Skip to content
This repository was archived by the owner on Jun 4, 2025. It is now read-only.

Commit e39a6eb

Browse files
Merge pull request #7 from stac-extensions/TomAugspurger-patch-1
Update README.md
2 parents 68c4988 + 2259907 commit e39a6eb

File tree

1 file changed

+45
-26
lines changed

1 file changed

+45
-26
lines changed

README.md

Lines changed: 45 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -55,35 +55,54 @@ This example demonstrates how consumers of this extension can use the data to si
5555
an asset from STAC into an xarray Dataset.
5656

5757
```python
58-
>>> import fsspec, xarray, pystac
59-
>>> collection = pystac.read_file("examples/collection.json")
60-
>>> asset = collection.assets["example"]
58+
>>> import pystac, planetary_computer, xarray as xr
59+
60+
>>> collection = planetary_computer.sign(
61+
... pystac.read_file("https://planetarycomputer.microsoft.com/api/stac/v1/collections/terraclimate")
62+
... )
63+
>>> asset = collection.assets["zarr-abfs"]
6164
>>> asset.media_type
62-
'application/vnd+zarr'
63-
>>> store = fsspec.get_mapper(asset.href, **asset.properties["xarray:storage_options"])
64-
>>> ds = xarray.open_zarr(store, **asset.properties["xarray:open_kwargs"])
65+
66+
>>> ds = xr.open_dataset(
67+
... asset.href,
68+
... **asset.extra_fields["xarray:open_kwargs"]
69+
... )
6570
>>> ds
66-
<xarray.Dataset>
67-
Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 744)
71+
<xarray.Dataset> Size: 2TB
72+
Dimensions: (time: 768, lat: 4320, lon: 8640, crs: 1)
6873
Coordinates:
69-
* crs (crs) int16 3
70-
* lat (lat) float64 89.98 89.94 89.9 ... -89.94 -89.98
71-
* lon (lon) float64 -180.0 -179.9 -179.9 ... 179.9 180.0
72-
* time (time) datetime64[ns] 1958-01-01 ... 2019-12-01
73-
Data variables: (12/18)
74-
aet (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
75-
def (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
76-
pdsi (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
77-
pet (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
78-
ppt (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
79-
ppt_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
80-
... ...
81-
tmin (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
82-
tmin_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
83-
vap (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
84-
vap_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
85-
vpd (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
86-
ws (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
74+
* crs (crs) int16 2B 3
75+
* lat (lat) float64 35kB 89.98 89.94 89.9 89.85 ... -89.9 -89.94 -89.98
76+
* lon (lon) float64 69kB -180.0 -179.9 -179.9 ... 179.9 179.9 180.0
77+
* time (time) datetime64[ns] 6kB 1958-01-01 1958-02-01 ... 2021-12-01
78+
Data variables: (12/14)
79+
aet (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
80+
def (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
81+
pdsi (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
82+
pet (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
83+
ppt (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
84+
q (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
85+
... ...
86+
swe (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
87+
tmax (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
88+
tmin (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
89+
vap (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
90+
vpd (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
91+
ws (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
92+
Attributes: (12/52)
93+
Conventions: CF-1.6
94+
acknowledgment: Please cite the references included here...
95+
cdm_data_type: GRID
96+
contributor_email: khegewisch@ucmerced.edu
97+
contributor_name: Katherine Hegewisch
98+
contributor_role: Postdoctoral Fellow
99+
... ...
100+
time_coverage_duration: P1Y
101+
time_coverage_end: 1958-12-01T00:0
102+
time_coverage_resolution: P1M
103+
time_coverage_start: 1958-01-01T00:0
104+
title: TerraClimate: monthly climate and climat...
105+
version: v1.0
87106
```
88107

89108
## Contributing

0 commit comments

Comments
 (0)