-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfirst_neural_network-result-269454.json
132 lines (132 loc) · 4.2 KB
/
first_neural_network-result-269454.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
"tests": [
{
"traceback": "",
"rubric_item_id": 5574,
"result": ".",
"description": "The activation function is a sigmoid"
},
{
"traceback": "",
"rubric_item_id": 5578,
"result": ".",
"description": "The backpropagation implementation is correct"
},
{
"traceback": "",
"rubric_item_id": 5575,
"result": ".",
"description": "The number of epochs is reasonable"
},
{
"traceback": "",
"rubric_item_id": 5572,
"result": ".",
"description": "The forward pass implementation is correct"
},
{
"traceback": "",
"rubric_item_id": 5581,
"result": ".",
"description": "The number of hidden nodes is reasonable"
},
{
"traceback": "",
"rubric_item_id": 5582,
"result": ".",
"description": "The learning_rate is reasonable"
},
{
"traceback": "",
"rubric_item_id": 7964,
"result": ".",
"description": "The number of output nodes is correct"
},
{
"traceback": "",
"rubric_item_id": 7965,
"result": ".",
"description": "Produces good results when running the network on full data"
},
{
"traceback": "",
"rubric_item_id": 5573,
"result": ".",
"description": "The run method is correct"
},
{
"traceback": "",
"rubric_item_id": 5570,
"result": ".",
"description": "The weights are updated correctly on training"
},
{
"traceback": "",
"rubric_item_id": 5580,
"result": ".",
"description": "The update_weights implementation is correct"
}
],
"critiques": {
"700": {
"general_comment": "Great job on implementing a successful neural network! As we can see, the model overestimates bike ridership in December because it hasn't had sufficient holiday season training examples. The predictions generally are quite accurate, though!",
"rubric_items": {
"5570": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5572": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5573": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5574": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5575": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5578": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5580": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5581": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"5582": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"7964": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
},
"7965": {
"autograded": false,
"result": "passed",
"observation": "Correct!"
}
}
}
}
}