-
Notifications
You must be signed in to change notification settings - Fork 0
/
12.rb
52 lines (46 loc) · 1.03 KB
/
12.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
#1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the divisors of the first seven triangle numbers:
#1: 1
#3: 1,3
#6: 1,2,3,6
#10: 1,2,5,10
#15: 1,3,5,15
#21: 1,3,7,21
#28: 1,2,4,7,14,28
#We can see that 28 is the first triangle number to have over five divisors.
#What is the value of the first triangle number to have over five hundred divisors?
#
require 'set'
def divisor(m)
divisors=Set.new();
max = m
Range.new(1,m).map do |n|
break if n > max
if m % n == 0
divisors << n
max = (m / n)
divisors << max
end
end
divisors#.to_a.sort
end
require 'generator'
triangles = Generator.new do |blck|
t = 0
i = 1
while true
t += i
blck.yield t
i += 1
end
end
while true do
tri_num = triangles.next
divisors = divisor(tri_num)
#p "#{tri_num}: #{divisors.inspect()}"
#puts divisors.size
if divisors.size > 500
puts tri_num
break
end
end