-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathautoencoderv3.py
383 lines (328 loc) · 14.9 KB
/
autoencoderv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets import base
import os
np.random.seed(0)
tf.set_random_seed(0)
'''
Version 3.0 - Nov15/2019
Jorge R. Vergara
jorgever@utem.cl
Santiago, Chile
'''
class DataSet(object):
def __init__(self,
data,
labels,
one_hot=False,
seed=None):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`. Seed arg provides for convenient deterministic testing.
"""
if one_hot:
vect_class, idx_class = np.unique(labels, return_inverse=True)
labels = self.dense_to_one_hot(idx_class, len(vect_class))
self.one_hot = one_hot
self._num_examples = data.shape[0]
self._num_features = data.shape[1]
self._data = data
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def data(self):
return self._data
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def num_features(self):
return self._num_features
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, shuffle=True):
"""Return the next `batch_size` examples from this data set."""
start = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
perm0 = np.arange(self._num_examples)
np.random.shuffle(perm0)
self._data = self.data[perm0]
self._labels = self.labels[perm0]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
rest_num_examples = self._num_examples - start
data_rest_part = self._data[start:self._num_examples]
labels_rest_part = self._labels[start:self._num_examples]
# Shuffle the data
if shuffle:
perm = np.arange(self._num_examples)
np.random.shuffle(perm)
self._data = self.data[perm]
self._labels = self.labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size - rest_num_examples
end = self._index_in_epoch
data_new_part = self._data[start:end]
labels_new_part = self._labels[start:end]
return np.concatenate((data_rest_part, data_new_part), axis=0), np.concatenate(
(labels_rest_part, labels_new_part), axis=0)
else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._data[start:end], self._labels[start:end]
def dense_to_one_hot(self, labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def xavier_init(fan_in, fan_out, constant=1):
""" Xavier initialization of network weights"""
# https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random.uniform((fan_in, fan_out),
minval=low, maxval=high,
dtype=tf.float32)
class Autoencoder(object):
""" Autoencoder (AE) with an sklearn-like interface implemented using TensorFlow.
References:
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
learning applied to document recognition." Proceedings of the IEEE,
86(11):2278-2324, November 1998.
"""
def __init__(self,
transfer_fct=tf.nn.relu,
learning_rate=0.001,
batch_size=100,
training_epochs=10,
display_step=5,
n_z=100,
n_hidden=[549, 110, 110, 549],
sess=None):
self.transfer_fct = transfer_fct
self.learning_rate = learning_rate
self.batch_size = batch_size
self.training_epochs = training_epochs
self.display_step = display_step
self.n_z = n_z
self.n_hidden = n_hidden
self.network_architecture = self._network_architecture()
self.sess=sess
def _start(self):
# tf Graph input
self.x = tf.compat.v1.placeholder(tf.float32, [None, self.network_architecture["n_input"]])
# Create autoencoder network
self._create_network()
# Define loss function
self._create_loss_optimizer()
self.saver = tf.compat.v1.train.Saver()
# Launch the session
if self.sess == None:
self.sess = tf.compat.v1.Session()
# Initializing the tensor flow variables
init = tf.compat.v1.global_variables_initializer()
self.sess.run(init)
def _network_architecture(self):
network_architecture = \
dict(n_hidden_recog_1=self.n_hidden[0], # 1st layer encoder neurons
n_hidden_recog_2=self.n_hidden[1], # 2nd layer encoder neurons
n_hidden_gener_1=self.n_hidden[2], # 1st layer decoder neurons
n_hidden_gener_2=self.n_hidden[3], # 2nd layer decoder neurons
n_input=None, # SDSS data input
n_z=self.n_z) # dimensionality of latent space
return network_architecture
def _create_network(self):
# Initialize autoencode network weights and biases
network_weights = self._initialize_weights(**self.network_architecture)
# Use recognition network to determine latent space
self.z = self._recognition_network(network_weights["weights_recog"],network_weights["biases_recog"])
# Use generator
self.x_reconstr_mean = \
self._generator_network(network_weights["weights_gener"],
network_weights["biases_gener"])
def _initialize_weights(self, n_hidden_recog_1, n_hidden_recog_2,
n_hidden_gener_1, n_hidden_gener_2,
n_input, n_z):
all_weights = dict()
all_weights['weights_recog'] = {
'h1': tf.Variable(xavier_init(n_input, n_hidden_recog_1)),
'h2': tf.Variable(xavier_init(n_hidden_recog_1, n_hidden_recog_2)),
'out_mean': tf.Variable(xavier_init(n_hidden_recog_2, n_z))}
all_weights['biases_recog'] = {
'b1': tf.Variable(tf.zeros([n_hidden_recog_1], dtype=tf.float32)),
'b2': tf.Variable(tf.zeros([n_hidden_recog_2], dtype=tf.float32)),
'out_mean': tf.Variable(tf.zeros([n_z], dtype=tf.float32))}
all_weights['weights_gener'] = {
'h1': tf.Variable(xavier_init(n_z, n_hidden_gener_1)),
'h2': tf.Variable(xavier_init(n_hidden_gener_1, n_hidden_gener_2)),
'out_mean': tf.Variable(xavier_init(n_hidden_gener_2, n_input))}
all_weights['biases_gener'] = {
'b1': tf.Variable(tf.zeros([n_hidden_gener_1], dtype=tf.float32)),
'b2': tf.Variable(tf.zeros([n_hidden_gener_2], dtype=tf.float32)),
'out_mean': tf.Variable(tf.zeros([n_input], dtype=tf.float32))}
return all_weights
def _recognition_network(self, weights, biases):
# Generate encoder (recognition network), which
# maps inputs onto a latent space.
# The transformation is parametrized and can be learned.
layer_1 = self.transfer_fct(tf.add(tf.matmul(self.x, weights['h1']),
biases['b1']))
layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']),
biases['b2']))
z = tf.add(tf.matmul(layer_2, weights['out_mean']),
biases['out_mean'])
return z
def _generator_network(self, weights, biases):
# Generate decoder (decoder network), which
# maps points in latent space to data space.
# The transformation is parametrized and can be learned.
layer_1 = self.transfer_fct(tf.add(tf.matmul(self.z, weights['h1']),
biases['b1']))
layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']),
biases['b2']))
x_reconstr_mean = tf.add(tf.matmul(layer_2, weights['out_mean']),
biases['out_mean'])
return x_reconstr_mean
def _create_loss_optimizer(self):
# Define loss and optimizer, minimize the squared error
self.cost = tf.reduce_mean(tf.square(self.x - self.x_reconstr_mean))
# Use ADAM optimizer
self.optimizer = \
tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.cost)
def partial_fit(self, X):
"""Train model based on mini-batch of input data.
Return cost of mini-batch.
"""
opt, cost = self.sess.run((self.optimizer, self.cost),
feed_dict={self.x: X})
return cost
def transform(self, X):
"""Transform data by mapping it into the latent space(Z). e.g. X_input -> Z"""
nbt = self.batch_size
n_samples = X.shape[0]
p = list(divmod(n_samples, nbt))
if p[1] > 0:
X = np.vstack((X, np.random.rand(nbt - p[1], X.shape[1])))
p[0] = p[0] + 1
temp = list()
for ii in range(p[0]):
i1 = nbt * ii
i2 = nbt * (ii + 1)
temp.append(self.sess.run(self.z, feed_dict={self.x: X[i1:i2]}))
Xt = np.vstack(temp)
return Xt[:n_samples]
def generate(self, z_mu):
""" Generate data by sampling from latent space, e.g. Z -> X_recons."""
nbt = self.batch_size
n_samples = z_mu.shape[0]
p = list(divmod(n_samples, nbt))
if p[1] > 0:
z_mu = np.vstack((z_mu, np.random.rand(nbt - p[1], z_mu.shape[1])))
p[0] = p[0] + 1
temp = list()
for ii in range(p[0]):
i1 = nbt * ii
i2 = nbt * (ii + 1)
temp.append(self.sess.run(self.x_reconstr_mean, feed_dict={self.z: z_mu[i1:i2]}))
z_mut = np.vstack(temp)
return z_mut[:n_samples]
def reconstruct(self, X):
""" Use AE to reconstruct given data. e.g. X_orig -> X_recons"""
nbt = self.batch_size
n_samples = X.shape[0]
p = list(divmod(n_samples, nbt))
if p[1] > 0:
X = np.vstack((X, np.random.rand(nbt - p[1], X.shape[1])))
p[0] = p[0] + 1
temp = list()
for ii in range(p[0]):
i1 = nbt * ii
i2 = nbt * (ii + 1)
temp.append(self.sess.run(self.x_reconstr_mean, feed_dict={self.x: X[i1:i2]}))
Xt = np.vstack(temp)
return Xt[:n_samples]
def _np2tf(self, X, labels=None):
n_samples = X.shape[0]
if labels is None:
labels = np.ones(n_samples, dtype=int)
return base.Datasets(train=DataSet(X, labels), validation=[], test=[])
def train(self, X, labels=None):
n_samples = X.shape[0]
DATA = self._np2tf(X, labels)
self.network_architecture['n_input'] = X.shape[1]
self._start()
# Training cycle
for epoch in range(self.training_epochs):
avg_cost = 0.
total_batch = int(n_samples / self.batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, _ = DATA.train.next_batch(self.batch_size)
# Fit training using batch data
cost = self.partial_fit(batch_xs)
# Compute average loss
avg_cost += cost / n_samples * self.batch_size
# Display logs per epoch step
if epoch % self.display_step == 0:
print("Epoch:", '%04d' % (epoch + 1),
"cost=", "{:.9f}".format(avg_cost))
print('Finished training')
def save(self,nameFolder):
if not os.path.exists('temp'):
os.makedirs('temp')
if os.path.exists(os.path.join('temp',nameFolder)):
import datetime
nameFolderOld = nameFolder
nameFolder = r'%s__%s' %(nameFolder,datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
print('=======================================================')
print('The %s folder exists. The name folder was changed to %s' %(nameFolderOld,nameFolder))
print('=======================================================')
nameFolder = os.path.join('temp',nameFolder)
os.makedirs(nameFolder)
nameFile1 = os.path.join(nameFolder,'model.ckpt')
save_path = self.saver.save(self.sess, nameFile1)
nameFile2 = os.path.join(nameFolder,'param.npz')
np.savez(nameFile2,n_input=self.network_architecture['n_input'],
n_z=self.n_z,
transfer_fct=self.transfer_fct.__name__,
learning_rate=self.learning_rate,
batch_size=self.batch_size,
training_epochs=self.training_epochs,
display_step=self.display_step,
n_hidden=self.n_hidden,
network_architecture=self.network_architecture)
print("Model saved in folder: %s" % nameFolder)
def restore(self,nameFolder):
if not os.path.exists('temp'):
print('Folder ''temp'' does not exist. Failed to restore model.')
else:
nameFolder = os.path.join('temp',nameFolder)
if not os.path.exists(nameFolder):
print('Folder %s does not exist. Failed to restore model.' % (nameFolder))
param = np.load(os.path.join(nameFolder,'param.npz'), allow_pickle=True)
self.transfer_fct = eval('tf.nn.'+param['transfer_fct'].item())
self.learning_rate = param['learning_rate']
self.batch_size = param['batch_size']
self.training_epochs = param['training_epochs']
self.display_step = param['display_step']
self.n_z = param['n_z']
self.n_hidden = param['n_hidden']
self.network_architecture = param['network_architecture'].item()
self._start()
self.saver.restore(self.sess, os.path.join(nameFolder,'model.ckpt'))
print("Model restored.")
def close(self):
self.sess.close()