forked from arjunvekariyagithub/camelyon16-grand-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inception_eval.py
232 lines (190 loc) · 9.7 KB
/
inception_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A library to evaluate Inception on a single GPU.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.path.insert(0, '/home/arjun/MS/Thesis/CAMELYON-16/source')
import math
import os.path
import time
from datetime import datetime
from camelyon16.inception import image_processing
from camelyon16.inception import inception_model as inception
import camelyon16.utils as utils
import numpy as np
import sklearn as sk
import tensorflow as tf
from camelyon16.inception.dataset import Dataset
from tensorflow.contrib import metrics
FLAGS = tf.app.flags.FLAGS
CKPT_PATH = utils.EVAL_MODEL_CKPT_PATH
DATA_SET_NAME = 'TF-Records'
tf.app.flags.DEFINE_string('eval_dir', utils.EVAL_DIR,
"""Directory where to write event logs.""")
tf.app.flags.DEFINE_string('checkpoint_dir', utils.TRAIN_DIR,
"""Directory where to read model checkpoints.""")
# Flags governing the frequency of the eval.
tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
"""How often to run the eval.""")
tf.app.flags.DEFINE_boolean('run_once', True,
"""Whether to run eval only once.""")
# Flags governing the data used for the eval.
tf.app.flags.DEFINE_integer('num_examples', 10000,
"""Number of examples to run.
We have 10000 examples.""")
tf.app.flags.DEFINE_string('subset', 'validation',
"""Either 'validation' or 'train'.""")
# tf.app.flags.DEFINE_integer('batch_size', 40,
# """Number of images to process in a batch.""")
BATCH_SIZE = 100
def _eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op):
# def _eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op, logits, labels, dense_labels):
"""Runs Eval once.
Args:
saver: Saver.
summary_writer: Summary writer.
top_1_op: Top 1 op.
top_5_op: Top 5 op.
summary_op: Summary op.
"""
with tf.Session() as sess:
print(FLAGS.checkpoint_dir)
ckpt = None
if CKPT_PATH is not None:
saver.restore(sess, CKPT_PATH)
global_step = CKPT_PATH.split('/')[-1].split('-')[-1]
print('Succesfully loaded model from %s at step=%s.' %
(CKPT_PATH, global_step))
elif ckpt is None:
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print(ckpt.model_checkpoint_path)
if os.path.isabs(ckpt.model_checkpoint_path):
# Restores from checkpoint with absolute path.
saver.restore(sess, ckpt.model_checkpoint_path)
else:
# Restores from checkpoint with relative path.
saver.restore(sess, os.path.join(FLAGS.checkpoint_dir,
ckpt.model_checkpoint_path))
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Succesfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found')
return
# Start the queue runners.
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(FLAGS.num_examples / BATCH_SIZE))
# Counts the number of correct predictions.
total_correct_count = 0
total_false_positive_count = 0
total_false_negative_count = 0
total_sample_count = num_iter * BATCH_SIZE
step = 0
print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
start_time = time.time()
while step < num_iter and not coord.should_stop():
correct_count, confusion_matrix = \
sess.run([accuracy, confusion_matrix_op])
# correct_count, confusion_matrix, logits_v, labels_v, dense_labels_v = \
# sess.run([accuracy, confusion_matrix_op, logits, labels, dense_labels])
total_correct_count += np.sum(correct_count)
total_false_positive_count += confusion_matrix[0][1]
total_false_negative_count += confusion_matrix[1][0]
print('correct_count(step=%d): %d / %d' % (step, total_correct_count, BATCH_SIZE * (step + 1)))
print('\nconfusion_matrix:')
print(confusion_matrix)
print('total_false_positive_count: %d' % total_false_positive_count)
print('total_false_negative_count: %d' % total_false_negative_count)
step += 1
if step % 20 == 0:
duration = time.time() - start_time
sec_per_batch = duration / 20.0
examples_per_sec = BATCH_SIZE / sec_per_batch
print('%s: [%d batches out of %d] (%.1f examples/sec; %.3f'
'sec/batch)' % (datetime.now(), step, num_iter,
examples_per_sec, sec_per_batch))
start_time = time.time()
# print('total_false_positive_count: %d' % total_false_positive_count)
# print('total_false_negative_count: %d' % total_false_negative_count)
# Compute precision @ 1.
precision = total_correct_count / total_sample_count
print('%s: precision = %.4f [%d examples]' %
(datetime.now(), precision, total_sample_count))
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
summary.value.add(tag='Precision', simple_value=precision)
summary_writer.add_summary(summary, global_step)
except Exception as e: # pylint: disable=broad-except
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
def calc_metrics(dense_labels, logits):
print("Precision", sk.metrics.precision_score(dense_labels, logits))
print("Recall", sk.metrics.recall_score(dense_labels, logits))
print("f1_score", sk.metrics.f1_score(dense_labels, logits))
print("confusion_matrix")
print(sk.metrics.confusion_matrix(dense_labels, logits))
def evaluate(dataset):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, labels = image_processing.inputs(dataset, BATCH_SIZE)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes()
# Build a Graph that computes the logits predictions from the
# inference model.
logits, _, _ = inception.inference(images, num_classes)
sparse_labels = tf.reshape(labels, [BATCH_SIZE, 1])
indices = tf.reshape(tf.range(BATCH_SIZE), [BATCH_SIZE, 1])
concated = tf.concat(1, [indices, sparse_labels])
num_classes = logits[0].get_shape()[-1].value
dense_labels = tf.sparse_to_dense(concated,
[BATCH_SIZE, num_classes],
1, 0)
confusion_matrix_op = metrics.confusion_matrix(labels, tf.argmax(logits, axis=1))
# false_positive_op = metrics.streaming_false_positives(logits, dense_labels)
# false_negative_op = metrics.streaming_false_negatives(logits, dense_labels)
# Calculate predictions.
accuracy = tf.nn.in_top_k(logits, labels, 1)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, graph_def=graph_def)
while True:
# _eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op, logits, labels, dense_labels)
_eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
dataset = Dataset(DATA_SET_NAME, utils.data_subset[2])
evaluate(dataset)