3yqVasm6fTns2PHDhljVLVq1Xxlt2zZYitXmFOnTunll19WuXLl5OPjo5IlSyoiIkLx8fHF2q/PVtT65ynOvma1WjVw4ECtXr1ax48f1/fff6+2bdvq119/1b333msrl5OTo3Hjxqlq1ap26/bPP/8UuG7nO2fmbf+qVavalfPy8lKlSpXyzW/q1KmqV6+efH19FR4eroiICP30008FLvtCjrXu3btr8eLFOnnypObPn68ePXpo7dq16tChg9LS0iQV/fj58ccf1bhxY/n6+iosLEwRERGaOHHiefeBHTt26Jdffsm3nW+99VZJF7edARQfmTIXmTI/V8qU1apV0/Tp03X8+HH9888/Gj16tDw9PdWvXz8tXLhQ0umLfMnJyXbTVqlSRQsWLNCCBQsu6PHnefPLm39QUJCk0zfKL8Rff/2lW2+9VQEBAQoJCVFERIT+97//STq9vVu2bKkuXbpoxIgRKlmypDp16qTJkyfbXbx79NFHVa1aNbVt21Zly5bVgw8+qF9++eWC63W2S5ndNm3apM6dOys4OFhBQUGKiIjQ/fffL6l4+/yZdu7cKWOMXnrppXx1HjZs2EXXuVSpUpo4caIOHz6sbdu26b333rM92nHSpEm2csU5nn19ffNdzD/7HLRv3z6VKlUqX6OPgo63EydOaNCgQYqKipKfn58iIiJs6+iIvBkcHKw33nhDe/fu1d69ezVp0iRVr15dH3zwgUaOHCnp9E2P833vXOhvjrybRb169cq3nT/99FOlp6fnm568CVxdyL+5yL/5uVv+lSRPT0/dc889Wrx4se2mYt5N8jMfo+6IDCs5brudqTjXhPMU57MsSn6Rip+jinLN0Gq15nvlZ0H7THFzUXGzjY+Pj1544QVt2bJFhw4d0pdffqnGjRvbXoMkFf3cWdxrq3kudVYHrkZu+Y7xS6GwFjZntnAvruzsbLv/t2jRQrt27dL333+v+fPn69NPP9W4ceP04Ycfqm/fvuec17l6+57JketR2LzOt4zs7Gy1bt1aJ06c0HPPPacaNWooICBABw8eVO/evfO1Uj+XorRwO9O8efMk5X7RHjhw4Jzvi3a04ta1MJmZmdq+fbvtyzbv87r//vsLfW9fcd/NdLZu3bqpefPmmj17tubPn6+xY8fq9ddf17fffqu2bdte1LzzOGrfLOhzzsnJUd26dfX2228XOE3eD4+cnBxZLBb9/PPPBdbn7ItqZ3v88cc1efJkPfnkk2rSpImCg4NlsVh07733Fmu/vtD657nQfS08PFwdO3ZUx44dddNNN+mPP/7Qvn37FBMTo9GjR+ull17Sgw8+qJEjRyosLExWq1VPPvlkgevmyHPN559/rt69e+vOO+/UkCFDFBkZKQ8PD40ZM0a7du3KV/5ijrWgoCC1bt1arVu3lpeXl6ZOnaoVK1bYfqycz+LFi9WxY0e1aNFCEyZMUKlSpeTl5aXJkyfbtUIuSE5Ojlq3bq1nn322wPF5F9PzOOqcAuDyIlMWfV5kyoJdyPnfw8NDdevWVd26ddWkSRPdfPPN+uKLL3TrrbeqRo0akqSNGzfa9fwJDAy0Nc5asmRJsZe5ceNGSbJdbM5bzoYNG+x6WxXVrl27dMstt6hGjRp6++23Va5cOXl7e2vu3LkaN26cbXtbLBbNmjVLy5cv15w5czRv3jw9+OCDeuutt7R8+XIFBgYqMjJS69at07x58/Tzzz/r559/1uTJk9WzZ09NnTq12HU726XKbvHx8WrZsqWCgoL0yiuvqHLlyvL19dWaNWv03HPPXXDezJtu8ODBatOmTYFlzr5pcCH7ocViUbVq1VStWjW1a9dOVatW1RdffKG+ffsW+3h2dA+Ybt26aenSpRoyZIgaNGigwMBA5eTk6Pbbby/wc72YHBYTE6MHH3xQnTt3VqVKlfTFF1/o1VdfLfL0F/qbI2/c2LFj1aBBgwLLnP17h7wJwBHIv0WfF/m3YI7Ov3nuv/9+ffDBB/ryyy81ePBgffnll6pVq5bd92RQUJBKly5ty7YXwpHb7UwXck34Qr/bz5VfipujHHksFTcXXUy2KVWqlO6991516dJFtWvX1tdff60pU6YUefriXlvNc7myOnA1cbsb4xEREQoKCjrvl1VMTIy2bduWb3je4+diYmIcVqfQ0FDbozXyZGRk6PDhw/nKhoWFqU+fPurTp4+Sk5PVokULDR8+vNAQFxMTo5ycHO3YscPWMlOSYmNjFR8f79D1cJQNGzZo+/btmjp1qnr27GkbXtCjDIsaTovil19+0aeffqpnn31WX3zxhXr16qUVK1YUu/e0dHr/KGwfKlmypAICAi66zgWZNWuWTp06ZfsijIiIUIkSJZSdnW0X7gpSuXJlrVixQpmZmfLy8irWckuVKqVHH31Ujz76qI4ePaprr71Wo0aNKvTGeExMjBYuXKikpCS7XuOX4hg7n8qVK2v9+vW65ZZbzrlPVa5cWcYYVaxYMd9NyKKYNWuWevXqpbfeess2LC0tLd/xX5jC6lbU+jvSddddpz/++EOHDx9WTEyMZs2apZtvvtmuV4+Ue4G2ZMmSxZ5/3vbfsWOH7bGiUm7Djz179qh+/fq2YbNmzVKlSpX07bff2q1/XqvIoriQz+26667T1KlTbefqohw/33zzjXx9fTVv3jz5+PjYhk+ePPm8y6tcubKSk5PPexwDuDzIlLnIlPm5eqbMe7xf3n7TvHlzBQcH66uvvtLQoUNtj/e7GMnJyZo9e7bKlStn2586dOigMWPG6PPPP7+gG+Nz5sxRenq6fvjhB7teJoW96qZx48Zq3LixRo0apRkzZui+++7TV199ZTsGvL291aFDB3Xo0EE5OTl69NFH9dFHH+mll17Kd2GpuC5Vdvv9998VFxenb7/9Vi1atLAN37NnT5GmL6wueU/r8fLyumw5pFKlSgoNDbXth8U5nosqJiZGixYtUnJyst0N37OPt5MnT2rRokUaMWKEXn75Zdvw4jyOVyr+eSY0NFSVK1e2fc/kbYfzfe9c6G+OvF5XQUFB5E0ABSL/5iL/5udu+TdPo0aNVLlyZc2YMUOtW7fWpk2bNGrUqHzTt2/fXh9//LGWLVumJk2aFHv5jsg5BW3P4lwTdpSz84ujctSZ8o7NvCc35ilon7nYa7FS8Y8VLy8v1atXTzt27NDx48cVGRlZpHPnhV5bvRJZHXB3bvcodavVqjvvvFNz5szR33//nW98XsujO+64QytXrtSyZcts41JSUvTxxx+rQoUKRX7HW1FUrlw537thP/7443ytG89+Z19gYKCqVKli99i/s91xxx2SpHfeecdueF7vhHbt2l1otS+ZvFZhZ7YCM8bo3XffzVc2LwgV58usIPHx8erbt69uuOEGjR49Wp9++qnWrFmj0aNHX9D8SpUqpQYNGmjq1Kl2ddu4caPmz59v2y6Otn79ej355JMKDQ3VwIEDJeV+nl26dNE333xT4BfwsWPHbP/u0qWLjh8/rg8++CBfucJa5WVnZ+d7nEtkZKRKly593n0zOzs737LGjRsni8XisJ7mRdGtWzcdPHgw3/uEpNxH7uQ9oumuu+6Sh4eHRowYke/zMMac972aHh4e+aZ7//338x3rhQkICCjw0TlFrX9xHTlyJN+7v6TcH5mLFi2ye6RYQes2c+bMfO+wKarrrrtOERER+vDDD5WRkWEbPmXKlHzHe0HnjBUrVtidv8+nsHNJampqofP5+eefJZ1+VFNRjh8PDw9ZLBa7bb5371599913561jt27dtGzZMlsr7DPFx8crKyvrvPMA4DhkylxkSnuulCkXL15c4Du2897Zl/f95u/vr2effVYbN27U888/X2AmLE7vjVOnTumBBx7QiRMn9MILL9guNDVp0kS33367Pv300wK/FzMyMjR48OBC51vQ9k5ISMjX+OzkyZP56pvX6yfvGDj7GLFarbbeNOc6TorqUmW3gj6DjIwMTZgwoUjT+/v7S8p/HERGRuqmm27SRx99VOCNhjN/TxTXihUrClzflStXKi4uzrYfFud4Lqo77rhDWVlZmjhxom1Ydna23n//fbtyBS1byn8+PJ/CzjPr16/X8ePH85Xft2+fNm/ebPsMIiIi1KJFC3322Wfav3+/Xdkz63ahvzkaNmyoypUr680338z36gTp4rYzAPdA/s1F/rXnjvn3TPfdd5/Wrl2rYcOGyWKxqEePHvnKPPvsswoICFDfvn0VGxubb/yuXbvOmVkckXMCAgIKvF5W1GvCxVXU/OKoHHWmvGvGZz+yv6B5Xuy1WKnwY2XHjh35MlleuWXLlik0NFQRERFFPnde6LXVS5nVgauV2/UYl3IfSzF//ny1bNlS/fr1U82aNXX48GHNnDlTS5YsUUhIiJ5//nl9+eWXatu2rZ544gmFhYVp6tSp2rNnj7755huH9JTI07dvXw0YMEBdunRR69attX79es2bNy9fS6BatWrppptuUsOGDRUWFqa///5bs2bNsr2voiD169dXr1699PHHH9serbdy5UpNnTpVd955p26++WaHrYej1KhRQ5UrV9bgwYN18OBBBQUF6ZtvvinwnTwNGzaUJD3xxBNq06aNPDw87N57XFSDBg1SXFycFi5cKA8PD91+++3q27evXn31VXXq1Mmud2pRjR07Vm3btlWTJk300EMP6dSpU3r//fcVHBys4cOHF3t+Z1u8eLHS0tKUnZ2tuLg4/fXXX/rhhx8UHBys2bNnKzo62lb2tdde02+//aZGjRrp4YcfVq1atXTixAmtWbNGCxcu1IkTJyRJPXv21LRp0/T0009r5cqVat68uVJSUrRw4UI9+uijdo/PzJOUlKSyZcvq7rvvVv369RUYGKiFCxdq1apVdq3xztahQwfdfPPNeuGFF7R3717Vr19f8+fP1/fff68nn3wy33tiLqUHHnhAX3/9tQYMGKDffvtNzZo1U3Z2trZu3aqvv/5a8+bN03XXXafKlSvr1Vdf1dChQ7V3717deeedKlGihPbs2aPZs2erX79+57xg2759e02fPl3BwcGqVauWli1bpoULFyo8PLxI9WzYsKH+7//+T08//bSuv/56BQYGqkOHDkWuf3EdOHBAN9xwg1q1aqVbbrlF0dHROnr0qL788ktbI4y881T79u31yiuvqE+fPmratKk2bNigL774osD3gReFl5eXXn31VfXv31+tWrXSPffcoz179mjy5Mn55tm+fXt9++236ty5s9q1a6c9e/boww8/VK1atQq8qFeQypUrKyQkRB9++KFKlCihgIAANWrUSCVKlFDTpk3VuHFj3X777SpXrpzi4+P13XffafHixbrzzjt1zTXXSCra8dOuXTu9/fbbuv3229WjRw8dPXpU48ePV5UqVc77frMhQ4bohx9+UPv27dW7d281bNhQKSkp2rBhg2bNmqW9e/deUO98ABeOTEmmPJsrZcrXX39dq1ev1l133WW76btmzRpNmzZNYWFhevLJJ21ln3/+eW3ZskVjx47V/Pnz1aVLF5UtW1YnT57UmjVrNHPmTEVGRsrX19duGQcPHtTnn38uKbeX+ObNmzVz5kwdOXJEzzzzjPr3729Xftq0abrtttt01113qUOHDrrlllsUEBCgHTt26KuvvtLhw4f15ptvFrg+t912m62Xd//+/ZWcnKxPPvlEkZGRdheIpk6dqgkTJqhz586qXLmykpKS9MknnygoKMh2obVv3746ceKEWrVqpbJly2rfvn16//331aBBA7seYxfqUmW3pk2bKjQ0VL169dITTzwhi8Wi6dOnF7nhgp+fn2rVqqX/+7//U7Vq1RQWFqY6deqoTp06Gj9+vG688UbVrVtXDz/8sCpVqqTY2FgtW7ZMBw4c0Pr164tdX0maPn26vvjiC3Xu3FkNGzaUt7e3tmzZos8++0y+vr62d8QX53guqg4dOqhZs2Z6/vnntXfvXtWqVUvffvttvoaoQUFBatGihd544w1lZmaqTJkymj9/fpF74ucp7DyzYMECDRs2TB07dlTjxo0VGBio3bt367PPPlN6errdcf7ee+/pxhtv1LXXXqt+/fqpYsWK2rt3r3766SetW7dO0oX/5rBarfr000/Vtm1b1a5dW3369FGZMmV08OBB/fbbbwoKCtKcOXOKtc4A3A/5l/x7NnfNv3nuv/9+vfLKK/r+++/VrFkzVahQIV+ZvF7l99xzj2rWrKmePXuqTp06ysjI0NKlSzVz5kz17t270Ho5Iuc0bNhQCxcu1Ntvv63SpUurYsWKatSoUZGvCRdXUfOLo3LUmRo0aKDu3btrwoQJSkhIUNOmTbVo0SLt3LkzX9mLvRYrnT5WXnjhBd17773y8vJShw4dtH79evXo0UNt27ZV8+bNFRYWpoMHD2rq1Kk6dOiQ3nnnHVvDgKKcOy/m2uqlyurAVcu4qX379pmePXuaiIgI4+PjYypVqmQGDhxo0tPTbWV27dpl7r77bhMSEmJ8fX3NDTfcYH788Ue7+fz2229Gkpk5c6bd8D179hhJZvLkybZhw4YNM5LMsWPH7MpmZ2eb5557zpQsWdL4+/ubNm3amJ07d5qYmBjTq1cvW7lXX33V3HDDDSYkJMT4+fmZGjVqmFGjRpmMjIx8yzhTZmamGTFihKlYsaLx8vIy5cqVM0OHDjVpaWl25WJiYky7du3yfVYtW7Y0LVu2POfneTZJZuDAgQV+JmPHjrUbXtBnuHnzZnPrrbeawMBAU7JkSfPwww+b9evX5/tMs7KyzOOPP24iIiKMxWKxrXthyzpzXN58vv/+eyPJvPXWW3blEhMTTUxMjKlfv77dZ3y2wvYBY4xZuHChadasmfHz8zNBQUGmQ4cOZvPmzXZlCtsvzre8vD8vLy8TERFhWrRoYUaNGmWOHj1a4HSxsbFm4MCBply5csbLy8tER0ebW265xXz88cd25VJTU80LL7xg21+io6PN3XffbXbt2mUrI8kMGzbMGGNMenq6GTJkiKlfv74pUaKECQgIMPXr1zcTJkywm2+vXr1MTEyM3bCkpCTz1FNPmdKlSxsvLy9TtWpVM3bsWJOTk2NXrqD9yRiT7xg508CBA/MdCy1btjS1a9cusHxGRoZ5/fXXTe3atY2Pj48JDQ01DRs2NCNGjDAJCQl2Zb/55htz4403moCAABMQEGBq1KhhBg4caLZt21bgvPOcPHnS9OnTx5QsWdIEBgaaNm3amK1bt+Zbj8L23+TkZNOjRw8TEhJiJNl9nkWtf2GfZUESExPNu+++a9q0aWPKli1rvLy8TIkSJUyTJk3MJ598Yred0tLSzDPPPGNKlSpl/Pz8TLNmzcyyZcvynT+Kc840xpgJEyaYihUrGh8fH3PdddeZP//8M988c3JyzOjRo01MTIzx8fEx11xzjfnxxx/z7XPnOi8Yk3suqFWrlvH09LTVJTMz03zyySfmzjvvtM3f39/fXHPNNWbs2LF23xnGFO34mTRpkqlatarx8fExNWrUMJMnTy7w3F3Q/p2UlGSGDh1qqlSpYry9vU3JkiVN06ZNzZtvvmk7T51vPQE4FpmSTOmqmfKvv/4yAwcONHXq1DHBwcHGy8vLlC9f3vTu3dvue+tMs2fPNnfccYeJiIgwnp6eJiQkxNx4441m7NixJj4+3q5sTEyMLa9aLBYTFBRkateubR5++GGzYsWKQuuVmppq3nzzTXP99debwMBA4+3tbapWrWoef/xxs3Pnznzre6YffvjB1KtXz/j6+poKFSqY119/3Xz22WdGktmzZ48xxpg1a9aY7t27m/LlyxsfHx8TGRlp2rdvb/7++2/bfGbNmmVuu+02ExkZaby9vU358uVN//79zeHDh21l8rbXb7/9lq9OZ2+Dgvb9S5HdjMndro0bNzZ+fn6mdOnS5tlnnzXz5s0rcl2XLl1qGjZsaLy9ve0yvzG557KePXua6Oho4+XlZcqUKWPat29vZs2aZSszefJkI8msWrWqSPX9559/zJAhQ8y1115rwsLCjKenpylVqpTp2rWrWbNmjV3Zoh7PvXr1MgEBAfmWVdA+ExcXZx544AETFBRkgoODzQMPPGDWrl2bb54HDhwwnTt3NiEhISY4ONh07drVHDp0KN9ndK7jsLDzzO7du83LL79sGjdubCIjI42np6eJiIgw7dq1M7/++mu++WzcuNFWF19fX1O9enXz0ksv2cYX9TdHQfuwMcasXbvW3HXXXSY8PNz4+PiYmJgY061bN7No0aIirScA90f+Jf9eTfnXGGOuv/56Iynftc6zbd++3Tz88MOmQoUKxtvb25QoUcI0a9bMvP/++/n2mbMVdbsVlrW2bt1qWrRoYfz8/Iwku/2/KNeEz7UtClKc/HKxOSpvnfPyvDHGnDp1yjzxxBMmPDzcBAQEmA4dOph///033zyLmovOl2FHjhxpypQpY6xWq60usbGx5rXXXjMtW7Y0pUqVMp6eniY0NNS0atXKLh/nOd+5s6jXVgu7hnopsjpwtbIYU4zn4gEAAAAAAAAAAAAA4GLc7h3jAAAAAAAAAAAAAACcyS3fMY4Ld+TIkXOO9/PzU3Bw8GWqDQAAAFwRmRIAAABXE/IvAACugUepw47FYjnn+F69emnKlCmXpzIAAABwSWRKAAAAXE3IvwAAuAZ6jMPOggULzjm+dOnSl6kmAAAAcFVkSgAAAFxNyL8AALgGeowDAAAAAAAAAAAAANya9UpXAAAAAAAAAAAAAACAS4kb4wAAAAAAAAAAAAAAt+Y07xjf82DHK10FXOX6JA690lUAlJWecaWrAGjJnJZXZLk/eVW/bMtql7ntsi0LV86O++640lUA1CfxuStdBQC44q5UvpQuX8YkX14dyJdwBuRLAMjFNUxcCHqMAwAAAAAAAAAAAADcmtP0GAcAAFc3i5flSlcBAAAAboaMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaN8YBAAAAAAAAAAAAAG6NR6kDAACnYPXkMUQAAABwLDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7B4kV7PQAAADgWGRMAAACORL50bWw9AAAAAAAAAAAAAIBbo8c4AABwCryfBwAAAI5GxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKVi8aG0JAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUeD8PAAAAHI2MCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBT4P08AAAAcDQyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOgffzAAAAwNHImAAAAHAk8qVro8c4AAAAAAAAAAAAAMCt0WMcAAA4BYsHrS0BAADgWGRMAAAAOBL50rXRYxwAAAAAAAAAAAAA4NboMQ4AAJyCldaWAAAAcDAyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKltSUAAAAci4wJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFOweNBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODWuDEOAAAAAAAAAAAAAHBrPEodAAA4BauH5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAU7BYaW0JAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUeD8PAAAAHI2MCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBTsNDaEgAAAA5GxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKVistNcDAACAY5ExAQAA4EjkS9fG1gMAAAAAAAAAAAAAuDV6jAMAAKdgsfJ+HgAAADgWGRMAAACORL50bfQYBwAAAAAAAAAAAAC4NXqMAwAAp2D1oLUlAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBT4P08AAAAcDQyJgAAAByJfOna6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKlvR4AAAAci4wJAAAARyJfuja2HgAAAAAAAAAAAADArdFjHAAAOAXezwMAAABHI2MCAADAkciXro0e4wAAAAAAAAAAAAAAt0aPcQAA4BSsHrS2BAAAgGORMQEAAOBI5EvXRo9xAAAAAAAAAAAAAIBb48Y4AAAAAAAAAAAAAMCt8Sh1AADgFCxWHkMEAAAAxyJjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAULFba6wEAAMCxyJgAAABwJPKla2PrAQAAAAAAAAAAAADcGj3GAQCAU+D9PAAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAToHWlgAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAToHWlgAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAATsFipb0eAAAAHIuMCQAAAEciX7o2th4AAAAAAAAAAAAAwK3RYxwAADgFqwfv5wEAAIBjkTEBAADgSORL10aPcQAAAAAAAAAAAACAW6PHOAAAcAoWK60tAQAA4FhkTAAAADgS+dK10WMcAAAAAAAAAAAAAODW6DEOAACcgsVKez0AAAA4FhkTAAAAjkS+dG1sPQAAAAAAAAAAAACAW6PHOAAAcAq8nwcAAACORsYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0b4wAAAAAAAAAAAAAAt8aj1AEAgFPgMUQAAABwNDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7BYqW9HgAAAByLjAkAAABHIl+6NrYeAAAAAAAAAAAAAMCt0WMcAAA4Bd7PAwAAAEcjYwIAAMCRyJeujR7jAAAAAAAAAAAAAAC3xo1xAADgFCxW62X7K47hw4fLYrHY/dWoUcM2Pi0tTQMHDlR4eLgCAwPVpUsXxcbG2s1j//79ateunfz9/RUZGakhQ4YoKyvLIZ8bAAAACueM+RIAAACuy1mvYaJoeJQ6AADAedSuXVsLFy60/d/T83SEeuqpp/TTTz9p5syZCg4O1mOPPaa77rpLf/31lyQpOztb7dq1U3R0tJYuXarDhw+rZ8+e8vLy0ujRoy/7ugAAAAAAAADA1Ygb4wAAwDlYnPf9PJ6enoqOjs43PCEhQZMmTdKMGTPUqlUrSdLkyZNVs2ZNLV++XI0bN9b8+fO1efNmLVy4UFFRUWrQoIFGjhyp5557TsOHD5e3t/flXh0AAICrhxNnTAAAALgg8qVLox8+AADAeezYsUOlS5dWpUqVdN9992n//v2SpNWrVyszM1O33nqrrWyNGjVUvnx5LVu2TJK0bNky1a1bV1FRUbYybdq0UWJiojZt2nR5VwQAAABXHK/qAQAAgKORMYuGHuMAAMApWKyXr7Vlenq60tPT7Yb5+PjIx8cnX9lGjRppypQpql69ug4fPqwRI0aoefPm2rhxo44cOSJvb2+FhITYTRMVFaUjR45Iko4cOWJ3UzxvfN44AAAAXDqXM2MWB6/qAQAAcE3Omi8lMmZRcGMcAABcdcaMGaMRI0bYDRs2bJiGDx+er2zbtm1t/65Xr54aNWqkmJgYff311/Lz87vUVQUAAIAb4lU9AAAAcDQy5vlxY/wyCunUXaGdutsNyzh8QAdfeFSSVKJlGwU0aiGfmMqy+vlr38DuyjmVkm8+fvWuU0jHe+RdtoJMZqbStm3U0Q/O3Voj5M4eKtHiNln9A5S+c4uOT5uorKOHbeOtAYEK79FP/g1ukDE5Sl29THEzPpFJT3PAmsPZ1atZQvd2Kq1qlQJVMsxbL76+VUtWnbQr0+eecmp/a6QC/T21cVui3v54jw4eOff+ceftUbq3Y2mFhXhr574UvTdpr7buTLaN9/ay6JFeFdSqWbi8Pa1auT5e73yyRycTMi/JesI13XVHaXW/q5zCQr21a0+yxn20U1t2JBVa/uZmJdX3/oqKjvTVgUOpmjhlj5avPmFX5qH7KqjDbdEqEeCpDVsS9eaEHTpw+NSlXhWch8V6+d7wMnToUD399NN2wwrqLV6QkJAQVatWTTt37lTr1q2VkZGh+Ph4u17jsbGxthAaHR2tlStX2s0j7zFFBQVVoLjC7rpP4V3usxuWcehf7RvSPzfjdblf/nWvlWfJCGUnJihl9TLFzZyunFOpdtOUaHGrQtt2lld0GeWcSlXyyiU6NmVCocu1eHmp5H0Pq0TjFrJ4eSn1nzU6Onm8shPjbWU8wyMU2Weg/GrVU05ampIWL9Tx/5si5eQ48iOAC+F7Hc6A/fDqcrkyZnGeSCSdflWPr6+vmjRpojFjxqh8+fLnfVVP48aNC31VzyOPPKJNmzbpmmuuuTQriauGI/Jl1S/m5pvv4fdfU/LyPwtdrjUgUBG9HlHAtY2knBwlr/pLx6Z9ZHd90rtcBUX2flQ+laopOylBCfPn6OSPsxyw1nBF9WsHq8dd5VS9cqBKhvto6KiNWrw87pzTXFMnWI/1rayK5QN09Fi6pn69Tz8vsn+UcHGzAkC+vLpczmuYZEzH4x3jl1nGgX3a/2RP29/hMc/Zxlm8fXRq4xrF/zSz0On9GzZRRN+nlLxkkQ4OG6TDY55Tyoo/zrnM4LZ3KejW9oqbNlGHXh2inPR0RT8zQhZPL1uZiH7PyKtMeR1562XFvjtSvtVqq2SvgRe/wnAJvr4e2rU3Ve98uqfA8d3vLK0ud0Tr7Y9365H/bdCp9ByNfammvL0Kf2TIzU3D9WivCpoy84AefvYf7dqbqrEv1lRI0On2OAN7V1DThqEa/tZ2DRq2SSVDvfXKkGoOXz+4rlY3RuixvpU1+cu9eujJ1dq5J1lvv1JXIcFeBZavUyNIw4bU0o/zD+vBQau1eHmcxrxQWxXL+9vK3NelnO5uX0ZvTtihfoPX6lRatt5+pe4592e4Hx8fHwUFBdn9FfXGeHJysnbt2qVSpUqpYcOG8vLy0qJFi2zjt23bpv3796tJkyaSpCZNmmjDhg06evSorcyCBQsUFBSkWrVqOXbFcNVK/3evdj96n+3v3xFDJEmeoeHyDA3X8Rmfav9zjyj2o3Hyr3edIvs9aTd9SNvOKtm1p07Oman9zw3QwTH/U+o/q8+5zJL391PANTfo8HtjdGDkc/IIDVOpp148XcBiVekhuZnz3xGDFfvR2yrRorXC737A0asPF8H3OpwB+yEulTFjxig4ONjub8yYMQWWzXtVzy+//KKJEydqz549at68uZKSknhVD5zGxeZLSTry0dt280hZveycy4we+Kx8ypbXwTEv6NCbw+VXo46i+j5hG2/181OZ519V5vGj+vfFJ3R8xiSF3dVDQTff7tB1h+vw8/XI/S7/cEeRypeK8tUbw+pq7T/x6vPEan39wwE993h13XBNqK1McbMCQL7EpUTGdDxujF9mJidb2Ynxtr+c5NOthhIX/KCEud8ofde2gie2WhXe/WGdmDlFSb//oqzYQ8o89K9SVv11zmUGte6o+DlfK3XdCmUe2Ktjn46TR0iY/K9tLEnyKlVW/nUb6viUD5S+e7vSd2xR3BcfK+CG5vIICXPYusN5rVwbr0lf/aslK08UOP7udqU0/ZsD+mvVSe3el6ox7+9UyVBv3XhD4ftH1w6l9NPCo/rlt2Pad+CU3v54t9LSc3RHq0hJUoC/h+5oFakJU/dq7cZEbd+dotfH71TdGkGqVTXwkqwnXM+9d5bVnHmHNXdRrPb+m6qxE3YoLT1H7VsX3Mu2a8cyWrHmhL6cfUD7DqTq0y/2avuuZHVpX8auzLSv92nJijjt2puiV8dtVXiYj5o3Lnm5VguFsFgtl+2vOAYPHqw//vhDe/fu1dKlS9W5c2d5eHioe/fuCg4O1kMPPaSnn35av/32m1avXq0+ffqoSZMmatw493v2tttuU61atfTAAw9o/fr1mjdvnl588UUNHDiwyDfjgfPKyVZ2wknbX05yoqTcRpmH3x2llLUrlXn0iE5tXq+4r6cq4JpG0n8tnK3+gQrv+oCOfPiWkpb+rsyjR5Tx716lrFlR6OKsfv4Kvuk2Hf/iE53avF7pe3cq9qNx8qtWS75VqkuS/OtdK+8y5XRkwlhl7Nut1PV/68Ss6Qpu3V7y4MFVVyO+1+EM2A+vPpcrXw4dOlQJCQl2f0OHDi2wTm3btlXXrl1Vr149tWnTRnPnzlV8fLy+/vrry/zpAOdwEfnSNouUFLt5mMzCnxDoVbqcAupfp9hP3lP6rm1K275Zx6Z+qMDGLWzXJ0s0vVkWTy/FfvyOMg7uV/LyPxU/7weF3tH50n0OcGrLV5/QJ5/v1Z/n6SWe587bS+lwbJo++Gy39h1I1bc/HdLvfx3TPZ3K2soUNysA5Murz+W8hknGdLxi3xg/fvy43njjDXXu3FlNmjRRkyZN1LlzZ40dO1bHjh27FHV0K15RpVXu7ckq+/rHinj4aXmEFf1E5h1TWZ5hJSWTo9LD3lG5t6co6qlh8ipTvtBpPCOi5BkSprTN623DzKlUpe/eLp/KuRctfSrXUHZKsjL27rSVObV5nWSMfCrRe/dqVyrSR+Gh3lr9T4JtWEpqtjbvSFataiUKnMbT06LqlQK1+p942zBjpNUb4lWreu401SoFyMvLajff/YfSdORYuq0Mrm6enhZVq1JCf68//Vh/Y6S/151U7epBBU5Tp0aQ/l5n/xqAFWtPqE6N3PKlo3xVMsxHq84ok5Karc3bE21lgLMdOHBA3bt3V/Xq1dWtWzeFh4dr+fLlioiIkCSNGzdO7du3V5cuXdSiRQtFR0fr22+/tU3v4eGhH3/8UR4eHmrSpInuv/9+9ezZU6+88sqVWiWnQ768eF5RZVTxg+mqMG6Soh4dIs/wiELLWv0Dch9z+d/jzP3rXiNZrPIMDVfMGx+qwvvTFP340NzcWQifilVl8fRS6sZ1tmGZhw8o8/hR+VapKUnyrVJDGf/utXu0eso/q+XhHyCfsoXnV7gnvtfhDNgPcSldzBOJznxVT3R0tO1VPWc6+1U9ea/mOXN83jjkImNenIvJl3kiez+iSh9+qXKvjFNQy9bnXJ5f1RrKTklS+p7TPX9TN66VjLE1vPStWlOntm6UsrNOl9mwRt6ly8nqTycLnF/tAr7XV645odr/fWdfSFbA1Y18iUuNjOl4xboxvmrVKlWrVk3vvfeegoOD1aJFC7Vo0ULBwcF67733VKNGDf3999+Xqq4uL333Nh2b9K6OvD1CcdMmyjMiSqWff00WX78iTe8VkbvjhXbsrvgf/0+x745UTkqySj07WtaAgsOfR1DuY2DOvCCZ93+P4NxxHsGhyk6yH6+cHOWkJNmmx9UrLDT3kS8n4u1b9Z5MyFBYSMGPgwku4SkPD4tOnPWu8JPxmbZpwkK8lZGZo+TU7ELL4OoWHOQlTw+LTpy0349OxGcqPNS7wGnCQrx1Mj7DbljuPpVbPuy/6U6evT/HZ9jG4cqxWK2X7a84vvrqKx06dEjp6ek6cOCAvvrqK1WuXNk23tfXV+PHj9eJEyeUkpKib7/9Nl9YjImJ0dy5c5Wamqpjx47pzTfflKcnPWYl8qUjpO3aptiP3tbB11/S0c/GyysiSmVfHltgxrQGBimsc3cl/vqzbZhXZLQsVovCOt2jY9M/1pF3R8kjMFBlho4qtGe3Z0iocjIzlZOaYjc8O+GkPEJCbWWyEuLPGp/7f55KdPXhex3OgP3w6uSM+fJsvKrH8ciYF+di86Ukxc2crsPvv6aDY15Q8sq/FNF7oILbdCx0mR7BocpOSLAfmJOj7OQkeeZdwwwJVXaC/c2kvP/nZVDgXMJDvXXirO/1E/GZCgzwlLe39YKyAq5u5Murk7NewzwbGbNgxboi+/jjj6tr16768MMPZbHYP4bUGKMBAwbo8ccf17Jl535fTEEvi0/PzpaPh0dxquNyTm1YY/t35oG9St+9XeXGfqqA629U8uIF55/Bf595/E8zlfrfO3mOffauyr81WQHXNVPSH/MuSb0BAAAulUuZLzOys+Xt5vlSklLXn76om/HvXqXt2qYK705RiUbNlfjHfNs4q5+fygwZoYyD+xX37RenZ2CxyOLppWPTPlTqhrWSpCMfvK6KE76Qf616Sj0jwwIAgIs3ePBgdejQQTExMTp06JCGDRtW4Kt6wsLCFBQUpMcff7zQV/W88cYbOnLkCK/qOYsjMib5MtcF5UtJJ7770vbv9H27ZfHxVWi7LkqY98OlXwEAAK5CZMyiKVZzg/Xr1+upp57KFyglyWKx6KmnntK6devOO5+CXhY/8Z+d553O3eScSlFm7CF5RZYqUvm8FpAZh/afHpiVpcxjRwp9nFF24n+tJoNC7IZ7BIXY5pedcFIeJezHy2qVNaCEbXpcvfJau53dizs02DtfL/I8CUlZys42Cgs+a5oQL9s0J+Iz5O1lVaC/R6FlcHVLSMxUVraxPbUgT1iIl+JOZhQ4zYn4DIWG2LeczN2ncsuf+G+60LP35xBv2zhcOc76jnFcWpcyX364afclqLHzy0lNUebhg/KKLm0bZvH1U+lnRyonLVWHx42Usk8/sSU7/r+MefB0xsxOSlR2UqI8SxacMbPiT8rq5SWrf4DdcI/gUNv8suJPyjM45KzxIf8t88QFrx9cE9/rcAbsh1cnZ8yXvKrn0nNExiRfnlbcfFmQtF3b5BUeIUshT87KTjgpj+Bg+4FWqzwCSygr7xpm/EnbEzDz5P0/L4MC5xJ3MsPWKzdPWIiXklOylJGRc0FZAVc38uXVyVmvYZIxi6ZYN8ajo6O1cuXKQsevXLlSUVFR551PQS+Lf6ReleJUxS1YfHzlGRGt7ISiXRhM37tTOZkZ8ooue3qgh4e8wqOUFVfwu5GyjsUqK/6EfGvVP71cXz/5VKqm9F3bcue7a6s8AgLlHXP6sbB+NetJFovSd2+/gDWDOzl8NF1xJzN0bd3TP078/TxUq2qgNm9PKnCarCyjbbuT7aaxWKSGdYO1eVvuNNt3pygzM8euTLnSvoqO8LGVwdUtK8to+84kNax3+kevxSI1rB+qTdsSC5xm49ZEXVff/kfy9Q1CtXFrbvlDsWk6fiLdroy/n4dqVQuylQFweV3KfDmgdiVHVtVlWHx85RVVSln/3Xy2+vmpzPOvymRl6dBbr8hk2jdAO7V9syTJq9TpjGkNCJRHiSBlHT+qgqTv2SGTlSn/2g1sw7xKlZFXyUil7dwiSUrbuVXe5SrII+iMDFHnGmWnptjdhMfVge91OAP2QzgLXtVz6TkiY5IvTytuviyIT0wlZScnyWRlFTj+1I6t8ggoIZ8Kp68R+9euL1ksStuZew0zbccW+dWoI53Ra9+/zjXKOPSvclKTL2YVcZXYtDVRDeuH2A27/ppQbfrvO/tCsgKubuRLOBMyZtEUa20GDx6sfv36afXq1brllltsATI2NlaLFi3SJ598ojfffPO88/Hx8cnX7T7uKngMUVi3Pkpdt1JZccfkERKm0Dt7SCZHySv+lJTbi9sjOFSe//Ug9yobI5N2SlknjiknJVkm7ZSSfv9FoZ26K/vEMWXFHVPw7Z0lSSmrltiWU2bUBJ38ZppS1yyXJCUu+EEh7bspK/aQMo/FKrTzfcqOP2Ebn3n4gFI3rFbJ3o/p+LQJsnh4Kvy+/kpZuZjePFcJP1+rykT72v4fHeWrKhX8lZicpaPHMzTrp8N6oEtZHTicpsNH0/XQveV0/GSGlqw8vX+8NayWlqw4odm/HJEkzZxzWEMfq6Jtu1K0ZWey7m5XSr4+Hvr5t9xGHCmp2Zr761E92ruCEpOzlHoqW088VFEbtyVp8w5+zCDXV98d0AtP1dDWnUnasj1J3TqVkZ+vVT8tzN3PXnyquo7FZeijaXskSTN/OKgPxtTXvXeW1dK/43Rr80jVqFJCb3xwupHPzB8Oqtc95fXvoVM6HJumvvdXUNyJdC1efvyKrCNOoyf31elS5sur4TGXklSyx0NKWbNCmcePyjM0XOFd7pfJyVHy0t9l9fNT6edHyerto8MTxsrq5y/5+UuSshMTJJOjzCMHlfz3MkU80F9HJ72vnFOpCr+ntzIOHVDq5n8kSR6h4Sr7v9E6MvEtpe/erpxTqUr4fb5K3v+wslOSlJOaqoheA3Rq+2bbhcvUf9Yo4+C/inpksI5/+Zk8g0MV3rWnEhb8WOgFUbg3vtfhDNgPrz5kzKuTIzIm+fLC82XANTfIIzhUaTu3ymRmyL/ONQrreI9Ozv3GtgyfStUU/cgzOjD6f8o+GafMQ/8qZf3fiuz7hI5+9oEsnp6K6PWokpf/abs+mbT0d4Xd1UNRDz+pk3NmyrtcBYW06aRjn398RT4nXHl+vlaVKeVn+3+pKF9VqRigpOQsxR5LV/+eFRUR7q1Xx+X+Rvnul8O6q30ZPdK7kn5aeFgN64Xq5hsj9eyIDbZ5nC8rAGcjX159yJeurVg3xgcOHKiSJUtq3LhxmjBhgrL/e0SOh4eHGjZsqClTpqhbt26XpKLuwCM0XBEDBssjIEjZSQlK27FZh14dopyk3FY+JW5uq9BO3W3lSw99TZJ0bNI7Sv7rV0nSia8nS9nZiuj7tCze3krfvV2Hx76gnNQU23TepcrmhtL/JPz8rSw+vgrvNVBW/wCl79isI28Pl8k63Zrz2MdvKfy+/io1ZKSUY5SyepniZhAqrxbVKwfqnRG1bf9/rHcFSdIvvx3Va+N36cvvDsnXx0OD+1dSYICnNmxN1LOvblFGprFNUybKR8FBp08pvy2NU0iQl/rcW05hIV7auTdFz47aopMJp/e78VP2KsdIrwyuLi8vi1atj9c7n+y59CsMl/HrkmMKCfZS3/sqKCzUWzt3J+uZYRt08r/H7UdF+Crn9G6ojVsTNeLNLXr4/orq17OiDhw6paGjNmnP/lRbmS+++Ve+vh569rFqufvz5gQ9M2yD3f4M4PIhX148z7CSin7sOVkD/8uY2zbpwLCnlJ2UKL+adeVXpYYkqcK4z+ym2zOot61HeOyHb6rk/f1UeshwKcfo1NYNOvT6S7ZHYlo8PORdupysZ1wcPv75x5IxKjXoBVk8vZS6YbWOTp5wegEmR4feHK7IPgNVbvhbyklPV9LihYqbNf3SfiBwWnyvwxmwHwJXBzLmxbnYfGmysxXcur0i7n9YsliUGXtIx774RIm//WIra/XxkXfpcrKc0djgyPg3FNn7UZX932gZY5S88i8dm/ahbXzOqVQdfO1FRfZ+VOVefU/ZyYk6MXuG3XxxdalRpYTeH9PA9v8n+uY+cWDuoiMa/c42hYd5KyridGegw7FpenbEBj3et7K6diyjY8fT9fr727Ry7elH8Z8vKwBnI18CrsVijLmgIykzM1PHj+e2TilZsqS8vLzOM8W57Xmw40VND1ysPolDr3QVAGWl854YXHlL5rS8Iss9OrTnZVtW5Jhpl21ZKDpH58sd993hiGoBF6VP4nNXugoAcMVdqXwpXb6MSb50Xo7MmORLOAPyJQDk4homLsQFPxjey8tLpUqVcmRdAADA1cxqvdI1wBVGvgQAAA5HxrzqkTEBAIBDkS9dGlsPAAAAAAAAAAAAAODWLrjHOAAAgCNZLJYrXQUAAAC4GTImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7Bwvt5AAAA4GBkTAAAADgS+dK1sfUAAAAAAAAAAAAAAG6NHuMAAMApWKy8nwcAAACORcYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0e4wAAwDnwfh4AAAA4GhkTAAAAjkS+dGlsPQAAAAAAAAAAAACAW6PHOAAAcAq8nwcAAACORsYEAACAI5EvXRs9xgEAAAAAAAAAAAAAbo0e4wAAwClYLLTXAwAAgGORMQEAAOBI5EvXxtYDAAAAAAAAAAAAALg1eowDAADnwPt5AAAA4GhkTAAAADgS+dKl0WMcAAAAAAAAAAAAAODW6DEOAACcgsVKez0AAAA4FhkTAAAAjkS+dG1sPQAAAAAAAAAAAACAW6PHOAAAcAoW3s8DAAAAByNjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAcLLTXAwAAgIORMQEAAOBI5EuXxtYDAAAAAAAAAAAAALg1bowDAAAAAAAAAAAAANwaj1IHAABOwWK1XOkqAAAAwM2QMQEAAOBI5EvXRo9xAAAAAAAAAAAAAIBbo8c4AABwDlba6wEAAMDByJgAAABwJPKlS2PrAQAAAAAAAAAAAADcGj3GAQCAU7BYeD8PAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBz4P08AAAAcDQyJgAAAByJfOnS2HoAAAAAAAAAAAAAALdGj3EAAOAULFbezwMAAADHImMCAADAkciXro0e4wAAAAAAAAAAAAAAt0aPcQAA4BwstNcDAACAg5ExAQAA4EjkS5fG1gMAAAAAAAAAAAAAuDV6jAMAAOfA+3kAAADgaGRMAAAAOBL50qXRYxwAAAAAAAAAAAAA4NboMQ4AAJyChffzAAAAwMHImAAAAHAk8qVrY+sBAAAAAAAAAAAAANwaPcYBAIBz4P08AAAAcDQyJgAAAByJfOnS6DEOAAAAAAAAAAAAAHBr9BgHAABOwWKlvR4AAAAci4wJAAAARyJfuja2HgAAAAAAAAAAAADArXFjHAAAAAAAAAAAAADg1niUOgAAcA4Wy5WuAQAAANwNGRMAAACORL50afQYBwAAAAAAAAAAAAC4NXqMAwAA52ClvR4AAAAcjIwJAAAARyJfujS2HgAAAAAAAAAAAADArdFjHAAAOAfezwMAAABHI2MCAADAkciXLo0e4wAAAAAAAAAAAAAAt0aPcQAA4BQsvJ8HAAAADkbGBAAAgCORL10bWw8AAAAAAAAAAAAA4NboMQ4AAJyDhfZ6AAAAcDAyJgAAAByJfOnS2HoAAAAAAAAAAAAAALdGj3EAAOAcrJYrXQMAAAC4GzImAAAAHIl86dLoMQ4AAAAAAAAAAAAAcGv0GAcAAE7Bwvt5AAAA4GBkTAAAADgS+dK1sfUAAAAAAAAAAAAAAG6NHuMAAMA58H4eAAAAOBoZEwAAAI5EvnRp9BgHAAAAAAAAAAAAALg1eowDAADnwPt5AAAA4GhkTAAAADgS+dKlsfUAAAAAAAAAAAAAAG6NHuMAAMA5WHg/DwAAAByMjAkAAABHIl+6NHqMAwAAAAAAAAAAAADcGj3GAQCAc7DSXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1rgxDgAAAAAAAAAAAABwazxKHQAAOAcL7fUAAADgYGRMAAAAOBL50qWx9QAAAAAAAAAAAAAAbo0e4wAAwDlYLVe6BgAAAHA3ZEwAAAA4EvnSpdFjHAAAAAAAAAAAAADg1ugxDgAAnAPv5wEAAICjkTEBAADgSORLl8bWAwAAAAAAAAAAAAC4NXqMAwAA52Dh/TwAAABwMDImAAAAHIl86dLoMQ4AAFAMr732miwWi5588knbsLS0NA0cOFDh4eEKDAxUly5dFBsbazfd/v371a5dO/n7+ysyMlJDhgxRVlbWZa49AAAAAAAAAFyd6DEOAACcg9X52+utWrVKH330kerVq2c3/KmnntJPP/2kmTNnKjg4WI899pjuuusu/fXXX5Kk7OxstWvXTtHR0Vq6dKkOHz6snj17ysvLS6NHj74SqwIAAHB1cIGMCQAAABdCvnRpbD0AAIAiSE5O1n333adPPvlEoaGhtuEJCQmaNGmS3n77bbVq1UoNGzbU5MmTtXTpUi1fvlySNH/+fG3evFmff/65GjRooLZt22rkyJEaP368MjIyrtQqAQAAwAnwRCIAAAA4EvmycNwYBwAAzsFiuXx/F2DgwIFq166dbr31Vrvhq1evVmZmpt3wGjVqqHz58lq2bJkkadmyZapbt66ioqJsZdq0aaPExERt2rTpguoDAACAInDifCmd+4lEc+bM0cyZM/XHH3/o0KFDuuuuu2zj855IlJGRoaVLl2rq1KmaMmWKXn755QuuCwAAAIrAya9hki/PjRvjAADgqpOenq7ExES7v/T09ELLf/XVV1qzZo3GjBmTb9yRI0fk7e2tkJAQu+FRUVE6cuSIrcyZN8XzxueNAwAAwNWHJxIBAADAkciX58eNcQAA4Bws1sv2N2bMGAUHB9v9FXTTW5L+/fdfDRo0SF988YV8fX0v84cCAACAi3KZ8mVxG15KPJEIAADAJV3Ga5jFzZjky/PjxjgAALjqDB06VAkJCXZ/Q4cOLbDs6tWrdfToUV177bXy9PSUp6en/vjjD7333nvy9PRUVFSUMjIyFB8fbzddbGysoqOjJUnR0dH53tmT9/+8MgAAAHBdxWl4KfFEIgAAAJxfcTIm+bJoPK90BQAAACRJ1svXXs/Hx0c+Pj5FKnvLLbdow4YNdsP69OmjGjVq6LnnnlO5cuXk5eWlRYsWqUuXLpKkbdu2af/+/WrSpIkkqUmTJho1apSOHj2qyMhISdKCBQsUFBSkWrVqOXDNAAAAYOcyZcyhQ4fq6aefthtWWN7MeyLRggULeCIRAACAq7mM1zCLmjHJl0XHjXEAAIBzKFGihOrUqWM3LCAgQOHh4bbhDz30kJ5++mmFhYUpKChIjz/+uJo0aaLGjRtLkm677TbVqlVLDzzwgN544w0dOXJEL774ogYOHFjkG/QAAABwXsVpeHnmE4nyZGdn688//9QHH3ygefPm2Z5IdGavnrOfSLRy5Uq7+fJEIgAAAPdS1IxJviw6HqUOAACcg8Vy+f4cbNy4cWrfvr26dOmiFi1aKDo6Wt9++61tvIeHh3788Ud5eHioSZMmuv/++9WzZ0+98sorDq8LAAAAzuCE+TLviUTr1q2z/V133XW67777bP/OeyJRnoKeSLRhwwYdPXrUVoYnEgEAAFwGTngNk3xZdE7TY7zXyWevdBVwlXvux95XugqAts7ceqWrAKAIfv/9d7v/+/r6avz48Ro/fnyh08TExGju3LmXuGY40+RWs690FQANHVDvSlcB0IRe31zpKgA4A08kcl1PeL12pasAaOgvXa90FQCt+HTD+QsBuGzIl0XnNDfGAQDAVc7Cg2wAAADgYC6aMceNGyer1aouXbooPT1dbdq00YQJE2zj855I9Mgjj6hJkyYKCAhQr169eCIRAADApUa+dGncGAcAAAAAAACuIJ5IBAAAAEciXxaMG+MAAMA5XIJ3fwMAAOAqR8YEAACAI5EvXZpr9vcHAAAAAAAAAAAAAKCIuDEOAAAAAAAAAAAAAHBrPEodAAA4Byvt9QAAAOBgZEwAAAA4EvnSpbH1AAAAAAAAAAAAAABujR7jAADAKRiL5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAc7DQXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1ugxDgAAnAOtLQEAAOBoZEwAAAA4EvnSpbH1AAAAAAAAAAAAAABujR7jAADAKRiL5UpXAQAAAG6GjAkAAABHIl+6NnqMAwAAAAAAAAAAAADcGj3GAQCAc+D9PAAAAHA0MiYAAAAciXzp0th6AAAAAAAAAAAAAAC3Ro9xAADgHHg/DwAAAByNjAkAAABHIl+6NHqMAwAAAAAAAAAAAADcGj3GAQCAc7DSXg8AAAAORsYEAACAI5EvXRpbDwAAAAAAAAAAAADg1ugxDgAAnILh/TwAAABwMDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAM7BQns9AAAAOBgZEwAAAI5EvnRpbD0AAAAAAAAAAAAAgFujxzgAAHAKhtaWAAAAcDAyJgAAAByJfOna2HoAAAAAAAAAAAAAALfGjXEAAAAAAAAAAAAAgFvjUeoAAMA5WCxXugYAAABwN2RMAAAAOBL50qXRYxwAAAAAAAAAAAAA4NboMQ4AAJyCsdBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODW6DEOAACcA+/nAQAAgKORMQEAAOBI5EuXRo9xAAAAAAAAAAAAAIBbo8c4AABwDryfBwAAAI5GxgQAAIAjkS9dGlsPAAAAAAAAAAAAAODW6DEOAACcguH9PAAAAHAwMiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa/QYBwAAzoH38wAAAMDRyJgAAABwJPKlS2PrAQAAAAAAAAAAAADcGj3GAQCAUzDi/TwAAABwLDImAAAAHIl86droMQ4AAAAAAAAAAAAAcGv0GAcAAE7B8H4eAAAAOBgZEwAAAI5EvnRtbD0AAAAAAAAAAAAAgFujxzgAAHAOtLYEAACAo5ExAQAA4EjkS5fG1gMAAAAAAAAAAAAAuDV6jAMAAKdgLJYrXQUAAAC4GTImAAAAHIl86droMQ4AAAAAAAAAAAAAcGvcGAcAAAAAAAAAAAAAuDUepQ4AAJyCsdBeDwAAAI5FxgQAAIAjkS9dG1sPAAAAAAAAAAAAAODW6DEOAACcg8VypWsAAAAAd0PGBAAAgCORL10aPcYBAAAAAAAAAAAAAG6NHuMAAMAp8H4eAAAAOBoZEwAAAI5EvnRtbD0AAAAAAAAAAAAAgFujxzgAAHAKRryfBwAAAI5FxgQAAIAjkS9dGz3GAQAAAAAAAAAAAABujR7jAADAKfB+HgAAADgaGRMAAACORL50bWw9AAAAAAAAAAAAAIBbo8c4AABwDhbezwMAAAAHI2MCAADAkciXLo0e4wAAAAAAAAAAAAAAt0aPcQAA4BQM7fUAAADgYGRMAAAAOBL50rWx9QAAAAAAAAAAAAAAbo0e4wAAwCkY3s8DAAAAByNjAgAAwJHIl66NHuMAAAAAAAAAAAAAALdGj3EAAOAUjIX2egAAAHAsMiYAAAAciXzp2th6AAAAAAAAAAAAAAC3Ro9xAADgFIx4Pw8AAAAci4wJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFPg/TwAAABwNDImAAAAHIl86drYegAAAAAAAAAAAAAAt8aNcQAAAAAAAAAAAACAW+NR6gAAwCkYi+VKVwEAAABuhowJAAAARyJfujZ6jAMAAAAAAAAAAAAA3Bo9xgEAgFMworUlAAAAHIuMCQAAAEciX7o2eowDAAAAAAAAAAAAANwaPcYBAIBTMBba6wEAAMCxyJgAAABwJPKla2PrAQAAAAAAAAAAAADcGj3GAQCAU+D9PAAAAHA0MiYAAAAciXzp2ugxDgAAAAAAAAAAAABwa9wYBwAATsFYrJftrzgmTpyoevXqKSgoSEFBQWrSpIl+/vln2/i0tDQNHDhQ4eHhCgwMVJcuXRQbG2s3j/3796tdu3by9/dXZGSkhgwZoqysLId8bgAAACicM+ZLAAAAuC5nvYaJouFTBQAAOIeyZcvqtdde0+rVq/X333+rVatW6tSpkzZt2iRJeuqppzRnzhzNnDlTf/zxhw4dOqS77rrLNn12drbatWunjIwMLV26VFOnTtWUKVP08ssvX6lVAgAAwBVEw0sAAAA4GhmzaHjHuJPpc0959bm3vN2wfQdS9cDjawqd5qam4Xqoe4yiI3118PApfThtr5avOWlX5sHu5dXh1mgFBnhow9Ykvf3RTh04nHZJ1gHOrepLj6nay4/bDUveult/1G0rSfKvVE41X39Ooc0ayurjrWPzFmvTkyOVcTTOVr7K8wMUeUdLBdWvqZyMTM2PuL5Iy6427AmVe6irvEKCdHLpGm14bLhSd+6zjfcKDVbtd19SZLubpZwcHZk9X5ueGqXslFQHrDmczeHdq7T+z0k6fmCTUpOO6baeH6hC7VsLLLv422HasuL/1KT9UNVt3stu3P4tv2v1ogk6cXibPLx8VKri9WrTa3yhyzXGaPWC97Vl5UxlnEpUdIVrdWPnYQouWcFWJi01Xku/f1X7tvwmi8WqinVuU9OO/5OXT4BD1h0Fc9b383To0MHu/6NGjdLEiRO1fPlylS1bVpMmTdKMGTPUqlUrSdLkyZNVs2ZNLV++XI0bN9b8+fO1efNmLVy4UFFRUWrQoIFGjhyp5557TsOHD5e3t/eVWC24kQrRFjWv66Ey4VYFBVg0fWGmtuzLsY2vHWPVDTU9VCbcIn9fi96fnaHDJ0y++ZSLtOi2hp4qF2FRjpEOnzCa/EumsrILX3bjmlY1r+upQD/pyAmjOcuydOD46Xl7ekh33OCpepWs8vCQdhzI0Q9Ls5RMDHU7jsiYeazeXmq6dKaC69fU4us6KXH91kKXa/XxVs2xz6t0tzty5zt/iTY+PsJuvr7lSqnuB8MVflMjZSWn6sD077Tthbdkss+xc8Mt3HFTmO64KUxR4V6SpH2H0vXlnKNavTFZgQEeur9jpK6pHaiIMC8lJGVp+bokTf8uVqmncs453/s7RapN81AF+Htoy85Ujf/8kA4dzbCNDwzw0IDupdSofgnlGGnp6kR99NVhpaWfe764NJwxY+Y1vKxataqMMZo6dao6deqktWvXqnbt2nrqqaf0008/aebMmQoODtZjjz2mu+66S3/99Zek0w0vo6OjtXTpUh0+fFg9e/aUl5eXRo8efYXXDu6qW7sINWsYrLKlfJSRabR5Z4o++/qIDh5JlyRFlvTS1DdrFjjtqPH7tGRVQqHzfqBzlG5vGaYAfw9t3pGiD6Yd1KFY+/Pqo/eXVqMGQcox0l9/J+jDLw5xXnVz5Es4g5goi26s7aFS4RYF+Vs049dMbf039zev1SLdco2HqpW1KDTQorRMaffhHC1Yna2kU6fn0aKuVdXKWhUdZlF2jjTmy8wiLbtVAw81rGqVr7e0/6jRnOVZOpF0eryft3RHIw9VL2uVkbR5X45+XpmtDPe6h+mUnDFfSmTMoqLHuBPavT9Fd/ZZYft77H//FFq2TvUSevnpGvppUaz6PrNWi1fEadTzNVWxvL+tTI/OZdSlXWm99dFO9X9uvdLSs/Xmy3Xk7eWcBy8uvaSN27WwbDPb39KbekiSPPz9dMPczyRjtOK2XlrWsrus3l66/rsPJcvp/cXi7aXD3/yifR99WeRlVhr8sCo89oA2Dhyuv5p1U1bKKTX6aZKsPqdvCDWY9qYCa1XRyrZ9tOrOAQq78TrVnfiK41YcTiUz45TCS9VQszvP3Wt2z8YFOrp/vfyDIvON271hnn77v+dU/bq71OXJ79TpkRmq0qD9Oee3/o9PtfGv6WreebjufOxreXr7ae6kvsrKTLeV+e3LIToZu1Pt+n6m23t/qMN7/taf39K7152kp6crMTHR7i89Pf2802VnZ+urr75SSkqKmjRpotWrVyszM1O33nq6UUeNGjVUvnx5LVu2TJK0bNky1a1bV1FRUbYybdq0UWJioq3XOXAxvD0tOnLC6IdlBf/69fKS9h3J0S+rCv91XC7Soj5tvLTjYI4m/JCpCT9kavnmbJn8989t6la06o5Gnlq0Nkvjv8/U4RNGfW73UoDv6TLtGnmqRnmrZvyaqU9+ylRQgEX33ep1oasKJ3exGTNPjdeeVfqho0VaZq23/qeodjdrzb1PatktD8i3dKQazvzgdAGrVdf/8JEs3l5a2uJerX/weZXt2VnVhj/hkHWGczt+MlNTvjmiQSN3adCru/TP1mS99Fh5lS/to/BgT4WFeGrSzCN6dNhOjZt8UA1rB2pQrzLnnOfdt5dUh1vCNf7zQ3p69C6lpedo5FMV5OV5el8e0resYkr76MW392rEe/tUu5q/Hu9Z+lKvLlxIhw4ddMcdd6hq1aqqVq2aRo0apcDAQC1fvlwJCQmaNGmS3n77bbVq1UoNGzbU5MmTtXTpUi1fvlySbA0vP//8czVo0EBt27bVyJEjNX78eGVkZJxn6cCFqVsjUHN+jdNTI3fqf2N3y9PDolGDK8rHO/f8dzwuUz0Gbbb7m/7tEaWeytbf/yQVOt+ud0SoY+uSen/qQT35yk6lpefo1WcqyuuM65bP9i+n8mV89b+xuzV83B7VqRagJ3qf+3wN90C+xJXm7SkdOWn004r8v6e9PKXS4Rb9vj5HE3/M1Fe/ZalkkEU9Wtn3R/WwWrRpX45WbSt6Y54b61jVqKZVc5Zn6eO5WcrIknq29pLnGXf07m7uqcgQi6YtyNIXi7JUIcqqjk08Lnhd4frImEXDjXEnlJ1tdCI+0/aXkFT4Rcy725fWyrUn9dV3B7XvwClN+nK/tu9O1l13lLKV6dq+jKbP/FdLVp7Q7n2pGvXudoWHeevGRuGXY3XghHKys5Uee9z2lxmX+4SB0KbXyr9CGa1/6HklbdyupI3btf7B5xTcsI7Cb25sm37HK+9rz7tTlbRxe5GXWfGJnto5eqJi5yxS0oZtWt/nWfmUjlRUp9ybSYE1Kiny9hba0P9Fxa/8Ryf/Wq1NT76q0ve0k0+p/DdE4frK12ih69s8qYp1WhdaJiUhVku/f1U33ztWVg/7UJmTnaVlP4xWozuGqFbjexUSUVGhUVVUuX7bQudnjNGGJdN0TasBqlD7FoWXqq6bu72u1MSj2rtpoSTpZOwu/bt9sVrcPVKR5esrumJDNev0onatn6uUxNhC542LdznfzzNmzBgFBwfb/Y0ZM6bQum3YsEGBgYHy8fHRgAEDNHv2bNWqVUtHjhyRt7e3QkJC7MpHRUXpyJEjkqQjR47Y3RTPG583DrhY2w/ktkjfvK/gH9nrdubo13XZ2nmo8B/h7Rp5aummbP35T7aOxhsdTzDasCdH2ef43X5jHQ+t2pajNTtydDTe6Pu/cn+sN6yW+0Pcx0tqWM2quSuytPuw0aE4o2/+zFJMlFXlImig6Y4uNmNKUkSbFoq4tZm2PPf6eZfnGRSocn26aPOQ1xT3+3Ilrtmk9X3/p7Cm1yqkUf3c+bW+USVqVtG6XkOUuH6rjs37U9uHv6uYR+6TxYtGGu5u5fok/b0hWYeOZuhQbIamzT6qtPQc1ajkr32H0jV64r9auT5JR45l6J+tKZo2O1aN6peQ9RxXSjrdGq7/+/Golq9L0t4D6XrrswMKC/FUk2uCJEnlSvnourol9O7Ug9q255Q270zVRzMOq8X1wQoL5qF9V4Kzv/+RhpdwFS+9tUcLl5zU/kPp2vNvmt7+9F9FlfRW1Qq5nXNyjHQyIcvur2nDYC1elXDOnt133lZSX/0Qq+VrE7X3QJre/ORfhYd6qem1p8+r19cL0rufHdC23ae0aUeqJn5xUC0bhSgshPOquyNf4krbcdBo0dpsbdmfv9V4eqY0dUGWNu3LUVyidOC40Y8rslWmpFXBZzx08rf12Vq2OUexJ8/R8vwsTWp66M9/srX1X6PYk0bfLslSCX+pRvnczFEyWKpa1qrvl2brwHGj/Udzb97XqWhVCb+LXm2chyu8Y5yMWThujDuhsqX89O2k6/XVxOv00pPVFFnSp9CytauX0Or18XbDVq6LV+1queGxVJSPwsO89fcZZVJSs7VlR5LqVA+6FNWHCwioEqNb9i3WzdsWqsG0N+VbLrchhdXHW8YY5aSfbv2Tk5Yuk5OjsGYNL3h5fhXLyrdUpI7/utQ2LCsxWfEr1yu08TWSpJDG1yjzZIISVm+0lTm+aKlMTo5Cbqh3wcuG6zI5Ofrt/55VvZYPKSy6ar7xxw9tVkpirCwWi755t7Omv9pcP096WCeOFN5gI+nEAZ1KOqYyVZvahnn7lVBkuXo6un+dJCl2/zp5+wUpomxdW5kyVZrIYrHq6P7Cn+AB1zJ06FAlJCTY/Q0dOrTQ8tWrV9e6deu0YsUKPfLII+rVq5c2b958GWsMXDoBvlL5SKtS0oz6t/fS/3p46+E7vBQTVfjNaw+rVLqkxe5mu5G061COykfmTlempEWeHvZljiUYnUw2Kh/JzxB3dLEZ0zsyXHU/HKl1fZ5Vdur5n7cffG0dWb29dXzR6YyZsm23UvcdVGjjBpKk0MYNlLhxu92jL4/NXyKv4BIqUbvKxa4yXIjVIrW4Pli+3lZt2VXwq5r8/T2UmpajnELu30SX9FJYiJfWbUmxDUs9laNtu0+pRuXcK5A1KvkpOSVbO/ed3ofXbkmWMVL1SlyldGfFfSIRDS/h6vz9chtDJqUU3KGnSoyfKsf4ad6fJwqdR3SEt8JCvLR2c7JtWOqpHG3blaoalXPvKtWs4q+klCzt2Hv6ucRrN+WeV2tU8s83T7gX8iVcja+3lGOM0i6ic21ooFTC36Jdh07fSE/PlA4eM7ZG5uUirDqVntsAPc/uw0bGSGVpiO5WyJiOxxUpJ7N5R5LGvL9dg1/ZpLc+2qlSUb76YFRd+fkW/AiMsBBvnYi3P8uejM9QWGhu67TwkNzHVJ9MsC9zIj5DYSG0YLsaxa/8R+sfGqqV7ftqw2PD5V+hjJr89oU8AgMUv2KdslNOqcaYIbL6+crD308133hOVk9P+ZSKuOBl+kbnTpsea/+On/TYOPlElZQk+USVVPpR+x9LJjtbmScS5BN94cuG61r3xyeyWD1Up9kDBY5PjPtXkrR64Xhd02qAbu89Ud7+QZrzUU+lpcYXOE1q0jFJkn+g/RMz/AJLKjXpuCTpVNIx+QWE2Y23enjKxy9Yp/4rg0vDyHLZ/nx8fBQUFGT35+NTeEM0b29vValSRQ0bNtSYMWNUv359vfvuu4qOjlZGRobi4+PtysfGxio6OlqSFB0drdjY2Hzj88YBV1pYidwfzbdc46lV27I1eV6mDsbl6KG2XgoPKvgHtb9v7uPgkk/Zt3hPPmVUwi93mhJ+FmVl578gkHzKKJBrmG7HERmz/qTXtP/jr+waSp6LT3RJZadnKCvB/vGsGUfj5BMVYSuTEWv//Z3+3//zysC9xZTx0awPauq7D2tr4AOl9eqE/fr3cP4LSUGBHurePkK/nOMGTuh/Pb5PJtrfBIpPzFJosNd/ZbwUf9ZT33JypKSUbFsZXF6XK18W94lENLyEK7NYpP49SmvT9hTtO1jwxfk2LUK1/2CatuwsuDGSdMZ5NcH+vHkyMcs2LjTYUwmJ9u9tPn1epce4OyNfwtV4WqXbGnpow54cpRftNeIFCvzvN3Vy2lm/t9OMAv9rZ1nCT0o5q61HjpFOpZ+eHpfO5byGScZ0PIffGP/333/14IMPnrNMQS0ccrLd5/n0F2PFmpP6fWmcdu9L1ap18Xp25CYFBniqVbOSV7pqcBPH5v2pI9/8oqQN23R8wRKt7NBPXiFBKt21rTKOn9Saewcpst3Nuj1+rW6L+1ueIUFKWLMx95sVuEyOHdiojUum66ZuY2Qp4N1QkiST25Xnmlb9ValuG0WUraObuuaW3/3PL5extrga5eTkKD09XQ0bNpSXl5cWLVpkG7dt2zbt379fTZo0kSQ1adJEGzZs0NGjp99ntmDBAgUFBalWrVqXve6u6ELzZVbm+d8bj9Ov4Fu5NVtrduTocJzR3BXZOpZg1LAa7WhRNBebMSs89oA8SwRo5+sfXeE1gbs5eCRDj7+yS0+P3qW5v5/Q0w+WVblS9o3h/HytGv5EjPYfStcXPxTt/aPA2Yr7RCIaXl5ZXL+8OAMfKKMKZX312sT9BY739rLopiahmre48MZGwPmQL+FKrBap2025jXV+XJ59ntJA0ZExHc/hV7pOnDihqVOnnrNMQS0c/t3+uaOr4haSU7P176FTKlPKt8DxuT2/ve2GhYZ468TJ3CZJcf/1Jg8Nti/z/+3dd3hUVf7H8c9Mei+EhNBBepEmJYKgiCJWlF0bCiKii4Cr6KqsBRVXXLBgAbGDP2XtWBBRRIpKkyq9BkJJIaSH9Lm/PwYnjoQml8zMzfv1PPM85s6ZOyfDOPnMPed7jrPS/AymLcEyynPzVbhjj0LPaShJyvzhFy1qdYnm1z1f8+v00PrbHlRQ3QQd2b3vLz9HcZqzSjcowb1KNyihlmtGZUl6poLi3at0bX5+CoiNUsnRx6PmSEteraLCw5o1sa/eHNdWb45rq4Lsg1r+zX8169m+kqTQSOcs3Jj4ymWq/PwDFRHbQAU5qVWeNzTC+ZgjBe6rFxQVZCo0wjkBKSSitooK3b+8OyrKVVKUq5AIJimdTYbNVm230zFu3DgtWbJEe/bs0YYNGzRu3DgtWrRIgwcPVlRUlIYPH66xY8dq4cKFWr16tYYNG6akpCT16OHc1+zSSy9VmzZtdOutt2r9+vX67rvv9Oijj2rUqFEnrFJHpb+aL5fNnVRNPfRt+UecF44yctwnwR3KMRQdVvX/L0eKpQqHccxM9PAQm/KPVpHnFxny97Mp2D2GKjzEpoLjFw7BIk43Y9a6sIdienTUgMINGlC0SRdu/V6S1HP5Z+rwzrNVPkdJWqb8ggLlHxXhdjwwvpZK0g+52gQmuP/9/n3Fot/bwNrKKwylZpRq595izfw8Xcn7inVNv8rvJSFBdk24t7GKih16emqKKk5wHfP3isaYSPcKxehIf2Xnlh1tU6boCPf77XYpIszP1QbVq7ry5emuSPRnTLysXn81X+7a8HY19dB7jbylrrp1iNBDz+5SZnbVn2u9ukYpKNCmBb9kn/Bcrs/VP1V+x0T6u+7Lzi1XVKT7SpqVn6tVL+MOayJfwlv9PigeHebcc/xMqsUluVZmCw/+0/ftYJsKju4qkV/k3Bbtz/0ICdIxK7vBfNV5DZOMab7TXm/mq6++OuH9u3fvPuk5xo0bp7Fjx7odu/yWVafblRohJNiuenWC9f3iqmekbtqWr87nRuuTOQddx7p2iNam7XmSpNT0Eh3OKlWXc6O1c49zH7TQED+1bh6hL+ZVPXCEmsUvLFShTRuo5AP34FZ22PnlpdaFPRQUX0vpc378y89RlLxfxakZqnVRkvLWb5Uk+UeEKbpbB+19/X+SpJzlaxUQE6XIzm2Vt2aT87kv6iGb3a6clezrXNM073y16jVPcjs29+071LzzNWp53rWSpLh67eTnH6icQ8mq08S5f5SjokwF2QcUEVO3yvNGxNZXSERtHdy5THF1W0uSSosLlLHvN7XucZMkKaFhR5UW5enQ/o2qXb+dJOngruUyDIfiG7LffU2UkZGhIUOGKDU1VVFRUTr33HP13Xff6ZJLLpEkvfjii7Lb7Ro0aJBKSkrUv39/TZs2zfV4Pz8/zZkzRyNHjlRSUpLCwsI0dOhQPfXUU576lbzO2cqXT886o27VGNkFUm6hobgo9y/dcVE2bd9X9Ua7FQ7pYKahZol2bdnrbGOTdE5du5Ztdo4qHcg0VF5h6Jy6dm3a43CdMybcppSM42zgC8s43Yy56b6ntW38FFe74MR4df/2Ha29+T7lrFxf5XPkrtkoR2mp4vomKW2280JnWIsmCm1UT9nL10mSspevU7Nx/1Bg7ViVHnJOfIvrd77KcvNVsHmnmb8yfITNJgX4Oz/vQoLtmnBfY5WVG3rq1b0qKz/xRcS0zDJl5ZSpQ+sw7d5X7DpHy6YhmrvI+f7aurtI4WF+atYo2LXPeIdW4bLZpG27i457btQs48aN04ABA9SwYUPl5+dr1qxZWrRokb777ju3iZexsbGKjIzUmDFjjjvxctKkSUpLS2Pi5Z+crXz591Hbz6hfvm7kLXV1fpcoPfTsLqVnHn/kp3/vWK1Ym6fc/BNXTaYdKlVWTpk6tgnX7hTnZ2ZosF0tzwnVNwudE9q37DyiiDB/NWsUop17nZ+jHVs7P1e37ma2ZU1CvoQ3+n1QvFaE9O535SoyYeG67ALnBPamiTalZTvzaVCAVK+2TSu3Ob9L7zvkUEiQvxJjbUrNcrZpkmiTzSbtP8TAeE1Fxjw1pz0wPnDgQNlsNhnG8f/nOu6yt0cFBQUd8yLa/QKP07pmuXtoY/2yKkvpGSWKiw3UsBsbyuGQfvjJ+Qf/3/e0UGZWid54f68k6dM5B/Xy0+11w9X1tGx1li7uVVstzwnX5Ncq/wh/MueAhvy9gfanFik1vVjDb26kw1ml+nnF4Sr7AGtr/d8HlT5noYpSDiq4bryaPz5GRoVDBz+cI0mqP/Q6FWzdpdJDWYrp0UltXvi3kl+aocLtya5zBDdIVGBslIIb1JXNz0+RHVpJkgp3pqii0PmlpM+Gb7X10eeV/uUPkqTkl99T83+PVOHOvSras18tnvinSg5muO4v2LpbGfOW6NzpE7Rh1HjZAwLU9qXHdPCjb1SSynKGVlRWUqjcw5XLruVl7VfmwS0KDolSeExdBYfFuLW3+/krNDxO0bWbSpICg8PVuvuNWj3/FYVH11F4TF2tX/yOJKlp+8tcj/vouQHqdtlYNWl3iWw2m9r3GqI1P05XZFxjRcbU06/fv6zQyHg1bttPkhSTcI4atLhASz57XBdc94QcFeX65csJOqfD5QqLTDjLr0rNZhjeuQfS22+fuCokODhYU6dO1dSpU4/bplGjRpo7d67ZXbOMs5Uv/QNqxlLqgf5y2ws8NtymxFibjpQYyi2UQgKl6HCbIkKdbX4fAM8vMlyzzX/aUKF+nf2UlmXo4GGHOjf3U+0om2YtqLyYOXxAgDbtqdDyLc4v4j9vrNDfevtrf6Zd+w8Z6tnOT4H+0prtzseUlEmrtzt0eXd/FZWUqbhUuirJX3vTHdrHF3XLOdOMWbzPfdJuxdFlBY7sTlHxAefSbUF149Xju5lad/uDyv11g8rzCrTv3c/UevLDKsvKVVl+gdpNeVTZy9YoZ4XzYueh+T8rf8tOdZwxSVvGTVZQQm21fPJe7X3tAzlKqd61uqHXJWjVhnwdyipTSLBdF3aPVvuWYXpsyh6FBNv19H2NFRRk13NvpSg02E+hR6tucvPLXTtJTZ/QXDM/T9Oytc69Rr/84bBuvCJeB9NLlZZZqlsHJigrp1zL1jonp+9LLdGqDfkaM6Sepr5/UH5+No28OVFLfs1VFpWNHuGNGZOJl2cf1y/NN+rWurowKUZPvbRHRcUOV5V34ZEKlZZVvs6J8YFq1yJMj7+YXOV53pjYQjM+SdPSNc7PzS++z9SNV8XrQFqp0jNLdet1CTqcXea6f19qiX79LU//HFZfr8zcL38/m0beWk+LV+QoK4fPVSsjX8IbBPpLsRGVfy9iImyqEyMVlRrKPyLdcKG/6tay6f0F5bLbpPCjebKo1DmhXJKiwqSQQJuiw5wD6XVinOfLyjdUevRjbMzAAP2wplxbUpyfp8u2VKjPuX46nG8oO1+6uJOf8o9IW1OcJ83MlXbsd+ia8/309fIK+dmkK7r5a2OyQ/nMxTzrvDFfSmTMU3XaA+OJiYmaNm2arrnmmirvX7dunbp06XLGHaupatcK0vixLRUZEaCc3DJt2JKnfzy8Xrl5zk/IhNpBbqF+47Z8PfXiNt1xcyONuKWR9qcW6ZFntyg5pXLG5KzZBxQc7KcHRjZTeJi/NmzJ0wMTNrqFVtQcwfXqqNP7LyigVrRKD2Up+5fVWtrrepVmOmdXhrVoopZPj1VgbJSO7Dmgnc9OV/KUGW7naPHEPWow5DrXzxes+lKStOziW5W1ZKUkKbxVUwX8Ydmh3c+9Kf+wELV/7SkFREcq+5fVWnnlHXKUVK6GsG7IA2r70mPq8d1MGQ6H0mZ/r033Pn22Xgp42KH9GzXnjaGun5fPcS5j1aLLQF14fdVLWv1Zjyv+JbvdTws/ekjlZcWKb9BBV4yYoaDQKFeb3EPJKi3Od/3coc8dKi8t0k+fPa7S4jzVadxFA25/U/4BlRc8Lrppsn75coK+eeM2yWZXk/aXqufVj5zhbwzgeMiXZ6ZenE0jrqi8SHtFD2fEX729Qp/9VK7Wjez6W+8A1/039XX+94I15Vqw1jmIvXRThfz9pMu7+ys0SErNMvTOvDJlVX58KjbCprA/LOW2IdmhsOBy9evir4gQKfWwoXe/K1NBceVjvllRLsPw180XB8jfLu044NCXS7mAaUVmZMyTsQcEKLxVU/mFhLiObb7/GbV2ONT545dlDwpU5vc/a+OYJysf5HBo1TX/ULtXn1DPnz5SeWGRDvzfbG1/4mUzfm14uegIf90/vL5io/xVWOTQnv3FemzKHq3bXKj2LcPU6pxQSdLbE1u4PW7YQ9uUcdh5YbtBYpDCQiqX8P10XqaCg+waM6SuwkL9tHnHET02ZY9btfnkt/Zr5M2J+s/9jWU4pF/W5On1/7FiGyox8fLsI1+a78qLnUtFTxp3jtvx59/apx9+rlwy/dILYpWZXaY1GwuqPE+DxGCFhlZ+rn4y95CCg+y6Z1g9hYf6adP2Qj32fLLK/nDdctLr+3T3LXU18cGmMgzpl1W5eu2Dg1WdHhZCvoQ3qFvLptsvq/w+PaCr8/v22p0VWriuQq0bOncrHnV1gNvj3plXpj3pzs+xvh391KlZ5efe3Ufb/rFN7SibggJskpw//7zRoUB/m65O8ldwoJSSbuj/fihT+R8WX/v0p3Jd0d1Pt13qL8OQNu91aO5K9jevyciYp8ZmnGjqZBWuvvpqdezY8bgzBNavX69OnTrJ4Ti95RF7X/vzabUHzPbQnOGe7gKgrZ9s9XQXAN0/0DOzHnfs2lttz9X8nEbV9lw4ubOVL//9ds2oGId36/kPtuGA500b+pmnu4Aa7pu32nnsuasrY5IvvcvZypcDbmOrN3je6A/+7ukuAFrx1gZPdwHQU0M9s5IL1zB922lXjP/rX/9SYWHhce9v1qyZFi5ceEadAgAAQM1BvgQAAICZyJcAAACoymkPjF9wwQUnvD8sLEx9+vT5yx0CAABAzUK+BAAAgJnIlwAAAKjKaQ+MAwAAnA2GPLOEOwAAAKyLjAkAAAAzkS99m93THQAAAAAAAAAAAAAA4GyiYhwAAHgFZlsCAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCsw2xIAAABmI2MCAADATORL30bFOAAAAAAAAAAAAADA0qgYBwAAXoHZlgAAADAbGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCobBbEsAAACYi4wJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAX25wEAAIDZyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNCrGAQCAV2C2JQAAAMxGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8ArMtAQAAYDYyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVDIPZlgAAADAXGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCg725wEAAIDJyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNAbGAQAAAAAAAAAAAACWxlLqAADAKxgsQwQAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2AYzLYEAACAuciYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdgfx4AAACYjYwJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAX25wEAAIDZyJgAAAAwE/nSt1ExDgAAAAAAAAAAAACwNCrGAQCAV2B/HgAAAJiNjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLo2IcAAB4BfbnAQAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcHi6AwAAALAcMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewRCzLQEAAGAuMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABegf15AAAAYDYyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKWxlDoAAPAKDsPTPQAAAIDVkDEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2DI5ukuAAAAwGLImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXMAxmWwIAAMBcZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKxiGp3sAAAAAqyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7BIfbnAQAAgLnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXMAxmWwIAAMBcZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKxiGp3sAAAAAqyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7BEPvzAAAAwFxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArONifBwAAACYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTDYnwcAAADmImMCAADATORL30bFOAAAAAAAAAAAAADA0qgYBwAAXsFgfx4AAACYjIwJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS2NgHAAAAAAAAAAAAABgaSylDgAAvIJDNk93AQAAABZDxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8gmF4ugcAAACwGjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg/15AAAAYC4yJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVHOzPAwAAAJORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpDIwDAACvYBjVdzsdEydOVNeuXRUREaH4+HgNHDhQ27Ztc2tTXFysUaNGqVatWgoPD9egQYOUnp7u1iYlJUVXXHGFQkNDFR8fr3/9618qLy8/05cNAAAAJ+CN+RIAAAC+y1uvYeLUMDAOAABwAosXL9aoUaO0fPlyzZ8/X2VlZbr00ktVWFjoanPffffp66+/1ieffKLFixfr4MGDuu6661z3V1RU6IorrlBpaamWLl2qmTNnasaMGXr88cc98SsBAADAg5h4CQAAALORMU8NA+MAAMArGLJV2+10zJs3T7fddpvatm2rDh06aMaMGUpJSdHq1aslSbm5uXr77bf1wgsvqG/fvurSpYveffddLV26VMuXL5ckff/999q8ebPef/99dezYUQMGDNCECRM0depUlZaWmv5aAgAAwMkb8yUTLwEAAHyXt17DJGOeGn9PdwAAAMCX5ObmSpJiY2MlSatXr1ZZWZn69evnatOqVSs1bNhQy5YtU48ePbRs2TK1b99eCQkJrjb9+/fXyJEjtWnTJnXq1Kl6fwkAAAB4zLx589x+njFjhuLj47V69Wr17t3bNfFy1qxZ6tu3ryTp3XffVevWrbV8+XL16NHDNfHyhx9+UEJCgjp27KgJEybooYce0hNPPKHAwEBP/GoAAADwEDLmqaFiHAAAeAWHUX23kpIS5eXlud1KSkpO3keHQ/fee6969uypdu3aSZLS0tIUGBio6Ohot7YJCQlKS0tztfnjoPjv9/9+HwAAAM6O6sqXZ+J0J15KOu7Ey7y8PG3atOnMOgQAAIDjqs5rmGeCjFk1BsYBAECNM3HiREVFRbndJk6ceNLHjRo1Shs3btSHH35YDb0EAACAr2DiJQAAAMxGxjQfA+MAAMArGEb13caNG6fc3Fy327hx407Yv9GjR2vOnDlauHCh6tev7zpep04dlZaWKicnx619enq66tSp42qTnp5+zP2/3wcAAICzo7ryJRMvAQAAaobqvIZJxjQfA+MAAKDGCQoKUmRkpNstKCioyraGYWj06NGaPXu2fvzxRzVp0sTt/i5duiggIEALFixwHdu2bZtSUlKUlJQkSUpKStKGDRuUkZHhajN//nxFRkaqTZs2Z+E3BAAAQHVi4iUAAADMRsY0n7+nO/A7R3mFp7uAGm79+5s93QVAw1uu8XQXAEldPPKsxhnum3O2jBo1SrNmzdKXX36piIgI17JBUVFRCgkJUVRUlIYPH66xY8cqNjZWkZGRGjNmjJKSktSjRw9J0qWXXqo2bdro1ltv1aRJk5SWlqZHH31Uo0aNOu6APM7cqkX8bYfnPT77Xk93AdC0LzzdA8BzqitjBgUFnXKuMwxDY8aM0ezZs7Vo0aITTrwcNGiQpKonXv7nP/9RRkaG4uPjJTHxsjrkH872dBcA1d6w0tNdANQxz2uGloBqV53XMMmY5uPTCwAA4ARee+01SdKFF17odvzdd9/VbbfdJkl68cUXZbfbNWjQIJWUlKh///6aNm2aq62fn5/mzJmjkSNHKikpSWFhYRo6dKieeuqp6vo1AAAA4CWYeAkAAACzkTFPDQPjAADAKzgMm6e7UCXjFKaBBgcHa+rUqZo6depx2zRq1Ehz5841s2sAAAA4CW/MmEy8BAAA8F3emC8lMuapYmAcAAAAAAAAqCZMvAQAAIDZyJinxu7pDgAAAAAAAAAAAAAAcDZRMQ4AALzCKUxqBAAAAE4LGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCsy2BAAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcDDbEgAAACYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTBsnu4CAAAALIaMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFg/15AAAAYDIyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVHMy2BAAAgMnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXYH8eAAAAmI2MCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFZlsCAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCs4mG0JAAAAk5ExAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK/A/jwAAAAwGxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AoOh6d7AAAAAKshYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSGBgHAAAAAAAAAAAAAFgaS6kDAACvYBie7gEAAACshowJAAAAM5EvfRsV4wAAAAAAAAAAAAAAS6NiHAAAeAVmWwIAAMBsZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAKziYbQkAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2BU6wY9tmp8LgAAAHhK9WVM8iUAAEBNwDVM30bFOAAAAAAAAAAAAADA0qgYBwAAXqFaJ1sCAACgRiBjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF7B4fB0DwAAAGA1ZEwAAACYiXzp26gYBwAAAAAAAAAAAABYGhXjAADAK7A/DwAAAMxGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8goPZlgAAADAZGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCuzPAwAAALORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYFTrBj22anwuAAAAeEr1ZUzyJQAAQE3ANUzfRsU4AAAAAAAAAAAAAMDSqBgHAABeoVonWwIAAKBGIGMCAADATORL30bFOAAAAAAAAAAAAADA0hgYBwAAAAAAAAAAAABYGkupAwAAr2CwDBEAAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvILDwXRLAAAAmIuMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgF9ucBAACA2ciYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdgtiUAAADMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvIKD6ZYAAAAwGRkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AqGw9M9AAAAgNWQMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYLA/DwAAAExGxgQAAICZyJe+jYpxAAAAAAAAAAAAAIClUTEOAAC8goP9eQAAAGAyMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFdifBwAAAGYjYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewcFkSwAAAJiMjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpLKUOAAC8gsE6RAAAADAZGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCgaTLQEAAGAyMiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFRzszwMAAACTkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2CwQQ8AAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvILh8HQPAAAAYDVkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArONifBwAAACYjYwIAAMBM5EvfxsC4l7ru8rq66boGio0J1K7kAr34+k5t2ZF/3PYX9YzTHbc0UZ34YO0/eESvzUjW8tVZbm2GD26sqy6to4gwf23Ykqfnpu3Q/tSis/2rwAs1qC31aGlXnVgpIsSmT3+u0PYDlfdf0NamNg1tigiVKhxSWpa0eINDB7OOPZefXbqtn10JMTa99V2FMnKO/7x+dqlfR5taN7TJ3y7tTpO+W+1QYUllm8hQ6bIudjWKl0rLpQ17DC38zRB/a6zli2/n64t5PygtI1OS1KRhPQ29/jr16NJRefkFeud/n+rXdRuUnpmp6MhIXdD9PA2/+e8KDwuVJOXm5WvCi1O1a0+K8vILFB0VqV7du+jOW25QWGjocZ83L79AU96coaW/rpXdZlPvpG66544hCg0JdrXZtSdFL77+rrbu3K2oyAgNuqK/br7uqrP7gsCrLVmyRJMnT9bq1auVmpqq2bNna+DAga77DcPQ+PHj9eabbyonJ0c9e/bUa6+9pubNm7vaZGVlacyYMfr6669lt9s1aNAgvfTSSwoPD/fAbwSru/GqBPU8L0oNEoNVWubQ5h2FeuvDg9qfVvkH9/KLaumipBg1axyqsBA/XXvXbyo8UnHSc1/VL05/vzxesVEB2r2vSFPf269tu4+47g8IsOmum+vpwu4xCgiwadWGfL0yY59y8srPyu8K7/T2gl/18txfNPiCjnpw4IWSpJKycj3/1RLNW7ddpeUVOr9lIz0y6CLVighzPa7D/VOOOdeztwzQgE4tj/tcuUeK9eznC7V4c7LsNunic5vroYF9FBoU6Gqz/eAhPfP5Qm3al66YsBDd1KujhvU9z7TfF97r8gtjdfmFsUqoFSBJ2nuwRP/7OkOrNxZIki7rHaM+3aPVrGGwQkP8dP2YzSosOvm6iFdcFKtB/eMUE+Wv5H3Fmv6/VG1PrvxuHeBv0x3X11HvblEK8LdpzaYCTfvgoHLyTv45CwC+okPbKN18XQO1PCdccbWCNO4/G/XT8sMnfEyndlEafcc5atIwTBmHSjTz4736dkG6W5vTvSYK6/rq0xlatWyhUvfvVUBQkJq3aq8bh4xRYv1Grjb/eeQf2rpxjdvj+va/VsPuHidJys/L0WsvPK59e3aqID9XkVEx6ty9j66/daRCQo//fbwgP1fvvfGc1v76s+x2m85Luki33nG/gkMqrzml7Nmhma9PUvKOLYqIjNYlV16vK68bYvKrAE9b9NUb2rhqvg6l7lZAQLAaNe+ky268X7UTm7jalJWWaO6s/2r9irmqKCtT8/Y9dc1tjysiKk6SVJifrY9ee1Bp+7bpSEGOwiNrqXXnvup//X0KDjn++/BIQY6+eu8/2rp2oWx2u9qdd4muvPXfCgqu/A6VmrJNX82coP3JGxQWEaukSwarz5V3nL0XBLAAllL3Qn171dboO87Ru//bo+H3rtbO5AK98FR7RUcFVNm+XatIjf9XG835PlW3/3O1flp+WBMfaasmDSv/UA8e1EB/u7Kenpu2Q3c+sFZFxRV64an2CgywVdevBS8S4Cdl5Bj6bnXVF30O50vfrXHorXkO/d8Ch3KPGLqxj12hQce27dvBpvxTnF9xSSebmtW1afZSh95f6FB4iHRdr8qPIZtNuv4Cu/zs0swFDn29wqFzG9vUux3vU6upXStWd916o958/mm9+dzT6ty+rf498Xklp+xXZla2MrOydfdtN2vmS5M07p5/aMXa9frvq2+4Hm+329SrWxdNfOQBfTDtef37nn9o9fqNev61d074vBNenKo9KQf0wpPj9OyjD2j95i16btpbrvsLjxzR/U9MVEJ8nN58/j+6+7ab9e6Hn+mr7xactdcClQzDqLbb6SgsLFSHDh00derUKu+fNGmSXn75ZU2fPl0rVqxQWFiY+vfvr+LiYlebwYMHa9OmTZo/f77mzJmjJUuW6M477zyj1ws4nvatwvXVD5n655Pb9fB/d8nPz6aJDzVTcFDl39ygQLtW/ZavD79KP8GZ3PXpHq27bq6n92en6e7Html3SpGeefAcRUdWzrX9x+B66tExSk+/mqwH/rNDtaIDNP6fTU5wVljNxpQ0fbp8g1okxrkdn/zlYi3enKzJQ67QO3f/TYfyCjR2xpxjHv/UDZdowfgRrlvfduec8PnGffCtdqUf1vS7rtXLw6/Rmt0H9NQnlX+3C4pL9I83ZisxJlL/u+9m3XfVBZr+/XJ9umyDOb8wvFpmdplmfJamf07YpX8+vUu/bS3QY6MbqmFd5xeboEC71mzM18dzD53yOS/oGqkR19fRrK8zdM9Tu5S8r1gT7m2sqAg/V5sRN9ZRtw4Rmjh9nx6enKzY6AA9cndD038/nBpvzJeSc/LlVVddpbp168pms+mLL744pt+PP/64EhMTFRISon79+mnHjh1ubbKysjR48GBFRkYqOjpaw4cPV0FBwZm8XMApCwn2c16znL7j5I0lJSYEa9L49lr7W46G3bNaH3+1Xw+NaalunWJcbU73miisbevGNep3+d81fvLbeujJV1RRXqH/PjFGxcXuFyIvvHSgXpkx13W78bYxrvvsdrs6d++t+x55TpNf+1R3/vNxbVq/Uu++9uwJn/u1Fx7XgX279dCTr2jsoy9o26Z1emfaM677i44UaNL4MYqrnainXpipG2+7R7P/96Z+/G62uS8CPG731l+V1O9m3T3+Qw1/6G1VVJTpnf8OV2lx5QTxbz6YqC3rFmnw6Cm685H3lJeToQ9eusd1v91uV5vOfTXkvmm6f/K3+tudz2jXpmX64t0nTvjcH732oDIO7NTtD72toWNfU/K2VZr9znjX/cVFBXpn0h2Kjqur0U99qgE3PqAFs6dq5Y8fm/46wJ23XsMkX54aBsa90I0D6+vr71I1d0G69uw7osnTdqi4xKErL6lTZfu/X11PK9Zk6X+z92vv/iN664M92r6rQIOurOfW5r2P9+rnFYe1a0+hnn5xq2rFBumCHnFVnhPWtjtNWrzRcKsS/6PNKYb2pEs5hVJmnvTDWkPBgTbFR7m3a1pHalLHph/Xn7yqIihA6tDEpgXrHNqbIaVlS9+sdKhBnE11aznbNEmQ4iKlr5Y7lJFT2c8uzWyy82llKT27dVHSeZ3UoG6iGtRL1IhbblBIcLA2bduhpo0a6OmH71PPbl1ULzFBXc5tqxGDr9fSX9eovMJZZRMRHq6BAy5Rq2ZNVSe+trp0aKeBAy7R+s1bj/uce/Yd0Io16/Xg6BFq06KZzm3TSveOuE0Lfl6mzKxsSdL8xb+orLxcD4++S00a1tfFF5yvQVf218dfza2W1wXeacCAAXr66ad17bXXHnOfYRiaMmWKHn30UV1zzTU699xz9d577+ngwYOu8LllyxbNmzdPb731lrp3765evXrplVde0YcffqiDBw9W82+DmuCRybs0/6cs7T1QrN0pRXrujRQlxAWqeeMQV5vZ3x3SR3PStWVn4Smfd9CAeH276LC+/ylLKQeL9dK7+1RS4lD/3s4/5KEhdl3Wp5Zen3VA6zYXaMeeIj3/5l61bRGuVuccfzUPWMeRklKN+2Cexv+9nyL/MKMyv6hEs1du0gNX91b35g3UpkGCnrrhUq3bk6rf9qa6nSMiJEhxkWGuW1DA8Rc5252epV+27tX46y/RuY0S1blpPT187YWat26bMnKdX9znrtmqsvIKPXXDJWpWp5YGdGqpm3p11P8tXnPc88I6Vq7P16oNBTqYUaqD6aV6b3aGikscatXU+Zn05Q+H9cm3mdq6+9RXUrv2kjjN+ylbP/ySo32pJXr1/YMqLnXo0l7OgZ3QELsu7RWjtz5O029bC7Vzb7GmvLtfbZqFqWXTkJOcHTUJky/h65avztKb7+/RkpNUif9u4GWJSk0v1qvv7Nbe/Uf0+TcHteiXQ7rhmvquNqd7TRTW9uATL6v3xVeqfsNz1KhJC935z8d1+FCa9uza4tYuKChY0TFxrtsfK8HDwiPVb8Df1LR5G8XFJ6pth266eMDftG3TuuM+74F9yfptzTINH/WImrVsp5ZtOmrInQ9o+U/zlX3YOZnul8XzVF5erhFjHlP9hucoqfeluvTKGzTvy1ln5bWA59z+4Jvq0vtaJdRvrsRGrfS3Oycq53CqDuzZJEkqPpKvVYs/1xU3P6Rz2vZQvSZt9bcRz2jvjrVK2blOkhQSFqUe/W5S/abtFBNXT83aJqn7xTdpz7bVx33ejAO7tP23n3Td8Alq2KyDGrfsoquGPKrfls9VXnaGJGndL1+rorxMg0Y8rYT6zdUh6Qqdf+kt+nnejLP9ssBLkS9PDUNNXsbf36YWzSK0an2265hhSKvWZatty8gqH9OuVaRWrct2O7ZibZbatXK2r5sQrLjYIP36hzaFRyq0eXueqw1wPHa71Okcm4pLDaXnVB4PC5Iu72rXV8sdKjuF1VHrxEh+fjYl/6Ew7XC+lFtoqF4tZ0V4/TibDuXKbWn13WnOQfnavFUtq6LCoQU/LVVxcYnatWpeZZvCI0UKDQ2Rv59flfdnZmVrybJf1bFd6+M+z6ZtOxQeFqpWzZq6jnXp0E52m02bt+90tenQppUC/nARvlunc5VyIFX5FpsZ540cDqPabmZJTk5WWlqa+vXr5zoWFRWl7t27a9myZZKkZcuWKTo6WuedV7lsb79+/WS327VixQrT+gIcT1iIM/LnF/71JXz9/Wxq3jhUazdVLmNpGNLaTflq3cw5wNSiSagC/O1a84c2+1JLlJ5ZqjbNw445J6znmc8XqnebJurRwr0ydvP+DJVXONS9RQPXsSYJsUqMidD6PanHnKPPY9N185T/afaKTSecIb9+T6oiQoLUtkGC61j35g1lt9m0ISXtaJs0dWlaTwH+lRni/FaNtOdQtvKOFB9zTliX3Sb17hql4EC7tuw6cvIHVMHfz6ZmjUK0bnNlLjQMad2WAtdge7NGIQrwt7u12Z9WqozDpWrNJCGP8NZ8yeRL1DRtq7h+uXJNltoevTb5V66JomYpOuL82xoW7l65s3TxPI285RI9POZGffTeVJWUHD/jZR8+pFXLF6pVu87HbbNz2waFhkWoafM2rmNtO3SVzWbXru0bnW22blDLth3lH1C5mkH7Tj2UemCvCgvy/tLvB99QXOT8vhsS5nwfHkjepIqKMjVrm+RqE1+3qaJrJSplx7oqz5GXnaFNq+arSauux32elJ3rFBwaqfpN27mONWubJJvNrn271rvaNGl5nvz9K7eRat6+lw6lJquoMPcv/444OW+9hkm+PDWnvcd4UVGRVq9erdjYWLVp08btvuLiYn388ccaMoS9NP6qqMgA+fvZlJVd5nY8K6dMjepX/SU6NjpQ2Tmlbseyc8oUG+38QIyNCXQdc29T6roP+LNmidLAJLsC/KWCIul/ix0q+sPb7Mrudq3dZSgtW4o6hes7YcE2lVcYKnF/G6qwWAoP/r2N8+c/3//7fbCWXXtSdPfD41VaWqaQ4GA9/fB9atyg/jHtcvLyNPPj2br60r7H3Pfk86/o5xWrVVJaqvO7dtaDo0Yc9/mysnMUE+X+5cnfz08REeHKys6RJB3OzlViQm23NrHRUa77ItgP2jJKSkpUUlLidiwoKEhBQVXsGXECaWnOgZeEhAS34wkJCa770tLSFB8f73a/v7+/YmNjXW1qOvLl2WOzSf+4pb42bivQnv1/fRAwMsJPfn42Zef+KU/mlatBXecf6ZioAJWWOY7Zqzw7t0wxLH9ped+u3aYt+zM0696bjrnvcH6hAvz8FBniHuhiw0OVmV+5asHdlyWpW7MGCg7w17Lte/XM5z/qSGmpBl/QqcrnPJxfqNhw9yDq72dXZGiwDh89b2Z+oerFul9Mr3X0MZn5RxQZSsi0ukb1gvT8uKYKDLCrqMShp6elaF9qyckfWIXIcOdnYU6e+8zgnLxyNajjzBAxkf4qK3Mcs1d5dl65YiJP+xIMfIhZ+VI6+eTLG2+88aSTL6u6IFrTkDG9S62YQGX96fplVk6ZwsP8FRhoV0S4/2lfE0XN4XA49P5bL6hF6w5q0Khyq52k3v0VV7uOYmJrK2XPTn303qtKO7BX/xw3ye3xU597VGtWLFZpaYk6db1Aw0c/ctznys0+rMioGLdjfn7+CouIVE6Oc4WE3Jws1U6o69YmKjpWkpSTfVhh4UzmsCKHw6E5709UoxadVadBC0lSfm6m/PwDFBLm/m8eHhWn/NxMt2P/m3q/tqz5UWWlxWrd6SJdN3zCcZ8rPzdT4ZGxbsf8/PwVEhal/JxMV5vY2u7XUsOjnCu65edkugbv4dvMypjky0qnVTG+fft2tW7dWr1791b79u3Vp08fpaZWzvDPzc3VsGHDTnqekpIS5eXlud0cFaUnfRyA6rM3Q3r7e4dmLnBoV5qha5Mq9xg/r7lNgf7S0i3mVV2i5mlYr67efnGipk96StcM6KdnXp6uPfv2u7UpPHJED02YrMYN6mnYjYOOOcfo22/VWy/8R8/8+34dTEvX1Hfer67u4ywwjOq7TZw4UVFRUW63iRMnevolqJHIl2fX6KH11bh+sJ6ZusfTXYGFpWXna9IXizVx8GUnXPr8ZO66pLs6Namr1vXjdXvfrrrtovM0c+HxlxcETsWBtFKNeWqXxj6zS3MXZWns7fXVIPH0Byrhu3wxXzL58syZkTHJl4D3mPn6JO1P2a1RDzztdrxv/2t1buckNWjcTD0vvEx33Tteq5YvUnqq+/WlwcPv1YQX/0/3/fs5ZaTt16x3plRj72EVX818Sun7d+imUc//pcdfOfhhjZ7wmW69b6oOZ6Tom1kn3use3ssXr2GSLyud1sD4Qw89pHbt2ikjI0Pbtm1TRESEevbsqZSUlNN60qr+Iffv/OC0zmFVuXllKq8wFBvjXlUTGx2gw9lVh++snFLFRLtXfsdEB7hmYWYdfVxMdMCf2gS67gP+rKxCyi6QDh6W5v5qyGFIHZo6lzxvFG9TvVrSQ3+z6+G/2zXyCudHye2X2HVlN1uV5yssNuTvZ1PQnwrGwoKlguLf2xxbGf77z3+uJIfvCwjwV/3EOmrZrKnuuvVGNWvcUJ98Pc91/5GiIj3w5H8VGuKsJvf3P/ZCe62YaDWqX0+9unXRAyOH64t5P7j2C/+z2JhoZee6LyNUXlGh/PwCxcZEHz1flLJz3NtkHf25VgyzLK1k3Lhxys3NdbuNGzfutM9Tp45zr7v09HS34+np6a776tSpo4yMDLf7y8vLlZWV5WpTk53NfJm88Z2z1GvfMGpIffXoGKUHJ+5U5p8qb05XXn6FKiqMYyq/YyL9lXV0VaLs3DIFBtgVFuq+7UVMVMAxleawls3705VVcEQ3vjhLnf/1kjr/6yWt2nVAs35ep87/ekm1wkNVVlGhvCL3QJdVcERxEcdfZr99wzpKzy1QaXnV+/bUighTVoH7ktjlFQ7lHSlWraPnjYsIU1a+e5vDRx8TF0H1WU1QXmEoNaNUO/cWa+bn6UreV6xr+tX6S+fKK3B+Fkb/qfI7OtJf2bnO92l2XrkCAuyubSx+FxPpr+y8U9iDCj7LrHwJc5iRMbl+aa7D2aWu1S1/FxsdoILCcpWWOv7SNVHUDDNfn6x1v/6scU9PU2xcwgnbntPCuex0euo+t+PRMXGqW7+xOnfvrWF3j9OCbz9TTlZmVadQVEwt5eW6X1uqqChXYX6eoqOdGSIqOla5R6vHf5ebk3X0uf5azoB3+3LmBG1dt1gjxs1UVGzltZyIqDhVlJepqNB9Cf2C3ExFRMW5HYuIrq34uk3VpnNfXTvsSa1Y8KHyctyvF/3xvAV5WW7HKirKVVSYq4jouMo2ue7vw99//r0NfB8Z03ynNTC+dOlSTZw4UXFxcWrWrJm+/vpr9e/fXxdccIF27959yuep6h+yfrPBp915KyovN7R9Z766nFu5XIvNJnXpEKNN26ren2Tj1jyd18F9eZeuHWO0cauz/cH0YmVmlbi1CQ3xU5sWka42wMnYbJL/0U+M+Wsdevv7yttHS5zLBM5e5tDiDVVXkadlSxUVhhr/Ib/GRkhRYTYdOOx8zP5MQ7Wj5KpMl6QmCc79zTN5q1qewzBUdnTD+sIjR3T/ExMV4O+viY88oKDAk2/74Di6B2nZcTa9b9uyuQoKj2jbzsq/V2t+2ySHYahNi2auNus3b1X5Hy7Ar1q3QQ3rJbKMejUwHEa13YKCghQZGel2+yvLXDZp0kR16tTRggULXMfy8vK0YsUKJSU595dKSkpSTk6OVq+urHr88ccf5XA41L179zN/4Xzc2cyXTdrdfhZ77t1GDamvnl2i9K+JO5V26MwvJJZXGNqx54g6tolwHbPZpI5tI7Rlp3OQcXvyEZWVO9SpTeXnZf06QUqIC9TmHYXHnBPW0b15Q336wC36aOxg161tgwRd3rmVPho7WG0aJMjfz66VOyovUO7JyFJqdr46NE487nm3HTykyJAgBVYxOU6SOjROVH5RiTbvq5yctHLnPjkMQ+0b1jnapo5W7z6gsorKJf6Xb09R49oxLKNeQ9lsUoB/1ZN5T6a8wtDOvUXq2Lryc85mkzq2CtfW3c7Pwp17i1RW7lCHP7SplxCo+FqBf3lvc5wZX8uXEpMvzWBGxuT6pbk2bc1Tlw7Rbse6dorRpqPXJv/KNVFYm2EYmvn6ZK1evkjjnp6m+IR6J31MSvJ2SVJ07PEHBQ3DeR2zrKzq70nNWrbXkcJ8Je/c4jq2+bdVMgyHa+C9Wav22rZpndv1o43rVyqxXiOWUbcYwzD05cwJ2rz6B90x7l3FxrsvXV6vSVv5+QVo1+blrmOHUpOVczhVDZt3PMF5ne/DirKqJ5E3bNZRxUfydCB5k+vYrs0rZBgONTing6tN8rZVqiivPMfOjUtVO7EJy6ifZb54DZN8Wem0BsaLiorcKvZsNptee+01XXXVVerTp4+2b99+Suep6h/S7sde17/78Iv9uqp/oi7rm6BG9UP1wN3NFRJs1zc/OJcqePS+lrprSBNX+0++OqDunWN048D6alg/RLff1EitmkXoszkH3NoMvaGhenarpaaNwvTo2FY6nFWin5ZXPTMO1hbgL8VHO2+Sc3A6PlqKDJUC/KQ+7W2qW8v5c50Y6YquNkWESFv2OQce845Ih3Irb1n5zvNkF0j5Rc7/Dg+R7hpgV+LRrVBKyqT1yYb6dbSrUbzzvFd2s2t/pqGDRye2JadLmXnS1d3tio+WmtRx9mX1TkMV7lv0wce9/n8fat2mLUpNP6Rde1KcP2/cokv69Dw6KP6siopL9NDoO1V4pEiHs3N0ODtHFUffCMtWrdXcBYu0e+8+paYf0rJVa/X8a++ofesWrj3CN2/fqVtG3a9Dh52zKxs3qKfunTto0rS3tHn7Tm3Ysk1T3pyhi3slKS7W+cW7X++eCvD3139ffUPJKfu14Odl+nTOd7r+6ss980LBKxQUFGjdunVat26dJOeePOvWrVNKSopsNpvuvfdePf300/rqq6+0YcMGDRkyRHXr1tXAgQMlSa1bt9Zll12mESNGaOXKlfrll180evRo3Xjjjapbt+7xn7iGIF+ab8zQ+rr4/BhNfG2vioorFBPlr5gofwUGVA4ExUT5q2nDENVNcH6ZalI/WE0bhigirLLa+78PN9PV/SovKH32bYYuv7CWLukVqwZ1g3TPbQ0UHGTXd0ucf8iPFDk0b/Fh3TW4vjq0DlfzxiG6/86G2rSjQFsZDLK0sOBANU+Mc7uFBPorOjRYzRPjFBESpGu7tdVzXy3Ryp37tHlfuh7/cL46NErUuY2cA+OLNu3W58s3akdqplIyc/Tx0vV6a8FK3dSro+t5NqSk6ZpnZyo9t0CS1DQhVj1bNdKTn/ygDSlpWpt8UBM/X6jLOrZUfJRzUHJAp1YK8PfTEx/9oJ1phzVv7TZ98NNa3dqnc7W/Tqh+Q69LUNvmoYqvFaBG9YI09LoEtW8ZpoUrciQ5q7ibNghWYrzz70Xj+sFq2iBY4X/4LPzP/Y115UWV+zvOnp+p/r1jdPH50WqQGKRRt9RVcJBd839xVpYdKXLo+5+zNeKGOjq3ZZiaNQrWfcPqa8vOI9q2u6j6fnn4NCZfnjkzMib58sRCgu1q1iRMzZo4V2lJTAhWsyZhSqjtzJd3DWmiR+9r6Wr/xbxU1a0TopG3NVXD+iG69vK6uqhXvD76snLJ65NdE0XNMvP1SVq6+FuNvH+CgkNClZOdqZzsTJWWOFchSk/dry8+elvJO7foUPpBrVmxRK9PeUIt23ZSw8bNJUnrVv2iJT98rX17d+lQ+kGtW/Wz3p32X7Vo3cG1R/iu7Zv04N1/V9Zh52BQvQZNdG7nJL099Rnt2r5J27es13tvTFaPCy5RTC3nNafze18mf39/vfXKBO1P2aXlP83Xd19/qMuuudkDrxTOpi9nPqV1S7/WDSMnKyg4TPk5h5Sfc0hlpc73YXBohM7rc52++eBZ7dq8QgeSN+nTN/6ths06qmGzjpKkresWa9WSz5W2b7uyDx3Q1nWL9MW7T6pRi86Kqe2c8LFv12964cHLlZvlHLSMr3eOWpx7gT5/+zHt2/Wb9mxfo6/em6Bze1yuyBjnUtcdz79Sfv4B+uytR5W+f4d+Wz5Xv3z3f+p12W3V/jrB+5EvK53WBnCtWrXSqlWr1Lp1a7fjr776qiTp6quvNq9nNdiPPx9SdFSA7hjcWLExgdq5u0D3j9+g7KPLVCbUDpbjD0W5G7fm6cnntmjELU1055Am2n+wSOP+s0nJKZUXID/4bJ+Cg/304OgWCg/z14bNubp//AaVlrFHdE2UGCPd0rfyYs8lnZxzZH5LdujbVYbiIm06t7FNIUFSUamUmiX934+O06ra9rNJtSJtCvjDaqrz1xoyDOm68+3y85OS06R5qytHvA1D+vgnhy7rYtfQi+0qK5d+22NoyUbep1aTnZOnZ6a8psPZOQoLC9U5jRroufEPq2vH9lq7YbM2b98pSbpp5H1uj/vo9ZeUmFBbQUGB+vr7hXr17fdVWl6m+Lha6t2jqwZfV/l3qKSkVCkHUlVeXlkh9th9ozTljRm67/FnZLfb1Cepm+65Y6jr/vCwUD3/xDi9+Pq7GnH/I4qKjNDQG67V1f0vPsuvCKTKqn9vs2rVKl100UWun8eOHStJGjp0qGbMmKEHH3xQhYWFuvPOO5WTk6NevXpp3rx5Cg6urET84IMPNHr0aF188cWy2+0aNGiQXn755Wr/XbwR+dJ8V/VzXqx5/pHmbscnv7FX839yTha6sm+cbr2uslL3hcdaHNMmMT5QURGVXxcWr8hRVIS/hgxKVEyUv3anFOmRybuU84elgad/cECGIT12TxMFBti06rd8vTLTfRlD1Ez/uqaP7Dab7p8xR6UVFTq/ZSM9cl1f1/0BfnZ9+Mt6Tf5qsQxDahgXpQeu7q1B3du72hSXlmnPoWyV/6H6e+LgAZr4+ULdOf0z2W02Xdy+mR6+9kLX/REhQZp+57V65vOFuunFWYoOC9Fdl3TX35Iqzwvrio7w1/3D6ys2yl+FRQ7t2V+sx6bs0brNzlUsBlwYq8FXV+6hN+mhppKkF9/Zrx+W5kiSEmsHKvIPn4U//ZqnqPA03XJNvGIi/bV7X7Een7JHOXmV78s3P0yT4ZD+fXcDBfjbtWZTvqa9X7m3MaqXt2bMgoIC7dy50/Xz75MvY2Nj1bBhQ9fky+bNm6tJkyZ67LHHjjv5cvr06SorK2Py5R+QMc++Vs0i9MrEjq6f77nDuRLb3AVpembKNtWKDVRC7crvRKnpxXrwyQ0ac8c5+vvV9XQos0T/fWWbVq6tXLL6ZNdEUbMs+PYzSdIzj/zD7fiIex5X74uvlL9/gDauX6nvvv6fSoqLFRuXoPOSLtLA6ytXDgsMDNLC77/QB++8qLKyMtWKi9d5PS7SlYMqrwWVlhQr9cBeVfyh+nvk2Kf03huT9exjo2Sz29Q1qa9uHXG/6/7QsHA9+OQrmvn6JD0+dqjCI6N17Q3D1bf/tWfr5YCHrFjwoSTpzWeGuh3/24hn1KW389/7isHjZLPZ9cHL/1R5WalanNtT1wx93NU2IDBYvy78RN988KzKy0oVVauO2p13ifpcOcLVpqy0WIdSk+WoqHwf3jBykr5672m99eww2Wx2tet6qa669d+u+4NDI3T7g2/pq5kT9Orjf1NoeIwuvnakuvW9/qy8FqhEvvRtNsM49X/BiRMn6qefftLcuXOrvP/uu+/W9OnT5XCcfmlnr6sWn/ZjADNdfksvT3cB0PBz13m6C4ASWnfxyPOOmVJ9y+O9ci9Lm3mLs5kvL7117Zl2DzhjX92w/OSNgLNs0BcXeLoLqOG+eaudx567ujLmbq+wfAAADdxJREFU6ebLRYsWuU2+/N3vky8Nw9D48eP1xhtvuCZfTps2TS1atHC1zcrK0ujRo/X111+7Tb4MZxuos5YxuX4Jb/DC5I6e7gKg/XkRJ28EnGXXdTutRbFN463XMMmXp+a0BsbPJoIlPI2BcXgDBsbhDRgYh1UwMA5vwMA4vAED4/A0BsZhFVy/hDdgYBzegIFxeAMGxvFXnNZS6gAAAGeL4fCKuXoAAACwEDImAAAAzES+9G2emU4BAAAAAAAAAAAAAEA1oWIcAAB4BWZbAgAAwGxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArMNkSAAAAZiNjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF6B/XkAAABgNjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg9mWAAAAMBcZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJZGxTgAAPAKDvbnAQAAgMnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXYH8eAAAAmI2MCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFg/15AAAAYDIyJgAAAMxEvvRtVIwDAAAAAAAAAAAAACyNinEAAOAVmG0JAAAAs5ExAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK/gMJhtCQAAAHORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvwP48AAAAMBsZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJbGwDgAAAAAAAAAAAAAwNJYSh0AAHgFw2AZIgAAAJiLjAkAAAAzkS99GxXjAAAAAAAAAAAAAABLo2IcAAB4BYeD2ZYAAAAwFxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AoGsy0BAABgMjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMg9mWAAAAMBcZEwAAAGYiX/o2KsYBAAAAAAAAAAAAAJZGxTgAAPAKhsPh6S4AAADAYsiYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFdwONifBwAAAOYiYwIAAMBM5EvfRsU4AAAAAAAAAAAAAMDSqBgHAABewTCYbQkAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr2CwPw8AAABMRsYEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvAKzLQEAAGA2MiYAAADMRL70bVSMAwAAAAAAAAAAAAAsjYpxAADgFRyGw9NdAAAAgMWQMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNpdQBAIBXMByGp7sAAAAAiyFjAgAAwEzkS99GxTgAAAAAAAAAAAAAwNKoGAcAAF6B2ZYAAAAwGxkTAAAAZiJf+jYqxgEAAAAAAAAAAAAAlkbFOAAA8AqGwWxLAAAAmIuMCQAAADORL30bFeMAAAAAAAAAAAAAAEujYhwAAHgFh8Ph6S4AAADAYsiYAAAAMBP50rdRMQ4AAAAAAAAAAAAAsDQqxgEAgFcwHOzPAwAAAHORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYBjszwMAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaVSMAwAAr8D+PAAAADAbGRMAAABmIl/6NirGAQAAAAAAAAAAAACWRsU4AADwCsy2BAAAgNnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0KsYBAIBXcBgOT3cBAAAAFkPGBAAAgJnIl76NinEAAAAAAAAAAAAAgKVRMQ4AALwC+/MAAADAbGRMAAAAmIl86duoGAcAAAAAAAAAAAAAWBoV4wAAwCsYDvbnAQAAgLnImAAAADAT+dK3UTEOAAAAAAAAAAAAALA0BsYBAAAAAAAAAAAAAJbGUuoAAMArGA7D010AAACAxZAxAQAAYCbypW+jYhwAAAAAAAAAAAAAYGlUjAMAAK9gGA5PdwEAAAAWQ8YEAACAmciXvo2KcQAAAAAAAAAAAACApVExDgAAvIKD/XkAAABgMjImAAAAzES+9G1UjAMAAAAAAAAAAAAALI2KcQAA4BUMB/vzAAAAwFxkTAAAAJiJfOnbqBgHAAAAAAAAAAAAAFgaFeMAAMArGOzPAwAAAJORMQEAAGAm8qVvo2IcAAAAAAAAAAAAAGBpVIwDAACvYBjszwMAAABzkTEBAABgJvKlb6NiHAAAAAAAAAAAAABgaQyMAwAAr2A4jGq7/RVTp05V48aNFRwcrO7du2vlypUmvwIAAAAwG/kSAAAAZvLma5jky5NjYBwAAOAkPvroI40dO1bjx4/XmjVr1KFDB/Xv318ZGRme7hoAAAB8EPkSAAAAZiJfnhoGxgEAgFcwHI5qu52uF154QSNGjNCwYcPUpk0bTZ8+XaGhoXrnnXfOwisBAAAAs5AvAQAAYCZvvYZJvjw1DIwDAIAap6SkRHl5eW63kpKSKtuWlpZq9erV6tevn+uY3W5Xv379tGzZsurqMgAAALwY+RIAAABmO9WMSb48df6e7sDvfv66j6e74NNKSko0ceJEjRs3TkFBQZ7uDmog3oNm6eLpDvg03oe+rTqzwBNPPKEnn3zS7dj48eP1xBNPHNM2MzNTFRUVSkhIcDuekJCgrVu3ns1u4gx9/3+dPN0Fn8Znqll4H54J3ofm+OZKT/fAd/Ee9H3VlTHJlzUD1y/PDJ+p8Aa8D83RzdMd8HG8D32bN17DJF+eOpthGKe/ezu8Tl5enqKiopSbm6vIyEhPdwc1EO9BeAPehzhVJSUlx8yuDAoKqvLLyMGDB1WvXj0tXbpUSUlJruMPPvigFi9erBUrVpz1/gKewGcqvAHvQ3ga70GcKvIlcHJ8psIb8D6EN+B9iFN1qhmTfHnqvKZiHAAAoLoc7yJlVeLi4uTn56f09HS34+np6apTp87Z6B4AAAB8DPkSAAAAZjvVjEm+PHXsMQ4AAHACgYGB6tKlixYsWOA65nA4tGDBArcZmAAAAMCpIF8CAADATOTLU0fFOAAAwEmMHTtWQ4cO1Xnnnadu3bppypQpKiws1LBhwzzdNQAAAPgg8iUAAADMRL48NQyMW0RQUJDGjx9/yst2AWbjPQhvwPsQZ8sNN9ygQ4cO6fHHH1daWpo6duyoefPmKSEhwdNdA84aPlPhDXgfwtN4D+JsIV+iJuIzFd6A9yG8Ae9DnA3ky1NjMwzD8HQnAAAAAAAAAAAAAAA4W9hjHAAAAAAAAAAAAABgaQyMAwAAAAAAAAAAAAAsjYFxAAAAAAAAAAAAAIClMTAOAAAAAAAAAAAAALA0BsYtYOrUqWrcuLGCg4PVvXt3rVy50tNdQg2yZMkSXXXVVapbt65sNpu++OILT3cJNdDEiRPVtWtXRUREKD4+XgMHDtS2bds83S0A8FnkS3gaGROeRr4EAPORMeFJ5Et4GvkS8A4MjPu4jz76SGPHjtX48eO1Zs0adejQQf3791dGRoanu4YaorCwUB06dNDUqVM93RXUYIsXL9aoUaO0fPlyzZ8/X2VlZbr00ktVWFjo6a4BgM8hX8IbkDHhaeRLADAXGROeRr6Ep5EvAe9gMwzD8HQn8Nd1795dXbt21auvvipJcjgcatCggcaMGaOHH37Yw71DTWOz2TR79mwNHDjQ011BDXfo0CHFx8dr8eLF6t27t6e7AwA+hXwJb0PGhDcgXwLAmSFjwpuQL+ENyJeAZ1Ax7sNKS0u1evVq9evXz3XMbrerX79+WrZsmQd7BgCelZubK0mKjY31cE8AwLeQLwGgauRLAPjryJgAcCzyJeAZDIz7sMzMTFVUVCghIcHteEJCgtLS0jzUKwDwLIfDoXvvvVc9e/ZUu3btPN0dAPAp5EsAOBb5EgDODBkTANyRLwHP8fd0BwAAMNOoUaO0ceNG/fzzz57uCgAAACyAfAkAAAAzkS8Bz2Fg3IfFxcXJz89P6enpbsfT09NVp04dD/UKADxn9OjRmjNnjpYsWaL69et7ujsA4HPIlwDgjnwJAGeOjAkAlciXgGexlLoPCwwMVJcuXbRgwQLXMYfDoQULFigpKcmDPQOA6mUYhkaPHq3Zs2frxx9/VJMmTTzdJQDwSeRLAHAiXwKAeciYAEC+BLwFFeM+buzYsRo6dKjOO+88devWTVOmTFFhYaGGDRvm6a6hhigoKNDOnTtdPycnJ2vdunWKjY1Vw4YNPdgz1CSjRo3SrFmz9OWXXyoiIsK1R1lUVJRCQkI83DsA8C3kS3gDMiY8jXwJAOYiY8LTyJfwNPIl4B1shmEYnu4Ezsyrr76qyZMnKy0tTR07dtTLL7+s7t27e7pbqCEWLVqkiy666JjjQ4cO1YwZM6q/Q6iRbDZblcffffdd3XbbbdXbGQCwAPIlPI2MCU8jXwKA+ciY8CTyJTyNfAl4BwbGAQAAAAAAAAAAAACWxh7jAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKUxMA4AAAAAAAAAAAAAsDQGxgEAAAAAAAAAAAAAlsbAOAAAAAAAAAAAAADA0hgYBwAAAAAAAAAAAABYGgPjAAAAAAAAAAAAAABLY2AcAAAAAAAAAAAAAGBpDIwDAAAAAAAAAAAAACyNgXEAAAAAAAAAAAAAgKX9P0TaTDuStkpZAAAAAElFTkSuQmCC\n"
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "labels = ['get_dummies', 'LabelEncoder', 'PCA', 't-SNE', 'SandartScaler']\n",
- "y_preds_dtc = [y_pred_dtc_gd, y_pred_dtc_lbe, y_pred_dtc_pca, y_pred_dtc_tsne, y_pred_dtc_scal]\n",
- "accuracy_dct = list(map(lambda x: accuracy_score(Y_test, x), y_preds_dtc))\n",
- "\n",
- "y_preds_sgdc = [ y_pred_sgdc_lbe, y_pred_sgdc_pca, y_pred_sgdc_tsne, y_pred_sgdc_scal]\n",
- "accuracy_sgdc = list(map(lambda x: accuracy_score(Y_test, x), y_preds_sgdc))\n",
- "\n",
- "y_preds_svc = [ y_pred_svc_lbe, y_pred_svc_pca, y_pred_svc_tsne, y_pred_svc_scal]\n",
- "accuracy_svc = list(map(lambda x: accuracy_score(Y_test, x), y_preds_svc))\n",
- "\n",
- "\n",
- "plt.plot(labels, accuracy_dct)\n",
- "plt.title('accuracy score for DecisionTree.')\n",
- "plt.show()\n",
- "\n",
- "\n",
- "plt.plot(labels[1:], accuracy_sgdc)\n",
- "plt.title('accuracy score for SGDClassifier.')\n",
- "plt.show()\n",
- "\n",
- "plt.plot(labels[1:], accuracy_svc)\n",
- "plt.title('accuracy score for SVC.')\n",
- "plt.show()"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "id": "fV3XMnjYsjFS",
- "outputId": "afefdeb9-c18f-476f-e1d1-523d4c52f2be"
- },
- "execution_count": 249,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnUUlEQVR4nO3dd3zTdf4H8FeSZnQk3buF0hY6GC0UypAhCoIiS0TQO5bAKY7DQz3lVEBFuTsXd+qJ+hPxXHBsTjkEqygqsjeFMlra0t3SPZN8fn+kiYQOWmj7TZrX8/HIA/rN95vvO6P5vvtZb5kQQoCIiIjIAcilDoCIiIioozDxISIiIofBxIeIiIgcBhMfIiIichhMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiSZw7dw533HEH3N3dIZPJsGXLFqlDaldhYWGYPXt2q45ZtmwZZDJZ+wRE5KCY+BCRJGbNmoUTJ07glVdewaeffor+/fu327nS0tIgk8ksN6VSCR8fHwwZMgR/+ctfkJ6e3m7ntmVhYWFWr0tTtzVr1kgdKlGbkbFWFxF1tKqqKri4uOC5557D8uXL2/18aWlp6NatG+6//37cddddMBqNuHLlCg4cOIBNmzZBJpPho48+wvTp09sthpqaGsjlciiVyhYfo9frodfrodFo2iWmLVu2oLy83PLz9u3b8eWXX+Ktt96Cj4+PZfuQIUMQHh7eLjEQdTQnqQMgsmUVFRVwdXWVOgyb0havSX5+PgDAw8OjDSIyaUlc/fr1w+9//3urbZcuXcIdd9yBWbNmISYmBnFxcW0W09XUanWrj3FycoKTU/t9TU+aNMnq55ycHHz55ZeYNGkSwsLCmjyOvxdkz9jVRR3q0qVLeOSRRxAVFQVnZ2d4e3tj6tSpSEtLa7BvcXEx/vSnPyEsLAxqtRohISGYOXMmCgoKLPtUV1dj2bJl6NGjBzQaDQIDA3HPPffgwoULAIDdu3dDJpNh9+7dVo9t7vq4ugl/9uzZcHNzw4ULF3DXXXdBq9Xid7/7HQBgz549mDp1Krp06QK1Wo3Q0FD86U9/QlVVVYO4z5w5g/vuuw++vr5wdnZGVFQUnnvuOQDA999/D5lMhs2bNzc47osvvoBMJsPevXubfP3q6urw4osvonv37tBoNPD29sbQoUOxa9euFsdgduTIEdx5553Q6XRwc3PD7bffjl9//dVqnzVr1kAmk+GHH37AI488Aj8/P4SEhFju/9///odhw4bB1dUVWq0W48aNw6lTp5qMHzCNW+natSsA4Omnn4ZMJrO6yLZFXK3RtWtXrFmzBrW1tfj73/9udV9xcTGeeOIJhIaGQq1WIzIyEn/7299gNBqt9jMajfjHP/6B3r17Q6PRwNfXF2PHjsXBgwct+1w7xqcl72VjY3z0ej1efvllREREQK1WIywsDH/5y19QU1NjtV9YWBjuvvtu/PTTT0hMTIRGo0F4eDj+/e9/t+r1ae73wmg0YuXKlejZsyc0Gg38/f3x0EMP4cqVKw0e50Y+K0TtgS0+1KEOHDiAX375BdOnT0dISAjS0tLw3nvv4dZbb8Xp06fh4uICACgvL8ewYcOQnJyMBx98EP369UNBQQG2bduGzMxM+Pj4wGAw4O6770ZSUhKmT5+OhQsXoqysDLt27cLJkycRERHR6vj0ej3GjBmDoUOH4vXXX7fEs379elRWVmLBggXw9vbG/v378fbbbyMzMxPr16+3HH/8+HEMGzYMSqUSf/jDHxAWFoYLFy7gv//9L1555RXceuutCA0Nxeeff47Jkydbnfvzzz9HREQEBg8e3GR8y5Ytw4oVKzBv3jwkJiaitLQUBw8exOHDhzF69OgWxQAAp06dwrBhw6DT6fDnP/8ZSqUS77//Pm699Vb88MMPGDhwoNV5H3nkEfj6+mLJkiWoqKgAAHz66aeYNWsWxowZg7/97W+orKzEe++9h6FDh+LIkSNNthjcc8898PDwwJ/+9CdL15Obm1ubxXUjBg8ejIiICKuko7KyEiNGjMDly5fx0EMPoUuXLvjll1+wePFiZGdnY+XKlZZ9586dizVr1uDOO+/EvHnzoNfrsWfPHvz6669Njl1qyXvZmHnz5uGTTz7BvffeiyeffBL79u3DihUrkJyc3CChPn/+PO69917MnTsXs2bNwurVqzF79mwkJCSgZ8+eLX59mvq9eOihh7BmzRrMmTMHf/zjH5Gamop33nkHR44cwc8//2zp1rvRzwpRuxBEHaiysrLBtr179woA4t///rdl25IlSwQAsWnTpgb7G41GIYQQq1evFgDEm2++2eQ+33//vQAgvv/+e6v7U1NTBQDx8ccfW7bNmjVLABDPPvtsi+JesWKFkMlk4tKlS5Ztw4cPF1qt1mrb1fEIIcTixYuFWq0WxcXFlm15eXnCyclJLF26tMF5rhYXFyfGjRvX7D4tiWHSpElCpVKJCxcuWLZlZWUJrVYrhg8fbtn28ccfCwBi6NChQq/XW7aXlZUJDw8PMX/+fKtz5OTkCHd39wbbr2V+/V977TWr7TcbV2vPd7WJEycKAKKkpEQIIcTLL78sXF1dRUpKitV+zz77rFAoFCI9PV0IIcR3330nAIg//vGPDR7z6te8a9euYtasWZafW/JeLl26VFz9NX306FEBQMybN89qv6eeekoAEN99953V+QCIH3/80bItLy9PqNVq8eSTTzZ6vtdee00AEKmpqZZtTf1e7NmzRwAQn3/+udX2HTt2WG2/2c8KUVtjVxd1KGdnZ8v/6+rqUFhYiMjISHh4eODw4cOW+zZu3Ii4uLgGrSIALE3/GzduhI+PDx5//PEm97kRCxYsaDbuiooKFBQUYMiQIRBC4MiRIwBM41Z+/PFHPPjgg+jSpUuT8cycORM1NTXYsGGDZdu6deug1+sbjD+5loeHB06dOoVz5841en9LYjAYDNi5cycmTZpkNWA1MDAQDzzwAH766SeUlpZaHTt//nwoFArLz7t27UJxcTHuv/9+FBQUWG4KhQIDBw7E999/3+zzaExbxHUzzK1OZWVlAEytfMOGDYOnp6fVcxw1ahQMBgN+/PFHAKbPoUwmw9KlSxs8ZnOfw+u9l43Zvn07AGDRokVW25988kkAwNdff221PTY2FsOGDbP87Ovri6ioKFy8eLHF5zS79vdi/fr1cHd3x+jRo61en4SEBLi5uVk+A+3xWSG6Gezqog5VVVWFFStW4OOPP8bly5chrppUWFJSYvn/hQsXMGXKlGYf68KFC4iKimrTwZ9OTk6NjhVJT0/HkiVLsG3btgbjF8xxmy8mvXr1avYc0dHRGDBgAD7//HPMnTsXgKmba9CgQYiMjGz22JdeegkTJ05Ejx490KtXL4wdOxYzZsxAnz59WhxDfn4+KisrERUV1eC+mJgYGI1GZGRkWHWFdOvWzWo/88X6tttua/QcOp2u2efRXnHdDPPsJq1WC8D0HI8fPw5fX99G98/LywNg+hwGBQXBy8urVee73nvZmEuXLkEulzf4nAQEBMDDwwOXLl2y2n5t8gsAnp6ejY7BaU5jvxfnzp1DSUkJ/Pz8Gj3G/Pq0x2eF6GYw8aEO9fjjj+Pjjz/GE088gcGDB1sWr5s+fXqDAaNtoam/uA0GQ6Pb1Wo15HJ5g31Hjx6NoqIiPPPMM4iOjoarqysuX76M2bNn31DcM2fOxMKFC5GZmYmamhr8+uuveOedd6573PDhw3HhwgVs3boVO3fuxP/93//hrbfewqpVqzBv3rxWx9FSV7d4AbA8508//RQBAQEN9m/PmUjNxXUzTp48CT8/P8uF2Gg0YvTo0fjzn//c6P49evS4qfPdzHvZ0hbNplrDRCtXMWns98JoNMLPzw+ff/55o8eYE0Zb+awQmfETRx1qw4YNmDVrFt544w3LturqahQXF1vtFxERgZMnTzb7WBEREdi3bx/q6uqaXBvF09MTABo8/rV/GTfnxIkTSElJwSeffIKZM2datl87k8rcPXO9uAFg+vTpWLRoEb788ktUVVVBqVRi2rRpLYrHy8sLc+bMwZw5c1BeXo7hw4dj2bJlmDdvXoti8PX1hYuLC86ePdvgvjNnzkAulyM0NLTZGMwDx/38/DBq1KgWxX09bRHXjdq7dy8uXLhg1dUYERGB8vLy6z6/iIgIfPPNNygqKmp1q09z72VjunbtCqPRiHPnziEmJsayPTc3F8XFxZbZch0hIiIC3377LW655ZZmE9D2+KwQ3QyO8aEOpVAoGvy1+fbbbzdogZkyZQqOHTvW6LRv8/FTpkxBQUFBoy0l5n26du0KhUJhGY9h9q9//atVMV/9mOb//+Mf/7Daz9fXF8OHD8fq1asbrAR87XP28fHBnXfeic8++wyff/45xo4da7VgXFMKCwutfnZzc0NkZKRlKnNLYlAoFLjjjjuwdetWq2UEcnNz8cUXX2Do0KHX7X4YM2YMdDodXn31VdTV1TW437xOT2u0RVw34tKlS5g9ezZUKhWefvppy/b77rsPe/fuxTfffNPgmOLiYuj1egCmz6EQAi+++GKD/ZprWbnee9mYu+66CwCsZpQBwJtvvgkAGDduXJPHtrX77rsPBoMBL7/8coP79Hq95Y+N1nxWSkpKcObMGatub6K2xhYf6lB33303Pv30U7i7uyM2NhZ79+7Ft99+C29vb6v9nn76aWzYsAFTp07Fgw8+iISEBBQVFWHbtm1YtWoV4uLiMHPmTPz73//GokWLsH//fgwbNgwVFRX49ttv8cgjj2DixIlwd3fH1KlT8fbbb0MmkyEiIgJfffWVZfxBS0RHRyMiIgJPPfUULl++DJ1Oh40bNzY6TuKf//wnhg4din79+uEPf/gDunXrhrS0NHz99dc4evSo1b4zZ87EvffeCwCNXjwaExsbi1tvvRUJCQnw8vLCwYMHsWHDBjz22GOtimH58uXYtWsXhg4dikceeQROTk54//33UVNT02Atm8bodDq89957mDFjBvr164fp06fD19cX6enp+Prrr3HLLbe0qOvuWjcb1/UcPnwYn332GYxGI4qLi3HgwAHL4ORPP/3UanzN008/jW3btuHuu++2TAGvqKjAiRMnsGHDBqSlpcHHxwcjR47EjBkz8M9//hPnzp3D2LFjYTQasWfPHowcOdLqvblaS97La8XFxWHWrFn44IMPUFxcjBEjRmD//v345JNPMGnSJIwcOfKmX6OWGjFiBB566CGsWLECR48exR133AGlUolz585h/fr1+Mc//oF77723VZ+VzZs3Y86cOfj4449bXdeMqMWkmUxGjurKlStizpw5wsfHR7i5uYkxY8aIM2fONJjqK4QQhYWF4rHHHhPBwcFCpVKJkJAQMWvWLFFQUGDZp7KyUjz33HOiW7duQqlUioCAAHHvvfdaTYfOz88XU6ZMES4uLsLT01M89NBD4uTJk41OZ3d1dW007tOnT4tRo0YJNzc34ePjI+bPny+OHTvW4DGEEOLkyZNi8uTJwsPDQ2g0GhEVFSVeeOGFBo9ZU1MjPD09hbu7u6iqqmrR67d8+XKRmJgoPDw8hLOzs4iOjhavvPKKqK2tbXUMhw8fFmPGjBFubm7CxcVFjBw5Uvzyyy9W+5injR84cKDReL7//nsxZswY4e7uLjQajYiIiBCzZ88WBw8ebPZ5NDe9vC3iaup85puTk5Pw8vISAwcOFIsXL24w9d+srKxMLF68WERGRgqVSiV8fHzEkCFDxOuvv271muv1evHaa6+J6OhooVKphK+vr7jzzjvFoUOHLPtc+xlvyXt57XR2IYSoq6sTL774ouUzHxoaKhYvXiyqq6ut9uvatWuj0+VHjBghRowY0ejzbWo6e1O/F0II8cEHH4iEhATh7OwstFqt6N27t/jzn/8ssrKyrPZryWfF/L5e+ztF1JZYq4tIInq9HkFBQRg/fjw++ugjqcMhInIIHONDJJEtW7YgPz/fasA0ERG1L7b4EHWwffv24fjx43j55Zfh4+NjtXAjERG1L7b4EHWw9957DwsWLICfn1+rC0YSEdHNYYsPEREROQy2+BAREZHDYOJDREREDsMuFjA0Go3IysqCVqu9qarbRERE1HGEECgrK0NQUFCDem9SsYvEJysrq91q9BAREVH7ysjIQEhIiNRhALCTxEer1QIwvXDtUauHiIiI2l5paSlCQ0Mt13FbYBeJj7l7S6fTMfEhIiKyM7Y0TMU2OtyIiIiIOgATHyIiInIYTHyIiIjIYTDxISIiIofBxIeIiIgcBhMfIiIichhMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiIiKHYRdFStvLiu3JSCusQEygDjGBOsQG6hDi6WxTxdSIiIio7Th04rP7bD7O5pbhm1O5lm1ajRNiAnSIDdIhJlCLmEAdevhroVEqJIyUiIiI2oJMCCGkDuJ6SktL4e7ujpKSEuh0ujZ73H0XC3EyqxSns0qRnF2Kc3llqDM0fDkUchnCfVxNrUJBuvoWIi38tJo2i4WIiKizaa/r981w6MTnWrV6Iy7klyM525QInc4uRXJ2GYoqahvd38dNjZhALWKvSojCfVzhpODQKSIiIiY+N0jKF04IgbyyGpzOMidCpn9TCyrQ2CuncpKjh78bYgN1lrFDMYE6uDsrOzRuIiIiqTHxuUG2+MJV1RpwNrfM0k2WnF2KMzllKK/RN7p/sIezpasstn7sUKinC+RyDqQmIqLOyRav30x82pDRKJBxpbK+Vei3pOhycVWj+7upnRAdoLUaOxTlr4WzigOpiYjI/tni9ZuJTwcoqaxDck6p1dihlNxy1OqNDfaVy4Bu9QOpf2sh0sFPq+Y0eyIisiu2eP1m4iMRvcGIiwUVllYh8/ihgvLGB1J7uaosA6nNSVGknxuUHEhNREQ2yhav30x8bExeWTWSs63HDl0sqIDB2PBtUinkiPRzu6qrzJQYebioJIiciIjImi1ev5n42IHqOgNScsvqE6HfkqKyJgZSB7lrrLrKYgJ16OrFgdRERNSxbPH6zcTHTgkhkHmlytJFZu4uyyhqfCC1i0phGUhtToiiA7RwUTn04t1ERNSObPH6zcSnkymrrsOZnIbT7GsaGUgtkwFh3q4Nxg4Fums4kJqIiG6aLV6/mfg4AL3BiLTCCqsp9snZpcgrq2l0fw8XJWICdFZjh7r7aaFy4kBqIiJqOVu8fjPxcWAF5TWWJMg8duh8fnmjA6md5DJE+v22IrV57JCXKwdSExFR42zx+s3Eh6zU6A04l1tuPXYoqxSl1Y0PpPbXqa26yWKDdAjzdoWCA6mJiByeLV6/mfjQdQkhkFVSjeSr6pUlZ5cirbCy0f01SjmiAkylOcxJUXSgDm5qDqQmInIktnj9ZuJDN6y8Ro+zOdblOc7mlKGqztDo/l29XRqMHQr2cOZAaiKiTsoWr99MfKhNGYwClworrmoZMiVFOaXVje6v0zj91k1WnxBF+rlBo2S9MiIie2eL128mPtQhiipqcaZ+raHT9QnR+bwy1BkafvwUchkifF2txg7FBOrgq1VLEDkREd0oW7x+M/EhydTqjTifV25Vqyw5uxRXKusa3d9Xq65Pgkxjh2IDdejm4won1isjIrJJtnj9ZuJDNkUIgZzS6gblOVILK9DYJ1XtJEfPIB0GhntjYDcv9A/z4iBqIqJWWP1TKoxCYGJ8cJu3rNvi9ZuJD9mFylo9zuaUWY0dSs4uRWWt9UBqhVyGXsHuGNTNC4PCvdE/zBNajVKiqImIbJveYMTgv36H/LIafDSrP26P8W/Tx7fF6zf/NCa74KJyQt8unujbxdOyzWgUuFRUiUOXrmDfxUL8mlqIjKIqHMsoxrGMYrz/40XIZUDPIHcMCvfCwG7eGNDNC+7OTISIiADglwuFyC+rgaeLEsN7+EodTodg4kN2Sy6XoZuPK7r5uOLehBAAQFZxFfalFuLXC0XYl1qItMJKnLhcghOXS/DhnlTIZEBsoA4Du3ljULgXErt5wcOFq08TkWPacuQyAODuPkFQOsh4SXZ1UaeWU1JtSoQuFmHfxUJcLKiwul8mA6L8tRgUbk6EvFmGg4gcQmWtHgOWf4uKWgM2LhiChK6e1z+olWzx+s0WH+rUAtw1mBgfjInxwQCAvNJq/JpqSoL2pRbhfF45zuSU4UxOGdb8kgbAlAgNDDeNEUrs5gUfN06jJ6LOZ9fpXFTUGtDFywX9unhIHU6HYeJDDsVPp8GEuCBMiAsCAOSX1WB/ahF+vViIfamFSMktx9ncMpzNLcO/914CAET6uVnGCA0M94KfViPlUyAiahPmbq5J8UEOtYI+u7qIrlJYbkqE9tUnQ2dyyhrsE+7rahkjNCjcG/46JkJEZF8Kymsw8NUkGIwCSU+OQISvW7ucxxav32zxIbqKt5sad/YOxJ29AwEAVypqsT+tvkXoYhGSc0pxMb8CF/Mr8OX+dABAmLcLBoWbWoMGdvNGkIezlE+BiOi6vj6eDYNRoE+Ie7slPbaKiQ9RMzxdVRjTMwBjegYAAEoq67A/rcgyff50lqlKfVphJdYeyAAAdPFywcD6dYQGhnshxNNFyqdARNTAZks3V7DEkXQ8Jj5EreDuosToWH+MjjUt8lVaXYeDaUWWWWMnLpcgvagS6UWVWH8oEwAQ7OFsSYIGh3sjxJMV6YlIOqkFFTiaUQyFXIbx9eMdHQkTH6KboNMocVu0P26LNiVCZdV1OHjpCvZdNHWPnbhcgsvFVdh4OBMbD5sSoSB3DQbWT58f2M0bXb1dmAgRUYfZetTU2nNLpI9DFn9m4kPUhrQaJUZG+WFklB8AoKJGj0OXrtTPGivCsYxiZJVUY/ORy5amZn+d2tQiVD9gupuPKxMhImoXQgjLbK7JfR2vtQdg4kPUrlzVThjew9eyFHxlrR6HLxXXL6pYiKMZxcgtrcHWo1nYejQLgKkKvXmM0KBwL0T4ujERIqI2cTSjGGmFlXBWKnBHbIDU4UiCiQ9RB3JROWFodx8M7e4DAKiuM+Bw+hXLGKEjGcXIL6vBV8ez8dXxbACAj5vKsobQoHBvdPdjIkREN8b8B9YdPf3hqnbMFMAxnzWRjdAoFRgS4YMhEb8lQkczii1jhA6nX0FBeS2+PpGNr0+YEiEvVxUSw7xMY4TCvRHlr4VczkSIiJpXZzDiv8dMic+kvo43m8vshhKfd999F6+99hpycnIQFxeHt99+G4mJiU3uv3LlSrz33ntIT0+Hj48P7r33XqxYsQIaDRd+I7qaRqmo7+LyxkJ0R43egOOZJfj1gmmM0MFLRSiqqMWOUznYcSoHAODhokRimCkJGtjNCzGBOiiYCBHRNX46V4DCilp4u6owLNJH6nAk0+rEZ926dVi0aBFWrVqFgQMHYuXKlRgzZgzOnj0LPz+/Bvt/8cUXePbZZ7F69WoMGTIEKSkpmD17NmQyGd588802eRJEnZXaSYEBYV4YEOaFxwHU6o04cbkYv9a3CB26dAXFlXXYeToXO0/nAgB0GickmtcR6uaN2CAmQkQEbKmfzTU+LghODlKJvTGtLlkxcOBADBgwAO+88w4AwGg0IjQ0FI8//jieffbZBvs/9thjSE5ORlJSkmXbk08+iX379uGnn35q0TltcclrIltQZzDixOUS7LtYhH2phTiQWoSKWoPVPlq1EwZ088LAbqZWoV5BOof+0iNyROU1evRfvgvVdUZsefQWxId6dMh5bfH63aoWn9raWhw6dAiLFy+2bJPL5Rg1ahT27t3b6DFDhgzBZ599hv379yMxMREXL17E9u3bMWPGjCbPU1NTg5qaGsvPpaWlrQmTyGEoFXL06+KJfl08seDWCOgNRpzKKq2fNVaEA6lFKKvR47szefjuTB4AwE3thISunpZFFXsHu0PJRIioU9t5KgfVdUZ083FFXIi71OFIqlWJT0FBAQwGA/z9/a22+/v748yZM40e88ADD6CgoABDhw6FEAJ6vR4PP/ww/vKXvzR5nhUrVuDFF19sTWhEBMBJIUdcqAfiQj3wh+ERMBgFTl+VCO1PLURptR4/pOTjh5R8AICLSmFJhAaFe6F3sAdUTkyEiDqTLfWzuSbFBzv8rNB2n9W1e/duvPrqq/jXv/6FgQMH4vz581i4cCFefvllvPDCC40es3jxYixatMjyc2lpKUJDQ9s7VKJORyGXoXeIO3qHuGPesHAYjAJnckots8b2pxWhuLIOe84VYM+5AgCARik3JULdvDEw3Btxoe5QOykkfiZEdKPyyqrx0znTHzoT4x1z0cKrtSrx8fHxgUKhQG5urtX23NxcBAQ0vhDSCy+8gBkzZmDevHkAgN69e6OiogJ/+MMf8Nxzz0Eub/iXpVqthlrteMtoE7U3hVyGnkHu6BnkjgeHdoPRKHA2twz76leW3pdqmjX28/lC/Hy+EACgdjJ1p5nXEYoP9YBGyUSIyF7891g2jALo28UDYT6uUocjuVYlPiqVCgkJCUhKSsKkSZMAmAY3JyUl4bHHHmv0mMrKygbJjUJh+tJs5bhqImpjcrkMMYE6xATqMPsWUyJ0Pr/cVGKjfsB0QXkt9l4sxN6LhQDOQeUkR3yoh6lrrJsX+nX1ZCJEZMPMtbkmO/DaPVdrdVfXokWLMGvWLPTv3x+JiYlYuXIlKioqMGfOHADAzJkzERwcjBUrVgAAxo8fjzfffBN9+/a1dHW98MILGD9+vCUBIiLbIJfL0MNfix7+WswcHAYhBC7kl5tWlk41dY/ll9Vgf2oR9qcW4Z8AlAoZ4kM96muNeaNfVw+4qLg2KpEtOJ9XjuOZJVDIZRjXO1DqcGxCq7+dpk2bhvz8fCxZsgQ5OTmIj4/Hjh07LAOe09PTrVp4nn/+echkMjz//PO4fPkyfH19MX78eLzyyitt9yyIqF3IZDJE+mkR6afF7wd1hRACqQUV9YmQqVUop7QaB9Ku4EDaFbzz/Xk4yWXoE+JeP2vMG/27ejrs0vhEUjO39ozo4QtvNw4hAW5gHR8p2OI6AERk6q6+VFhpSYJ+vViIrJJqq30Uchl6B7ubxgh180b/ME9oNUqJIiZyHEIIDH/te2QUVeGf9/fFhLiOH9hsi9dvJj5E1GaEEMi8UoW9V40RyrxSZbWPXAb0Cq5vEermhf5hXnB3ZiJE1NYOXSrClPf2wlWlwMHnR8NZ1fHDS2zx+s32ZyJqMzKZDKFeLgj1csF9/U1LUGReqbS0Bu1LLUJ6USWOZ5bgeGYJPvjxIuQyYOHtPbBwVHeJoyfqXDYfMXVzjekVIEnSY6uY+BBRuwrxdEFIggumJIQAALKKq6y6xtIKK7Hqhwt4cGgYu8CI2kit3oivj2cD4Gyua3F5ViLqUEEezpjcNwR/ndIH3z91K8J9XVFVZ8B/j2VLHRpRp/FjSj6uVNbBV6vGkAjHrcTeGCY+RCQZmUyG6QNMXWLrDqRLHA1R57G5fjbXhLggKOSOXaLiWkx8iEhS9/QLgVIhw7HMEpzOYkFioptVVl2Hb0+bKiywm6shJj5EJCkfNzVGx5rWAWOrD9HN23EyBzV6IyJ8XdEzyDZmUtkSJj5EJLnpA7oAMM1Cqa4zSBwNkX3bclWJCkevxN4YJj5EJLmhkT4I9nBGabUe/zvJQc5ENyq3tBq/XDAVGJ4Yz26uxjDxISLJyeUyTKsf5Lx2f4bE0RDZr21HsyAE0L+rJ0K9XKQOxyYx8SEimzC1fwjkMmBfahEu5pdLHQ6RXTIvWjiJg5qbxMSHiGxCoLszbo3yAwCsO8hWH6LWSsktw+nsUigVrMTeHCY+RGQzzN1dGw9lolZvlDgaIvuy5Yi5ErsfPF1VEkdju5j4EJHNuC3aD75aNQrKa/HdmVypwyGyG0ajwNajWQC4ds/1MPEhIpuhVMhxb31Nry85yJmoxQ5euoLLxVXQqp1we4yf1OHYNCY+RGRTptVXdf/xXD4uF1dJHA2RfTAPah7bKwAaJSuxN4eJDxHZlDAfVwwO94YQwH8OsNWH6Hpq9AZ8fZzdXC3FxIeIbM70RFOrz/qDGTAYhcTRENm23WfzUVqtR4BOg4Hh3lKHY/OY+BCRzRnTMwDuzkpklVTjx3P5UodDZNPMs7kmxLMSe0sw8SEim6NRKixN9us4yJmoSSVVdUhKzgMATGKJihZh4kNENsnc3fVtci7yy2okjobINu04mY1agxFR/lrEBGqlDscuMPEhIpsUHaBDfKgH9EaBjYczpQ6HyCaZZ3NN7BvESuwtxMSHiGzW/fWtPusOZEAIDnImulpWcRV+vVgEgJXYW4OJDxHZrLv7BMFVpUBqQQX2pRZJHQ6RTdl2zDSFfWA3LwR7OEscjf1g4kNENstV7YQJ8UEATK0+RPSbLazEfkOY+BCRTZs2oAsAYPuJbJRU1kkcDZFtSM4uxZmcMqgUctzVi5XYW4OJDxHZtLgQd0QHaFGjN2LL0ctSh0NkE8y/C7dF+8HdRSlxNPaFiQ8R2TSZTIbpA0yDnL/cn85BzuTwjEaBrUdM43sm9Q2SOBr7w8SHiGze5L4hUDnJcSanDMczS6QOh0hSv6YWIqe0GjqNE26NYiX21mLiQ0Q2z91Fibt6BQAA1h5IlzgaImmZW3vG9QlkJfYbwMSHiOzC9ETTIOdtR7NQUaOXOBoiaVTXGbD9RDYArt1zo5j4EJFdGNjNC2HeLqioNeCr41lSh0Mkie/O5KGsRo8gdw0Sw7ykDscuMfEhIrsgk8ksU9vXck0fclC/lagIhpyV2G8IEx8ishtTEoLhJJfhSHoxzuaUSR0OUYcqrqzF7rOsxH6zmPgQkd3w02pwe4xpFgsHOZOj+fpENuoMAjGBOkQFsBL7jWLiQ0R2xTzIefORy6iuM0gcDVHHMZeomMy1e24KEx8isivDu/siyF2D4so6fHMqR+pwiDpERlElDqRdgUwGTIhjN9fNYOJDRHZFIZdhan/TSs4sXEqOwlyJfXC4NwLcNRJHY9+Y+BCR3ZnaPwQyGfDLhUJcKqyQOhyidiWEsMzmYiX2m8fEh4jsToinC4Z39wXAVh/q/E5lleJ8XjnUTnKMrV/BnG4cEx8iskvmwqXrD2WizmCUOBqi9mMe1Dwqxh86DSux3ywmPkRkl26P8YePmwr5ZTX4/kye1OEQtQuDUVjG97Cbq20w8SEiu6RykmNKvxAAXMmZOq+9FwqRV1YDDxclRvTwlTqcToGJDxHZrWn13V27z+Yhu6RK4miI2p55UPO43oFQOfGS3Rb4KhKR3Qr3dUNiNy8YBbD+YKbU4RC1qapaA3acNFVin8xurjbDxIeI7Jp5kPO6AxkwGoXE0RC1nW+Tc1FRa0CIpzMSunpKHU6nwcSHiOzaXb0DodU44XJxFX46XyB1OERtxjyba1J8MGQyVmJvK0x8iMiuaZQKSzcA1/ShzqKoohY/pOQDACaxNlebYuJDRHZv+gBT4dKdp3NQWF4jcTREN+/r41nQGwV6B7sj0o+V2NsSEx8isnuxQTr0CXFHnUFg0+HLUodDdNPMs7kmxrO1p60x8SGiTsHc6rP2QDqE4CBnsl+XCitwOL0YchkwIY6JT1tj4kNEncL4uEA4KxW4kF+Bg5euSB0O0Q3betS0UvMtkT7w07ESe1tj4kNEnYJWo8T4uEAAwNr9HORM9kkIYTWbi9oeEx8i6jSm1Xd3fX0iCyVVdRJHQ9R6xzNLcLGgAhqlHGNYib1d3FDi8+677yIsLAwajQYDBw7E/v37m9z31ltvhUwma3AbN27cDQdNRNSYfl080MPfDdV1RkthRyJ7suWoqbXnjtgAuKmdJI6mc2p14rNu3TosWrQIS5cuxeHDhxEXF4cxY8YgL6/x6sibNm1Cdna25Xby5EkoFApMnTr1poMnIrqaTCaztPqs3Z8ucTREraM3GPFfSyV2DmpuL61OfN58803Mnz8fc+bMQWxsLFatWgUXFxesXr260f29vLwQEBBgue3atQsuLi7NJj41NTUoLS21uhERtcQ9fYOhUshxKqsUJy+XSB0OUYv9dL4ABeW18HJVYVh3VmJvL61KfGpra3Ho0CGMGjXqtweQyzFq1Cjs3bu3RY/x0UcfYfr06XB1dW1ynxUrVsDd3d1yCw0NbU2YROTAPF1VlrERX7LVh+yIeTbX+D6BUCo4BLe9tOqVLSgogMFggL+/v9V2f39/5OTkXPf4/fv34+TJk5g3b16z+y1evBglJSWWW0YGZ2gQUcuZC5duO5qFylq9xNEQXV9FjR47TpquoxNZib1ddWhK+dFHH6F3795ITExsdj+1Wg2dTmd1IyJqqcHh3uji5YKyGj2+Pp4tdThE17XrdC6q6gzo6u2CvqEeUofTqbUq8fHx8YFCoUBubq7V9tzcXAQEND/trqKiAmvXrsXcuXNbHyURUSvI5TJMq2/1YeFSsgfm2VysxN7+WpX4qFQqJCQkICkpybLNaDQiKSkJgwcPbvbY9evXo6amBr///e9vLFIiola4NyEECrkMBy9dwfm8MqnDIWpSflkN9pwrAABMYjdXu2t1V9eiRYvw4Ycf4pNPPkFycjIWLFiAiooKzJkzBwAwc+ZMLF68uMFxH330ESZNmgRvb++bj5qI6Dr8dRqMjPIDwJWcybZ9dTwLBqNAXKgHuvk0PfGH2karV0eaNm0a8vPzsWTJEuTk5CA+Ph47duywDHhOT0+HXG6dT509exY//fQTdu7c2TZRExG1wP2Jofg2ORebjlzG02OjoHZSSB0SUQNb6mdzTWYl9g4hE3ZQxri0tBTu7u4oKSnhQGciajG9wYhb/vYdcktr8M4DfXF3H15YyLZczC/HbW/8AIVchn1/uR0+bmqpQ2pTtnj95kIBRNRpOSnkuK8/BzmT7TK39gzr7tPpkh5bxcSHiDo1c+Kz51wBMooqJY6G6DdCCGytn801mYOaOwwTHyLq1EK9XDCsuw8A4D8H2epDtuNIRjEuFVbCRaXA6Fj/6x9AbYKJDxF1euY1ff5zMAN6g1HiaIhMthwxtfaM6RkAFxUrsXcUJj5E1OmNjvWHl6sKuaU1+CElX+pwiFBnMOKr+lXFuXZPx2LiQ0SdntpJgXvqLy5fck0fsgF7zuWjqKIWPm4q3BLB9e06EhMfInII0xNN3V3fn81Dbmm1xNGQo9t8pL4Se1wQnFiJvUPx1SYihxDpp0X/rp4wGAU2HMqUOhxyYOU1euw6barEztlcHY+JDxE5jKsLlxqNNr92K3VS35zMQXWdEeE+rugd7C51OA6HiQ8ROYxxfQKhVTshvagSey8WSh0OOShLJfa+rMQuBSY+ROQwXFROmFBfD2ktV3ImCeSVVuPn8/WV2OPZzSUFJj5E5FDuT+wCwNTdcKWiVuJoyNFsO5YFowD6dfFAF28XqcNxSEx8iMih9Ap2R88gHWoNRmyqX0COqKNsYYkKyTHxISKHM72+1WfdgXQIwUHO1DHO55Xh5OVSOMllGNcnSOpwHBYTHyJyOBPjg6BRypGSW47D6cVSh0MOYkv92j23RvnCy1UlcTSOi4kPETkcnUaJcb1Nf3GvO5AucTTkCIQQlm6uiRzULCkmPkTkkMwrOf/3WDbKquskjoY6u0OXriDzShXc1E4YFcNK7FJi4kNEDql/V09E+Lqiqs6A/x7Lljoc6uQ21w+kH9srAM4qhcTRODYmPkTkkGQyGaYPMA1yXsvuLmpHtfqrKrGzm0tyTHyIyGHd0y8YSoUMxzNLcCqrROpwqJPafTYPJVV18NOqMZiV2CXHxIeIHJa3mxp3xAYAMNXvImoPW4+aZnNNjA+CQs4SFVJj4kNEDs1cuHTzkcuorjNIHA11NqXVddiVnAuAs7lsBRMfInJoQyN9EOzhjLJqPbaf4CBnals7TuSgVm9Edz839AzSSR0OgYkPETk4uVxmafVh4VJqa6zEbnuY+BCRw5vaPwRyGbA/tQgX88ulDoc6ieySKuy9WAjANL6HbAMTHyJyeIHuzrg1yg8ABzlT29l2NAtCAIlhXgjxZCV2W8HEh4gIwPT67q6NhzNRqzdKHA11BlvqZ3NNYiV2m8LEh4gIwMhoP/hq1Sgor0VS/Swcoht1JqcUydmlUCpkuKt3gNTh0FWY+BARAVAq5JiaEAKAg5zp5pkrsY+M8oOHCyux2xImPkRE9cyzu348l4/MK5USR0P2ymgU2FY/m2syu7lsDhMfIqJ6Xb1dMSTCG0IA6w9mSh0O2an9aUXIKqmGVuOEkdF+UodD12DiQ0R0FXOrz/qDGTAYhcTRkD3aUl+J/a5egdAoWYnd1jDxISK6ypieAfBwUSKrpBo/nsuXOhyyM9V1BnxdvwI4Z3PZJiY+RERX0SgVlnEZa/enSxwN2ZvdZ/NQVq1HoLsGA7t5SR0ONYKJDxHRNaYP6AIASErOQ15ZtcTRkD3ZXN/NNSE+CHJWYrdJTHyIiK4RFaBF3y4e0BsFNh66LHU4ZCdKKuvw/RlT9yhnc9kuJj5ERI0wr+S87kA6hOAgZ7q+7SezUWswIjpAi+gAVmK3VUx8iIgacXefILiqFEgrrMS+1CKpwyE7YO7m4qBm28bEh4ioEa5qJ0yor6jNQc50PZeLq7A/tQgyGTAhjpXYbRkTHyKiJpgHOW8/mYOSyjqJoyFbtrV+peaB3bwQ5OEscTTUHCY+RERN6BPijugALWr1Rmw+wpWcqXFCCMuihRzUbPuY+BARNUEmk+H+RFOrz9oDGRzkTI1Kzi5DSm45VE5yjO0VKHU4dB1MfIiImjEpPhhqJznO5JThWGaJ1OGQDdpS3811e7Qf3J2VEkdD18PEh4ioGe4uStzV2/RX/LoDHORM1gxGYRnfw9lc9oGJDxHRdZgLl247moWKGr3E0ZAt2XexELmlNXB3VuLWKF+pw6EWYOJDRHQdA7t5oZuPKypqDfjqeJbU4ZANMa/dc1fvQKidWIndHjDxISK6DplMZmn1+XJ/hsTRkK2orjPgfydzAHA2lz1h4kNE1AJT+oXASS7D0YxinMkplTocsgFJyXkor9Ej2MMZ/bt6Sh0OtRATHyKiFvDVqjEqxh8AsJatPoTfurkmshK7XWHiQ0TUQtMSTd1dm49cRnWdQeJoSEpXKmqx+2weAHZz2RsmPkRELTS8uy+C3DUoqarDN6dypA6HJPT1iWzojQI9g3To7q+VOhxqBSY+REQtpJDLMLW/qdWH3V2OzVyiYlI8W3vsDRMfIqJWuG9AKGQyYO/FQqQVVEgdDkkgo6gSBy9dMVVij2cldntzQ4nPu+++i7CwMGg0GgwcOBD79+9vdv/i4mI8+uijCAwMhFqtRo8ePbB9+/YbCpiISErBHs4Y3t20UN26g2z1cUTmlZpvifCBv04jcTTUWq1OfNatW4dFixZh6dKlOHz4MOLi4jBmzBjk5eU1un9tbS1Gjx6NtLQ0bNiwAWfPnsWHH36I4GA2DxKRfbq/fpDzhkOZqDMYJY6GOpIQwmo2F9mfVic+b775JubPn485c+YgNjYWq1atgouLC1avXt3o/qtXr0ZRURG2bNmCW265BWFhYRgxYgTi4uJuOngiIincFu0PHzcV8stq8N2Zxv/oo87p5OVSXMivgNpJjrG9AqQOh25AqxKf2tpaHDp0CKNGjfrtAeRyjBo1Cnv37m30mG3btmHw4MF49NFH4e/vj169euHVV1+FwdD0VNCamhqUlpZa3YiIbIXKSY4pCSEAgHUH2N3lSMyV2EfH+kOrYSV2e9SqxKegoAAGgwH+/v5W2/39/ZGT0/jUzosXL2LDhg0wGAzYvn07XnjhBbzxxhtYvnx5k+dZsWIF3N3dLbfQ0NDWhElE1O6m1c/u2n02D9klVRJHQx1BbzBi2zFTrTau3WO/2n1Wl9FohJ+fHz744AMkJCRg2rRpeO6557Bq1aomj1m8eDFKSkost4wM/kVFRLYl3NcNA7t5wSiA9QczpQ6HOsAvFwqRX1YDTxclhvdgJXZ71arEx8fHBwqFArm5uVbbc3NzERDQeF9nYGAgevToAYXit6q1MTExyMnJQW1tbaPHqNVq6HQ6qxsRka2ZXj/Ied2BDBiNQuJoqL2Zu7nu7hMEpYKrwdirVr1zKpUKCQkJSEpKsmwzGo1ISkrC4MGDGz3mlltuwfnz52E0/jbzISUlBYGBgVCpVDcYNhGR9O7sFQidxgmXi6vw0/kCqcOhdlRZq8c39ZXYJ7Gby661OmVdtGgRPvzwQ3zyySdITk7GggULUFFRgTlz5gAAZs6cicWLF1v2X7BgAYqKirBw4UKkpKTg66+/xquvvopHH3207Z4FEZEENEqFZazH2gPpEkdD7WnX6VxU1BrQxcsF/bp4SB0O3QSn1h4wbdo05OfnY8mSJcjJyUF8fDx27NhhGfCcnp4Oufy3fCo0NBTffPMN/vSnP6FPnz4IDg7GwoUL8cwzz7TdsyAiksi0AV3wyd5L2HU6FwXlNfBxU0sdErWDrUdNg5onxQdBJmMldnsmE0LYfMd0aWkp3N3dUVJSwvE+RGRzJr7zE45lluAvd0XjD8MjpA6H2lhheQ0SX02CwSiQ9OQIRPi6SR2S3bDF6zdHZxER3aRpA7oAANYeyIAd/C1JrfTV8WwYjAJ9QtyZ9HQCTHyIiG7ShPgguKgUuJhfgYOXrkgdDrUx82wuVmLvHJj4EBHdJDe1E+7uEwgA+HI/Bzl3JmkFFTiSXgyFXIbxcazN1Rkw8SEiagPTE03dXdtPZKOkqk7iaKitmFt7bon0ga+WA9c7AyY+RERtoG+oB3r4u6G6zoht9RdLsm9CCMtsrsl92drTWTDxISJqAzKZDNOvGuRM9u9YZglSCyrgrFTgjlhWYu8smPgQEbWRyX2DoVLIcSqrFCcyS6QOh27SliOmlrs7evrDVd3qZe/IRjHxISJqI56uKoztZWoZ4ErO9q3OYMR/6yuxs0RF58LEh4ioDU0fYCpcuvVoFipr9RJHQzfqp/MFKKyohberCsMifaQOh9oQEx8iojY0KNwbXbxcUF6jx9fHs6UOh26QuZtrfFwQnFiJvVPhu0lE1Ibkchmm1bf6cJCzfaqo0WPnqVwA7ObqjJj4EBG1sakJIVDIZTh06QrO5ZZJHQ610s7TOaiqM6CbjyviQtylDofaGBMfIqI25qfT4LZoPwBs9bFHm4+YBjVPZCX2TomJDxFROzAPct50OBM1eoPE0VBL5ZVV46dz+QBYm6uzYuJDRNQORvTwRYBOgyuVddh1OlfqcKiFvjqWDaMA+nbxQJiPq9ThUDtg4kNE1A6cFHJM7R8CAFi7n91d9oKV2Ds/Jj5ERO3kvv6hkMlMa8JkFFVKHQ5dx4X8chzPLIFCLsPdfQKlDofaCRMfIqJ2EurlgqH1i9+t4yBnm7e1fu2eET184e3GSuydFRMfIqJ2ZC5cuv5QBvQGo8TRUFOEENhc3801MZ6V2DszJj5ERO1oVKwfvFxVyC2twe6z+VKHQ004nH4FGUVVcFWxEntnx8SHiKgdqZ0UmNLPNFCWa/rYri31a/eM6RUAZ5VC4mioPTHxISJqZ+YSFt+fzUNuabXE0dC1avVGfHW8vhI7Z3N1ekx8iIjaWaSfFv27esJgFNhwKFPqcOgaP6bk40plHXy1agyJ8JY6HGpnTHyIiDrA9ETTIOe1B9JhNAqJo6GrmdfumcBK7A6B7zARUQe4q3cAtGonZBRVYe/FQqnDoXpl1b+trM1uLsfAxIeIqAO4qJwwsa9pmvSX+9MljobMdpzMQY3eiAhfV/QK1kkdDnUAJj5ERB3EvKbPzlO5KKqolTgaAoCtR02Dmif3DWYldgfBxIeIqIP0CnZHr2Adag1GbK5fJZikk1tajZ8vFAAAJrKby2Ew8SEi6kDT6lt91u5PhxAc5CylbUezIATQv6snQr1cpA6HOggTHyKiDjQxPggapRzn8spxOL1Y6nAcmqUSe1+29jgSJj5ERB1Ip1FiXG/TIOe1HOQsmZTcMpzKKoWTXIZxvVmJ3ZEw8SEi6mD3J5pWcv7qeDbKquskjsYxbakfY3VrlB88XVUSR0MdiYkPEVEHS+jqiUg/N1TVGbDtWJbU4Tgco1FYzeYix8LEh4iog8lkMkyvr9+1joVLO9zBS1dwubgKbmon3B7jJ3U41MGY+BARSWBy32AoFTIczyzBqawSqcNxKOalBO7sFQCNkpXYHQ0THyIiCXi7qXFHbAAAtvp0pBq9AdtPZANgN5ejYuJDRCSR6fWDnDcfuYyqWoPE0TiG3WfzUVJVhwCdBgPDWYndETHxISKSyC0RPgjxdEZZtR7/O5ktdTgOwTyba0J8EBRylqhwREx8iIgkIpfLMK2/qdVn7X52d7W3kqo6JJ3JA8BK7I6MiQ8RkYTu7R8CuQzYn1aEC/nlUofTqe04mY1avRFR/lrEBGqlDockwsSHiEhCge7OGBllmlLNQc7tyzyba2LfIFZid2BMfIiIJDatfk2fjYcyUas3ShxN55RVXIV9qUUAWInd0THxISKS2G3RfvDTqlFYUYuk5Fypw+mUth0zVWIf2M0LwR7OUodDEmLiQ0QkMSeFHPcmhAAAvmR3V7swz+ZiJXZi4kNEZAPM3V17zuUj80qlxNF0LsnZpTiTUwaVQo67erESu6Nj4kNEZAO6ertiSIQ3hAD+czBT6nA6lS1HTa09t0X7wd1FKXE0JDUmPkRENmJ6YhcAwPqDGTAYhcTRdA5Go8C2+krsk/oGSRwN2QImPkRENuKOWH94uCiRXVKNH1PypQ6nU9iXWoTskmroNE64NYqV2ImJDxGRzdAoFZbCmWsPpEscTedgHtQ8rk8gK7ETACY+REQ2ZfoAU3dXUnIe8sqqJY7GvlXX/VaJnWv3kBkTHyIiGxIVoEXfLh7QGwU2HrosdTh27fszeSir0SPIXYPEMC+pwyEbwcSHiMjG3F/f6rPuQDqE4CDnG/VbiYpgyFmJneox8SEisjHj+gTCVaVAWmElfr1YJHU4dqm4shbfn2UldmrohhKfd999F2FhYdBoNBg4cCD279/f5L5r1qyBTCazumk0mhsOmIios3NVO2FCPAc534ztJ3JQZxCICdQhKoCV2Ok3rU581q1bh0WLFmHp0qU4fPgw4uLiMGbMGOTl5TV5jE6nQ3Z2tuV26dKlmwqaiKizm16/kvP/TuaguLJW4mjsj3k212Su3UPXaHXi8+abb2L+/PmYM2cOYmNjsWrVKri4uGD16tVNHiOTyRAQEGC5+fv731TQRESdXZ8Qd8QE6lCrN1ou4tQymVcqsT+tCDIZMCGO3VxkrVWJT21tLQ4dOoRRo0b99gByOUaNGoW9e/c2eVx5eTm6du2K0NBQTJw4EadOnWr2PDU1NSgtLbW6ERE5EplMZmn1WXsgg4OcW2Fr/UrNg8O9EeDOoRVkrVWJT0FBAQwGQ4MWG39/f+Tk5DR6TFRUFFavXo2tW7fis88+g9FoxJAhQ5CZ2XQtmhUrVsDd3d1yCw0NbU2YRESdwqT4YKid5DiTU4ZjmSVSh2MXhBCW2VysxE6NafdZXYMHD8bMmTMRHx+PESNGYNOmTfD19cX777/f5DGLFy9GSUmJ5ZaRkdHeYRIR2Rx3FyXu6m2qJr52Pwc5t8SprFKczyuHykmOsb0CpA6HbFCrEh8fHx8oFArk5uZabc/NzUVAQMs+YEqlEn379sX58+eb3EetVkOn01ndiIgckbm7a9uxLJTX6CWOxvaZx0ONjvGHTsNK7NRQqxIflUqFhIQEJCUlWbYZjUYkJSVh8ODBLXoMg8GAEydOIDAwsHWREhE5oMRuXgj3cUVlrQFfHcuSOhybZjAKbDtmrsTObi5qXKu7uhYtWoQPP/wQn3zyCZKTk7FgwQJUVFRgzpw5AICZM2di8eLFlv1feukl7Ny5ExcvXsThw4fx+9//HpcuXcK8efPa7lkQEXVSMpkM064a5ExN23uhEHllNfBwUWJED1+pwyEb5dTaA6ZNm4b8/HwsWbIEOTk5iI+Px44dOywDntPT0yGX/5ZPXblyBfPnz0dOTg48PT2RkJCAX375BbGxsW33LIiIOrF7+oXgtW/O4mhGMc7klCI6gN3/jTEPah7XOxAqJxYmoMbJhB3MkSwtLYW7uztKSko43oeIHNLDnx7CjlM5mD0kDMsm9JQ6HJtTVWvAgFe+RXmNHhseHoz+LEpqE2zx+s2UmIjIDkxPNHV3bT5yGdV1BomjsT3fJueivEaPEE9nJHT1lDocsmFMfIiI7MCw7r4I9nBGSVUdvjnV+Lppjsw8m2tSfDBkMlZip6Yx8SEisgMKuQxT+4cAAL7kmj5Wiipq8UNKPgBgEmtz0XUw8SEishNT+4dCJgN+vViE1IIKqcOxGV8fz4LeKNArWIdIP1Zip+Yx8SEishPBHs6Wadr/Ocip7Wabr+rmIroeJj5ERHbEvJLz+oOZqDMYJY5GeumFlTicXgy5DJgQx24uuj4mPkREduT2GH/4uKlQUF6D787kSR2O5LYcNbX23BLpAz8dK7HT9THxISKyI0qFHFMSTIOcHb1wqRDCajYXUUsw8SEisjPTB3QBAPyQko+s4iqJo5HOicsluFhQAY1SjjGsxE4txMSHiMjOdPNxxcBuXjAK01gfR2Ue1Dw6NgBu6lZXYCIHxcSHiMgO3Z9oavX5z8EMGIw2X3mozekNRvy3vhL7ZK7dQ63AxIeIyA6N7RUAncYJl4ur8NP5AqnD6XA/XyhEQXktvFxVGNadldip5Zj4EBHZIY1Sgcl9TQN61x1wvEHO5kHNd/cJhFLBSxm1HD8tRER2anp9d9eu07koKK+ROJqOU1mrt9Qrm9SXs7modZj4EBHZqZhAHeJC3FFnENh02HEGOe86nYvKWgO6erugb6iH1OGQnWHiQ0Rkx8ytPmsPZEAIxxjkvJmV2OkmMPEhIrJj4+OC4KJS4GJ+BQ6kXZE6nHZXUF6DPedMg7nZzUU3gokPEZEdc1M7YXwf03TutQ4wyPmrY1kwGAXiQj3QzcdV6nDIDjHxISKyc9MSTYVLt5/IRklVncTRtK/NR+vX7onn2j10Y5j4EBHZub6hHojy16K6zoht9UU7O6PUggocyyiGQi7D3azETjeIiQ8RkZ2TyWSYNsDU6vPl/s47yNm8ds+w7j7wcVNLHA3ZKyY+RESdwD39gqFykuN0dilOXi6VOpw2J4TAlvrWrMkc1Ew3gYkPEVEn4OGiwtiepgrlX3bCQc5HMopxqbASLioFRsf6Sx0O2TEmPkREncT0+kHO245mobJWL3E0bWtrfTfXmJ4BcFGxEjvdOCY+RESdxKBu3ujq7YLyGj2+Op4tdThtps5gxH/rnw/X7qGbxcSHiKiTkMtluK+/qdVn3YEMiaNpO3vO5aOoohY+bircEuEtdThk55j4EBF1IlMTQqCQy3Do0hWk5JZJHU6b2HLEtHbP+LggOLESO90kfoKIiDoRP50Gt0X7AegcrT7lNXrsPG2qxM7ZXNQWmPgQEXUy99cPct50OBM1eoPE0dycb07moLrOiHAfV/QOdpc6HOoEmPgQEXUyw7v7IkCnwZXKOuw8lSt1ODfFvHbPpL6sxE5tg4kPEVEn46SQ477+IQDsu3BpXmk1fj5fX4k9nt1c1DaY+BARdUJT+4dCJgN+Pl+I9MJKqcO5IduOZcEogH5dPNDF20XqcKiTYOJDRNQJhXq5YGikDwDgPwftc5DzVnMldg5qpjbExIeIqJOaPqALAGD9oQzoDUaJo2md83llOHG5BE5yGcb1YSV2ajtMfIiIOqnRsf7wclUht7QGu8/mSx1Oq5jX7hnRwxderiqJo6HOhIkPEVEnpXKSY0o/UzeRPQ1yvroSO0tUUFtj4kNE1IlNq+/u+u5MHnJKqiWOpmUOXbqCzCtVcFM7YVQMK7FT22LiQ0TUiUX6uWFAmCeMAthwyD4GOW++qhK7s0ohcTTU2TDxISLq5MytPusOZsBoFBJH07xavRFfnzBVYudsLmoPTHyIiDq5cb0DoVU7IaOoCr9cKJQ6nGb9kJKP4so6+GnVGMxK7NQOmPgQEXVyzioFJvY1TQm39UHOW+q7uSbEBUEhZ4kKantMfIiIHIB5TZ+dp3JRVFErcTSNK62uw7fJptpinM1F7YWJDxGRA+gV7I5ewTrUGozYdDhT6nAateNkDmr0RnT3c0PPIJ3U4VAnxcSHiMhBmFt91h7IgBC2N8jZ3M3FSuzUnpj4EBE5iAnxQXBWKnA+rxyH069IHY6VnJJq7L1oGng9IY4lKqj9MPEhInIQOo0S4/oEAgDW7retNX22HbsMIYDEMC+EerESO7UfJj5ERA5k+oBQAMBXx7NRVl0ncTS/2Vxfm8s8+4yovTDxISJyIAldPRHp54aqOgO2HcuSOhwAwNmcMiRnl0KpkGFc70Cpw6FOjokPEZEDkclkllYfW+nuMhckHRnlBw8XVmKn9sXEh4jIwdzTLwRKhQwnLpfg5OUSSWMxGgW2HmElduo4THyIiByMl6sKd/QMAACsOyBtq8/+tCJklVRDq3bCbdF+ksZCjoGJDxGRAzJ3d205ehlVtQbJ4tha3811V+9AaJSsxE7tj4kPEZEDuiXCByGeziir1mN7fTX0jlZdZ8BXx03n5mwu6ig3lPi8++67CAsLg0ajwcCBA7F///4WHbd27VrIZDJMmjTpRk5LRERtRC6XYVp/U6uPVN1du8/moaxaj0B3DQZ1YyV26hitTnzWrVuHRYsWYenSpTh8+DDi4uIwZswY5OXlNXtcWloannrqKQwbNuyGgyUiorYztX8o5DLTOJvzeeUdfv4t9Wv3TIgPgpyV2KmDtDrxefPNNzF//nzMmTMHsbGxWLVqFVxcXLB69eomjzEYDPjd736HF198EeHh4TcVMBERtY0Adw1GRpkGFP/nYMe2+pRU1uG7M6Y/mCfFczYXdZxWJT61tbU4dOgQRo0a9dsDyOUYNWoU9u7d2+RxL730Evz8/DB37twWnaempgalpaVWNyIianvTE02FSzceykSt3thh591+Mhu1BiOiA7SICWQlduo4rUp8CgoKYDAY4O/vb7Xd398fOTk5jR7z008/4aOPPsKHH37Y4vOsWLEC7u7ulltoaGhrwiQiohYaGeULP60ahRW1+DY5t8POu4Vr95BE2nVWV1lZGWbMmIEPP/wQPj4+LT5u8eLFKCkpsdwyMmxjdVEios7GSSHH1P4hAIC1HTTI+XJxFfalFkEmYyV26nhOrdnZx8cHCoUCubnWfxXk5uYiICCgwf4XLlxAWloaxo8fb9lmNJqaUp2cnHD27FlEREQ0OE6tVkOtVrcmNCIiukH39Q/Fu99fwJ5z+cgoqmz36ujmtXsGdvNCkIdzu56L6FqtavFRqVRISEhAUlKSZZvRaERSUhIGDx7cYP/o6GicOHECR48etdwmTJiAkSNH4ujRo+zCIiKyAV29XXFLpDeEANYfymzXcwkhLN1ck9nNRRJoVYsPACxatAizZs1C//79kZiYiJUrV6KiogJz5swBAMycORPBwcFYsWIFNBoNevXqZXW8h4cHADTYTkRE0pk2oAt+Pl+I9QczsPD27lC00/Ty5OwypOSWQ+Ukx9herMROHa/Vic+0adOQn5+PJUuWICcnB/Hx8dixY4dlwHN6ejrkci4ITURkT8b09IeHixLZJdX4MSUfI9upbpa5Evvt0X5wd1a2yzmImiMTQgipg7ie0tJSuLu7o6SkBDodpz0SEbWHl/57Gqt/TsUdsf74YGb/Nn98g1Hglr9+h5zSarw/IwFjejYcG0qdiy1ev9k0Q0REAIDpiaZxl0ln8pBXVt3mj7/vYiFySqvh7qzErVG+bf74RC3BxIeIiAAAPfy16NfFAwajwIZ2GOS8+chvldjVTqzETtJg4kNERBbTB5hWcl53IANtORKius6AHSdNC91yNhdJiYkPERFZjOsTCDe1Ey4VVmLvxcI2e9yk5DyU1egR7OGM/l092+xxiVqLiQ8REVm4qp0wvn415XVtuJKzuZtrIiuxk8SY+BARkZX76wc5/+9kDoora2/68a5U1OKHFFMldnZzkdSY+BARkZXewe6ICdShVm+0tNTcjK9PZKPOINAzSIfu/to2iJDoxjHxISIiKzKZzNLqs3b/zQ9ytlRij2drD0mPiQ8RETUwMS4Yaic5zuaW4WhG8Q0/TkZRJQ5eumKqxB7PSuwkPSY+RETUgLuLEuN6m2pp3cwgZ3Ml9lsifOCv07RJbEQ3g4kPERE1atoAU3fXtmNZKK/Rt/p4IYTVbC4iW8DEh4iIGpXYzQvhPq6orDXgq2NZrT7+VFYpLuRXQO0kx9herMtFtoGJDxERNUomk1lafb68ge4uc2vP6Fh/aDWsxE62gYkPERE1aUpCCJzkMhzLKEZydmmLjzMYBbbVtxJxNhfZEiY+RETUJB83NUbH+gNo3SDnXy4UIL+sBp4uSgzvwUrsZDuY+BARUbPM3V2bDmeius7QomPM3Vx39wmCyomXGrId/DQSEVGzhnX3RbCHM0qr9ZYK682pqjXgm/r9JvXlbC6yLUx8iIioWQq5DFP7hwAA1h5Iv+7+u5JzUVFrQKiXM/p1YSV2si1MfIiI6Lru6x8KmQz49WIRUgsqmt3XXKJicnwwZDJWYifbwsSHiIiuK8jDGSPqByk3N8i5sLwGP6TkAwAmshI72SAmPkRE1CLTB3QBAGw4lIk6g7HRfb4+kQ2DUaBPiDsifN06MjyiFmHiQ0RELXJ7jB983NQoKK9BUnJeo/tsZiV2snFMfIiIqEWUCjnuTTANcl7XyCDntIIKHEkvhlwG3B0X2NHhEbUIEx8iImox85o+P6TkI6u4yuq+rUdNKzUP7e4LPy0rsZNtYuJDREQt1s3HFYPCvWAUwPqDmZbtQghsOVo/m4tr95ANY+JDREStYh7k/J+DGTAYBQDgWGYJUgsq4KxU4I5YVmIn28XEh4iIWmVsrwC4OytxubgKP50vAPDb2j139PSHq9pJyvCImsXEh4iIWkWjVGBy/Ro9a/eno85gxH/Nldi5dg/ZOCY+RETUauZBzrtO52Lr0SwUVtTC21WFYZE+EkdG1DwmPkRE1GoxgTrEhXpAbxRYuvUkAGB8XBCcFLyskG3jJ5SIiG7I9PpWn4paAwB2c5F9YOJDREQ3ZHxcEFxUCgBAmLcL4kLcJY6I6PqY+BAR0Q1xUzvhnn6mVp6p/UNZiZ3sAuccEhHRDXt+XCxuj/HH8O6+UodC1CJMfIiI6IZplAqMjPKTOgyiFmNXFxERETkMJj5ERETkMJj4EBERkcNg4kNEREQOg4kPEREROQwmPkREROQwmPgQERGRw2DiQ0RERA6DiQ8RERE5DCY+RERE5DCY+BAREZHDYOJDREREDoOJDxERETkMu6jOLoQAAJSWlkocCREREbWU+bptvo7bArtIfMrKygAAoaGhEkdCRERErVVWVgZ3d3epwwAAyIQtpWFNMBqNyMrKglarhUwma7PHLS0tRWhoKDIyMqDT6drscanj8D20f3wP7RvfP/vXnu+hEAJlZWUICgqCXG4bo2vsosVHLpcjJCSk3R5fp9PxF9bO8T20f3wP7RvfP/vXXu+hrbT0mNlG+kVERETUAZj4EBERkcNw6MRHrVZj6dKlUKvVUodCN4jvof3je2jf+P7ZP0d7D+1icDMRERFRW3DoFh8iIiJyLEx8iIiIyGEw8SEiIiKHwcSHiIiIHEanTHzCwsKwcuVKqcNo1O7duyGTyVBcXCx1KG1qzZo18PDwuOnHkclk2LJly00/TntbtmwZ4uPjpQ6DiAizZ8/GpEmTpA7jpnTkddumEp+2unjasiFDhiA7O9vmVrIEbPOXRyaTNXpbu3at1KFRE2bPnm15n1QqFSIjI/HSSy9Br9cDMC1h/8EHH2DgwIFwc3ODh4cH+vfvj5UrV6KystLqsTIzM6FSqdCrVy8pnopDuPXWW/HEE09cd78PP/wQcXFxlvesb9++WLFiheX+ZcuWQSaT4eGHH7Y67ujRo5DJZEhLSwMApKWlNfl7/euvv7blU+tw+fn5WLBgAbp06QK1Wo2AgACMGTMGP//8s9ShtUhT1+DU1FQ88MADCAoKgkajQUhICCZOnIgzZ850fJBtwC5KVnQmKpUKAQEBUodhVz7++GOMHTvWaltnSJDr6uqgVCqlDqNdjB07Fh9//DFqamqwfft2PProo1AqlVi8eDFmzJiBTZs24fnnn8c777wDX19fHDt2DCtXrkRYWJhV8r1mzRrcd999+PHHH7Fv3z4MHDhQuiflwFavXo0nnngC//znPzFixAjU1NTg+PHjOHnypNV+Go0GH330EZ588kl079692cf89ttv0bNnT6tt3t7ebR57R5oyZQpqa2vxySefIDw8HLm5uUhKSkJhYaHUoV1XXV1dk9tHjx6NqKgobNq0CYGBgcjMzMT//vc/m+q5qK2thUqlatnOog2VlpaKBx54QLi4uIiAgADx5ptvihEjRoiFCxcKIYSorq4WTz75pAgKChIuLi4iMTFRfP/990IIIb7//nsBwOq2dOnS654zNzdX3H333UKj0YiwsDDx2Wefia5du4q33npLCCFEamqqACCOHDliOebKlSsCQINz79ixQ8THxwuNRiNGjhwpcnNzxfbt20V0dLTQarXi/vvvFxUVFZbHGTFihHjsscfEwoULhYeHh/Dz8xMffPCBKC8vF7NnzxZubm4iIiJCbN++3XKM+VxXrlyxbNuzZ48YOnSo0Gg0IiQkRDz++OOivLzccv+7774rIiMjhVqtFn5+fmLKlCmtel9aatasWWLixImN3vfGG2+IXr16CRcXFxESEiIWLFggysrKLPd//PHHwt3dXWzevNkS6x133CHS09OtHmfLli2ib9++Qq1Wi27duolly5aJuro6y/0AxObNm5v8+Vrm8+7YsUNER0cLV1dXMWbMGJGVlWW130cffSRiY2OFSqUSAQEB4tFHH7Xcd+nSJTFhwgTh6uoqtFqtmDp1qsjJybE6fsWKFcLPz0+4ubmJBx98UDzzzDMiLi7Oap8PP/xQREdHC7VaLaKiosS7775ruc/8OVy7dq0YPny4UKvV4uOPP27yedmzxj5Ho0ePFoMGDRLr1q0TAMSWLVsaHGc0GkVxcbHVz+Hh4WLHjh3imWeeEfPnz2/v0B3OrFmzGnzvpqamNthv4sSJYvbs2c0+1tKlS0VcXJwYPXq0mDp1qmX7kSNHrB63se/kzsB8Xdm9e3eT+7T0e7S57zO9Xi/+9Kc/CXd3d+Hl5SWefvppMXPmTKvfuf/973/illtusewzbtw4cf78ecv9TX0fNXYNNr9/aWlpzT7/jIwMMX36dOHp6SlcXFxEQkKC+PXXX4UQQpw/f15MmDBB+Pn5CVdXV9G/f3+xa9cuq+Ovvm6bX8+5c+cKHx8fodVqxciRI8XRo0ct95s/bx9++KEICwsTMpms2fiu1qaJz7x580TXrl3Ft99+K06cOCEmT54stFqtJfGZN2+eGDJkiPjxxx/F+fPnxWuvvSbUarVISUkRNTU1YuXKlUKn04ns7GyRnZ1t9YFoyp133ini4uLE3r17xcGDB8WQIUOEs7PzDSU+gwYNEj/99JM4fPiwiIyMFCNGjBB33HGHOHz4sPjxxx+Ft7e3+Otf/2p5nBEjRgitVitefvllkZKSIl5++WWhUCjEnXfeKT744AORkpIiFixYILy9vS0J07WJz/nz54Wrq6t46623REpKivj5559F3759LV8yBw4cEAqFQnzxxRciLS1NHD58WPzjH/+4uTeqCc0lPm+99Zb47rvvRGpqqkhKShJRUVFiwYIFlvs//vhjoVQqRf/+/cUvv/wiDh48KBITE8WQIUMs+/z4449Cp9OJNWvWiAsXLoidO3eKsLAwsWzZMss+N5L4KJVKMWrUKHHgwAFx6NAhERMTIx544AHLPv/617+ERqMRK1euFGfPnhX79++3fD4MBoOIj48XQ4cOFQcPHhS//vqrSEhIECNGjLAcv27dOqFWq8X//d//iTNnzojnnntOaLVaq8Tns88+E4GBgWLjxo3i4sWLYuPGjcLLy0usWbNGCPHb5zAsLMyyz7XJWWfR2OdowoQJol+/fmLChAkiKiqqRY+TlJQkAgIChF6vFydOnBBardbqDwK6ecXFxWLw4MFi/vz5lu9dvV7fYL+HHnpIREdHN3vxM1+IDh06JORyuThw4IAQwnESn7q6OuHm5iaeeOIJUV1d3eg+Lf0ebe777G9/+5vw9PQUGzduFKdPnxZz584VWq3W6nduw4YNYuPGjeLcuXPiyJEjYvz48aJ3797CYDAIIRr/PkpLS2v0GpyZmSnkcrl4/fXXG/1sCCFEWVmZCA8PF8OGDRN79uwR586dE+vWrRO//PKLEEKIo0ePilWrVokTJ06IlJQU8fzzzwuNRiMuXbpkeYxrE59Ro0aJ8ePHiwMHDoiUlBTx5JNPCm9vb1FYWCiEMH3eXF1dxdixY8Xhw4fFsWPHWvxetVniU1paKpRKpVi/fr1lW3FxsXBxcRELFy4Uly5dEgqFQly+fNnquNtvv10sXrxYCPFbtttSZ8+eFQDE/v37LduSk5MFgBtKfL799lvLPitWrBAAxIULFyzbHnroITFmzBjLzyNGjBBDhw61/KzX64Wrq6uYMWOGZVt2drYAIPbu3Wt1LnPiM3fuXPGHP/zB6nnt2bNHyOVyUVVVJTZu3Ch0Op0oLS1t8etyo5pLfK61fv164e3tbfnZ/NeCOcMX4rf3Yt++fUII03v96quvWj3Op59+KgIDAy0/N5b4aDQa4erqanUz/8KYz3v1XzPvvvuu8Pf3t/wcFBQknnvuuUafx86dO4VCobBqmTp16pTV52rw4MHikUcesTpu4MCBVolPRESE+OKLL6z2efnll8XgwYOFEL99DleuXNloHJ3J1Z8jo9Eodu3aJdRqtXjqqadETEyMmDBhQose54EHHhBPPPGE5ee4uLhO20ompatb5ZuSlZUlBg0aJACIHj16iFmzZol169ZZLqRC/Jb4CCHE9OnTxW233SaEaDrxcXZ2bvB7be82bNggPD09hUajEUOGDBGLFy9u9oLc1Pdoc99ngYGB4u9//7vl57q6OhESEtLsd3d+fr4AIE6cOCGEaPr7qKlr8DvvvCNcXFwsLS8vvfSS1bXx/fffF1qt1pKUtETPnj3F22+/bfn56sRnz549QqfTNUggIyIixPvvvy+EMH3elEqlyMvLa/E5zdpscPPFixdRV1eHxMREyzZ3d3dERUUBAE6cOAGDwYAePXrAzc3Ncvvhhx9w4cKFGzpncnIynJyckJCQYNkWHR19w+M/+vTpY/m/v78/XFxcEB4ebrUtLy+vyWMUCgW8vb3Ru3dvq2MANDjO7NixY1izZo3VazJmzBgYjUakpqZi9OjR6Nq1K8LDwzFjxgx8/vnnDQaAdoRvv/0Wt99+O4KDg6HVajFjxgwUFhZaxeLk5IQBAwZYfja/F8nJyZbn+tJLL1k91/nz5yM7O7vZ5/TWW2/h6NGjVregoCDL/S4uLoiIiLD8HBgYaHm98/LykJWVhdtvv73Rx05OTkZoaChCQ0Mt22JjY63iTk5ObjC2ZPDgwZb/V1RU4MKFC5g7d67Vc1u+fHmDz3b//v2bfJ6dyVdffQU3NzdoNBrceeedmDZtGpYtWwbRwgo5xcXF2LRpE37/+99btv3+97/HRx991F4hU72ePXtaPsN33nknANPv1N69e3HixAksXLgQer0es2bNwtixY2E0Ghs8xvLly7Fnzx7s3LmzyfOsW7euwe+1vZsyZQqysrKwbds2jB07Frt370a/fv2wZs0aAC37Hm3u+6ykpATZ2dlW30dOTk4NvlfOnTuH+++/H+Hh4dDpdAgLCwMApKenW+3X0u+jRx99FDk5Ofj8888xePBgrF+/Hj179sSuXbsAmAaw9+3bF15eXo0eX15ejqeeegoxMTHw8PCAm5sbkpOTG8RjduzYMZSXl8Pb29vqOzU1NdXqO7Vr167w9fVt0XO4WocNbi4vL4dCocChQ4egUCis7nNzc2u388rlptzu6i/cpgZxXT3QVCaTNRh4KpPJGvySN7bPtY8DoNEvB8D0ujz00EP44x//2OC+Ll26QKVS4fDhw9i9ezd27tyJJUuWYNmyZThw4ECHDfBNS0vD3XffjQULFuCVV16Bl5cXfvrpJ8ydOxe1tbVwcXFp0eOUl5fjxRdfxD333NPgPo1G0+RxAQEBiIyMbPL+xt4D8/vt7OzcothuRnl5OQDTrJdrE6RrP+uurq7tHo8tGDlyJN577z2oVCoEBQXBycn0VdOjR48WzQT54osvUF1dbfV6CiFgNBqRkpKCHj16tFvsjm779u2W78hrf3969eqFXr164ZFHHsHDDz+MYcOG4YcffsDIkSOt9ouIiMD8+fPx7LPPNpmshoaGNvt7ba80Gg1Gjx6N0aNH44UXXsC8efOwdOlS3HrrrS36Hm3u+6ylxo8fj65du+LDDz9EUFAQjEYjevXqhdraWqv9WvN9pNVqMX78eIwfPx7Lly/HmDFjsHz5cowePfq637NPPfUUdu3ahddffx2RkZFwdnbGvffe2yAes/LycgQGBmL37t0N7rv6unej36dt1uITHh4OpVKJAwcOWLaVlJQgJSUFANC3b18YDAbk5eUhMjLS6mae5aRSqWAwGFp8zujoaOj1ehw6dMiy7ezZs1Yjzc3ZYHZ2tmWbLf1l0a9fP5w+fbrBaxIZGWkZoe7k5IRRo0bh73//O44fP460tDR89913HRbjoUOHYDQa8cYbb2DQoEHo0aMHsrKyGuyn1+tx8OBBy8/m9yImJgaA6bmePXu20edqTlDbmlarRVhYGJKSkhq9PyYmBhkZGcjIyLBsO336NIqLixEbG2vZZ9++fVbHXT3t1t/fH0FBQbh48WKD59WtW7d2eFa2z9XVFZGRkejSpYsl6QGABx54ACkpKdi6dWuDY4QQKCkpAQDLzKCrWwOOHTuGYcOGYfXq1R32PBzBtd+7Xbt2tXx+g4ODmzzO/PtRUVHR6P1LlixBSkqKwy89ERsbi4qKihZ/jzbH3d0dgYGBVt9H114DCwsLcfbsWTz//PO4/fbbERMTgytXrrTo8Vt6DZbJZIiOjra893369MHRo0dRVFTU6P4///wzZs+ejcmTJ6N3794ICAiwLG/QmH79+iEnJwdOTk4NvlN9fHxa9Fya02YtPlqtFrNmzcLTTz8NLy8v+Pn5YenSpZDL5ZDJZOjRowd+97vfYebMmXjjjTfQt29f5OfnIykpCX369MG4ceMQFhaG8vJyJCUlIS4uDi4uLs22JkRFRWHs2LF46KGH8N5778HJyQlPPPGEVfbp7OyMQYMG4a9//Su6deuGvLw8PP/88231tG/aM888g0GDBuGxxx7DvHnz4OrqitOnT2PXrl1455138NVXX+HixYsYPnw4PD09sX37dhiNRksXYlsrKSlpkBj6+Pigrq4Ob7/9NsaPH4+ff/4Zq1atanCsUqnE448/jn/+859wcnLCY489hkGDBlm6P5csWYK7774bXbp0wb333gu5XI5jx47h5MmTWL58eZMxFRcXIycnx2qbVqttcba/bNkyPPzww/Dz88Odd96JsrIy/Pzzz3j88ccxatQo9O7dG7/73e+wcuVK6PV6PPLIIxgxYoSlGXjhwoWYPXs2+vfvj1tuuQWff/45Tp06ZdUN+uKLL+KPf/wj3N3dMXbsWNTU1ODgwYO4cuUKFi1a1KI4HcF9992HzZs34/7778fzzz+PO+64A76+vjhx4gTeeustPP744wgLC8Phw4fx+eefIzo62ur4+++/Hy+99BKWL19ulVDRjQsLC8O+ffuQlpYGNzc3eHl5NfhDZMGCBQgKCsJtt92GkJAQZGdnY/ny5fD19bXq9r2av78/Fi1ahNdee63R+wsLCxv8Xnt4eDTb+mvLCgsLMXXqVDz44IPo06cPtFotDh48iL///e+YOHEiIiMjW/Q9ej0LFy7EX//6V3Tv3h3R0dF48803rf7Y9/T0hLe3Nz744AMEBgYiPT0dzz77bIseu7FrcEpKCpYuXYoZM2YgNjYWKpUKP/zwA1avXo1nnnkGgOn38tVXX8WkSZOwYsUKBAYG4siRIwgKCsLgwYPRvXt3bNq0CePHj4dMJsMLL7zQZC8IAIwaNQqDBw/GpEmT8Pe//92SJH799deYPHnyzQ8ZaPWooGY0Np09MTFRPPvss0IIIWpra8WSJUtEWFiYUCqVIjAwUEyePFkcP37c8hgPP/yw8Pb2bvF09uzsbDFu3DihVqtFly5dxL///e8Go8NPnz4tBg8eLJydnUV8fLzYuXNno4Obr55i3tggr6sH7wnR+KDAa88thPWA3cbOtX//fjF69Gjh5uYmXF1dRZ8+fcQrr7wihDAN8hoxYoTw9PQUzs7Ook+fPmLdunXXfV1uRGNTWwGIuXPnijfffFMEBgYKZ2dnMWbMGPHvf//b6nmYX6+NGzeK8PBwoVarxahRo6xG7QshxI4dOywz73Q6nUhMTBQffPBBo6+V+efGbitWrLA679U2b94srv1or1q1SkRFRVk+d48//rjlvpZMZ3/llVeEj4+PcHNzE7NmzRJ//vOfG0xn//zzz0V8fLxQqVTC09NTDB8+XGzatEkI0XlnsjTmeoPkDQaDeO+998SAAQOEi4uL0Ol0IiEhQfzjH/8QlZWV4rHHHhOxsbGNHpudnS3kcrnYunVrO0XveM6ePSsGDRoknJ2dm5zOvmHDBnHXXXeJwMBAoVKpRFBQkJgyZYrVd/e1349CCFFSUiJ8fHwaHdzc2O3LL79sx2favqqrq8Wzzz4r+vXrJ9zd3YWLi4uIiooSzz//vKisrBRCiBZ/j17t2u+zuro6sXDhQqHT6YSHh4dYtGhRg+nsu3btEjExMUKtVos+ffqI3bt3W323Nvd9dO01OD8/X/zxj38UvXr1Em5ubkKr1YrevXuL119/3Wpwe1pampgyZYrQ6XTCxcVF9O/f3zKxJTU1VYwcOVI4OzuL0NBQ8c477zS4fl577SwtLRWPP/64CAoKEkqlUoSGhorf/e53lokojX3eWkomRCs7D1uhoqICwcHBeOONNzB37tz2Og0RERFRi7RpW/GRI0dw5swZJCYmoqSkBC+99BIAYOLEiW15GiIiIqIb0uad5K+//jrOnj0LlUqFhIQE7Nmz54YHI+3Zs8cynbIx5tk0RERERC3Rrl1dN6uqqgqXL19u8v7OOBWSiIiI2o9NJz5EREREbal9Fk8hIiIiskFMfIiIiMhhMPEhIiIih8HEh4iIiBwGEx8iIiJyGEx8iIiIyGEw8SEiIiKH8f8b/daPi2S8lgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxdklEQVR4nO3deVhUZf8G8HtmYIYdZF8FBQFxwdxxX1AsMzM1bXFN37JSy9TyV6mZ5fuWpu2WuWX25qup7SqS5q654YYgKAIiq7LLMjPP74+BSQQUFDgzzP25rrkuOXOWe3CY853nOc9zZEIIASIiIiITIJc6ABEREVFjYeFDREREJoOFDxEREZkMFj5ERERkMlj4EBERkclg4UNEREQmg4UPERERmQwWPkRERGQyWPgQERGRyWDhQ0SN6tKlSxg8eDDs7e0hk8mwfft2qSMZrHXr1kEmkyExMVGS4ycmJkImk2HdunWVlu/YsQMdOnSAhYUFZDIZcnJyMHHiRPj5+UmSk6guWPgQUaOaMGECzp49i/feew8bNmxA586dG/R4mZmZmDlzJoKDg2FpaQlXV1d07doVr7/+OgoKCqqsv3//fjz55JPw8vKCUqmEvb09unXrhkWLFiE9Pb3Suv369YNMJoNMJoNcLoednR2CgoIwbtw4REZG1phJo9Fg7dq16NevHxwdHaFSqeDn54dJkybh+PHj9f47qE/Z2dl48sknYWlpic8//xwbNmyAtbW11LGIak3Ge3URUWO5desWrKys8Oabb2Lx4sUNfrwbN27goYceQl5eHiZPnozg4GBkZ2fjzJkz+PXXX3HmzJlKrRTz58/Hu+++i5YtW2Ls2LFo2bIliouLceLECfz4449wdnZGQkKCfv1+/fohISEBS5YsAQAUFhYiPj4eW7duxeXLl/Hkk0/iu+++g7m5eaXfwRNPPIEdO3agT58+GDZsGBwdHZGYmIj//e9/iIuLQ1JSEry9vbFu3TpMmjQJV65ckaQ1RQiBkpISmJubQ6FQANC19jz88MOIjIxEeHi4ft2ysjJotVqoVKpGz0lUF2ZSByAyRIWFhfwWe4f6+J1kZmYCABwcHOohkc7dcq1evRpJSUk4ePAgevToUem5vLw8KJVK/c+bNm3Cu+++iyeffBIbNmyo9BwALF++HMuXL69yDHt7ezz77LOVlv373//GjBkz8MUXX8DPzw//+c9/9M/NmTMHO3bswPLly/HKK69U2m7BggXVHkMqMpkMFhYWlZZlZGQAqPp/eHtx96CEECguLoalpWW97ZNITxA1gsTERDFt2jQRGBgoLCwshKOjoxg1apS4cuVKlXVv3rwpXnnlFeHr6yuUSqXw8vIS48aNE5mZmfp1bt26JRYsWCBatWolVCqVcHd3FyNGjBDx8fFCCCH27NkjAIg9e/ZU2veVK1cEALF27Vr9sgkTJghra2sRHx8vHn74YWFjYyOGDx8uhBBi3759YtSoUcLHx0colUrh7e0tXnnlFVFUVFQld0xMjBg9erRwdnYWFhYWIjAwUPzf//2fEEKIP//8UwAQW7durbLdxo0bBQBx6NChGn9/paWlYuHChSIgIECoVCrh6OgoevbsKXbt2lXrDBVOnjwphgwZImxtbYW1tbUYMGCAOHz4cKV11q5dKwCIvXv3imnTpgkXFxfh4OCgf/73338XvXr1ElZWVsLGxkY88sgj4ty5czXmF0KIBQsWCACVHr6+vvWa607PP/+8UCgUQqPR3DWbEEIEBgYKZ2dnkZ+ff891K/Tt21e0adOm2ufUarUICQkRVlZWIicnRwghRHJysjAzMxODBg2q1f4rXu/tfyfbt28XjzzyiPDw8BBKpVK0bNlSLFq0SKjV6krbxsXFiSeeeEK4ubkJlUolvLy8xJgxY/RZhBBi165domfPnsLe3l5YW1uLwMBAMW/ePP3zd/699O3bt8r/4YQJE4QQur+j2/8/hRBCo9GI5cuXi5CQEKFSqYSrq6v417/+JW7cuFFpPV9fXzF06FCxY8cO0alTJ6FSqcTy5ctr9Tsiqiu2+FCj+Pvvv3Ho0CGMHTsW3t7eSExMxJdffol+/frhwoULsLKyAgAUFBSgd+/eiImJweTJk9GxY0dkZWXh559/RkpKCpydnaHRaPDoo48iKioKY8eOxcyZM5Gfn4/IyEicO3cO/v7+dc6nVqsRERGBXr16YenSpfo8mzdvRlFREaZNmwYnJyccO3YMn376KVJSUrB582b99mfOnEHv3r1hbm6Of/3rX/Dz80NCQgJ++eUXvPfee+jXrx98fHywceNGjBgxotKxN27cCH9/f4SFhdWYb+HChViyZAmmTJmCrl27Ii8vD8ePH8fJkycxaNCgWmUAgPPnz6N3796ws7PD3LlzYW5ujq+++gr9+vXDX3/9hW7dulU67osvvggXFxfMnz8fhYWFAIANGzZgwoQJiIiIwH/+8x8UFRXhyy+/RK9evXDq1Kkau2SeeOIJODg44NVXX8VTTz2FRx55BDY2NvWWqzq+vr7QaDT6zDWJi4tDXFwcpkyZos/0oBQKBZ566im8/fbbOHDgAIYOHYo//vgDarUa48aNu+/9rlu3DjY2Npg1axZsbGzw559/Yv78+cjLy8OHH34IACgtLUVERARKSkowffp0uLu749q1a/j111+Rk5MDe3t7nD9/Ho8++ijat2+PRYsWQaVSIT4+HgcPHqzx2G+++SaCgoLw9ddfY9GiRWjRosVd/96ef/55fXfdjBkzcOXKFXz22Wc4deoUDh48WKmVKDY2Fk899RSef/55TJ06FUFBQff9OyK6K6krLzIN1bWQHD58WAAQ3377rX7Z/Pnza2wZ0Wq1Qggh1qxZIwCIjz76qMZ16triA0C88cYbtcq9ZMkSIZPJxNWrV/XL+vTpI2xtbSstuz2PEELMmzdPqFSqSt+4MzIyhJmZmViwYEGV49wuNDRUDB069K7r1CbD448/LpRKpUhISNAvS01NFba2tqJPnz76ZRUtDb169arUkpCfny8cHBzE1KlTKx0jLS1N2NvbV1l+p4rf/4cfflhp+YPmqklaWppwcXERAERwcLB44YUXxPfff1/p/0AIIX766ScBQKxYsaLScq1WKzIzMys9ysrK9M/frcVHCCG2bdsmAIiPP/5YCCHEq6++KgCIU6dO3TP77a/39haf6t6Tzz//vLCyshLFxcVCCCFOnTolAIjNmzfXuO/ly5cLAJVaUu9U3d9LRaa///670rp3tvjs379fABAbN26stN6OHTuqLPf19RUAxI4dO2rMQlRfOKqLGsXtffVlZWXIzs5GQEAAHBwccPLkSf1zP/74I0JDQ6u0igC66w0q1nF2dsb06dNrXOd+TJs27a65CwsLkZWVhR49ekAIgVOnTgHQXbeyb98+TJ48Gc2bN68xz/jx41FSUoItW7bol23atAlqtbrKNSJ3cnBwwPnz53Hp0qVqn69NBo1Gg127duHxxx9Hy5Yt9c97eHjg6aefxoEDB5CXl1dp26lTp+ovagWAyMhI5OTk4KmnnkJWVpb+oVAo0K1bN+zZs+eur6M69ZGrJm5uboiOjsYLL7yAmzdvYuXKlXj66afh6uqKd999F6J8bEfF/u9s7cnNzYWLi0ulx+nTp2v92ir2l5+fX+k4tra2td7HnW5/T+bn5yMrKwu9e/dGUVERLl68CEB33REA7Ny5E0VFRdXup+IanZ9++glarfa+89Rk8+bNsLe3x6BBgyq9Vzp16gQbG5sq75UWLVogIiKi3nMQ3YmFDzWKW7duYf78+fDx8YFKpYKzszNcXFyQk5OD3Nxc/XoJCQlo27btXfeVkJCAoKAgmJnVX0+tmZkZvL29qyxPSkrCxIkT4ejoCBsbG7i4uKBv374AoM99+fJlALhn7uDgYHTp0gUbN27UL9u4cSO6d++OgICAu267aNEi5OTkIDAwEO3atcOcOXNw5swZ/fO1yZCZmYmioqJquxBat24NrVaL5OTkSstbtGhR6eeKwmvAgAFVCoJdu3bpL3yti/rIdTceHh748ssvcf36dcTGxuKTTz7Rd5OtXr0awD+FyJ3D221sbBAZGYnIyEjMmTOnri9Nv7+K/dvZ2QH4pxC6H+fPn8eIESNgb28POzs7uLi46AvnivdkixYtMGvWLHzzzTdwdnZGREQEPv/880p/a2PGjEHPnj0xZcoUuLm5YezYsfjf//5Xb0XQpUuXkJubC1dX1yrvlYKCgirvlbr8nxI9CF7jQ41i+vTpWLt2LV555RWEhYXpJ68bO3Zsg3zbrKnlR6PRVLtcpVJBLpdXWXfQoEG4ceMGXn/9dQQHB8Pa2hrXrl3DxIkT7yv3+PHjMXPmTKSkpKCkpARHjhzBZ599ds/t+vTpg4SEBPz000/YtWsXvvnmGyxfvhwrV67ElClT6pyjtu4cVVPxmjds2AB3d/cq69dnMVqXXLUhk8kQGBiIwMBADB06FK1atcLGjRsxZcoUBAcHAwDOnTtXaRszMzP9kO2UlJQ6H7NifxWFbcVxzp49iw4dOtR5fzk5Oejbty/s7OywaNEi+Pv7w8LCAidPnsTrr79e6T25bNkyTJw4Uf+emTFjBpYsWYIjR47A29sblpaW2LdvH/bs2YPffvsNO3bswKZNmzBgwADs2rWrVi1qd6PVauHq6lqp0L+di4tLpZ85gosaCwsfahRbtmzBhAkTsGzZMv2y4uJi5OTkVFrP39+/ysnnTv7+/jh69CjKyspqHELbrFkzAKiy/6tXr9Y689mzZxEXF4f169dj/Pjx+uV3TkxX0T1zr9wAMHbsWMyaNQv//e9/cevWLZibm2PMmDG1yuPo6IhJkyZh0qRJKCgoQJ8+fbBw4UJMmTKlVhlcXFxgZWWF2NjYKs9dvHgRcrkcPj4+d81QcSGrq6trpTlcHkR95Kqrli1bolmzZrh+/ToAICgoCK1atcL27duxYsWKepnKQKPR4Pvvv4eVlRV69eoFAHj44YehUCjw3Xff3dcFznv37kV2dja2bt2KPn366JdfuXKl2vXbtWuHdu3a4a233sKhQ4fQs2dPrFy5Uj+Hklwux8CBAzFw4EB89NFHeP/99/Hmm29iz549D/z/6+/vj927d6Nnz54sasigsKuLGoVCodBfT1Hh008/rdICM3LkSERHR2Pbtm1V9lGx/ciRI5GVlVVtS0nFOr6+vlAoFNi3b1+l57/44os6Zb59nxX//vjjjyut5+Ligj59+mDNmjVISkqqNk8FZ2dnPPzww/juu++wceNGDBkyBM7OzvfMkp2dXelnGxsbBAQEoKSkpNYZFAoFBg8ejJ9++qnSLRDS09Px/fffo1evXvqumJpERETAzs4O77//PsrKyqo8XzFPT13UR66aHD16tNpRX8eOHUN2dnal7rWFCxciKysLU6dOrfa13fl/eTcajQYzZsxATEwMZsyYoc/v4+ODqVOnYteuXfj000+rbKfVarFs2bIaW5eqe0+WlpZWeV/n5eVBrVZXWtauXTvI5XL9e+bGjRtV9l/RClWxzoN48sknodFo8O6771Z5Tq1WV/lScqeKa5aysrIeOAvR7djiQ43i0UcfxYYNG2Bvb4+QkBAcPnwYu3fvhpOTU6X15syZgy1btmD06NGYPHkyOnXqhBs3buDnn3/GypUrERoaivHjx+Pbb7/FrFmzcOzYMfTu3RuFhYXYvXs3XnzxRQwfPhz29vYYPXo0Pv30U8hkMvj7++PXX3+t0zUowcHB8Pf3x+zZs3Ht2jXY2dnhxx9/xM2bN6us+8knn6BXr17o2LEj/vWvf6FFixZITEzEb7/9VuVi2PHjx2PUqFEAUO1JoTohISHo168fOnXqBEdHRxw/fhxbtmzByy+/XKcMixcvRmRkJHr16oUXX3wRZmZm+Oqrr1BSUoIPPvjgnjns7Ozw5ZdfYty4cejYsSPGjh0LFxcXJCUl4bfffkPPnj1r1XV3pwfNVZMNGzbopxDo1KkTlEolYmJisGbNGlhYWOD//u//9Os+/fTTOHfuHJYsWYJjx45h7NixaNGiBQoLC3Hu3Dn897//ha2trb41sUJubi6+++47ALqTdcXMzQkJCRg7dmyV/+Nly5YhISEBM2bMwNatW/Hoo4+iWbNmSEpKwubNm3Hx4kWMHTu22tfTo0cPNGvWDBMmTMCMGTMgk8mwYcOGKkXZn3/+iZdffhmjR49GYGAg1Go1NmzYAIVCgZEjRwLQXTe2b98+DB06FL6+vsjIyMAXX3wBb29vfQvVg+jbty+ef/55LFmyBKdPn8bgwYNhbm6OS5cuYfPmzfj444/1fwfVOXbsGPr3748FCxZg4cKFD5yHSE+awWRkam7evCkmTZoknJ2dhY2NjYiIiBAXL14Uvr6++gnQKmRnZ4uXX35ZeHl56ScNnDBhgsjKytKvU1RUJN58803RokULYW5uLtzd3cWoUaMqDYfOzMwUI0eOFFZWVqJZs2bi+eefF+fOnatxAsPqXLhwQYSHhwsbGxvh7Owspk6dKqKjo6vsQwghzp07J0aMGCEcHByEhYWFCAoKEm+//XaVfZaUlIhmzZoJe3t7cevWrVr9/hYvXiy6du0qHBwchKWlpQgODhbvvfeeKC0trXOGkydPioiICGFjYyOsrKxE//79q0yeWNOQ5Qp79uwRERERwt7eXlhYWAh/f38xceJEcfz48bu+jpqGs9dXrjudOXNGzJkzR3Ts2FE4OjoKMzMz4eHhIUaPHi1OnjxZ7TZ79+4Vo0aNEh4eHsLc3FzY2dmJzp07iwULFojr169XWvfOCf1sbGxEq1atxLPPPltlcsnbqdVq8c0334jevXsLe3t7YW5uLnx9fcWkSZMqDXWvbjj7wYMHRffu3YWlpaXw9PQUc+fOFTt37qw0fcPly5fF5MmThb+/v37C0P79+4vdu3fr9xMVFSWGDx8uPD09hVKpFJ6enuKpp54ScXFx+nUeZDh7ha+//lp06tRJWFpaCltbW9GuXTsxd+5ckZqaql+nYgLD21VMSXGvqR6I6or36iJqZGq1Gp6enhg2bJh+VBERETUOXuND1Mi2b9+OzMzMShdMExFR42CLD1EjOXr0KM6cOYN3330Xzs7OlSZuJCKixsEWH6JG8uWXX2LatGlwdXXFt99+K3UcIiKTxBYfIiIiMhls8SEiIiKTwcKHiIiITIZRTGCo1WqRmpoKW1vbB7r7NhERETUeIQTy8/Ph6elZ5X6IUjGKwic1NbXe79VDREREjSM5ORne3t5SxwBgJIWPra0tAN0v7n7v2UNERESNKy8vDz4+PvrzuCEwisKnonvLzs6OhQ8REZGRMaTLVAyjw42IiIioEbDwISIiIpPBwoeIiIhMBgsfIiIiMhksfIiIiMhksPAhIiIik8HCh4iIiEwGCx8iIiIyGSx8iIiIyGSw8CEiIiKTwcKHiIiITAYLHyIiIjIZLHyI6ll+cRk+3xOP1JxbUkchIqI7sPAhqmcf7IjFhztj8coPpyGEkDoOERHdhoUPUT26WViKzSeSAQDHEm9g36UsiRMREdHtWPgQ1aPvjyWhuEwLmUz389KdsWz1ISIyICx8iOpJiVqDdYcSAQBvPtIaVkoFzl7Lxc7zadIGIyIiPRY+RPXkl+jryMwvgbudBcaH+WFyzxYAgGW74qDRstWHiMgQsPAhqgdCCHyz/zIAYEIPPyjN5JjapyXsLMxwKaMAP0dfkzghEREBLHyI6sXB+GxcTMuHlVKBp7s2BwDYW5rj+b7+AIDlkZdQptFKGZGIiMDCh6herCpv7Xmysw/srcz1yyf19IOzjRJJN4rwv+PJUsUjIqJyLHyIHlBcej7+isuETAb9dT0VrJRmeLFfAADg06h4FJdppIhIRETlWPgQPaDV+68AACJC3NHcyarK8093aw5Pewuk5RXjuyNXGzseERHdhoUP0QPIzC/BttO6C5en9mlR7ToW5grMGNgKAPDF3gQUlKgbLR8REVXGwofoAWw4chWlai06+DigY/NmNa43spM3/JyscKOwFGsPXGnEhEREdDsWPkT3qbhMo++6mtq7JWQV0zVXw1whx6uDAgEAX++/jJyi0kbJSERElbHwIbpPW09ew43CUng5WCKijds91x/W3hPB7rbIL1bjq32XGyEhERHdiYUP0X3QagVWH9AVL5N7tYCZ4t5/SnK5DLPKW33WHUxERn5xg2YkIqKqWPgQ3Ye9cRlIyCyErcoMT3b2rvV2g0LcEOrjgFtlGnyxJ6EBExIRUXVY+BDdh2/Kh7A/1a05bC3M77H2P2QyGeYMDgIAfH80CddybjVIPiIiqh4LH6I6Op+ai0MJ2VDIZZjQw6/O2/cMcEL3lo4o1Wjxye5L9R+QiIhqxMKHqI4qWnuGtvOAl4NlnbeXyWSYE6Fr9dlyMgVXsgrrNR8REdWMhQ9RHaTlFuOX6FQAwJTe1U9YWBudfB0xINgVGq3A8si4+opHRET3wMKHqA7WHUqEWivQtYUj2ns7PNC+XhusG+H1c3QqYq7n1UM6IiK6FxY+RLVUWKLG90f/mbDwQbXxtMfQdh4AgGW72OpDRNQYWPgQ1dLm48nIK1ajhbM1Bga71ss+Xx0UCLkM2B2TjlNJN+tln0REVDMWPkS1oNEKrDmYCEA3YaFcXvPtKeoiwNUGT3TUzQO0dFdsveyTiIhqxsKHqBYiL6Qh6UYRHKzMMapj7ScsrI2ZA1vBXCHDwfhsHErIqtd9ExFRZSx8iGqhYgj7s918YalU1Ou+fRytMLZLcwDA0p2xEELU6/6JiOgfLHyI7uFU0k0cv3oTSoUc48N8G+QY0wcEwMJcjpNJOdgTm9EgxyAiIhY+RPf0zQFda89jHTzhamfRIMdwtbPAhDA/AMCHO+Og1bLVh4ioIbDwIbqL5BtF+OPsdQDAc73uf8LC2nihrz9sVGaIuZ6H389db9BjERGZKhY+RHex7lAitALo3coZrT3sGvRYzayV+uLqo8g4qDXaBj0eEZEpYuFDVIO84jJs+jsZQMO39lSY0rsFHKzMcTmzENtOXWuUYxIRmRIWPkQ12HQsGQUlarRytUHfQJdGOaathTmm9fUHAKzYfQklak2jHJeIyFSw8CGqRplGi7UHdRc1T+ndAjJZ/UxYWBvjw/zgYqvCtZxb+hYnIiKqHyx8iKrxx7k0pOYWw9lGieEdvBr12JZKBWYMCAAAfPpnPG6VstWHiKi+3Ffh8/nnn8PPzw8WFhbo1q0bjh07VuO6/fr1g0wmq/IYOnTofYcmakhCCHyz/zIAYFx3P1iY1++EhbUxpktzeDezRGZ+CdYfTmz04xMRNVV1Lnw2bdqEWbNmYcGCBTh58iRCQ0MRERGBjIzqJ13bunUrrl+/rn+cO3cOCoUCo0ePfuDwRA3h78SbOJOSC5WZHM92by5JBqWZHDMHtgIArPwrAXnFZZLkICJqaupc+Hz00UeYOnUqJk2ahJCQEKxcuRJWVlZYs2ZNtes7OjrC3d1d/4iMjISVlRULHzJYq8pbe57o6A0nG5VkOUY85IWWLtbIKSrD6vJbZhAR0YOpU+FTWlqKEydOIDw8/J8dyOUIDw/H4cOHa7WP1atXY+zYsbC2tq5xnZKSEuTl5VV6EDWGK1mF2B2TDqDxhrDXxEwhx2uDggAAqw9cwY3CUknzEBE1BXUqfLKysqDRaODm5lZpuZubG9LS0u65/bFjx3Du3DlMmTLlrustWbIE9vb2+oePj09dYhLdtzUHrkAIYECwKwJcbaSOg4fbuiPEww4FJWqs/CtB6jhEREavUUd1rV69Gu3atUPXrl3vut68efOQm5urfyQnc0gvNbycolJsPqF7r03pLW1rTwW5XIbZEYEAgPWHEpGeVyxxIiIi41anwsfZ2RkKhQLp6emVlqenp8Pd3f2u2xYWFuKHH37Ac889d8/jqFQq2NnZVXoQNbSNR5NQXKZFiIcdwlo6SR1Hr3+QKzo2d0CJWovP/oyXOg4RkVGrU+GjVCrRqVMnREVF6ZdptVpERUUhLCzsrttu3rwZJSUlePbZZ+8vKVEDKlFrsO5QIgBgap/GnbDwXmQyGeZEBAMA/nssCck3iiRORERkvOrc1TVr1iysWrUK69evR0xMDKZNm4bCwkJMmjQJADB+/HjMmzevynarV6/G448/Dicnw/kmTVThl+jryMwvgZudCkPbeUodp4owfyf0CnCGWiuwYvclqeMQERkts7puMGbMGGRmZmL+/PlIS0tDhw4dsGPHDv0Fz0lJSZDLK9dTsbGxOHDgAHbt2lU/qYnq0e0TFk7s0QJKM8Oc0Hx2RBAOxGdh26kUTOvXEgGutlJHIiIyOjIhhJA6xL3k5eXB3t4eubm5vN6H6t2BS1l4dvVRWCkVOPzGQNhbmUsdqUZTvz2OyAvpGNrOA58/01HqOEREd2WI52/D/GpL1Ii+OaBr7Xmys49BFz0A8NrgQMhkwG9nr+PctVyp4xARGR0WPmTSLqXnY29sJmQyYFJPP6nj3FOwux2Gtdddg7RsV6zEaYiIjA8LHzJp35TfCiIixB2+TjXPJm5IXh0UCIVchj2xmTieeEPqOERERoWFD5mszPwSbDt9DYDhTFhYGy2crTG6kzcA4MOdsTCCy/SIiAwGCx8yWRuOXEWpWosOPg7o5NtM6jh1Mn1gKygVchy9cgMH4rOkjkNEZDRY+JBJKi7T4LsjVwEAU3u3NKgJC2vDy8EST3drDgBYylYfIqJaY+FDJmnryWu4UVgKLwdLRLRxu/cGBuil/gGwNFcgOiUXkRfS770BERGx8CHTo9UKrC4fwj65VwuYKYzzz8DFVqUfibZsVxw0Wrb6EBHdi3F+4hM9gL1xGUjILIStygxPdvaWOs4Deb6PP2wtzBCbno9fz6RKHYeIyOCx8CGTUzGE/aluzWFrYdgTFt6LvZU5/tW7JQBgeWQcyjRaiRMRERk2Fj5kUs6n5uJQQjYUchkm9PCTOk69mNSrBZyslUjMLsKWEylSxyEiMmgsfMikrC5v7RnazgNeDpYSp6kfNiozTOvnDwD4JOoSiss0EiciIjJcLHzIZKTlFuPnaN11MMY0YWFtPNvdF+52FrieW4zvjyZJHYeIyGCx8CGTsf5wItRaga4tHNHe20HqOPXKwlyBGQNbAQC+2BuPwhK1xImIiAwTCx8yCYUlamwsn7BwSq+m1dpTYXRnb/g6WSGroBTrDiVKHYeIyCCx8CGTsOVECvKK1fBzskJ4a+OcsPBezBVyvBKua/X56q8E5N4qkzgREZHhYeFDTZ5GK7D6gO6i5ud6tYBcbly3p6iLx0K90MrVBnnFaqzad1nqOERkBP6Ky8T2U9dM5tY3LHyoyYu8kI6kG0VwsDLHyE7GPWHhvSjkMrw2OAgAsObgFWQVlEiciIgMWe6tMszdEo1XNp3G5uOmMR0GCx9q8r7Zr2v5eKZbc1gpzSRO0/Ai2rihvbc9iko1+GJPgtRxiMiALf71AtLzStDS2RqPdfCUOk6jYOFDTdqppJs4fvUmzBUyTAjzkzpOo5DJ/mn1+e7oVVzPvSVxIiIyRHtiM7D5RApkMuCDUe1hYa6QOlKjYOFDTdo35df2PBbqBVc7C4nTNJ4+rZzRtYUjStVafBIVL3UcIjIwecVlmPfjWQDA5J4t0NnPUeJEjYeFDzVZyTeK8MfZ6wCa3oSF9yKTyTAnQtfq87/jyUjMKpQ4EREZkvd/i0FaXjH8nKwwu7yF2FSw8KEma92hRGgF0CvAGa097KSO0+i6+Dmib6ALNFqBFbvjpI5DRAZiX1wmfvg7ubyLKxSWStPo4qrAwoeapLziMmz6OxmA6bX23K7im9xP0amITcuXOA0RSS2/uAxv/HgGADAhzA9dW5hOF1cFFj7UJG06loyCEjVaudqgb6CL1HEk087bHg+3dYcQwEeRsVLHISKJvf/7RaTmFqO5oxXmDjGtLq4KLHyoyVFrtFh7UHdR85TeLSCTNd0JC2tj1qBAyGTAzvPpiE7OkToOEUnkwKUs/PeY7ibGH4xqbxLTe1SHhQ81Ob+fS0NqbjGcbZQY3sFL6jiSa+VmixHlv4elu9jqQ2SKCkrUeF3fxeWL7i2dJE4kHRY+1KQIIfQTFo7r7mcy81LcyyvhgTCTy7D/UhaOXM6WOg4RNbIlv8fgWs4t+DhaYu6QYKnjSIqFDzUpfyfexJmUXKjM5Hi2e3Op4xiM5k5WGNPFBwCwdGesydyTh4iAg/FZ2HhU18X1n5HtYa0yzS6uCix8qEmpaO15oqM3nGxUEqcxLNMHtILKTI7jV29ib1ym1HGIqBEUlKgxd4uui2tcd1/08HeWOJH0WPhQk3ElqxCRMekAdHdhp8rc7S0wrrsvAGDZLrb6EJmC//xxEddybsG7mSXeeNi0u7gqsPChJmPNgSsQAhgQ7IoAVxup4xikaf38Ya1U4Ny1POw4lyZ1HCJqQIcTsrHhyFUAwAfs4tJj4UNNQk5RKTafKJ+wkK09NXKyUelbw5ZFxkGjZasPUVNUVKrG3B+jAQBPd2uOHgHs4qrAwoeahI1Hk1BcpkWIhx3C/E13mGZtTOnTEvaW5ojPKMD2U9ekjkNEDeCDHbFIvnELXg6WmMcurkpY+JDRK1FrsO5QIgBOWFgbdhbmeKGvPwBgRVQcStVaiRMRUX06cjlb/5n475HtYGthLm0gA8PCh4zeL9HXkZlfAjc7FR5t7yl1HKMwoYcvnG1USL5xC5uOJ0sdh4jqSVHpPxMVPtXVB71bme4te2rCwoeM2u0TFk7o4QelGd/StWGlNMPL/XWtPp/9eQnFZRqJExFRffhwZyyuZhfB094C//dIa6njGCSeJcioHYzPxsW0fFgpFXimq6/UcYzKU92aw8vBEul5Jdhw+KrUcYjoAR27ckPfxbVkZHt2cdWAhQ8ZtW8O6Fp7nuzsA3sr/pHXhcpMgZkDWwEAvtgbj/ziMokTEdH9ulWqwdwt0RACGNPZB30D2cVVExY+ZLQupedjb2wmZDJgUk8/qeMYpSc6eqGlszVuFpVhzYFEqeMQ0X1auisWidlF8LC3wJuPsovrblj4kNFafeAKACAixB2+TtYSpzFOZgo5XhkUCEB3u4+colKJExFRXR1PvIE1B3Wfh+8/0Q527OK6KxY+ZJQy80uwtXwOmim9OWHhg3i0nQeC3W2RX6LGyr8uSx2HiOqguEyDuVvOQAhgVCdv9A9ylTqSwWPhQ0bpuyNXUarWooOPAzr5NpM6jlGTy2WYPTgIALDu0BVk5BVLnIiIauujyDhcziqEm50Kbw8NkTqOUWDhQ0anuEyjv/8MJyysHwNbu6KDjwOKy7T4fE+81HGIqBZOXL2pn85jyRPtOMCjllj4kNHZduoabhSWwsvBEkPauEsdp0mQyWSYE6Fr9fn+WBJSbhZJnIiI7qa4TIM5W6KhFbpBCgOC3aSOZDRY+JBR0Wr/mbBwUk8/mCn4Fq4vPQOc0cPfCWUagU+iLkkdh4juYvnuOFzOLISrrQoLHm0jdRyjwrMGGZW/4jKRkFkIW5UZxnTxkTpOkzO7vNVny4kUJGQWSJyGiKpzKukmVu3TfQF8fwS7uOqKhQ8ZlVXlrT1ju/pwVtIG0LF5MwwMdoVWAMsj46SOQ0R30HVxnYFWACMe8kJ4CLu46oqFDxmN86m5OJSQDYVchok9OYS9obxWPsLr1zPXcSE1T+I0RHS7j6MuIT6jAM42KiwYxlFc94OFDxmN1ft1E3Q90s4DXg6WEqdpukI87fBoew8AwLJdsRKnIaIK0ck5+OqvBADA+yPawsFKKXEi48TCh4xCWm4xfo5OBQBM5YSFDe7VQYGQy4Coixk4mXRT6jhEJq9E/c8orsdCPTGYI1rvGwsfMgrrDydCrRXo6ueI9t4OUsdp8vxdbDCyozcAYOlOtvoQSe3TqHjEpRfA2UaJhY9xFNeDYOFDBq+wRI2Nt01YSI1jZngrmCtkOJSQjYPxWVLHITJZZ1Ny8WV5F9fix9vC0ZpdXA+ChQ8ZvC0nUpBXrIafkxUGtuYIhsbi3cwKT3dtDgD4cGcshBASJyIyPaVqLWZvjoZGK/Boew8MaeshdSSjx8KHDJpGK/R3HX6uVwso5Lw9RWN6aUAALMzlOJ2cg6iYDKnjEJmcz/68hNj0fDhZK/EOu7jqBQsfMmiRF9JxNbsI9pbmGNnJW+o4JsfV1gITe+i6F5fuioVWy1YfosZy7louPt+r6+J69/G2cLJRSZyoaWDhQwZt9QHdhIXPdm8OK6WZxGlM0wt9W8JWZYaLafn47ex1qeMQmYTbu7iGtvPAI+3YxVVfWPiQwTqdnIO/E2/CXCHD+DA/qeOYLAcrJab0bglAN5uzWqOVOBFR0/f5nnhcTMuHo7US7wxnF1d9YuFDBqviZqSPhXrBzc5C4jSmbXIvPzSzMsflrEJsPXlN6jhETdr51Fx8viceALBoeBs4s4urXrHwIYOUcrMIf5xLA6C7qJmkZWthjhf7BQDQTZlfotZInIioaSrTaDFn8xmotQJD2rhjKLu46h0LHzJIaw8mQqMV6BXgjBBPO6njEIBxYb5ws1PhWs4t/PdoktRxiJqkL/cm4ML1PDhYmePdx9tCJuNI1vrGwocMTl5xGTb9nQwAeI4TFhoMC3MFXh7QCgDw2Z4EFJWqJU5E1LTEXM/Dp39eAgC881gbuNiyi6shsPAhg7PpWDIKStRo5WqDfoEuUseh24zp7AMfR0tkFZRg/aGrUschajLKNFrM2RKNMo3A4BA3PBbqKXWkJouFDxkUtUaLtbdNWMhmXsOiNJPjlYGBAICVfyUgr7hM4kRETcNXfyXg3LU82FuaY/EIdnE1JBY+ZFB+P5eG1NxiOFkr8fhDXlLHoWo8/pAXAlxtkHurDN/suyx1HCKjF5uWj4+j/unicrXlKNaGdF+Fz+effw4/Pz9YWFigW7duOHbs2F3Xz8nJwUsvvQQPDw+oVCoEBgbi999/v6/A1HQJIfRD2MeF+cLCXCFxIqqOQi7DrEG6Vp/VB64gu6BE4kRExkut0U1UWKYRCG/thuEd2MXV0Opc+GzatAmzZs3CggULcPLkSYSGhiIiIgIZGdXfx6e0tBSDBg1CYmIitmzZgtjYWKxatQpeXvw2T5X9nXgTZ1JyoTSTY1x3X6nj0F0MaeOOtl52KCzVYGX5XaOJqO6+2ncZZ6/lws7CDO+zi6tR1Lnw+eijjzB16lRMmjQJISEhWLlyJaysrLBmzZpq11+zZg1u3LiB7du3o2fPnvDz80Pfvn0RGhpa4zFKSkqQl5dX6UFNX0Vrz8iOXrwnjYGTy2V4bXAQAGD94atIyy2WOBGR8YlLz8fHu3VdXAsfawNXTtTaKOpU+JSWluLEiRMIDw//ZwdyOcLDw3H48OFqt/n5558RFhaGl156CW5ubmjbti3ef/99aDQ1T4C2ZMkS2Nvb6x8+Pj51iUlG6EpWISJj0gEAz/VqKXEaqo1+gS7o7NsMpWqtfgguEdWOWqPFnM3RKNVoMSDYFSN4TWOjqVPhk5WVBY1GAzc3t0rL3dzckJaWVu02ly9fxpYtW6DRaPD777/j7bffxrJly7B48eIajzNv3jzk5ubqH8nJyXWJSUZo7cErEAIYEOyKAFcbqeNQLchkMsyJ0LX6bPo7GUnZRRInIjIeq/ZfQXRKLmwtzPD+iHbs4mpEDT6qS6vVwtXVFV9//TU6deqEMWPG4M0338TKlStr3EalUsHOzq7Sg5qunKJSbD6eAgCYwttTGJVuLZ3Qu5Uz1FqBFVFxUschMgrxGflYvlv39zL/0RC427OLqzHVqfBxdnaGQqFAenp6peXp6elwd3evdhsPDw8EBgZCofhnhE7r1q2RlpaG0tLS+4hMTc3Go0m4VaZBiIcdwvydpI5DdTS7/Fqfbaeu4VJ6vsRpiAybRiswe/MZlKq16BfkglGdvKWOZHLqVPgolUp06tQJUVFR+mVarRZRUVEICwurdpuePXsiPj4eWq1WvywuLg4eHh5QKpX3GZuailK1FusPJQIApvTmhIXGKNTHAYND3CAE8FEkW32I7mb1gcs4nZwDW5UZljzBLi4p1Lmra9asWVi1ahXWr1+PmJgYTJs2DYWFhZg0aRIAYPz48Zg3b55+/WnTpuHGjRuYOXMm4uLi8Ntvv+H999/HSy+9VH+vgozWL9GpyMgvgZudCo+25/wVxuq1wUGQyYA/zqXhbEqu1HGIDFJ8RgGW7tJ9OXj70RB42FtKnMg0mdV1gzFjxiAzMxPz589HWloaOnTogB07dugveE5KSoJc/k895ePjg507d+LVV19F+/bt4eXlhZkzZ+L111+vv1dBRkkIgVXlQ9gn9PCD0owTiRurIHdbDA/1xPbTqVi6KxbrJ3eVOhKRQdFoBeZuiUapWos+gS4Y3ZldXFKRCSGE1CHuJS8vD/b29sjNzeWFzk3IwfgsPPPNUViaK3Bk3kDYW5lLHYkeQGJWIQZ+9Bc0WoHNL4Shi5+j1JGIDMY3+y9j8W8xsFGZYderfeDpYBqtPYZ4/uZXbJJMRWvPk529WfQ0AX7O1niys27OrQ93xsIIvlMRNYrLmQX4cGcsAOCtoa1NpugxVCx8SBKX0vOxNzYTMhkwmUPYm4wZAwOgNJPj2JUb2H8pS+o4RJLTdXGdQYlai96tnDGmCyfklRoLH5LE6gNXAACDQ9zg62QtcRqqLx72lni2m+4+a0t3sdWHaN2hRBy/ehPWSgVHcRkIFj7U6LIKSrD11DUAwNTevD1FU/Nif39YKRU4k5KLnefT770BUROVmFWID3deBAD839DW8G5mJXEiAlj4kAQ2HL6KUrUWoT4O6OTbTOo4VM+cbVSY3FPXfflRZCw0Wrb6kOnRlndxFZdp0cPfCU93bS51JCrHwocaVXGZBt8duQoAmMoJC5usqX1aws7CDHHpBfg5+prUcYga3beHE3Es8QaslAr8Z2R7ftYZEBY+1Ki2nbqG7MJSeDlYYkib6m9zQsbP3tIcz/f1BwAsj7yEMo32HlsQNR1Xswvxnx26UVzzHmkNH0d2cRkSFj7UaLRaob+oeVJPP5gp+PZryib28IOzjRJJN4r0N6ElauoqurhulWkQ1tIJz7CLy+DwzEON5q+4TMRnFMBWZcYhnSbAWmWGF/sFAAA+ibqE4jKNxImIGt53R6/i6BVdF9cHo9pDLmcXl6Fh4UON5psDugkLx3b1ga0FJyw0BU93aw4Pewuk5RXrr+0iaqqSsovw7z90o7jeeDiYXVwGioUPNYrzqbk4GJ8NhVyGiT05YaGpsDBXYMbAVgCAL/cmoLBELXEiooah1QrM/TEaRaUadGvhqJ/PigwPCx9qFKv3667teaSdB7w4XbtJGdXJG35OVsguLMXag1ekjkPUIDYeS8KRyzdgac4uLkPHwocaXFpuMX6OTgUATOHtKUyOuUKOVwcFAgC+2ncZuUVlEiciql/JN4qw5PcYAMDcIUGcjd7AsfChBrf+cCLUWoGufo4I9XGQOg5JYFh7TwS52SK/WI2v9iVIHYeo3ggh8MbWMygq1aCrnyMmhPlJHYnugYUPNajCEjU2ll/U+lxvtvaYKrlchtcG61p91h5MRGZ+icSJiOrHf48l42B8NizM5fgPu7iMAgsfalBbTqQgr1gNPycrhLd2kzoOSWhQiBtCfRxwq0yDL/bGSx2H6IGl3CzCe79dAADMiQhGC2d2cRkDFj7UYDRagTXlF7NO7tUCCn4TMmkymQyzy1t9Nh5JwrWcWxInIrp/QgjM23oWhaUadPZthok9/KSORLXEwocaTOSFdFzNLoK9pTlGdfKWOg4ZgF4BzujWwhGlGi0+jbokdRyi+7bp72Tsv5QFlZkcH4xqzy92RoSFDzWY1eUTFj7TrTmslGYSpyFDIJPJMCciCACw+UQKrmQVSpyIqO6u5dzC4t90o7jmRAShpYuNxImoLlj4UIM4nZyDvxNvwlwhwwQ2AdNtOvs5on+QCzRagRW746SOQ1QnFV1cBSVqdGzugEmckNXosPChBvHNfl1rz7BQT7jZWUichgzNa4N1rT4/R6fiYlqexGmIam/z8RTsi8uE0kyOD0aFsovLCLHwoXqXcrMIf5xLAwBM6dVS4jRkiNp62WNoOw8IASzbxVYfMg7Xc2/h3V91o7heGxSIAFd2cRkjFj5U79YdTIRGK9AzwAkhnnZSxyED9eqgQMhluovgTyfnSB2H6K4qurjyS9To4OOAKb35pc5YsfChepVXXIYf/k4GAH4w0F0FuNpgxEO60X5Ld8ZKnIbo7n48eQ17Y3VdXEtHcxSXMWPhQ/Xqf38no6BEjVauNugX6CJ1HDJwr4S3grlChgPxWTickC11HKJqpeUW451fzgMAXg0PRICrrcSJ6EGw8KF6o9ZosfZgIgDguV4tIJPxGxHdnY+jFcZ2aQ4AWLorFkIIiRMRVSaEwP9tO4v8YjVCve0xlbfeMXosfKje/HEuDddybsHJWonHH/KSOg4ZiZcHBEBlJseJqzexNzZT6jhElWw7dQ1/XsyAUiHHh6NDYabgadPY8X+Q6oUQQj+EfVyYLyzMFRInImPhZmehn+vpw52x0GrZ6kOGISOvGAt/1nVxzQxvhUA3dnE1BSx8qF4cv3oT0Sm5UJrJMa67r9RxyMi80NcfNiozXLiep58KgUhKFV1cecVqtPOyx/N9OFijqWDhQ/Vi1T5da8/Ijl5wslFJnIaMjaO1Es/10l078VFkLNQarcSJyNT9dDoVu2MyYK6QYSm7uJoU/k/SA0vMKkRkTDoA6E9eRHU1pXcLOFiZIyGzENtOXZM6DpmwjPxiLCjv4poxoBWC3NnF1ZSw8KEHtubgFQgB9A9y4TBPum+2FuZ4oa8/AODjqEsoVbPVhxqfEAJvbTuH3FtlaONphxf6+UsdieoZCx96IDlFpdh8PAUAMJUTFtIDmhDmBxdbFVJu3sKmv5OkjkMm6Jcz17HrQjrM5LouLnN2cTU5/B+lB7LxaBJulWnQ2sMOYf5OUschI2epVGD6gAAAwKd/xuNWqUbiRGRKMvNLsOCncwCA6QNaobUHb7nTFLHwoftWqtZi/aFEAMDU3pywkOrH2C7N4eVgiYz8Enx7OFHqOGQihBB4e/s53CwqQ4iHHV7szy6upoqFD923X6JTkZFfAjc7FR5t7yl1HGoilGZyvBLeCgDw5V8JyC8ukzgRmYLfzl7HjvNpMJPL8OHo9uziasL4P0v3RQiBbw5cAQBM6OEHpRnfSlR/RjzkhZYu1sgpKsPq8vcZUUPJKijB/J90o7he6h+ANp72EieihsSzFd2XQwnZiLmeB0tzBZ7u2lzqONTEmCnkmDUoEADwzf4ruFlYKnEiasoW/HQeNwpLEexui5f6B0gdhxoYCx+6LxW3p3iyszccrJQSp6Gm6JG2HmjtYYeCEjVW/pUgdRxqon47cx2/nb0ORfkoLrZeN338H6Y6i8/Ix57YTMhkwKSenLCQGoZcLsOcCF2rz/rDicjIK5Y4ETU12QUlmF8+iuvFfv5o68UuLlPAwofq7Jv9umsuBoe4wc/ZWuI01JT1D3JFx+YOKC7T4rM98VLHoSZmwc/nkV1YiiA3W7w8gF1cpoKFD9VJVkEJtpbfTmAKJyykBiaTyTA7IggA8N9jSUi+USRxImoqdpy7jl/P6Lq4PhzdHiozhdSRqJGw8KE62XD4KkrVWoT6OKCzbzOp45AJ6OHvjJ4BTijTCHwcdUnqONQE3CwsxVvbdV1cL/RtifbeDtIGokbFwodqrbhMg++OXAUATOnFCQup8cwerGv12XoyBfEZBRKnIWO38JfzyCooRStXG8wY2ErqONTIWPhQrW07dQ3ZhaXwcrDEw23dpY5DJuSh5s0Q3toNWgEsj4yTOg4ZsZ3n0/DT6VTIZcDS0aHs4jJBLHyoVrRaoZ9IblJPP5hxVlNqZK8NDoRMppth99y1XKnjkBHKKSrFm9t0XVzP9/VHqI+DtIFIEjx7Ua38FZeJ+IwC2KjMMKaLj9RxyAS19rDDsPJbo3zEVh+6D+/8cgFZBSUIcLXBTHZxmSwWPlQr3xzQTVg4tosPbC3MJU5DpurVQYFQyGX482IGTly9IXUcMiKRF9Kx7dQ1yGXAh6Paw8KcXVymioUP3dP51FwcjM+GQi7DxJ5+UschE9bC2RqjOnoDAD7cGQshhMSJyBjkFJXi/7adBQBM7d0SDzXniFRTxsKH7qni2p6H27rDu5mVxGnI1M0IbwWlQo4jl2/gYHy21HHICCz69QIy80vQ0sUar5bfA45MFwsfuqv0vGL8Ep0KgBMWkmHwcrDE0910N8b9cBdbfejuomLSsfXkNchkwIejQtnFRSx86O7WH0pEmUagi18zdOAICDIQL/UPgKW5AtHJOdgdkyF1HDJQubfK9F1cU3q1QCdOukpg4UN3UVSqxsajSQDY2kOGxcVWpb/ebNmuWGi1bPWhqhb/egHpeSVo6WyN18onwSRi4UM12nIiBbm3yuDrZIXw1m5SxyGq5Pk+LWFrYYaLafn45Uyq1HHIwOyJzcDmEymQyYAPOIqLbsPCh6qluW3Cwud6tYBCzttTkGFxsFLiX+Utkcsj41Cm0UqciAxFXnEZ5v2o6+Ka3LMFOvs5SpyIDAkLH6rW7ph0XM0ugr2lOUZ18pY6DlG1JvVqAUdrJRKzi/DjiRSp45CBeO/XGKTlFcPPyUp/nzeiCix8qFrf7NdNWPhMt+awUppJnIaoejYqM7zYzx8A8EnUJZSoNRInIqn9FZeJTceTy7u4QmGpZBcXVcbCh6o4nZyDvxNvwlwhw4QeflLHIbqrZ7v7wt3OAqm5xfi+/GJ8Mk15xWV448czAIAJYX7o2oJdXFQVCx+qoqK1Z1ioJ9zsLCROQ3R3FuYKTB8YAAD4fE88ikrVEiciqSz5PQbXc4vR3NEKc4ewi4uqx8KHKkm5WYQ/zqUBAKb04hB2Mg5PdvZBc0crZBWUYu3BRKnjkAT2xWXiv8eSAehGcbGLnmrCwocqWXcwERqtQM8AJ4R42kkdh6hWzBVyvDpId7ftr/5KQO6tMokTUWMqKFFj3lbdKK4JYb7o3tJJ4kRkyFj4kF5+cRl++Fv3jYkTFpKxeSzUC61cbZBXrNZ315JpWPJ7DK7l3IKPoyXmDgmWOg4ZOBY+pLfp72QUlKgR4GqDvq1cpI5DVCcKuQyvDdbdgHL1gSvIKiiROBE1hoPxWfoZ5v8zsj2sVeziortj4UMAALVGq782YkqvFpBzwkIyQhFt3NHOyx5FpRp8uTdB6jjUwApK1Ji7RTeKa1x3X/Twd5Y4ERmD+yp8Pv/8c/j5+cHCwgLdunXDsWPHalx33bp1kMlklR4WFhwpZGj+OJeGazm34GStxOMPeUkdh+i+yGQyzI7QjebZcOQqrufekjgRNaT//HER13JuwbuZJd54mF1cVDt1Lnw2bdqEWbNmYcGCBTh58iRCQ0MRERGBjIya75BsZ2eH69ev6x9Xr159oNBUv4QQ+msixoX58p42ZNT6tHJGVz9HlKq1+PTPeKnjUAM5lJCFDUd055IP2MVFdVDnwuejjz7C1KlTMWnSJISEhGDlypWwsrLCmjVratxGJpPB3d1d/3Bz4w0vDcnxqzcRnZILpZkcz3b3lToO0QO5vdXnf38n42p2ocSJqL4VlqjxevlEhU93a44eAeziotqrU+FTWlqKEydOIDw8/J8dyOUIDw/H4cOHa9yuoKAAvr6+8PHxwfDhw3H+/Pm7HqekpAR5eXmVHtRwKlp7Rnb0grONSuI0RA+uawtH9A10gVorsGL3JanjUD37YMdFJN+4BS8HS8xjFxfVUZ0Kn6ysLGg0miotNm5ubkhLS6t2m6CgIKxZswY//fQTvvvuO2i1WvTo0QMpKTXfUHDJkiWwt7fXP3x8fOoSk+ogMasQuy6kA9DdhZ2oqai4OeX209cQl54vcRqqL0cuZ2P9YV0X179HtoOthbnEicjYNPiorrCwMIwfPx4dOnRA3759sXXrVri4uOCrr76qcZt58+YhNzdX/0hOTm7omCZrzcErEALoH+SCAFdbqeMQ1Zt23vYY0sYdQgDLdsVKHYfqQVHpP6O4nurqg96cdoPuQ50KH2dnZygUCqSnp1danp6eDnd391rtw9zcHA899BDi42u+6FClUsHOzq7Sg+pfTlEpNh/XtbxxwkJqimYNDoRMBuw8n44zKTlSx6EH9MGOWCTdKIKnvQX+75HWUschI1WnwkepVKJTp06IiorSL9NqtYiKikJYWFit9qHRaHD27Fl4eHjULSnVu41Hk3CrTIPWHnbo4c8p3qnpCXSzxYgOuukZlu6KkzgNPYhjV25g/eFEAMCSke3ZxUX3rc5dXbNmzcKqVauwfv16xMTEYNq0aSgsLMSkSZMAAOPHj8e8efP06y9atAi7du3C5cuXcfLkSTz77LO4evUqpkyZUn+vguqsVK3F+kOJAHQTFspknLCQmqZXwgNhJpdhX1wmjl7OljoO3YdbpRrM3RINIYAxnX3QN5BdXHT/6jzxwZgxY5CZmYn58+cjLS0NHTp0wI4dO/QXPCclJUEu/6eeunnzJqZOnYq0tDQ0a9YMnTp1wqFDhxASElJ/r4Lq7JfoVGTkl8DVVoVhoZ5SxyFqMM2drPBkFx98fzQJS3fF4n/Ph7HQNzJLd8UiMbsIHvYWePNRdnHRg5EJIYTUIe4lLy8P9vb2yM3N5fU+9UAIgUc+OYCY63mYExGEl/oHSB2JqEGl5Rajz4d7UKrWYt2kLugX5Cp1JKql44k3MPqrwxACWDupC/rz/86oGOL5m/fqMkGHErIRcz0PluYKPNOtudRxiBqcu70FxpdPzrl0VyyM4PseASgu02DOljMQAhjVyZtFD9ULFj4mqGLCwtGdveFgpZQ4DVHjmNbPH9ZKBc5dy8OOc9XPO0aGZdmuWFzJKoSbnQpvD+XlEVQ/WPiYmPiMfOyJzYRMBkzuyQkLyXQ42agwuXySzmWRcdBo2epjyE5cvYFvDlwBACx5oh3srTiKi+oHCx8Ts7r8g2RQazf4OVtLnIaocU3p3RL2luaIzyjAT6evSR2HanB7F9cTHb0wIJj3d6T6w8LHhGQVlODHk7oP+6l9OGEhmR57S3M831f33l+x+xJK1VqJE1F1lkfG4XJmIVxtVVjwaBup41ATw8LHhHx35CpK1VqEetujs28zqeMQSWJiDz8426iQdKMI/zvO2+EYmlNJN7Gq/DrE90ewi4vqHwsfE1FcpsGG8hv7TendkvOYkMmyUprh5f7+AIBP/7yE4jKNxImoQkUXl1YAIx7yQngIu7io/rHwMRHbT11DdmEpvBws8XDb2t1Xjaipeqpbc3g5WCI9rwTfHbkqdRwq93HUJcRnFMDZRoUFwziKixoGCx8ToNUK/eiIST39YKbgfzuZNpWZAjMG6ibu/GJvAgpK1BInoujkHHz1VwIA4P0RbTnVBjUYngFNwF+XMhGfUQAblRme7OIjdRwigzCyozdaOFvjRmEp1pR/MSBplKg1mL05GloBPBbqicFt2CpNDYeFjwmomLBwbBcf2PGOxkQAADOFHK8OCgQArNp3GTlFpRInMl2fRF3CpYwCONsosfAxjuKihsXCp4m7kJqHg/HZUMhlmNjTT+o4RAbl0XYeCHa3RX6JGl/tuyx1HJN0JiUHK//S/e4XP94Wjtbs4qKGxcKnifvmgO4D5eG27vBuZiVxGiLDIpfL8NrgIADA2oNXkJFfLHEi01Ki1mDO5jPQaAUebe+BIW09pI5EJoCFTxOWnleMX6JTAeiGsBNRVeGtXdHBxwHFZVp8sSdB6jgm5bM/4xGbng8nayXeYRcXNRIWPk3Y+kOJKNMIdPFrhg4+DlLHITJIMpkMcyJ0rT7fH03CtZxbEicyDeeu5eKLvbpC893H28LJRiVxIjIVLHyaqKJSNTYeTQLA1h6ie+kZ4Iywlk4o1Wjxye5LUsdp8krVWszeHA2NVmBoOw880o5dXNR4WPg0UVtOpCD3Vhl8nawQ3pqznxLdy+zyVp8tJ1NwObNA4jRN2+d74nExLR+O1kq8M5xdXNS4WPg0QRqt0M9L8lyvFlDIeXsKonvp5NsMA4NdodEKLGerT4M5n5qLz/fEAwAWDW8DZ3ZxUSNj4dME7Y5JR2J2EewtzTGqk7fUcYiMxqzBunl9folOxYXUPInTND1lGi1mbz4DtVZgSBt3DGUXF0mAhU8TtHq/rrXnmW7NYaU0kzgNkfFo42mPoe11J+OPImMlTtP0fLEnATHX8+BgZY53H2/LmyWTJFj4NDHRyTk4lngD5goZJvTwkzoOkdGZNSgQchmwOyYDJ5NuSh2nybiQmodP/9R1Ib7zWBu42LKLi6TBwqeJqbgZ6bBQT7jZWUichsj4+LvYYGRHXRfxsl1s9akPZRot5myJhlorMDjEDY+FekodiUwYC58m5FrOLfx+9joAYEovDmEnul8zBraCuUKGg/HZOBSfJXUco7dybwLOp+bB3tIci0ewi4ukxcKnCVl74Ao0WoGeAU4I8bSTOg6R0fJxtMJTXZsDAD7cFQshhMSJjNfFtDx8clsXl6stW6JJWix8moj84jL88HcyALb2ENWHl/sHwMJcjlNJOfjzYobUcYySWqPFnM1nUKYRCG/thuEd2MVF0mPh00Rs+jsZBSVqBLjaoG+gi9RxiIyeq52FfoDA0l1x0GrZ6lNXX+27jLPXcmFnYYb32cVFBoKFTxOg1mix9mAiAN2EhXJOWEhUL17o4w9blRlirufht/Lr56h24tLz8XH5RJALH2sDVw62IAPBwqcJ+ONcGq7l3IKTtRIjHvKSOg5Rk9HMWqm/193yyDioNVqJExkHXRdXNEo1WgwIduXnEhkUFj5GTgiBb/ZfBgA8290XFuYKiRMRNS2Te/mhmZU5LmcVYuupa1LHMQqr9l9BdEoubC3M8P6IduziIoPCwsfIHb96E9EpuVCayTEuzFfqOERNjq2FOab18wcAfLz7EkrUGokTGbZL6flYHhkHAJj/aAjc7dnFRYaFhY+Rq2jteeIhL97sj6iBjA/zg6utCtdybuGHY8lSxzFYao0Ws7ecQalGi35BLrxXIBkkFj5GLDGrELsupAPQXdRMRA3DwlyB6QNbAQA+2xOPW6Vs9anO6gNXEJ2cA1uVGZY8wS4uMkwsfIzY2oNXIATQL8gFrdxspY5D1KSN6ewD72aWyMwvwfrDiVLHMTjxGQVYVt7F9fajIfCwt5Q4EVH1WPgYqZyiUvzveAoAYGpvTlhI1NCUZnK8Eh4IAPhybwLyisskTmQ4NFqBOVuiUarWok+gC0Z3ZhcXGS4WPkbq+2NJuFWmQbC7LXr4O0kdh8gkjHjICwGuNsi9VYZv9l+ROo7BWHvwCk4l5cBGZYZ/s4uLDBwLHyNUqtZi/aFEALrWHn7IEDUOhVyGWYN0rT6r91/GjcJSiRNJ73JmAT7cqbuL/VtDW8PTgV1cZNhY+BihX8+kIj2vBK62KgwL5b1viBrTkDbuaONph8JSDVb+lSB1HElptAJzt5xBiVqL3q2cMaaLj9SRiO6JhY+REUJgVXkT+4QeflCa8b+QqDHJ5TLMHhwEAFh/KBHpecUSJ5LOukOJOH71JqyVCvx7ZHu2PpNR4FnTyBxOyEbM9TxYmivwTLfmUschMkn9glzQ2bcZStRafPrnJanjSOJKViE+3HkRAPB/Q1vDi11cZCRY+BiZVeUTFo7u7A0HK6XEaYhMk0wmw+wIXavPD8eSkZRdJHGixqXVCszdEo3iMi16+Dvh6a78EkbGg4WPEYnPyMee2EzIZMDknpywkEhK3Vs6oXcrZ6i1Aiui4qSO06jWH07E34k3YaVU4D/s4iIjw8LHiKw+oLu2Z1BrN/g5W0uchogqrvXZfuoa4jPyJU7TOBKzCvGfHbournmPtIaPo5XEiYjqhoWPkcguKMGPJ3V3hp7CCQuJDEKojwMGh7hBK4CPIpt+q49WKzD3xzMoLtMirKUTnmEXFxkhFj5GYsORqyhVaxHqbY8ufs2kjkNE5V4bHASZDPj9bBrOXcuVOk6D2nDkKo5duQErpQIfjGoPuZxdXGR8WPgYgeIyDTYcvgpA19rD/nQiwxHkbovHyufTWrorVuI0DScpu0jfxfXGw8Hs4iKjxcLHCGw/dQ3ZhaXwcrDEw23dpY5DRHd4NTwQCrkMe2MzcTzxhtRx6p2uiysaRaUadGvhiGe7+Uodiei+sfAxcEIIfFN+UfOknn4wU/C/jMjQ+Dlb48nyG3N+uDMWQgiJE9WvjceScOTyDVias4uLjB/PogZub1wm4jMKYKMyw5OcDp7IYE0f0ApKhRxHr9zAgfgsqePUm+QbRVjyewwAYO6QIPg6cUQpGTcWPgZudfntKcZ28YGdhbnEaYioJp4Olni2u64LqKm0+ggh8PqPZ1BUqkFXP0dMCPOTOhLRA2PhY8AupObhQHwWFHIZJvb0kzoOEd3Di/39YaVU4ExKLnZdSJc6zgP7/lgSDiVkw8Jcjv+wi4uaCBY+BqxiwsKH27rDuxlHUBAZOmcbFSaVf0n5aFccNFrjbfVJuVmE93/TdXHNiQhGC06aSk0ECx8DlZ5XjJ+jOWEhkbH5V29/2FqYITY9H79Ep0od574IIfDGj2dRWKpBZ99mmNjDT+pIRPWGhY+BWn8oEWUagS5+zdDBx0HqOERUS/ZW5nihrz8AYPnuOJRptBInqrsf/k7GgfgsqMzk+GBUeyjYxUVNCAsfA1RUqsbGo0kAgOd6sbWHyNhM7OEHZxslrmYXYcuJFKnj1Mm1nFt4T9/FFYSWLjYSJyKqXyx8DNCWEynIvVUGXycrDApxkzoOEdWRtcoM0/oFAAA+ibqE4jKNxIlqRwiBeVvPoqBEjY7NHTCpZwupIxHVOxY+BkajFVhTflHz5J4t2MRMZKSe6dYcHvYWuJ5brG/BNXSbj6dgX1wmlGZyfDAqlJ8/1CSx8DEwu2PSkZhdBHtLc4wunwmWiIyPhbkCMwa2AgB8sScehSVqiRPd3fXcW3j31wsAgNcGBSLAlV1c1DSx8DEwFRMWPt2tOayUZhKnIaIHMaqTN3ydrJBdWIp1hxKljlOjii6u/BI1Ovg4cCQpNWksfAxIdHIOjiXegLlCxuGjRE2AuUKOV8MDAQAr/0pAblGZxImqt+VECvbG6rq4lo7mKC5q2lj4GJCKm5EOa+8JNzsLidMQUX0YFuqJIDdb5Ber8fX+BKnjVJGWW4xF5V1cr4YHIsDVVuJERA2LhY+BuJZzC7+fvQ4AeK43R1IQNRUKuQyzButafdYeTERWQYnEif4hhMD/bTuL/GI1Qr3tMZWfPWQCWPgYiHUHr0CjFejh74Q2nvZSxyGiejQ4xA2h3vYoKtXgiz2G0+qz9eQ1/HkxA0qFHB+ODoWZgqcEavr4LjcA+cVl+OFYMgBgKi8qJGpyZDIZZkcEAQC+O3IVqTm3JE6kuy3OO7+cBwDMDG+FQDd2cZFpYOFjADb9nYz8EjX8XazRN9BF6jhE1AB6BTijWwtHlGq0+PTPS5JmEULgzW1nkVesRjsvezzfh1+4yHSw8JGYWqPF2oOJAHQ3I5VzNAVRkySTyTCnvNXnf8dTkJhVKFmWn06nYndMBswVMixlFxeZmPt6t3/++efw8/ODhYUFunXrhmPHjtVqux9++AEymQyPP/74/Ry2SdpxPg3Xcm7ByVqJEQ95SR2HiBpQZz9H9AtygUYrsHx3nCQZMvKLseBnXRfXjAGtEOTOLi4yLXUufDZt2oRZs2ZhwYIFOHnyJEJDQxEREYGMjIy7bpeYmIjZs2ejd+/e9x22qRFCYFX5hIXPdveFhblC4kRE1NBmD9a1+vwcnYrYtPxGPbaui+sccm+VoY2nHV7o59+oxycyBHUufD766CNMnToVkyZNQkhICFauXAkrKyusWbOmxm00Gg2eeeYZvPPOO2jZkn3JFU5cvYno5BwozeQYF+YrdRwiagRtvezxSDt3CAEs2xXbqMf+OToVkRfSYSbXdXGZs4uLTFCd3vWlpaU4ceIEwsPD/9mBXI7w8HAcPny4xu0WLVoEV1dXPPfcc7U6TklJCfLy8io9mqJV+y8DAJ54yAvONiqJ0xBRY5k1KBByGbDrQjqik3Ma5ZiZ+SX6Lq7pA1qhtYddoxyXyNDUqfDJysqCRqOBm5tbpeVubm5IS0urdpsDBw5g9erVWLVqVa2Ps2TJEtjb2+sfPj4+dYlpFK5mF2LXhXQAwHO9OGkYkSkJcLXFiId0NyFe2gitPkIIvLX9LHKKyhDiYYcX+7OLi0xXg7Zz5ufnY9y4cVi1ahWcnZ1rvd28efOQm5urfyQnJzdgSmmsOXAFQgD9glzQivNnEJmcV8JbwVwhw/5LWThyObtBj/XrmevYeV7XxfXh6Pbs4iKTVqfbfzs7O0OhUCA9Pb3S8vT0dLi7u1dZPyEhAYmJiRg2bJh+mVar1R3YzAyxsbHw96/6zUOlUkGlarpdP7lFZfjf8RQAwJRevOaJyBT5OFphTBcffHckCUt3xmLzC2GQyep/OousghLM/+kcAOCl/gGcGZ5MXp3KfqVSiU6dOiEqKkq/TKvVIioqCmFhYVXWDw4OxtmzZ3H69Gn947HHHkP//v1x+vTpJtmFVRsbj13FrTINgt1t0TPASeo4RCSR6QNaQWUmx/GrN7E3NrNBjjH/p3O4WVSGYHdbvNQ/oEGOQWRM6tTiAwCzZs3ChAkT0LlzZ3Tt2hUrVqxAYWEhJk2aBAAYP348vLy8sGTJElhYWKBt27aVtndwcACAKstNRalai/WHEgHoJixsiG94RGQc3OwsMKGHH77edxlLd8Wib6BLvU5i+tuZ6/j9bBoU5aO4lGbs4iKqc+EzZswYZGZmYv78+UhLS0OHDh2wY8cO/QXPSUlJkMv5x1WTX8+kIj2vBK62KjwW6il1HCKS2At9/fH90SScT83DjvNpeKSdR73sN/u2Lq4X+/mjrRe7uIgAQCaEEFKHuJe8vDzY29sjNzcXdnbGOwRTCIGhnxzAhet5mBMRxGZnIgIAfBQZh0+iLsHfxRq7Xu0LRT20+rz8/Un8euY6gtxs8fP0nlCZcYJUanyGeP5m00wjOpyQjQvX82BprsAz3ZpLHYeIDMSU3i3gYGWOhMxCbDt17YH398fZ6/j1zHUoykdxsegh+gcLn0b0zQHd7SlGd/aGg5VS4jREZCjsLMzxQl/dCNcVu+NQqtbe975uFJbi7fIurhf6tkR7b4f6iEjUZLDwaSTxGfn482IGZDJgck9OWEhElU0I84OLrQopN29h0/H7n7ts4c/nkVVQilauNpgxsFU9JiRqGlj4NJLVBxIBAINau8HP2VraMERkcCyVCrxcft3fp1GXcKtUU+d97DiXhp+jUyGXAUtHh7KLi6gaLHwaQXZBCbaeLJ+wsDcnLCSi6o3t6gMvB0tk5Jdgw5HEOm17s7AUb23XdXE939cfoT4O9R+QqAlg4dMINhy5ihK1FqHe9uji10zqOERkoFRmCswM13VPfbk3AfnFZbXe9p1fziOroAQBrjaYyS4uohqx8GlgxWUabDh8FQDwHCcsJKJ7eOIhL7R0scbNojKsKe8iv5fIC+nYflrXxfXhqPawMGcXF1FNWPg0sO2nriG7sBReDpZ4pG3V+5kREd3OTCHHrEGBAIBV+y/jZmHpXdfPKSrF/207CwCY2rslHmrOVmWiu2Hh04CEEPoh7BN7+MGMd0Qmolp4pK0HWnvYoaBEjZX7Eu667qJfLyAzvwQtXazxannBREQ145m4Ae2Ny0R8RgFsVGYY09U0b8hKRHUnl8swe7CuiFl/KBEZecXVrhcVk46tJ69BJgM+HBXKLi6iWmDh04BW79e19ozp4gM7C3OJ0xCRMRkQ7IqHmjuguEyLz/fEV3k+t6hM38U1pVcLdPJlFxdRbbDwaSAXUvNwID4Lchkwqaef1HGIyMjIZDLMiQgCAHx/LAnJN4oqPf/ubxeQnleCls7WeG1wkBQRiYwSC58Gsrr82p6H23nAu5mVxGmIyBj18HdGzwAnlGkEPom6pF++52IGtpxIgUwGfMBRXER1wsKnAaTnFePnaN2NBqdywkIiegCzy1tzfjyZgoTMAuTeKsO8rboursk9W6Czn6OU8YiMjpnUAZqibw8nokwj0Nm3GTpw9lQiegAPNW+G8NZu2B2Tjo8i42CtVCAtrxh+Tlb6ooiIao+FTz0rKlXjuyNJAHh7CiKqH68NDkTUxXT8duY6AJR3cYXCUskuLqK6YldXPfvxRApyb5XB18kKg0LcpI5DRE1Aaw87PNreU//zhDA/dG3BLi6i+8HCpx5ptEJ/UfPkni2gkPP2FERUP2YNCoS1UgF/F2vMHcIuLqL7xa6uehQVk47E7CLYWZhhVCdvqeMQURPSwtkaf83tD0tzBayU/Ogmul/866lH35RPWPhMd19Yq/irJaL65WyjkjoCkdFjV1c9iU7OwbHEGzCTyzAhzE/qOERERFQNFj71pOJmpI+FesLd3kLiNERERFQdFj714FrOLfx+VjfM9LneLSROQ0RERDVh4VMP1h28Ao1WoIe/E9p42ksdh4iIiGrAwucB5ReX4YdjyQCAKWztISIiMmgsfB7Qpr+TkV+ihr+LNfoFukodh4iIiO6Chc8DUGu0WHswEQDwXK+WkHPCQiIiIoPGwucB7Difhms5t+BorcQTHb2kjkNERET3wMLnPgkhsKp8wsJnu/vCwpw3CyQiIjJ0LHzu04mrNxGdnAOlmRzjuvtKHYeIiIhqgYXPfaq4PcWIDl5wseU08kRERMaAhc99uJpdiJ0X0gBwCDsREZExYeFzH9YeTIQQQL8gF7Rys5U6DhEREdUSC586yi0qw/+Ol09Y2KulxGmIiIioLlj41NHGY1dRVKpBsLstegY4SR2HiIiI6oCFTx2UqrVYfygRADCld0vIZJywkIiIyJiw8KmDX8+kIj2vBK62KjwW6il1HCIiIqojFj61JITQD2Gf0MMPSjP+6oiIiIwNz961dDghGxeu58HSXIFnujWXOg4RERHdBxY+tfTNAV1rz6hO3nCwUkqchoiIiO4HC59aiM/Ix58XMyCTAZN7ccJCIiIiY8XCpxZWH0gEAIS3dkMLZ2tpwxAREdF9Y+FzD9kFJdh6MgUAMLU3JywkIiIyZix87uG7I0koUWvR3tseXfyaSR2HiIiIHgALn7soLtNgw5FEAJywkIiIqClg4XMXP52+hqyCUnjaW+Dhtu5SxyEiIqIHxMKnBrdPWDipZwuYK/irIiIiMnY8m9fgr7hMXMoogI3KDGO6+kgdh4iIiOoBC58aVLT2jOniAzsLc4nTEBERUX1g4VONmOt5OBCfBbkMmNjDT+o4REREVE9Y+FSjorXn4XYe8HG0kjgNERER1RcWPnfIyCvGz9HXAABTeHsKIiKiJoWFzx3WH05EmUags28zPNScExYSERE1JSx8blNUqsbGo0kAgCm92dpDRETU1LDwuc2PJ1KQU1SG5o5WGBTCCQuJiIiaGhY+5bRagdUHdBc1T+7pB4Wct6cgIiJqalj4lNsdk47E7CLYWZhhdGdOWEhERNQUsfAp9015a8/T3XxhrTKTOA0RERE1BBY+AM6k5ODYlRswk8s4YSEREVETxsIH/0xYOCzUE+72FhKnISIiooZi8oXPtZxb+O3sdQDAc5ywkIiIqEkz+cJn3cEr0GgFwlo6oa2XvdRxiIiIqAGZdOGTX1yGH44lAwCm9mFrDxERUVNn0oXPpr+TkV+ihr+LNfoFukodh4iIiBrYfRU+n3/+Ofz8/GBhYYFu3brh2LFjNa67detWdO7cGQ4ODrC2tkaHDh2wYcOG+w5cX9QaLdYeTAQAPNerJeScsJCIiKjJq3Phs2nTJsyaNQsLFizAyZMnERoaioiICGRkZFS7vqOjI958800cPnwYZ86cwaRJkzBp0iTs3LnzgcM/CIVchvefaIdH2rnjiY5ekmYhIiKixiETQoi6bNCtWzd06dIFn332GQBAq9XCx8cH06dPxxtvvFGrfXTs2BFDhw7Fu+++W6v18/LyYG9vj9zcXNjZ2dUlLhEREUnEEM/fdWrxKS0txYkTJxAeHv7PDuRyhIeH4/Dhw/fcXgiBqKgoxMbGok+fPjWuV1JSgry8vEoPIiIiogdVp8InKysLGo0Gbm5ulZa7ubkhLS2txu1yc3NhY2MDpVKJoUOH4tNPP8WgQYNqXH/JkiWwt7fXP3x8eO8sIiIienCNMqrL1tYWp0+fxt9//4333nsPs2bNwt69e2tcf968ecjNzdU/kpOTGyMmERERNXF1uhuns7MzFAoF0tPTKy1PT0+Hu7t7jdvJ5XIEBAQAADp06ICYmBgsWbIE/fr1q3Z9lUoFlUpVl2hERERE91SnFh+lUolOnTohKipKv0yr1SIqKgphYWG13o9Wq0VJSUldDk1ERET0wOrU4gMAs2bNwoQJE9C5c2d07doVK1asQGFhISZNmgQAGD9+PLy8vLBkyRIAuut1OnfuDH9/f5SUlOD333/Hhg0b8OWXX9bvKyEiIiK6hzoXPmPGjEFmZibmz5+PtLQ0dOjQATt27NBf8JyUlAS5/J+GpMLCQrz44otISUmBpaUlgoOD8d1332HMmDH19yqIiIiIaqHO8/hIwRDnASAiIqK7M8Tzt0nfq4uIiIhMCwsfIiIiMhksfIiIiMhksPAhIiIik8HCh4iIiExGnYezS6Fi4BlvVkpERGQ8Ks7bhjSA3CgKn/z8fADgzUqJiIiMUH5+Puzt7aWOAcBI5vHRarVITU2Fra0tZDJZve03Ly8PPj4+SE5ONpj5Bahp4HuLGgLfV9QQGvJ9JYRAfn4+PD09K01uLCWjaPGRy+Xw9vZusP3b2dnxQ4QaBN9b1BD4vqKG0FDvK0Np6algGOUXERERUSNg4UNEREQmw6QLH5VKhQULFkClUkkdhZoYvreoIfB9RQ3B1N5XRnFxMxEREVF9MOkWHyIiIjItLHyIiIjIZLDwISIiIpPBwoeIiIhMhkEUPuvWrYODg8MD70cmk2H79u0PvJ+GtnDhQnTo0EHqGERE1ARMnDgRjz/+uNQxHoifnx9WrFjRKMeqt8LHEH/xMpms2scPP/wgdTQyMhMnTtS/f5RKJQICArBo0SKo1WoAumnZv/76a3Tr1g02NjZwcHBA586dsWLFChQVFVXaV0pKCpRKJdq2bSvFSyGJ9OvXD6+88so911u1ahVCQ0P176OHHnoIS5Ys0T+/cOFCyGQyvPDCC5W2O336NGQyGRITEwEAiYmJNX4GHjlypD5fGpXLzMzEtGnT0Lx5c6hUKri7uyMiIgIHDx6UOlqt1NQIceXKFTz99NPw9PSEhYUFvL29MXz4cFy8eLHxQ9YDo7hlxYNYu3YthgwZUmlZfbQuSa2srAzm5uZSxzApQ4YMwdq1a1FSUoLff/8dL730EszNzTFv3jyMGzcOW7duxVtvvYXPPvsMLi4uiI6OxooVK+Dn51fpS8G6devw5JNPYt++fTh69Ci6desm3Ysig7JmzRq88sor+OSTT9C3b1+UlJTgzJkzOHfuXKX1LCwssHr1arz22mto1arVXfe5e/dutGnTptIyJyenes9OwMiRI1FaWor169ejZcuWSE9PR1RUFLKzs6WOdk9lZWU1Lh80aBCCgoKwdetWeHh4ICUlBX/88QdycnIaN+RdlJaWQqlU1m5lUU8mTJgghg8fXu1zy5YtE23bthVWVlbC29tbTJs2TeTn5+ufX7t2rbC3txfbtm0TAQEBQqVSicGDB4ukpKRK+9m+fbt46KGHhEqlEi1atBALFy4UZWVl+ucBiG3bttX4850qjrtjxw4RHBwsrK2tRUREhEhNTa203urVq0VISIhQKpXC3d1dvPTSS/rnrl69Kh577DFhbW0tbG1txejRo0VaWlql7ZcsWSJcXV2FjY2NmDx5snj99ddFaGhopXVWrVolgoODhUqlEkFBQeLzzz/XP3flyhUBQPzwww+iT58+QqVSibVr19b4uqj+Vff+HjRokOjevbvYtGmTACC2b99eZTutVitycnIq/dyyZUuxY8cO8frrr4upU6c2dHQyABMmTBAAKj2uXLlSZb3hw4eLiRMn3nVfCxYsEKGhoWLQoEFi9OjR+uWnTp2qtN+Kz41Tp07V4yuhmty8eVMAEHv37q1xndqeC+92TlKr1eLVV18V9vb2wtHRUcyZM0eMHz++0ufTH3/8IXr27KlfZ+jQoSI+Pl7/fE3nlDvfowsWLNC/rxITE+/6+pOTk8XYsWNFs2bNhJWVlejUqZM4cuSIEEKI+Ph48dhjjwlXV1dhbW0tOnfuLCIjIytt7+vrK5YvX17p9/ncc88JZ2dnYWtrK/r37y9Onz6tf77i72DVqlXCz89PyGSyu+a7XaNc4yOXy/HJJ5/g/PnzWL9+Pf7880/MnTu30jpFRUV477338O233+LgwYPIycnB2LFj9c/v378f48ePx8yZM3HhwgV89dVXWLduHd57770HylZUVISlS5diw4YN2LdvH5KSkjB79mz9819++SVeeukl/Otf/8LZs2fx888/IyAgAIDurvHDhw/HjRs38NdffyEyMhKXL1/GmDFj9Nv/73//w8KFC/H+++/j+PHj8PDwwBdffFEpw8aNGzF//ny89957iImJwfvvv4+3334b69evr7TeG2+8gZkzZyImJgYREREP9LrpwVlaWqK0tBQbN25EUFAQhg8fXmUdmUxW6QZ9e/bsQVFREcLDw/Hss8/ihx9+QGFhYWPGJgl8/PHHCAsLw9SpU3H9+nVcv34dPj4+VdZzd3fHkSNHcPXq1Xvu89///jd+/PFHHD9+vCEiUx3Z2NjAxsYG27dvR0lJSbXr1PZceLdz0rJly7Bu3TqsWbMGBw4cwI0bN7Bt27ZK+ygsLMSsWbNw/PhxREVFQS6XY8SIEdBqtZXWu/2c0r9/f6xYsQJ2dnb69+js2bPh4uICuVyOLVu2QKPRVPu6CgoK0LdvX1y7dg0///wzoqOjMXfuXP3xCgoK8MgjjyAqKgqnTp3CkCFDMGzYMCQlJdX4+xw9ejQyMjLwxx9/4MSJE+jYsSMGDhyIGzdu6NeJj4/Hjz/+iK1bt+L06dM17quKWpdI93C3Fp87bd68WTg5Oel/rqg0K6pDIYSIiYkRAMTRo0eFEEIMHDhQvP/++5X2s2HDBuHh4aH/GdW0+FhYWAhra+tKj6tXr1Y67u2V8Oeffy7c3Nz0P3t6eoo333yz2texa9cuoVAoKrVMnT9/XgAQx44dE0IIERYWJl588cVK23Xr1q1Si4+/v7/4/vvvK63z7rvvirCwMCHEP9X5ihUrqs1BDe/297dWqxWRkZFCpVKJ2bNni9atW4vHHnusVvt5+umnxSuvvKL/OTQ0lK13JqJv375i5syZd10nNTVVdO/eXQAQgYGBYsKECWLTpk1Co9Ho16n4piuEEGPHjhUDBgwQQtTc4mNpaVnlM5AaxpYtW0SzZs2EhYWF6NGjh5g3b56Ijo6ucf2azoV3Oyd5eHiIDz74QP9zWVmZ8Pb2vuv5NzMzUwAQZ8+eFULUfE6paHG602effSasrKz0LS+LFi0SCQkJ+ue/+uorYWtrK7Kzs2vMcKc2bdqITz/9VP/z7S0++/fvF3Z2dqK4uLjSNv7+/uKrr74SQuj+DszNzUVGRkatj1mhUVp8du/ejYEDB8LLywu2trYYN24csrOzK130aWZmhi5duuh/Dg4OhoODA2JiYgAA0dHRWLRokb6qtrGx0X97uvPi0dstX74cp0+frvTw9PTUP29lZQV/f3/9zx4eHsjIyAAAZGRkIDU1FQMHDqx23zExMfDx8an0zS0kJKRS7piYmCrXcISFhen/XVhYiISEBDz33HOVXtvixYuRkJBQabvOnTvX+Dqp4f3666+wsbGBhYUFHn74YYwZMwYLFy6EqOVdX3JycrB161Y8++yz+mXPPvssVq9e3VCRyYC1adNG//f+8MMPA9B9/hw+fBhnz57FzJkzoVarMWHCBAwZMqTKt3UAWLx4Mfbv349du3bVeJxNmzZV+QykhjFy5Eikpqbi559/xpAhQ7B371507NgR69atA1C7c+Hdzkm5ubm4fv16pXOKmZlZlXPDpUuX8NRTT6Fly5aws7ODn58fAFRpYantOeWll15CWloaNm7ciLCwMGzevBlt2rRBZGQkAN2F9Q899BAcHR2r3b6goACzZ89G69at4eDgABsbG8TExNTY4hMdHY2CggI4OTlVOi9euXKl0nnR19cXLi4utXoNt2vwi5sTExPx6KOPYtq0aXjvvffg6OiIAwcO4LnnnkNpaSmsrKxqtZ+CggK88847eOKJJ6o8Z2FhUeN27u7u+q6p6tx5gbBMJtOfyCwtLWuV7UEUFBQA0I3kuLNAUigUlX62trZu8DxUs/79++PLL7+EUqmEp6cnzMx0fz6BgYG1Gt3w/fffo7i4uNL/sxACWq0WcXFxCAwMbLDsZHh+//13/QWld37WtG3bFm3btsWLL76IF154Ab1798Zff/2F/v37V1rP398fU6dOxRtvvFFjAe3j43PXz0CqXxYWFhg0aBAGDRqEt99+G1OmTMGCBQvQr1+/Wp0L73ZOqq1hw4bB19cXq1atgqenJ7RaLdq2bYvS0tJK69XlnGJra4thw4Zh2LBhWLx4MSIiIrB48WIMGjTonufK2bNnIzIyEkuXLkVAQAAsLS0xatSoKnkqFBQUwMPDA3v37q3y3O2Dk+73nNjgLT4nTpyAVqvFsmXL0L17dwQGBiI1NbXKemq1ulJfdWxsLHJyctC6dWsAQMeOHREbG4uAgIAqD7m8YV6Gra0t/Pz8EBUVVe3zrVu3RnJyMpKTk/XLLly4gJycHISEhOjXOXr0aKXtbh9K6ubmBk9PT1y+fLnK62rRokUDvCq6X9bW1ggICEDz5s31RQ8APP3004iLi8NPP/1UZRshBHJzcwFAPwrn9m/e0dHR6N27N9asWdNor4OkoVQqK10j4evrq/9b9/LyqnG7is+Smq4Fmz9/PuLi4jhNh4EKCQlBYWFhrc+Fd2Nvbw8PD49K5xS1Wo0TJ07of87OzkZsbCzeeustDBw4EK1bt8bNmzdrtf8736M1kclkCA4O1r8n27dvj9OnT1e6/uZ2Bw8exMSJEzFixAi0a9cO7u7u+mkXqtOxY0ekpaXBzMysynnR2dm5Vq/lbuq1xSc3N7dKM6qzszPKysrw6aefYtiwYTh48CBWrlxZZVtzc3NMnz4dn3zyCczMzPDyyy+je/fu6Nq1KwDdH/ejjz6K5s2bY9SoUZDL5YiOjsa5c+ewePHiGjPl5OQgLS2t0jJbW9taV4oLFy7ECy+8AFdXVzz88MPIz8/HwYMHMX36dISHh6Ndu3Z45plnsGLFCqjVarz44ovo27evvglx5syZmDhxIjp37oyePXti48aNOH/+PFq2bKk/xjvvvIMZM2bA3t4eQ4YMQUlJCY4fP46bN29i1qxZtcpJ0nnyySexbds2PPXUU3jrrbcwePBguLi44OzZs1i+fDmmT58OPz8/nDx5Ehs3bkRwcHCl7Z966iksWrQIixcvrlRQUdPi5+eHo0ePIjExETY2NnB0dKzypW3atGnw9PTEgAED4O3tjevXr2Px4sVwcXGp1EV+Ozc3N8yaNQsffvhhtc9nZ2dX+Qx0cHC4a0s51V12djZGjx6NyZMno3379rC1tcXx48fxwQcfYPjw4QgICKjVufBeZs6ciX//+99o1aoVgoOD8dFHH1UaVt6sWTM4OTnh66+/hoeHB5KSkvDGG2/Uat9+fn4oKChAVFQUQkNDYWVlhbi4OCxYsADjxo1DSEgIlEol/vrrL6xZswavv/46AN1n2Pvvv4/HH38cS5YsgYeHB06dOgVPT0+EhYWhVatW2Lp1K4YNGwaZTIa333672q7bCuHh4QgLC8Pjjz+ODz74QF8k/vbbbxgxYsSDX/ZR56uCalDdcE0A4rnnnhMfffSR8PDwEJaWliIiIkJ8++23AoC4efOmEOKfC6p+/PFH0bJlS6FSqUR4eLj+IuQKO3bsED169BCWlpbCzs5OdO3aVXz99df651HNxc3VPZYsWVLpuLfbtm2buPPXsnLlShEUFCTMzc2Fh4eHmD59uv652gxnf++994Szs7OwsbEREyZMEHPnzq0ynH3jxo2iQ4cOQqlUimbNmok+ffqIrVu3CiE4LNUQ3OvifY1GI7788kvRpUsXYWVlJezs7ESnTp3Exx9/LIqKisTLL78sQkJCqt32+vXrQi6Xi59++qmB0pMhiI2NFd27dxeWlpY1DmffsmWLeOSRR4SHh4dQKpXC09NTjBw5Upw5c0a/zu0XN1fIzc0Vzs7O1V7cXN3jv//9bwO+UtNUXFws3njjDdGxY0dhb28vrKysRFBQkHjrrbdEUVGREELU+lx4uzvPSWVlZWLmzJnCzs5OODg4iFmzZlUZzh4ZGSlat24tVCqVaN++vdi7d2+l8+PdzikvvPCCcHJy0g9nz8zMFDNmzBBt27YVNjY2wtbWVrRr104sXbq00kX3iYmJYuTIkcLOzk5YWVmJzp076wcnXblyRfTv319YWloKHx8f8dlnn1W52P/O4ex5eXli+vTpwtPTU5ibmwsfHx/xzDPP6AcTVfd3UFsyIerYeUhERERkpAziXl1EREREjYGFDxEREZkMFj5ERERkMlj4EBERkclg4UNEREQmg4UPERERmQwWPkRERGQyWPgQERGRyWDhQ0RERCaDhQ8RERGZDBY+REREZDL+H49XQx68fE/hAAAAAElFTkSuQmCC\n"
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGzCAYAAADKathbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABssklEQVR4nO3dd1gU5/o+8HsXWJZepCuCWEBEUDEilqgRBUvURI0ajd38Ysox8VhiihpjSfXk5JycaIxETTTxxBYTjUfD115jBQ2KIsVCR7q03ff3x8LqCiggOLvL/bmuuS6ZnZl9FpedZ2fmvUcmhBAgIiIiIsilLoCIiIhIX7AxIiIiIqrAxoiIiIioAhsjIiIiogpsjIiIiIgqsDEiIiIiqsDGiIiIiKgCGyMiIiKiCmyMiIiIiCqwMSIiqqWrV69i4MCBsLOzg0wmw44dO6QuiYgaGBsjIqJamjRpEmJiYrBs2TJ8//336Nq1a6M+X0ZGBmbNmgU/Pz9YWFjAxcUF3bp1w/z581FQUICysjI4OTmhV69eNW5DCAFPT0906dJFZ35aWhrmzJkDPz8/WFpawsrKCsHBwVi6dClycnIa9XUR6TNTqQsgIjIEd+/exfHjx/Huu+/i9ddfb/Tny87ORteuXZGXl4epU6fCz88PWVlZiI6Oxtdff42ZM2fC29sbo0ePxurVq5GUlAQvL68q2zl06BBu3ryJt956Szvvzz//xODBg1FQUIAJEyYgODgYAHD69Gl89NFHOHToEPbu3dvor5FIH7ExIjIyhYWFsLKykroMvdIQv5OMjAwAgL29fQNUpPGwutauXYvk5GQcPXoUPXr00HksLy8PCoUCADB+/HisWrUKP/74I95+++0q29m0aRPkcjnGjh0LAMjJycFzzz0HExMTnDt3Dn5+fjrLL1u2DGvWrGmIl0dkkHgqjegRkpKS8Oqrr8LX1xcWFhZo1qwZRo8ejcTExCrL5uTk4K233oK3tzfMzc3RokULTJw4EZmZmdpliouLsXjxYrRr1w5KpRLu7u54/vnnER8fDwA4cOAAZDIZDhw4oLPtxMREyGQyrFu3Tjtv8uTJsLa2Rnx8PAYPHgwbGxuMHz8eAHD48GGMHj0aLVu2hLm5OTw9PfHWW2/h7t27Veq+fPkyXnjhBTg7O8PCwgK+vr549913AQD79++HTCbD9u3bq6y3adMmyGQyHD9+vMbfX1lZGT744AO0bdsWSqUSzZo1Q69evbBv375a11Dp3LlzGDRoEGxtbWFtbY3+/fvjxIkTOsusW7cOMpkMBw8exKuvvgoXFxe0aNFC+/jvv/+O3r17w8rKCjY2NhgyZAguXbpUY/0AsHjxYu3RmLlz50Imk8Hb27tB63pQfHw8TExM0L179yqP2draQqlUAgB69uwJb29vbNq0qcpyZWVl2LJlC/r16wcPDw8AwOrVq3Hr1i2sXLmySlMEAK6urnjvvfce+vsgMmY8YkT0CH/++SeOHTuGsWPHokWLFkhMTMTXX3+Nvn374q+//oKlpSUAoKCgAL1790ZsbCymTp2KLl26IDMzEzt37sTNmzfh5OQElUqFoUOHIioqCmPHjsWsWbOQn5+Pffv24eLFi2jdunWd6ysvL0d4eDh69eqFzz77TFvPzz//jKKiIsycORPNmjXDqVOn8K9//Qs3b97Ezz//rF0/OjoavXv3hpmZGV5++WV4e3sjPj4ev/76K5YtW4a+ffvC09MTGzduxHPPPafz3Bs3bkTr1q0RGhpaY32LFy/GihUrMH36dHTr1g15eXk4ffo0zp49iwEDBtSqBgC4dOkSevfuDVtbW8ybNw9mZmZYvXo1+vbti4MHDyIkJETneV999VU4Oztj4cKFKCwsBAB8//33mDRpEsLDw/Hxxx+jqKgIX3/9NXr16oVz587pNDv3e/7552Fvb4+33noL48aNw+DBg2Ftbd1gdVXHy8sLKpVKW3NNZDIZXnzxRSxfvhyXLl1Chw4dtI/t2bMH2dnZ2mYZAHbu3AkLCwuMGjWqxm0SNWmCiB6qqKioyrzjx48LAGLDhg3aeQsXLhQAxLZt26osr1arhRBCREZGCgBi5cqVNS6zf/9+AUDs379f5/GEhAQBQHz33XfaeZMmTRIAxNtvv12rulesWCFkMplISkrSznv66aeFjY2Nzrz76xFCiAULFghzc3ORk5OjnZeeni5MTU3FokWLqjzP/YKCgsSQIUMeukxtahgxYoRQKBQiPj5eO+/27dvCxsZGPP3009p53333nQAgevXqJcrLy7Xz8/Pzhb29vZgxY4bOc6Smpgo7O7sq8x9U+fv/9NNPdeY/bl01SU1NFc7OzgKA8PPzE6+88orYtGmTzv9BpUuXLgkAYsGCBTrzx44dK5RKpcjNzdXOc3BwEEFBQY98fqKmiqfSiB7BwsJC+++ysjJkZWWhTZs2sLe3x9mzZ7WPbd26FUFBQVWOqgCab/WVyzg5OeGNN96ocZn6mDlz5kPrLiwsRGZmJnr06AEhBM6dOwdAc93MoUOHMHXqVLRs2bLGeiZOnIiSkhJs2bJFO2/z5s0oLy/HhAkTHlqbvb09Ll26hKtXr1b7eG1qUKlU2Lt3L0aMGAEfHx/t4+7u7njxxRdx5MgR5OXl6aw7Y8YMmJiYaH/et28fcnJyMG7cOGRmZmonExMThISEYP/+/Q99HdVpiLpq4urqigsXLuCVV17BnTt3sGrVKrz44otwcXHBhx9+CCGEdll/f3907twZP/30k3ZeYWEhdu7ciaFDh8LW1lY7Py8vDzY2NnV+rURNBRsjoke4e/cuFi5cCE9PT5ibm8PJyQnOzs7IyclBbm6udrn4+HgEBAQ8dFvx8fHw9fWFqWnDncU2NTWt9lqV5ORkTJ48GY6OjrC2toazszP69OkDANq6r1+/DgCPrNvPzw9PPfUUNm7cqJ23ceNGdO/eHW3atHnoukuWLEFOTg7atWuHjh07Yu7cuYiOjtY+XpsaMjIyUFRUBF9f3yqPtW/fHmq1Gjdu3NCZ36pVK52fKxuzZ555Bs7OzjrT3r17kZ6e/tDX0Vh1PYy7uzu+/vprpKSk4MqVK/jyyy+1p+HWrl2rs+z48eORkJCAY8eOAQB27NiBoqIindNogOb6pPz8/FrXQNTU8Bojokd444038N133+HNN99EaGioNtxv7NixUKvVDf58NR05UqlU1c43NzeHXC6vsuyAAQOQnZ2N+fPnw8/PD1ZWVrh16xYmT55cr7onTpyIWbNm4ebNmygpKcGJEyfw73//+5HrPf3004iPj8cvv/yCvXv34ttvv8U//vEPrFq1CtOnT69zHbV1/xEzANrX/P3338PNza3K8g3ZrNalrtqQyWRo164d2rVrhyFDhqBt27bYuHGjzu9v3LhxmDdvHjZt2oQePXpg06ZNcHBwwODBg3W25efnh/Pnz6O0tFQ7so2I7mFjRPQIW7ZswaRJk/D5559r5xUXF1cJwWvdujUuXrz40G21bt0aJ0+eRFlZGczMzKpdxsHBAQCqbD8pKanWNcfExCAuLg7r16/HxIkTtfMfHAlWefrnUXUDwNixYzF79mz8+OOPuHv3LszMzDBmzJha1ePo6IgpU6ZgypQpKCgowNNPP43Fixdj+vTptarB2dkZlpaWuHLlSpXHLl++DLlcDk9Pz4fWUHlhu4uLC8LCwmpV96M0RF115ePjAwcHB6SkpOjM9/DwQL9+/fDzzz/j/fffx759+zB58uQqzc+zzz6L48ePY+vWrRg3blyD1kZkDHgqjegRTExMdK7nAIB//etfVY7gjBw5EhcuXKh2WHvl+iNHjkRmZma1R1oql/Hy8oKJiQkOHTqk8/h//vOfOtV8/zYr//3Pf/5TZzlnZ2c8/fTTiIyMRHJycrX1VHJycsKgQYPwww8/YOPGjYiIiICTk9Mja8nKytL52draGm3atEFJSUmtazAxMcHAgQPxyy+/6MQkpKWlYdOmTejVq5fOdTTVCQ8Ph62tLZYvX46ysrIqj1fmFNVFQ9RVk5MnT1Y7au3UqVPIysqq9vTd+PHjkZ6ejv/3//4fysrKqpxGA4BXXnkF7u7u+Pvf/464uLgqj6enp2Pp0qXan1NSUnD58uVqf2dExohHjIgeYejQofj+++9hZ2cHf39/HD9+HH/88QeaNWums9zcuXOxZcsWjB49GlOnTkVwcDCys7Oxc+dOrFq1CkFBQZg4cSI2bNiA2bNn49SpU+jduzcKCwvxxx9/4NVXX8Xw4cNhZ2eH0aNH41//+hdkMhlat26N3377rU7XwPj5+aF169aYM2cObt26BVtbW2zduhV37typsuyXX36JXr16oUuXLnj55ZfRqlUrJCYmYteuXTh//rzOshMnTtQO8/7www9rVYu/vz/69u2L4OBgODo64vTp09iyZYtOenRtali6dCn27duHXr164dVXX4WpqSlWr16NkpISfPLJJ4+sw9bWFl9//TVeeukldOnSBWPHjoWzszOSk5Oxa9cu9OzZs1anBh/0uHXV5Pvvv9dGJAQHB0OhUCA2NhaRkZFQKpV45513qqwzcuRIvPrqq/jll1/g6emJp59+usoyDg4O2L59OwYPHoxOnTrpJF+fPXsWP/74o078woIFC7B+/XokJCTUGGdAZFQkGw9HZCDu3LkjpkyZIpycnIS1tbUIDw8Xly9fFl5eXmLSpEk6y2ZlZYnXX39dNG/eXCgUCtGiRQsxadIkkZmZqV2mqKhIvPvuu6JVq1bCzMxMuLm5iVGjRukM987IyBAjR44UlpaWwsHBQfy///f/xMWLF6sdrm9lZVVt3X/99ZcICwsT1tbWwsnJScyYMUNcuHChyjaEEOLixYviueeeE/b29kKpVApfX1/x/vvvV9lmSUmJcHBwEHZ2duLu3bu1+v0tXbpUdOvWTdjb2wsLCwvh5+cnli1bJkpLS+tcw9mzZ0V4eLiwtrYWlpaWol+/fuLYsWM6y1QOi//zzz+rrWf//v0iPDxc2NnZCaVSKVq3bi0mT54sTp8+/dDXUdNw/Yaq60HR0dFi7ty5okuXLsLR0VGYmpoKd3d3MXr0aHH27Nka1xs9erQAIObNm/fQ7d++fVu89dZbol27dkKpVApLS0sRHBwsli1bpjO8vzISIiEhoVZ1Exk6mRAPHC8nIqpBeXk5PDw88Oyzz1YZFUVEZAx4jRER1dqOHTuQkZGhc0E3EZEx4REjInqkkydPIjo6Gh9++CGcnJx0gi2JiIwJjxgR0SN9/fXXmDlzJlxcXLBhwwapyyEiajQ8YkRERERUgUeMiIiIiCqwMSIiIiKqYBQBj2q1Grdv34aNjc1j3aGciIiInhwhBPLz8+Hh4VHlno9SMYrG6Pbt2w1+PyIiIiJ6Mm7cuIEWLVpIXQYAI2mMbGxsAGh+sfW9LxERERE9WXl5efD09NTux/WBUTRGlafPbG1t2RgREREZGH26DEY/TugRERER6QE2RkREREQV2BgRERERVWBjRERERFSBjRERERFRBTZGRERERBXYGBERERFVYGNEREREVIGNEREREVEFNkZEREREFdgYEREREVVgY0RERERUgY0RERERPdSbP53D9yeSUFymkrqURsfGiIiIiGp0JikbO87fxoe//oX84nKpy2l0bIyIiIioRt8eTgAAjOjsAWcbc4mraXxsjIiIiKhayVlF+N+lVADA9N4+ElfzZLAxIiIiompFHk2AWgBPt3NGO1cbqct5ItgYERERURW5RWX47+kbAIAZvVtJXM2Tw8aIiIiIqvjxz2QUlarg52aDXm2cpC7niWFjRERERDpKy9VYdzQRADCtVyvIZDJpC3qC2BgRERGRjl0xt5GaVwxnG3MM6+QhdTlPFBsjIiIi0hJCaIfoTwr1grmpicQVPVlsjIiIiEjr+PUsXLqdB6WZHONDvKQu54ljY0RERERaayuOFo0KbgEHK4XE1Tx5bIyIiIgIAHAtvQBRl9MhkwFTezadIfr3Y2NEREREADSBjgDQ388VPs7WElcjjXo1Rl999RW8vb2hVCoREhKCU6dO1bhs3759IZPJqkxDhgzRLjN58uQqj0dERNSnNCIiIqqHrIISbD1zE0DTCnR8kGldV9i8eTNmz56NVatWISQkBF988QXCw8Nx5coVuLi4VFl+27ZtKC0t1f6clZWFoKAgjB49Wme5iIgIfPfdd9qfzc2N/0Z1RERE+mLjyWSUlKvRsbkdurVylLocydT5iNHKlSsxY8YMTJkyBf7+/li1ahUsLS0RGRlZ7fKOjo5wc3PTTvv27YOlpWWVxsjc3FxnOQcHh/q9IiIiIqqT4jIVNhxPBABM7920Ah0fVKfGqLS0FGfOnEFYWNi9DcjlCAsLw/Hjx2u1jbVr12Ls2LGwsrLSmX/gwAG4uLjA19cXM2fORFZWVo3bKCkpQV5ens5ERERE9bPz/G1kFpTC3U6JwR3dpS5HUnVqjDIzM6FSqeDq6qoz39XVFampqY9c/9SpU7h48SKmT5+uMz8iIgIbNmxAVFQUPv74Yxw8eBCDBg2CSqWqdjsrVqyAnZ2ddvL09KzLyyAiIqIKQgh8e+Q6AGBKT2+YmTTtcVl1vsbocaxduxYdO3ZEt27ddOaPHTtW+++OHTsiMDAQrVu3xoEDB9C/f/8q21mwYAFmz56t/TkvL4/NERERUT0cupqJuLQCWClMMOapllKXI7k6tYVOTk4wMTFBWlqazvy0tDS4ubk9dN3CwkL89NNPmDZt2iOfx8fHB05OTrh27Vq1j5ubm8PW1lZnIiIiorr79rDmaNGYp1rCzsJM4mqkV6fGSKFQIDg4GFFRUdp5arUaUVFRCA0Nfei6P//8M0pKSjBhwoRHPs/NmzeRlZUFd/emfZ6TiIioMV1OzcPhq5mQyzSn0ageo9Jmz56NNWvWYP369YiNjcXMmTNRWFiIKVOmAAAmTpyIBQsWVFlv7dq1GDFiBJo1a6Yzv6CgAHPnzsWJEyeQmJiIqKgoDB8+HG3atEF4eHg9XxYRERE9SuXNYgcFuMPT0VLiavRDna8xGjNmDDIyMrBw4UKkpqaiU6dO2LNnj/aC7OTkZMjluv3WlStXcOTIEezdu7fK9kxMTBAdHY3169cjJycHHh4eGDhwID788ENmGRERETWS9Lxi/HL+FgBgWhMOdHyQTAghpC7iceXl5cHOzg65ubm83oiIiKgWPvvfFfx7/zUEezlg68wektSgj/vvpj0mj4iIqAm6W6rCDyeTAADTe/Fo0f3YGBERETUxW87eRE5RGTwdLTCww8NHlTc1bIyIiIiaELVaIPKI5qLrqT1bwUTedG//UR02RkRERE1I1OV0JGQWwkZpihe6Mhz5QWyMiIiImpDKQMcXQ1rCyvyJ3gDDILAxIiIiaiJibubiZEI2TOUyTO7hLXU5eomNERERURNRebPYoYHucLezkLga/cTGiIiIqAm4nXMXv0WnAACm9/aRuBr9xcaIiIioCVh/LBEqtUB3H0cENLeTuhy9xcaIiIjIyBWUlGPTqWQAwAweLXooNkZERERG7r9/3kB+cTl8nK3Qz9dF6nL0GhsjIiIiI1auUiPyqCbQcVqvVpAz0PGh2BgREREZsf9dSsPNO3fhYGmGkV1aSF2O3mNjREREZMQqh+i/1N0LSjMTiavRf2yMiIiIjNSZpGycS86BwkSOl0K9pS7HILAxIiIiMlLfHtZcWzSiswecbcwlrsYwsDEiIiIyQslZRfjfpVQADHSsCzZGRERERijyaALUAni6nTPaudpIXY7BYGNERERkZHKLyvDf0zcAADN6t5K4GsPCxoiIiMjI/PhnMopKVfBzs0GvNk5Sl2NQ2BgREREZkdJyNdYdTQSgCXSUyRjoWBdsjIiIiIzI7pgUpOYVw9nGHMM6eUhdjsFhY0RERGQkhBBYc1gT6Dgp1Avmpgx0rCs2RkREREbixPVsXLqdB6WZHONDvKQuxyCxMSIiIjIS31YcLRoV3AIOVgqJqzFMbIyIiIiMQHxGAaIup0MmA6b25BD9+mJjREREZATWHtHc/qO/nyt8nK0lrsZwsTEiIiIycNmFpdh65iYAYDoDHR8LGyMiIiID98OJJJSUq9GxuR1CWjlKXY5BY2NERERkwIrLVNhwPBGA5mgRAx0fDxsjIiIiA7bz/G1kFpTC3U6JwR3dpS7H4LExIiIiMlBCCHx7RDNEf3IPb5iZcLf+uPgbJCIiMlCHrmYiLq0AVgoTjO3WUupyjAIbIyIiIgNVGej4wlOesLMwk7ga48DGiIiIyABdTs3D4auZkDPQsUGxMSIiIjJAaw9rAh0jAtzg6WgpcTXGg40RERGRgUnPL8Yv528DAKb39pG4GuPCxoiIiMjAfH88CaUqNYK9HNClpYPU5RiVejVGX331Fby9vaFUKhESEoJTp07VuGzfvn0hk8mqTEOGDNEuI4TAwoUL4e7uDgsLC4SFheHq1av1KY2IiMio3S1V4YcTSQCA6b14bVFDq3NjtHnzZsyePRuLFi3C2bNnERQUhPDwcKSnp1e7/LZt25CSkqKdLl68CBMTE4wePVq7zCeffIIvv/wSq1atwsmTJ2FlZYXw8HAUFxfX/5UREREZoa1nb+JOURk8HS0wsIOb1OUYnTo3RitXrsSMGTMwZcoU+Pv7Y9WqVbC0tERkZGS1yzs6OsLNzU077du3D5aWltrGSAiBL774Au+99x6GDx+OwMBAbNiwAbdv38aOHTse68UR6SuVWiA9n40/EdWNWi0QeURz0fXUnq1gIuftPxpanRqj0tJSnDlzBmFhYfc2IJcjLCwMx48fr9U21q5di7Fjx8LKygoAkJCQgNTUVJ1t2tnZISQkpMZtlpSUIC8vT2ciMhRCCPztx3PovjwK/3c5TepyiMiARF1Ox/XMQtgoTfFCV0+pyzFKdWqMMjMzoVKp4OrqqjPf1dUVqampj1z/1KlTuHjxIqZPn66dV7leXba5YsUK2NnZaSdPT745yHD8Gp2CXTEpUAvgw99iUaZSS10SERmIykDHF0NawsrcVOJqjNMTHZW2du1adOzYEd26dXus7SxYsAC5ubna6caNGw1UIVHjyi4sxeKdlwAAMhmQkFmITSeTJa6KiAxBzM1cnEzIhqlchsk9vKUux2jVqTFycnKCiYkJ0tJ0D/+npaXBze3hF4AVFhbip59+wrRp03TmV65Xl22am5vD1tZWZyIyBB/8egnZhaXwc7PBwqH+AIAv/ohDXnGZxJURkb6rvFns0EB3uNtZSFyN8apTY6RQKBAcHIyoqCjtPLVajaioKISGhj503Z9//hklJSWYMGGCzvxWrVrBzc1NZ5t5eXk4efLkI7dJZEiiYtPwy/nbkMuAj0cG4qXuXmjjYo07RWX4z/54qcsjIj12O+cufotOAcBAx8ZW51Nps2fPxpo1a7B+/XrExsZi5syZKCwsxJQpUwAAEydOxIIFC6qst3btWowYMQLNmjXTmS+TyfDmm29i6dKl2LlzJ2JiYjBx4kR4eHhgxIgR9XtVRHomr7gM726/CACY0dsHQZ72MDWR453BfgCAyKMJuJFdJGWJRKTH1h9LhEot0N3HEQHN7aQux6jV+cqtMWPGICMjAwsXLkRqaio6deqEPXv2aC+eTk5Ohlyu229duXIFR44cwd69e6vd5rx581BYWIiXX34ZOTk56NWrF/bs2QOlUlmPl0Skf1bsvozUvGJ4N7PEm2HttPP7+bqgR+tmOBafhc/2XsE/x3aWsEoi0kcFJeXYdEpzLeIMHi1qdDIhhJC6iMeVl5cHOzs75Obm8noj0jvH4jPx4pqTAIDNL3dHiI/uUdOLt3Lx7L+PQAjgl9d6IsjTXoIqiUhfRR5JwJLf/oKPsxX+eKsP5EaUXaSP+2/eK42oERWVluPtrTEAgAndW1ZpigAgoLkdnuvcHACwbHcsjOC7ChE1kHKVGpFHNYGO03q1MqqmSF+xMSJqRCv3xiE5uwgedkrMj/Crcbk5A31hbirHqYRs7PuLoY9EpLH3rzTcvHMXDpZmeL5zC6nLaRLYGBE1knPJd7Tf9JY93xE2SrMal/Wwt9BeO/DR75cZ+khEAIA1FYGOL3X3goXCROJqmgY2RkSNoKRchXlboqEWwPOdm6Ofr8sj13mlb2s4WStwnaGPRATgTNIdnEvOgcJEjgmhXlKX02SwMSJqBF/tj8fV9AI4WSvwfkWQ46NYm5tqR6wx9JGIKm//MaKzB1xsOEr7SWFjRNTAYlPy8J/91wAAHwwLgIOVotbrjn3KE62drRj6SNTEJWcV4X+XNPcLndaLQ/SfJDZGRA2oXKXGvC3RKFcLhHdwxeCOD79VzoM0oY/tAWhCH2/eYegjUVMUeTQBagE83c4Zvm42UpfTpLAxImpAa48kIOZWLmyVpvhweABksroPrX3GzwWhPs1QWq7GZ/+70ghVEpE+y71bhv+e1twcfXqvVhJX0/SwMSJqINczCrByXxwA4L2h/nCxrd81ATKZDO8OaQ+ZDNhx/jYu3MhpwCqJSN/9eCoZRaUq+LraoHdbJ6nLaXLYGBE1ALVa4O2tMSgpV6N3WyeMDn68vBGGPhI1TWUqNdYdTQQATOvdql5HnenxsDEiagAbTybhVGI2LBUmWP5cxwb5MGPoI1HTsys6Bal5xXCyNsfwTh5Sl9MksTEieky3cu7io98vAwDmR/jB09GyQbbrYW+B6b011xcw9JHI+Akh8O0RzRD9SaFeMDdloKMU2BgRPQYhBN7ZFoPCUhW6ejngpe4NG8L2Sp97oY8/nmLoI5ExO3E9Gxdv5UFpJsf4Bv4sodpjY0T0GLadvYWDcRlQmMrx8ajABr/Bo43S7L7Qx6sMfSQyYmsrjhaN7NICjnXIP6OGxcaIqJ4y8kuw5Le/AABvhrVFa2frRnmeytDH7MJShj4SGan4jAL8EZsOmQyYxiH6kmJjRFRPi3ZeRO7dMnTwsNXeALYxMPSRyPhFHtHccLq/nyt8GulLFtUOGyOiethzMQW7Y1JhKpfhk1GBMDNp3D8lhj4SGa/swlJsOXMTALQDLkg6bIyI6ii3qAzv7bgEQHNxdAcPu0Z/zgdDH6Nv5jT6cxLRk7HxRBJKytXo2NwOIa0cpS6nyWNjRFRHH+76C5kFJWjtbIXXn2nzxJ5XJ/RxF0MfiYxBcZkK648nAdAcLWKgo/TYGBHVwcG4DGw5cxMyGfDJqCAozZ5szkhl6ONJhj4SGYWdF24js6AE7nZKDO7oLnU5BDZGRLVWUFKOd7bFAAAm9/BGsJfDE6+BoY9ExkMIgbWHNRddT+7h3ejXKlLt8H+BqJY+3XMZt3LuooWDBeaG+0pWxyt9WqOZFUMfiQzd4auZuJKWDyuFCcZ2ayl1OVSBjRFRLfyZmK29DuCj5wNhqTCVrBYbpRneHMDQRyJDt+awJtDxhac8YWdhJnE1VImNEdEjFJepMH9LNABgTFdP9GrrJHFFwLj7Qh+/PsDQRyJDczk1D4evZkIuA6b25BB9fcLGiOgR/hl1FdczC+FiY453hrSXuhwAuqGPa48w9JHI0FReWxQR4NZgN56mhsHGiOghLt7KxTeHNIe7l44I0KvD3Qx9JDJM6fnF+OX8bQDA9EZMzaf6YWNEVIMylRpzt0RDpRYYGuiOgR3cpC5JR2XoI8DQRyJD8v3xJJSq1OjS0h5dWj750a30cGyMiGqw+mA8YlPy4GBphsXDOkhdTrUCmtvheYY+EhmMu6Uq/HBCM5CjMe+xSPXHxoioGlfT8vFl1DUAwKJnO8DJ2lziimo2J/xe6OMfselSl0NED7H17E3cKSqDp6OF3h2FJg02RkQPUKkF5m2NRqlKjWf8XDC8k4fUJT3U/aGPK36PZegjkZ5SqwUij2guup7asxVM5Lz9hz5iY0T0gHXHEnEuOQc25qZY9lyAQdy7SBv6mMHQRyJ99X+X03E9sxA2SlOM7uopdTlUAzZGRPdJzirSjvBaMLg93O0sJK6odhj6SKT/KgMdXwxpCWtz6UJi6eHYGBFVEEJgwfZo3C1TobuPI8Y+ZVjf6MYy9JFIb8XczMXJhGyYymWY3MNb6nLoIdgYEVXY/OcNHL2WBaWZHB+PDITcwM7/m5nIsWDQvdDHWzl3Ja6IiCp9e0RztGhooLvBHIluqtgYEQFIzS3Gsl2xAIA5A33h1cxK4orqp397F3T3cWToI5EeuZ1zF7uiUwAw0NEQsDGiJk8Igfd2XER+STmCPO0xxYDvWySTyfDeEH8AwPZztxj6SKQH1h9LRLlaoLuPIwKa20ldDj0CGyNq8n6NTsEfsWkwM5Hh01GBBj+ElqGPRPqjoKQcmypGik7vxaNFhoCNETVp2YWlWLzzEgDg9X5t0c7VRuKKGsbfGfpIpBf+++cN5BeXw8fJCs/4uUhdDtVCvRqjr776Ct7e3lAqlQgJCcGpU6ceunxOTg5ee+01uLu7w9zcHO3atcPu3bu1jy9evBgymUxn8vPzq09pRHXywa+XkF1YCj83G8zs21rqchpMc3sLTOvF0EciKanUApFHKwIde7UyuAEdTVWdG6PNmzdj9uzZWLRoEc6ePYugoCCEh4cjPb36b6WlpaUYMGAAEhMTsWXLFly5cgVr1qxB8+bNdZbr0KEDUlJStNORI0fq94qIaikqNg2/nL8NuQz4eGQgFKbGdQB1Zt97oY8/MfSR6In736VU3LxzFw6WZhjZpYXU5VAt1XlPsHLlSsyYMQNTpkyBv78/Vq1aBUtLS0RGRla7fGRkJLKzs7Fjxw707NkT3t7e6NOnD4KCgnSWMzU1hZubm3ZycnKq3ysiqoW84jK8u/0iAM2NHIM87aUtqBHcH/r4D4Y+Ej1x31YEOk7o7gULhYnE1VBt1akxKi0txZkzZxAWFnZvA3I5wsLCcPz48WrX2blzJ0JDQ/Haa6/B1dUVAQEBWL58OVQqlc5yV69ehYeHB3x8fDB+/HgkJ9f8DbekpAR5eXk6E1FdrNh9Gal5xfBuZom3KpoHY8TQRyJpnEm6g7PJOVCYyPFSqJfU5VAd1KkxyszMhEqlgqurq858V1dXpKamVrvO9evXsWXLFqhUKuzevRvvv/8+Pv/8cyxdulS7TEhICNatW4c9e/bg66+/RkJCAnr37o38/Pxqt7lixQrY2dlpJ09Pw0ooJmkdi8/U3k/s45GBUJoZ7zc5hj4SSWNtRaDjiM4ecLFRSlwN1UWjX1ShVqvh4uKCb775BsHBwRgzZgzeffddrFq1SrvMoEGDMHr0aAQGBiI8PBy7d+9GTk4O/vvf/1a7zQULFiA3N1c73bhxo7FfBhmJotJyvL01BgAwoXtLhPg0k7iixsfQR6In60Z2EfZc1BwsmMYh+ganTo2Rk5MTTExMkJaWpjM/LS0Nbm5u1a7j7u6Odu3awcTk3rfy9u3bIzU1FaWlpdWuY29vj3bt2uHatWvVPm5ubg5bW1udiag2Vu6NQ3J2ETzslJgf0TRGPspkMrw7+F7oY8zNXIkrIjJukUcToBbA0+2c4etmHBEgTUmdGiOFQoHg4GBERUVp56nVakRFRSE0NLTadXr27Ilr165Brb43XDguLg7u7u5QKBTVrlNQUID4+Hi4u7vXpTyihzqXfEc7dHbZ8x1hozSTuKInp2MLOzxXGfq4+y+GPhI1kty7Zfjvn5qzGNN7GW6KflNW51Nps2fPxpo1a7B+/XrExsZi5syZKCwsxJQpUwAAEydOxIIFC7TLz5w5E9nZ2Zg1axbi4uKwa9cuLF++HK+99pp2mTlz5uDgwYNITEzEsWPH8Nxzz8HExATjxo1rgJdIBJSUqzBvSzTUAni+c3P08216QWtzKkIfT1xn6CNRY/npVDIKS1XwdbVB77YcXW2ITOu6wpgxY5CRkYGFCxciNTUVnTp1wp49e7QXZCcnJ0Muv9dveXp64n//+x/eeustBAYGonnz5pg1axbmz5+vXebmzZsYN24csrKy4OzsjF69euHEiRNwdnZugJdIBHy1Px5X0wvgZK3A+0P9pS5HEpWhj/85EI8Vv8eir68zzEyMK7uJSEplKjXWHUsEAEzr3QoyGQMdDZFMGMEx9by8PNjZ2SE3N5fXG1EVsSl5ePZfR1CuFvjqxS4YEth0T9HmF5eh76cHkFVYig+Hd8BLod5Sl0RkNH45fwuzfjoPJ2tzHH27H8xNjXfEa0PRx/03vy6SUStXqTFvSzTK1QLhHVwxuGP1gwSaChulGd4MawuAoY9EDUkIgTUVgY6TQr3YFBkwNkZk1NYeSUDMrVzYKk3x4fAAHtoGMLZbS/hUhD6uYugjUYM4mZCNi7fyoDSTY3x3BjoaMjZGZLSuZxRg5b44AMD7Q/3hYsuQNUAT+vgOQx+JGlTl7T9GdmkBR6vqR1yTYWBjREZJrRZ4e2sMSsrV6N3WCaOCeQPH+1WGPpYw9JHoscVnFGhHek7jEH2Dx8aIjNLGk0k4lZgNS4UJlj/XkafQHsDQR6KGE3lEk48W1t4FPs7WEldDj4uNERmdWzl38dHvlwEA8yP84OloKXFF+omhj0SPL7uwFFvO3AQATO/N238YAzZGZFSEEHhnWwwKS1Xo6uWAl3gR5EPNCfeFoiL0MYqhj0R1tvFEEkrK1QhobouQVo5Sl0MNgI0RGZVtZ2/hYFwGFKZyfDwqEHI5T6E9TGXoIwAs/z0WZSr1I9YgokrFZSqsP54EAJjR24en7I0EGyMyGhn5JVjy218AgDfD2qI1z/XXyqt9W6OZlQLXMwrx06lkqcshMhg7L9xGZkEJ3O2UGNyx6QbHGhs2RmQ0Fu28iNy7ZejgYYsZPNdfawx9JKo7IQTWHtZcdD25hzdvr2NE+D9JRmHPxRTsjkmFqVyGT0YF8kOqjhj6SFQ3h69m4kpaPqwUJhjbraXU5VAD4t6DDF5uURne23EJAPBKn9bo4GEncUWGx8xEjgUMfSSqtcrbf7zwlCfsLMwkroYaEhsjMngf7voLmQUlaO1shTf6t5G6HIMV1t4FIa00oY+fM/SRqEZXUvNx+Gom5DJgak8GOhobNkZk0A7GZWDLmZuQyYBPRgXxxo2PQSaT4b0hmtDHbQx9JKpR5e0/IgLcmJNmhNgYkcEqKCnHO9tiAGgufgz2cpC4IsPH0Eeih0vPL8Yv528DAKb14iAPY8TGiAzWp3su41bOXbRwsMDccF+pyzEaDH0kqtn3x5NQqlKjS0t7fhkzUmyMyCD9mZitDVb76PlAWCpMJa7IeDD0kah6d0tV+OGE5nOHt/8wXmyMyOAUl6kwf0s0AGBMV0/0auskcUXGZ2bf1nCsDH3884bU5RDpha1nb+JOURk8HS0Q3sFN6nKokbAxIoPzz6iruJ5ZCBcbc7wzpL3U5RglW6UZ3qoIffxiXxzyGfpITZxaLRB5RBPoOKVHK5jwdkNGi40RGZSLt3LxzSHNiJClIwKYH9KIKkMfswpL8TVDH6mJ+7/L6bieWQgbpSleeMpT6nKoEbExIoNRplJj7pZoqNQCQwPdMZCHshsVQx+J7vn2iOYL2YshLWFtzmsajRkbIzIYqw/GIzYlDw6WZvhgWAepy2kSGPpIpDlSfeJ6NkzlMkzu4S11OdTI2BiRQbialo8vo64BABYP64Bm1uYSV9Q0yGQyvFtxHde2c7dw8RZDH6npqQx0HBroDnc7C4mrocbGxoj0nkotMG9rNEpVajzj54JhQR5Sl9SkBLawx4hOmt/50l0MfaSmJSX3Ln6LTgHAIfpNBRsj0nvrjyXiXHIObMxNsey5AMhkHA3ypM2N8GPoIzVJ644lolwt0N3HEQHNeYPqpoCNEem15KwifFpxbcuCwe15GFsiDH2kpqigpBybTiYDAKbz9h9NBhsj0ltCCCzYHo27ZSp093HEWA6RlRRDH6mp+fn0DeQXl8PHyQrP+LlIXQ49IWyMSG9t/vMGjl7LgtJMjo9HBkLOQDVJ2SrN8CZDH6mJUKkFIo9qAh2n9mrFz58mhI0R6aXU3GIs2xULAJgz0BdezawkrogAYNx9oY+rDjL0kYzX3kupuJF9Fw6WZhjZpYXU5dATxMaI9I4QAu/tuIj8knIEedpjSs9WUpdEFe4Pffz2cAJuM/SRjNSaiiH6E7p7wUJhInE19CSxMSK982t0Cv6ITYOZiQyfjgrkPYn0zP2hj58x9JGM0JmkOzibnAOFiRwvhXpJXQ49YWyMSK9kF5Zi8c5LAIDX+7VFO1cbiSuiBzH0kYzd2orbfwzv5AEXG6XE1dCTxsaI9MoHv15CdmEp/NxsMLNva6nLoRow9JGM1Y3sIuy5mAqAgY5NFRsj0htRsWn45fxtyGXAxyMDoTDl21OfzQn31YY+/t9lhj6ScYg8mgC1AHq3dYKvG49YN0Xc85BeyCsuw7vbLwIAZvT2QZCnvbQF0SO1cLDE1IoL45fvjkU5Qx/JwOXeLcN/KzK6ZvBoUZPFxoj0wordl5GaVwzvZpZ4a0A7qcuhWnq1nyb0MT6jED8y9JEM3E+nklFYqoKvqw16t3WSuhySCBsjktyx+Ez8eEoTu//xyEAozTg01lAw9JGMRZlKjXXHEgEA03q34j0ZmzA2RiSpotJyvL01BgAwoXtLhPg0k7giqqtx3VrCx4mhj2TYdsekICW3GE7W5hheMbCAmqZ6NUZfffUVvL29oVQqERISglOnTj10+ZycHLz22mtwd3eHubk52rVrh927dz/WNsk4rNwbh+TsInjYKTE/wk/qcqgezEzkeHuQ5v+OoY9kiIQQ2kDHSaFeMDflUeumrM6N0ebNmzF79mwsWrQIZ8+eRVBQEMLDw5GeXv2olNLSUgwYMACJiYnYsmULrly5gjVr1qB58+b13iYZh3PJd7T3Ilr2fEfYKM0krojqa4C/K7pVhj7uZegjGZaTCdm4eCsPSjM5xndnoGNTV+fGaOXKlZgxYwamTJkCf39/rFq1CpaWloiMjKx2+cjISGRnZ2PHjh3o2bMnvL290adPHwQFBdV7m2T4SspVmLclGmoBPN+5Ofr58s7Vhkwmk+G9itDH7Qx9JAPzbcXRopFdWsDRSiFxNSS1OjVGpaWlOHPmDMLCwu5tQC5HWFgYjh8/Xu06O3fuRGhoKF577TW4uroiICAAy5cvh0qlqvc2S0pKkJeXpzORYflqfzyuphfAyVqB94f6S10ONYDK0EchgGW7Yhn6SAbhekYB/ojVnJ2Y2ov3ZaQ6NkaZmZlQqVRwdXXVme/q6orU1NRq17l+/Tq2bNkClUqF3bt34/3338fnn3+OpUuX1nubK1asgJ2dnXby9PSsy8sgicWm5OE/+68BAJYMD4ADv6EZjcrQx+PXsxj6SAZh7RHN6fyw9i5o7WwtcTWkDxp9VJparYaLiwu++eYbBAcHY8yYMXj33XexatWqem9zwYIFyM3N1U43bjA/xVCUq9SYtyUa5WqB8A6uGBTgJnVJ1IAY+kiGJLuwFFvP3gQATOvFQEfSqFNj5OTkBBMTE6SlpenMT0tLg5tb9Ts4d3d3tGvXDiYm967yb9++PVJTU1FaWlqvbZqbm8PW1lZnIsOw9kgCYm7lwlZpig+HBzArxAi92q81HCzNEJ9RiJ8Y+kh6bOOJJBSXqRHQ3BbdfRylLof0RJ0aI4VCgeDgYERFRWnnqdVqREVFITQ0tNp1evbsiWvXrkGtvvfNMS4uDu7u7lAoFPXaJhmm6xkFWLkvDgDw/lB/uNjyrtXGSBP6qEkv/+IPhj6SfiopV2H98SQAwPRePvySRlp1PpU2e/ZsrFmzBuvXr0dsbCxmzpyJwsJCTJkyBQAwceJELFiwQLv8zJkzkZ2djVmzZiEuLg67du3C8uXL8dprr9V6m2T41GqBt7fGoKRcjd5tnTAquIXUJVEjejFEE/qYWcDQR9JPv5y/jcyCErjbKTEk0F3qckiPmNZ1hTFjxiAjIwMLFy5EamoqOnXqhD179mgvnk5OToZcfq/f8vT0xP/+9z+89dZbCAwMRPPmzTFr1izMnz+/1tskw7fxZBJOJWbDUmGC5c915LczI1cZ+vjy92fw7eEEjA/xgoe9hdRlEQHQBDquPay56HpyD2+YmfAmEHSPTBjBmNq8vDzY2dkhNzeX1xvpoVs5dzFw5UEUlqrwwbAOmNTDW+qS6AkQQmDMNydwKiEbz3dpjpUvdJK6JCIAwKG4DEyMPAUrhQmOLegPOwuGy0pFH/ffbJOpUQkh8M62GBSWqtDVywEvMVW2yZDJZHh3MEMfSf98WzFE/4WnPNkUURVsjKhRbTt7CwfjMqAwlePjUYGQy3kKrSkJ8rTHcIY+kh65kpqPQ3EZkMugjZYguh8bI2o0GfklWPLbXwCAN8PaMjytiZrL0EfSI2uPaG7/ERHgBk9HS4mrIX3ExogazaKdF5F7twwBzW3xcm+GpzVVDH0kfZGeX4wd524DYKAj1YyNETWKPRdTsDsmFaZyGT4eGQhTjvpo0hj6SPrgh+NJKFWp0aWlPYK9HKQuh/QU91bU4HKLyvDejksAgFf6tEYHDzuJKyKpMfSRpHa3VIXvT1QEOvIINj0EGyNqcB/u+guZBSVo7WyFN/q3kboc0hMvhrREq4rQx9UHr0tdDjUx287dxJ2iMng6WiC8A+/RSDVjY0QN6mBcBracuQmZDPhkVBDMTU0evRI1CZWhjwCw5vB1pOTelbgiairU6nuBjlN6tIIJR8fSQ7AxogZTUFKOd7bFANCkyfIcPj1ooL8rurVyREm5Gp/+74rU5VATsf9KOq5nFsJGaYoXnvKUuhzSc2yMqMF8uucybuXcRQsHC8wN95W6HNJDDH0kKaw5rDl1+2K3lrA2r/OdsKiJYWNEDeLPxGztnao/ej4Qlgp++FD1GPpIT9LFW7k4cT0bpnIZJvf0lrocMgBsjOixFZepMH9LNABgTFdP9GrrJHFFpO/mDLwX+rj/CkMfqfF8W3G0aEigO9zteCNjejQ2RvTY/hl1FdczC+Fqa453hrSXuhwyAJ6OlphS8e19+e7LDH2kRpGSexe/RacAAKYz0JFqiY0RPZaLt3LxzSHNN7KlIzryhoxUa6/1awMHSzNcSy9g6CM1inXHElGuFghp5YiOLZinRrXDxojqrUylxtwt0VCpBYYGumOAv6vUJZEBYegjNaaCknJsOpkMAJjBQEeqAzZGVG+rD8YjNiUPDpZm+GBYB6nLIQPE0EdqLD+fvoH84nL4OFnhGT8XqcshA8LGiOrlalo+voy6BgBYPKwDmlmbS1wRGSKGPlJjUKkFIo9qAh2n9moFOQMdqQ7YGFGdqdQC87ZGo1SlxjN+LhgW5CF1SWTABvq7opu3JvTxs//FSV0OGYG9l1JxI/suHCzNMLJLC6nLIQPDxojqbP2xRJxLzoGNuSmWPRcAmYzfxqj+ZDIZ3q0Yzbjt3E2GPtJjqwx0nNDdCxYK3paI6oaNEdVJclaR9lYOCwa3Zy4INYj7Qx+X72boI9XfmaQ7OJucA4WJHC+FekldDhkgNkZUa0IILNgejbtlKnT3ccRY3nOIGlBl6OOxeIY+Uv2tPaI5WjS8kwdcbJQSV0OGiI0R1drmP2/g6LUsKM3k+HhkIC9opAbF0Ed6XDeyi7DnYioAYFrvVhJXQ4aKjRHVSmpuMZbtigWg+Wbv1cxK4orIGL3a917o4+bTDH2kuok8mgC1AHq3dYKfm63U5ZCBYmNEjySEwHs7LiK/pBxBnvaY0pPfxKhx2FmYYVb/tgCAf+yLQ0FJucQVkaHIvVuG/1YkqDPQkR4HGyN6pF+jU/BHbBrMTGT4dFQgTHgKjRrR+O5e2tDHVQfipS6HDMRPp5JRWKqCr6sNevNG1vQY2BjRQ2UXlmLxzksAgNf7tUU7VxuJKyJjx9BHqqsylRrrjiUC0FxbxAgRehxsjOihPvj1ErILS+HnZoOZfVtLXQ41EQx9pLrYHZOClNxiOFmbY3gnBs7S42FjRDWKik3DL+dvQy4DPh4ZCIUp3y70ZMhkMrzD0EeqBSGENtBxUqgXzE0Z6EiPh3s6qlZecRne3X4RgOZCxiBPe2kLoiank6c9hgUx9JEe7mRCNi7eyoPSTI7x3RnoSI+PjRFVa8Xuy0jNK4Z3M0u8NaCd1OVQEzU3/F7o44ErGVKXQ3ro28Oam8WO7NICjlYKiashY8DGiKo4Fp+JH08lA9CcQlOa8dA0SeP+0Mdlu2MZ+kg6rmcUIOpyGgBgai/GiFDDYGNEOopKy/H21hgAwITuLRHi00ziiqipY+gj1STyaAKEAMLau6C1s7XU5ZCRYGNEOlbujUNydhE87JSYH+EndTlEDH2kat0pLMWWMzcBANN6MdCRGg4bI9I6l3wHkUc15+uXPd8RNkoziSsi0ngx5F7o4+qDDH0kYOPJJBSXqRHQ3BbdfRylLoeMCBsjAgCUlKswb0s01AJ4vnNz9PN1kbokIi2FqVx7BJOhj1RSrsL640kAgOm9fBjoSA2KjREBAL7aH4+r6QVwslbg/aH+UpdDVEV4B03oY3EZQx+bup3nbyMjvwRutkoMCXSXuhwyMmyMCLEpefjP/msAgCXDA+DAIa+khxj6SIAm0HHtEc0p/8k9vWFmwt0YNSy+o5q4cpUa87ZEo1wtEN7BFYMC3KQuiahGDH2kI9cycTk1H5YKE4zr1lLqcsgI1asx+uqrr+Dt7Q2lUomQkBCcOnWqxmXXrVsHmUymMymVSp1lJk+eXGWZiIiI+pRGdbT2SAJibuXCVmmKD4cH8Fw96b254b5QmDD0salaUxHo+EJXT9hZcIAINbw6N0abN2/G7NmzsWjRIpw9exZBQUEIDw9Henp6jevY2toiJSVFOyUlJVVZJiIiQmeZH3/8sa6lUR1dzyjAyn2aazXeH+oPF1vlI9Ygkt79oY/LGfrYpFxJzcehuAzIZcDUngx0pMZR58Zo5cqVmDFjBqZMmQJ/f3+sWrUKlpaWiIyMrHEdmUwGNzc37eTq6lplGXNzc51lHBwc6loa1YFaLfD21hiUlKvRu60TRgW3kLokolp7tZ8m9PFqegH+e/qm1OXQE7L2iOZmseEd3NCymaXE1ZCxqlNjVFpaijNnziAsLOzeBuRyhIWF4fjx4zWuV1BQAC8vL3h6emL48OG4dOlSlWUOHDgAFxcX+Pr6YubMmcjKyqpxeyUlJcjLy9OZqG42nkzCqcRsWCpMsPy5jjyFRgbl/tDHlfuuMPSxCUjPL8aOc7cBANN7M9CRGk+dGqPMzEyoVKoqR3xcXV2Rmppa7Tq+vr6IjIzEL7/8gh9++AFqtRo9evTAzZv3vuVFRERgw4YNiIqKwscff4yDBw9i0KBBUKlU1W5zxYoVsLOz006enp51eRlN3q2cu/jo98sAgPkRfvB05DcvMjwMfWxafjiehFKVGp1b2iPYi2cUqPE0+qi00NBQTJw4EZ06dUKfPn2wbds2ODs7Y/Xq1dplxo4di2HDhqFjx44YMWIEfvvtN/z55584cOBAtdtcsGABcnNztdONG7x/Um0JIfDOthgUlqrQ1csBL3X3krokonph6GPTcbdUhe9PaK5NncGjRdTI6tQYOTk5wcTEBGlpaTrz09LS4OZWu2HeZmZm6Ny5M65du1bjMj4+PnBycqpxGXNzc9ja2upMVDvbzt7CwbgMKEzl+HhUIORynkIjwxXewRVPeTuguEyNz/cy9NFYbTt3E3eKytDCwQID/ateo0rUkOrUGCkUCgQHByMqKko7T61WIyoqCqGhobXahkqlQkxMDNzda04rvXnzJrKysh66DNVdRn4Jlvz2FwDgzbC2vBs1GTyZTIZ3h2iS2reevYlLtxn6aGzUaoG1FUP0p/ZsBVMGOlIjq/M7bPbs2VizZg3Wr1+P2NhYzJw5E4WFhZgyZQoAYOLEiViwYIF2+SVLlmDv3r24fv06zp49iwkTJiApKQnTp08HoLkwe+7cuThx4gQSExMRFRWF4cOHo02bNggPD2+gl0kAsGjnReTeLUNAc1u8zMPRZCQY+mjc9l9Jx/XMQtgoTfHCU7yelBqfaV1XGDNmDDIyMrBw4UKkpqaiU6dO2LNnj/aC7OTkZMjl9/qtO3fuYMaMGUhNTYWDgwOCg4Nx7Ngx+PtrvuWZmJggOjoa69evR05ODjw8PDBw4EB8+OGHMDc3b6CXSXsupmB3TCpM5TJ8PDKQ37rIqMwN98Wei6k4ek0T+tjPjzdBNhZrDmuG6L/YrSWszeu8yyKqM5kwgq9XeXl5sLOzQ25uLq83qkZuURn6rzyIzIISvN6vDeaE+0pdElGDW7E7FqsPXUdbF2v8Pqs3m38jcPFWLob+6whM5TIcmtcPHvYWUpdEDUwf99/85GgCPtz1FzILStDa2Qpv9G8jdTlEjeLVfm1gz9BHo/JtxdGiIYHubIroiWFjZOQOxmVgy5mbkMmAT0YFwdzUROqSiBqFbuhjHEMfDVxK7l38Fp0CAJjei9dE0pPDxsiIFZSU451tMQCAyT28GYpGRm+8NvSxBN8w9NGgrTuWiHK1QEgrR3RsYSd1OdSEsDEyYp/uuYxbOXfh6WiBubyuiJqA+0Mfv2Hoo8EqLCnHppPJABjoSE8eGyMj9WdiNtYf1yTFfvR8ICwVHM1BTQNDHw3ff0/fQH5xOXycrPAMRxjSE8bGyAgVl6kwf0s0AGBMV0/0bOMkcUVET45MJsM7g9sDYOijIVKpBSKPVgQ69mrFdH564tgYGaF/Rl3F9cxCuNqa450h7aUuh+iJ69zSAc8y9NEg7b2UihvZd+FgaYaRXVpIXQ41QWyMjMzFW7n45pBmiOvSER1hZ2EmcUVE0pgX7guFiVwT+hiXIXU5VEvfHtEcLZrQ3QsWCo6ipSePjZERKVOpMXdLNFRqgaGB7hjAmy1SE+bpaIkpPb0BAMt3xaJcpZa2IHqks8l3cCbpDhQmcrwU6iV1OdREsTEyIqsPxiM2JQ8Olmb4YFgHqcshkhxDHw1L5c1ih3fygIuNUuJqqKliY2Qkrqbl48uoawCAxcM6oJk17zNHxNBHw3Ejuwi/X9QEOk7r3UriaqgpY2NkBFRqgXlbo1GqUuMZPxcMC/KQuiQivTE+xAvezSwZ+qjnvjuaCLUAerd1gp+bftwzi5omNkZGYP2xRJxLzoGNuSmWPRcAmYzDW4kqKUzleHvQvdDH1NxiiSuiB+XeLcPmPzWBjtMZ6EgSY2Nk4JKzivDp/64AABYMbg93O95okehB4R3ctKGPn+29InU59IDNfyajsFSFdq7WeLotc9dIWmyMDJgQAgu2R+NumQqhPs0wrpun1CUR6SWGPuqvMpUa3x1NBKC5WSyPeJPU2BgZsM1/3sDRa1lQmsnx0ciO/EAhegiGPuqn3TEpSMkthpO1OYZ35vWRJD02RgYqNbcYy3bFAgDmDPSFVzMriSsi0n8MfdQvQgh8WzFEf2KoF8xNGehI0mNjZICEEHhvx0Xkl5QjyNMeU3pyaCtRbXg6WmIyQx/1xqmEbMTcyoW5qRwTujPQkfQDGyMD9Gt0Cv6ITYOZiQyfjgqECW+ySFRrr90X+vjzGYY+SmlNxdGikcEt4GilkLgaIg02RgYmu7AUi3deAgC83q8t2rnaSFwRkWG5P/Tx870MfZTK9YwCRF1OAwBM68Wj3qQ/2BgZmA9+vYTswlL4udlgZt/WUpdDZJAY+ii9yKMJEALo7+eC1s7WUpdDpMXGyIBExabhl/O3IZcBH48MhMKU/31E9cHQR2ndKSzFlorTmAx0JH3DPauByCsuw7vbLwIAZvT2QZCnvbQFERm48A5u6OqlCX38nKGPT9TGk0koLlOjg4ctuvs4Sl0OkQ42RgZixe7LSM0rRisnK7w1oJ3U5RAZPJlMhneHaEIft5y9ib9u50lcUdNQUq7C+uNJADRf8pi/RvqGjZEBOBafiR9Pae4j9NHzHaE0Y9YHUUNg6OOTt/P8bWTkl8DNVokhge5Sl0NUBRsjPVdUWo63t8YAACZ0b4kQn2YSV0RkXCpDH49cy2ToYyMTQmDtEc0Q/ck9vWFmwl0Q6R++K/Xcyr1xSM4ugoedEvMj/KQuh8joMPTxyTlyLROXU/NhqTDBuKdaSl0OUbXYGOmxc8l3EHlU8+1q2fMdYaM0k7giIuP0Wl+GPj4JlYGOL3T1hJ0lP89IP7Ex0lMl5SrM2xINtQCe79wc/XxdpC6JyGjZWZrhb8/cC30sZOhjg7uSmo9DcRmQy4CpvI0R6TE2Rnrqq/3xuJpeACdrBd4f6i91OURGb0L3e6GPqw9dl7oco7P2iOZ3Gt7BDS2bWUpcDVHN2BjpodiUPPxn/zUAwJLhAXDgPYSIGp1O6OOheIY+NqCM/BLsOHcbAAMdSf+xMdIz5So15m2JRrlaILyDKwYFuEldElGTwdDHxvH98USUqtTo3NIewV4OUpdD9FBsjPTM2iMJiLmVC1ulKT4cHsDwM6IniKGPDa+4TIXvT9wLdCTSd2yM9Mj1jAKs3BcHAHh/qD9cbJUSV0TU9HRu6YChge4MfWwgW8/exJ2iMrRwsMBAf1epyyF6JDZGekKtFnh7awxKytXo3dYJo4JbSF0SUZM1P8JPG/p4kKGP9aZW3wt0nNqzFUwZ6EgGgO9SPbHxZBJOJWbDUmGC5c915Ck0IgnphD7uZuhjfe2/ko7rGYWwUZrihac8pS6HqFbYGOmBWzl38dHvlwFovql6OnIoK5HUKkMf49IY+lhf31YEOr7YrSWszU0lroaodtgYSUwIgXe2xaCwVIWuXg54qbuX1CURERj6+Lgu3srF8etZMJXLMKmHt9TlENVavRqjr776Ct7e3lAqlQgJCcGpU6dqXHbdunWQyWQ6k1Kpe1GxEAILFy6Eu7s7LCwsEBYWhqtXr9anNIOz7ewtHIzLgMJUjo9HBUIu5yk0In0xobsXvBj6WC+V1xYNCXSHh72FxNUQ1V6dG6PNmzdj9uzZWLRoEc6ePYugoCCEh4cjPT29xnVsbW2RkpKinZKSknQe/+STT/Dll19i1apVOHnyJKysrBAeHo7iYuMOWMvIL8GS3/4CALwZ1hatna0lroiI7qcwlePtCIY+1lVK7l38eqEi0LEXh+iTYalzY7Ry5UrMmDEDU6ZMgb+/P1atWgVLS0tERkbWuI5MJoObm5t2cnW9N2RTCIEvvvgC7733HoYPH47AwEBs2LABt2/fxo4dO+r1ogzFop0XkXu3DAHNbfEy8z2I9FJEwL3Qx5X7GPpYG+uPJaFcLRDSyhEdW9hJXQ5RndSpMSotLcWZM2cQFhZ2bwNyOcLCwnD8+PEa1ysoKICXlxc8PT0xfPhwXLp0SftYQkICUlNTdbZpZ2eHkJCQGrdZUlKCvLw8ncnQ7LmYgt0xqTCVy/DxyEAOYyXSU/eHPv58hqGPj1JYUo5NJzVnBXj7DzJEddobZ2ZmQqVS6RzxAQBXV1ekpqZWu46vry8iIyPxyy+/4IcffoBarUaPHj1w86ZmlEflenXZ5ooVK2BnZ6edPD0NaxhoblEZ3tuhaQ5f6dMaHTz4jYpInzH0sfZ+Pn0DecXlaOVkhf5+LlKXQ1RnjX6YIjQ0FBMnTkSnTp3Qp08fbNu2Dc7Ozli9enW9t7lgwQLk5uZqpxs3bjRgxY3vw11/IbOgBG1crPFG/zZSl0NEtcDQx0dTqQUijyYCAKb2asXBJGSQ6tQYOTk5wcTEBGlpaTrz09LS4OZWu5udmpmZoXPnzrh2TXP3+Mr16rJNc3Nz2Nra6kyG4mBcBracuQmZDPh4ZCDMTU2kLomIasHT0RKTemjiNBj6WL19f6UiObsI9pZmGNWF6f1kmOrUGCkUCgQHByMqKko7T61WIyoqCqGhobXahkqlQkxMDNzd3QEArVq1gpubm8428/LycPLkyVpv01AUlJTjnW0xAIDJPbx5l2kiA/N6v7ba0MctDH2sYk1FoOOEEC9YKPiljwxTnU+lzZ49G2vWrMH69esRGxuLmTNnorCwEFOmTAEATJw4EQsWLNAuv2TJEuzduxfXr1/H2bNnMWHCBCQlJWH69OkANBc2vvnmm1i6dCl27tyJmJgYTJw4ER4eHhgxYkTDvEo98emey7iVcxeejhaYG+4rdTlEVEc6oY/7GPp4v7PJd3Am6Q4UJnJM7MGgWjJcdc5oHzNmDDIyMrBw4UKkpqaiU6dO2LNnj/bi6eTkZMjl9/qtO3fuYMaMGUhNTYWDgwOCg4Nx7Ngx+Pv7a5eZN28eCgsL8fLLLyMnJwe9evXCnj17qgRBGrI/E7Ox/rhmpMZHzwfCUsF4fCJDNKG7F9YfT0RSVhFWH7qO2QPaSV2SXlhbcbRoWCcPuNgYz2c3NT0yYQTDK/Ly8mBnZ4fc3Fy9vN6ouEyFwf88jOuZhRjT1RMfjwqUuiQiegy/x6Rg5sazUJrJcWBOP7jZNe1G4EZ2Efp8uh9qAex5szf83PTvc5j0kz7uvxme8wT8M+oqrmcWwtXWHO9U5KEQkeGKCHBDMEMftb47mgi1AHq3dWJTRAaPjVEju3grF99U3GNp6YiOsLMwk7giInpcD4Y+xqY03dDHvOIybP4zGQADHck4sDFqRGUqNeZuiYZKLTA00B0D/F0fvRIRGYQuD4Q+NlU/nUpGYakK7Vyt8XRbJ6nLIXpsbIwa0eqD8YhNyYODpRk+GNZB6nKIqIFVhj4evpqJA1dqvpG2sSpTqfFdRaDj9F4+kMkY6EiGj41RI7malo8vozQhlouHdUAza3OJKyKihtbUQx93x6QgJbcYTtYKDOvkIXU5RA2CjVEjUKkF5m2NRqlKjf5+LhgWxA8MImP1er+2sLNoeqGPQgh8WzFEf2KoN5RmDHQk48DGqBGsP5aIc8k5sDE3xdLnAnh4mciI2Vma4W/9m17o46mEbMTcyoW5qRwTujPQkYwHG6MGlpxVhE//pxm+u2Bwe7jbWUhcERE1tpe6e8GrmSUy8ku0o1CNXeXtP0YGt4CjlULiaogaDhujBiSEwILt0bhbpkKoTzOM6+YpdUlE9AQoTOV4O8IPAPDNoetIyyuWuKLGdT2jAFGXNTf+ntarlcTVEDUsNkYNaPOfN3D0WhaUZnJ8NLIjT6ERNSGVoY93y1T4fK9xhz5GHk2AEEB/Pxe0draWuhyiBsXGqIGk5hZj2S5Nlsmcgb7wamYlcUVE9CQ1ldDHO4Wl2ovMGehIxoiNUQMQQuC9HReRX1KOIE97TOnJQ8tETVGXlg4YYuShjxtPJqG4TI0OHrbo7uModTlEDY6NUQP4NToFf8SmwcxEhk9HBcJEzlNoRE3V/PB7oY8H4zKkLqdBlZSrsP54EgBgRm8GOpJxYmP0mLILS7F45yUAmjyTdq42EldERFJq2ey+0MddsVCphcQVNZyd528jI78EbrZKDAl0l7ocokbBxugxffDrJWQXlsLPzQYz+7aWuhwi0gOVoY9X0vLx8+kbUpfTIIQQWHtEM0R/ck9vmJlw90HGie/sxxAVm4Zfzt+GXAZ8MioQClP+OonIOEMfj1zLxOXUfFgqTDDuqZZSl0PUaLgnr6e84jK8u/0iAM259sAW9tIWRER6xdhCHytv//FCV0/YWZpJXA1R42FjVE8rdl9Gal4xWjlZ4a0B7aQuh4j0jMJUjvlGEvoYl5aPg3EZkMuAqRx1S0aOjVE9HIvPxI+nkgEAHz3fkTdPJKJqDbov9HHl3jipy6m3tRVHi8I7uKFlM0uJqyFqXGyM6qiotBxvb40BAEzo3hIhPs0kroiI9NX9oY//PXPDIEMfM/JLsP3cLQDA9N48WkTGj41RHa3cG4fk7CJ42Cm1h8mJiGpi6KGP359IQqlKjc4t7RHsxUBHMn5sjOrgXPIdRB7VHFJe9nxH2Ch5ASIRPdr8cD+YmcgMLvSxuEyFH05oAh2n9+LtP6hpYGNUSyXlKszbEg21AJ7v3Bz9fF2kLomIDETLZpaYFOoNwLBCH7edvYXswlK0cLBAeAdXqcsheiLYGNXSV/vjcTW9AE7WCrw/1F/qcojIwLz+TBtt6OOWM/of+qhWC3x7RBMzMKVnK5gy0JGaCL7TayE2JQ//2X8NALBkeAAcrBQSV0REhsbeUqENffxsr/6HPh6IS8f1jELYmJtizFOeUpdD9MSwMXqEcpUa87ZEo1wtENHBDYM78v5ARFQ/hhT6uOaQ5nrKcSEtYW1uKnE1RE8OG6NHWHskATG3cmGrNMWS4R2kLoeIDJihhD5evJWL49ezYCKXYXIPb6nLIXqi2Bg9REJmIVbu04SyvT/UHy62SokrIiJDNyjADV1a2ut16GPlzWKHdHSHh72FxNUQPVlsjB7CyVqB0V1boE87Z4wKbiF1OURkBDShj5oBHPoY+piaW4xfL9wGwEBHaprYGD2EjdIMS0d0xLeTukImk0ldDhEZiWCve6GPK36/LHU5OtYdS0S5WqBbK0feHJuaJDZGtWDGYapE1MAqQx8PxWXoTehjYUk5Np3UBDrO6M1AR2qauMcnIpKAPoY+/nz6BvKKy9HKyQr9/RhiS00TGyMiIonoU+ijSi0QeTQRADC1VyvI5bx8gJomNkZERBKxt1TgjWfaAAA+lzj0cd9fqUjOLoK9pRlGdeFgE2q62BgREUnopVAvtHS0RHp+CdYcli70cc1hzRD9CSFesFCYSFYHkdTYGBERScjc1ARvD9KEPq4+KE3o49nkOziTdAcKEzkm9vB64s9PpE/YGBERSUzq0Me1FUeLhnXygIsNg2ypaWNjREQkMSlDH29kF+H3iykAGOhIBNSzMfrqq6/g7e0NpVKJkJAQnDp1qlbr/fTTT5DJZBgxYoTO/MmTJ0Mmk+lMERER9SmNiMggBXs5YEjHJx/6+N3RRKgF0LutE/zcbJ/Y8xLpqzo3Rps3b8bs2bOxaNEinD17FkFBQQgPD0d6evpD10tMTMScOXPQu3fvah+PiIhASkqKdvrxxx/rWhoRkUGbF+H7REMf84rLsPnPZADAdAY6EgGoR2O0cuVKzJgxA1OmTIG/vz9WrVoFS0tLREZG1riOSqXC+PHj8cEHH8DHp/o/PnNzc7i5uWknBweHupZGRGTQvJpZaUMfV+xu/NDHn04lo7BUhXau1ni6rVOjPheRoahTY1RaWoozZ84gLCzs3gbkcoSFheH48eM1rrdkyRK4uLhg2rRpNS5z4MABuLi4wNfXFzNnzkRWVlaNy5aUlCAvL09nIiIyBpWhj5dTGzf0sUylxrqKQMfpvXx4P0iiCnVqjDIzM6FSqeDq6qoz39XVFampqdWuc+TIEaxduxZr1qypcbsRERHYsGEDoqKi8PHHH+PgwYMYNGgQVCpVtcuvWLECdnZ22snT07MuL4OISG89qdDH3TEpuJ1bDCdrBYZ18miU5yAyRI06Ki0/Px8vvfQS1qxZAyenmg/Tjh07FsOGDUPHjh0xYsQI/Pbbb/jzzz9x4MCBapdfsGABcnNztdONG9JG6RMRNaTGDn0UQmDtEc0Q/Ymh3lCaMdCRqFKdGiMnJyeYmJggLS1NZ35aWhrc3NyqLB8fH4/ExEQ8++yzMDU1hampKTZs2ICdO3fC1NQU8fHx1T6Pj48PnJyccO3atWofNzc3h62trc5ERGQszE1NMD/iXuhjegOHPp5KyEb0zVyYm8oxPqRlg26byNDVqTFSKBQIDg5GVFSUdp5arUZUVBRCQ0OrLO/n54eYmBicP39eOw0bNgz9+vXD+fPnazwFdvPmTWRlZcHd3b2OL4eIyDgM7nhf6OO+hg19/LbiaNHI4BZoZm3eoNsmMnR1PpU2e/ZsrFmzBuvXr0dsbCxmzpyJwsJCTJkyBQAwceJELFiwAACgVCoREBCgM9nb28PGxgYBAQFQKBQoKCjA3LlzceLECSQmJiIqKgrDhw9HmzZtEB4e3rCvlojIQOiEPp6+gcupDTPIJCGzEH/Eao76T+3JQEeiB5nWdYUxY8YgIyMDCxcuRGpqKjp16oQ9e/ZoL8hOTk6GXF77fsvExATR0dFYv349cnJy4OHhgYEDB+LDDz+EuTm/yRBR01UZ+rgrJgXLd1/GhqndHnubkUcSIATQ388FbVysG6BKIuMiE0I0blDGE5CXlwc7Ozvk5ubyeiMiMipJWYUIW3kQZSqB9VO7oU8753pv605hKUI/ikJxmRqbZoSgR2tmF5G09HH/zXulERHpMa9mVpjYQKGPm04lo7hMjQ4etgj1adZAFRIZFzZGRER67o37Qh+3nrlZr22UlKuw7lgiAM3NYhnoSFQ9NkZERHru/tDHz/ZeQVFp3UMff72Qgoz8ErjZKjGkIwMdiWrCxoiIyADcH/r4zaG6hT4KIfBtRVDkpB7eUJjyo5+oJvzrICIyAI8T+nj0WhYup+bDUmGCF7sx0JHoYdgYEREZiMEd3dC5HqGPlbcVeaGrJ+wszRqrPCKjwMaIiMhAyGQyvDekPYDahz7GpeXjYFwGZDIGOhLVBhsjIiIDEuzliCEd3aEWwIrdlx+5/NrDmtt/hPu7oWUzy8Yuj8jgsTEiIjIw8yJ8YWYiw8G4DByKy6hxuYz8Emw/fwsAMONpHi0iqg02RkREBub+0MflDwl9/P5EEkrL1ejkaY8uLR2eYIVEhouNERGRAXrjmTawVZrWGPpYXKbCDyeSAAAzevsw0JGoltgYEREZIHtLBf7Wvy2A6kMft529hezCUrRwsEB4B1cpSiQySGyMiIgM1P2hj2sOJWjnq9UC3x7RDNGf0rMVTE34UU9UW/xrISIyUDqhj4fitaGPB+LScT2jEDbmphjzlKeUJRIZHDZGREQGrDL0saj0Xuhj5dGjcSEtYW1uKmV5RAaHjRERkQF7MPRx29mbOH49CyZyGSb38Ja2OCIDxMaIiMjABXs5YnBHN6gF8PefLwAAhnR0h4e9hcSVERkeNkZEREZgfoQfzExkEBWRRtN7M9CRqD7YGBERGYH7Qx+7tXJEYAt7SeshMlS8Ko+IyEjMDfdFS0dLDPBnbhFRfbExIiIyEkozE0ziBddEj4Wn0oiIiIgqsDEiIiIiqsDGiIiIiKgCGyMiIiKiCmyMiIiIiCqwMSIiIiKqwMaIiIiIqAIbIyIiIqIKbIyIiIiIKrAxIiIiIqrAxoiIiIioAhsjIiIiogpsjIiIiIgqmEpdQEMQQgAA8vLyJK6EiIiIaqtyv125H9cHRtEY5efnAwA8PT0lroSIiIjqKj8/H3Z2dlKXAQCQCX1q0+pJrVbj9u3bsLGxgUwma9Bt5+XlwdPTEzdu3ICtrW2DbpuaLr6vqLHwvUWNobHeV0II5Ofnw8PDA3K5flzdYxRHjORyOVq0aNGoz2Fra8sPGWpwfF9RY+F7ixpDY7yv9OVIUSX9aM+IiIiI9AAbIyIiIqIKbIwewdzcHIsWLYK5ubnUpZAR4fuKGgvfW9QYmtL7yiguviYiIiJqCDxiRERERFSBjRERERFRBTZGRERERBXYGBERERFVMJjGaN26dbC3t3/s7chkMuzYseOxt9PYFi9ejE6dOkldBhERGYHJkydjxIgRUpfxWLy9vfHFF180+vM80cZIH/9jZDJZtdNPP/0kdWlkYCZPnqx9/ygUCrRp0wZLlixBeXk5AE30/TfffIOQkBBYW1vD3t4eXbt2xRdffIGioiKdbd28eRMKhQIBAQFSvBSSSN++ffHmm28+crk1a9YgKChI+z7q3LkzVqxYoX188eLFkMlkeOWVV3TWO3/+PGQyGRITEwEAiYmJNX4GnjhxoiFfGlXIyMjAzJkz0bJlS5ibm8PNzQ3h4eE4evSo1KXVSk0HKRISEvDiiy/Cw8MDSqUSLVq0wPDhw3H58uUnX+RjMopbgjyu7777DhERETrzGuLolNTKyspgZmYmdRlNSkREBL777juUlJRg9+7deO2112BmZoYFCxbgpZdewrZt2/Dee+/h3//+N5ydnXHhwgV88cUX8Pb21vnSsG7dOrzwwgs4dOgQTp48iZCQEOleFOmVyMhIvPnmm/jyyy/Rp08flJSUIDo6GhcvXtRZTqlUYu3atfj73/+Otm3bPnSbf/zxBzp06KAzr1mzZg1eOwEjR45EaWkp1q9fDx8fH6SlpSEqKgpZWVlSl/ZIZWVlNc4fMGAAfH19sW3bNri7u+PmzZv4/fffkZOT82SLfIjS0lIoFIpHLyieoEmTJonhw4dX+9jnn38uAgIChKWlpWjRooWYOXOmyM/P1z7+3XffCTs7O7F9+3bRpk0bYW5uLgYOHCiSk5N1trNjxw7RuXNnYW5uLlq1aiUWL14sysrKtI8DENu3b6/x5wdVPu+ePXuEn5+fsLKyEuHh4eL27ds6y61du1b4+/sLhUIh3NzcxGuvvaZ9LCkpSQwbNkxYWVkJGxsbMXr0aJGamqqz/ooVK4SLi4uwtrYWU6dOFfPnzxdBQUE6y6xZs0b4+fkJc3Nz4evrK7766ivtYwkJCQKA+Omnn8TTTz8tzM3NxXfffVfj66KGV937e8CAAaJ79+5i8+bNAoDYsWNHlfXUarXIycnR+dnHx0fs2bNHzJ8/X8yYMaOxSyc9MGnSJAFAZ0pISKiy3PDhw8XkyZMfuq1FixaJoKAgMWDAADF69Gjt/HPnzulst/Jz49y5cw34Sqgmd+7cEQDEgQMHalymtvvCh+2TysvLxVtvvSXs7OyEo6OjmDt3rpg4caLO59Pvv/8uevbsqV1myJAh4tq1a9rHa9qnPPgeXbRokfZ9lZiY+NDXf+PGDTF27Fjh4OAgLC0tRXBwsDhx4oQQQohr166JYcOGCRcXF2FlZSW6du0q9u3bp7O+l5eX+Mc//qHz+5w2bZpwcnISNjY2ol+/fuL8+fPaxyv/DtasWSO8vb2FTCZ7aH2V9OYaI7lcji+//BKXLl3C+vXr8X//93+YN2+ezjJFRUVYtmwZNmzYgKNHjyInJwdjx47VPn748GFMnDgRs2bNwl9//YXVq1dj3bp1WLZs2WPVVlRUhM8++wzff/89Dh06hOTkZMyZM0f7+Ndff43XXnsNL7/8MmJiYrBz5060adMGAKBWqzF8+HBkZ2fj4MGD2LdvH65fv44xY8Zo1//vf/+LxYsXY/ny5Th9+jTc3d3xn//8R6eGjRs3YuHChVi2bBliY2OxfPlyvP/++1i/fr3Ocm+//TZmzZqF2NhYhIeHP9brpsdnYWGB0tJSbNy4Eb6+vhg+fHiVZWQymc5NFPfv34+ioiKEhYVhwoQJ+Omnn1BYWPgkyyYJ/POf/0RoaChmzJiBlJQUpKSkwNPTs8pybm5uOHHiBJKSkh65zY8++ghbt27F6dOnG6NkqiNra2tYW1tjx44dKCkpqXaZ2u4LH7ZP+vzzz7Fu3TpERkbiyJEjyM7Oxvbt23W2UVhYiNmzZ+P06dOIioqCXC7Hc889B7VarbPc/fuUfv364YsvvoCtra32PTpnzhw4OztDLpdjy5YtUKlU1b6ugoIC9OnTB7du3cLOnTtx4cIFzJs3T/t8BQUFGDx4MKKionDu3DlERETg2WefRXJyco2/z9GjRyM9PR2///47zpw5gy5duqB///7Izs7WLnPt2jVs3boV27Ztw/nz52vclo5atU8N5GFHjB70888/i2bNmml/ruxUK7tLIYSIjY0VAMTJkyeFEEL0799fLF++XGc733//vXB3d9f+jGqOGCmVSmFlZaUzJSUl6Tzv/Z30V199JVxdXbU/e3h4iHfffbfa17F3715hYmKic2Tr0qVLAoA4deqUEEKI0NBQ8eqrr+qsFxISonPEqHXr1mLTpk06y3z44YciNDRUCHGvu//iiy+qrYMa3/3vb7VaLfbt2yfMzc3FnDlzRPv27cWwYcNqtZ0XX3xRvPnmm9qfg4KCePSviejTp4+YNWvWQ5e5ffu26N69uwAg2rVrJyZNmiQ2b94sVCqVdpnKb8pCCDF27FjxzDPPCCFqPmJkYWFR5TOQGseWLVuEg4ODUCqVokePHmLBggXiwoULNS5f077wYfskd3d38cknn2h/LisrEy1atHjo/jcjI0MAEDExMUKImvcplUesHvTvf/9bWFpaao/cLFmyRMTHx2sfX716tbCxsRFZWVk11vCgDh06iH/961/an+8/YnT48GFha2sriouLddZp3bq1WL16tRBC83dgZmYm0tPTa/2cQujREaM//vgD/fv3R/PmzWFjY4OXXnoJWVlZOhelmpqa4qmnntL+7OfnB3t7e8TGxgIALly4gCVLlmi7cmtra+23rwcvbr3fP/7xD5w/f15n8vDw0D5uaWmJ1q1ba392d3dHeno6ACA9PR23b99G//79q912bGwsPD09db75+fv769QdGxtb5RqS0NBQ7b8LCwsRHx+PadOm6by2pUuXIj4+Xme9rl271vg6qfH99ttvsLa2hlKpxKBBgzBmzBgsXrwYopZ33snJycG2bdswYcIE7bwJEyZg7dq1jVUy6bEOHTpo/94HDRoEQPP5c/z4ccTExGDWrFkoLy/HpEmTEBERUeXbPgAsXboUhw8fxt69e2t8ns2bN1f5DKTGMXLkSNy+fRs7d+5EREQEDhw4gC5dumDdunUAarcvfNg+KTc3FykpKTr7FFNT0yr7hqtXr2LcuHHw8fGBra0tvL29AaDKEZra7lNee+01pKamYuPGjQgNDcXPP/+MDh06YN++fQA0F/537twZjo6O1a5fUFCAOXPmoH379rC3t4e1tTViY2NrPGJ04cIFFBQUoFmzZjr7xYSEBJ39opeXF5ydnWv1GirpxcXXiYmJGDp0KGbOnIlly5bB0dERR44cwbRp01BaWgpLS8tabaegoAAffPABnn/++SqPKZXKGtdzc3PTnvqqzoMXMMtkMu2OzsLCola1PY6CggIAmpEoDzZQJiYmOj9bWVk1ej1Us379+uHrr7+GQqGAh4cHTE01f2Lt2rWr1eiMTZs2obi4WOf/WQgBtVqNuLg4tGvXrtFqJ/2ze/du7QWvD37WBAQEICAgAK+++ipeeeUV9O7dGwcPHkS/fv10lmvdujVmzJiBt99+u8YG29PT86GfgdSwlEolBgwYgAEDBuD999/H9OnTsWjRIvTt27dW+8KH7ZNq69lnn4WXlxfWrFkDDw8PqNVqBAQEoLS0VGe5uuxTbGxs8Oyzz+LZZ5/F0qVLER4ejqVLl2LAgAGP3FfOmTMH+/btw2effYY2bdrAwsICo0aNqlJPpYKCAri7u+PAgQNVHrt/8FR99ol6ccTozJkzUKvV+Pzzz9G9e3e0a9cOt2/frrJceXm5zrnyK1euICcnB+3btwcAdOnSBVeuXEGbNm2qTHJ547xUGxsbeHt7IyoqqtrH27dvjxs3buDGjRvaeX/99RdycnLg7++vXebkyZM6690/VNbV1RUeHh64fv16ldfVqlWrRnhVVF9WVlZo06YNWrZsqW2KAODFF19EXFwcfvnllyrrCCGQm5sLANpRRPd/c79w4QJ69+6NyMjIJ/Y6SBoKhULnGg0vLy/t33rz5s1rXK/ys6Sma9EWLlyIuLg4xpDoKX9/fxQWFtZ6X/gwdnZ2cHd319mnlJeX48yZM9qfs7KycOXKFbz33nvo378/2rdvjzt37tRq+w++R2sik8ng5+enfU8GBgbi/PnzOtf/3O/o0aOYPHkynnvuOXTs2BFubm7aWInqdOnSBampqTA1Na2yX3RycqrVa6nJEz9ilJubW+UwrZOTE8rKyvCvf/0Lzz77LI4ePYpVq1ZVWdfMzAxvvPEGvvzyS5iamuL1119H9+7d0a1bNwCaP/6hQ4eiZcuWGDVqFORyOS5cuICLFy9i6dKlNdaUk5OD1NRUnXk2Nja17jQXL16MV155BS4uLhg0aBDy8/Nx9OhRvPHGGwgLC0PHjh0xfvx4fPHFFygvL8err76KPn36aA9Rzpo1C5MnT0bXrl3Rs2dPbNy4EZcuXYKPj4/2OT744AP87W9/g52dHSIiIlBSUoLTp0/jzp07mD17dq3qJOm88MIL2L59O8aNG4f33nsPAwcOhLOzM2JiYvCPf/wDb7zxBry9vXH27Fls3LgRfn5+OuuPGzcOS5YswdKlS3UaLjIu3t7eOHnyJBITE2FtbQ1HR8cqX+pmzpwJDw8PPPPMM2jRogVSUlKwdOlSODs765yCv5+rqytmz56NTz/9tNrHs7KyqnwG2tvbP/RIO9VdVlYWRo8ejalTpyIwMBA2NjY4ffo0PvnkEwwfPhxt2rSp1b7wUWbNmoWPPvoIbdu2hZ+fH1auXKkzbN7BwQHNmjXDN998A3d3dyQnJ+Ptt9+u1ba9vb1RUFCAqKgoBAUFwdLSEnFxcVi0aBFeeukl+Pv7Q6FQ4ODBg4iMjMT8+fMBaD7Dli9fjhEjRmDFihVwd3fHuXPn4OHhgdDQULRt2xbbtm3Ds88+C5lMhvfff7/aU8OVwsLCEBoaihEjRuCTTz7RNpG7du3Cc88993iXldTpiqTHVN1wVABi2rRpYuXKlcLd3V1YWFiI8PBwsWHDBgFA3LlzRwhx74KvrVu3Ch8fH2Fubi7CwsK0F0lX2rNnj+jRo4ewsLAQtra2olu3buKbb77RPo5qLr6ublqxYoXO895v+/bt4sFf3apVq4Svr68wMzMT7u7u4o033tA+Vpvh+suWLRNOTk7C2tpaTJo0ScybN6/KcP2NGzeKTp06CYVCIRwcHMTTTz8ttm3bJoTgsFt98KjBBSqVSnz99dfiqaeeEpaWlsLW1lYEBweLf/7zn6KoqEi8/vrrwt/fv9p1U1JShFwuF7/88ksjVU/64MqVK6J79+7CwsKixuH6W7ZsEYMHDxbu7u5CoVAIDw8PMXLkSBEdHa1d5v6Lryvl5uYKJyenai++rm768ccfG/GVNk3FxcXi7bffFl26dBF2dnbC0tJS+Pr6ivfee08UFRUJIUSt94X3e3CfVFZWJmbNmiVsbW2Fvb29mD17dpXh+vv27RPt27cX5ubmIjAwUBw4cEBn//iwfcorr7wimjVrph2un5GRIf72t7+JgIAAYW1tLWxsbETHjh3FZ599pjMoIDExUYwcOVLY2toKS0tL0bVrV+3gqYSEBNGvXz9hYWEhPD09xb///e8qgxEeHK6fl5cn3njjDeHh4SHMzMyEp6enGD9+vHawU3V/B7UhE6KOJyaJiIiIjJReXGNEREREpA/YGBERERFVYGNEREREVIGNEREREVEFNkZEREREFdgYEREREVVgY0RERERUgY0RERERUQU2RkREREQV2BgRERERVWBjRERERFTh/wMTlhLULro7WQAAAABJRU5ErkJggg==\n"
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "OAA--Zd8McII"
- },
- "source": [
- "# Вывод\n",
- "\n",
- "В ходе работы были соединины в один ноутбук методы уменьшения размерности данных, масштабирования данных, перебора гиперпараметров для моделей, изменения представления данных и т.д.\n",
- "\n",
- "С решением задачи классификации на выбранном датасате лучше всего справилась модель решающего дерева, с использованием get_dummies для представления данных. Однако модели после применения PCA и LabelEncoder + StandartScaler, показали результаты чуть меньшей точности, но с большой скоростью обучения."
- ]
- }
- ],
- "metadata": {
- "colab": {
- "provenance": []
- },
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
- },
- "language_info": {
- "name": "python"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
From ae9e9adc13c10042e611c1561bb0ef48fab929bf Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=D0=A1=D0=BE=D1=84=D0=B8=D1=8F=20=D0=A5=D1=80=D0=B8=D1=81?=
=?UTF-8?q?=D0=B0=D0=BD=D0=BA=D0=BE=D0=B2=D0=B0?=
<132402521+sssoneta@users.noreply.github.com>
Date: Sat, 26 Apr 2025 02:56:48 +0300
Subject: [PATCH 3/3] update
---
project/15_fake_news_detection.ipynb | 14 ++++++++++++--
1 file changed, 12 insertions(+), 2 deletions(-)
diff --git a/project/15_fake_news_detection.ipynb b/project/15_fake_news_detection.ipynb
index f9bf462e..dec37f57 100644
--- a/project/15_fake_news_detection.ipynb
+++ b/project/15_fake_news_detection.ipynb
@@ -1845,10 +1845,20 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 65,
"id": "8fe3cce8-7dfa-4539-b806-1d102860b34c",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best parameters: {'C': 0.1, 'learning_rate': 0.01, 'max_iter': 1000, 'penalty': 'l1'}\n",
+ "\n",
+ "Best model accuracy: 1.0\n"
+ ]
+ }
+ ],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",