forked from pcarruscag/FADO
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvariable.py
173 lines (149 loc) · 5.43 KB
/
variable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2019-2020, FADO Contributors (cf. AUTHORS.md)
#
# This file is part of FADO.
#
# FADO is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FADO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FADO. If not, see <https://www.gnu.org/licenses/>.
import copy
import numpy as np
class InputVariable:
"""
Class to define design variables.
Parameters
----------
x0 is the initial value.
parser specifies how the variable is written to file.
size >= 1 defines a vector variable whose x0, lb, and ub values are broadcast.
size == 0 means auto, i.e. size determined from x0, scale/lb/ub must be either compatible or scalar.
scale, an optimizer will see x/lb/ub * scale
lb/ub, the lower and upper bounds for the variable.
See also
--------
Parameter, a variable-like object that is not exposed to optimizers.
"""
def __init__(self, x0, parser, size=0, scale=1.0, lb=-1E20, ub=1E20):
self._parser = parser
if size == 0 and isinstance(x0,float): size=1
if size >= 1:
try:
assert(isinstance(x0,float))
assert(isinstance(lb,float))
assert(isinstance(ub,float))
assert(isinstance(scale,float))
except:
raise ValueError("If size is specified, x0, scale, lb, and ub must be scalars.")
#end
self._x0 = np.ones((size,))*x0
self._lb = np.ones((size,))*lb
self._ub = np.ones((size,))*ub
self._scale = np.ones((size,))*scale
else:
try:
size = x0.size
assert(size>=1)
self._x0 = x0
if not isinstance(lb,float):
assert(lb.size == size)
self._lb = lb
else:
self._lb = np.ones((size,))*lb
#end
if not isinstance(ub,float):
assert(ub.size == size)
self._ub = ub
else:
self._ub = np.ones((size,))*ub
#end
if not isinstance(scale,float):
assert(scale.size == size)
self._scale = scale
else:
self._scale = np.ones((size,))*scale
#end
except:
raise ValueError("Incompatible sizes of x0, scale, lb, and ub.")
#end
#end
self._size = size
self._x = copy.deepcopy(self._x0)
#end
def getSize(self):
return self._size
def getInitial(self):
return self._x0
def getCurrent(self):
return self._x
def getLowerBound(self):
return self._lb
def getUpperBound(self):
return self._ub
def getScale(self):
return self._scale
def get(self,name):
if name == "Initial":
return self.getInitial()
elif name == "Current":
return self.getCurrent()
elif name == "LowerBound":
return self.getLowerBound()
elif name == "UpperBound":
return self.getUpperBound()
elif name == "Scale":
return self.getScale()
else:
raise KeyError("Variable does not have field: `"+name+"`")
#end
#end
def setCurrent(self,x):
self._x[()] = x
def writeToFile(self,file):
self._parser.write(file,self._x)
#end
class Parameter:
"""
Class for optimization parameters, usually some value that is not an optimization
variable but needs to be ramped over its course, e.g. a penalty factor.
Parameters
----------
values : An indexable structure (e.g. range, list).
parser : How the values are written to file.
start : Initial index into values.
function : Can be used to further convert the current value.
"""
def __init__(self,values,parser,start=0,function=None):
self._values = values
self._parser = parser
self._function = function
# make sure starting possition is valid
self._upper = len(values)-1
self._index = max(0,min(self._upper,start))
def increment(self):
"""Move to the next value, return True if the last value was reached."""
self._index = max(0,min(self._upper,self._index+1))
return self.isAtTop()
def decrement(self):
"""Move to the previous value, return True if the first value was reached."""
self._index = max(0,min(self._upper,self._index-1))
return self.isAtBottom()
def writeToFile(self,file):
value = self._values[self._index]
if self._function != None:
value = self._function(value)
self._parser.write(file,value)
def isAtTop(self):
"""Return True if the current value is the last."""
return (self._index == self._upper)
def isAtBottom(self):
"""Return True if the current value is the first."""
return (self._index == 0)
#end