-
Notifications
You must be signed in to change notification settings - Fork 0
/
14.rb
48 lines (44 loc) · 1.36 KB
/
14.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#The following iterative sequence is defined for the set of positive integers: n  n/2 (n is even)
#n  3n + 1 (n is odd)
#Using the rule above and starting with 13, we generate the following sequence:
#13 40 20 10 5 16 8 4 2 1
#It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
#Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million.
class Collatz
def initialize
@collatz_size_stash = {}
@collatz_stash = {}
end
def collatz(n)
return [1] if n == 1
return @collatz_stash[n] if @collatz_stash.include?(n)
return @collatz_stash[n] = if n % 2 == 0
[n, collatz(n/2)].flatten
else
[n, collatz(3*n + 1)].flatten
end
end
def collatz_size(n)
return 1 if n == 1
return @collatz_size_stash[n] if @collatz_size_stash.include?(n)
return @collatz_size_stash[n] = if n % 2 == 0
1 + collatz_size(n/2)
else
1 + collatz_size(3*n + 1)
end
end
def cache_size
@collatz_size_stash.size
end
end
maxsz = 0
max = 0
c = Collatz.new
Range.new(1,999999).each do |n|
if (sz = c.collatz_size(n)) > maxsz
maxsz = sz
max = n
end
end
puts "Starting number with longest chain(#{maxsz}): #{max}"
puts "Unique sizes: #{c.cache_size}"