@@ -55,35 +55,54 @@ This example demonstrates how consumers of this extension can use the data to si
55
55
an asset from STAC into an xarray Dataset.
56
56
57
57
``` python
58
- >> > import fsspec, xarray, pystac
59
- >> > collection = pystac.read_file(" examples/collection.json" )
60
- >> > asset = collection.assets[" example" ]
58
+ >> > import pystac, planetary_computer, xarray as xr
59
+
60
+ >> > collection = planetary_computer.sign(
61
+ ... pystac.read_file(" https://planetarycomputer.microsoft.com/api/stac/v1/collections/terraclimate" )
62
+ ... )
63
+ >> > asset = collection.assets[" zarr-abfs" ]
61
64
>> > asset.media_type
62
- ' application/vnd+zarr'
63
- >> > store = fsspec.get_mapper(asset.href, ** asset.properties[" xarray:storage_options" ])
64
- >> > ds = xarray.open_zarr(store, ** asset.properties[" xarray:open_kwargs" ])
65
+
66
+ >> > ds = xr.open_dataset(
67
+ ... asset.href,
68
+ ... ** asset.extra_fields[" xarray:open_kwargs" ]
69
+ ... )
65
70
>> > ds
66
- < xarray.Dataset>
67
- Dimensions: (crs: 1 , lat: 4320 , lon: 8640 , time: 744 )
71
+ < xarray.Dataset> Size: 2TB
72
+ Dimensions: (time: 768 , lat: 4320 , lon: 8640 , crs: 1 )
68
73
Coordinates:
69
- * crs (crs) int16 3
70
- * lat (lat) float64 89.98 89.94 89.9 ... - 89.94 - 89.98
71
- * lon (lon) float64 - 180.0 - 179.9 - 179.9 ... 179.9 180.0
72
- * time (time) datetime64[ns] 1958 - 01 - 01 ... 2019 - 12 - 01
73
- Data variables: (12 / 18 )
74
- aet (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
75
- def (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
76
- pdsi (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
77
- pet (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
78
- ppt (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
79
- ppt_station_influence (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
80
- ... ...
81
- tmin (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
82
- tmin_station_influence (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
83
- vap (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
84
- vap_station_influence (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
85
- vpd (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
86
- ws (time, lat, lon) float32 dask.array< chunksize= (12 , 1440 , 1440 ), meta= np.ndarray>
74
+ * crs (crs) int16 2B 3
75
+ * lat (lat) float64 35kB 89.98 89.94 89.9 89.85 ... - 89.9 - 89.94 - 89.98
76
+ * lon (lon) float64 69kB - 180.0 - 179.9 - 179.9 ... 179.9 179.9 180.0
77
+ * time (time) datetime64[ns] 6kB 1958 - 01 - 01 1958 - 02 - 01 ... 2021 - 12 - 01
78
+ Data variables: (12 / 14 )
79
+ aet (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
80
+ def (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
81
+ pdsi (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
82
+ pet (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
83
+ ppt (time, lat, lon) float64 229GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
84
+ q (time, lat, lon) float64 229GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
85
+ ... ...
86
+ swe (time, lat, lon) float64 229GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
87
+ tmax (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
88
+ tmin (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
89
+ vap (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
90
+ vpd (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
91
+ ws (time, lat, lon) float32 115GB dask.array< chunksize= (12 , 1024 , 1024 ), meta= np.ndarray>
92
+ Attributes: (12 / 52 )
93
+ Conventions: CF - 1.6
94
+ acknowledgment: Please cite the references included here...
95
+ cdm_data_type: GRID
96
+ contributor_email: khegewisch@ ucmerced.edu
97
+ contributor_name: Katherine Hegewisch
98
+ contributor_role: Postdoctoral Fellow
99
+ ... ...
100
+ time_coverage_duration: P1Y
101
+ time_coverage_end: 1958 - 12 - 01T00 :0
102
+ time_coverage_resolution: P1M
103
+ time_coverage_start: 1958 - 01 - 01T00 :0
104
+ title: TerraClimate: monthly climate and climat...
105
+ version: v1.0
87
106
```
88
107
89
108
## Contributing
0 commit comments