Skip to content

Latest commit

 

History

History
106 lines (92 loc) · 5.59 KB

README.md

File metadata and controls

106 lines (92 loc) · 5.59 KB

mind-recommenders-pytorch

MINDデータセットを利用して、ニュース推薦モデル(NAML, NRMS)をカスタマイズしつつ学習するためのコード群が置かれています。

動作環境

linux上のdockerで動作させる想定です。以下の環境で動作確認済みです。

  • linux (Ubuntu 20.04 LTS)
  • docker: version 20.10.6, build 370c289
  • docker-compose: 1.29.1, build c34c88b2
  • nvidia-container-toolkit: 1.5.1-1 amd64
  • GPU: NVIDIA GeForce RTX 2080 Ti

セットアップ

1. リポジトリのclone

git clone --recursive https://github.com/stockmarkteam/mind-recommenders-pytorch

2. .envの作成

mv mind-recommenders-pytorch
cp .env.sample .env

.envに定義された環境変数は以下のとおりです。必要に応じて変更可能ですが、以降の説明はデフォルト設定を前提として行われます。

  • COMPOSE_PROJECT_NAME:
    • docker-composeの環境変数。詳細はこちら
  • DEVICE(デフォルト値:gpu):
    • dockerで利用するデバイスを指定します。gpu, cpuのうちいずれかを選択してください。一応切り替えができるようになっていますが、cpu設定での前処理/学習スクリプトの動作は未確認です。
  • DATASET_PATH(デフォルト値:$(PWD)/dataset):
    • mind datasetを保存するhostディレクトリ。container上ではdataset/にmountされます。
  • MODEL_PATH(デフォルト値:$(PWD)/models):
    • GloVe, Transformerのpretrained modelを保存するhostディレクトリ。container上ではmodels/にmountされます。
  • LOG_PATH (デフォルト値:$(PWD)/logs)::
    • 学習のログを保存するhostディレクトリ。container上ではlogs/にmountされます。
  • VENV_PATH:
    • pythonの仮想環境をinstallするhostディレクトリ。container上では.venv/にmountされます。
  • JUPYTER_PORT:
    • container上で立ち上げたjupyter notebookにhostOS上のブラウザからアクセスするためbindするportを指定します。(default:8888
  • TENSORBOARD_PORT:
    • container上で立ち上げたtensorboardにhostOS上のブラウザからアクセスするためbindするportを指定します。(default: 6006

3. docker環境のsetup

make setup

4. データセットのDL

公式サイトから訓練データセット・開発データセットのzipファイルをDLして、containerから見える場所に配置してください。 迷ったらこのREADMEと同じディレクトリに配置すれば問題ありません。

5. containerに入る

make sh

前処理

コンテナ内で以下のコマンドを実行することにより、必要な前処理が全て行われます。

pipenv run preprocess-all data_path.train_zip=<MINDxxx_train.zipのpath> data_path.valid_zip=<MINDxxx_dev.zipへのpath>

通常版データセットを利用する場合は、上記コマンドの引数にparams.dataset_type=largeを追加してください。

ここで行われる各処理の概要ついては、こちらをご確認ください。

学習

コンテナ内で以下のコマンドを実行することにより、モデルが学習できます。

pipenv run train

当社のブログ記事で言及した12通りのモデルをすべて学習したい場合は、以下のコマンドを実行してください。

pipenv run train-all

指定できるオプションの一例は以下のとおりです。

  • model:
    • naml or nrms (default: nrms)
  • embedding_layer:
    • word_embedding or transformer (default: word_embedding)
  • hparams.article_attributes:
    • 利用する記事属性を[title,body,category,subcategory]から指定(default: [title,body,category,subcategory])
  • hparams.n_epochs:
    • 訓練のエポック数
  • hparams.max_title_length:
    • 最大タイトルトークン長(default: 30)
  • hparams.max_body_length:
    • 最大本文トークン長(default: 128
  • hparams.batch_size.train:
    • train datasetのbatch size(default: 利用するembedding layerに応じて変化)
  • hparams.batch_size.valid:
    • validation datasetのbatch size(default: 利用するembedding layerに応じて変化)
  • hparams.accumulate_grad_batches:
    • この数値と同じstep数が経過するたびに勾配を更新します。これにより実質的な訓練バッチサイズはhparams.batch_size.train * hparams.accumulate_grad_batchesになります。
  • dataset:
    • precomputedを指定すると、事前にシリアライズされた記事を学習に用います。毎stepごとに行われる記事データのシリアライズ処理をスキップできるので、学習が高速化されます。
  • num_workers:
    • DataLoaderのworker数(default: 4

本ライブラリではコマンドラインパーサとしてhydraを用いているため、configで定義されている値は全てコマンドラインから書き換え可能になっています。

学習結果の確認

pipenv run tensorboard

host OS上のブラウザでlocalhost:${TENSORBOARD_PORT}にアクセスするとログが確認できます。