forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoments_utils.h
149 lines (134 loc) · 4.19 KB
/
moments_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#pragma once
#include <array>
#include <cstring>
#include <numeric>
#include <utility>
#include <vector>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/SmallVector.h>
#include <c10/util/irange.h>
namespace at {
namespace native {
namespace utils {
constexpr int64_t kChunkSize = 16;
template <typename T>
void AddMoments(
int64_t m0_add,
const T& m1_add,
const T& m2_add,
int64_t& m0,
T& m1,
T& m2) {
const int64_t n = m0 + m0_add;
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
const T delta = m1_add - m1;
m1 += c * delta;
m2 += m2_add + delta * delta * c * static_cast<T>(m0);
m0 = n;
}
template <typename T>
void AddMomentsVec(
int64_t m0_add,
const vec::Vectorized<T>& m1_add,
const vec::Vectorized<T>& m2_add,
int64_t& m0,
vec::Vectorized<T>& m1,
vec::Vectorized<T>& m2) {
using Vec = vec::Vectorized<T>;
const int64_t n = m0 + m0_add;
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
const Vec c_vec(c);
const Vec delta = m1_add - m1;
m1 += c_vec * delta;
m2 += m2_add + delta * delta * c_vec * Vec(static_cast<T>(m0));
m0 = n;
}
// Compute rowwise moments by Welford algorithm and cascade sum to improve
// numerical stability.
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// https://en.wikipedia.org/wiki/Pairwise_summation
template <typename T, int64_t kMaxDepth>
std::pair<T, T> RowwiseMomentsImpl(const T* X, int64_t N, int64_t ddof = 0) {
using Vec = vec::Vectorized<T>;
constexpr int64_t kVecSize = Vec::size();
const int64_t n = N / kVecSize;
const int64_t m = divup(n, kChunkSize);
const int64_t depth = CeilLog2(m);
const Vec kZeroVec(T(0));
c10::SmallVector<int64_t, kMaxDepth> m0_stk(depth, 0);
c10::SmallVector<Vec, kMaxDepth> m1_stk(depth, kZeroVec);
c10::SmallVector<Vec, kMaxDepth> m2_stk(depth, kZeroVec);
for (const auto i : c10::irange(m)) {
const T* X_ptr = X + i * kChunkSize * kVecSize;
const int64_t m0 = std::min(kChunkSize, n - i * kChunkSize);
Vec m1_vec(0);
Vec m2_vec(0);
for (const auto j : c10::irange(m0)) {
const Vec x_vec = Vec::loadu(X_ptr + j * kVecSize);
const Vec delta_vec = x_vec - m1_vec;
const Vec c_vec = Vec(T(1) / static_cast<T>(j + 1));
m1_vec += delta_vec * c_vec;
m2_vec += delta_vec * (x_vec - m1_vec);
}
AddMomentsVec(m0, m1_vec, m2_vec, m0_stk[0], m1_stk[0], m2_stk[0]);
int64_t mask = i + 1;
for (int64_t j = 1; j < depth && (mask & 1) == 0; ++j) {
AddMomentsVec(
m0_stk[j - 1],
m1_stk[j - 1],
m2_stk[j - 1],
m0_stk[j],
m1_stk[j],
m2_stk[j]);
m0_stk[j - 1] = 0;
m1_stk[j - 1] = kZeroVec;
m2_stk[j - 1] = kZeroVec;
mask >>= 1;
}
}
for (const auto i : c10::irange(1, depth)) {
AddMomentsVec(
m0_stk[i], m1_stk[i], m2_stk[i], m0_stk[0], m1_stk[0], m2_stk[0]);
}
std::array<T, kVecSize> m1_arr{};
std::array<T, kVecSize> m2_arr{};
m1_stk[0].store(m1_arr.data());
m2_stk[0].store(m2_arr.data());
int64_t m0 = 0;
T m1 = 0;
T m2 = 0;
for (int64_t i = n * kVecSize; i < N; ++i) {
const T delta = X[i] - m1;
++m0;
m1 += delta / static_cast<T>(m0);
m2 += delta * (X[i] - m1);
}
for (const auto i : c10::irange(kVecSize)) {
AddMoments(n, m1_arr[i], m2_arr[i], m0, m1, m2);
}
return std::make_pair(m1, m2 / static_cast<T>(N - ddof));
}
template <typename T>
std::pair<T, T> RowwiseMoments(const T* X, int64_t N, int64_t ddof = 0) {
using Vec = vec::Vectorized<T>;
constexpr int64_t kVecSize = Vec::size();
const int64_t n = N / kVecSize;
const int64_t m = divup(n, kChunkSize);
const int64_t depth = CeilLog2(m);
if (depth <= 4) {
return RowwiseMomentsImpl<T, 4>(X, N, ddof);
} else if (depth <= 8) {
return RowwiseMomentsImpl<T, 8>(X, N, ddof);
} else if (depth <= 16) {
return RowwiseMomentsImpl<T, 16>(X, N, ddof);
} else if (depth <= 32) {
return RowwiseMomentsImpl<T, 32>(X, N, ddof);
} else {
return RowwiseMomentsImpl<T, 64>(X, N, ddof);
}
}
} // namespace utils
} // namespace native
} // namespace at