You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
While sorting out statnet/ergm#202, it turns out that even after updating ergm.ego's vertex attribute extraction and term defaults for consistency with ergm, COLLAPSE_SMALLEST() can still produce strange results if, in particular, frequencies of categories differ between egos and alters.
For example,
set.seed(0)
library(ergm.ego)
#> ergm: version 3.11.0-6010, created on 2021-01-30#> ergm.ego: version 0.6.0-569, created on 2021-01-30
library(ergm)
library(magrittr)
n<-100e<-150ds<- c(10,15,5,20)
y<- network.initialize(n, directed=FALSE)
y %v% "a"<- sample(1:3+6,n,replace=TRUE)
aM<-matrix(FALSE, 3, 3)
aM[1,1] <-aM[1,3] <-TRUEy %v% "b"<- sample(letters[1:4],n,replace=TRUE)
y %v% "c"<- sample(runif(10),n,replace=TRUE)
y %v% "d"<- runif(n)
y<- san(y~edges+degree(0:3), target.stats=c(e,ds))
y.e<- as.egodata(y)
f<-~ nodefactor(COLLAPSE_SMALLEST("b",2, "x")) + mm(a~(~b) %>% COLLAPSE_SMALLEST(2,"x"), levels2=TRUE)
f.y<-statnet.common::nonsimp_update.formula(f, y~.)
environment(f.y) <- globalenv()
f.y.e<-statnet.common::nonsimp_update.formula(f, y.e~.)
environment(f.y.e) <- globalenv()
(f.y.s<- summary(f.y))
#> nodefactor.b.d nodefactor.b.x mm[a=7,b=a] mm[a=8,b=a] mm[a=9,b=a] #> 67 163 20 25 25 #> mm[a=7,b=d] mm[a=8,b=d] mm[a=9,b=d] mm[a=7,b=x] mm[a=8,b=x] #> 21 24 22 48 68 #> mm[a=9,b=x] #> 47
(f.y.e.s<- summary(f.y.e))
#> Warning: In unknown function: 'COLLAPSE_SMALLEST()' may behave unpredictably#> with egocentric data and is not recommended at this time.#> Warning: In unknown function: 'COLLAPSE_SMALLEST()' may behave unpredictably#> with egocentric data and is not recommended at this time.#> Warning: In unknown function: 'COLLAPSE_SMALLEST()' may behave unpredictably#> with egocentric data and is not recommended at this time.#> Warning: In unknown function: 'COLLAPSE_SMALLEST()' may behave unpredictably#> with egocentric data and is not recommended at this time.#> nodefactor.b.b nodefactor.b.c nodefactor.b.d nodefactor.b.x mm[a=7,b=a] #> 44.0 37.5 33.5 150.0 10.0 #> mm[a=8,b=a] mm[a=9,b=a] mm[a=7,b=b] mm[a=8,b=b] mm[a=9,b=b] #> 12.5 12.5 12.0 19.5 12.5 #> mm[a=7,b=c] mm[a=8,b=c] mm[a=9,b=c] mm[a=7,b=d] mm[a=8,b=d] #> 12.0 14.5 11.0 10.5 12.0 #> mm[a=9,b=d] mm[a=7,b=x] mm[a=8,b=x] mm[a=9,b=x] #> 11.0 44.5 58.5 47.0
stopifnot(all.equal(f.y.s,f.y.e.s))
#> Error: f.y.s and f.y.e.s are not equal:#> Names: 11 string mismatches#> Numeric: lengths (11, 19) differ
While sorting out statnet/ergm#202, it turns out that even after updating
ergm.ego
's vertex attribute extraction and term defaults for consistency withergm
,COLLAPSE_SMALLEST()
can still produce strange results if, in particular, frequencies of categories differ between egos and alters.For example,
Created on 2021-01-30 by the reprex package (v1.0.0)
This happens because among the egos, factor "b" has one set of most frequent levels, whereas for the alters, it's another, and they get pooled.
The text was updated successfully, but these errors were encountered: