-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmbbeps1.py
721 lines (637 loc) · 23.1 KB
/
mbbeps1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#-----------------------------------------------------------------------
# 1-2/2D Electromagnetic OpenMP PIC code
# written by Viktor K. Decyk and Joshua Kelly, UCLA
# copyright 2016, regents of the university of california
import sys
import math
import numpy
sys.path.append('./mbeps1.source')
from libmpush1 import *
from libmbpush1 import *
from fomplib import *
from fgraf1 import *
from dtimer import *
# override default input data
in1.emf = 1
in1.relativity = 1
# read namelist
iuin = 8
in1.readnml1(iuin)
# override input data
in1.idcode = 2
in1.ndim = 3
# import modules after namelist has been read
import s1
import sb1
int_type = numpy.int32
double_type = numpy.float64
float_type = numpy.float32
complex_type = numpy.complex64
# declare scalars for standard code
npi = 0
ws = numpy.zeros((1),float_type)
# declare scalars for OpenMP code
irc = numpy.zeros((1),int_type)
ierr = numpy.zeros((1),int_type)
# declare and initialize timing data
tinit = 0.0; tloop = 0.0
itime = numpy.empty((4),numpy.int32)
ltime = numpy.empty((4),numpy.int32)
dtime = numpy.empty((1),double_type)
# start timing initialization
dtimer(dtime,itime,-1)
# text output file
fname = "output1." + s1.cdrun
iuot = open(fname,"w")
# in1.nvp = number of shared memory nodes (0=default)
#in1.nvp = int(input("enter number of nodes: "))
# initialize for shared memory parallel processing
omplib.init_omp(in1.nvp)
# open graphics device
irc[0] = graf1.open_graphs(in1.nplot)
# initialize scalars for standard code
# np = total number of electrons in simulation
np = s1.np
# nx = number of grid points in x direction
nx = s1.nx; nxh = int(nx/2)
# npi = total number of ions in simulation
if (in1.movion > 0):
npi = s1.npi
nxe = nx + 2; nxeh = int(nxe/2)
# nloop = number of time steps in simulation
# nstart = initial time loop index
# ntime = current time step
nloop = s1.nloop; nstart = 0; ntime = 0
# allocate field data for standard code:
# qe/qi = electron/ion charge density with guard cells
# fxe = smoothed electric field with guard cells
# ffc = form factor array for poisson solver
# mixup = bit reverse table for FFT
# sct = sine/cosine table for FFT
# cue = electron current density with guard cells
# fxyze/byze = smoothed electric/magnetic field with guard cells
# eyz/byz = transverse electric/magnetic field in fourier space
sb1.init_fields13()
# prepare fft tables
mfft1.mfft1_init(s1.mixup,s1.sct,in1.indx)
# calculate form factors
mfield1.mpois1_init(s1.ffc,in1.ax,s1.affp,nx)
# initialize different ensemble of random numbers
if (in1.nextrand > 0):
minit1.mnextran1(in1.nextrand,in1.ndim,np+npi)
# open reset and restart files; iur, iurr, iur0
s1.open_restart1()
# new start
if (in1.nustrt==1):
# initialize electrons: updates ppart, kpic
# ppart = tiled electron particle arrays
# kpic = number of electrons in each tile
sb1.init_electrons13()
# initialize background charge density: updates qi
if (in1.movion==0):
s1.qi.fill(0.0)
qmi = -in1.qme
mpush1.mpost1(s1.ppart,s1.qi,s1.kpic,qmi,s1.tdpost,in1.mx)
mgard1.maguard1(s1.qi,s1.tguard,nx)
# initialize ions: updates pparti, kipic, cui
# pparti = tiled on particle arrays
# kipic = number of ions in each tile
# cui = ion current density with guard cells
if (in1.movion==1):
sb1.init_ions13()
# initialize transverse electromagnetic fields
sb1.eyz.fill(numpy.complex(0.0,0.0))
sb1.byz.fill(numpy.complex(0.0,0.0))
# restart to continue a run which was interrupted
elif (in1.nustrt==2):
sb1.bread_restart13(s1.iur)
ntime = s1.ntime
if ((ntime+s1.ntime0)> 0):
sb1.dth = 0.5*in1.dt
nstart = ntime
# start a new run with data from a previous run
elif (in1.nustrt==0):
sb1.bread_restart13(s1.iur0)
ntime = s1.ntime
if ((ntime+s1.ntime0)> 0):
sb1.dth = 0.5*in1.dt
# initialize current fields
sb1.cue.fill(0.0)
# set magnitude of external transverse magnetic field
omt = numpy.sqrt(in1.omy*in1.omy + in1.omz*in1.omz)
# reverse simulation at end back to start
if (in1.treverse==1):
nloop = 2*nloop
sb1.nloop = nloop
# initialize all diagnostics from namelist input parameters
# wt = energy time history array=
# pkw = power spectrum for potential
# pkwdi = power spectrum for ion density
# wk = maximum frequency as a function of k for potential
# wkdi = maximum frequency as a function of k for ion density
# fmse/fmsi = electron/ion fluid moments
# fv/fvi = global electron/ion velocity distribution functions
# fvm/fvmi = electron/ion vdrift, vth, entropy for global distribution
# fvtm/fvtmi = time history of electron/ion vdrift, vth, and entropy
# fvtp = velocity distribution function for test particles
# fvmtp = vdrift, vth, and entropy for test particles
# partd = trajectory time history array
# vpkwji = power spectrum for ion current density
# vwkji = maximum frequency as a function of k for ion current
# vpkwr = power spectrum for radiative vector potential
# vwkr = maximum frequency as a function of k for radiative vector
# potential
# vpkw = power spectrum for vector potential
# vwk = maximum frequency as a function of k for vector potential
# vpkwet = power spectrum for transverse efield
# vwket = maximum frequency as a function of k for transverse efield
# oldcu = previous current density with guard cells
sb1.initialize_diagnostics13(ntime)
# read in restart diagnostic file to continue interrupted run
if (in1.nustrt==2):
sb1.dread_restart13(s1.iur)
# write reset file
sb1.bwrite_restart13(s1.iurr,ntime)
# initialization time
dtimer(dtime,itime,1)
tinit = tinit + float(dtime)
# start timing loop
dtimer(dtime,ltime,-1)
if (in1.dt > 0.64*in1.ci):
print "Warning: Courant condition may be exceeded!"
print >> iuot, "program mbbeps1"
# * * * start main iteration loop * * *
for ntime in xrange(nstart,nloop):
print >> iuot, "ntime = ", ntime
# debug reset
# if (ntime==nloop/2):
# sb1.bread_restart13(s1.iurr)
# sb1.reset_diags13()
# ntime = 0; sb1.dth = 0.0
# save previous current in fourier space for radiative vector potential
if (in1.ntar > 0):
it = ntime/in1.ntar
if (ntime==in1.ntar*it):
sb1.oldcu[:] = numpy.copy(sb1.cue)
# fluid moments diagnostic
if (in1.ntfm > 0):
it = int(ntime/in1.ntfm)
if (ntime==in1.ntfm*it):
# updates fmse
sb1.efluidms_diag13(s1.fmse)
if (in1.movion==1):
# updates fmsi
sb1.ifluidms_diag13(s1.fmsi)
# deposit electron current with OpenMP: updates ppart, kpic, cue
dtimer(dtime,itime,-1)
sb1.cue.fill(0.0)
dtimer(dtime,itime,1)
sb1.tdjpost[0] += float(dtime)
sb1.deposit_ecurrent13(s1.ppart,s1.kpic)
# electron current density diagnostic:
# updates vfield=electron current
if (in1.ntje > 0):
it = ntime/in1.ntje
if (ntime==in1.ntje*it):
sb1.ecurrent_diag13(sb1.vfield)
# display smoothed electron current
graf1.dvector1(sb1.vfield,' ELECTRON CURRENT',ntime,999,0,2,nx,
irc)
if (irc[0]==1): break
irc[0] = 0
# deposit ion current with OpenMP: updates pparti, kipic, cui
if (in1.movion==1):
dtimer(dtime,itime,-1)
sb1.cui.fill(0.0)
dtimer(dtime,itime,1)
sb1.tdjpost[0] += float(dtime)
sb1.deposit_icurrent13(s1.pparti,s1.kipic)
# ion current density diagnostic:
# updates vfield=ion current, vpkwji, vwkji
if (in1.movion==1):
if (in1.ntji > 0):
it = ntime/in1.ntji
if (ntime==in1.ntji*it):
sb1.icurrent_diag13(sb1.vfield,sb1.vpkwji,sb1.vwkji,ntime)
if ((in1.ndji==1) or (in1.ndji==3)):
# display smoothed ion current
graf1.dvector1(sb1.vfield,' ION CURRENT',ntime,999,0,2,
nx,irc)
if (irc[0]==1): break
irc[0] = 0
# ion spectral analysis
if ((in1.ndji==2) or (in1.ndji==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwkji,'ION CURRENT OMEGA VS MODE',
ntime,999,2,2,in1.modesxji,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# deposit charge with OpenMP: updates qe
dtimer(dtime,itime,-1)
s1.qe.fill(0.0)
dtimer(dtime,itime,1)
s1.tdpost[0] += float(dtime)
mpush1.mpost1(s1.ppart,s1.qe,s1.kpic,in1.qme,s1.tdpost,in1.mx)
# add guard cells: updates qe
mgard1.maguard1(s1.qe,s1.tguard,nx)
# electron density diagnostic: updates sfield=electron density
if (in1.ntde > 0):
it = int(ntime/in1.ntde)
if (ntime==in1.ntde*it):
s1.edensity_diag1(s1.sfield)
# display smoothed electron density
graf1.dscaler1(s1.sfield,' EDENSITY',ntime,999,0,nx,irc)
if (irc[0]==1): break
irc[0] = 0
# deposit ion charge with OpenMP: updates qi
if (in1.movion==1):
dtimer(dtime,itime,-1)
s1.qi.fill(0.0)
dtimer(dtime,itime,1)
s1.tdpost[0] += float(dtime)
mpush1.mpost1(s1.pparti,s1.qi,s1.kipic,in1.qmi,s1.tdpost,in1.mx)
# add guard cells: updates qi
mgard1.maguard1(s1.qi,sb1.tguard,nx)
# ion density diagnostic: updates sfield=ion density, pkwdi, wkdi
if (in1.movion==1):
if (in1.ntdi > 0):
it = int(ntime/in1.ntdi)
if (ntime==in1.ntdi*it):
s1.idensity_diag1(s1.sfield,s1.pkwdi,s1.wkdi,ntime)
if ((in1.nddi==1) or (in1.nddi==3)):
# display smoothed ion density
graf1.dscaler1(s1.sfield,' ION DENSITY',ntime,999,1,nx,
irc)
if (irc[0]==1): break
irc[0] = 0
# ion spectral analysis
if ((in1.nddi==2) or (in1.nddi==3)):
# display frequency spectrum
graf1.dmscaler1(s1.wkdi,'ION DENSITY OMEGA VS MODE',
ntime,999,1,in1.modesxdi,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# add electron and ion densities: updates qe
mfield1.maddqei1(s1.qe,s1.qi,s1.tfield,nx)
# add electron and ion current densities: updates cue
if (in1.movion==1):
mfield1.maddcuei1(sb1.cue,sb1.cui,sb1.tfield,nx)
# transform charge to fourier space: updates qe
isign = -1
mfft1.mfft1r(s1.qe,isign,s1.mixup,s1.sct,s1.tfft,in1.indx)
# transform current to fourier space: updates cue
isign = -1
mfft1.mfft1rn(sb1.cue,isign,s1.mixup,s1.sct,s1.tfft,in1.indx)
# radiative vector potential diagnostic:
# updates vfield=radiative vector potential, vpkwr, vwkr
if (in1.ntar > 0):
it = ntime/in1.ntar
if (ntime==in1.ntar*it):
sb1.vrpotential_diag13(sb1.vfield,sb1.vpkwr,sb1.vwkr,ntime)
if ((in1.ndar==1) or (in1.ndar==3)):
# display radiative vector potential
graf1.dvector1(sb1.vfield,' RADIATIVE VPOTENTIAL',ntime,999,
0,2,nx,irc)
if (irc[0]==1): break
irc[0] = 0
# spectral analysis
if ((in1.ndar==2) or (in1.ndar==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwkr,
'RADIATIVE VPOTENTIAL OMEGA VS MODE',ntime,
999,2,2,in1.modesxar,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# calculate electromagnetic fields in fourier space: updates eyz, byz
if ((ntime+s1.ntime0)==0):
# initialize electromagnetic fields from darwin fields
# calculate initial darwin magnetic field
mfield1.mibpois1(sb1.cue,sb1.byz,s1.ffc,in1.ci,sb1.wb,sb1.tfield,
nx)
sb1.wf[0] = 0.0
# calculate initial darwin electric field with approximate value
sb1.init_detfield13()
sb1.dth = 0.5*in1.dt
else:
mfield1.mmaxwel1(sb1.eyz,sb1.byz,sb1.cue,s1.ffc,in1.ci,in1.dt,
sb1.wf,sb1.wb,sb1.tfield,nx)
# calculate longitudinal force/charge in fourier space:
# updates fxe, we
mfield1.mpois1(s1.qe,s1.fxe,s1.ffc,s1.we,s1.tfield,nx)
# add longitudinal and transverse electric fields: updates fxyze
mfield1.memfield1(sb1.fxyze,s1.fxe,sb1.eyz,s1.ffc,sb1.tfield,nx)
# copy magnetic field: updates byze
mfield1.mbmfield1(sb1.byze,sb1.byz,s1.ffc,sb1.tfield,nx)
# transform electric force to real space: updates fxyze
isign = 1
mfft1.mfft1rn(sb1.fxyze,isign,s1.mixup,s1.sct,s1.tfft,in1.indx)
# transform magnetic force to real space: updates byze
isign = 1
mfft1.mfft1rn(sb1.byze,isign,s1.mixup,s1.sct,s1.tfft,in1.indx)
# add constant to magnetic field with OpenMP: updates bxyze
if (omt > 0.0):
mfield1.mbaddext1(sb1.byze,sb1.tfield,in1.omy,in1.omz,nx)
# add external traveling wave field
ts = in1.dt*float(ntime)
mfield1.meaddext13(sb1.fxyze,sb1.tfield,in1.amodex,in1.freq,ts,
in1.trmp,in1.toff,in1.el0,in1.er0,nx)
# copy guard cells: updates fxyze, byze
mgard1.mcguard1(sb1.fxyze,sb1.tguard,nx)
mgard1.mcguard1(sb1.byze,sb1.tguard,nx)
# potential diagnostic: updates sfield=potential, pkw, wk
if (in1.ntp > 0):
it = int(ntime/in1.ntp)
if (ntime==in1.ntp*it):
s1.potential_diag1(s1.sfield,s1.pkw,s1.wk,ntime)
if ((in1.ndp==1) or (in1.ndp==3)):
# display potential
graf1.dscaler1(s1.sfield,' POTENTIAL',ntime,999,0,nx,irc)
if (irc[0]==1): break
irc[0] = 0
# spectral analysis
if ((in1.ndp==2) or (in1.ndp==3)):
# display frequency spectrum
graf1.dmscaler1(s1.wk,'POTENTIAL OMEGA VS MODE',ntime,999,2,
in1.modesxp,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# longitudinal efield diagnostic: updates sfield=longitudinal efield
if (in1.ntel > 0):
it = int(ntime/in1.ntel)
if (ntime==in1.ntel*it):
s1.elfield_diag1(s1.sfield)
# display longitudinal efield
graf1.dscaler1(s1.sfield,' ELFIELD',ntime,999,0,nx,irc)
if (irc[0]==1): break
irc[0] = 0
# vector potential diagnostic:updates vfield=vector potential, vpkw, vwk
if (in1.nta > 0):
it = ntime/in1.nta
if (ntime==in1.nta*it):
sb1.vpotential_diag13(sb1.vfield,sb1.vpkw,sb1.vwk,ntime)
if ((in1.nda==1) or (in1.nda==3)):
# display vector potential
graf1.dvector1(sb1.vfield,' VECTOR POTENTIAL',ntime,999,0,2,
nx,irc)
if (irc[0]==1): break
irc[0] = 0
# spectral analysis
if ((in1.nda==2) or (in1.nda==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwk,'VECTOR POTENTIAL OMEGA VS MODE',
ntime,999,2,2,in1.modesxa,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# transverse efield diagnostic:
# updates vfield=transverse efield, vpkwet, vwket
if (in1.ntet > 0):
it = ntime/in1.ntet
if (ntime==in1.ntet*it):
sb1.etfield_diag13(sb1.vfield,sb1.vpkwet,sb1.vwket,ntime)
if ((in1.ndet==1) or (in1.ndet==3)):
# display transverse efield
graf1.dvector1(sb1.vfield,' TRANSVERSE EFIELD',ntime,999,0,
2,nx,irc)
if (irc[0]==1): break
irc[0] = 0
# spectral analysis
if ((in1.ndet==2) or (in1.ndet==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwket,'TRANSVERSE EFIELD OMEGA VS MODE',
ntime,999,2,2,in1.modesxet,s1.cwk,irc)
if (irc[0]==1): break
irc[0] = 0
# magnetic field diagnostic: updates vfield=bfield
if (in1.ntb > 0):
it = ntime/in1.ntb
if (ntime==in1.ntb*it):
sb1.bfield_diag13(sb1.vfield)
# display magnetic field
graf1.dvector1(sb1.vfield,' MAGNETIC FIELD',ntime,999,0,2,nx,
irc)
if (irc[0]==1): break
irc[0] = 0
# velocity diagnostic
if (in1.ntv > 0):
it = int(ntime/in1.ntv)
if (ntime==in1.ntv*it):
# updates ppart, kpic, fv, fvm, fvtm
sb1.evelocity_diag13(s1.ppart,s1.kpic,s1.fv,s1.fvm,s1.fvtm)
# display electron velocity distributions
if ((in1.ndv==1) or (in1.ndv==3)):
graf1.displayfv1(s1.fv,s1.fvm,' ELECTRON',ntime,in1.nmv,2,
irc)
if (irc[0]==1): break
irc[0] = 0
# ion distribution function
if (in1.movion==1):
# updates pparti, kipic, fvi, fvmi, fvtmi
sb1.ivelocity_diag13(s1.pparti,s1.kipic,s1.fvi,s1.fvmi,
s1.fvtmi)
# display ion velocity distributions
if ((in1.ndv==2) or (in1.ndv==3)):
graf1.displayfv1(s1.fvi,s1.fvmi,' ION',ntime,in1.nmv,2,
irc)
if (irc[0]==1): break
irc[0] = 0
# trajectory diagnostic: updates ppart, kpic, partd, fvtp, fvmtp
if (in1.ntt > 0):
it = int(ntime/in1.ntt)
if (ntime==in1.ntt*it):
sb1.traj_diag13(s1.ppart,s1.kpic,s1.partd,s1.fvtp,s1.fvmtp)
if (in1.nst==3):
# display velocity distributions
graf1.displayfv1(s1.fvtp,s1.fvmtp,' ELECTRON',ntime,in1.nmv,
2,irc)
if (irc[0]==1): break
irc[0] = 0
# phase space diagnostic
if (in1.nts > 0):
it = int(ntime/in1.nts)
if (ntime==in1.nts*it):
# plot electrons
if ((in1.nds==1) or (in1.nds==3)):
# vx, vy, or vz versus x
nn = in1.nsxv; ierr[0] = 0
for i in xrange(0,3):
if ((nn % 2)==1):
graf1.dpmgrasp1(s1.ppart,s1.kpic,' ELECTRON',ntime,
999,nx,i+2,1,in1.ntsc,irc)
if (irc[0]==1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn/2)
if (ierr[0]==1): break
# vx-vy, vx-vz or vy-vz
nn = in1.nsvv; ierr[0] = 0
for i in xrange(0,3):
if ((nn % 2)==1):
graf1.dpmgrasp1(s1.ppart,s1.kpic,' ELECTRON',ntime,
999,nx,min(i+3,4),max(i+1,2),in1.ntsc,
irc)
if (irc[0]==1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn/2)
if (ierr[0]==1): break
# ion phase space
if (in1.movion==1):
# plot ions
if ((in1.nds==2) or (in1.nds==3)):
# vx, vy, or vz versus x
nn = in1.nsxv; ierr[0] = 0
for i in xrange(0,3):
if ((nn % 2)==1):
graf1.dpmgrasp1(s1.pparti,s1.kipic,' ION',ntime,
999,nx,i+2,1,in1.ntsc,irc)
if (irc[0]==1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn/2)
if (ierr[0]==1): break
# vx-vy, vx-vz or vy-vz
nn = in1.nsvv; ierr[0] = 0
for i in xrange(0,3):
if ((nn % 2)==1):
graf1.dpmgrasp1(s1.pparti,s1.kipic,' ION',ntime,
999,nx,min(i+3,4),max(i+1,2),
in1.ntsc,irc)
if (irc[0]==1):
ierr[0] = 1
break
irc[0] = 0
nn = int(nn/2)
if (ierr[0]==1): break
# push electrons with OpenMP: updates ppart, wke, kpic
sb1.push_electrons13(s1.ppart,s1.kpic)
# push ions with OpenMP: updates pparti, wki, kipic
if (in1.movion==1):
sb1.push_ions13(s1.pparti,s1.kipic)
# start running simulation backwards:
# need to advance maxwell field solver one step ahead
if (in1.treverse==1):
if (((ntime+1)==(nloop/2)) or ((ntime+1)==nloop)):
sb1.em_time_reverse1()
# energy diagnostic
if (in1.ntw > 0):
it = int(ntime/in1.ntw)
if (ntime==in1.ntw*it):
sb1.energy_diag13(s1.wt,ntime,iuot)
# restart file
if (in1.ntr > 0):
n = ntime + 1
it = int(n/in1.ntr)
if (n==in1.ntr*it):
dtimer(dtime,itime,-1)
sb1.bwrite_restart13(s1.iur,n)
sb1.dwrite_restart13(s1.iur)
dtimer(dtime,itime,1)
s1.tfield[0] += float(dtime)
ntime = ntime + 1
# loop time
dtimer(dtime,ltime,1)
tloop = tloop + float(dtime)
# * * * end main iteration loop * * *
print >> iuot
print >> iuot, "ntime, relativity = ", ntime, ",", in1.relativity
if (in1.treverse==1):
print >> iuot, "treverse = ", in1.treverse
# print timing summaries
sb1.print_timings13(tinit,tloop,iuot)
if ((in1.ntw > 0) or (in1.ntt > 0)):
graf1.reset_graphs()
# trajectory diagnostic
if (in1.ntt > 0):
if ((in1.nst==1) or (in1.nst==2)):
if (in1.nplot > 0):
irc[0] = graf1.open_graphs(1)
ts = in1.t0
graf1.displaytr1(sb1.partd,ts,in1.dt*float(in1.ntt),sb1.itt,2,3,
irc)
if (irc[0]==1):
exit(0)
graf1.reset_nplot(in1.nplot,irc)
# energy diagnostic
if (in1.ntw > 0):
ts = in1.t0
# display energy histories
graf1.displayw1(s1.wt,ts,in1.dt*float(in1.ntw),s1.itw,irc)
if (irc[0]==1):
exit(0)
# print energy summaries
sb1.print_energy13(s1.wt,iuot)
# velocity diagnostic
if (in1.ntv > 0):
ts = in1.t0
graf1.displayfvt1(s1.fvtm,' ELECTRON',ts,in1.dt*float(in1.ntv),
s1.itv,irc)
if (irc[0]==1):
exit(0)
# ions
if (in1.movion==1):
graf1.displayfvt1(s1.fvtmi,' ION',ts,in1.dt*float(in1.ntv),
s1.itv,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for ion density
if (in1.movion==1):
if (in1.ntdi > 0):
if ((in1.nddi==2) or (in1.nddi==3)):
# display frequency spectrum
graf1.dmscaler1(s1.wkdi,'ION DENSITY OMEGA VS MODE',ntime,999,
1,in1.modesxdi,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for potential
if (in1.ntp > 0):
if ((in1.ndp==2) or (in1.ndp==3)):
# display frequency spectrum
graf1.dmscaler1(s1.wk,'POTENTIAL OMEGA VS MODE',ntime,999,2,
in1.modesxp,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for ion current density
if (in1.movion==1):
if (in1.ntji > 0):
if ((in1.ndji==2) or (in1.ndji==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwkji,'ION CURRENT OMEGA VS MODE',ntime,
999,2,2,in1.modesxji,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for radiative vector potential
if (in1.ntar > 0):
if ((in1.ndar==2) or (in1.ndar==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwkr,'RADIATIVE VPOTENTIAL OMEGA VS MODE',
ntime,999,2,2,in1.modesxar,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for vector potential
if (in1.nta > 0):
if ((in1.nda==2) or (in1.nda==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwk,'VECTOR POTENTIAL OMEGA VS MODE',ntime,
999,2,2,in1.modesxa,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# display final spectral analysis for transverse efield
if (in1.ntet > 0):
if ((in1.ndet==2) or (in1.ndet==3)):
# display frequency spectrum
graf1.dmvector1(sb1.vwket,'TRANSVERSE EFIELD OMEGA VS MODE',ntime,
999,2,2,in1.modesxet,s1.cwk,irc)
if (irc[0]==1):
exit(0)
# close diagnostics
sb1.close_diags13(s1.iudm)
# close reset and restart files: iur, iurr, iur0
s1.close_restart1()
# close output file
print >> iuot, " * * * q.e.d. * * *"
iuot.close()
# close graphics device
graf1.close_graphs()