|
1 | 1 | Metadata-Version: 2.1
|
2 | 2 | Name: dnn-inference
|
3 |
| -Version: 0.14 |
| 3 | +Version: 0.15 |
4 | 4 | Summary: Dnn-Inference is a Python module for hypothesis testing based on deep neural networks.
|
5 | 5 | Home-page: https://github.com/statmlben/dnn-inference
|
6 | 6 | Author: Ben Dai
|
7 | 7 | Author-email: bendai@cuhk.edu.hk
|
8 | 8 | License: MIT
|
9 |
| -Description: .. -*- mode: rst -*- |
10 |
| - |
11 |
| - |PyPi|_ |Keras|_ |MIT| |Python3| |tensorflow|_ |downloads|_ |downloads_month|_ |
12 |
| - |
13 |
| - .. |dAI| image:: https://img.shields.io/badge/Powered%20by-cuhk%40dAI-purple.svg |
14 |
| - .. _dAI: https://www.bendai.org |
15 |
| - |
16 |
| - .. |PyPi| image:: https://badge.fury.io/py/dnn-inference.svg |
17 |
| - .. _PyPi: https://badge.fury.io/py/dnn-inference |
18 |
| - |
19 |
| - .. |Keras| image:: https://img.shields.io/badge/keras-tf.keras-red.svg |
20 |
| - .. _Keras: https://keras.io/ |
21 |
| - |
22 |
| - .. |MIT| image:: https://img.shields.io/pypi/l/varsvm.svg |
23 |
| - |
24 |
| - .. |Python3| image:: https://img.shields.io/badge/python-3-green.svg |
25 |
| - |
26 |
| - .. |tensorflow| image:: https://img.shields.io/badge/keras-tensorflow-blue.svg |
27 |
| - .. _tensorflow: https://www.tensorflow.org/ |
28 |
| - |
29 |
| - .. |downloads| image:: https://pepy.tech/badge/dnn-inference |
30 |
| - .. _downloads: https://pepy.tech/project/dnn-inference |
31 |
| - .. |downloads_month| image:: https://pepy.tech/badge/dnn-inference/month |
32 |
| - .. _downloads_month: https://pepy.tech/project/dnn-inference |
33 |
| - |
34 |
| - Dnn-Inference |
35 |
| - ============= |
36 |
| - |
37 |
| - .. image:: ./logo/logo_header.png |
38 |
| - :align: center |
39 |
| - :width: 800 |
40 |
| - |
41 |
| - Dnn-Inference is a Python module for hypothesis testing based on deep neural networks. |
42 |
| - |
43 |
| - Website: https://dnn-inference.readthedocs.io |
44 |
| - |
45 |
| - .. image:: ./logo/demo_result.png |
46 |
| - :align: center |
47 |
| - :width: 800 |
48 |
| - |
49 |
| - Three-lines-of-code |
50 |
| - ------------------- |
51 |
| - .. figure:: ./logo/dnn_inf.gif |
52 |
| - |
53 |
| - |
54 |
| - Reference |
55 |
| - --------- |
56 |
| - **If you use this code please star the repository and cite the following paper:** |
57 |
| - |
58 |
| - .. code:: bib |
59 |
| - |
60 |
| - @misc{dai2021significance, |
61 |
| - title={Significance tests of feature relevance for a blackbox learner}, |
62 |
| - author={Ben Dai and Xiaotong Shen and Wei Pan}, |
63 |
| - year={2021}, |
64 |
| - eprint={2103.04985}, |
65 |
| - archivePrefix={arXiv}, |
66 |
| - primaryClass={stat.ML} |
67 |
| - } |
68 |
| - |
69 |
| - Installation |
70 |
| - ------------ |
71 |
| - |
72 |
| - Dependencies |
73 |
| - ~~~~~~~~~~~~ |
74 |
| - |
75 |
| - Deep-Inference requires: |
76 |
| - |
77 |
| - - Python |
78 |
| - - Numpy |
79 |
| - - Keras |
80 |
| - - Tensorflow>=2.0 |
81 |
| - - sklearn |
82 |
| - - SciPy |
83 |
| - |
84 |
| - User installation |
85 |
| - ~~~~~~~~~~~~~~~~~ |
86 |
| - |
87 |
| - Install Deep-Inference using ``pip`` :: |
88 |
| - |
89 |
| - pip install dnn-inference |
90 |
| - |
91 |
| - or :: |
92 |
| - |
93 |
| - pip install git+https://github.com/statmlben/dnn-inference.git |
94 |
| - |
95 |
| - Source code |
96 |
| - ~~~~~~~~~~~ |
97 |
| - |
98 |
| - You can check the latest sources with the command:: |
99 |
| - |
100 |
| - git clone https://github.com/statmlben/dnn-inference.git |
101 |
| - |
102 |
| - |
103 | 9 | Platform: UNKNOWN
|
104 | 10 | Description-Content-Type: text/x-rst
|
| 11 | +License-File: LICENSE |
| 12 | + |
| 13 | +.. dnn-inference documentation master file |
| 14 | + |
| 15 | +🔬 dnn-inference: significance tests of feature relevance for a black-box model |
| 16 | +=============================================================================== |
| 17 | + |
| 18 | +.. -*- mode: rst -*- |
| 19 | + |
| 20 | +|PyPi|_ |Keras|_ |MIT|_ |Python3|_ |tensorflow|_ |downloads|_ |downloads_month|_ |
| 21 | + |
| 22 | +.. |PyPi| image:: https://badge.fury.io/py/dnn-inference.svg |
| 23 | +.. _PyPi: https://pypi.org/project/dnn-inference/ |
| 24 | + |
| 25 | +.. |Keras| image:: https://img.shields.io/badge/keras-tf.keras-red.svg |
| 26 | +.. _Keras: https://keras.io/ |
| 27 | + |
| 28 | +.. |MIT| image:: https://img.shields.io/pypi/l/dnn-inference.svg |
| 29 | +.. _MIT: https://opensource.org/licenses/MIT |
| 30 | + |
| 31 | +.. |Python3| image:: https://img.shields.io/badge/python-3-green.svg |
| 32 | +.. _Python3: www.python.org |
| 33 | + |
| 34 | +.. |tensorflow| image:: https://img.shields.io/badge/keras-tensorflow-blue.svg |
| 35 | +.. _tensorflow: https://www.tensorflow.org/ |
| 36 | + |
| 37 | +.. |downloads| image:: https://pepy.tech/badge/dnn-inference |
| 38 | +.. _downloads: https://pepy.tech/project/dnn-inference |
| 39 | + |
| 40 | +.. |downloads_month| image:: https://pepy.tech/badge/dnn-inference/month |
| 41 | +.. _downloads_month: https://pepy.tech/project/dnn-inference |
| 42 | + |
| 43 | +.. image:: ./logo/logo_header.png |
| 44 | + :width: 900 |
| 45 | + |
| 46 | +**dnn-inference** is a Python module for hypothesis testing based on black-box models, including **deep neural networks**. |
| 47 | + |
| 48 | +- GitHub repo: `https://github.com/statmlben/dnn-inference <https://github.com/statmlben/dnn-inference>`_ |
| 49 | +- Documentation: `https://dnn-inference.readthedocs.io <https://dnn-inference.readthedocs.io/en/latest/>`_ |
| 50 | +- PyPi: `https://pypi.org/project/dnn-inference <https://pypi.org/project/nonlinear-causal>`_ |
| 51 | +- Open Source: `MIT license <https://opensource.org/licenses/MIT>`_ |
| 52 | +- Paper: `arXiv:2103.04985 <https://arxiv.org/abs/2103.04985>`_ |
| 53 | + |
| 54 | + |
| 55 | +.. 🎯 What We Can Do |
| 56 | +.. ----------------- |
| 57 | + |
| 58 | +.. .. image:: ./logo/demo_result.png |
| 59 | +.. :width: 600 |
| 60 | + |
| 61 | +.. **dnn-inference** is able to provide an asymptotically valid `p-value` to examine if :math:`\mathcal{S}` is discriminative features to predict :math:`Y`. |
| 62 | +.. Specifically, the proposed testing is: |
| 63 | + |
| 64 | + |
| 65 | +.. H_0: R(f^*) - R_{\mathcal{S}}(g^*) = 0, \quad \text{versus} \quad H_a: R(f^*) - R_{\mathcal{S}}(g^*) < 0, |
| 66 | + |
| 67 | + |
| 68 | +.. where :math:`\mathcal{S}` is a collection of hypothesized features, |
| 69 | +.. :math:`R` and :math:`R_{\mathcal{S}}` are risk functions with/without the hypothesized features :math:`\mathbf{X}_{\mathcal{S}}`, |
| 70 | +.. and :math:`f^*` and :math:`g^*` are population minimizers on :math:`R` and :math:`R_{\mathcal{S}}` respectively. |
| 71 | +.. The proposed test just considers the difference between the best predictive scores with/without hypothesized features. |
| 72 | +.. Please check more details in our paper `arXiv:2103.04985 <https://arxiv.org/abs/2103.04985>`_. |
| 73 | + |
| 74 | +.. - When `log-likelihood` is used as a loss function, then the test is equivalent to a conditional independence test: :math:`Y \perp X_{\mathcal{S}} | X_{\mathcal{S}^c}`. |
| 75 | +.. - Only `a small number of fitting` on neural networks is required, and the number can be as small as 1. |
| 76 | +.. - Asymptotically Type I error control and power consistency. |
| 77 | + |
| 78 | + |
| 79 | +Installation |
| 80 | +============ |
| 81 | + |
| 82 | +Dependencies |
| 83 | +------------ |
| 84 | + |
| 85 | +``dnn-inference`` requires: **Python>=3.8** + [pip libs](./requirements.txt) |
| 86 | + |
| 87 | +.. code:: bash |
| 88 | + |
| 89 | + pip install -r requirements.txt |
| 90 | + |
| 91 | +User installation |
| 92 | +----------------- |
| 93 | + |
| 94 | +Install ``dnn-inference`` using ``pip`` |
| 95 | + |
| 96 | +.. code:: bash |
| 97 | + |
| 98 | + pip install dnn_inference |
| 99 | + pip install git+https://github.com/statmlben/dnn-inference.git |
| 100 | + |
| 101 | +Reference |
| 102 | +--------- |
| 103 | +**If you use this code please star the repository and cite the following paper:** |
| 104 | + |
| 105 | +.. code:: bib |
| 106 | + |
| 107 | + @misc{dai2021significance, |
| 108 | + title={Significance tests of feature relevance for a blackbox learner}, |
| 109 | + author={Ben Dai and Xiaotong Shen and Wei Pan}, |
| 110 | + year={2021}, |
| 111 | + eprint={2103.04985}, |
| 112 | + archivePrefix={arXiv}, |
| 113 | + primaryClass={stat.ML} |
| 114 | + } |
| 115 | + |
| 116 | + |
| 117 | +Notebook |
| 118 | +======== |
| 119 | + |
| 120 | +- **MNIST dataset**: `Notebook1 <https://dnn-inference.readthedocs.io/en/latest/nb/MNIST_demo.html>`_ |
| 121 | + |
| 122 | +- **Boston house prices dataset**: `Notebook2 <https://dnn-inference.readthedocs.io/en/latest/nb/Boston_house_prices.html>`_ |
| 123 | + |
0 commit comments