-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdatasets.py
343 lines (282 loc) · 12.4 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import csv
import numpy as np
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
from scipy import signal
import random
import json
import xml.etree.ElementTree as ET
from audio_io import load_audio_av, open_audio_av
import torch
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
def load_image(path):
return Image.open(path).convert('RGB')
def load_spectrogram(path, dur=3.):
# Load audio
audio_ctr = open_audio_av(path)
audio_dur = audio_ctr.streams.audio[0].duration * audio_ctr.streams.audio[0].time_base
audio_ss = max(float(audio_dur)/2 - dur/2, 0)
audio, samplerate = load_audio_av(container=audio_ctr, start_time=audio_ss, duration=dur)
# To Mono
audio = np.clip(audio, -1., 1.).mean(0)
# Repeat if audio is too short
if audio.shape[0] < samplerate * dur:
n = int(samplerate * dur / audio.shape[0]) + 1
audio = np.tile(audio, n)
audio = audio[:int(samplerate * dur)]
frequencies, times, spectrogram = signal.spectrogram(audio, samplerate, nperseg=512, noverlap=274)
spectrogram = np.log(spectrogram + 1e-7)
return spectrogram
def load_all_bboxes(annotation_dir, format='flickr'):
gt_bboxes = {}
if format == 'flickr':
anno_files = os.listdir(annotation_dir)
for filename in anno_files:
file = filename.split('.')[0]
gt = ET.parse(f"{annotation_dir}/{filename}").getroot()
bboxes = []
for child in gt:
for childs in child:
bbox = []
if childs.tag == 'bbox':
for index, ch in enumerate(childs):
if index == 0:
continue
bbox.append(int(224 * int(ch.text)/256))
bboxes.append(bbox)
gt_bboxes[file] = bboxes
elif format == 'vggss':
with open('metadata/vggss.json') as json_file:
annotations = json.load(json_file)
for annotation in annotations:
bboxes = [(np.clip(np.array(bbox), 0, 1) * 224).astype(int) for bbox in annotation['bbox']]
gt_bboxes[annotation['file']] = bboxes
return gt_bboxes
def bbox2gtmap(bboxes, format='flickr'):
gt_map = np.zeros([224, 224])
for xmin, ymin, xmax, ymax in bboxes:
temp = np.zeros([224, 224])
temp[ymin:ymax, xmin:xmax] = 1
gt_map += temp
if format == 'flickr':
# Annotation consensus
gt_map = gt_map / 2
gt_map[gt_map > 1] = 1
elif format == 'vggss':
# Single annotation
gt_map[gt_map > 0] = 1
return gt_map
class AudioVisualDataset(Dataset):
def __init__(self, image_files, audio_files, image_path, audio_path, mode='train', sup_image_path=None, sup_audio_path=None, audio_dur=3., image_transform=None, audio_transform=None, all_bboxes=None, bbox_format='flickr'):
super().__init__()
self.audio_path = audio_path
self.image_path = image_path
self.mode = mode
self.sup_audio_path = sup_audio_path
self.sup_image_path = sup_image_path
self.audio_dur = audio_dur
self.audio_files = audio_files
self.image_files = image_files
self.all_bboxes = all_bboxes
self.bbox_format = bbox_format
self.image_transform = image_transform
self.audio_transform = audio_transform
def getitem(self, idx):
image_path = self.image_path
audio_path = self.audio_path
anno = {}
if self.all_bboxes is not None:
bboxes = self.all_bboxes[idx]
bb = -torch.ones((10, 4)).long()
if len(bboxes) > 0:
bb[:len(bboxes)] = torch.from_numpy(np.array(bboxes))
anno['bboxes'] = bb
anno['gt_map'] = bbox2gtmap(bboxes, self.bbox_format)
anno['gt_mask'] = 1 # 1 for samples w. gt_map
if self.mode == 'train':
image_path = self.sup_image_path
audio_path = self.sup_audio_path
else:
anno['bboxes'] = bb
anno['gt_map'] = np.zeros([224, 224])
anno['gt_mask'] = 0 # 0 for samples w/o. gt_map
file = self.image_files[idx]
file_id = file.split('.')[0]
# Image
img_fn = image_path + self.image_files[idx]
frame = self.image_transform(load_image(img_fn))
# Audio
audio_fn = audio_path + self.audio_files[idx]
spectrogram = self.audio_transform(load_spectrogram(audio_fn))
return frame, spectrogram, anno, file_id
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
try:
return self.getitem(idx)
except Exception:
return self.getitem(random.sample(range(len(self)), 1)[0])
def get_train_dataset(args):
audio_path = f"{args.train_data_path}/audio/"
image_path = f"{args.train_data_path}/frames/"
# List directory
audio_files = {fn.split('.wav')[0] for fn in os.listdir(audio_path) if fn.endswith('.wav')}
image_files = {fn.split('.jpg')[0] for fn in os.listdir(image_path) if fn.endswith('.jpg')}
avail_files = audio_files.intersection(image_files)
print(f"{len(avail_files)} available files")
# Subsample if specified
if args.trainset.lower() in {'vggss', 'flickr'}:
pass # use full dataset
else:
subset = set(open(f"metadata/{args.trainset}.txt").read().splitlines())
avail_files = avail_files.intersection(subset)
print(f"{len(avail_files)} valid subset files")
avail_files = sorted(list(avail_files))
audio_files = sorted([dt+'.wav' for dt in avail_files])
image_files = sorted([dt+'.jpg' for dt in avail_files])
all_bboxes = [[] for _ in range(len(image_files))]
# NOTE: load 4750 training files with grouth truth
if args.use_supervised_data:
sup_audio_path = f"{args.sup_train_data_path}/audio/"
sup_image_path = f"{args.sup_train_data_path}/frames/"
# Retrieve list of audio and video files
sup_train_txt = 'metadata/flickr_sup_train.txt'
supset = set(open(sup_train_txt).read().splitlines())
# Intersect with available files
sup_audio_files = {fn.split('.wav')[0] for fn in os.listdir(sup_audio_path)}
sup_image_files = {fn.split('.jpg')[0] for fn in os.listdir(sup_image_path)}
sup_avail_files = sup_audio_files.intersection(sup_image_files)
supset = supset.intersection(sup_avail_files)
supset = sorted(list(supset))
print(f"{len(supset)} supervised training subset files")
sup_image_files = [dt+'.jpg' for dt in supset]
sup_audio_files = [dt+'.wav' for dt in supset]
# Bounding boxes
sup_bbox_format = 'flickr'
sup_all_bboxes = load_all_bboxes(args.sup_train_gt_path, format=sup_bbox_format)
sup_all_bboxes = [sup_all_bboxes[fn.split('.jpg')[0]] for fn in sup_image_files]
# extend to the original set
audio_files.extend(sup_audio_files)
image_files.extend(sup_image_files)
all_bboxes.extend(sup_all_bboxes)
idx = list(range(len(image_files)))
random.shuffle(idx)
image_files = [image_files[i] for i in idx]
audio_files = [audio_files[i] for i in idx]
all_bboxes = [all_bboxes[i] for i in idx]
else:
sup_bbox_format = None
sup_audio_path = None
sup_image_path = None
# Transforms
image_transform = transforms.Compose([
transforms.Resize(int(224 * 1.1), Image.BICUBIC),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
audio_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
return AudioVisualDataset(
mode='train',
image_files=image_files,
audio_files=audio_files,
all_bboxes=all_bboxes,
bbox_format=sup_bbox_format,
sup_audio_path=sup_audio_path,
sup_image_path=sup_image_path,
image_path=image_path,
audio_path=audio_path,
audio_dur=3.,
image_transform=image_transform,
audio_transform=audio_transform
)
def get_test_dataset(args):
audio_path = args.test_data_path + 'audio/'
image_path = args.test_data_path + 'frames/'
if args.testset in ['flickr', 'flickr_plus_silent']:
testcsv = 'metadata/flickr_test.csv'
elif args.testset in ['vggss', 'vggss_plus_silent']:
testcsv = 'metadata/vggss_test.csv'
elif args.testset == 'vggss_heard':
testcsv = 'metadata/vggss_heard_test.csv'
elif args.testset == 'vggss_unheard':
testcsv = 'metadata/vggss_unheard_test.csv'
else:
raise NotImplementedError
bbox_format = {'flickr': 'flickr',
'flickr_plus_silent': 'flickr',
'vggss': 'vggss',
'vggss_plus_silent': 'vggss',
'vggss_heard': 'vggss',
'vggss_unheard': 'vggss'}[args.testset]
# Retrieve list of audio and video files
testset = set([item[0] for item in csv.reader(open(testcsv))])
# Intersect with available files
audio_files = {fn.split('.wav')[0] for fn in os.listdir(audio_path)}
image_files = {fn.split('.jpg')[0] for fn in os.listdir(image_path)}
avail_files = audio_files.intersection(image_files)
testset = testset.intersection(avail_files)
testset = sorted(list(testset))
image_files = [dt+'.jpg' for dt in testset]
audio_files = [dt+'.wav' for dt in testset]
# Bounding boxes
all_bboxes = load_all_bboxes(args.test_gt_path, format=bbox_format)
all_bboxes = [all_bboxes[fn.split('.jpg')[0]] for fn in image_files]
if 'num_test_samples' in vars(args) and args.num_test_samples is not None and args.num_test_samples > 0 and len(image_files) > args.num_test_samples:
idx = random.sample(range(len(image_files)), k=args.num_test_samples)
image_files = [image_files[i] for i in idx]
audio_files = [audio_files[i] for i in idx]
all_bboxes = {fn.split('.')[0]: all_bboxes[fn.split('.')[0]] for fn in image_files}
# load non-sounding files
if args.testset in ['flickr_plus_silent', 'vggss_plus_silent']:
name_testset = args.testset.split('_')[0]
for item in csv.reader(open(f'metadata/{name_testset}_test_plus_silent.csv')):
if item[2] == 'non-sounding':
image_files.append(f'{item[0]}.jpg')
audio_files.append(f'{item[1]}.wav')
all_bboxes.append([])
idx = list(range(len(image_files)))
random.shuffle(idx)
image_files = [image_files[i] for i in idx]
audio_files = [audio_files[i] for i in idx]
all_bboxes = [all_bboxes[i] for i in idx]
# Transforms
image_transform = transforms.Compose([
transforms.Resize((224, 224), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
audio_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
return AudioVisualDataset(
mode='test',
image_files=image_files,
audio_files=audio_files,
image_path=image_path,
audio_path=audio_path,
audio_dur=5.,
image_transform=image_transform,
audio_transform=audio_transform,
all_bboxes=all_bboxes,
bbox_format=bbox_format
)
def inverse_normalize(tensor):
inverse_mean = [-0.485/0.229, -0.456/0.224, -0.406/0.225]
inverse_std = [1.0/0.229, 1.0/0.224, 1.0/0.225]
tensor = transforms.Normalize(inverse_mean, inverse_std)(tensor)
return tensor
def convert_normalize(tensor, new_mean, new_std):
raw_mean = IMAGENET_DEFAULT_MEAN
raw_std = IMAGENET_DEFAULT_STD
# inverse_normalize with raw mean & raw std
inverse_mean = [-mean/std for mean, std in zip(raw_mean, raw_std)]
inverse_std = [1.0/std for std in raw_std]
tensor = transforms.Normalize(inverse_mean, inverse_std)(tensor)
# normalize with new mean & new std
tensor = transforms.Normalize(new_mean, new_std)(tensor)
return tensor