forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlower_tuples.cpp
340 lines (313 loc) · 11.2 KB
/
lower_tuples.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
namespace torch {
namespace jit {
namespace {
// operators where we expect to find tuples as inputs/outputs
// this is to assert we are only doing modifications when we know
// we can flatten tuples
std::unordered_set<Symbol> supported_ops = {
prim::If,
prim::Loop,
prim::Uninitialized,
prim::TupleUnpack,
prim::TupleConstruct,
prim::TupleIndex,
prim::TupleSlice,
prim::Param,
prim::Return,
prim::PythonOp,
aten::format,
prim::Uninitialized,
aten::__getitem__};
// Flatten block inputs and insert a tuple construct in the block
static void flattenTupleInLoopParams(Node* n, size_t index) {
auto input = n->inputs().at(index);
TupleTypePtr tt = input->type()->cast<TupleType>();
TORCH_INTERNAL_ASSERT(tt);
Block* block = n->blocks().at(0);
Node* block_node = n;
std::vector<Value*> new_node_inputs = {};
auto new_construct_node =
block->prependNode(block->owningGraph()->create(prim::TupleConstruct));
for (size_t j = 0; j < tt->elements().size(); ++j) {
auto new_block_in = block->insertInput(index + j);
new_construct_node->addInput(new_block_in);
block_node->insertInput(index + j + 1, input->node()->inputs().at(j));
}
new_construct_node->output()->setType(block->inputs().at(index - 1)->type());
new_construct_node->copyMetadata(n);
block->inputs().at(index - 1)->replaceAllUsesWith(
new_construct_node->output());
block->eraseInput(index - 1);
block_node->removeInput(index);
}
// Flatten tuple outputs of the block node and append a TupleConstruct
// node after the block node if there is an outer block.
static void flattenTupleInBlockReturn(Node* n, size_t index) {
auto input = n->inputs().at(index);
Block* block = n->owningBlock();
Node* block_node = block->owningNode();
Node* new_construct_node = nullptr;
TupleTypePtr tt = input->type()->cast<TupleType>();
TORCH_INTERNAL_ASSERT(tt);
// 1- Add flattened tuple to block outputs
for (size_t j = 0; j < tt->elements().size(); ++j) {
block->insertOutput(index + j + 1, input->node()->inputs().at(j));
}
block->eraseOutput(index);
if (block_node == nullptr)
return;
// 2- For uses of the block node in the outer block,
// flatten the blocknode outputs and insert a tuple construct
// to replace that.
// Loop block has an extra element (iter counter)
if (block_node->kind() == prim::Loop)
index = index - 1;
auto tuple_output = block_node->outputs().at(index);
// When node has multiple blocks, do not flatten outputs on the second block
// again
if (!(tuple_output->type()->cast<TupleType>()))
return;
new_construct_node = block->owningGraph()->create(prim::TupleConstruct);
new_construct_node->insertAfter(block_node);
for (size_t j = 0; j < tt->elements().size(); ++j) {
auto new_block_out = block_node->insertOutput(index + j + 1);
new_construct_node->addInput(new_block_out);
}
// Replace the block node with the new TupleConstruct node
new_construct_node->output()->setType(tuple_output->type());
new_construct_node->copyMetadata(block_node);
tuple_output->replaceAllUsesWith(new_construct_node->output());
block_node->eraseOutput(index);
}
void removeTupleNodes(Node* n, bool must_remove_tuples) {
if (n->kind() != prim::TupleUnpack && n->kind() != prim::TupleIndex &&
n->kind() != prim::TupleSlice) {
return;
}
// tuple index has two inputs, tuple and index
auto construct_node = n->inputs().at(0)->node();
if (construct_node->kind() != prim::TupleConstruct) {
if (must_remove_tuples) {
AT_ERROR(n->kind().toQualString(), " not matched to tuple construct");
}
return;
}
if (n->kind() == prim::TupleUnpack) {
for (size_t i = 0; i < n->outputs().size(); ++i) {
n->outputs()[i]->replaceAllUsesWith(construct_node->inputs().at(i));
}
} else if (n->kind() == prim::TupleIndex) {
auto idx = n->inputs().at(1);
auto maybe_int = constant_as<int64_t>(idx);
if (!maybe_int) {
if (must_remove_tuples) {
AT_ERROR(n->sourceRange(), "tuple index with non-constant index");
}
return;
}
auto int_idx = *maybe_int;
size_t len = construct_node->output()->type()->containedTypes().size();
if (int_idx < 0) {
int_idx += len;
}
// currently, we allow non-constant tuple index if the tuple is of one type.
// so we need to check bounds here
if (int_idx >= 0 && static_cast<size_t>(int_idx) < len) {
n->output()->replaceAllUsesWith(construct_node->inputs().at(int_idx));
}
} else if (n->kind() == prim::TupleSlice) {
std::vector<Value*> values;
int64_t beg = n->i(attr::beg);
int64_t end = n->i(attr::end);
for (int64_t i = beg; i < end; i += 1) {
values.push_back(construct_node->inputs().at(i));
}
auto graph = n->owningGraph();
auto tuple_out = graph->createTuple(values);
tuple_out->copyMetadata(n);
WithInsertPoint insert(n);
graph->insertNode(tuple_out);
n->output()->replaceAllUsesWith(tuple_out->output());
}
}
} // anonymous namespace
static void LowerAllTuples(Block* block);
static void RemoveTupleConstants(Node* n) {
if (!(n->kind() == prim::Constant &&
n->output()->type()->cast<TupleType>())) {
return;
}
auto g = n->owningGraph();
auto tuple = toIValue(n->output()).value().toTuple();
const auto& tuple_elements = tuple->elements();
WithInsertPoint insert(n);
std::vector<Value*> elements;
for (const auto& elem : tuple_elements) {
auto constant = insertConstant(*n->owningGraph(), elem);
elements.push_back(constant);
}
auto tuple_type = n->output()->type()->expect<TupleType>();
auto tuple_construct = g->insertNode(n->owningGraph()->createTuple(
elements, tuple_type->schema() ? tuple_type : nullptr));
tuple_construct->copyMetadata(n);
// insert the tuple first before recursing on its elements, so that its
// elements will have a use
for (Value* elem : elements) {
RemoveTupleConstants(elem->node());
}
n->replaceAllUsesWith(tuple_construct);
}
static void flattenInputs(Node* n, Node* insert_point) {
// flatten the input list op(a, tup, b) --> op(a, t0, t1, b)
for (size_t i = 0; i < n->inputs().size();) {
auto input = n->inputs()[i];
if (TupleTypePtr tt = input->type()->cast<TupleType>()) {
TORCH_CHECK(
(input->node()->kind() == prim::TupleConstruct),
"tuple use not matched to tuple construct. Instead found: ",
n->kind().toQualString());
if (supported_ops.count(n->kind()) > 0) {
if (n->kind() == prim::Loop) {
// This function supports all node types with blocks that take tuple
// inputs.
flattenTupleInLoopParams(n, i);
} else if (n->kind() == prim::Return) {
flattenTupleInBlockReturn(n, i);
} else {
for (size_t j = 0; j < tt->elements().size(); ++j) {
n->insertInput(i + 1 + j, input->node()->inputs().at(j));
}
n->removeInput(i);
}
// note: no update to i
// since tuples might be nested we need to recursively scan
// the new flattened inputs
} else {
TORCH_WARN(
"tuple appears in op inputs, but this op does not forward tuples, ",
"unsupported kind: ",
n->kind().toQualString());
++i;
}
} else {
++i;
}
}
}
static void flattenOutputs(Node* n, Node* insert_point) {
// flatten the outputs list
auto& graph = *n->owningGraph();
for (size_t i = 0; i < n->outputs().size();) {
Value* output = n->outputs()[i];
if (!output->hasUses()) {
++i;
continue;
}
// (a, b, tup, c) -> (a, b, t0, t1, c)
// and:
// tup = (t0, t1)
// is placed at the current insertion point
if (TupleTypePtr tt = output->type()->cast<TupleType>()) {
if (supported_ops.count(n->kind()) > 0) {
for (const auto j : c10::irange(tt->elements().size())) {
n->insertOutput(i + 1 + j)->setType(tt->elements()[j]);
}
auto new_tup =
graph.createTuple(n->outputs().slice(i + 1, tt->elements().size()));
new_tup->copyMetadata(n);
new_tup->insertBefore(insert_point);
insert_point = new_tup;
output->replaceAllUsesWith(new_tup->output());
n->eraseOutput(i);
// note: no update to i to handle nested tuples
} else {
TORCH_WARN(
"tuple appears in the op outputs, but this op does not forward tuples, ",
"unsupported kind: ",
n->kind().toQualString());
++i;
}
} else {
++i;
}
}
}
static void VisitNode(Node* n, Node* insert_point) {
// tuple construction operators will become dead when the unpacks are replaced
if (n->kind() == prim::TupleConstruct) {
return;
}
// note: changing the second argument to false changes this pass from a
// complete lowering pass to one that removes tuples when possible. When
// tuples are first-class in the interpreter, we should still run this pass to
// remove extraneous uses
if (n->kind() == prim::TupleUnpack || n->kind() == prim::TupleIndex ||
n->kind() == prim::TupleSlice) {
removeTupleNodes(n, /*must_remove_tuples*/ true);
return;
}
flattenInputs(n, insert_point);
for (auto b : n->blocks()) {
LowerAllTuples(b);
}
flattenOutputs(n, insert_point);
}
static void LowerAllTuples(Block* block) {
// tuples in parameter lists of a block behave exactly the same as
// _outputs_ of normal instructions, since the param_node represents the
// parameters as outputs, we can handle it by simply visiting the node
VisitNode(block->param_node(), *block->nodes().begin());
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
auto n = *it++;
RemoveTupleConstants(n);
VisitNode(n, *it);
}
// tuples in return lists of blocks behave exactly the same as
// _inputs_ of normal instructions, so we can use VisitNode here as well
// insert_point is null because it will never be used since return nodes
// have no outputs
VisitNode(block->return_node(), nullptr);
}
static void EnsureNoTuples(ArrayRef<Value*> values) {
for (Value* v : values) {
TORCH_CHECK(
v->type()->kind() != TypeKind::TupleType, "Couldn't lower all tuples.");
}
}
static void EnsureNoTuples(Block* block) {
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
EnsureNoTuples(b);
}
EnsureNoTuples(n->outputs());
}
}
void LowerAllTuples(const std::shared_ptr<Graph>& graph) {
LowerAllTuples(graph->block());
GRAPH_DUMP("After LowerAllTuples: ", graph);
EliminateDeadCode(graph->block());
EnsureNoTuples(graph->block());
}
void LowerSimpleTuples(Block* block) {
for (auto n : block->nodes()) {
removeTupleNodes(n, /*must_remove_tuples*/ false);
for (auto b : n->blocks()) {
LowerSimpleTuples(b);
}
}
}
void LowerSimpleTuples(const std::shared_ptr<Graph>& graph) {
LowerSimpleTuples(graph->block());
GRAPH_DUMP("After LowerSimpleTuples: ", graph);
EliminateDeadCode(graph);
}
} // namespace jit
} // namespace torch