-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0035.cpp
122 lines (111 loc) · 3.27 KB
/
euler-0035.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// ////////////////////////////////////////////////////////
// # Title
// Circular primes
//
// # URL
// https://projecteuler.net/problem=35
// http://euler.stephan-brumme.com/35/
//
// # Problem
// The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
//
// There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
//
// How many circular primes are there below one million?
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// First, a a standard prime sieve finds all prime numbers up to our limit (1000000 by default) and keeps them in a ''std::set''.
//
// Then each prime ''x'' in ''std::set'' is rotated by one digit to the right:
// 1. get the right-most digit:
// ''auto digit = rotated % 10;''
// 2. move all digits by one digit to the right ("erasing" the right-most digit):
// ''rotated /= 10;''
// 3. prepend the right-most digit:
// '' rotated += digit * shift;''
// 4. check whether rotated is part of our ''std::set'', too
// 5. if ''rotated'' is equal to our initial value ''x'' then we checked all rotations
//
// The only point of interest is ''shift'' which is a power of 10 such that `10^a = shift <= x <= 10^{a+1}`.
// E.g., if `x = 3456` then `shift = 1000`.
//
// # Note
//
// There are a few options to speed up the code:
// 1. All prime numbers are odd (except for 2): if ''x != 2'' and any digit is even then this prime can't be circular.
// 2. We can simplify point 1 by noting that all single-digit primes are circular.
//
// # Hackerrank
// We have to find the sum of all such prime numbers, not their count.
#include <iostream>
#include <set>
int main()
{
// highest number (1000000 in original problem)
unsigned int n;
std::cin >> n;
// precomputation: find all prime numbers up to n
std::set<unsigned int> primes;
primes.insert(2);
for (unsigned int i = 3; i <= n; i += 2)
{
bool isPrime = true;
// test against all prime numbers we have so far (in ascending order)
for (auto x : primes)
{
// divisible => not prime
if (i % x == 0)
{
isPrime = false;
break;
}
// prime is too large to be a divisor
if (x*x > i)
break;
}
// yes, we have a prime
if (isPrime)
primes.insert(i);
}
// now look at all primes
unsigned int sum = 0;
for (auto x : primes)
{
// move the right-most digit to the front of the number
// we need to know the "position" of the front-most digit:
// shift will be 1 for x = 1..9
// shift will be 10 for x = 10..99
// shift will be 100 for x = 100..999 and so on
unsigned int shift = 1;
while (x > shift * 10)
shift *= 10;
auto rotated = x;
do
{
// take right-most digit
auto digit = rotated % 10;
// remove it
rotated /= 10;
// and prepend it
rotated += digit * shift;
// rotated number not prime ?
if (primes.count(rotated) == 0)
break;
} while (rotated != x); // finished the circle ? (we have the initial number again)
// all rotations succeeded ?
#define ORIGINAL
#ifdef ORIGINAL
if (rotated == x)
sum++;
#else
if (rotated == x)
sum += x;
#endif
}
std::cout << sum << std::endl;
return 0;
}