-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgui2_mdbeps1.py
1042 lines (934 loc) · 47.7 KB
/
gui2_mdbeps1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#-----------------------------------------------------------------------
# 1-2/2D Darwin OpenMP PIC code
# written by Viktor K. Decyk and Joshua Kelly, UCLA
# copyright 2016, regents of the university of california
import sys
import math
import numpy
sys.path.append('./mbeps1.source')
from libmpush1 import *
from libmbpush1 import *
from libmdpush1 import *
from fomplib import *
from fgraf1 import *
from dtimer import *
from PopMenus import *
"""
This imports the gui code
"""
from types import * # This is required for the rightType function
import sys
sys.path.append('./gui')
from ProceduralInterface import *
# override default input data
in1.emf = 2
# read namelist
iuin = 8
in1.readnml1(iuin)
# override input data
in1.idcode = 3
in1.ndim = 3
in1.ntar = 0
# import modules after namelist has been read
import s1
import sb1
import sd1
int_type = numpy.int32
double_type = numpy.float64
float_type = numpy.float32
complex_type = numpy.complex64
runCounter = 0
def initialize_menus(pc):
# initialize all diagnostics from namelist input parameters
# initialize energy diagnostic: allocates wt
pc.addGraph("NOPLOT", "No Plot", autoadd=False)
if (in1.ntw > 0):
pc.addGraph("ENERGY", "Energy") # Enable electron velocity
if in1.nts > 0:
labels = ["Vx-x Phase Plot", "Vy-x Phase Plot", "Vz-x Phase Plot"]
nn = in1.nsxv
for i in xrange(0, 3):
if ((nn % 2) == 1):
pc.addGraph("EPHASE" + str(i), "Electron/" + labels[i]) # Enable electron velocity
if (in1.movion == 1): # Ions
if ((in1.nds == 2) or (in1.nds == 3)):
pc.addGraph("IPHASE" + str(i), "Ions/" + labels[i]) # Enable electron velocity
nn = int(nn / 2)
# vx-vy, vx-vz or vy-vz
labels = ["Vx-Vy Phase Plot", "Vx-Vz Phase Plot", "Vy-Vz Phase Plot"]
nn = in1.nsvv
for i in xrange(0, 3):
if ((nn % 2) == 1):
pc.addGraph("EPHASEV" + str(i), "Electron/" + labels[i]) # Enable electron velocity
if (in1.movion == 1): # Ions
if ((in1.nds == 2) or (in1.nds == 3)):
pc.addGraph("IPHASEV" + str(i), "Ions/" + labels[i]) # Enable electron velocity
nn = int(nn / 2)
# initialize electron density diagnostic
if (in1.ntde > 0):
pc.addGraph("EDENSITY", "Density/Electron Density") # Enable electron velocity
# initialize ion density diagnostic: allocates pkwdi, wkdi
if (in1.movion == 1):
if (in1.ntdi > 0):
pc.addGraph("IDENSITY", "Density/Ion Density") # Enable ion velocity
pc.addGraph("ION DENSITY OMEGA VS MODE+", "Ion Dispersion/Ion Density Dispersion +")
pc.addGraph("ION DENSITY OMEGA VS MODE-", "Ion Dispersion/Ion Density Dispersion -", autoadd=False)
#pc.addGraph("ION DENSITY OMEGA VS MODE LINE", "Ion Dispersion/Ion Density Dispersion Trace")
pc.addGraph("ION CURRENT OMEGA VS MODEY+", "Ion Dispersion/Ion Current Dispersion Y+")
pc.addGraph("ION CURRENT OMEGA VS MODEZ+", "Ion Dispersion/Ion Current Dispersion Z+")
pc.addGraph("ION CURRENT OMEGA VS MODEY-", "Ion Dispersion/Ion Current Dispersion Y-", autoadd=False)
pc.addGraph("ION CURRENT OMEGA VS MODEZ-", "Ion Dispersion/Ion Current Dispersion Z-", autoadd=False)
# initialize potential diagnostic: allocates pkw, wk
if (in1.ntp > 0):
if in1.ndp == 1 or in1.ndp == 3:
pc.addGraph("DRAWPOT", "Potential/Potential") # Enable electron velocity
if in1.ndp == 2 or in1.ndp == 3:
pc.addGraph("POTENTIAL OMEGA VS MODE+", "Potential/Potential Omega vs Mode +")
pc.addGraph("POTENTIAL OMEGA VS MODE-", "Potential/Potential Omega vs Mode -", autoadd=False)
#pc.addGraph("POTENTIAL OMEGA VS MODE LINE", "Potential/Potential Omega vs Mode Trace")
# initialize longitudinal efield diagnostic
if (in1.ntel > 0):
pc.addGraph("ELFIELD", "E-Field/Longitudinal E-Field")
# initialize ion current density diagnostic: allocates vpkwji, vwkji
if (in1.movion == 1):
if (in1.ntji > 0):
pc.addGraph("ICURRENTD", "Ions/Ion Current Density")
# initialize darwin vector potential diagnostic: allocates vpkw, vwk
if (in1.nta > 0):
if ((in1.nda == 1) or (in1.nda == 3)):
pc.addGraph("VECPOTENTIAL", "Vector Potential Diagnostic/Vector Potential") # Enable electron velocity
pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Y+",
"Vector Potential Diagnostic/Vector Potential:Y+ OMEGA vs MODE")
pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Y-",
"Vector Potential Diagnostic/Vector Potential:Y- OMEGA vs MODE", autoadd=False)
pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Z+",
"Vector Potential Diagnostic/Vector Potential:Z+ OMEGA vs MODE")
pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Z-",
"Vector Potential Diagnostic/Vector Potential:Z- OMEGA vs MODE", autoadd=False)
#pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Y LINE",
# "Vector Potential Diagnostic/Vector Potential:Y OMEGA vs MODE Trace")
#pc.addGraph("VECTOR POTENTIAL OMEGA VS MODE Z LINE",
# "Vector Potential Diagnostic/Vector Potential:Z OMEGA vs MODE Trace")
# initialize darwin transverse efield diagnostic:
# allocates vpkwet, vwket
if (in1.ntet > 0):
pc.addGraph("TRANSVERSE E FIELD",
"Transverse Electric Field/Transverse Electric Field") # Enable electron velocity
"""pc.addGraph("TRANSVERSE E.F. Y OMEGA VS MODE",
"Transverse Electric Field/Transverse Y Electric Field, Omega vs Mode")
pc.addGraph("TRANSVERSE E.F. Z OMEGA VS MODE",
"Transverse Electric Field/Transverse Z Electric Field, Omega vs Mode")"""
pc.addGraph("FT TRANSVERSE E.F. Y +OMEGA VS MODE",
"Transverse Electric Field/Transverse Y Electric Field, +Omega vs Mode")
pc.addGraph("FT TRANSVERSE E.F. Y -OMEGA VS MODE",
"Transverse Electric Field/Transverse Z Electric Field, -Omega vs Mode", autoadd=False)
pc.addGraph("FT TRANSVERSE E.F. Z +OMEGA VS MODE",
"Transverse Electric Field/Transverse Y Electric Field, +Omega vs Mode")
pc.addGraph("FT TRANSVERSE E.F. Z -OMEGA VS MODE",
"Transverse Electric Field/Transverse Z Electric Field, -Omega vs Mode", autoadd=False)
# initialize darwin magnetic field diagnostic
if (in1.ntb > 0):
pc.addGraph("BFIELD", "Magnetic Field") # Enable electron velocity
# initialize velocity diagnostic
if (in1.ntv > 0):
# electrons: allocates fv, fvm, fvtm
pc.addGraph("EVELOCITY", "Electron Velocity") # Enable electron velocity
# ions: allocates fvi, fvmi, fvtmi
if (in1.movion == 1):
pc.addGraph("IVELOCITY", "Ions/Ion Velocity") # Enable electron velocity
# initialize trajectory diagnostic: allocates partd, fvtp, fvmtp
if (in1.ntt > 0):
pc.addGraph("TRAJECTORY", "Particle Trajectory") # Enable electron velocity
def main(*args):
# init GUI
pc = PlasmaContext(in1, *args) # Create GUI
pc.showGraphs(True) # enable graphics. Setting to false will disable graphics
pc.clearGraphList() # remove all default graph options
in1.timedirection = 0 # default state of the GUI. MUST BE 0
# ipbc = particle boundary condition: 1 = periodic
ipbc = sd1.ipbc
zero = 0.0
# declare scalars for standard code
npi = 0
ws = numpy.zeros((1), float_type)
wpmax = numpy.empty((1), float_type)
wpmin = numpy.empty((1), float_type)
# declare scalars for OpenMP code
irc = numpy.zeros((1), int_type)
ierr = numpy.zeros((1), int_type)
# declare and initialize timing data
tinit = 0.0
tloop = 0.0
itime = numpy.empty((4), numpy.int32)
ltime = numpy.empty((4), numpy.int32)
dtime = numpy.empty((1), double_type)
# start timing initialization
dtimer(dtime, itime, -1)
# text output file
fname = "output1." + s1.cdrun
iuot = open(fname, "w")
# in1.nvp = number of shared memory nodes (0=default)
#nvp = int(input("enter number of nodes: "))
# initialize for shared memory parallel processing
omplib.init_omp(in1.nvp)
# open graphics device
irc[0] = graf1.open_graphs(in1.nplot)
# initialize scalars for standard code
# np = total number of particles in simulation
np = s1.np
# nx = number of grid points in x direction
nx = s1.nx
spectrum_scale = 2.0*numpy.pi/float(nx)
nxh = int(nx / 2)
# npi = total number of ions in simulation
if (in1.movion > 0):
npi = s1.npi
nxe = nx + 2
nxeh = int(nxe / 2)
# nloop = number of time steps in simulation
# nstart = initial time loop index
# ntime = current time step
nloop = s1.nloop
nstart = 0
ntime = 0
# allocate field data for standard code:
# qe/qi = electron/ion charge density with guard cells
# fxe = smoothed electric field with guard cells
# ffc = form factor array for poisson solver
# mixup = bit reverse table for FFT
# sct = sine/cosine table for FFT
# cue = electron current density with guard cells
# fxyze/byze = smoothed electric/magnetic field with guard cells
# dcu/dcui = electron/ion acceleration density with guard cells
# amu/amui = electron/ion momentum flux with guard cells
# cus = transverse electric field
# ffe = form factor array for iterative poisson solver
sd1.init_dfields13()
# prepare fft tables
mfft1.mfft1_init(s1.mixup, s1.sct, in1.indx)
# calculate form factor: ffc
mfield1.mpois1_init(s1.ffc, in1.ax, s1.affp, nx)
# initialize different ensemble of random numbers
if (in1.nextrand > 0):
minit1.mnextran1(in1.nextrand, in1.ndim, np + npi)
# open reset and restart files; iur, iurr, iur0
s1.open_restart1()
# new start
if (in1.nustrt == 1):
# initialize electrons: updates ppart, kpic
# ppart = tiled electron particle arrays
# kpic = number of electrons in each tile
sb1.init_electrons13()
# initialize background charge density: updates qi
if (in1.movion == 0):
s1.qi.fill(0.0)
qmi = -in1.qme
mpush1.mpost1(s1.ppart, s1.qi, s1.kpic, qmi, s1.tdpost, in1.mx)
mgard1.maguard1(s1.qi, s1.tguard, nx)
# initialize ions: updates pparti, kipic, cui
# pparti = tiled on particle arrays
# kipic = number of ions in each tile
# cui = ion current density with guard cells
if (in1.movion == 1):
sb1.init_ions13()
# calculate shift constant for iteration: update wpm, q2m0
sd1.calc_shift13(iuot)
# initialize darwin electric field
sd1.cus.fill(0.0)
# restart to continue a run which was interrupted
elif (in1.nustrt == 2):
sd1.bread_drestart13(s1.iur)
ntime = s1.ntime
nstart = ntime
# start a new run with data from a previous run
elif (in1.nustrt == 0):
sd1.bread_drestart13(s1.iur0)
# calculate form factor: ffe
mfield1.mepois1_init(sd1.ffe, in1.ax, s1.affp, sd1.wpm, in1.ci, nx)
# initialize longitudinal electric field
s1.fxe.fill(0.0)
# set magnitude of external transverse magnetic field
omt = numpy.sqrt(in1.omy * in1.omy + in1.omz * in1.omz)
# reverse simulation at end back to start
if (in1.treverse == 1):
nloop = 2 * nloop
sb1.nloop = nloop
sd1.nloop = nloop
# initialize all diagnostics from namelist input parameters
# wt = energy time history array=
# pkw = power spectrum for potential
# pkwdi = power spectrum for ion density
# wk = maximum frequency as a function of k for potential
# wkdi = maximum frequency as a function of k for ion density
# fmse/fmsi = electron/ion fluid moments
# fv/fvi = global electron/ion velocity distribution functions
# fvm/fvmi = electron/ion vdrift, vth, entropy for global distribution
# fvtm/fvtmi = time history of electron/ion vdrift, vth, and entropy
# fvtp = velocity distribution function for test particles
# fvmtp = vdrift, vth, and entropy for test particles
# partd = trajectory time history array
# vpkwji = power spectrum for ion current density
# vwkji = maximum frequency as a function of k for ion current
# vpkw = power spectrum for vector potential
# vwk = maximum frequency as a function of k for vector potential
# vpkwet = power spectrum for transverse efield
# vwket = maximum frequency as a function of k for transverse efield
sd1.initialize_ddiagnostics13(ntime)
# read in restart diagnostic file to continue interrupted run
if (in1.nustrt == 2):
sd1.dread_drestart13(s1.iur)
# write reset file
sd1.bwrite_drestart13(s1.iurr, ntime)
# initialization time
dtimer(dtime, itime, 1)
tinit = tinit + float(dtime)
# start timing loop
dtimer(dtime, ltime, -1)
print >> iuot, "program mdbeps1"
"""
Initialize default windows
"""
initialize_menus(pc)
PopMenus(pc, in1)
# sends data the GUI may want to know about the simulation
pc.updateSimInfo({"tend": in1.tend})
# * * * start main iteration loop * * *
for ntime in xrange(nstart, nloop):
print >> iuot, "ntime = ", ntime
"""
The following 4 lines process events from the GUI.
Nothing will happen without calling getEvents
"""
if ntime == nstart:
pc.runOnce()
curtime = ntime * in1.dt
pc.setTime(curtime, in1.dt)
pc.getEvents()
pc.fastForward()
# debug reset
# if (ntime==nloop/2):
# sd1.bread_drestart13(s1.iurr)
# sd1.reset_ddiags13()
# deposit current with OpenMP: updates cue
dtimer(dtime, itime, -1)
sb1.cue.fill(0.0)
dtimer(dtime, itime, 1)
sb1.tdjpost[0] += float(dtime)
mcurd1.wmdjpost1(s1.ppart, sb1.cue, s1.kpic, s1.ncl, s1.ihole, in1.qme,
zero, in1.ci, sb1.tdjpost, nx, in1.mx, ipbc,
in1.relativity, False, irc)
# add guard cells: updates cue
mgard1.macguard1(sb1.cue, sb1.tguard, nx)
# save electron current for electron current diagnostic later
if (in1.ndc == 0):
if (in1.ntje > 0):
it = ntime / in1.ntje
if (ntime == in1.ntje * it):
sb1.oldcue[:] = numpy.copy(sb1.cue)
# deposit ion current with OpenMP: updates cui
if (in1.movion == 1):
dtimer(dtime, itime, -1)
sb1.cui.fill(0.0)
dtimer(dtime, itime, 1)
sb1.tdjpost[0] += float(dtime)
mcurd1.wmdjpost1(s1.pparti, sb1.cui, s1.kipic, s1.ncl, s1.ihole,
in1.qmi, zero, in1.ci, sb1.tdjpost, nx, in1.mx, ipbc,
in1.relativity, list, irc)
# add guard cells: updates cui
mgard1.macguard1(sb1.cui, sb1.tguard, nx)
# deposit charge with OpenMP: updates qe
dtimer(dtime, itime, -1)
s1.qe.fill(0.0)
dtimer(dtime, itime, 1)
s1.tdpost[0] += float(dtime)
mpush1.mpost1(s1.ppart, s1.qe, s1.kpic, in1.qme, s1.tdpost, in1.mx)
# add guard cells: updates qe
mgard1.maguard1(s1.qe, s1.tguard, nx)
# electron density diagnostic: updates sfield=electron density
if (in1.ntde > 0):
it = int(ntime / in1.ntde)
if (ntime == in1.ntde * it):
s1.edensity_diag1(s1.sfield)
# display smoothed electron density
edenx = numpy.array(range(nx))
edeny = numpy.array(s1.sfield[0:nx], copy=True)
pc.showSimple(["EDENSITY", "Electron Density"], [edenx], [edeny], "Time=" + str(ntime * in1.dt), early=in1.ntde)
graf1.dscaler1(s1.sfield, ' EDENSITY', ntime, 999, 0, nx, irc)
graf1.dscaler1(s1.sfield, ' EDENSITY', ntime, 999, 0, nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# deposit ion charge with OpenMP: updates qi
if (in1.movion == 1):
dtimer(dtime, itime, -1)
s1.qi.fill(0.0)
dtimer(dtime, itime, 1)
s1.tdpost[0] += float(dtime)
mpush1.mpost1(s1.pparti, s1.qi, s1.kipic, in1.qmi, s1.tdpost, in1.mx)
# add guard cells: updates qi
mgard1.maguard1(s1.qi, s1.tguard, nx)
# ion density diagnostic: updates sfield=ion density, pkwdi, wkdi
if (in1.movion == 1):
if (in1.ntdi > 0):
it = int(ntime / in1.ntdi)
if (ntime == in1.ntdi * it):
s1.idensity_diag1(s1.sfield, s1.pkwdi, s1.wkdi, ntime)
if ((in1.nddi == 1) or (in1.nddi == 3)):
# display smoothed ion density
edenx = numpy.array(range(nx))
pc.showSimple(["IDENSITY", "Ion Density", "Electron Density"], [edenx, edenx],
[s1.sfield[0:nx], edeny], "Time=" + str(ntime * in1.dt), early=in1.ntdi)
graf1.dscaler1(s1.sfield, ' ION DENSITY', ntime, 999, 1, nx,
irc)
graf1.dscaler1(s1.sfield, ' ION DENSITY', ntime, 999, 1, nx,
irc)
if (irc[0] == 1):
break
irc[0] = 0
# ion spectral analysis
if ((in1.nddi == 2) or (in1.nddi == 3)):
# display frequency spectrum
pc.showSimpleImage("ION DENSITY OMEGA VS MODE+", s1.pkwdi[::, :, 0], "Time=" + str(ntime * in1.dt),
extent=(0, in1.modesxdi, in1.wimin, in1.wimax), early=in1.ntdi,
ticks_scale=spectrum_scale)
pc.showSimpleImage("ION DENSITY OMEGA VS MODE-", s1.pkwdi[::, :, 1], "Time=" + str(ntime * in1.dt),
extent=(0, in1.modesxdi, in1.wimin, in1.wimax), early=in1.ntdi,
ticks_scale=spectrum_scale)
wax = numpy.array(range(in1.modesxdi))
pc.showSimple(["ION DENSITY OMEGA VS MODE LINE", "+OMEGA", "-OMEGA"], [wax, wax],
[s1.wkdi[0:in1.modesxdi, 0], s1.wkdi[0:in1.modesxdi, 1]],
"Time=" + str(ntime * in1.dt), early=in1.ntdi)
graf1.dmscaler1(s1.wkdi, 'ION DENSITY OMEGA VS MODE',
ntime, 999, 1, in1.modesxdi, s1.cwk, irc)
graf1.dmscaler1(s1.wkdi, 'ION DENSITY OMEGA VS MODE',
ntime, 999, 1, in1.modesxdi, s1.cwk, irc)
if (irc[0] == 1):
break
irc[0] = 0
# add electron and ion densities: updates qe
mfield1.maddqei1(s1.qe, s1.qi, s1.tfield, nx)
# add electron and ion current densities: updates cue
if (in1.movion == 1):
mfield1.maddcuei1(sb1.cue, sb1.cui, sb1.tfield, nx)
# transform charge to fourier space: updates qe
isign = -1
mfft1.mfft1r(s1.qe, isign, s1.mixup, s1.sct, s1.tfft, in1.indx)
# calculate longitudinal force/charge in fourier space:
# updates fxe, we
mfield1.mpois1(s1.qe, s1.fxe, s1.ffc, s1.we, s1.tfield, nx)
# transform longitudinal electric force to real space: updates fxe
isign = 1
mfft1.mfft1r(s1.fxe, isign, s1.mixup, s1.sct, s1.tfft, in1.indx)
# copy guard cells: updates fxe
mgard1.mdguard1(s1.fxe, s1.tguard, nx)
# initialize electron deposit data
dtimer(dtime, itime, -1)
sd1.dcu.fill(0.0)
sd1.amu.fill(0.0)
dtimer(dtime, itime, 1)
sd1.tdcjpost[0] += float(dtime)
# initialize ion deposit data
if (in1.movion == 1):
dtimer(dtime, itime, -1)
sd1.dcui.fill(0.0)
sd1.amui.fill(0.0)
dtimer(dtime, itime, 1)
sd1.tdcjpost[0] += float(dtime)
# predictor for darwin iteration: updates: cue, cus, byze, fxyze
sd1.darwin_predictor13(sd1.q2m0)
# inner iteration loop
for k in xrange(0, in1.ndc):
# initialize electron deposit data
dtimer(dtime, itime, -1)
sb1.cue.fill(0.0)
sd1.dcu.fill(0.0)
sd1.amu.fill(0.0)
dtimer(dtime, itime, 1)
sd1.tdcjpost[0] += float(dtime)
# initialize ion deposit data
if (in1.movion == 1):
dtimer(dtime, itime, -1)
sb1.cui.fill(0.0)
sd1.dcui.fill(0.0)
sd1.amui.fill(0.0)
dtimer(dtime, itime, 1)
sd1.tdcjpost[0] += float(dtime)
# updates: dcu, cus, byze, fxyze
sd1.darwin_iteration(sd1.q2m0, ntime, k)
pass
# add external traveling wave field
ts = in1.dt * float(ntime)
mfield1.meaddext13(sb1.fxyze, sb1.tfield, in1.amodex, in1.freq, ts,
in1.trmp, in1.toff, in1.el0, in1.er0, nx)
# copy guard cells: updates fxyze
mgard1.mcguard1(sb1.fxyze, sb1.tguard, nx)
# darwin electron current density diagnostic:
# updates vfield=electron current
if (in1.ntje > 0):
it = ntime / in1.ntje
if (ntime == in1.ntje * it):
sd1.edcurrent_diag13(sb1.vfield)
# display smoothed electron current
graf1.dvector1(sb1.vfield, ' ELECTRON CURRENT', ntime, 999, 0, 2, nx,
irc)
if (irc[0] == 1):
break
irc[0] = 0
# ion current density diagnostic:
# updates vfield=ion current, vpkwji, vwkji
if (in1.movion == 1):
if (in1.ntji > 0):
it = ntime / in1.ntji
if (ntime == in1.ntji * it):
sb1.icurrent_diag13(sb1.vfield, sb1.vpkwji, sb1.vwkji, ntime)
if ((in1.ndji == 1) or (in1.ndji == 3)):
# display smoothed ion current
edenx = numpy.array(range(nx))
pc.showSimple(["ICURRENTD", "Y", "Z"], [edenx, edenx], [sb1.vfield[0, 0:nx], sb1.vfield[1, 0:nx]],
"Time=" + str(ntime * in1.dt) + " Ion Current", early=in1.ntji)
graf1.dvector1(sb1.vfield, ' ION CURRENT', ntime, 999, 0, 2,
nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# ion spectral analysis
if ((in1.ndji == 2) or (in1.ndji == 3)):
# display frequency spectrum
pc.showSimpleImage("ION CURRENT OMEGA VS MODEY+", sb1.vpkwji[0, ::, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxji, in1.wimin, in1.wimax), early=in1.ntji,
ticks_scale=spectrum_scale)
pc.showSimpleImage("ION CURRENT OMEGA VS MODEY-", sb1.vpkwji[0, ::, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxji, in1.wimin, in1.wimax), early=in1.ntji,
ticks_scale=spectrum_scale)
pc.showSimpleImage("ION CURRENT OMEGA VS MODEZ+", sb1.vpkwji[1, ::, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxji, in1.wimin, in1.wimax), early=in1.ntji,
ticks_scale=spectrum_scale)
pc.showSimpleImage("ION CURRENT OMEGA VS MODEZ-", sb1.vpkwji[1, ::, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxji, in1.wimin, in1.wimax), early=in1.ntji,
ticks_scale=spectrum_scale)
graf1.dmvector1(sb1.vwkji, 'ION CURRENT OMEGA VS MODE',
ntime, 999, 2, 2, in1.modesxji, s1.cwk, irc)
graf1.dmvector1(sb1.vwkji, 'ION CURRENT OMEGA VS MODE',
ntime, 999, 2, 2, in1.modesxji, s1.cwk, irc)
if (irc[0] == 1):
break
irc[0] = 0
# potential diagnostic: updates sfield=potential, pkw, wk
if (in1.ntp > 0):
it = int(ntime / in1.ntp)
if (ntime == in1.ntp * it):
s1.potential_diag1(s1.sfield, s1.pkw, s1.wk, ntime)
if ((in1.ndp == 1) or (in1.ndp == 3)):
# display potential
edenx = numpy.array(range(nx))
pc.showSimple(["DRAWPOT", "Potential"], [edenx], [s1.sfield[0:nx]],
"Time=" + str(ntime * in1.dt) + " Potential", early=in1.ntp)
graf1.dscaler1(s1.sfield, ' POTENTIAL', ntime, 999, 0, nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# spectral analysis
if ((in1.ndp == 2) or (in1.ndp == 3)):
# display frequency spectrum
pc.showSimpleImage("POTENTIAL OMEGA VS MODE+", s1.pkw[::, :, 0], "Time=" + str(ntime * in1.dt),
extent=(0, in1.modesxp, in1.wmin, in1.wmax), early=in1.ntp,
ticks_scale=spectrum_scale)
pc.showSimpleImage("POTENTIAL OMEGA VS MODE-", s1.pkw[::, :, 1], "Time=" + str(ntime * in1.dt),
extent=(0, in1.modesxp, in1.wmin, in1.wmax), early=in1.ntp,
ticks_scale=spectrum_scale)
wax = numpy.array(range(in1.modesxp))
pc.showSimple(["POTENTIAL OMEGA VS MODE LINE", "+OMEGA", "-OMEGA"], [wax, wax],
[s1.wk[0:in1.modesxdi, 0], s1.wk[0:in1.modesxdi, 1]], "Time=" + str(ntime * in1.dt), early=in1.ntp)
graf1.dmscaler1(s1.wk, 'POTENTIAL OMEGA VS MODE', ntime, 999, 2,
in1.modesxp, s1.cwk, irc)
if (irc[0] == 1):
break
irc[0] = 0
# longitudinal efield diagnostic: updates sfield=longitudinal efield
if (in1.ntel > 0):
it = int(ntime / in1.ntel)
if (ntime == in1.ntel * it):
s1.elfield_diag1(s1.sfield)
# display longitudinal efield
try:
edenx
except:
edenx = numpy.array(range(nx))
pc.showSimple(["ELFIELD", "Longitudinal E-Field"], [edenx], [s1.sfield[0:nx]],
"Time=" + str(ntime * in1.dt) + " Lon. E-Field", early=in1.ntel)
# display longitudinal efield
graf1.dscaler1(s1.sfield, ' ELFIELD', ntime, 999, 0, nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# vector potential diagnostic:updates vfield=vector potential, vpkw, vwk
if (in1.nta > 0):
it = ntime / in1.nta
if (ntime == in1.nta * it):
sd1.vdpotential_diag13(sd1.vfield, sd1.vpkw, sd1.vwk, ntime)
if ((in1.nda == 1) or (in1.nda == 3)):
# display vector potential
try:
edenx
except:
edenx = numpy.array(range(nx))
pc.showSimple(["VECPOTENTIAL", "y", "z"], [edenx, edenx], [sd1.vfield[0, :nx], sd1.vfield[1, :nx]],
"Time=" + str(ntime * in1.dt), early=in1.nta)
graf1.dvector1(sd1.vfield, ' VECTOR POTENTIAL', ntime, 999, 0, 2,
nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# spectral analysis
if ((in1.nda == 2) or (in1.nda == 3)):
# display frequency spectrum
pc.showSimpleImage("VECTOR POTENTIAL OMEGA VS MODE Y+", sd1.vpkw[0, :, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxa, in1.wmin, in1.wmax), early=in1.nta,
ticks_scale=spectrum_scale)
pc.showSimpleImage("VECTOR POTENTIAL OMEGA VS MODE Y-", sd1.vpkw[0, :, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxa, in1.wmin, in1.wmax), early=in1.nta,
ticks_scale=spectrum_scale)
pc.showSimpleImage("VECTOR POTENTIAL OMEGA VS MODE Z+", sd1.vpkw[1, :, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxa, in1.wmin, in1.wmax), early=in1.nta,
ticks_scale=spectrum_scale)
pc.showSimpleImage("VECTOR POTENTIAL OMEGA VS MODE Z-", sd1.vpkw[1, :, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxa, in1.wmin, in1.wmax), early=in1.nta,
ticks_scale=spectrum_scale)
wax = numpy.array(range(in1.modesxa))
pc.showSimple(["VECTOR POTENTIAL OMEGA VS MODE Y LINE", "+OMEGA", "-OMEGA"], [wax, wax],
[sd1.vwk[0, 0:in1.modesxa, 0], sd1.vwk[0, 0:in1.modesxa, 1]],
"Time=" + str(ntime * in1.dt), early=in1.nta)
pc.showSimple(["VECTOR POTENTIAL OMEGA VS MODE Z LINE", "-OMEGA", "-OMEGA"], [wax, wax],
[sd1.vwk[1, 0:in1.modesxa, 0], sd1.vwk[1, 0:in1.modesxa, 1]],
"Time=" + str(ntime * in1.dt), early=in1.nta)
graf1.dmvector1(sd1.vwk, 'VECTOR POTENTIAL OMEGA VS MODE',
ntime, 999, 2, 2, in1.modesxa, s1.cwk, irc)
if (irc[0] == 1):
break
irc[0] = 0
# transverse efield diagnostic:
# updates vfield=transverse efield, vpkwet, vwket
if (in1.ntet > 0):
it = ntime / in1.ntet
if (ntime == in1.ntet * it):
sd1.detfield_diag13(sd1.vfield, sd1.vpkwet, sd1.vwket, ntime)
if ((in1.ndet == 1) or (in1.ndet == 3)):
# display transverse efield
try:
edenx
except:
edenx = numpy.array(range(nx))
pc.showSimple(["TRANSVERSE E FIELD", "Y", "Z"], [edenx, edenx],
[sd1.vfield[0, 0:nx], sd1.vfield[1, 0:nx]], "Time=" + str(ntime * in1.dt), early=in1.ntet)
graf1.dvector1(sd1.vfield, ' TRANSVERSE EFIELD', ntime, 999, 0,
2, nx, irc)
if (irc[0] == 1):
break
irc[0] = 0
# spectral analysis
if ((in1.ndet == 2) or (in1.ndet == 3)):
# display frequency spectrum
pc.showSimpleImage("FT TRANSVERSE E.F. Y +OMEGA VS MODE", sd1.vpkwet[0, :, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxet, in1.wmin, in1.wmax), early=in1.ntet,
ticks_scale=spectrum_scale)
pc.showSimpleImage("FT TRANSVERSE E.F. Y -OMEGA VS MODE", sd1.vpkwet[0, :, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxet, in1.wmin, in1.wmax), early=in1.ntet,
ticks_scale=spectrum_scale)
pc.showSimpleImage("FT TRANSVERSE E.F. Z +OMEGA VS MODE", sd1.vpkwet[1, :, :, 0],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxet, in1.wmin, in1.wmax), early=in1.ntet,
ticks_scale=spectrum_scale)
pc.showSimpleImage("FT TRANSVERSE E.F. Z -OMEGA VS MODE", sd1.vpkwet[1, :, :, 1],
"Time=" + str(ntime * in1.dt), extent=(0, in1.modesxet, in1.wmin, in1.wmax), early=in1.ntet,
ticks_scale=spectrum_scale)
wax = numpy.array(range(in1.modesxet))
pc.showSimple(["TRANSVERSE E.F. Y OMEGA VS MODE", "+OMEGA", "-OMEGA"], [wax, wax],
[sd1.vwket[0, 0:in1.modesxet, 0], sd1.vwket[0, 0:in1.modesxet, 1]],
"Time=" + str(ntime * in1.dt), early=in1.ntet)
pc.showSimple(["TRANSVERSE E.F. Z OMEGA VS MODE", "-OMEGA", "-OMEGA"], [wax, wax],
[sd1.vwket[1, 0:in1.modesxet, 0], sd1.vwket[1, 0:in1.modesxet, 1]],
"Time=" + str(ntime * in1.dt), early=in1.ntet)
graf1.dmvector1(sd1.vwket, 'TRANSVERSE EFIELD OMEGA VS MODE',
ntime, 999, 2, 2, in1.modesxet, s1.cwk, irc)
if (irc[0] == 1):
break
irc[0] = 0
# magnetic field diagnostic: updates vfield=bfield
if (in1.ntb > 0):
it = ntime / in1.ntb
if (ntime == in1.ntb * it):
sd1.dbfield_diag13(sd1.vfield)
# display magnetic field
try:
edenx
except:
edenx = numpy.array(range(nx))
pc.showSimple(["BFIELD", "Y", "Z"], [edenx, edenx], [sd1.vfield[0, 0:nx], sd1.vfield[1, 0:nx]],
"Time=" + str(ntime * in1.dt), early=in1.ntb)
graf1.dvector1(sd1.vfield, ' MAGNETIC FIELD', ntime, 999, 0, 2, nx,
irc)
if (irc[0] == 1):
break
irc[0] = 0
# fluid moments diagnostic
if (in1.ntfm > 0):
it = int(ntime / in1.ntfm)
if (ntime == in1.ntfm * it):
# updates fmse
sd1.edfluidms_diag13(s1.fmse)
if (in1.movion == 1):
# updates fmsi
sd1.idfluidms_diag13(s1.fmsi)
# velocity diagnostic
if (in1.ntv > 0):
it = int(ntime / in1.ntv)
if (ntime == in1.ntv * it):
# updates ppart, kpic, fv, fvm, fvtm
sb1.evelocity_diag13(s1.ppart, s1.kpic, s1.fv, s1.fvm, s1.fvtm)
# display electron velocity distributions
if ((in1.ndv == 1) or (in1.ndv == 3)):
pc.showVelocity(s1.fv[:, :], ["x", "y", "z"], fvm=s1.fvm, plottype="EVELOCITY", early=in1.ntv)
graf1.displayfv1(s1.fv, s1.fvm, ' ELECTRON', ntime, in1.nmv, 2,
irc)
if (irc[0] == 1):
break
irc[0] = 0
# ion distribution function
if (in1.movion == 1):
# updates pparti, kipic, fvi, fvmi, fvtmi
sb1.ivelocity_diag13(s1.pparti, s1.kipic, s1.fvi, s1.fvmi,
s1.fvtmi)
# display ion velocity distributions
if ((in1.ndv == 2) or (in1.ndv == 3)):
pc.showVelocity(s1.fvi[:, :], ["x", "y", "z"], fvm=s1.fvmi, plottype="IVELOCITY", early=in1.ntv)
graf1.displayfv1(s1.fvi, s1.fvmi, ' ION', ntime, in1.nmv, 2,
irc)
if (irc[0] == 1):
break
irc[0] = 0
# trajectory diagnostic: updates ppart, kpic, partd, fvtp, fvmtp
if (in1.ntt > 0):
it = int(ntime / in1.ntt)
if (ntime == in1.ntt * it):
sb1.traj_diag13(s1.ppart, s1.kpic, s1.partd, s1.fvtp, s1.fvmtp)
if (in1.nst == 3):
# display velocity distributions
pc.showVelocity(s1.fvtp[:, :], ["x", "y", "z"], fvm=s1.fvmtp, plottype="TRAJECTORY", early=in1.ntt)
graf1.displayfv1(s1.fvtp, s1.fvmtp, ' ELECTRON', ntime, in1.nmv,
2, irc)
if (irc[0] == 1):
break
irc[0] = 0
# phase space diagnostic
if (in1.nts > 0):
it = int(ntime / in1.nts)
if (ntime == in1.nts * it):
# plot electrons
if ((in1.nds == 1) or (in1.nds == 3)):
# vx, vy, or vz versus x
nn = in1.nsxv
ierr[0] = 0
for i in xrange(0, 3):
if ((nn % 2) == 1):
a, b, c = numpy.shape(s1.ppart)
phasearr = numpy.empty((2, b, c), dtype=s1.ppart.dtype)
phasearr[1, :, :] = s1.ppart[i + 2 - 1, :, :]
phasearr[0, :, :] = s1.ppart[1 - 1, :, :]
pc.showPhase(phasearr, s1.kpic, plottype="EPHASE" + str(i), early=in1.nts)
graf1.dpmgrasp1(s1.ppart, s1.kpic, ' ELECTRON', ntime,
999, nx, i + 2, 1, in1.ntsc, irc)
if (irc[0] == 1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn / 2)
if (ierr[0] == 1):
break
# vx-vy, vx-vz or vy-vz
nn = in1.nsvv
ierr[0] = 0
for i in xrange(0, 3):
if ((nn % 2) == 1):
a, b, c = numpy.shape(s1.ppart)
phasearr = numpy.empty((2, b, c), dtype=s1.ppart.dtype)
phasearr[1, :, :] = s1.ppart[min(i + 3, 4) - 1, :, :]
phasearr[0, :, :] = s1.ppart[max(i + 1, 2) - 1, :, :]
pc.showPhase(phasearr, s1.kpic, plottype="EPHASEV" + str(i), early=in1.nts)
graf1.dpmgrasp1(s1.ppart, s1.kpic, ' ELECTRON', ntime,
999, nx, min(i + 3, 4), max(i + 1, 2), in1.ntsc,
irc)
if (irc[0] == 1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn / 2)
if (ierr[0] == 1):
break
# ion phase space
if (in1.movion == 1):
# plot ions
if ((in1.nds == 2) or (in1.nds == 3)):
# vx, vy, or vz versus x
nn = in1.nsxv
ierr[0] = 0
for i in xrange(0, 3):
if ((nn % 2) == 1):
a, b, c = numpy.shape(s1.pparti)
phasearr = numpy.empty((2, b, c), dtype=s1.pparti.dtype)
phasearr[1, :, :] = s1.pparti[i + 2 - 1, :, :]
phasearr[0, :, :] = s1.pparti[1 - 1, :, :]
pc.showPhase(phasearr, s1.kipic, plottype="IPHASE" + str(i), early=in1.nts)
graf1.dpmgrasp1(s1.pparti, s1.kipic, ' ION', ntime,
999, nx, i + 2, 1, in1.ntsc, irc)
if (irc[0] == 1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn / 2)
if (ierr[0] == 1):
break
# vx-vy, vx-vz or vy-vz
nn = in1.nsvv
ierr[0] = 0
for i in xrange(0, 3):
if ((nn % 2) == 1):
a, b, c = numpy.shape(s1.pparti)
phasearr = numpy.empty((2, b, c), dtype=s1.pparti.dtype)
phasearr[1, :, :] = s1.pparti[min(i + 3, 4) - 1, :, :]
phasearr[0, :, :] = s1.pparti[max(i + 1, 2) - 1, :, :]
pc.showPhase(phasearr, s1.kipic, plottype="IPHASEV" + str(i), early=in1.nts)
graf1.dpmgrasp1(s1.pparti, s1.kipic, ' ION', ntime,
999, nx, min(i + 3, 4), max(i + 1, 2),
in1.ntsc, irc)
if (irc[0] == 1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn / 2)
if (ierr[0] == 1):
break
# push electrons with OpenMP: updates ppart, wke, kpic
sd1.dpush_electrons13(s1.ppart, s1.kpic)
# push ions with OpenMP: updates pparti, wki, kipic
if (in1.movion == 1):
sd1.dpush_ions13(s1.pparti, s1.kipic)
# start running simulation backwards:
# need to reverse time lag in leap-frog integration scheme
if (in1.treverse == 1):
if (((ntime + 1) == (nloop / 2)) or ((ntime + 1) == nloop)):
sd1.d_time_reverse1()
# energy diagnostic
if (in1.ntw > 0):
it = int(ntime / in1.ntw)
if (ntime == in1.ntw * it):
pc.showEnergy(numpy.array(range(ntime)) * in1.dt, s1.wt, ntime,
["Total Field", "Kinetic", "Kinetic Ions", "Total Energy", "Electric(l)", "Electric(t)",
"Magnetic"], early=in1.ntw)
sd1.denergy_diag13(s1.wt, ntime, iuot)
# restart file
if (in1.ntr > 0):
n = ntime + 1
it = int(n / in1.ntr)
if (n == in1.ntr * it):
dtimer(dtime, itime, -1)
sd1.bwrite_drestart13(s1.iur, n)
sd1.dwrite_drestart13(s1.iur)
dtimer(dtime, itime, 1)
s1.tfield[0] += float(dtime)
ntime = ntime + 1
# loop time
dtimer(dtime, ltime, 1)
tloop = tloop + float(dtime)
# * * * end main iteration loop * * *
print >> iuot
print >> iuot, "ntime,relativity,ndc=", ntime, ",", in1.relativity, ",", in1.ndc
if (in1.treverse == 1):
print >> iuot, "treverse = ", in1.treverse
# print timing summaries
sd1.print_dtimings13(tinit, tloop, iuot)
if ((in1.ntw > 0) or (in1.ntt > 0)):
graf1.reset_graphs()
# trajectory diagnostic
if (in1.ntt > 0):
if ((in1.nst == 1) or (in1.nst == 2)):
if (in1.nplot > 0):
irc[0] = graf1.open_graphs(1)
ts = in1.t0
graf1.displaytr1(sb1.partd, ts, in1.dt * float(in1.ntt), sb1.itt, 2, 3,
irc)
if (irc[0] == 1):
exit(0)
graf1.reset_nplot(in1.nplot, irc)
# energy diagnostic
if (in1.ntw > 0):
ts = in1.t0
# display energy histories
graf1.displayw1(s1.wt, ts, in1.dt * float(in1.ntw), s1.itw, irc)
if (irc[0] == 1):
exit(0)
# print energy summaries
sb1.print_energy13(s1.wt, iuot)
# velocity diagnostic
if (in1.ntv > 0):
ts = in1.t0
graf1.displayfvt1(s1.fvtm, ' ELECTRON', ts, in1.dt * float(in1.ntv),
s1.itv, irc)
if (irc[0] == 1):
exit(0)
# ions
if (in1.movion == 1):
graf1.displayfvt1(s1.fvtmi, ' ION', ts, in1.dt * float(in1.ntv),
s1.itv, irc)
if (irc[0] == 1):
exit(0)
# display final spectral analysis for ion density
if (in1.movion == 1):
if (in1.ntdi > 0):
if ((in1.nddi == 2) or (in1.nddi == 3)):
# display frequency spectrum
graf1.dmscaler1(s1.wkdi, 'ION DENSITY OMEGA VS MODE', ntime, 999,
1, in1.modesxdi, s1.cwk, irc)
if (irc[0] == 1):
exit(0)
# display final spectral analysis for potential
if (in1.ntp > 0):
if ((in1.ndp == 2) or (in1.ndp == 3)):
# display frequency spectrum
graf1.dmscaler1(s1.wk, 'POTENTIAL OMEGA VS MODE', ntime, 999, 2,
in1.modesxp, s1.cwk, irc)