@@ -189,6 +189,10 @@ def __init__(
189189 The p-norm to apply for computing the Minkowski distance. Minkowski distance
190190 is typically used with `p` being 1 or 2, which correspond to the Manhattan
191191 distance and the Euclidean distance, respectively.
192+
193+ Returns
194+ -------
195+ None
192196 """
193197 self ._T = T .copy ()
194198 self ._T_min = np .min (self ._T [np .isfinite (self ._T )])
@@ -228,6 +232,10 @@ def update(self):
228232 ----------
229233 None
230234
235+ Returns
236+ -------
237+ None
238+
231239 Notes
232240 -----
233241 `DOI: 10.1109/ICBK.2019.00031 \
@@ -290,7 +298,9 @@ def pan(self, threshold=0.2, normalize=True, contrast=True, binary=True, clip=Tr
290298
291299 Returns
292300 -------
293- None
301+ PAN : numpy.ndarray
302+ The transformed (i.e., normalized, contrasted, binarized, and repeated)
303+ pan matrix profile
294304 """
295305 PAN = self ._PAN .copy ()
296306 # Retrieve the row indices where the matrix profile was actually computed
@@ -334,6 +344,12 @@ def PAN_(self):
334344 Parameters
335345 ----------
336346 None
347+
348+ Returns
349+ -------
350+ out : numpy.ndarray
351+ The transformed (i.e., normalized, contrasted, binarized, and repeated) pan
352+ matrix profile
337353 """
338354 return self .pan ().astype (np .float64 )
339355
@@ -345,6 +361,12 @@ def M_(self):
345361 Parameters
346362 ----------
347363 None
364+
365+ Returns
366+ -------
367+ out : numpy.ndarray
368+ The full list of (breadth first search (level) ordered) subsequence window
369+ sizes
348370 """
349371 return self ._M .astype (np .int64 )
350372
@@ -360,7 +382,9 @@ def P_(self):
360382
361383 Returns
362384 -------
363- None
385+ P : list of numpy.ndarray
386+ A list of all of the raw (i.e., non-transformed) matrix profiles matrix
387+ profile in (breadth first searched (level) ordered)
364388 """
365389 P = []
366390 for i , idx in enumerate (self ._bfs_indices ):
@@ -491,6 +515,10 @@ def __init__(
491515 The p-norm to apply for computing the Minkowski distance. Minkowski distance
492516 is typically used with `p` being 1 or 2, which correspond to the Manhattan
493517 distance and the Euclidean distance, respectively.
518+
519+ Returns
520+ -------
521+ None
494522 """
495523 super ().__init__ (
496524 T ,
@@ -597,6 +625,10 @@ def __init__(
597625 The p-norm to apply for computing the Minkowski distance. Minkowski distance
598626 is typically used with `p` being 1 or 2, which correspond to the Manhattan
599627 distance and the Euclidean distance, respectively.
628+
629+ Returns
630+ -------
631+ None
600632 """
601633 super ().__init__ (
602634 T ,
0 commit comments