forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperator.cc
914 lines (836 loc) · 29.3 KB
/
operator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
#include "caffe2/core/operator.h"
#include <algorithm>
#include <iostream>
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator_gradient.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/core/types.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
#include <ATen/core/List.h>
#endif
#include "caffe2/core/export_c10_op_to_caffe2.h"
C10_DEFINE_int(
caffe2_operator_max_engine_name_length,
10,
"Maximum engine name length to be stored");
C10_DEFINE_bool(
caffe2_disable_implicit_engine_preference,
false,
"If set, disable implicit engine preferences. This is useful for unit "
"testing and debugging cases.");
C10_DEFINE_bool(
caffe2_operator_throw_if_fp_exceptions,
false,
"If set, throws if floating point exceptions (FE_DIVBYZERO, FE_INVALID) "
"are detected when running any operator. FE_OVERFLOW is handled separately "
"by caffe2_operator_throw_if_fp_overflow_exceptions option.");
C10_DEFINE_bool(
caffe2_operator_throw_if_fp_overflow_exceptions,
false,
"If set, throws if floating point exception FE_OVERFLOW is detected when "
"running any operator.");
#ifdef __GNU_LIBRARY__
C10_DEFINE_bool(
caffe2_operator_throw_on_first_occurrence_if_fp_exceptions,
false,
"If set with caffe2_operator_throw_if_fp_exceptions or "
"caffe2_operator_throw_if_fp_overflow_exceptions, throw on the first "
"occurrence of corresponding floating point exceptions that is detected when "
"running any operator.");
#endif
namespace caffe2 {
OperatorBase::OperatorBase(const OperatorDef& operator_def, Workspace* ws)
: operator_ws_(ws),
operator_def_(std::make_shared<OperatorDef>(operator_def)),
device_option_(
operator_def.has_device_option() ? operator_def.device_option()
: DeviceOption()),
#if defined(EXPOSE_C2_OPS) || \
!defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
newstyle_outputs_(),
#endif
input_size_(operator_def.input_size()),
event_(std::make_unique<Event>(device_option_)) {
static GlobalInitIsCalledGuard guard;
inputs_.reserve(operator_def.input_size());
for (const string& input_str : operator_def.input()) {
auto* blob = ws->GetBlob(input_str);
CAFFE_ENFORCE(
blob != nullptr,
"op ",
operator_def.type(),
": Encountered a non-existing input blob: ",
input_str);
inputs_.push_back(blob);
}
GetOperatorLogger()(operator_def);
outputs_.reserve(operator_def.output_size());
for (const string& output_str : operator_def.output()) {
outputs_.push_back(CHECK_NOTNULL(ws->CreateBlob(output_str)));
}
type_ = operator_def.type();
}
#if defined(EXPOSE_C2_OPS) || \
!defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
namespace {
int C10_UNUSED // Suppress unused function warning on mobile.
compute_input_size_(const std::vector<c10::IValue>& inputs) {
if (inputs.empty()) {
return 0;
}
if (inputs[0].isTensorList()) {
// if the first input is a tensor list, we get input tensors by indexing
// into that list. currently, this means that only tensors from that list
// are accessible as inputs. any hypothetical input tensors that come after
// the list are not accessible.
return inputs[0].toTensorVector().size();
}
// it's not a tensor list. Count the number of tensor inputs and return them.
size_t num_tensor_inputs = 0;
bool found_nontensor = false;
for (const auto& input : inputs) {
if (input.isTensor()) {
AT_ASSERTM(
!found_nontensor,
"All tensor arguments must come before non-tensor arguments");
++num_tensor_inputs;
} else {
found_nontensor = true;
}
}
return num_tensor_inputs;
}
} // namespace
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
OperatorBase::OperatorBase(
const c10::FunctionSchema& fn_schema,
std::vector<c10::IValue> inputs,
c10::List<at::Tensor> outputs)
// NOLINTNEXTLINE(performance-move-const-arg)
: fn_schema_(make_unique<c10::FunctionSchema>(std::move(fn_schema))),
newstyle_inputs_(std::move(inputs)),
newstyle_outputs_(std::move(outputs)),
input_size_(compute_input_size_(newstyle_inputs_)) {
input_tensors_.resize(input_size_);
output_tensors_.resize(newstyle_outputs_.size());
}
#endif
vector<TensorShape> OperatorBase::InputTensorShapes() const {
CAFFE_ENFORCE(
isLegacyOperator(),
"InputTensorShapes() not supported for operators exported to c10.");
vector<TensorShape> tps;
for (const auto& blob : inputs_) {
tps.push_back(GetTensorShapeOfBlob(blob));
}
return tps;
}
namespace {
PerOpEnginePrefType& g_per_op_engine_pref() {
static auto* g_per_op_engine_pref_ = new PerOpEnginePrefType();
return *g_per_op_engine_pref_;
}
GlobalEnginePrefType& g_global_engine_pref() {
static auto* g_global_engine_pref_ =
new GlobalEnginePrefType{{CUDA, {"CUDNN"}}, {HIP, {"MIOPEN"}}};
return *g_global_engine_pref_;
}
unique_ptr<OperatorBase> TryCreateOperator(
const string& key,
const OperatorDef& operator_def,
Workspace* ws) {
const auto& type_proto = operator_def.device_option().device_type();
const auto& type = ProtoToType(static_cast<DeviceTypeProto>(type_proto));
CAFFE_ENFORCE(
gDeviceTypeRegistry()->count(type),
"Device type ",
type,
" not registered.");
OperatorRegistry* registry = gDeviceTypeRegistry()->at(type);
VLOG(1) << "Creating operator with device type " << type;
try {
return registry->Create(key, operator_def, ws);
} catch (const UnsupportedOperatorFeature& err) {
LOG(WARNING) << "Operator " << operator_def.type()
<< " does not support the requested feature. Msg: "
<< err.what()
<< ". Proto is: " << ProtoDebugString(operator_def);
return nullptr;
}
}
unique_ptr<OperatorBase> _CreateOperator(
const OperatorDef& operator_def,
Workspace* ws) {
static StaticLinkingProtector g_protector;
const auto& op_type = operator_def.type();
const auto& device_type_proto = operator_def.device_option().device_type();
const auto& device_type =
ProtoToType(static_cast<DeviceTypeProto>(device_type_proto));
#ifndef CAFFE2_NO_OPERATOR_SCHEMA
// first, check with OpSchema if the operator is legal.
auto* schema = OpSchemaRegistry::Schema(op_type);
if (schema) {
CAFFE_ENFORCE(
schema->Verify(operator_def),
"Operator def did not pass schema checking: ",
ProtoDebugString(operator_def));
} else {
// We would like to recommend every op to register its schema, so if there
// is not one, we print a LOG_ERROR. But we will still allow the operator
// to be constructed.
LOG(ERROR) << "Cannot find operator schema for " << op_type
<< ". Will skip schema checking.";
}
#endif
// second try engines specified in the operator_def and preferred engines
std::vector<std::string> engines{};
if (operator_def.engine().size()) {
const auto op_def_engines = split(',', operator_def.engine());
engines.insert(engines.end(), op_def_engines.begin(), op_def_engines.end());
}
if (!FLAGS_caffe2_disable_implicit_engine_preference &&
g_per_op_engine_pref().count(device_type) &&
g_per_op_engine_pref()[device_type].count(op_type)) {
const auto& preferred_engines =
g_per_op_engine_pref()[device_type][op_type];
VLOG(2) << "Inserting per-op engine preference: " << preferred_engines;
engines.insert(
engines.end(), preferred_engines.begin(), preferred_engines.end());
}
if (!FLAGS_caffe2_disable_implicit_engine_preference &&
g_global_engine_pref().count(device_type)) {
const auto& preferred_engines = g_global_engine_pref()[device_type];
VLOG(2) << "Inserting global engine preference: " << preferred_engines;
engines.insert(
engines.end(), preferred_engines.begin(), preferred_engines.end());
}
for (const auto& engine : engines) {
const std::string key = OpRegistryKey(op_type, engine);
VLOG(1) << "Trying to create operator " << op_type << " with engine "
<< engine;
auto op = TryCreateOperator(key, operator_def, ws);
if (op) {
if (engine.size() <=
(unsigned)FLAGS_caffe2_operator_max_engine_name_length) {
op->annotate_engine(engine);
} else {
op->annotate_engine(
engine.substr(0, FLAGS_caffe2_operator_max_engine_name_length));
}
return op;
} else {
// If the above fails, we will just return the normal case with the
// default implementation.
VLOG(1) << "Engine " << engine << " is not available for operator "
<< op_type << ".";
}
}
if (operator_def.engine().size() && !VLOG_IS_ON(1)) {
static int log_occurrences = 0;
if (log_occurrences <= 64) {
++log_occurrences;
LOG(INFO) << "Engine " << operator_def.engine()
<< " is not available for operator " << op_type << ".";
}
}
VLOG(1) << "Using default implementation.";
// Lastly, if the engine does not work here, try using the default engine.
auto op = TryCreateOperator(op_type, operator_def, ws);
CAFFE_ENFORCE(
op,
"Cannot create operator of type '",
op_type,
"' on the device '",
DeviceTypeName(device_type),
"'. Verify that implementation for the corresponding device exist. It "
"might also happen if the binary is not linked with the operator "
"implementation code. If Python frontend is used it might happen if "
"dyndep.InitOpsLibrary call is missing. Operator def: ",
ProtoDebugString(operator_def));
return op;
}
} // namespace
const std::string OpRegistryKey(
const std::string& op_type,
const std::string& engine) {
if (engine == "" || engine == "DEFAULT") {
return op_type;
} else {
return op_type + "_ENGINE_" + engine;
}
}
void SetPerOpEnginePref(const PerOpEnginePrefType& per_op_engine_pref) {
for (const auto& device_pref_pair : per_op_engine_pref) {
const auto& device_type = device_pref_pair.first;
CAFFE_ENFORCE(
gDeviceTypeRegistry()->count(device_type),
"Device type ",
device_type,
" not registered.");
auto* registry = gDeviceTypeRegistry()->at(device_type);
for (const auto& op_pref_pair : device_pref_pair.second) {
const auto& op_type = op_pref_pair.first;
CAFFE_ENFORCE(
registry->Has(op_type),
"Operator type ",
op_type,
" not registered in ",
device_type,
" registry.");
}
}
g_per_op_engine_pref() = per_op_engine_pref;
}
void SetGlobalEnginePref(const GlobalEnginePrefType& global_engine_pref) {
for (const auto& device_pref_pair : global_engine_pref) {
const auto& device_type = device_pref_pair.first;
CAFFE_ENFORCE(
gDeviceTypeRegistry()->count(device_type),
"Device type ",
device_type,
" not registered.");
}
g_global_engine_pref() = global_engine_pref;
}
void SetEnginePref(
const PerOpEnginePrefType& per_op_engine_pref,
const GlobalEnginePrefType& global_engine_pref) {
SetPerOpEnginePref(per_op_engine_pref);
SetGlobalEnginePref(global_engine_pref);
}
void SetOpEnginePref(
const std::string& op_type,
const CaffeMap<DeviceType, EnginePrefType>& op_pref) {
for (const auto& device_pref_pair : op_pref) {
const auto& device_type_proto = device_pref_pair.first;
const auto& device_type =
ProtoToType(static_cast<DeviceTypeProto>(device_type_proto));
CAFFE_ENFORCE(
gDeviceTypeRegistry()->count(device_type),
"Device type ",
device_type,
" not registered.");
CAFFE_ENFORCE(
gDeviceTypeRegistry()->at(device_type)->Has(op_type),
"Operator type ",
op_type,
" not registered in ",
device_type,
" registry.");
g_per_op_engine_pref()[device_type][op_type] = device_pref_pair.second;
}
}
DeviceTypeRegisterer::DeviceTypeRegisterer(DeviceType type, RegistryFunction func) {
if (gDeviceTypeRegistry()->count(type)) {
std::cerr << "Device type " << DeviceTypeName(type)
<< "registered twice. This should not happen. Did you have "
"duplicated numbers assigned to different devices?";
std::exit(1);
}
// Calling the registry function to get the actual registry pointer.
gDeviceTypeRegistry()->emplace(type, func());
}
unique_ptr<OperatorBase> CreateOperator(
const OperatorDef& operator_def,
Workspace* ws,
int net_position) {
try {
auto op = _CreateOperator(operator_def, ws);
op->set_net_position(net_position);
return op;
} catch (...) {
if (net_position != 0) {
VLOG(1) << "Operator constructor with net position " << net_position
<< " failed";
ws->last_failed_op_net_position = net_position;
} else {
VLOG(1) << "Failed operator constructor doesn't have an id set";
}
throw;
}
}
std::map<DeviceType, OperatorRegistry*>* gDeviceTypeRegistry() {
static std::map<DeviceType, OperatorRegistry*> g_device_type_registry;
return &g_device_type_registry;
}
C10_DEFINE_REGISTRY(
CPUOperatorRegistry,
OperatorBase,
const OperatorDef&,
Workspace*);
CAFFE_REGISTER_DEVICE_TYPE(CPU, CPUOperatorRegistry);
C10_DEFINE_REGISTRY(
CUDAOperatorRegistry,
OperatorBase,
const OperatorDef&,
Workspace*);
CAFFE_REGISTER_DEVICE_TYPE(CUDA, CUDAOperatorRegistry);
C10_DEFINE_REGISTRY(
HIPOperatorRegistry,
OperatorBase,
const OperatorDef&,
Workspace*);
CAFFE_REGISTER_DEVICE_TYPE(HIP, HIPOperatorRegistry);
C10_DEFINE_REGISTRY(
GradientRegistry,
GradientMakerBase,
const OperatorDef&,
const vector<GradientWrapper>&);
GradientOpsMeta GetGradientForOp(
const OperatorDef& def,
const vector<GradientWrapper>& g_output) {
C10_LOG_API_USAGE_ONCE("caffe2.gradient_maker");
std::unique_ptr<GradientMakerBase> maker(
GradientRegistry()->Create(def.type(), def, g_output));
CAFFE_ENFORCE(
maker, "Gradient maker for operator ", def.type(), " not implemented.");
GradientOpsMeta meta = maker->Get();
// Copy device option, engine, and arguments if needed.
if (maker->CopyDeviceOption() && def.has_device_option()) {
for (OperatorDef& grad_def : meta.ops_) {
grad_def.mutable_device_option()->CopyFrom(def.device_option());
}
}
// Copy engine if needed.
if (maker->CopyEngine() && def.has_engine()) {
for (OperatorDef& grad_def : meta.ops_) {
grad_def.set_engine(def.engine());
}
}
// Copy arguments if needed.
if (maker->CopyArguments() && def.arg_size()) {
for (OperatorDef& grad_def : meta.ops_) {
for (auto& arg : def.arg()) {
grad_def.add_arg()->CopyFrom(arg);
}
}
}
// VLOG for debugging purposes.
for (const OperatorDef& grad_def : meta.ops_) {
VLOG(1) << "Gradient ops: " << ProtoDebugString(grad_def);
}
// Check if the gradient computation has returned the right size for the
// gradient vector.
CAFFE_ENFORCE_EQ(meta.g_input_.size(), def.input_size());
VLOG(1) << "Gradients:";
for (const GradientWrapper& grad : meta.g_input_) {
// The gradient should either be (1) not set, or (2) dense, or (3) sparse,
// but cannot be both dense and sparse.
if (!grad.IsDense() && !grad.IsSparse()) {
VLOG(1) << "\t [no gradient]";
} else if (grad.IsDense()) {
VLOG(1) << "\t [dense]" << grad.dense_;
} else {
CAFFE_ENFORCE(
grad.indices_.size() && grad.values_.size(),
"For sparse gradient, one should set both indices and values. "
"Currently we have: (" +
grad.indices_ + ", " + grad.values_ + ").");
VLOG(1) << "\t [sparse] " << grad.indices_ << ", " << grad.values_;
}
}
return meta;
}
TensorShapes InferBlobShapesAndTypes(
CaffeMap<string, TensorShape>& blob_desc,
const vector<NetDef*>& nets) {
for (auto& defptr : nets) {
// Hack to work with auto split gradients
CaffeMap<string, string> unmatched_sum_blobs;
CaffeMap<string, TensorShape> reshape_cache;
CaffeMap<string, vector<TensorShape>> split_cache;
for (const OperatorDef& op : defptr->op()) {
// Hack to ignore queues
if (op.type().find("Dequeue") != std::string::npos ||
op.type().find("Enqueue") != std::string::npos) {
continue;
}
vector<TensorShape> input_desc;
bool found_all = true;
for (const string& in : op.input()) {
auto inp_desc = blob_desc.find(in);
if (inp_desc == blob_desc.end()) {
LOG(WARNING) << "Shape and type inference failed for input: " << in
<< " for op " << op.type() << ", skipping.";
found_all = false;
break;
}
input_desc.push_back(inp_desc->second);
}
if (!found_all) {
continue;
}
auto op_schema = OpSchemaRegistry::Schema(op.type());
if (op_schema == nullptr) {
LOG(WARNING) << "Shape inference failed, no schema for: " << op.type();
continue;
}
// Special handling for Sum as it used with the autosplits, which have
// different naming convention. Assuming that all sum inputs must be of
// same size, we can infer their shapes.
if (op.type() == "Sum") {
TensorShape sum_shape;
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto inp : op.input()) {
auto it = blob_desc.find(inp);
if (it != blob_desc.end() && !it->second.unknown_shape()) {
if (it->second.dims_size() > 0) {
sum_shape = blob_desc[inp];
break;
}
}
}
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto inp : op.input()) {
auto it = blob_desc.find(inp);
if (it == blob_desc.end() || it->second.unknown_shape()) {
blob_desc[inp] = sum_shape;
if (sum_shape.dims_size() == 0) {
// Match later with the output
unmatched_sum_blobs[inp] = op.output(0);
}
}
}
}
if (op.type() == "Reshape" && op.is_gradient_op()) {
CAFFE_ENFORCE(reshape_cache.find(op.input(1)) != reshape_cache.end());
TensorShape cached = reshape_cache[op.input(1)];
blob_desc[op.output(0)] = cached;
TensorShape dims;
dims.add_dims(cached.dims_size());
dims.set_data_type(TensorProto_DataType_INT64);
blob_desc[op.output(1)] = dims;
continue;
} else if (
op.type() == "Split" && op.input_size() == 2 && op.is_gradient_op()) {
CAFFE_ENFORCE(split_cache.find(op.input(1)) != split_cache.end());
vector<TensorShape> cached = split_cache[op.input(1)];
CAFFE_ENFORCE_EQ(op.output_size(), cached.size());
for (size_t i = 0; i < cached.size(); i++) {
blob_desc[op.output(i)] = cached[i];
}
continue;
}
std::vector<TensorShape> out;
try {
out = op_schema->InferTensor(op, input_desc);
if (op.is_gradient_op() && out.size()) {
// Special handling for gradient ops. We can assume gradients
// are of same size as the corresponding variables. This is bit
// ugly to base on string matching, but we don't have the connection
// between variable and its gradient specified
CaffeMap<string, string> grads_to_params =
GradientMakerBase::MatchGradsToParams(op);
for (size_t i = 0; i < out.size(); i++) {
if (out[i].unknown_shape()) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
std::string gradout = op.output(i);
if (grads_to_params.find(gradout) != grads_to_params.end()) {
std::string var = grads_to_params[gradout];
if (blob_desc.find(var) != blob_desc.end()) {
out[i] = blob_desc[var];
}
}
}
}
}
if (op.type() == "Reshape") {
// Reshape stores the original input shape to its second output
// blob. We need this for gradient reshape.
reshape_cache[op.output(1)] = input_desc[0];
} else if (op.type() == "Concat") {
// Split needs the input sizes from Concat.
split_cache[op.output(1)] = input_desc;
}
} catch (::caffe2::EnforceNotMet& enf) {
LOG(ERROR) << "Shape inference error: " << enf.what();
LOG(ERROR) << "Operator: " << ProtoDebugString(op) << std::endl;
LOG(ERROR) << "Returning empty results.";
TensorShapes tps;
return tps;
}
if (out.size() != (unsigned)op.output_size()) {
if (op.type() == "Slice") {
CAFFE_ENFORCE(
out.size() == 0,
"For Slice operator, either shape of all output blobs are "
"inferred or shape of none can be inferred.");
} else {
CAFFE_THROW(
"Invalid shape inference for operator ",
op.type(),
" Expected ",
op.output_size(),
" outputs, but got ",
out.size());
}
} else {
for (size_t i = 0; i < out.size(); i++) {
blob_desc[op.output(i)] = out[i];
}
}
} // net.ops
for (auto& unmatched : unmatched_sum_blobs) {
if (blob_desc.find(unmatched.second) != blob_desc.end()) {
blob_desc[unmatched.first] = blob_desc[unmatched.second];
}
}
} // nets
TensorShapes tps;
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto kv : blob_desc) {
TensorShape& tp = kv.second;
TensorShape* tpnew = tps.add_shapes();
tpnew->CopyFrom(tp);
tpnew->set_name(kv.first);
}
return tps;
}
void LoadInt8TensorInfoOfBlob(
std::vector<float>* scale,
std::vector<float>* offset,
uint32_t* axis,
const Blob* b) {
const int8::Int8TensorCPU* int8_tensor =
static_cast<const int8::Int8TensorCPU*>(b->GetRaw());
scale->clear();
offset->clear();
scale->push_back(int8_tensor->scale);
offset->push_back(int8_tensor->zero_point);
*axis = 1;
}
TensorShape GetTensorShapeOfBlob(const Blob* b) {
TensorShape tp;
#ifndef C10_MOBILE
auto function_ptr =
ExternalTensorFunctionsBaseRegistry()->Create(b->meta().id());
if (function_ptr != nullptr) {
// This is dnnlowp tensor and we cant deal with it using regular path
auto dtype = function_ptr->GetExternalTensorType(b->GetRaw());
tp.set_data_type(TypeMetaToDataType(dtype));
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t _capacity;
DeviceOption _device;
auto dshape =
function_ptr->GetExternalTensorInfo(b->GetRaw(), &_capacity, &_device);
for (auto d : dshape) {
tp.add_dims(d);
}
return tp;
}
#endif
TypeCall type_fun = GetTypeCallFunction(b->meta().id());
TensorInfoCall tensor_info_fun = GetTensorInfoFunction(b->meta().id());
if (type_fun) {
tp.set_data_type(TypeMetaToDataType(type_fun(b->GetRaw())));
}
if (tensor_info_fun) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t _capacity;
DeviceOption _device;
auto shape = tensor_info_fun(b->GetRaw(), &_capacity, &_device);
for (auto d : shape) {
tp.add_dims(d);
}
} else {
tp.set_unknown_shape(true);
}
return tp;
}
TensorShapes InferBlobShapesAndTypesFromWorkspace(
Workspace* ws,
const vector<NetDef*>& nets) {
CaffeMap<string, TensorShape> blob_desc;
// Populate shapes from workplace
const std::vector<string>& ws_blobs = ws->Blobs();
for (const auto& s : ws_blobs) {
Blob* b = ws->GetBlob(s);
TensorShape tp = GetTensorShapeOfBlob(b);
blob_desc[s] = tp;
}
return InferBlobShapesAndTypes(blob_desc, nets);
}
TensorShapes InferBlobShapesAndTypesFromMap(
const CaffeMap<std::string, std::vector<int64_t>>& blob_dimensions,
const vector<NetDef*>& nets) {
CaffeMap<string, TensorShape> blob_desc;
// Populate shapes from known blobs
for (const auto& blob : blob_dimensions) {
TensorShape tp;
for (auto d : blob.second) {
CAFFE_ENFORCE_GE(d, 0, blob.first);
tp.add_dims(d);
}
blob_desc[blob.first] = tp;
}
return InferBlobShapesAndTypes(blob_desc, nets);
}
TensorShapes InferBlobShapesAndTypesFromMap(
const CaffeMap<std::string, std::vector<int64_t>>& blob_dimensions,
const CaffeMap<std::string, TensorProto_DataType>& blob_types,
const vector<NetDef*>& nets) {
CaffeMap<string, TensorShape> blob_desc;
// Populate shapes from known blobs
for (const auto& blob : blob_dimensions) {
TensorShape tp;
for (auto d : blob.second) {
CAFFE_ENFORCE_GE(d, 0, blob.first);
tp.add_dims(d);
}
auto blob_type = blob_types.find(blob.first);
if (blob_type == blob_types.end()) {
LOG(WARNING) << "Missing type of " << blob.first
<< "; assuming to be UNDEFINED";
tp.set_data_type(TensorProto_DataType_UNDEFINED);
} else {
tp.set_data_type(blob_type->second);
}
blob_desc[blob.first] = tp;
}
return InferBlobShapesAndTypes(blob_desc, nets);
}
std::map<string, std::pair<DeviceOption, DeviceOption>> ValidateTensorDevices(
OperatorBase& op,
const OperatorDef& op_def) {
std::map<string, std::pair<DeviceOption, DeviceOption>> mismatches;
DeviceOption op_device = op_def.device_option();
#ifndef CAFFE2_NO_OPERATOR_SCHEMA
// Check from op schema if this op is used for crossing devices
auto op_schema = OpSchemaRegistry::Schema(op_def.type());
if (op_schema != nullptr) {
if (op_schema->inputs_can_cross_devices()) {
return mismatches;
}
}
#endif // CAFFE2_NO_OPERATOR_SCHEMA
auto Check = [&](const Blob& blob, std::string blob_name) {
TensorInfoCall tensor_info_fun = GetTensorInfoFunction(blob.meta().id());
if (tensor_info_fun) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t _capacity;
DeviceOption blob_device;
tensor_info_fun(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<Blob&>(blob).GetRaw(), &_capacity, &blob_device);
if ((blob_device.device_type() == PROTO_CUDA ||
blob_device.device_type() == PROTO_HIP) &&
blob_device.device_id() != op_device.device_id()) {
mismatches[blob_name] = std::make_pair(op_device, blob_device);
}
}
};
// Check that inputs have same device type as the op
for (int i = 0; i < op.InputSize(); i++) {
Check(op.InputBlob(i), op_def.input(i));
}
for (int i = 0; i < op.OutputSize(); i++) {
Check(*op.OutputBlob(i), op_def.output(i));
}
return mismatches;
}
std::set<std::string> GetRegisteredOperators() {
std::set<std::string> all_keys;
// CPU operators
for (const auto& name : CPUOperatorRegistry()->Keys()) {
all_keys.emplace(name);
}
// CUDA operators
for (const auto& name : CUDAOperatorRegistry()->Keys()) {
all_keys.emplace(name);
}
// HIP operators
for (const auto& name : HIPOperatorRegistry()->Keys()) {
all_keys.emplace(name);
}
return all_keys;
}
static std::function<void(const OperatorDef&)> OperatorLogger =
[](const OperatorDef&) { return; };
void SetOperatorLogger(std::function<void(const OperatorDef&)> tracer) {
OperatorLogger = tracer;
}
std::function<void(const OperatorDef&)> GetOperatorLogger() {
return OperatorLogger;
}
c10::optional<int> OperatorBase::argumentIndexWithName(
c10::string_view name) const {
#if defined(EXPOSE_C2_OPS) || \
!defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
return getFunctionSchema().argumentIndexWithName(name);
#else
CAFFE_THROW("Non-legacy operators are not legal in xplat/caffe2");
#endif
}
bool OperatorBase::RunAsync(int stream_id) {
try {
auto result = Run(stream_id);
if (result) {
if (HasAsyncPart()) {
RecordEvent();
} else {
SetEventFinished();
}
} else {
SetEventFinished(getErrorMsg().c_str());
}
return result;
} catch (EnforceNotMet& err) {
SetEventFinishedWithException(err.what());
throw;
} catch (const std::exception& err) {
SetEventFinishedWithException(err.what());
throw;
} catch (...) {
SetEventFinishedWithException(getErrorMsg().c_str());
throw;
}
}
void OperatorBase::AddRelatedBlobInfo(EnforceNotMet* err) {
CAFFE_ENFORCE(
isLegacyOperator(),
"AddRelatedBlobInfo(err) not supported for operators exported to c10.");
if (!has_debug_def()) {
return;
}
bool found_input = false;
bool found_output = false;
if (err->caller() != nullptr) {
std::ostringstream oss;
for (size_t i = 0; i < inputs_.size(); i++) {
if (inputs_[i]->GetRaw() == err->caller()) {
found_input = true;
oss << "while accessing input: " << debug_def().input(i);
break;
}
}
for (size_t i = 0; i < outputs_.size(); i++) {
if (outputs_[i]->GetRaw() == err->caller()) {
found_output = true;
if (found_input) {
oss << " OR ";
}
oss << "while accessing output: " << debug_def().output(i);
break;
}
}
if (found_input || found_output) {
err->add_context(oss.str());
}
}
}
OperatorBase::~OperatorBase() noexcept = default;
#ifndef C10_MOBILE
C10_DEFINE_TYPED_REGISTRY(
ExternalTensorFunctionsBaseRegistry,
TypeIdentifier,
ExternalTensorFunctionsBase,
std::unique_ptr);
#endif
} // namespace caffe2