These are the basic building blocks for graphs:
torch.nn
- Containers
- Convolution Layers
- Pooling layers
- Padding Layers
- Non-linear Activations (weighted sum, nonlinearity)
- Non-linear Activations (other)
- Normalization Layers
- Recurrent Layers
- Transformer Layers
- Linear Layers
- Dropout Layers
- Sparse Layers
- Distance Functions
- Loss Functions
- Vision Layers
- Shuffle Layers
- DataParallel Layers (multi-GPU, distributed)
- Utilities
- Quantized Functions
- Lazy Modules Initialization
.. currentmodule:: torch.nn
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst ~parameter.Parameter ~parameter.UninitializedParameter ~parameter.UninitializedBuffer
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst Module Sequential ModuleList ModuleDict ParameterList ParameterDict
Global Hooks For Module
.. currentmodule:: torch.nn.modules.module
.. autosummary:: :toctree: generated :nosignatures: register_module_forward_pre_hook register_module_forward_hook register_module_backward_hook register_module_full_backward_hook
.. currentmodule:: torch
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Conv1d nn.Conv2d nn.Conv3d nn.ConvTranspose1d nn.ConvTranspose2d nn.ConvTranspose3d nn.LazyConv1d nn.LazyConv2d nn.LazyConv3d nn.LazyConvTranspose1d nn.LazyConvTranspose2d nn.LazyConvTranspose3d nn.Unfold nn.Fold
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.MaxPool1d nn.MaxPool2d nn.MaxPool3d nn.MaxUnpool1d nn.MaxUnpool2d nn.MaxUnpool3d nn.AvgPool1d nn.AvgPool2d nn.AvgPool3d nn.FractionalMaxPool2d nn.FractionalMaxPool3d nn.LPPool1d nn.LPPool2d nn.AdaptiveMaxPool1d nn.AdaptiveMaxPool2d nn.AdaptiveMaxPool3d nn.AdaptiveAvgPool1d nn.AdaptiveAvgPool2d nn.AdaptiveAvgPool3d
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.ReflectionPad1d nn.ReflectionPad2d nn.ReflectionPad3d nn.ReplicationPad1d nn.ReplicationPad2d nn.ReplicationPad3d nn.ZeroPad2d nn.ConstantPad1d nn.ConstantPad2d nn.ConstantPad3d
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.ELU nn.Hardshrink nn.Hardsigmoid nn.Hardtanh nn.Hardswish nn.LeakyReLU nn.LogSigmoid nn.MultiheadAttention nn.PReLU nn.ReLU nn.ReLU6 nn.RReLU nn.SELU nn.CELU nn.GELU nn.Sigmoid nn.SiLU nn.Mish nn.Softplus nn.Softshrink nn.Softsign nn.Tanh nn.Tanhshrink nn.Threshold nn.GLU
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Softmin nn.Softmax nn.Softmax2d nn.LogSoftmax nn.AdaptiveLogSoftmaxWithLoss
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.BatchNorm1d nn.BatchNorm2d nn.BatchNorm3d nn.LazyBatchNorm1d nn.LazyBatchNorm2d nn.LazyBatchNorm3d nn.GroupNorm nn.SyncBatchNorm nn.InstanceNorm1d nn.InstanceNorm2d nn.InstanceNorm3d nn.LazyInstanceNorm1d nn.LazyInstanceNorm2d nn.LazyInstanceNorm3d nn.LayerNorm nn.LocalResponseNorm
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.RNNBase nn.RNN nn.LSTM nn.GRU nn.RNNCell nn.LSTMCell nn.GRUCell
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Transformer nn.TransformerEncoder nn.TransformerDecoder nn.TransformerEncoderLayer nn.TransformerDecoderLayer
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Identity nn.Linear nn.Bilinear nn.LazyLinear
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Dropout nn.Dropout2d nn.Dropout3d nn.AlphaDropout nn.FeatureAlphaDropout
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Embedding nn.EmbeddingBag
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.CosineSimilarity nn.PairwiseDistance
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.L1Loss nn.MSELoss nn.CrossEntropyLoss nn.CTCLoss nn.NLLLoss nn.PoissonNLLLoss nn.GaussianNLLLoss nn.KLDivLoss nn.BCELoss nn.BCEWithLogitsLoss nn.MarginRankingLoss nn.HingeEmbeddingLoss nn.MultiLabelMarginLoss nn.HuberLoss nn.SmoothL1Loss nn.SoftMarginLoss nn.MultiLabelSoftMarginLoss nn.CosineEmbeddingLoss nn.MultiMarginLoss nn.TripletMarginLoss nn.TripletMarginWithDistanceLoss
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.PixelShuffle nn.PixelUnshuffle nn.Upsample nn.UpsamplingNearest2d nn.UpsamplingBilinear2d
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.ChannelShuffle
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.DataParallel nn.parallel.DistributedDataParallel
From the torch.nn.utils
module
.. currentmodule:: torch.nn.utils
.. autosummary:: :toctree: generated :nosignatures: clip_grad_norm_ clip_grad_value_ parameters_to_vector vector_to_parameters prune.BasePruningMethod
.. autosummary:: :toctree: generated :nosignatures: prune.PruningContainer prune.Identity prune.RandomUnstructured prune.L1Unstructured prune.RandomStructured prune.LnStructured prune.CustomFromMask prune.identity prune.random_unstructured prune.l1_unstructured prune.random_structured prune.ln_structured prune.global_unstructured prune.custom_from_mask prune.remove prune.is_pruned weight_norm remove_weight_norm spectral_norm remove_spectral_norm skip_init
Parametrizations implemented using the new parametrization functionality in :func:`torch.nn.utils.parameterize.register_parametrization`.
.. autosummary:: :toctree: generated :nosignatures: parametrizations.orthogonal parametrizations.spectral_norm
Utility functions to parametrize Tensors on existing Modules. Note that these functions can be used to parametrize a given Parameter or Buffer given a specific function that maps from an input space to the parametrized space. They are not parameterizations that would transform an object into a parameter. See the Parametrizations tutorial for more information on how to implement your own parametrizations.
.. autosummary:: :toctree: generated :nosignatures: parametrize.register_parametrization parametrize.remove_parametrizations parametrize.cached parametrize.is_parametrized
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst parametrize.ParametrizationList
Utility functions in other modules
.. currentmodule:: torch
.. autosummary:: :toctree: generated :nosignatures: nn.utils.rnn.PackedSequence nn.utils.rnn.pack_padded_sequence nn.utils.rnn.pad_packed_sequence nn.utils.rnn.pad_sequence nn.utils.rnn.pack_sequence
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.Flatten nn.Unflatten
Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than floating point precision. PyTorch supports both per tensor and per channel asymmetric linear quantization. To learn more how to use quantized functions in PyTorch, please refer to the :ref:`quantization-doc` documentation.
.. currentmodule:: torch
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst nn.modules.lazy.LazyModuleMixin