-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathstreamlit_app.py
113 lines (84 loc) · 3.17 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Libraries to be used ------------------------------------------------------------
import streamlit as st
import requests
import json
import os
# from css_tricks import _max_width_
# title and favicon ------------------------------------------------------------
st.set_page_config(page_title="Speech to Text Transcription App", page_icon="👄")
# _max_width_()
# logo and header -------------------------------------------------
st.text("")
st.image(
"https://emojipedia-us.s3.amazonaws.com/source/skype/289/parrot_1f99c.png",
width=125,
)
st.title("Speech to text transcription app")
st.write(
"""
- Upload a wav file, transcribe it, then export it to a text file!
- Use cases: call centres, team meetings, training videos, school calls etc.
"""
)
st.text("")
c1, c2, c3 = st.columns([1, 4, 1])
with c2:
with st.form(key="my_form"):
f = st.file_uploader("", type=[".wav"])
st.info(
f"""
👆 Upload a .wav file. Try a sample: [Sample 01](https://github.com/CharlyWargnier/CSVHub/blob/main/Wave_files_demos/Welcome.wav?raw=true) | [Sample 02](https://github.com/CharlyWargnier/CSVHub/blob/main/Wave_files_demos/The_National_Park.wav?raw=true)
"""
)
submit_button = st.form_submit_button(label="Transcribe")
if f is not None:
st.audio(f, format="wav")
path_in = f.name
# Get file size from buffer
# Source: https://stackoverflow.com/a/19079887
old_file_position = f.tell()
f.seek(0, os.SEEK_END)
getsize = f.tell() # os.path.getsize(path_in)
f.seek(old_file_position, os.SEEK_SET)
getsize = round((getsize / 1000000), 1)
if getsize < 5: # File more than 5 MB
# To read file as bytes:
bytes_data = f.getvalue()
# Load your API key from an environment variable or secret management service
api_token = st.secrets["api_token"]
# endregion API key
headers = {"Authorization": f"Bearer {api_token}"}
API_URL = (
"https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h"
)
def query(data):
response = requests.request("POST", API_URL, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
# st.audio(f, format="wav")
data = query(bytes_data)
values_view = data.values()
value_iterator = iter(values_view)
text_value = next(value_iterator)
text_value = text_value.lower()
st.info(text_value)
c0, c1 = st.columns([2, 2])
with c0:
st.download_button(
"Download the transcription",
text_value,
file_name=None,
mime=None,
key=None,
help=None,
on_click=None,
args=None,
kwargs=None,
)
else:
st.warning(
"🚨 We've limited this demo to 5MB files. Please upload a smaller file."
)
st.stop()
else:
path_in = None
st.stop()