forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_linalg.py
8061 lines (6958 loc) · 377 KB
/
test_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Owner(s): ["module: linear algebra"]
import torch
import numpy as np
import unittest
import itertools
import warnings
import math
from math import inf, nan, isnan
import random
from random import randrange
from itertools import product
from functools import reduce
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_SCIPY, IS_MACOS, IS_WINDOWS, slowTest,
TEST_WITH_ASAN, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU,
iter_indices, gradcheck, gradgradcheck)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes,
onlyCPU, skipCUDAIf, skipCUDAIfNoMagma, skipCPUIfNoLapack, precisionOverride,
skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, onlyOnCPUAndCUDA, dtypesIfCUDA,
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver)
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
all_types, floating_types, floating_and_complex_types, get_all_dtypes, get_all_int_dtypes, get_all_complex_dtypes,
get_all_fp_dtypes,
)
from torch.testing._internal.common_cuda import SM53OrLater, tf32_on_and_off, CUDA11OrLater, CUDA9
from torch.distributions.binomial import Binomial
# Protects against includes accidentally setting the default dtype
# NOTE: jit_metaprogramming_utils sets the default dtype to double!
torch.set_default_dtype(torch.float32)
assert torch.get_default_dtype() is torch.float32
if TEST_SCIPY:
import scipy
class TestLinalg(TestCase):
def setUp(self):
super(self.__class__, self).setUp()
torch.backends.cuda.matmul.allow_tf32 = False
def tearDown(self):
torch.backends.cuda.matmul.allow_tf32 = True
super(self.__class__, self).tearDown()
exact_dtype = True
@dtypes(torch.float, torch.cfloat)
@precisionOverride({torch.float: 1e-06, torch.cfloat: 1e-06})
@tf32_on_and_off(5e-3)
def test_inner(self, device, dtype):
def check(a_sizes_, b_sizes_):
for a_sizes, b_sizes in ((a_sizes_, b_sizes_), (b_sizes_, a_sizes_)):
a = torch.randn(a_sizes, dtype=dtype, device=device)
b = torch.randn(b_sizes, dtype=dtype, device=device)
res = torch.inner(a, b)
ref = np.inner(a.cpu().numpy(), b.cpu().numpy())
self.assertEqual(res.cpu(), torch.from_numpy(np.array(ref)))
out = torch.zeros_like(res)
torch.inner(a, b, out=out)
self.assertEqual(res, out)
check([], []) # scalar x scalar
check([], [0]) # scalar x empty
check([], [3]) # scalar x 1D
check([], [2, 3, 4]) # scalar x 3D
check([0], [0]) # empty x empty
check([0], [2, 0]) # empty x 2D
check([2], [2]) # 1D x 1D
check([2], [3, 1, 2]) # 1D x 3D
check([2], [3, 0, 2]) # 1D x 3D empty
check([1, 2], [3, 2]) # 2D x 2D
check([1, 2], [3, 4, 2]) # 2D x 3D
check([2, 1, 3, 2], [1, 3, 2, 2]) # 4D x 4D
# Test noncontiguous input
a = torch.randn(3, 2, device=device, dtype=dtype).transpose_(0, 1)
b = torch.randn(4, 3, device=device, dtype=dtype)[::2, :]
self.assertFalse(a.is_contiguous() or b.is_contiguous())
self.assertEqual(a.inner(b).cpu().numpy(), np.inner(a.cpu().numpy(), b.cpu().numpy()))
# Test error message
with self.assertRaisesRegex(RuntimeError,
r"inner\(\) the last dimension must match on both "
r"input tensors but got shapes \[2, 3\] and \[2, 2\]"):
torch.randn(2, 3, device=device, dtype=dtype).inner(torch.randn(2, 2, device=device, dtype=dtype))
# Tests torch.outer, and its alias, torch.ger, vs. NumPy
@precisionOverride({torch.bfloat16: 1e-1})
@dtypes(*(get_all_dtypes()))
def test_outer(self, device, dtype):
def run_test_case(a, b):
if dtype == torch.bfloat16:
a_np = a.to(torch.double).cpu().numpy()
b_np = b.to(torch.double).cpu().numpy()
exact_dtype = False
else:
a_np = a.cpu().numpy()
b_np = b.cpu().numpy()
exact_dtype = True
expected = np.outer(a_np, b_np)
self.assertEqual(torch.outer(a, b), expected, exact_dtype=False)
self.assertEqual(torch.Tensor.outer(a, b), expected, exact_dtype=False)
self.assertEqual(torch.ger(a, b), expected, exact_dtype=False)
self.assertEqual(torch.Tensor.ger(a, b), expected, exact_dtype=False)
# test out variant
out = torch.empty(a.size(0), b.size(0), device=device, dtype=dtype)
torch.outer(a, b, out=out)
self.assertEqual(out, expected, exact_dtype=False)
out = torch.empty(a.size(0), b.size(0), device=device, dtype=dtype)
torch.ger(a, b, out=out)
self.assertEqual(out, expected, exact_dtype=False)
a = torch.randn(50).to(device=device, dtype=dtype)
b = torch.randn(50).to(device=device, dtype=dtype)
run_test_case(a, b)
# test 0 strided tensor
zero_strided = torch.randn(1).to(device=device, dtype=dtype).expand(50)
run_test_case(zero_strided, b)
run_test_case(a, zero_strided)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_linalg_lstsq(self, device, dtype):
from torch.testing._internal.common_utils import random_well_conditioned_matrix
if self.device_type == 'cpu':
drivers = ('gels', 'gelsy', 'gelsd', 'gelss', None)
else:
drivers = ('gels', None)
def check_solution_correctness(a, b, sol):
sol2 = a.pinverse() @ b
self.assertEqual(sol, sol2, atol=1e-5, rtol=1e-5)
def check_correctness_ref(a, b, res, ref, driver="default"):
def apply_if_not_empty(t, f):
if t.numel():
return f(t)
else:
return t
def select_if_not_empty(t, i):
selected = apply_if_not_empty(t, lambda x: x.select(0, i))
return selected
m = a.size(-2)
n = a.size(-1)
nrhs = b.size(-1)
batch_size = int(np.prod(a.shape[:-2]))
if batch_size == 0:
batch_size = 1
a_3d = a.view(batch_size, m, n)
b_3d = b.view(batch_size, m, nrhs)
solution_3d = res.solution.view(batch_size, n, nrhs)
residuals_2d = apply_if_not_empty(res.residuals, lambda t: t.view(-1, nrhs))
rank_1d = apply_if_not_empty(res.rank, lambda t: t.view(-1))
singular_values_2d = res.singular_values.view(batch_size, res.singular_values.shape[-1])
if a.numel() > 0:
for i in range(batch_size):
sol, residuals, rank, singular_values = ref(
a_3d.select(0, i).numpy(),
b_3d.select(0, i).numpy()
)
# Singular values are None when lapack_driver='gelsy' in SciPy
if singular_values is None:
singular_values = []
self.assertEqual(sol, solution_3d.select(0, i), atol=1e-5, rtol=1e-5)
self.assertEqual(rank, select_if_not_empty(rank_1d, i), atol=1e-5, rtol=1e-5)
self.assertEqual(singular_values, singular_values_2d.select(0, i), atol=1e-5, rtol=1e-5)
# SciPy and NumPy operate only on non-batched input and
# return an empty array with shape (0,) if rank(a) != n
# in PyTorch the batched inputs are supported and
# matrices in the batched input can have different ranks
# we compute residuals only if all matrices have rank == n
# see https://github.com/pytorch/pytorch/issues/56483
if m > n:
if torch.all(rank_1d == n):
self.assertEqual(
residuals, select_if_not_empty(residuals_2d, i), atol=1e-5, rtol=1e-5, exact_dtype=False
)
else:
self.assertTrue(residuals_2d.numel() == 0)
else:
self.assertEqual(res.solution.shape, (*a.shape[:-2], n, nrhs))
self.assertEqual(res.rank.shape, a.shape[:-2])
# residuals are not always computed (and have non-zero shape)
if m > n and driver != "gelsy":
self.assertEqual(res.residuals.shape, (*a.shape[:-2], 0))
else:
self.assertEqual(res.residuals.shape, (0, ))
# singular_values are not always computed (and have non-zero shape)
if driver == "default" or driver == "gelsd" or driver == "gelss":
self.assertEqual(res.singular_values.shape, (*a.shape[:-2], min(m, n)))
else:
self.assertEqual(res.singular_values.shape, (0, ))
def check_correctness_scipy(a, b, res, driver, cond):
# SciPy provides 3 driver options: gelsd, gelss, gelsy
if TEST_SCIPY and driver in ('gelsd', 'gelss', 'gelsy'):
import scipy.linalg
def scipy_ref(a, b):
return scipy.linalg.lstsq(a, b, lapack_driver=driver, cond=cond)
check_correctness_ref(a, b, res, scipy_ref, driver=driver)
def check_correctness_numpy(a, b, res, driver, rcond):
# NumPy uses only gelsd routine
if driver == 'gelsd':
def numpy_ref(a, b):
return np.linalg.lstsq(a, b, rcond=rcond)
check_correctness_ref(a, b, res, numpy_ref)
version = torch.testing._internal.common_cuda._get_torch_cuda_version()
cusolver_available = (version >= (10, 2))
ms = [2 ** i for i in range(5)]
m_ge_n_sizes = [(m, m // 2) for m in ms] + [(m, m) for m in ms]
# cases m < n are only supported on CPU and for cuSOLVER path on CUDA
m_l_n_sizes = [(m // 2, m) for m in ms]
include_m_l_n_case = (cusolver_available or device == 'cpu')
matrix_sizes = m_ge_n_sizes + (m_l_n_sizes if include_m_l_n_case else [])
batches = [(), (2,), (2, 2), (2, 2, 2)]
# we generate matrices with singular values sampled from a normal distribution,
# that is why we use `cond=1.0`, the mean to cut roughly half of all
# the singular values and compare whether torch.linalg.lstsq agrees with
# SciPy and NumPy.
# if rcond is True then set value for it based on the used algorithm
# rcond == -1 or any other negative value forces LAPACK to use machine precision tolerance
rconds = (None, True, -1)
for batch, matrix_size, driver, rcond in itertools.product(batches, matrix_sizes, drivers, rconds):
# keep the rcond value if it is None or -1, set the driver specific value if it is True
if rcond and rcond != -1:
if driver in ('gelss', 'gelsd'):
# SVD based algorithm; set to zero roughly half of all the singular values
rcond = 1.0
else:
# driver == 'gelsy'
# QR based algorithm; setting the value too high might lead to non-unique solutions and flaky tests
rcond = 1e-4
# specifying rcond value has no effect for gels driver so no need to run the tests again
if driver == 'gels' and rcond is not None:
continue
shape = batch + matrix_size
a = random_well_conditioned_matrix(*shape, dtype=dtype, device=device)
b = torch.rand(*shape, dtype=dtype, device=device)
m = a.size(-2)
n = a.size(-1)
res = torch.linalg.lstsq(a, b, rcond=rcond, driver=driver)
sol = res.solution
# Only checks gelsd, gelss, gelsy drivers
check_correctness_scipy(a, b, res, driver, rcond)
# Only checks gelsd driver
check_correctness_numpy(a, b, res, driver, rcond)
# gels driver is not checked by comparing to NumPy or SciPy implementation
# because NumPy and SciPy do not implement this driver
if driver == 'gels' and rcond is None:
check_solution_correctness(a, b, sol)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_linalg_lstsq_batch_broadcasting(self, device, dtype):
from torch.testing._internal.common_utils import random_well_conditioned_matrix
def check_correctness(a, b):
sol = torch.linalg.lstsq(a, b).solution
sol2 = a.pinverse() @ b
self.assertEqual(sol, sol2, rtol=1e-5, atol=1e-5)
ms = [2 ** i for i in range(5)]
batches = [(), (0,), (2,), (2, 2), (2, 2, 2)]
# the case when a single matrix is batch-broadcasted over the rhs
for m, batch in itertools.product(ms, batches):
a = random_well_conditioned_matrix(m, m, dtype=dtype, device=device).view(*([1] * len(batch)), m, m)
b = torch.rand(*(batch + (m, m)), dtype=dtype, device=device)
check_correctness(a, b)
# cases with broadcastable shapes
for m in ms:
a = random_well_conditioned_matrix(1, 3, 1, 3, m, m, dtype=dtype, device=device)
b = torch.rand(3, 1, 3, 1, m, m // 2, dtype=dtype, device=device)
check_correctness(a, b)
# rhs are vectors, not matrices in this test
b = torch.rand(3, 1, 3, 1, m, dtype=dtype, device=device)
# unsqueeze for b because `check_correctness` checks against
# a.pinverse() @ b, which requires b to be a matrix
check_correctness(a, b.unsqueeze(-1))
a = random_well_conditioned_matrix(3, 1, 3, 1, m, m, dtype=dtype, device=device)
b = torch.rand(1, 3, 1, 3, m, m // 2, dtype=dtype, device=device)
check_correctness(a, b)
# rhs are vectors, not matrices in this test
b = torch.rand(1, 3, 1, 3, m, dtype=dtype, device=device)
check_correctness(a, b.unsqueeze(-1))
@skipCPUIfNoLapack
@skipCUDAIfNoMagma
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_linalg_lstsq_input_checks(self, device, dtype):
# check empty inputs
# empty batches
a = torch.rand(0, 0, 3, 3, dtype=dtype, device=device)
b = torch.rand(0, 0, 3, 2, dtype=dtype, device=device)
self.assertEqual(
torch.linalg.lstsq(a, b)[0],
torch.zeros(0, 0, 3, 2, dtype=dtype, device=device)
)
# empty a and b
a = torch.rand(2, 2, 0, 0, dtype=dtype, device=device)
b = torch.rand(2, 2, 0, 0, dtype=dtype, device=device)
self.assertEqual(
torch.linalg.lstsq(a, b)[0],
torch.zeros(2, 2, 0, 0, dtype=dtype, device=device)
)
# empty a and b
a = torch.rand(2, 2, 3, 0, dtype=dtype, device=device)
b = torch.rand(2, 2, 3, 0, dtype=dtype, device=device)
self.assertEqual(
torch.linalg.lstsq(a, b)[0],
torch.zeros(2, 2, 0, 0, dtype=dtype, device=device)
)
# empty a but not b
a = torch.rand(2, 2, 3, 0, dtype=dtype, device=device)
b = torch.rand(2, 2, 3, 2, dtype=dtype, device=device)
self.assertEqual(
torch.linalg.lstsq(a, b)[0],
torch.zeros(2, 2, 0, 2, dtype=dtype, device=device)
)
# empty a and b
if torch.device(device).type == 'cpu':
# only CPU since CUDA does not support overdetermined systems
a = torch.rand(2, 2, 0, 3, dtype=dtype, device=device)
b = torch.rand(2, 2, 0, 3, dtype=dtype, device=device)
self.assertEqual(
torch.linalg.lstsq(a, b)[0],
torch.zeros(2, 2, 3, 3, dtype=dtype, device=device)
)
a = torch.rand(2, 3, dtype=dtype, device=device)
b = torch.rand(3, dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, 'input must have at least 2 dimensions'):
torch.linalg.lstsq(b, b)
with self.assertRaisesRegex(RuntimeError, 'other must have at least 1 dimension'):
torch.linalg.lstsq(a, torch.tensor(1, dtype=dtype, device=device))
with self.assertRaisesRegex(RuntimeError, r'input.size\(-2\) should match other.size\(-1\)'):
torch.linalg.lstsq(a, b)
with self.assertRaisesRegex(RuntimeError, r'input.size\(-2\) should match other.size\(-2\)'):
torch.linalg.lstsq(a, b.unsqueeze(-1))
def complement_device(device):
if device == 'cpu' and torch.cuda.is_available():
return 'cuda'
else:
return 'cpu'
a = torch.rand(2, 2, 2, 2, dtype=dtype, device=device)
b = torch.rand(2, 2, 2, dtype=dtype, device=complement_device(device))
if a.device != b.device:
with self.assertRaisesRegex(RuntimeError, 'be on the same device'):
torch.linalg.lstsq(a, b)
b = (torch.rand(2, 2, 2, dtype=dtype, device=device) * 100).long()
with self.assertRaisesRegex(RuntimeError, 'the same dtype'):
torch.linalg.lstsq(a, b)
a = torch.rand(2, 2, 2, 2, dtype=dtype, device=device)
b = torch.rand(2, 2, 2, dtype=dtype, device=device)
if device != 'cpu':
with self.assertRaisesRegex(RuntimeError, '`driver` other than `gels` is not supported on CUDA'):
torch.linalg.lstsq(a, b, driver='fictitious_driver')
# if on cpu
else:
with self.assertRaisesRegex(RuntimeError, r'parameter `driver` should be one of \(gels, gelsy, gelsd, gelss\)'):
torch.linalg.lstsq(a, b, driver='fictitious_driver')
# cuSOLVER path supports underdetermined systems
version = torch.testing._internal.common_cuda._get_torch_cuda_version()
cusolver_not_available = (version < (10, 1))
if device != 'cpu' and cusolver_not_available:
a = torch.rand(2, 3, dtype=dtype, device=device)
b = torch.rand(2, 1, dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, r'only overdetermined systems'):
torch.linalg.lstsq(a, b)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_cholesky(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
def run_test(shape, batch, contiguous):
A = random_hermitian_pd_matrix(shape, *batch, dtype=dtype, device=device)
if A.numel() > 0 and not contiguous:
A = A.mT
self.assertFalse(A.is_contiguous())
expected_L = np.linalg.cholesky(A.cpu().numpy())
actual_L = torch.linalg.cholesky(A)
# For fp32 individual entries in matrices can differ between PyTorch and NumPy
# Let's compare the norms of matrices instead
if A.numel() > 0 and dtype in [torch.float32, torch.complex64]:
# axis is specified to calculate matrix norm for batched input
expected_norm = np.linalg.norm(expected_L, ord=1, axis=(-2, -1))
actual_norm = torch.linalg.norm(actual_L, ord=1, axis=(-2, -1))
# Compare the norms with standard tolerances
self.assertEqual(actual_norm, expected_norm)
# and individual values with a higher tolerance
self.assertEqual(actual_L, expected_L, atol=1e-2, rtol=1e-5)
else:
self.assertEqual(actual_L, expected_L)
shapes = (0, 3, 5)
batches = ((), (3, ), (2, 2))
larger_input_case = [(100, (5, ), True)]
for shape, batch, contiguous in list(itertools.product(shapes, batches, (True, False))) + larger_input_case:
run_test(shape, batch, contiguous)
# check the out= variant
A = random_hermitian_pd_matrix(3, 3, dtype=dtype, device=device)
out = torch.empty_like(A)
ans = torch.linalg.cholesky(A, out=out)
self.assertEqual(ans, out)
expected = torch.linalg.cholesky(A)
self.assertEqual(expected, out)
# check the upper= variant
expected = torch.linalg.cholesky(A).mH
actual = torch.linalg.cholesky(A, upper=True)
self.assertEqual(expected, actual)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_cholesky_errors_and_warnings(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
# cholesky requires the input to be a square matrix or batch of square matrices
A = torch.randn(2, 3, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r'must be batches of square matrices'):
torch.linalg.cholesky(A)
A = torch.randn(2, 2, 3, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r'must be batches of square matrices'):
torch.linalg.cholesky(A)
with self.assertRaisesRegex(np.linalg.LinAlgError, r'Last 2 dimensions of the array must be square'):
np.linalg.cholesky(A.cpu().numpy())
# cholesky requires the input to be at least 2 dimensional tensor
A = torch.randn(2, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r'must have at least 2 dimensions'):
torch.linalg.cholesky(A)
with self.assertRaisesRegex(np.linalg.LinAlgError,
r'1-dimensional array given\. Array must be at least two-dimensional'):
np.linalg.cholesky(A.cpu().numpy())
# if the input matrix is not positive definite, an error should be raised
A = torch.eye(3, 3, dtype=dtype, device=device)
A[-1, -1] = 0 # Now A is not positive definite
with self.assertRaisesRegex(RuntimeError, r'minor of order 3 is not positive-definite'):
torch.linalg.cholesky(A)
with self.assertRaisesRegex(np.linalg.LinAlgError, r'Matrix is not positive definite'):
np.linalg.cholesky(A.cpu().numpy())
# if at least one matrix in the batch is singular, an error should be raised
A = torch.eye(3, 3, dtype=dtype, device=device)
A = A.reshape((1, 3, 3))
A = A.repeat(5, 1, 1)
A[4, -1, -1] = 0 # Now A[4] is not positive definite
with self.assertRaisesRegex(RuntimeError, r'\(Batch element 4\): The factorization could not be completed'):
torch.linalg.cholesky(A)
# if out tensor with wrong shape is passed a warning is given
A = random_hermitian_pd_matrix(3, dtype=dtype, device=device)
out = torch.empty(2, 3, dtype=dtype, device=device)
with warnings.catch_warnings(record=True) as w:
# Trigger warning
torch.linalg.cholesky(A, out=out)
# Check warning occurs
self.assertEqual(len(w), 1)
self.assertTrue("An output with one or more elements was resized" in str(w[-1].message))
# dtypes should be safely castable
out = torch.empty(*A.shape, dtype=torch.int, device=device)
with self.assertRaisesRegex(RuntimeError, "but got result with dtype Int"):
torch.linalg.cholesky(A, out=out)
# device should match
if torch.cuda.is_available():
wrong_device = 'cpu' if self.device_type != 'cpu' else 'cuda'
out = torch.empty(0, device=wrong_device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "Expected result and input tensors to be on the same device"):
torch.linalg.cholesky(A, out=out)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float64, torch.complex128)
def test_cholesky_hermitian_grad(self, device, dtype):
# Check that the gradient is Hermitian (or symmetric)
def run_test(shape):
root = torch.rand(*shape, dtype=dtype, device=device)
root = torch.matmul(root, root.mH)
root.requires_grad_()
chol = torch.linalg.cholesky(root).sum().backward()
self.assertEqual(root.grad, root.grad.mH)
shapes = ((3, 3), (1, 1, 3, 3))
for shape in shapes:
run_test(shape)
# NOTE: old_cholesky* tests were moved here from test_torch.py and test_autograd.py
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_old_cholesky_batched_many_batches(self, device, dtype):
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
def cholesky_test_helper(n, batchsize, device, upper):
A = random_symmetric_pd_matrix(n, batchsize, dtype=dtype, device=device)
chol_fact = torch.cholesky(A, upper=upper)
if upper:
# Correctness check
self.assertEqual(A, chol_fact.mT.matmul(chol_fact))
# Upper triangular check
self.assertEqual(chol_fact, chol_fact.triu())
else:
# Correctness check
self.assertEqual(A, chol_fact.matmul(chol_fact.mT))
# Lower triangular check
self.assertEqual(chol_fact, chol_fact.tril())
for upper, batchsize in itertools.product([True, False], [262144, 524288]):
cholesky_test_helper(2, batchsize, device, upper)
@precisionOverride({torch.float32: 1e-4, torch.complex64: 1e-4})
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_old_cholesky_batched(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
def cholesky_test_helper(n, batch_dims, upper):
A = random_hermitian_pd_matrix(n, *batch_dims, dtype=dtype, device=device)
cholesky_exp = torch.stack([m.cholesky(upper=upper) for m in A.reshape(-1, n, n)])
cholesky_exp = cholesky_exp.reshape_as(A)
self.assertEqual(cholesky_exp, torch.cholesky(A, upper=upper))
for upper, batchsize in itertools.product([True, False], [(3,), (3, 4), (2, 3, 4)]):
cholesky_test_helper(3, batchsize, upper)
@precisionOverride({torch.float32: 1e-4, torch.complex64: 1e-4})
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@tf32_on_and_off(0.01)
def test_old_cholesky(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
A = random_hermitian_pd_matrix(10, dtype=dtype, device=device)
# default Case
C = torch.cholesky(A)
B = torch.mm(C, C.t().conj())
self.assertEqual(A, B, atol=1e-14, rtol=0)
# test Upper Triangular
U = torch.cholesky(A, True)
B = torch.mm(U.t().conj(), U)
self.assertEqual(A, B, atol=1e-14, rtol=0, msg='cholesky (upper) did not allow rebuilding the original matrix')
# test Lower Triangular
L = torch.cholesky(A, False)
B = torch.mm(L, L.t().conj())
self.assertEqual(A, B, atol=1e-14, rtol=0, msg='cholesky (lower) did not allow rebuilding the original matrix')
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_old_cholesky_empty(self, device, dtype):
def run_test(upper):
A = torch.empty(0, 0, dtype=dtype, device=device)
chol = torch.cholesky(A, upper)
chol_A = torch.matmul(chol, chol.t().conj())
self.assertEqual(A, chol_A)
for upper in [True, False]:
run_test(upper)
# Test for issue
# https://github.com/pytorch/pytorch/issues/57032
# torch.cholesky with upper=True for batched CUDA inputs was wrong
# it was using the lower triangular part instead of the upper one
@onlyCUDA
@skipCUDAIfNoMagma
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_old_cholesky_batched_upper(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
batchsize = 2
A = random_hermitian_pd_matrix(3, batchsize, dtype=dtype, device=device)
A_triu = A.triu() # fill the lower triangular part with zero
U = torch.cholesky(A_triu, upper=True)
reconstruct_A = U.mH @ U
self.assertEqual(A, reconstruct_A)
@skipCUDAIfNoMagmaAndNoCusolver
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_cholesky_ex(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
def run_test(n, batch):
A = random_hermitian_pd_matrix(n, *batch, dtype=dtype, device=device)
expected_L = np.linalg.cholesky(A.cpu().numpy())
expected_info = torch.zeros(A.shape[:-2], dtype=torch.int32, device=device)
actual_L, actual_info = torch.linalg.cholesky_ex(A)
# For fp32 individual entries in matrices can differ between PyTorch and NumPy
# Let's compare the norms of matrices instead
if A.numel() > 0 and dtype in [torch.float32, torch.complex64]:
# axis is specified to calculate matrix norm for batched input
expected_norm = np.linalg.norm(expected_L, ord=1, axis=(-2, -1))
actual_norm = torch.linalg.norm(actual_L, ord=1, axis=(-2, -1))
# Compare the norms with standard tolerances
self.assertEqual(actual_norm, expected_norm)
# and individual values with a higher tolerance
self.assertEqual(actual_L, expected_L, atol=1e-2, rtol=1e-5)
else:
self.assertEqual(actual_L, expected_L)
self.assertEqual(actual_info, expected_info)
ns = (0, 3, 5)
batches = ((), (2, ), (2, 1))
for n, batch in itertools.product(ns, batches):
run_test(n, batch)
@skipCUDAIfNoMagmaAndNoCusolver
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_cholesky_ex_non_pd(self, device, dtype):
# if the input matrix is not positive definite, info with positive integer is returned
A = torch.eye(3, 3, dtype=dtype, device=device)
A[-1, -1] = 0 # Now A is singular
_, info = torch.linalg.cholesky_ex(A)
self.assertEqual(info, 3)
with self.assertRaisesRegex(RuntimeError, r'minor of order 3 is not positive-definite'):
torch.linalg.cholesky_ex(A, check_errors=True)
# if at least one matrix in the batch is not positive definite,
# batched info with positive integer for the corresponding matrix is returned
A = torch.eye(3, 3, dtype=dtype, device=device)
A = A.reshape((1, 3, 3))
A = A.repeat(5, 1, 1)
A[3, -2, -2] = 0 # Now A[3] is singular
_, info = torch.linalg.cholesky_ex(A)
expected_info = torch.zeros(A.shape[:-2], dtype=torch.int32, device=device)
expected_info[3] = 2
self.assertEqual(info, expected_info)
with self.assertRaisesRegex(RuntimeError, r'\(Batch element 3\): The factorization could not be completed'):
torch.linalg.cholesky_ex(A, check_errors=True)
@skipCUDAIfNoMagmaAndNoCusolver
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_cholesky_ex_out_info_error(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
# dtype for info must be torch.int32
A = random_hermitian_pd_matrix(3, dtype=dtype, device=device)
L = torch.empty(A.shape, dtype=dtype, device=device)
info = torch.empty(A.shape[:-2], dtype=torch.int64, device=device)
with self.assertRaisesRegex(RuntimeError, "but got info with dtype Long"):
torch.linalg.cholesky_ex(A, out=(L, info))
@onlyCPU
@skipCPUIfNoLapack
@dtypes(torch.float64, torch.complex128)
def test_old_cholesky_autograd(self, device, dtype):
def func(root, upper):
x = 0.5 * (root + root.mH)
return torch.cholesky(x, upper)
def run_test(upper, dims):
root = torch.rand(*dims, dtype=dtype, device=device, requires_grad=True)
root = root + torch.eye(dims[-1])
gradcheck(func, [root, upper])
gradgradcheck(func, [root, upper])
root = torch.rand(*dims, dtype=dtype, device=device)
root = torch.matmul(root, root.mH)
root.requires_grad_()
chol = root.cholesky().sum().backward()
self.assertEqual(root.grad, root.grad.mH) # Check the gradient is hermitian
for upper, dims in itertools.product([True, False], [(3, 3), (4, 3, 2, 2)]):
run_test(upper, dims)
def _test_addr_vs_numpy(self, device, dtype, beta=1, alpha=1):
def check(m, a, b, beta, alpha):
if dtype == torch.bfloat16:
a_np = a.to(torch.double).cpu().numpy()
b_np = b.to(torch.double).cpu().numpy()
m_np = m.to(torch.double).cpu().numpy()
exact_dtype = False
else:
a_np = a.cpu().numpy()
b_np = b.cpu().numpy()
m_np = m.cpu().numpy()
exact_dtype = True
if beta == 0:
expected = alpha * np.outer(a_np, b_np)
else:
expected = beta * m_np + alpha * np.outer(a_np, b_np)
res = torch.addr(m, a, b, beta=beta, alpha=alpha)
self.assertEqual(res, expected, exact_dtype=exact_dtype)
# Test out variant
out = torch.empty_like(res)
torch.addr(m, a, b, beta=beta, alpha=alpha, out=out)
self.assertEqual(out, expected, exact_dtype=exact_dtype)
m = make_tensor((50, 50), device=device, dtype=dtype, low=-2, high=2)
a = make_tensor((50,), device=device, dtype=dtype, low=-2, high=2)
b = make_tensor((50,), device=device, dtype=dtype, low=-2, high=2)
check(m, a, b, beta, alpha)
# test transpose
m_transpose = torch.transpose(m, 0, 1)
check(m_transpose, a, b, beta, alpha)
# test 0 strided tensor
zero_strided = make_tensor((1,), device=device, dtype=dtype, low=-2, high=2).expand(50)
check(m, zero_strided, b, beta, alpha)
# test scalar
m_scalar = torch.tensor(1, device=device, dtype=dtype)
check(m_scalar, a, b, beta, alpha)
# test nans and infs are not propagated to the output when beta == 0
float_and_complex_dtypes = get_all_fp_dtypes() + get_all_complex_dtypes()
if beta == 0 and dtype in float_and_complex_dtypes:
m[0][10] = m[10][10] = m[20][20] = float('inf')
m[1][10] = m[11][10] = m[21][20] = float('nan')
check(m, a, b, 0, alpha)
@dtypes(torch.bool)
def test_addr_bool(self, device, dtype):
self._test_addr_vs_numpy(device, dtype, beta=True, alpha=False)
self._test_addr_vs_numpy(device, dtype, beta=False, alpha=True)
self._test_addr_vs_numpy(device, dtype, beta=False, alpha=False)
self._test_addr_vs_numpy(device, dtype, beta=True, alpha=True)
@dtypes(*(get_all_int_dtypes()))
def test_addr_integral(self, device, dtype):
with self.assertRaisesRegex(RuntimeError,
'argument beta must not be a floating point number.'):
self._test_addr_vs_numpy(device, dtype, beta=2., alpha=1)
with self.assertRaisesRegex(RuntimeError,
'argument alpha must not be a floating point number.'):
self._test_addr_vs_numpy(device, dtype, beta=2, alpha=1.)
with self.assertRaisesRegex(RuntimeError,
'Boolean beta only supported for Boolean results.'):
self._test_addr_vs_numpy(device, dtype, beta=True, alpha=1)
with self.assertRaisesRegex(RuntimeError,
'Boolean alpha only supported for Boolean results.'):
self._test_addr_vs_numpy(device, dtype, beta=2, alpha=True)
# when beta is zero
self._test_addr_vs_numpy(device, dtype, beta=0, alpha=2)
# when beta is not zero
self._test_addr_vs_numpy(device, dtype, beta=2, alpha=2)
@precisionOverride({torch.bfloat16: 1e-1})
@dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
def test_addr_float_and_complex(self, device, dtype):
with self.assertRaisesRegex(RuntimeError,
'Boolean beta only supported for Boolean results.'):
self._test_addr_vs_numpy(device, dtype, beta=True, alpha=1)
with self.assertRaisesRegex(RuntimeError,
'Boolean alpha only supported for Boolean results.'):
self._test_addr_vs_numpy(device, dtype, beta=2, alpha=True)
# when beta is zero
self._test_addr_vs_numpy(device, dtype, beta=0., alpha=2)
# when beta is not zero
self._test_addr_vs_numpy(device, dtype, beta=0.5, alpha=2)
if dtype in get_all_complex_dtypes():
self._test_addr_vs_numpy(device, dtype, beta=(0 + 0.1j), alpha=(0.2 - 0.2j))
@dtypes(*itertools.product(get_all_dtypes(),
get_all_dtypes()))
def test_outer_type_promotion(self, device, dtypes):
a = torch.randn(5).to(device=device, dtype=dtypes[0])
b = torch.randn(5).to(device=device, dtype=dtypes[1])
for op in (torch.outer, torch.Tensor.outer, torch.ger, torch.Tensor.ger):
result = op(a, b)
self.assertEqual(result.dtype, torch.result_type(a, b))
# don't use @dtypes decorator to avoid generating ~1700 tests per device
def test_addr_type_promotion(self, device):
for dtypes0, dtypes1, dtypes2 in product(get_all_dtypes(), repeat=3):
a = make_tensor((5,), device=device, dtype=dtypes0, low=-2, high=2)
b = make_tensor((5,), device=device, dtype=dtypes1, low=-2, high=2)
m = make_tensor((5, 5), device=device, dtype=dtypes2, low=-2, high=2)
desired_dtype = torch.promote_types(torch.promote_types(dtypes0, dtypes1),
dtypes2)
for op in (torch.addr, torch.Tensor.addr):
result = op(m, a, b)
self.assertEqual(result.dtype, desired_dtype)
# Tests migrated from test_torch.py
# 1) test the shape of the result tensor when there is empty input tensor
# 2) test the Runtime Exception when there is scalar input tensor
def test_outer_ger_addr_legacy_tests(self, device):
for size in ((0, 0), (0, 5), (5, 0)):
a = torch.rand(size[0], device=device)
b = torch.rand(size[1], device=device)
self.assertEqual(torch.outer(a, b).shape, size)
self.assertEqual(torch.ger(a, b).shape, size)
m = torch.empty(size, device=device)
self.assertEqual(torch.addr(m, a, b).shape, size)
m = torch.randn(5, 6, device=device)
a = torch.randn(5, device=device)
b = torch.tensor(6, device=device)
self.assertRaises(RuntimeError, lambda: torch.outer(a, b))
self.assertRaises(RuntimeError, lambda: torch.outer(b, a))
self.assertRaises(RuntimeError, lambda: torch.ger(a, b))
self.assertRaises(RuntimeError, lambda: torch.ger(b, a))
self.assertRaises(RuntimeError, lambda: torch.addr(m, a, b))
self.assertRaises(RuntimeError, lambda: torch.addr(m, b, a))
# Tests torch.det and its alias, torch.linalg.det, vs. NumPy
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double, torch.cdouble)
def test_det(self, device, dtype):
tensors = (
torch.randn((2, 2), device=device, dtype=dtype),
torch.randn((129, 129), device=device, dtype=dtype),
torch.randn((3, 52, 52), device=device, dtype=dtype),
torch.randn((4, 2, 26, 26), device=device, dtype=dtype))
ops = (torch.det, torch.Tensor.det,
torch.linalg.det)
for t in tensors:
expected = np.linalg.det(t.cpu().numpy())
for op in ops:
actual = op(t)
self.assertEqual(actual, expected)
self.compare_with_numpy(op, np.linalg.det, t)
# NOTE: det requires a 2D+ tensor
t = torch.randn(1, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
op(t)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@precisionOverride({torch.float32: 1e-4, torch.complex64: 1e-4})
def test_eigh(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_matrix
def run_test(shape, batch, uplo):
matrix = random_hermitian_matrix(shape, *batch, dtype=dtype, device=device)
expected_w, expected_v = np.linalg.eigh(matrix.cpu().numpy(), UPLO=uplo)
actual_w, actual_v = torch.linalg.eigh(matrix, UPLO=uplo)
self.assertEqual(actual_w, expected_w)
# sign of eigenvectors is not unique and therefore absolute values are compared
self.assertEqual(abs(actual_v), abs(expected_v))
# additionally we can multiply the eigenvector with a phase factor e^{i\phi} and then compare the values
# let's choose the convention that the first element of the eigenvectors from torch and numpy be the same
# for real inputs, this phase factor is plus or minus one
if matrix.numel() > 0:
phase = torch.from_numpy(expected_v[..., 0, :]).to(device=device).div(actual_v[..., 0, :])
actual_v_rotated = actual_v * phase.unsqueeze(-2).expand_as(actual_v)
self.assertEqual(actual_v_rotated, expected_v)
# check the out= variant
out_w = torch.empty_like(actual_w)
out_v = torch.empty_like(actual_v)
ans_w, ans_v = torch.linalg.eigh(matrix, UPLO=uplo, out=(out_w, out_v))
self.assertEqual(ans_w, out_w)
self.assertEqual(ans_v, out_v)
self.assertEqual(ans_w, actual_w)
self.assertEqual(abs(ans_v), abs(actual_v))
shapes = (0, 3, 5)
batches = ((), (3, ), (2, 2))
uplos = ["U", "L"]
for shape, batch, uplo in itertools.product(shapes, batches, uplos):
run_test(shape, batch, uplo)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@precisionOverride({torch.float32: 1e-4, torch.complex64: 1e-4})
def test_eigh_lower_uplo(self, device, dtype):
def run_test(shape, batch, uplo):
# check lower case uplo
# use non-symmetric input to check whether uplo argument is working as intended
matrix = torch.randn(shape, shape, *batch, dtype=dtype, device=device)
expected_w, expected_v = np.linalg.eigh(matrix.cpu().numpy(), UPLO=uplo)
actual_w, actual_v = torch.linalg.eigh(matrix, UPLO=uplo)
self.assertEqual(actual_w, expected_w)
self.assertEqual(abs(actual_v), abs(expected_v))
uplos = ["u", "l"]
for uplo in uplos:
run_test(3, (2, 2), uplo)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_eigh_errors_and_warnings(self, device, dtype):
from torch.testing._internal.common_utils import random_hermitian_matrix
# eigh requires a square matrix
t = torch.randn(2, 3, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "must be batches of square matrices"):
torch.linalg.eigh(t)
# eigh requires 'uplo' parameter to be 'U' or 'L'
t = torch.randn(3, 3, device=device, dtype=dtype)
for uplo in ["a", "wrong"]:
with self.assertRaisesRegex(RuntimeError, "be \'L\' or \'U\'"):
torch.linalg.eigh(t, UPLO=uplo)
with self.assertRaisesRegex(ValueError, "be \'L\' or \'U\'"):
np.linalg.eigh(t.cpu().numpy(), UPLO=uplo)
# if non-empty out tensor with wrong shape is passed a warning is given
a = random_hermitian_matrix(3, dtype=dtype, device=device)
real_dtype = a.real.dtype if dtype.is_complex else dtype
out_w = torch.empty(7, 7, dtype=real_dtype, device=device)
out_v = torch.empty(7, 7, dtype=dtype, device=device)
with warnings.catch_warnings(record=True) as w:
# Trigger warning
torch.linalg.eigh(a, out=(out_w, out_v))
# Check warning occurs
self.assertEqual(len(w), 2)
self.assertTrue("An output with one or more elements was resized" in str(w[-2].message))
self.assertTrue("An output with one or more elements was resized" in str(w[-1].message))
# dtypes should be safely castable
out_w = torch.empty(0, dtype=real_dtype, device=device)
out_v = torch.empty(0, dtype=torch.int, device=device)
with self.assertRaisesRegex(RuntimeError, "but got eigenvectors with dtype Int"):
torch.linalg.eigh(a, out=(out_w, out_v))
out_w = torch.empty(0, dtype=torch.int, device=device)
out_v = torch.empty(0, dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, "but got eigenvalues with dtype Int"):
torch.linalg.eigh(a, out=(out_w, out_v))