-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0050.cpp
321 lines (282 loc) · 10.6 KB
/
euler-0050.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// ////////////////////////////////////////////////////////
// # Title
// Consecutive prime sum
//
// # URL
// https://projecteuler.net/problem=50
// http://euler.stephan-brumme.com/50/
//
// # Problem
// The prime 41 can be written as the sum of six consecutive primes:
// 41 = 2 + 3 + 5 + 7 + 11 + 13
//
// This is the longest sum of consecutive primes that adds to a prime below one-hundred.
// The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953.
//
// Which prime, below one-million, can be written as the sum of the most consecutive primes?
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// The basic idea is pretty simple:
// - generate a ton of prime numbers `p`
// - for each sum `sum_{x=i..j}{p_x}` perform a primality test
// - print the maximum sum that is prime
//
// Initially I struggled a little bit to find a fast solution (especially fast enough for Hackerrank, where the sum may be up to `10^12`).
// Then my first brute force code revealed a few observations:
// - if the sum of the first `n` primes is prime, then maybe the sum of the first `n+1` primes isn't
// - if the sum of the first `n` primes isn't prime, then maybe the sum of the first `n+1` primes is
// ==> just keep going, no matter how many non-prime sums we have seen, eventually the sum will be prime again
//
// Sometimes starting with the first prime `2` doesn't produce the highest sum. The problems mentions `953` which is `7 + 9 + 11 + ... + 89`.
// The surprising fact is that all "best" chains below `10^12` start with at most `131` (!). I can't explain why - that's just what I saw in my output !
//
// My code generates prime numbers on-demand. Whenever the main loop runs out of primes, it calls ''morePrimes(x)'' which ensures that ''primes'' will contain at ''x'' prime numbers.
// On top of that, ''primeSum[i]'' is the sum of the first ''i'' prime numbers (zero-based index), e.g. ''primeSum[2] = 2+3+5 = 10''.
//
// The interesting fact about ''primeSum'' is that the sum of the first `x` prime numbers excluding the initial `y` primes is ''primeSum[x] - primeSum[y]''.
// For example, ''primeSum[23] - primeSum[2] = 963 - 10 = 953'', that means there is chain containing `23-2=21` elements with a sum of `953`.
//
// A simple loop finds the largest sum which is below the target: ''primeSum[545] = 997661''
// If that number isn't prime (`997661 = 7 * 359 * 397`), then we look at its predecessor ''primeSum[544]'' and so on - until the sum is prime.
// As I explained earlier, the best chain maybe doesn't start with the first prime.
// Therefore we have to check ''primeSum[545] - primeSum[0] = 997659'' as well, then try ''primeSum[544] - primeSum[0]'', ...
// until we arrive at ''primeSum[545] - primeSum[31]'' because ''primes[31] = 131''.
//
// There are simple primality tests for such small number but they all fall apart when the sum is large (such as `10^12` in the Hackerrank version).
// Take a look at my [toolbox](../toolbox/#primetests) for inspiration.
//
// # Hackerrank
// It took my quite a while to come up with a fast and stable prime test.
// Searching on the internet immediately brings up the Miller-Rabin test: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
//
// Unfortunately, most C/C++ implementations either can't handle 64 bit numbers properly or are way to complex to fit in a few lines of code.
// That's why had to write my own routine (of course inspired by looking at other sources).
//
// Modular arithmetic was already used in problem 48, please see there for an explanation of ''mulmod'' and ''powmod''.
// My [toolbox](../toolbox/#primetests) contains code for a 32 bit Miller-Rabin test where those two functions can be written in a much simpler way.
//
// # Note
// I have to admit that the mathematics of the Miller-Rabin test is not easy to understand for a non-mathematican like me:
// I couldn't have written my code without these sources of inspiration:
// - some code from https://ronzii.wordpress.com/2012/03/04/miller-rabin-primality-test/
// - with optimizations from http://ceur-ws.org/Vol-1326/020-Forisek.pdf
// - good bases can be found at http://miller-rabin.appspot.com/
// - 32 bit C code https://de.wikipedia.org/wiki/Miller-Rabin-Test
#include <iostream>
#include <vector>
// return (a*b) % modulo
unsigned long long mulmod(unsigned long long a, unsigned long long b, unsigned long long modulo)
{
// fast path
if (a <= 0xFFFFFFF && b <= 0xFFFFFFF)
return (a * b) % modulo;
// we might encounter overflows (slow path)
unsigned long long result = 0;
unsigned long long factor = a % modulo;
// bitwise multiplication
while (b > 0)
{
// b is odd ? a*b = a + a*(b-1)
if (b & 1)
{
result += factor;
if (result >= modulo)
result %= modulo;
}
// b is even ? a*b = (2*a)*(b/2)
factor <<= 1;
if (factor >= modulo)
factor %= modulo;
// next bit
b >>= 1;
}
return result;
}
// return (base^exponent) % modulo
unsigned long long powmod(unsigned long long base, unsigned long long exponent, unsigned long long modulo)
{
unsigned long long result = 1;
while (exponent > 0)
{
// fast exponentation:
// odd exponent ? a^b = a*a^(b-1)
if (exponent & 1)
result = mulmod(result, base, modulo);
// even exponent ? a^b = (a*a)^(b/2)
base = mulmod(base, base, modulo);
exponent >>= 1;
}
return result;
}
// Miller-Rabin-test
bool isPrime(unsigned long long p)
{
// some code from https://ronzii.wordpress.com/2012/03/04/miller-rabin-primality-test/
// with optimizations from http://ceur-ws.org/Vol-1326/020-Forisek.pdf
// good bases can be found at http://miller-rabin.appspot.com/
// trivial cases
const unsigned int bitmaskPrimes2to31 = (1 << 2) | (1 << 3) | (1 << 5) | (1 << 7) |
(1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) |
(1 << 23) | (1 << 29); // = 0x208A28Ac
if (p < 31)
return (bitmaskPrimes2to31 & (1 << p)) != 0;
if (p % 2 == 0 || p % 3 == 0 || p % 5 == 0 || p % 7 == 0 || // divisible by a small prime
p % 11 == 0 || p % 13 == 0 || p % 17 == 0)
return false;
if (p < 17*19) // we filtered all composite numbers < 17*19, all others below 17*19 must be prime
return true;
// test p against those numbers ("witnesses")
// good bases can be found at http://miller-rabin.appspot.com/
const unsigned int STOP = 0;
const unsigned int TestAgainst1[] = { 377687, STOP };
const unsigned int TestAgainst2[] = { 31, 73, STOP };
const unsigned int TestAgainst3[] = { 2, 7, 61, STOP };
// first three sequences are good up to 2^32
const unsigned int TestAgainst4[] = { 2, 13, 23, 1662803, STOP };
const unsigned int TestAgainst7[] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022, STOP };
// good up to 2^64
const unsigned int* testAgainst = TestAgainst7;
// use less tests if feasible
if (p < 5329)
testAgainst = TestAgainst1;
else if (p < 9080191)
testAgainst = TestAgainst2;
else if (p < 4759123141ULL)
testAgainst = TestAgainst3;
else if (p < 1122004669633ULL)
testAgainst = TestAgainst4;
// find p - 1 = d * 2^j
auto d = p - 1;
d >>= 1;
unsigned int shift = 0;
while ((d & 1) == 0)
{
shift++;
d >>= 1;
}
// test p against all bases
do
{
auto x = powmod(*testAgainst++, d, p);
// is test^d % p == 1 or -1 ?
if (x == 1 || x == p - 1)
continue;
// now either prime or a strong pseudo-prime
// check test^(d*2^r) for 0 <= r < shift
bool maybePrime = false;
for (unsigned int r = 0; r < shift; r++)
{
// x = x^2 % p
// (initial x was test^d)
x = powmod(x, 2, p);
// x % p == 1 => not prime
if (x == 1)
return false;
// x % p == -1 => prime or an even stronger pseudo-prime
if (x == p - 1)
{
// next iteration
maybePrime = true;
break;
}
}
// not prime
if (!maybePrime)
return false;
} while (*testAgainst != STOP);
// prime
return true;
}
std::vector<unsigned int> primes;
std::vector<unsigned long long> primeSum;
// make sure that at least "num" primes are available in "primes"
void morePrimes(unsigned int num)
{
if (primes.empty())
{
primes .reserve(400000);
primeSum.reserve(400000);
primes.push_back(2);
primes.push_back(3);
primeSum.push_back(2);
}
for (auto i = primes.back() + 2; primes.size() <= num; i += 2)
{
bool isPrime = true;
// test against all prime numbers we have so far (in ascending order)
for (auto x : primes)
{
// prime is too large to be a divisor
if (x*x > i)
break;
// divisible => not prime
if (i % x == 0)
{
isPrime = false;
break;
}
}
// yes, we have a prime
if (isPrime)
primes.push_back(i);
}
for (auto i = primeSum.size(); i < primes.size(); i++)
primeSum.push_back(primeSum.back() + primes[i]);
}
int main()
{
// generate some primes
const unsigned int PrimesPerBatch = 10000;
morePrimes(PrimesPerBatch);
unsigned int tests;
std::cin >> tests;
while (tests--)
{
unsigned long long last = 1000000;
std::cin >> last;
unsigned long long best = 2; // highest prime sum
unsigned int maxLength = 0; // longest chain (must add plus one)
// all sequences start with surprisingly small prime numbers
// a brute-force search showed that all "good" chains start at 2..131
unsigned int start = 0; // primes[0] = 2
while (primes[start] <= 131 && primes[start] <= last)
{
unsigned long long subtract = 0;
if (start > 0)
subtract = primeSum[start - 1];
unsigned int pos = start + maxLength;
// find shortest chain whose sum exceeds the limit
while (primeSum[pos] - subtract <= last)
{
pos++;
// running out of prime numbers ? add more !
if (pos + 100 >= primes.size()) // plus 100 is probably too cautious
morePrimes(primes.size() + PrimesPerBatch);
}
pos--;
// chop off one prime number until the sum is prime, too
while (pos - start > maxLength)
{
unsigned long long sum = primeSum[pos] - subtract;
// yes, we have a good candidate (maybe better ones for other values of "start", though)
if (isPrime(sum))
{
maxLength = pos - start;
best = sum;
break;
}
pos--;
}
start++;
}
// if sum is > 0 then "length" didn't count the first element
if (best >= 2)
maxLength++;
std::cout << best << " " << maxLength << std::endl;
}
return 0;
}