-
Notifications
You must be signed in to change notification settings - Fork 73
/
hmap.h
478 lines (426 loc) · 15.4 KB
/
hmap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/* MIT License
*
* Copyright (c) 2023 Tyge Løvset
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Unordered set/map - implemented as closed hashing with linear probing and no tombstones.
/*
#include <stdio.h>
#define i_TYPE ICmap,int,char
#include "stc/hmap.h"
int main(void) {
ICmap m = {0};
ICmap_emplace(&m, 5, 'a');
ICmap_emplace(&m, 8, 'b');
ICmap_emplace(&m, 12, 'c');
ICmap_value* v = ICmap_get(&m, 10); // NULL
char val = *ICmap_at(&m, 5); // 'a'
ICmap_emplace_or_assign(&m, 5, 'd'); // update
ICmap_erase(&m, 8);
c_foreach (i, ICmap, m)
printf("map %d: %c\n", i.ref->first, i.ref->second);
ICmap_drop(&m);
}
*/
#include "priv/linkage.h"
#ifndef STC_HMAP_H_INCLUDED
#define STC_HMAP_H_INCLUDED
#include "common.h"
#include "types.h"
#include <stdlib.h>
#include <string.h>
struct hmap_slot { uint8_t hashx; };
#endif // STC_HMAP_H_INCLUDED
#ifndef _i_prefix
#define _i_prefix hmap_
#endif
#ifndef _i_isset
#define _i_ismap
#define _i_MAP_ONLY c_true
#define _i_SET_ONLY c_false
#define _i_keyref(vp) (&(vp)->first)
#else
#define _i_MAP_ONLY c_false
#define _i_SET_ONLY c_true
#define _i_keyref(vp) (vp)
#endif
#define _i_ishash
#include "priv/template.h"
#ifndef i_is_forward
_c_DEFTYPES(_c_htable_types, i_type, i_key, i_val, _i_MAP_ONLY, _i_SET_ONLY);
#endif
_i_MAP_ONLY( struct _m_value {
_m_key first;
_m_mapped second;
}; )
typedef i_keyraw _m_keyraw;
typedef i_valraw _m_rmapped;
typedef _i_SET_ONLY( i_keyraw )
_i_MAP_ONLY( struct { _m_keyraw first;
_m_rmapped second; } )
_m_raw;
STC_API i_type _c_MEMB(_with_capacity)(intptr_t cap);
#if !defined i_no_clone
STC_API i_type _c_MEMB(_clone)(i_type map);
#endif
STC_API void _c_MEMB(_drop)(const i_type* cself);
STC_API void _c_MEMB(_clear)(i_type* self);
STC_API bool _c_MEMB(_reserve)(i_type* self, intptr_t capacity);
STC_API _m_result _c_MEMB(_bucket_)(const i_type* self, const _m_keyraw* rkeyptr);
STC_API _m_result _c_MEMB(_insert_entry_)(i_type* self, _m_keyraw rkey);
STC_API void _c_MEMB(_erase_entry)(i_type* self, _m_value* val);
STC_API float _c_MEMB(_max_load_factor)(const i_type* self);
STC_API intptr_t _c_MEMB(_capacity)(const i_type* map);
STC_INLINE i_type _c_MEMB(_init)(void) { i_type map = {0}; return map; }
STC_INLINE void _c_MEMB(_shrink_to_fit)(i_type* self) { _c_MEMB(_reserve)(self, (intptr_t)self->size); }
STC_INLINE bool _c_MEMB(_empty)(const i_type* map) { return !map->size; }
STC_INLINE intptr_t _c_MEMB(_size)(const i_type* map) { return (intptr_t)map->size; }
STC_INLINE intptr_t _c_MEMB(_bucket_count)(i_type* map) { return map->bucket_count; }
STC_INLINE bool _c_MEMB(_contains)(const i_type* self, _m_keyraw rkey)
{ return self->size && !_c_MEMB(_bucket_)(self, &rkey).inserted; }
#ifdef _i_ismap
STC_API _m_result _c_MEMB(_insert_or_assign)(i_type* self, _m_key key, _m_mapped mapped);
#if !defined i_no_emplace
STC_API _m_result _c_MEMB(_emplace_or_assign)(i_type* self, _m_keyraw rkey, _m_rmapped rmapped);
#endif
STC_INLINE const _m_mapped*
_c_MEMB(_at)(const i_type* self, _m_keyraw rkey) {
_m_result b = _c_MEMB(_bucket_)(self, &rkey);
c_assert(!b.inserted);
return &b.ref->second;
}
STC_INLINE _m_mapped*
_c_MEMB(_at_mut)(i_type* self, _m_keyraw rkey)
{ return (_m_mapped*)_c_MEMB(_at)(self, rkey); }
#endif // _i_ismap
#if !defined i_no_clone
STC_INLINE void _c_MEMB(_copy)(i_type *self, const i_type* other) {
if (self->table == other->table)
return;
_c_MEMB(_drop)(self);
*self = _c_MEMB(_clone)(*other);
}
STC_INLINE _m_value
_c_MEMB(_value_clone)(_m_value _val) {
*_i_keyref(&_val) = i_keyclone((*_i_keyref(&_val)));
_i_MAP_ONLY( _val.second = i_valclone(_val.second); )
return _val;
}
#endif // !i_no_clone
#if !defined i_no_emplace
STC_INLINE _m_result
_c_MEMB(_emplace)(i_type* self, _m_keyraw rkey _i_MAP_ONLY(, _m_rmapped rmapped)) {
_m_result _res = _c_MEMB(_insert_entry_)(self, rkey);
if (_res.inserted) {
*_i_keyref(_res.ref) = i_keyfrom(rkey);
_i_MAP_ONLY( _res.ref->second = i_valfrom(rmapped); )
}
return _res;
}
#ifdef _i_ismap
STC_INLINE _m_result
_c_MEMB(_emplace_key)(i_type* self, _m_keyraw rkey) {
_m_result _res = _c_MEMB(_insert_entry_)(self, rkey);
if (_res.inserted)
_res.ref->first = i_keyfrom(rkey);
return _res;
}
#endif // _i_ismap
#endif // !i_no_emplace
STC_INLINE _m_raw _c_MEMB(_value_toraw)(const _m_value* val) {
return _i_SET_ONLY( i_keyto(val) )
_i_MAP_ONLY( c_LITERAL(_m_raw){i_keyto((&val->first)), i_valto((&val->second))} );
}
STC_INLINE void _c_MEMB(_value_drop)(_m_value* _val) {
i_keydrop(_i_keyref(_val));
_i_MAP_ONLY( i_valdrop((&_val->second)); )
}
STC_INLINE _m_result
_c_MEMB(_insert)(i_type* self, _m_key _key _i_MAP_ONLY(, _m_mapped _mapped)) {
_m_result _res = _c_MEMB(_insert_entry_)(self, i_keyto((&_key)));
if (_res.inserted)
{ *_i_keyref(_res.ref) = _key; _i_MAP_ONLY( _res.ref->second = _mapped; )}
else
{ i_keydrop((&_key)); _i_MAP_ONLY( i_valdrop((&_mapped)); )}
return _res;
}
STC_INLINE _m_value* _c_MEMB(_push)(i_type* self, _m_value _val) {
_m_result _res = _c_MEMB(_insert_entry_)(self, i_keyto(_i_keyref(&_val)));
if (_res.inserted)
*_res.ref = _val;
else
_c_MEMB(_value_drop)(&_val);
return _res.ref;
}
STC_INLINE void _c_MEMB(_put_n)(i_type* self, const _m_raw* raw, intptr_t n) {
while (n--)
#if defined _i_isset && defined i_no_emplace
_c_MEMB(_insert)(self, *raw++);
#elif defined _i_isset
_c_MEMB(_emplace)(self, *raw++);
#elif defined i_no_emplace
_c_MEMB(_insert_or_assign)(self, raw->first, raw->second), ++raw;
#else
_c_MEMB(_emplace_or_assign)(self, raw->first, raw->second), ++raw;
#endif
}
STC_INLINE i_type _c_MEMB(_from_n)(const _m_raw* raw, intptr_t n)
{ i_type cx = {0}; _c_MEMB(_put_n)(&cx, raw, n); return cx; }
STC_API _m_iter _c_MEMB(_begin)(const i_type* self);
STC_INLINE _m_iter _c_MEMB(_end)(const i_type* self)
{ (void)self; return c_LITERAL(_m_iter){NULL}; }
STC_INLINE void _c_MEMB(_next)(_m_iter* it) {
while ((++it->ref, (++it->_sref)->hashx == 0)) ;
if (it->ref == it->_end) it->ref = NULL;
}
STC_INLINE _m_iter _c_MEMB(_advance)(_m_iter it, size_t n) {
while (n-- && it.ref) _c_MEMB(_next)(&it);
return it;
}
STC_INLINE _m_iter
_c_MEMB(_find)(const i_type* self, _m_keyraw rkey) {
_m_result b;
if (self->size && !(b = _c_MEMB(_bucket_)(self, &rkey)).inserted)
return c_LITERAL(_m_iter){b.ref,
self->table + self->bucket_count,
self->slot + (b.ref - self->table)};
return _c_MEMB(_end)(self);
}
STC_INLINE const _m_value*
_c_MEMB(_get)(const i_type* self, _m_keyraw rkey) {
_m_result b;
if (self->size && !(b = _c_MEMB(_bucket_)(self, &rkey)).inserted)
return b.ref;
return NULL;
}
STC_INLINE _m_value*
_c_MEMB(_get_mut)(i_type* self, _m_keyraw rkey)
{ return (_m_value*)_c_MEMB(_get)(self, rkey); }
STC_INLINE int
_c_MEMB(_erase)(i_type* self, _m_keyraw rkey) {
_m_result b;
if (self->size && !(b = _c_MEMB(_bucket_)(self, &rkey)).inserted)
{ _c_MEMB(_erase_entry)(self, b.ref); return 1; }
return 0;
}
STC_INLINE _m_iter
_c_MEMB(_erase_at)(i_type* self, _m_iter it) {
_c_MEMB(_erase_entry)(self, it.ref);
if (it._sref->hashx == 0)
_c_MEMB(_next)(&it);
return it;
}
STC_INLINE bool
_c_MEMB(_eq)(const i_type* self, const i_type* other) {
if (_c_MEMB(_size)(self) != _c_MEMB(_size)(other)) return false;
for (_m_iter i = _c_MEMB(_begin)(self); i.ref; _c_MEMB(_next)(&i)) {
const _m_keyraw _raw = i_keyto(_i_keyref(i.ref));
if (!_c_MEMB(_contains)(other, _raw)) return false;
}
return true;
}
/* -------------------------- IMPLEMENTATION ------------------------- */
#if defined(i_implement) || defined(i_static)
#ifndef i_max_load_factor
#define i_max_load_factor 0.80f
#endif
#define fastrange_2(x, n) (intptr_t)((x) & (size_t)((n) - 1)) // n power of 2.
STC_DEF _m_iter _c_MEMB(_begin)(const i_type* self) {
_m_iter it = {self->table, self->table+self->bucket_count, self->slot};
if (it._sref)
while (it._sref->hashx == 0)
++it.ref, ++it._sref;
if (it.ref == it._end) it.ref = NULL;
return it;
}
STC_DEF float _c_MEMB(_max_load_factor)(const i_type* self) {
(void)self; return (float)(i_max_load_factor);
}
STC_DEF intptr_t _c_MEMB(_capacity)(const i_type* map) {
return (intptr_t)((float)map->bucket_count * (i_max_load_factor));
}
STC_DEF i_type _c_MEMB(_with_capacity)(const intptr_t cap) {
i_type map = {0};
_c_MEMB(_reserve)(&map, cap);
return map;
}
STC_INLINE void _c_MEMB(_wipe_)(i_type* self) {
if (self->size == 0)
return;
_m_value* d = self->table, *_end = d + self->bucket_count;
struct hmap_slot* s = self->slot;
for (; d != _end; ++d)
if ((s++)->hashx)
_c_MEMB(_value_drop)(d);
}
STC_DEF void _c_MEMB(_drop)(const i_type* cself) {
i_type* self = (i_type*)cself;
if (self->bucket_count > 0) {
_c_MEMB(_wipe_)(self);
i_free(self->slot, (self->bucket_count + 1)*c_sizeof *self->slot);
i_free(self->table, self->bucket_count*c_sizeof *self->table);
}
}
STC_DEF void _c_MEMB(_clear)(i_type* self) {
_c_MEMB(_wipe_)(self);
self->size = 0;
c_memset(self->slot, 0, c_sizeof(struct hmap_slot)*self->bucket_count);
}
#ifdef _i_ismap
STC_DEF _m_result
_c_MEMB(_insert_or_assign)(i_type* self, _m_key _key, _m_mapped _mapped) {
_m_result _res = _c_MEMB(_insert_entry_)(self, i_keyto((&_key)));
_m_mapped* _mp = _res.ref ? &_res.ref->second : &_mapped;
if (_res.inserted)
_res.ref->first = _key;
else
{ i_keydrop((&_key)); i_valdrop(_mp); }
*_mp = _mapped;
return _res;
}
#if !defined i_no_emplace
STC_DEF _m_result
_c_MEMB(_emplace_or_assign)(i_type* self, _m_keyraw rkey, _m_rmapped rmapped) {
_m_result _res = _c_MEMB(_insert_entry_)(self, rkey);
if (_res.inserted)
_res.ref->first = i_keyfrom(rkey);
else {
if (!_res.ref) return _res;
i_valdrop((&_res.ref->second));
}
_res.ref->second = i_valfrom(rmapped);
return _res;
}
#endif // !i_no_emplace
#endif // _i_ismap
STC_DEF _m_result
_c_MEMB(_bucket_)(const i_type* self, const _m_keyraw* rkeyptr) {
const uint64_t _hash = i_hash(rkeyptr);
intptr_t _cap = self->bucket_count;
intptr_t _idx = fastrange_2(_hash, _cap);
_m_result b = {NULL, true, (uint8_t)(_hash | 0x80)};
const struct hmap_slot* s = self->slot;
while (s[_idx].hashx) {
if (s[_idx].hashx == b.hashx) {
const _m_keyraw _raw = i_keyto(_i_keyref(self->table + _idx));
if (i_eq((&_raw), rkeyptr)) {
b.inserted = false;
break;
}
}
if (++_idx == _cap) _idx = 0;
}
b.ref = self->table + _idx;
return b;
}
STC_DEF _m_result
_c_MEMB(_insert_entry_)(i_type* self, _m_keyraw rkey) {
if (self->size >= (intptr_t)((float)self->bucket_count * (i_max_load_factor)))
if (!_c_MEMB(_reserve)(self, (intptr_t)(self->size*3/2 + 2)))
return c_LITERAL(_m_result){NULL};
_m_result b = _c_MEMB(_bucket_)(self, &rkey);
if (b.inserted) {
self->slot[b.ref - self->table].hashx = b.hashx;
++self->size;
}
return b;
}
#if !defined i_no_clone
STC_DEF i_type
_c_MEMB(_clone)(i_type m) {
if (m.bucket_count) {
_m_value *d = (_m_value *)i_malloc(m.bucket_count*c_sizeof *d),
*_dst = d, *_end = m.table + m.bucket_count;
const intptr_t _sbytes = (m.bucket_count + 1)*c_sizeof *m.slot;
struct hmap_slot *s = (struct hmap_slot *)c_memcpy(i_malloc(_sbytes), m.slot, _sbytes);
if (!(d && s)) {
i_free(d, m.bucket_count*c_sizeof *d);
if (s) i_free(s, _sbytes);
d = 0, s = 0, m.bucket_count = 0;
} else
for (; m.table != _end; ++m.table, ++m.slot, ++_dst)
if (m.slot->hashx)
*_dst = _c_MEMB(_value_clone)(*m.table);
m.table = d, m.slot = s;
}
return m;
}
#endif
STC_DEF bool
_c_MEMB(_reserve)(i_type* self, const intptr_t _newcap) {
const intptr_t _oldbucks = self->bucket_count;
if (_newcap != self->size && _newcap <= _oldbucks)
return true;
intptr_t _newbucks = (intptr_t)((float)_newcap / (i_max_load_factor)) + 4;
_newbucks = c_next_pow2(_newbucks);
i_type m = {
(_m_value *)i_malloc(_newbucks*c_sizeof(_m_value)),
(struct hmap_slot *)i_calloc(_newbucks + 1, c_sizeof(struct hmap_slot)),
self->size, _newbucks
};
bool ok = m.table && m.slot;
if (ok) { // Rehash:
m.slot[_newbucks].hashx = 0xff;
const _m_value* d = self->table;
const struct hmap_slot* s = self->slot;
for (intptr_t i = 0; i < _oldbucks; ++i, ++d) if ((s++)->hashx) {
_m_keyraw r = i_keyto(_i_keyref(d));
_m_result b = _c_MEMB(_bucket_)(&m, &r);
m.slot[b.ref - m.table].hashx = b.hashx;
*b.ref = *d; // move
}
c_swap(i_type, self, &m);
}
i_free(m.slot, (m.bucket_count + (int)(m.slot != NULL))*c_sizeof *m.slot);
i_free(m.table, m.bucket_count*c_sizeof *m.table);
return ok;
}
STC_DEF void
_c_MEMB(_erase_entry)(i_type* self, _m_value* _val) {
_m_value* d = self->table;
struct hmap_slot* s = self->slot;
intptr_t i = _val - d, j = i, k;
const intptr_t _cap = self->bucket_count;
_c_MEMB(_value_drop)(_val);
for (;;) { // delete without leaving tombstone
if (++j == _cap) j = 0;
if (! s[j].hashx)
break;
const _m_keyraw _raw = i_keyto(_i_keyref(d + j));
k = fastrange_2(i_hash((&_raw)), _cap);
if ((j < i) ^ (k <= i) ^ (k > j)) { // is k outside (i, j]?
d[i] = d[j];
s[i] = s[j];
i = j;
}
}
s[i].hashx = 0;
--self->size;
}
#endif // i_implement
#undef i_max_load_factor
#undef _i_isset
#undef _i_ismap
#undef _i_ishash
#undef _i_keyref
#undef _i_MAP_ONLY
#undef _i_SET_ONLY
#include "priv/template2.h"
#include "priv/linkage2.h"