forked from WuJie1010/Facial-Expression-Recognition.Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_fer2013.py
63 lines (53 loc) · 2.07 KB
/
preprocess_fer2013.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# create data and label for FER2013
# labels: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral
import csv
import os
import numpy as np
import h5py
file = 'data/fer2013.csv'
# Creat the list to store the data and label information
Training_x = []
Training_y = []
PublicTest_x = []
PublicTest_y = []
PrivateTest_x = []
PrivateTest_y = []
datapath = os.path.join('data','data.h5')
if not os.path.exists(os.path.dirname(datapath)):
os.makedirs(os.path.dirname(datapath))
with open(file,'r') as csvin:
data=csv.reader(csvin)
for row in data:
if row[-1] == 'Training':
temp_list = []
for pixel in row[1].split( ):
temp_list.append(int(pixel))
I = np.asarray(temp_list)
Training_y.append(int(row[0]))
Training_x.append(I.tolist())
if row[-1] == "PublicTest" :
temp_list = []
for pixel in row[1].split( ):
temp_list.append(int(pixel))
I = np.asarray(temp_list)
PublicTest_y.append(int(row[0]))
PublicTest_x.append(I.tolist())
if row[-1] == 'PrivateTest':
temp_list = []
for pixel in row[1].split( ):
temp_list.append(int(pixel))
I = np.asarray(temp_list)
PrivateTest_y.append(int(row[0]))
PrivateTest_x.append(I.tolist())
print(np.shape(Training_x))
print(np.shape(PublicTest_x))
print(np.shape(PrivateTest_x))
datafile = h5py.File(datapath, 'w')
datafile.create_dataset("Training_pixel", dtype = 'uint8', data=Training_x)
datafile.create_dataset("Training_label", dtype = 'int64', data=Training_y)
datafile.create_dataset("PublicTest_pixel", dtype = 'uint8', data=PublicTest_x)
datafile.create_dataset("PublicTest_label", dtype = 'int64', data=PublicTest_y)
datafile.create_dataset("PrivateTest_pixel", dtype = 'uint8', data=PrivateTest_x)
datafile.create_dataset("PrivateTest_label", dtype = 'int64', data=PrivateTest_y)
datafile.close()
print("Save data finish!!!")