-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
553 lines (515 loc) · 29.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import json
import math
import random
import uuid
import numpy as np
import torch as T
import pygame
from globals import APP
from constants import WINDOW_WIDTH, WINDOW_HEIGHT
from utils import load_organism_definitions, random_with_bias, calc_distance, opposite_angle
from AI import AgentMemory, ActorNeuralNetwork, CriticNeuralNetwork, squeeze_vars, state_to_tensor
# Sprite groups
all_sprites = pygame.sprite.Group()
pre_defined_organisms = load_organism_definitions()
species = [organism['species'] for organism_definition, organism in pre_defined_organisms.items()]
class Organism(pygame.sprite.Sprite):
# The position is the initial position where the organism is "created" or "born"
# The actor_params, and critic_params are the trained neural network parameters
def __init__(self, params, position, actor_params=None, critic_params=None):
# instance_id for keeping track of this instance
self.instance_id = str(uuid.uuid4())
# Initial parameters of the organism are like the "genetic material" of this organism
# Upon reproduction the organism passes these parameters to the next organism
self.params = params
# Current state of the organism
# These are internal variables that can potentially change over time.
# Note: We probably can only use floats and integers here, because it will be used in the Neural Network
self.current_state = {
"width": int(random_with_bias(params["min_width"], params["max_width"])),
"height": int(random_with_bias(params["min_height"], params["max_height"])),
# How far the organism can see
"current_vision_range": random_with_bias(params["min_vision_range"], params["max_vision_range"]),
# How fast the organism is moving. The current_energy of the organism goes down faster the faster it moves.
"current_speed": round(random.uniform(self.params['min_speed'], self.params['max_speed']), 2),
# The current direction the organism is facing
"current_direction": round(random.uniform(0.0, 360.0), 2),
# How much energy reserves the organism has.
# When current energy =< 0 the organism dies. When current_energy => max_energy the organism can reproduce
"current_energy": params["max_energy"] * 0.5,
# After how many time steps the organism loses energy from metabolism.
"current_energy_loss_rate": random_with_bias(params["min_energy_loss_rate"], params["max_energy_loss_rate"]),
# After how many time steps the organism can reproduce
"current_reproduction_rate": random_with_bias(params["min_reproduction_rate"], params["max_reproduction_rate"]),
# After how many time steps the organism dies from old age.
"lifespan": random_with_bias(params["min_lifespan"], params["max_lifespan"]),
# For how many time steps the organism has been alive
"current_age": 0.0,
# At which timestep the last predator was detected
"predator_detected_time": 0.0,
# At which time step the organism was born.
"creation_time": pygame.time.get_ticks(),
# At which time step the energy was last updated (This is related to current_energy_loss_rate)
"last_energy_update_time": pygame.time.get_ticks(),
# At which time step the organism last reproduced. (This is related to current_reproduction_rate)
"last_reproduction_time": pygame.time.get_ticks(),
# The distance to the closest predator within current_vision_range
"closest_predator_distance": -1.0,
# The distance to the closest prey within current_vision_range
"closest_prey_distance": -1.0,
# The distance to the closest same_species within current vision range
"closest_same_species_distance": -1.0,
# How many offspring are produced at the time of next reproduction
"current_offspring_produced": random_with_bias(params["min_offspring_produced"], params["max_offspring_produced"])
}
# References to the class instances of the closest organisms
self.closest_predator = None
self.closest_prey = None
self.closest_same_species = None
# reproduction_pentalty is the percentage of how much energy the organism loses upon reproduction
self.reproduction_pentalty = 0.5
# PyGame Specific
super().__init__()
self.image = pygame.Surface((self.current_state["width"], self.current_state["height"]))
self.image.fill(self.params["color"])
self.rect = self.image.get_rect()
# self.rect.x and self.rect.y is the actual current position of the organism
self.rect.x = position[0]
self.rect.y = position[1]
# Tracking for statistics
APP['tracker'][f"total_{self.params['species']}"] += 1
# OUTDATED ?
#self.move_direction = random.uniform(0, 2 * math.pi)
#self.move_timer = pygame.time.get_ticks() + random.randint(1000, 3000)
# The available methods are all the methods of this class.
#self.available_methods = [method for method in dir(self) if "__" not in method]
# AI using PPO algorithm
if self.params["has_brain"]:
# The possible actions/behaviors the organism can take
self.action_space = [
#"change_speed",
#"change_direction",
#"move_random",
"flee_from_predator",
"chase_prey",
#"rest",
#"reproduce",
]
state_to_parse = self.prepare_state_for_AI()
self.time_since_last_action = pygame.time.get_ticks()
# Checkpoint files are used for saving and loading a trained organism
self.checkpoint_file_actor = f"nnActor_{self.params['species']}_{self.instance_id}_{APP['simulation_id']}_{APP['sim_start_time_ticks']}"
self.checkpoint_file_critic = f"nnCritic_{self.params['species']}_{self.instance_id}_{APP['simulation_id']}_{APP['sim_start_time_ticks']}"
# HYPER PARAMATERS of the AI
learning_rate = 0.0003
self.gamma = 0.99
self.gae_lambda = 0.95
self.epsilon = 0.2
self.policy_clip_range = [1 - self.epsilon, 1 + self.epsilon]
neural_network_deepness = 256
batch_size = 5
self.n_epochs = 4 # How many epochs/updates to perform in a learning cycle
# How many actions have to be performed for the AI to learn
self.n_actions_trigger_learning = 20
# How many actions have been performed. (resets every learning cycle)
self.action_counter = 0
self.current_action = ""
self.memory = AgentMemory(batch_size)
self.actorNN = ActorNeuralNetwork(len(self.action_space), len(state_to_parse), learning_rate, neural_network_deepness, neural_network_deepness)
self.criticNN = CriticNeuralNetwork(len(state_to_parse), learning_rate, neural_network_deepness, neural_network_deepness)
# Load trained model parameters from a previous neural network into the current neural network.
if actor_params and critic_params:
self.actorNN.load_params_mem(actor_params)
self.criticNN.load_params_mem(critic_params)
# Save info of this organism to a json file
def save_info(self):
folder = "organism_info"
file_name = f"{self.params['species']}_{self.instance_id}_{APP['simulation_id']}_{APP['simulation_id']}.json"
path = os.path.join(folder, file_name)
info = {
"instance_id": self.instance_id,
"simulation_id": APP['simulation_id'],
"state": self.current_state,
"params": self.params
}
with open(path, 'w') as json_file:
json.dump(info, json_file, indent=4)
print(f"Saved info of {self.params['species']}.")
# Save the learned parameters of neural network of this organism
def save_AI_params(self):
self.actorNN.save_checkpoint(self.checkpoint_file_actor)
self.criticNN.save_checkpoint(self.checkpoint_file_critic)
print(f"Saved AI learning progress of {self.params['species']}.")
# Transforms the state of the organism into a format the AI can understand
def prepare_state_for_AI(self):
return [
self.current_state['current_vision_range'],
self.current_state['current_speed'],
self.current_state['current_direction'],
self.current_state['current_energy'],
self.current_state['current_energy_loss_rate'],
self.current_state['current_reproduction_rate'],
self.current_state['lifespan'],
self.current_state['current_age'],
self.current_state['predator_detected_time'],
self.current_state['creation_time'],
self.current_state['last_energy_update_time'],
self.current_state['last_reproduction_time'],
self.current_state['closest_predator_distance'],
self.current_state['closest_prey_distance'],
self.current_state['closest_same_species_distance'],
self.current_state['current_offspring_produced']
]
def is_behavior_allowed(self, behavior):
return behavior in self.params['behaviors'] # self.available_methods[self.available_methods.index(behavior)]
#return True
#return False
# Update itself
def update(self):
#pygame.draw.circle(APP['screen'], self.params['color'], (self.rect.x, self.rect.y), int(self.current_state['current_vision_range']), 2)
#APP['screen'].blit(self.image, self.rect)
self.screen_wrap()
# Reduce the food levels of the organism from hunger
self.hunger()
# See around itself to detect other organisms
self.vision()
# Check if colliding with other organisms
self.check_collision()
# Decide on an action to do
self.decide()
# Move the organism
self.move(radians=False)
# Check if organism should reproduce
self.reproduce()
# Update age
self.current_state["current_age"] = pygame.time.get_ticks() - self.current_state["creation_time"]
# Check if organism should die from hunger or old age
self.die()
# Decide and choose on a behavior or action to perform based on its current state.
def decide(self):
# The organism has 2 goals:
# Remain alive for as long as possible
# (current energy is slowly depleted unless the organism eats food)
# There is a constant threat of being eaten by predators
# Reproduce as much as possible. Reproduction can happen if there is enough energy reserves
if self.params["has_brain"]:
#pass
if pygame.time.get_ticks() - self.time_since_last_action > random.randint(200, 5000):
state_to_parse = self.prepare_state_for_AI()
# Decide on which action to take from the action_space based on current_state
# Get the distribution from the actor (predict) based on current state
probability_distribution = self.actorNN(state_to_tensor(state_to_parse))
# Get the value of the current state
value = self.criticNN(state_to_tensor(state_to_parse))
action = probability_distribution.sample()
squeezed = squeeze_vars(probability_distribution, action, value)
probability = squeezed[0]
action = squeezed[1]
critic_value = squeezed[2]
# Choose an action from the action space
chosen_action = self.action_space[action]
#print(f"Chosen action: {chosen_action}, from {self.params['species']} ID: {self.instance_id}")
#chosen_action = random.choice(self.action_space)
#if pygame.time.get_ticks() - self.time_since_last_action > random.randint(200, 5000):
if chosen_action == "change_speed":
reward = self.change_speed(round(random.uniform(self.params['min_speed'], self.params['max_speed']), 2))
elif chosen_action == "change_direction":
reward = self.change_direction(round(random.uniform(0.0, 360.0), 2))
elif chosen_action == "move_random":
reward = self.move_random()
elif chosen_action == "rest":
reward = self.rest()
elif chosen_action == "flee_from_predator":
reward = self.flee_from_predator()
elif chosen_action == "chase_prey":
reward = self.chase_prey()
# print("chosen action:", chosen_action)
# print("reward:", reward)
#elif chosen_action == "random_movement":
# Remember the state and outcome of the action just performed.
self.memory.store_memory(state_to_parse, action, critic_value, probability, reward, 0)
self.action_counter += 1
# Start learning every self.n_actions_trigger_learning
if (self.action_counter >= self.n_actions_trigger_learning):
self.learn()
self.action_counter = 0 # Reset action acounter
self.time_since_last_action = pygame.time.get_ticks()
# Make the AI learn (train the model)
def learn(self):
if self.params["has_brain"]:
#print("Learning...")
# First put the models into training mode
self.actorNN.neuralNetwork.train()
self.criticNN.neuralNetwork.train()
for _ in range(self.n_epochs):
# Retrieve our momery which is the data used for training
mem = self.memory.generate_batches()
batches = mem[1]
states = np.array(mem[0]['states'])
actions = np.array(mem[0]['actions'])
probabilities = np.array(mem[0]['probabilities'])
critic_outputs = np.array(mem[0]['critic_outputs'])
rewards = np.array(mem[0]['rewards'])
dones = np.array(mem[0]['dones'])
# Advantage is the 'goodness'/benefit of the state compared to the previous state
# The advantage needs to be calculated at each action
advantage = np.zeros(len(rewards), dtype=np.float32)
# For each action
for t in range(len(rewards - 1)):
discount = 1 # Discount factor
a_t = 0 # Advantage at each action
for k in range(t, len(rewards)-1):
a_t += discount * (rewards[k] + self.gamma * critic_outputs[k+1] * (1 - int(dones[k])) - critic_outputs[k])
discount *= self.gamma * self.gae_lambda
advantage[t] = a_t
advantage = T.tensor(advantage).to(self.actorNN.device)
critic_outputs = T.tensor(critic_outputs).to(self.actorNN.device)
# Learning with mini batches
for batch in batches:
batch_states = T.tensor(states[batch], dtype=T.float).to(self.actorNN.device)
old_probabilities = T.tensor(probabilities[batch]).to(self.actorNN.device)
batch_actions = T.tensor(actions[batch]).to(self.actorNN.device)
prob_distribution = self.actorNN(batch_states) # Make prediction
critic_value = self.criticNN(batch_states) # Make prediction
critic_value = T.squeeze(critic_value)
new_probabilities = prob_distribution.log_prob(batch_actions)
prob_ratio = new_probabilities.exp() / old_probabilities.exp()
weighted_probs = advantage[batch] * prob_ratio
weighted_clipped_probs = T.clamp(prob_ratio, self.policy_clip_range[0], self.policy_clip_range[1]) * advantage[batch]
actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean()
# Return = advantage + critic_output_memory
returns = advantage[batch] + critic_outputs[batch]
# critic_loss = MSE(return - critic_output_network)
critic_loss = (returns - critic_value)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5 * critic_loss
self.actorNN.optimizer.zero_grad()
self.criticNN.optimizer.zero_grad()
total_loss.backward()
self.actorNN.optimizer.step()
self.criticNN.optimizer.step()
# Clear memory at end of learning.
# After this the memory is build up again from the next actions
self.memory.clear_memory()
def screen_wrap(self):
# Only screen wrap on x-axis
if self.rect.left > WINDOW_WIDTH:
self.rect.right = 0
elif self.rect.right < 0:
self.rect.left = WINDOW_WIDTH
# TODO: Remove y-axis screen wrapping
if self.rect.top > WINDOW_HEIGHT:
self.rect.bottom = 0 # y-axis wrapping
#self.change_direction(45.0) # Make the organism turn around
elif self.rect.bottom < 0:
self.rect.top = WINDOW_HEIGHT # y-axis wrapping
#self.change_direction(315.0) # Make the organism turn around
# The organism "sees" around itself to detect other organisms
def vision(self):
if self.is_behavior_allowed("vision"):
nearby_organisms = self.find_nearby_organisms()
organisms_distances = self.get_organisms_distances(nearby_organisms)
# Extract the closest predator, prey, and same species data
closest_predators = next(([org, dist] for org, dist in organisms_distances if org.params["species"] in self.params["predators"]), None)
closest_preys = next(([org, dist] for org, dist in organisms_distances if org.params["species"] in self.params["prey"]), None)
closest_same_speciess = next(([org, dist] for org, dist in organisms_distances if org.params["species"] == self.params["species"]), None)
# Update state
# -1.0 is used as "None"
self.current_state["closest_predator_distance"] = closest_predators[1] if closest_predators else -1.0
self.current_state["closest_prey_distance"] = closest_preys[1] if closest_preys else -1.0
self.current_state["closest_same_species_distance"] = closest_same_speciess[1] if closest_same_speciess else -1.0
self.closest_predator = closest_predators[0] if closest_predators else None
self.closest_prey = closest_preys[0] if closest_preys else None
self.closest_same_species = closest_same_speciess[0] if closest_same_speciess else None
# This is work in progress function not yet implemented
# This function allows the organism to communicate with organisms of the same species
def communicate(self):
pass
def change_direction(self, new_direction: float):
self.current_state["current_direction"] = new_direction
reward = 1.0
return reward
def change_speed(self, new_speed: float):
if new_speed > self.params['max_speed']:
self.current_state["current_speed"] = self.params['max_speed']
else:
self.current_state["current_speed"] = new_speed
reward = 1.0
return reward
# Move in a random direction at a random speed
def move_random(self):
reward = 2.0
self.change_direction(round(random.uniform(0.0, 360.0), 2))
self.change_speed(round(random.uniform(self.params['min_speed'], self.params['max_speed']), 2))
return reward
# time_to_rest is not used (yet)
def rest(self, time_to_rest=0.0):
self.change_speed(0.0)
# Set reward for the AI
reward = 0
# Resting when low on energy is good
if self.current_state["current_energy"] < self.current_state["current_energy"] * 0.1:
reward += 2.0
# Resting if a prey/food is nearby is bad
if self.current_state["closest_prey_distance"] != -1.0:
reward -= 10.0
# Resting if a predator is nearby is bad
if self.current_state["closest_predator_distance"] != -1.0:
reward -= 10.0
return reward
def flee_from_predator(self):
reward = 0.0
# If there is a predator we need to move in the opposite direction as the predator at max speed
if self.closest_predator != None:
self.change_direction(opposite_angle(self.closest_predator.current_state['current_direction']))
self.change_speed(self.params['max_speed'])
reward = 16.0
# If no predator move in random direction
else:
reward = self.move_random()
return reward
def chase_prey(self):
reward = 0.0
# If there is a prey we need to move in the same direction as the prey at max speed
if self.closest_prey != None:
self.change_direction(self.closest_prey.current_state['current_direction'])
self.change_speed(self.params['max_speed'])
reward = 15.0
# If no prey move in random direction
else:
reward = self.move_random()
return reward
# Move in a given direction at a certein speed
# Direction is in an angle. if radians=True then direction_angle is given in radians
# if radians=False then direction_angle is given in degrees from 0 to 360
def move(self, radians=True):
if self.is_behavior_allowed("move"):
# We only need to 'move' if speed != 0
if self.current_state["current_speed"] != 0.0:
direction_angle = self.current_state["current_direction"]
if radians == False:
direction_angle = math.radians(direction_angle)
if self.is_behavior_allowed("move"):
dx = math.cos(direction_angle) * self.current_state["current_speed"]
dy = math.sin(direction_angle) * self.current_state["current_speed"]
self.rect.x += dx
self.rect.y += dy
# Checks if the target is within the vision range
def is_within_vision(self, target_sprite) -> bool:
dx = target_sprite.rect.centerx - self.rect.centerx
dy = target_sprite.rect.centery - self.rect.centery
# distance = (dx ** 2 + dy ** 2) ** 0.5 # OLD Code
# We calculate the squared distance and the compare to vision range squared
# So we don't have to do a square root to get the actual distance
# This increase performance because square roots are difficult to calculate
squared_distance = dx ** 2 + dy ** 2
vision_range_squared = self.current_state["current_vision_range"] ** 2
#return distance <= self.current_state["current_vision_range"] # OLD code
return squared_distance <= vision_range_squared
# Returns a list of nearby organisms
def find_nearby_organisms(self) -> list:
nearby_organisms = [
organism
for organism in all_sprites
if self.is_within_vision(organism)
]
return nearby_organisms
# Returns a list of tuples where
# sorted_distances[0][0] is the closest organism and sorted_distances[0][1] is the distance to the closest organism
# Sorted from low to high
def get_organisms_distances(self, organisms: list) -> list:
reference_point = [self.rect.centerx, self.rect.centery]
distances = []
for organism in organisms:
point = [organism.rect.centerx, organism.rect.centery]
# Calculate distances
distances.append(calc_distance(reference_point, point))
# Sort the list of tuples based on the second element (distance)
# So that the closest organism is distances[0][0]
zipped_distances = list(zip(organisms, distances))
sorted_distances = sorted(zipped_distances, key=lambda x: x[1])
return sorted_distances
def is_prey_or_predator(self, organism) -> str:
if organism.params["species"] in self.params["prey"]:
return "prey"
elif organism.params["species"] in self.params["predators"]:
return "predator"
else:
return ""
def eat_prey(self, prey):
#if self.rect.colliderect(prey.rect):
# When eating a prey. The organism receives consumption_efficiency % of the energy of the prey
consumption_efficiency = 0.75
self.current_state["current_energy"] += prey.current_state["current_energy"] * consumption_efficiency
prey.destroy()
# Check for collisions with other organisms
def check_collision(self):
if self.is_behavior_allowed("check_collision"):
# collisions is a list of sprites that collide with the current organism
collisions = pygame.sprite.spritecollide(self, all_sprites, False)
for collided_organism in collisions:
if self.is_prey_or_predator(collided_organism) == "prey":
self.eat_prey(collided_organism)
# Specific reproduction for plants
def reproduce_plant(self):
pass
# Specific reproduction for non-plants
def reproduce(self):
# If offspring produced is 0 the organism is infertile
if self.current_state['current_offspring_produced'] != 0.0:
# Reproduction happens if there is enough energy and if enough time has passed
current_time = pygame.time.get_ticks()
energy_condition = self.current_state["current_energy"] >= self.params["max_energy"]
time_condition = current_time - self.current_state["last_reproduction_time"] > self.current_state["current_reproduction_rate"]
reproduce = False
if "reproduce_plant" in self.params["behaviors"]:
if time_condition:
reproduce = True
else:
if energy_condition and time_condition:
reproduce = True
if reproduce == True:
# Reproduction penalty reduces energy of current organism by a certein percentage
# And reduces speed to 0.0
self.current_state["current_energy"] *= self.reproduction_pentalty
self.change_speed(0.0)
offset = 50 # Position offset of where the new organism should be.
# The offspring_produced decides how many offspring are created based on a normal distribution
for i in range(int(self.current_state['current_offspring_produced'])):
new_position = [self.rect.centerx + random.randint(-(offset + self.current_state["width"]), offset + self.current_state["width"]),
self.rect.centery + random.randint(-(offset + self.current_state["height"]), offset + self.current_state["height"])]
# We give the train neural network parameters to the offspring
actor_params = None
critic_params = None
if self.params["has_brain"]:
actor_params = self.actorNN.save_params_mem()
critic_params = self.criticNN.save_params_mem()
new_organism = Organism(self.params, new_position, actor_params, critic_params) #copy.deepcopy.self.params Should we deep copy the params?
all_sprites.add(new_organism)
# Recalculate the offspring produced for next time
self.current_state["current_offspring_produced"]: random_with_bias(self.params["min_offspring_produced"], self.params["max_offspring_produced"])
self.current_state["last_reproduction_time"] = current_time
# Reduce the energy level of the organism from hunger
def hunger(self):
if self.is_behavior_allowed("hunger"):
current_time = pygame.time.get_ticks()
if current_time - self.current_state["last_energy_update_time"] > self.current_state["current_energy_loss_rate"]:
# Energy loss is also based the current moving speed of the organism
self.current_state["current_energy"] -= 1 + (self.current_state["current_speed"] * 0.8)
self.current_state["last_energy_update_time"] = current_time
# When and what happens on death
def die(self):
# Death happens if energy level < 0 (starvation) or the organism reached its lifespan
lifespan_condition = self.current_state["current_age"] >= self.current_state["lifespan"]
if "die_plant" in self.params["behaviors"]:
if lifespan_condition:
self.destroy()
else:
energy_condition = self.current_state["current_energy"] <= 0
if energy_condition or lifespan_condition:
self.destroy()
# Delete/kill/destroy the instance of the organism from the simulation
def destroy(self):
APP['tracker'][f"total_{self.params['species']}"] -= 1
self.kill()