forked from arjunvekariyagithub/camelyon16-grand-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_heatmap.py
243 lines (198 loc) · 10.5 KB
/
build_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A library to evaluate Inception on a single GPU.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.path.insert(0, '/home/arjun/MS/Thesis/CAMELYON-16/source')
import os.path
import time
from datetime import datetime
import math
from camelyon16.inception import image_processing
from camelyon16.inception import inception_model as inception
import numpy as np
import cv2
import tensorflow as tf
from camelyon16.inception.dataset import Dataset
from camelyon16 import utils as utils
import matplotlib.pyplot as plt
DATA_SET_NAME = 'TF-Records'
tf.app.flags.DEFINE_string('eval_dir', utils.EVAL_DIR,
"""Directory where to write event logs.""")
tf.app.flags.DEFINE_string('checkpoint_dir', utils.TRAIN_DIR,
"""Directory where to read model checkpoints.""")
# Flags governing the frequency of the eval.
tf.app.flags.DEFINE_integer('num_threads', 5,
"""Number of threads.""")
tf.app.flags.DEFINE_boolean('run_once', True,
"""Whether to run eval only once.""")
# Flags governing the data used for the eval.
tf.app.flags.DEFINE_integer('num_examples', 10000,
"""Number of examples to run.
We have 10000 examples.""")
tf.app.flags.DEFINE_string('subset', 'heatmap',
"""Either 'validation' or 'train'.""")
# tf.app.flags.DEFINE_integer('batch_size', 40,
# """Number of images to process in a batch.""")
FLAGS = tf.app.flags.FLAGS
BATCH_SIZE = 100
def assign_prob(heatmap, probabilities, coordinates):
global heat_map_prob
height = heatmap.shape[0] - 1
for prob, cord in zip(probabilities[:, 1:], coordinates):
cord = cord.decode('UTF-8')
pixel_pos = cord.split('_')
# each cord is in form - 'row_col_level' based on wsi coordinate system
# need to transform wsi row coordinate in to heatmap row coordinate because, in heatmap row increases
# from [bottom -> top] while in wsi row increases from [top -> bottom]
# e.g row_heatmap = image_height - row_wsi
heatmap[height - int(pixel_pos[0]), int(pixel_pos[1])] = prob
heat_map_prob[int(pixel_pos[0]), int(pixel_pos[1])] = prob
return heatmap
def generate_heatmap(saver, dataset, model_name, prob_ops, cords_op, heat_map, wsi_filename):
# def _eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op, logits, labels, dense_labels):
with tf.Session() as sess:
print(FLAGS.checkpoint_dir)
ckpt_path = utils.get_heatmap_ckpt_path(model_name)
ckpt = None
if ckpt_path is not None:
saver.restore(sess, ckpt_path)
global_step = ckpt_path.split('/')[-1].split('-')[-1]
print('Succesfully loaded model from %s at step=%s.' %
(ckpt_path, global_step))
elif ckpt is None:
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print(ckpt.model_checkpoint_path)
if os.path.isabs(ckpt.model_checkpoint_path):
# Restores from checkpoint with absolute path.
saver.restore(sess, ckpt.model_checkpoint_path)
else:
# Restores from checkpoint with relative path.
saver.restore(sess, os.path.join(FLAGS.checkpoint_dir,
ckpt.model_checkpoint_path))
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/imagenet_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Succesfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found')
return
# Start the queue runners.
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(dataset.num_examples_per_epoch() / BATCH_SIZE))
step = 0
print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
start_time = time.time()
while step < num_iter and not coord.should_stop():
probabilities, coordinates = sess.run([prob_ops, cords_op])
heat_map = assign_prob(heat_map, probabilities, coordinates)
step += 1
print('[%s]%s: patch processed: %d / %d' % (wsi_filename, datetime.now(), step * BATCH_SIZE,
dataset.num_examples_per_epoch()))
if not ((step * BATCH_SIZE) % 1000):
duration = time.time() - start_time
print('1000 patch process time: %d secs' % math.ceil(duration))
start_time = time.time()
except Exception as e: # pylint: disable=broad-except
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
return heat_map
def build_heatmap(dataset, heat_map, model_name, wsi_filename):
"""Evaluate model on Dataset for a number of steps."""
with tf.Graph().as_default():
# Get images and labels from the dataset.
images, cords = image_processing.inputs(dataset, BATCH_SIZE)
# Number of classes in the Dataset label set plus 1.
# Label 0 is reserved for an (unused) background class.
num_classes = dataset.num_classes()
_, _, prob_ops = inception.inference(images, num_classes)
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
inception.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
graph_def = tf.get_default_graph().as_graph_def()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, graph_def=graph_def)
# _eval_once(saver, summary_writer, accuracy, summary_op, confusion_matrix_op, logits, labels, dense_labels)
heat_map = generate_heatmap(saver, dataset, model_name, prob_ops, cords, heat_map, wsi_filename)
return heat_map
def generate_all_heatmap(model_name, heatmap_name_postfix, heatmap_prob_name_postfix):
"""
special case: Tumor_018
Failded case: Tumor_20, Tumor_25,
"""
global heat_map_prob
assert model_name in utils.heatmap_models, utils.heatmap_models
# tf_records_file_names = sorted(os.listdir(utils.HEAT_MAP_TF_RECORDS_DIR))
# tf_records_file_names = tf_records_file_names[1:]
# print(tf_records_file_names)
wsi_names = utils.test_wsi_names[45:48]
print('Generating heatmap for:', wsi_names)
for wsi_filename in wsi_names:
if 'est' not in wsi_filename:
continue
print('Generating heatmap for: %s' % wsi_filename)
heatmap_filename = str(os.path.join(utils.HEAT_MAP_DIR, wsi_filename)) + heatmap_name_postfix
if os.path.exists(heatmap_filename):
print('%s heatmap already generated for: %s' % (model_name, wsi_filename))
continue
tf_records_dir = os.path.join(utils.HEAT_MAP_TF_RECORDS_DIR, wsi_filename)
assert os.path.exists(tf_records_dir), 'tf-records directory %s does not exist' % tf_records_dir
# raw_patches_dir = os.path.join(utils.HEAT_MAP_RAW_PATCHES_DIR, wsi_filename)
# assert os.path.exists(raw_patches_dir), 'heatmap raw_patches_dir %s does not exist' % raw_patches_dir
heatmap_rgb_path = os.path.join(utils.HEAT_MAP_WSIs_PATH, wsi_filename)
assert os.path.exists(heatmap_rgb_path), 'heatmap rgb image %s does not exist' % heatmap_rgb_path
heatmap_rgb = cv2.imread(heatmap_rgb_path)
heatmap_rgb = heatmap_rgb[:, :, :3]
heat_map = np.zeros((heatmap_rgb.shape[0], heatmap_rgb.shape[1]), dtype=np.float32)
heat_map_prob = np.zeros((heatmap_rgb.shape[0], heatmap_rgb.shape[1]), dtype=np.float32)
# assert os.path.exists(raw_patches_dir), 'raw patches directory %s does not exist' % raw_patches_dir
# num_patches = len(os.listdir(raw_patches_dir))
num_patches = utils.n_patches_dic[wsi_filename]
dataset = Dataset(DATA_SET_NAME, utils.data_subset[4], tf_records_dir=tf_records_dir, num_patches=num_patches)
heat_map = build_heatmap(dataset, heat_map, model_name, wsi_filename)
if not utils.is_running_on_server():
plt.imshow(heat_map, cmap='jet', interpolation='nearest')
plt.colorbar()
plt.clim(0.00, 1.00)
plt.axis([0, heatmap_rgb.shape[1], 0, heatmap_rgb.shape[0]])
plt.savefig(heatmap_filename)
plt.clf()
cv2.imwrite(os.path.join(utils.HEAT_MAP_DIR, wsi_filename) + heatmap_prob_name_postfix, heat_map_prob * 255)
def build_first_heatmap():
generate_all_heatmap(utils.FIRST_HEATMAP_MODEL, heatmap_name_postfix='_heatmap.png',
heatmap_prob_name_postfix='_prob.png')
def build_second_heatmap():
generate_all_heatmap(utils.SECOND_HEATMAP_MODEL,
heatmap_name_postfix='_heatmap_%s.png' % utils.SECOND_HEATMAP_MODEL,
heatmap_prob_name_postfix='_prob_%s.png' % utils.SECOND_HEATMAP_MODEL)
if __name__ == '__main__':
heat_map_prob = None
build_first_heatmap()
# build_second_heatmap()