-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunc.cpp
684 lines (653 loc) · 22.4 KB
/
func.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
#include "fun.hpp"
ushort grey[nums_target] = { 0 };
int sub_array[nums_target] = { 0 };
bool isCloud = false;
//长波
#define kernel_tars 3
#define stride 2
#define box 30
#define boxthreshold 20
#define none_nums 25
#define HEIGHT 320
#define WIDTH 256
#define mean_radius 3
//中波
//#define kernel_tars 3
//#define stride 2
//#define box 30
//#define boxthreshold 20
//#define none_nums 10
//#define HEIGHT 640
//#define WIDTH 512
//#define mean_radius 3
void mpcm_cal(unsigned short* data, unsigned short* mean_map, unsigned short* mpcm_map, float* mpcm_contra, int height, int width, int kernel_mean, int kernel_tar, float contra_thresh, unsigned short hard_thresh) {//保持和硬件一致,设置两个kernel
//传入16位原始数据、均值图、特征图
int size = height * width;
int offset_mean = kernel_mean >> 1;
int mean = 0;
int aver = 0;
memset(mean_map, 0, sizeof(unsigned short) * size);
memset(mpcm_map, 0, sizeof(unsigned short) * size);
for (int i = 5 * height; i < size - 5 * height; i++) {//前三行与后三行不要, 均值图从第五张开始,无论目标kernelsize是多少,都用3来做均值
mean = 0;
for (int row = -offset_mean; row <= offset_mean; row++) {
for (int col = -offset_mean; col <= offset_mean; col++) {
mean += data[i + row * height + col];
}
}
aver = (mean * 7282) >> 16;
mean_map[i] = aver;
}
int offset_tar = kernel_tar >> 1;
int start = kernel_tar + offset_tar;
int neighbor[8] = { 0 }, neighbors[8] = { 0 };
for (int i = start * height; i < size - start * height; i++) {
neighbor[0] = mean_map[i] - mean_map[i - kernel_tar * height - kernel_tar];
neighbor[1] = mean_map[i] - mean_map[i - kernel_tar * height];
neighbor[2] = mean_map[i] - mean_map[i - kernel_tar * height + kernel_tar];
neighbor[3] = mean_map[i] - mean_map[i + kernel_tar];
neighbor[4] = mean_map[i] - mean_map[i + kernel_tar * height + kernel_tar];
neighbor[5] = mean_map[i] - mean_map[i + kernel_tar * height];
neighbor[6] = mean_map[i] - mean_map[i + kernel_tar * height - kernel_tar];
neighbor[7] = mean_map[i] - mean_map[i - kernel_tar];
for (int cur = 0; cur < 8; cur++) {
if (neighbor[cur] < 0) neighbor[cur] = 0;
}
neighbors[0] = mean_map[i] - mean_map[i - kernel_tars * height - kernel_tars];
neighbors[1] = mean_map[i] - mean_map[i - kernel_tars * height];
neighbors[2] = mean_map[i] - mean_map[i - kernel_tars * height + kernel_tars];
neighbors[3] = mean_map[i] - mean_map[i + kernel_tars];
neighbors[4] = mean_map[i] - mean_map[i + kernel_tars * height + kernel_tars];
neighbors[5] = mean_map[i] - mean_map[i + kernel_tars * height];
neighbors[6] = mean_map[i] - mean_map[i + kernel_tars * height - kernel_tars];
neighbors[7] = mean_map[i] - mean_map[i - kernel_tars];
for (int cur = 0; cur < 8; cur++) {
if (neighbor[cur] < 0) neighbor[cur] = 0;
}
int min = INT_MAX;
float min_contra = 10.0;
for (int k = 0; k < 4; k++) {
int tem = (int)neighbor[k] * neighbor[k + 4];
if (min > tem) {
min = tem;
if (neighbor[k] == 0 || neighbor[k + 4] == 0) min_contra = 0;
else {
min_contra = neighbors[k] > neighbors[k + 4] ? (float)neighbors[k + 4] / neighbors[k] : (float)neighbors[k] / neighbors[k + 4];
min_contra = min_contra == 1 ? 0.999 : min_contra;
}
}
}
//求对比度最小值、八个方向
min_contra = 10.0;
for (int k = 0; k < 4; k++) {
if (neighbor[k] == 0 || neighbor[k + 4] == 0) {
min_contra = 0;
break;
}
else {
float tem = neighbors[k] > neighbors[k + 4] ? (float)neighbors[k + 4] / neighbors[k] : (float)neighbors[k] / neighbors[k + 4];
min_contra = min_contra < tem ? min_contra : tem;
}
}
min = min / 16;
//mpcm_map[i] = min > hard_thresh ? min : 0;
mpcm_map[i] = min > 32767 ? 32767 : min;
mpcm_contra[i] = min_contra;
mpcm_map[i] = min_contra > contra_thresh ? mpcm_map[i] : 0;//直接处理特征值
//把边缘的特征值置零
if (i % height > height - delete_width || i % height < delete_width) mpcm_map[i] = 0;
}
}
void folder_detect() {//检测文件夹下的raw文件
string folderPath = FOLDER;
for (const auto& entry : fs::directory_iterator(folderPath)) {
if (fs::is_regular_file(entry) && entry.path().extension() == ".raw") {
single_raw_detect(entry.path().string());
}
}
return;
}
void single_raw_detect(string&& path) {
int frame = 0;
for (auto& ch : path) {//转义字符
if (ch == '\\') ch = '/';
}
//cout << path << endl;
string savePath = path.substr(0, path.size() - 4);
savePath += "detectResult";
if (FILTE) savePath += "_FILTE";
else savePath += "_NO_FILTE";
/*if (!fs::exists(savePath)) {
fs::create_directories(savePath);
}*/
int height = H, width = W;
FILE* fp = fopen(path.c_str(), "rb");
fseek(fp, 0, SEEK_END);
long long file_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
unsigned short* data = new unsigned short[height * width]();
unsigned short* mean_map = new unsigned short[height * width]();
unsigned short* mpcm_map = new unsigned short[height * width]();
unsigned short* tem_mpcm_map = new unsigned short[height * width]();
float* mpcm_contra = new float[height * width]();
int num[nums_target] = { 0 };//候选个数:100
unsigned short eigen_value[nums_target] = { 0 };//特征值
float eigen_contra[nums_target] = { 0.0 };//对称系数
int count = nums_target;
cout << "frameth: " << endl;
int frameth = 0;
std::cin >> frameth;
frame = frameth;
char key = 'z';
while (frameth--) {
fread(data, sizeof(unsigned short), height * width, fp);
}
while (!feof(fp)) {//未到raw文件结尾
long long cur_size = ftell(fp);
if (file_size - cur_size < (long long)height * width * 2) return;
memset(eigen_value, 0, sizeof(unsigned short) * nums_target);
memset(num, 0, sizeof(int) * nums_target);
memset(eigen_contra, 0, sizeof(float) * nums_target);
count = nums_target;
if (key == 'e') {
frame--;
if (frame % 100 == 1)
cout << frame << endl;
fseek(fp, -2 * sizeof(unsigned short) * height * width, SEEK_CUR);
fread(data, sizeof(unsigned short), height * width, fp);
}
else {
frame++;
if (frame % 100 == 1)
cout << frame << endl;
fread(data, sizeof(unsigned short), height * width, fp);
}
for (int i = 0; i < height * width; i++) {//大小端转换
unsigned short tem = 0;
tem = data[i];
data[i] = (tem & 0x00ff) << 8 | (tem & 0xff00) >> 8;
}
for (int i = 0; i < height * width; i++) {//替换命令行
if (i < 3 * height) data[i] = data[i + 3 * height];
if (i > height * width - 3 * height) data[i] = data[i - 3 * width];
}
mpcm_cal(data, mean_map, mpcm_map, mpcm_contra, height, width, KER_MEAN, KER_TAR, contra_thresh, hard_thresh);//mean, tar
memcpy(tem_mpcm_map, mpcm_map, sizeof(unsigned short) * height * width);
int occur_of_100 = 0;
while (count--) {
int max = 0, max_index = 0;
for (int i = 0; i < height * width; i++) {//找到最大的
if (mpcm_map[i] > max) {
max = mpcm_map[i];
max_index = i;
}
}
int sum_eigen = 0;
int tem_index = 0;
int sub = 0;
//for (int i = 0; i < 8; i++) {
// int index = max_index + (eight_elements[i][0] * (KER_TAR + 5)) * height + eight_elements[i][1] * (KER_TAR + 5);
// //(x + eight_elements[i][0] * ker_tar) * height + y + eight_elements[i][1] * ker_tar;
// sum_eigen += data[index];
//}
//sum_eigen /= 8;
//sub = data[max_index] - sum_eigen;
//sub_array[nums_target - count] = sub;
//cout << "count:" << count << "sum_eigen=" << sub << endl;
//for (int row = -20; row <= 20; row++) {
// for (int col = -20; col <= 20; col++) {
// tem_index = max_index + row * height + col;
// if (tem_index <= 0 || tem_index > height * width - 1) continue;
// if (row > -10 && row<10 && col>-10 && col < 10)continue;
// if (abs(mean_map[max_index] - mean_map[tem_index]) <= 25) {
// isCloud = true;
// break;
// }
// }
// if (isCloud)break;
//}
for (int row = -10; row <= 10; row++) {//最大值周围置零
for (int col = -10; col <= 10; col++) {
int index = max_index + row * height + col;
if (index<0 || index>height * width - 1)continue;
mpcm_map[index] = 0;
}
}
//if (!isCloud)
{
num[occur_of_100] = max_index;
eigen_value[occur_of_100] = max;
eigen_contra[occur_of_100] = mpcm_contra[max_index];
occur_of_100++;
}
}
if (frame != 1 && NEIGHBOR_DELETE) {
check(num, height, width);
}
memcpy(pre_num7, num, sizeof(int) * nums_target);
res.clear();
res.reserve(nums_target);
memset(not_rec_flag, 0, sizeof(bool) * nums_target);
for (int i = 0; i < nums_target; i++) {//把num加入vector<int> res
res.push_back(num[i]);
}
if (same_position_six_frames_delete) {
for (int i = 0; i < nums_target; i++)
{
if (is_same_position(res[i], pre_six_frames, 42, count_for_same_position)) not_rec_flag[i] = 1;
insert_six_frames_position(res[i]);
}
}
for (int i = 0; i < nums_target; i++) {
eigen_value[i] = eigen_value[i] > hard_thresh ? eigen_value[i] : 0;
}
int tem_index = 0;
int none = 0;
/***********算背景均值*************/
int numgrey;
for (int i = 0; i < nums_target; i++)
{
numgrey = 0;
int y = res[i] % height, x = res[i] / height;
if (eigen_value[i] != 0) {
int sum_eigen = 0;
for (int i = 0; i < 8; i++) {
int index = (x + eight_elements[i][0] * mean_radius) * height + y + eight_elements[i][1] * mean_radius;
if (index > 0 && mean_map[index] != 0 && index < (HEIGHT * WIDTH)) {
sum_eigen += mean_map[index];
numgrey++;
}
}
grey[i] = sum_eigen / numgrey;
}
}
cout << "********************特征值筛选**********************" << endl;
for (int i = 0; i < nums_target; i++) {
int y = res[i] % height, x = res[i] / height;
if (eigen_value[i] != 0)
{
cout << i << ": y: " << setw(5) << y << " x: " << setw(5) << x << " eigen: " << setw(5) << eigen_value[i] << " contra: " << setw(5) << eigen_contra[i] << " grey: " << grey[i] << setw(5) << "sub" << sub_array[i] << "center" << setw(6) << mean_map[res[i]] << endl;
//for (int row = -1; row <= 1; row++) {
// for (int col = -1; col <= 1; col++) {
// cout << setw(5) << mpcm_map[points[i] + row * height + col] << " ";
// }
// cout << endl;
//}
}
}
key = vision_16bit(tem_mpcm_map, savePath, frame, data, height, width, mean_map, res, hard_thresh, eigen_value, eigen_contra, KER_TAR);
}
fclose(fp);
delete[] data;
delete[] mean_map;
delete[] mpcm_map;
delete[] tem_mpcm_map;
return;
}
char vision_16bit(unsigned short* mpcm_map, string& savePath, int frame, unsigned short* data, int height, int width, unsigned short* mean_map, vector<int>& points, unsigned short hard_thresh, unsigned short* eigen_value = nullptr, float* eigen_contra = nullptr, int ker_tar = 3) {//项目的图是躺着的,所以转换操作
Mat res = Mat::zeros(height, width, CV_8UC1);
int max_val = 0, min_val = 65535;
int* arr = new int[height * width]();
int orderLine = 1;
if (height == 320) orderLine = 3;//命令行
for (int i = orderLine * height + 1; i < height * width - orderLine * height; i++) {
if (data[i] < min_val) min_val = data[i];
if (data[i] > max_val) max_val = data[i];//找到最大最小值
int tem = (int)data[i];
arr[tem]++;//为了截断量化
}
int min_ = INT_MAX, max_ = 0, total = 0;
for (int i = 0; i <= 65535; i++) {//截断量化
total = total + (int)arr[i];
if (total < orderLine * height + 65) min_val = i;
if (total < height * width - 2 * orderLine * height - 65) max_val = i;
}
if (max_val == min_val || min_ == max_) return waitKey(0);
int num = 0;
int min = INT_MAX, max = 0;
for (int col = 0; col < width; col++) {
for (int row = 0; row < height; row++) {
res.at<uchar>(row, col) = (data[num] - min_val) * 255 / (max_val - min_val);
num++;
if (data[num] > max) max = data[num];
if (data[num] < min) min = data[num];
}
}
delete[] arr;
cout << "frame: " << frame << endl;
//*这里是硬阈值过滤后直接画图*//
//if (!points.empty()) {
// for (int i = 0; i < points.size(); i++) {
// if (eigen_value[i] != 0 && eigen_contra[i] > contra_threshs) {
// if (eigen_value[i] < hard_thresh || eigen_contra[i] < contra_thresh || not_rec_flag[i]) continue;
// int y = points[i] / height, x = points[i] % height;
// int sum = 0;
// for (int row = -1; row <= 1; row++) {
// for (int col = -1; col <= -1; col++) {
// sum += (int)res.at<uchar>(x + row, y + col);
// }
// }
// int average = sum / 9;
// auto color = average > 75 ? Scalar(0, 0, 0) : Scalar(255, 255, 255);
// rectangle(res, Point(y - 10, x - 10), Point(y + 10, x + 10), color, 1);
// string tem1 = to_string(i);/* + " " + to_string((int)eigen_value[i]);*/
// //string tem2 = " 0." + to_string((int)(eigen_contra[i] * 10000));
// putText(res, tem1, Point(y - 10, x - 10), 1, 1, color);
// //putText(res, tem2, Point(y - 10, x + 20), 1, 1, Scalar(255, 255, 255));
// }
// }
//}
/*这里是去云虚警*/
//int tem_index = 0, none = 0;
//for (int i = 0; i < nums_target; i++) {
// for (int row = -box; row <= box; row += stride) {
// for (int col = -box; col <= box; col += stride) {
// tem_index = points[i] + row * height + col;
// if (tem_index <= 0 || tem_index > height * width - 1) continue;
// if (row > -box / 2 && row<box / 2 && col>-box / 2 && col < box / 2)continue;
// if (abs(mean_map[points[i]] - mean_map[tem_index]) <= boxthreshold) {
// //isCloud = true;
// eigen_value[i] = 0;
// none++;
// }
// if (none >= 4) {
// isCloud = true;
// break;
// }
// if (isCloud)break;
// }
// if (isCloud)break;
// }
//}
//cout << "********************特征值筛选**********************" << endl;
//for (int i = 0; i < nums_target; i++) {
// int y = points[i] % height, x = points[i] / height;
// if (eigen_value[i] != 0)
// {
// cout << i << ": y: " << setw(5) << y << " x: " << setw(5) << x << " eigen: " << setw(5) << eigen_value[i] << " contra: " << setw(5) << eigen_contra[i] << " grey: " << grey[i] << setw(5) << "sub" << sub_array[i] << endl;
// //for (int row = -1; row <= 1; row++) {
// // for (int col = -1; col <= 1; col++) {
// // cout << setw(5) << mpcm_map[points[i] + row * height + col] << " ";
// // }
// // cout << endl;
// //}
// }
//}
int min_value = 65536, min1 = 0, min2 = 0, min_index = 0, temp_value, temp_eigen, temp_contra;
int sequent[nums_target] = { 0 };
ushort greycopy[nums_target] = { 0 };
memcpy(greycopy, grey, sizeof(ushort) * nums_target);
for (int i = 0; i < nums_target; i++)
{
min_value = 65535;
min_index = nums_target;
for (int j = 0; j < nums_target; j++)
{
if (greycopy[j] != 0)
{
if (min_value > greycopy[j])
{
min_value = greycopy[j];
min_index = j;
}
}
else continue;
}
if (min_index != nums_target)
{
//min_value = grey[min_index];
//grey[min_index] = grey[i];
//grey[i] = min_value;
//temp_eigen = eigen_value[min_index];
//eigen_value[min_index] = eigen_value[i];
//eigen_value[i] = temp_eigen;
//temp_contra = eigen_contra[min_index];
//eigen_contra[min_index] = eigen_contra[i];
//eigen_contra[i] = temp_contra;
sequent[i] = min_index;
greycopy[min_index] = { 0 };
}
};
for (int i = report; i < nums_target; i++) {
sequent[i] = 0;
}
int target_have = 0, flag = 0;
for (int i = 0; i < report; i++) {
if (flag == 0 || sequent[i] != 0)
{
if (eigen_value[sequent[i]] != 0) {
target_have++;
}
if (sequent[i] == 0)flag = 1;
}
}
int tempValue = 0, centerValue = 0;
//for (int i = 0; i < nums_target; i++)
//{
// if (grey[i] != 0)
// {
// for (int j = i; j < nums_target; j++)
// {
// if (grey[j] != 0)
// {
// if (min_value > grey[j])
// {
// min_value = grey[j];
// grey[j] = grey[i];
// grey[i] = j;
// temp_eigen = eigen_value[j];
// eigen_value[j] = eigen_value[i];
// eigen_value[i] = temp_eigen;
// temp_contra = eigen_contra[j];
// eigen_contra[j] = eigen_contra[i];
// eigen_contra[i] = temp_contra;
// }
// }
// else continue;
// }
// }
// else continue;
//};
ushort column[HEIGHT] = { 0 };
int grad[HEIGHT] = { 0 };
int left = 0, right = 0;
long sumcol = 0, sumrow = 0;
int mean_col = 0, mean_row = 0;
long hisgram[65536] = { 0 };
ushort colgrey[HEIGHT] = { 0 };
if (target_have < 4) {
cout << "*********************特征值筛选出来的点小于四个*********************" << endl;
//for (int i = 0; i < target_have; i++)
//{
// int y = points[sequent[i]] % height, x = points[sequent[i]] / height;
// if (eigen_value[sequent[i]] != 0)
// {
// if (flag == 0 || sequent[i] != 0)
// {
// //*这里是在灰度值排序中进行去云虚警*//
// int tem_index = 0, none = 0;
// isCloud = false;
// for (int row = -box; row <= box; row += stride)
// {
// for (int col = -box; col <= box; col += stride)
// {
// tem_index = points[sequent[i]] + row * height + col;
// if (tem_index <= 0 || tem_index > height * width - 1) continue;
// if (row > -box / 2 && row<box / 2 && col>-box / 2 && col < box / 2)continue;
// if (abs(mean_map[points[sequent[i]]] - mean_map[tem_index]) <= boxthreshold)
// //if ((mean_map[points[sequent[i]]] - mean_map[tem_index]) <= 0)
// {
// none++;
// }
// if (none >= 120)
// {
// isCloud = true;
// eigen_value[sequent[i]] = 0;
// break;
// }
// }
// if (isCloud)break;
// }
// if (isCloud)break;
// }
// }
//}
if (!points.empty())
{
for (int i = 0; i < points.size(); i++)
{
if (eigen_value[i] != 0 && eigen_contra[i] > contra_threshs)
{
if (eigen_value[i] < hard_thresh || eigen_contra[i] < contra_thresh || not_rec_flag[i]) continue;
int y = points[i] / height, x = points[i] % height;
int sum = 0;
for (int row = -1; row <= 1; row++) {
for (int col = -1; col <= -1; col++) {
sum += (int)res.at<uchar>(x + row, y + col);
}
}
int average = sum / 9;
auto color = average > 75 ? Scalar(0, 0, 0) : Scalar(255, 255, 255);
rectangle(res, Point(y - 10, x - 10), Point(y + 10, x + 10), color, 1);
string tem1 = to_string(i);/* + " " + to_string((int)eigen_value[i]);*/
//string tem2 = " 0." + to_string((int)(eigen_contra[i] * 10000));
putText(res, tem1, Point(y - 10, x - 10), 1, 1, color);
//putText(res, tem2, Point(y - 10, x + 20), 1, 1, Scalar(255, 255, 255));
}
}
}
}
else
{
cout << "*********************灰度值排序剩下前四个然后去云虚警*********************" << endl;
flag = 0;
for (int i = 0; i < report; i++) {
sumrow = 0; sumcol = 0;
int y = points[sequent[i]] % height, x = points[sequent[i]] / height;
if (eigen_value[sequent[i]] != 0)
{
if (flag == 0 || sequent[i] != 0) {
//*这里是在灰度值排序中进行去云虚警*//
int tem_index = 0, none = 0;
isCloud = false;
// for (int i = 0; i < nums_target; i++)
{
for (int row = -box; row <= box; row += stride)
{
for (int col = -box; col <= box; col += stride)
{
tem_index = points[sequent[i]] + row * height + col;
if (tem_index <= 0 || tem_index > height * width - 1) continue;
if (row > -box / 2 && row<box / 2 && col>-box / 2 && col < box / 2)continue;
if (abs(mean_map[points[sequent[i]]] - mean_map[tem_index]) <= boxthreshold)
//if ((mean_map[points[sequent[i]]] - mean_map[tem_index]) <= 0)
{
//isCloud = true;
//eigen_value[i] = 0;
none++;
}
if (none >= none_nums)
{
isCloud = true;
break;
}
}
if (isCloud)break;
}
if (isCloud)break;
}
if (isCloud);
else if (eigen_contra[sequent[i]] > contra_fina)
{
int y = points[sequent[i]] / height, x = points[sequent[i]] % height;
int sum = 0;
for (int row = -1; row <= 1; row++) {
for (int col = -1; col <= -1; col++) {
sum += (int)res.at<uchar>(x + row, y + col);
}
}
int average = sum / 9;
auto color = average > 75 ? Scalar(0, 0, 0) : Scalar(255, 255, 255);
rectangle(res, Point(y - 10, x - 10), Point(y + 10, x + 10), color, 1);
string tem1 = to_string(sequent[i]);/* + " " + to_string((int)eigen_value[i]);*/
//string tem2 = " 0." + to_string((int)(eigen_contra[i] * 10000));
putText(res, tem1, Point(y - 10, x - 10), 1, 1, color);
////putText(res, tem2, Point(y - 10, x + 20), 1, 1, Scalar(255, 255, 255))
cout << sequent[i] << ": y: " << setw(5) << points[sequent[i]] % height << " x: " << setw(5) << points[sequent[i]] / height << " eigen: " << setw(5) << eigen_value[sequent[i]] << " contra: " << setw(5) << eigen_contra[sequent[i]] << " grey: " << grey[sequent[i]] << endl;
}
// << setw(10) << "meancolmin" << meancolmin << setw(10) << "meancolmax" << meancolmax << endl;
if (sequent[i] == 0)
flag = 1;
}//for (int row = -1; row <= 1; row++) {
// for (int col = -1; col <= 1; col++) {
// cout << setw(5) << mpcm_map[points[i] + row * height + col] << " ";
// }
// cout << endl;
//}
}
}
}
for (int i = 0; i < nums_target; i++) {
if (grey[i] != 0) {
if (min_value > grey[i]) {
min_value = grey[i];
min1 = i;
}
}
}
min_value = 65536;
//grey[min1] = 65536;
for (int i = 0; i < nums_target; i++) {
if (grey[i] != 0 && i != min1) {
if (min_value > grey[i]) {
min_value = grey[i];
min2 = i;
}
}
}
for (int i = 0; i < nums_target; i++) {
if (i != min1 && i != min2) {
eigen_value[i] = 0;
}
}
cout << "******************************************" << endl;
/********************************/
cout << endl << endl << endl;
std::ostringstream oss;
oss << savePath << "/" << std::setfill('0') << std::setw(3) << frame << ".png";
std::string savePath_ = oss.str();
//imwrite(savePath_, res);
memset(grey, 0, sizeof(int) * nums_target);
imshow("res", res);
return waitKey(0);
}
void check(int* arr, int height, int width) {//前后帧做关联
res.clear();
int tem = 0;
for (int i = 0; i < nums_target; i++) {
for (int j = 0; j < nums_target; j++) {
tem = arr[i] - pre_num7[j];
if (abs(tem) % height < 10 || abs(tem) % height >(height - 10) && abs(tem) / height < 10) {
res.push_back(arr[i]);
}
}
}
}
bool is_same_position(int index, int* ref, int num, int need) {
int count = 0;
for (int i = 0; i < num; i++)
{
if (index == ref[i]) count++;
}
return count >= need;
}
void insert_six_frames_position(int index) {
/*if (!is_same_position(index, pre_six_frames, 42, 1)) {
pre_six_frames[six_frames_positions_index] = index;
six_frames_positions_index++;
six_frames_positions_index %= 42;
}*/
pre_six_frames[six_frames_positions_index] = index;
six_frames_positions_index++;
six_frames_positions_index %= 42;
}