-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0051.cpp
178 lines (157 loc) · 6.36 KB
/
euler-0051.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// ////////////////////////////////////////////////////////
// # Title
// Prime digit replacements
//
// # URL
// https://projecteuler.net/problem=51
// http://euler.stephan-brumme.com/51/
//
// # Problem
// By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime.
// By replacing the 3rd and 4th digits of 56**3 with the same digit, this 5-digit number is the first example having seven primes among the ten generated numbers,
// yielding the family: 56003, 56113, 56333, 56443, 56663, 56773, and 56993. Consequently 56003, being the first member of this family, is the smallest prime with this property.
//
// Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime value family.
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// In most regular expression languages, the single dot ''"."'' indicates an arbitrary symbol.
// Project Euler went with a star ''"*"'' instead of a dot but it doesn't matter what placeholder you choose.
//
// My program computes all prime numbers and then generates all regular expressions it can be matched against
// (under the assumption that all dots are replaced by the same digit).
// For example: ''56003'' can be matched against ''".6003"'', ''"5.003"'', ''"56.03"'', ''"560.3"'', ''"56..3"'' and ''"5600."''.
//
// Now all we have to do is:
// - find all relevant prime numbers
// - for each prime number: find all regular expressions it can be matched against and add the prime to each regular expression's list
// - find the list (of at least 8 numbers) with the smallest prime numbers
//
// The user can influence the following parameters (due to Hackerranks' modified problem):
// - ''maxDigits'' defines the total number of digits of each prime (''56003'' has 5 digits)
// - ''replace'' defines how many identical digits should be replaced
// - ''siblings'' defines how many prime numbers can be matched against the regular expression (the original problem asks for 8)
//
// The most important data structure of my program is ''matches'':
// its keys are the regular expressions while its values are the matching prime numbers.
//
// The function ''match'' fills that data structure recursively.
// - it replaces all digits of ''regex'' which are equal to ''digit'' by a dot but not more than ''howOften'' times.
// - then it adds the current prime number ''number'' to ''matches[regex]''
// - to speed up the program, the smallest prime number which fulfills all conditions is stored in ''smallestPrime''
//
// # Hackerrank
// I failed one test case with timeouts: looking at my output I saw that all minimized families of 7-digit primes have members below 2000000 or 3000000.
// That's a hack I'm not very proud of, but it gets the job done ...
//
// The problem description wasn't very clear about it: a family of x primes is also a family of x-1 primes.
// That means that the family of 7 prime numbers 56003, 56113, 56333, 56443, 56663, 56773, and 56993 is
// also a family of 6 prime numbers (56003, 56113, 56333, 56443, 56663, 56773).
#include <vector>
#include <string>
#include <map>
#include <iostream>
// total number of digits
unsigned int maxDigits = 7;
// how many digits we replace by a pattern symbol
unsigned int replace = 3;
// how many primes that pattern match
unsigned int siblings = 7;
// [regular expression] => [prime numbers matching that expression]
std::map<std::string, std::vector<unsigned int>> matches;
// smallest family with the required number of siblings
unsigned int smallestPrime = 99999999;
// replace all combinations of "digit" by a dot (".") when it occurs at least "howOften"
void match(unsigned int number, std::string& regex, unsigned int digit, unsigned int howOften, unsigned int startPos = 0)
{
char asciiDigit = digit + '0';
// look for digit
for (unsigned int i = startPos; i < maxDigits; i++)
{
// keep going ...
if (regex[i] != asciiDigit)
continue;
// no leading zero
if (i == 0 && asciiDigit == '0')
continue;
// replace digit by placeholder
regex[i] = '.';
// replaced enough digits ?
if (howOften == 1)
{
auto& addTo = matches[regex];
addTo.push_back(number);
if (addTo.size() >= siblings && addTo.front() < smallestPrime)
smallestPrime = addTo.front();
}
else
{
// no, have to "go deeper"
match(number, regex, digit, howOften - 1, i + 1);
}
// restore digit
regex[i] = asciiDigit;
}
}
int main()
{
std::cin >> maxDigits >> replace >> siblings;
// find smallest number with maxDigits digits
unsigned int minNumber = 1;
for (unsigned int i = 1; i < maxDigits; i++)
minNumber *= 10;
// and the largest number
unsigned int maxNumber = minNumber * 10 - 1;
// basic prime sieve of Erastothenes
// bitmap of all prime numbers (primes[x] is true if x is prime)
std::vector<bool> primes(maxNumber, true);
primes[0] = primes[1] = false;
for (unsigned int i = 2; i*i <= maxNumber; i++)
if (primes[i])
// i is a prime, exclude all its multiples
for (unsigned j = 2*i; j <= maxNumber; j += i)
primes[j] = false;
// build regex
for (unsigned int i = minNumber; i <= maxNumber; i++)
if (primes[i])
{
// convert i to string
auto strNum = std::to_string(i);
// replace digits
for (unsigned int digit = 0; digit <= 9; digit++)
match(i, strNum, digit, replace);
// quick hack to speed up the program
if (maxDigits == 7)
{
// all relevant numbers were below thes thresholds on my local computer
if (replace == 1 && i > 2000000)
break;
if (replace == 2 && i > 3000000)
break;
}
}
// find lexicographically minimized "family"
std::string minimum;
for (auto m : matches)
{
// enough members ?
if (m.second.size() < siblings)
continue;
// minimized ?
if (m.second.front() != smallestPrime)
continue;
// convert all siblings to a long string
std::string s;
for (unsigned i = 0; i < siblings; i++)
s += std::to_string(m.second[i]) + " ";
// same minimum primes are part of multiple families, choose the lexicographically first
if (minimum > s || minimum.empty())
minimum = s;
}
// print best match
std::cout << minimum << std::endl;
return 0;
}