-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathtrueskilltest.py
643 lines (538 loc) · 22.5 KB
/
trueskilltest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# -*- coding: utf-8 -*-
from __future__ import with_statement
import warnings
from almost import Approximate
from pytest import deprecated_call, raises
from conftest import various_backends
import trueskill as t
from trueskill import (
quality, quality_1vs1, rate, rate_1vs1, Rating, setup, TrueSkill)
warnings.simplefilter('always')
inf = float('inf')
nan = float('nan')
class almost(Approximate):
def normalize(self, value):
if isinstance(value, Rating):
return self.normalize(tuple(value))
elif isinstance(value, list):
try:
if isinstance(value[0][0], Rating):
# flatten transformed ratings
return list(sum(value, ()))
except (TypeError, IndexError):
pass
return super(almost, self).normalize(value)
@classmethod
def wrap(cls, f, *args, **kwargs):
return lambda *a, **k: cls(f(*a, **k), *args, **kwargs)
_rate = almost.wrap(rate)
_rate_1vs1 = almost.wrap(rate_1vs1)
_quality = almost.wrap(quality)
_quality_1vs1 = almost.wrap(quality_1vs1)
# usage
def test_compatibility_with_another_rating_systems():
"""All rating system modules should implement ``rate_1vs1`` and
``quality_1vs1`` to provide shortcuts for 1 vs 1 simple competition games.
"""
r1, r2 = Rating(30, 3), Rating(20, 2)
assert quality_1vs1(r1, r2) == quality([(r1,), (r2,)])
rated = rate([(r1,), (r2,)])
assert rate_1vs1(r1, r2) == (rated[0][0], rated[1][0])
rated = rate([(r1,), (r2,)], [0, 0])
assert rate_1vs1(r1, r2, drawn=True) == (rated[0][0], rated[1][0])
def test_compare_ratings():
assert Rating(1, 2) == Rating(1, 2)
assert Rating(1, 2) != Rating(1, 3)
assert Rating(2, 2) > Rating(1, 2)
assert Rating(3, 2) >= Rating(1, 2)
assert Rating(0, 2) < Rating(1, 2)
assert Rating(-1, 2) <= Rating(1, 2)
def test_rating_to_number():
assert int(Rating(1, 2)) == 1
assert float(Rating(1.1, 2)) == 1.1
assert complex(Rating(1.2, 2)) == 1.2 + 0j
try:
assert long(Rating(1, 2)) == long(1)
except NameError:
# Python 3 doesn't have `long` anymore
pass
def test_unsorted_groups():
t1, t2, t3 = generate_teams([1, 1, 1])
rated = rate([t1, t2, t3], [2, 1, 0])
assert almost(rated) == \
[(18.325, 6.656), (25.000, 6.208), (31.675, 6.656)]
def test_custom_environment():
env = TrueSkill(draw_probability=.50)
t1, t2 = generate_teams([1, 1], env=env)
rated = env.rate([t1, t2])
assert almost(rated) == [(30.267, 7.077), (19.733, 7.077)]
def test_setup_global_environment():
try:
setup(draw_probability=.50)
t1, t2 = generate_teams([1, 1])
rated = rate([t1, t2])
assert almost(rated) == [(30.267, 7.077), (19.733, 7.077)]
finally:
# rollback
setup()
def test_invalid_rating_groups():
env = TrueSkill()
with raises(ValueError):
env.validate_rating_groups([])
with raises(ValueError):
env.validate_rating_groups([()])
# need multiple groups not just one
with raises(ValueError):
env.validate_rating_groups([(Rating(),)])
# empty group is not allowed
with raises(ValueError):
env.validate_rating_groups([(Rating(),), ()])
# all groups should be same structure
with raises(TypeError):
env.validate_rating_groups([(Rating(),), {0: Rating()}])
def test_deprecated_methods():
env = TrueSkill()
r1, r2, r3 = Rating(), Rating(), Rating()
deprecated_call(t.transform_ratings, [(r1,), (r2,), (r3,)])
deprecated_call(t.match_quality, [(r1,), (r2,), (r3,)])
deprecated_call(env.Rating)
deprecated_call(env.transform_ratings, [(r1,), (r2,), (r3,)])
deprecated_call(env.match_quality, [(r1,), (r2,), (r3,)])
deprecated_call(env.rate_1vs1, r1, r2)
deprecated_call(env.quality_1vs1, r1, r2)
deprecated_call(lambda: Rating().exposure)
dyn = TrueSkill(draw_probability=t.dynamic_draw_probability)
deprecated_call(dyn.rate, [(r1,), (r2,)])
def test_deprecated_individual_rating_groups():
r1, r2, r3 = Rating(50, 1), Rating(10, 5), Rating(15, 5)
with raises(TypeError):
deprecated_call(rate, [r1, r2, r3])
with raises(TypeError):
deprecated_call(quality, [r1, r2, r3])
assert t.transform_ratings([r1, r2, r3]) == rate([(r1,), (r2,), (r3,)])
assert t.match_quality([r1, r2, r3]) == quality([(r1,), (r2,), (r3,)])
deprecated_call(t.transform_ratings, [r1, r2, r3])
deprecated_call(t.match_quality, [r1, r2, r3])
def test_rating_tuples():
r1, r2, r3 = Rating(), Rating(), Rating()
rated = rate([(r1, r2), (r3,)])
assert len(rated) == 2
assert isinstance(rated[0], tuple)
assert isinstance(rated[1], tuple)
assert len(rated[0]) == 2
assert len(rated[1]) == 1
assert isinstance(rated[0][0], Rating)
def test_rating_dicts():
class Player(object):
def __init__(self, name, rating, team):
self.name = name
self.rating = rating
self.team = team
p1 = Player('Player A', Rating(), 0)
p2 = Player('Player B', Rating(), 0)
p3 = Player('Player C', Rating(), 1)
rated = rate([{p1: p1.rating, p2: p2.rating}, {p3: p3.rating}])
assert len(rated) == 2
assert isinstance(rated[0], dict)
assert isinstance(rated[1], dict)
assert len(rated[0]) == 2
assert len(rated[1]) == 1
assert p1 in rated[0]
assert p2 in rated[0]
assert p3 in rated[1]
assert p1 not in rated[1]
assert p2 not in rated[1]
assert p3 not in rated[0]
assert isinstance(rated[0][p1], Rating)
p1.rating = rated[p1.team][p1]
p2.rating = rated[p2.team][p2]
p3.rating = rated[p3.team][p3]
def test_dont_use_0_for_min_delta():
with raises(ValueError):
rate([(Rating(),), (Rating(),)], min_delta=0)
def test_list_instead_of_tuple():
r1, r2 = Rating(), Rating()
assert rate([[r1], [r2]]) == rate([(r1,), (r2,)])
assert quality([[r1], [r2]]) == quality([(r1,), (r2,)])
def test_backend():
env = TrueSkill(backend=(NotImplemented, NotImplemented, NotImplemented))
with raises(TypeError):
env.rate_1vs1(Rating(), Rating())
with raises(ValueError):
# '__not_defined__' backend is not defined
TrueSkill(backend='__not_defined__')
# algorithm
def generate_teams(sizes, env=None):
rating_cls = Rating if env is None else env.create_rating
rating_groups = []
for size in sizes:
ratings = []
for x in range(size):
ratings.append(rating_cls())
rating_groups.append(tuple(ratings))
return rating_groups
def generate_individual(size, env=None):
return generate_teams([1] * size, env=env)
@various_backends
def test_n_vs_n():
# 1 vs 1
t1, t2 = generate_teams([1, 1])
assert _quality([t1, t2]) == 0.447
assert _rate([t1, t2]) == [(29.396, 7.171), (20.604, 7.171)]
assert _rate([t1, t2], [0, 0]) == [(25.000, 6.458), (25.000, 6.458)]
# 2 vs 2
t1, t2 = generate_teams([2, 2])
assert _quality([t1, t2]) == 0.447
assert _rate([t1, t2]) == \
[(28.108, 7.774), (28.108, 7.774), (21.892, 7.774), (21.892, 7.774)]
assert _rate([t1, t2], [0, 0]) == \
[(25.000, 7.455), (25.000, 7.455), (25.000, 7.455), (25.000, 7.455)]
# 4 vs 4
t1, t2 = generate_teams([4, 4])
assert _quality([t1, t2]) == 0.447
assert _rate([t1, t2]) == \
[(27.198, 8.059), (27.198, 8.059), (27.198, 8.059), (27.198, 8.059),
(22.802, 8.059), (22.802, 8.059), (22.802, 8.059), (22.802, 8.059)]
@various_backends
def test_1_vs_n():
t1, = generate_teams([1])
# 1 vs 2
t2, = generate_teams([2])
assert _quality([t1, t2]) == 0.135
assert _rate([t1, t2]) == \
[(33.730, 7.317), (16.270, 7.317), (16.270, 7.317)]
assert _rate([t1, t2], [0, 0]) == \
[(31.660, 7.138), (18.340, 7.138), (18.340, 7.138)]
# 1 vs 3
t2, = generate_teams([3])
assert _quality([t1, t2]) == 0.012
assert _rate([t1, t2]) == \
[(36.337, 7.527), (13.663, 7.527), (13.663, 7.527), (13.663, 7.527)]
assert almost(rate([t1, t2], [0, 0]), 2) == \
[(34.990, 7.455), (15.010, 7.455), (15.010, 7.455), (15.010, 7.455)]
# 1 vs 7
t2, = generate_teams([7])
assert _quality([t1, t2]) == 0
assert _rate([t1, t2]) == \
[(40.582, 7.917), (9.418, 7.917), (9.418, 7.917), (9.418, 7.917),
(9.418, 7.917), (9.418, 7.917), (9.418, 7.917), (9.418, 7.917)]
@various_backends
def test_individual():
# 3 players
players = generate_individual(3)
assert _quality(players) == 0.200
assert _rate(players) == \
[(31.675, 6.656), (25.000, 6.208), (18.325, 6.656)]
assert _rate(players, [0] * 3) == \
[(25.000, 5.698), (25.000, 5.695), (25.000, 5.698)]
# 4 players
players = generate_individual(4)
assert _quality(players) == 0.089
assert _rate(players) == \
[(33.207, 6.348), (27.401, 5.787), (22.599, 5.787), (16.793, 6.348)]
# 5 players
players = generate_individual(5)
assert _quality(players) == 0.040
assert _rate(players) == \
[(34.363, 6.136), (29.058, 5.536), (25.000, 5.420), (20.942, 5.536),
(15.637, 6.136)]
# 8 players
players = generate_individual(8)
assert _quality(players) == 0.004
assert _rate(players, [0] * 8) == \
[(25.000, 4.592), (25.000, 4.583), (25.000, 4.576), (25.000, 4.573),
(25.000, 4.573), (25.000, 4.576), (25.000, 4.583), (25.000, 4.592)]
# 16 players
players = generate_individual(16)
assert _rate(players) == \
[(40.539, 5.276), (36.810, 4.711), (34.347, 4.524), (32.336, 4.433),
(30.550, 4.380), (28.893, 4.349), (27.310, 4.330), (25.766, 4.322),
(24.234, 4.322), (22.690, 4.330), (21.107, 4.349), (19.450, 4.380),
(17.664, 4.433), (15.653, 4.524), (13.190, 4.711), (9.461, 5.276)]
@various_backends
def test_multiple_teams():
# 2 vs 4 vs 2
t1 = (Rating(40, 4), Rating(45, 3))
t2 = (Rating(20, 7), Rating(19, 6), Rating(30, 9), Rating(10, 4))
t3 = (Rating(50, 5), Rating(30, 2))
assert _quality([t1, t2, t3]) == 0.367
assert _rate([t1, t2, t3], [0, 1, 1]) == \
[(40.877, 3.840), (45.493, 2.934), (19.609, 6.396), (18.712, 5.625),
(29.353, 7.673), (9.872, 3.891), (48.830, 4.590), (29.813, 1.976)]
# 1 vs 2 vs 1
t1 = (Rating(),)
t2 = (Rating(), Rating())
t3 = (Rating(),)
assert _quality([t1, t2, t3]) == 0.047
@various_backends
def test_upset():
# 1 vs 1
t1, t2 = (Rating(),), (Rating(50, 12.5),)
assert _quality([t1, t2]) == 0.110
assert _rate([t1, t2], [0, 0]) == [(31.662, 7.137), (35.010, 7.910)]
# 2 vs 2
t1 = (Rating(20, 8), Rating(25, 6))
t2 = (Rating(35, 7), Rating(40, 5))
assert _quality([t1, t2]) == 0.084
assert _rate([t1, t2]) == \
[(29.698, 7.008), (30.455, 5.594), (27.575, 6.346), (36.211, 4.768)]
# 3 vs 2
t1 = (Rating(28, 7), Rating(27, 6), Rating(26, 5))
t2 = (Rating(30, 4), Rating(31, 3))
assert _quality([t1, t2]) == 0.254
assert _rate([t1, t2], [0, 1]) == \
[(28.658, 6.770), (27.484, 5.856), (26.336, 4.917), (29.785, 3.958),
(30.879, 2.983)]
assert _rate([t1, t2], [1, 0]) == \
[(21.840, 6.314), (22.474, 5.575), (22.857, 4.757), (32.012, 3.877),
(32.132, 2.949)]
# 8 players
players = [(Rating(10, 8),), (Rating(15, 7),), (Rating(20, 6),),
(Rating(25, 5),), (Rating(30, 4),), (Rating(35, 3),),
(Rating(40, 2),), (Rating(45, 1),)]
assert _quality(players) == 0.000
assert _rate(players) == \
[(35.135, 4.506), (32.585, 4.037), (31.329, 3.756), (30.984, 3.453),
(31.751, 3.064), (34.051, 2.541), (38.263, 1.849), (44.118, 0.983)]
@various_backends
def test_partial_play():
t1, t2 = (Rating(),), (Rating(), Rating())
# each results from C# Skills:
assert rate([t1, t2], weights=[(1,), (1, 1)]) == rate([t1, t2])
assert _rate([t1, t2], weights=[(1,), (1, 1)]) == \
[(33.730, 7.317), (16.270, 7.317), (16.270, 7.317)]
assert _rate([t1, t2], weights=[(0.5,), (0.5, 0.5)]) == \
[(33.939, 7.312), (16.061, 7.312), (16.061, 7.312)]
assert _rate([t1, t2], weights=[(1,), (0, 1)]) == \
[(29.440, 7.166), (25.000, 8.333), (20.560, 7.166)]
assert _rate([t1, t2], weights=[(1,), (0.5, 1)]) == \
[(32.417, 7.056), (21.291, 8.033), (17.583, 7.056)]
# match quality of partial play
t1, t2, t3 = (Rating(),), (Rating(), Rating()), (Rating(),)
assert _quality([t1, t2, t3], [(1,), (0.25, 0.75), (1,)]) == 0.2
assert _quality([t1, t2, t3], [(1,), (0.8, 0.9), (1,)]) == 0.0809
@various_backends
def test_partial_play_with_weights_dict():
t1, t2 = (Rating(),), (Rating(), Rating())
assert rate([t1, t2], weights={(0, 0): 0.5, (1, 0): 0.5, (1, 1): 0.5}) == \
rate([t1, t2], weights=[[0.5], [0.5, 0.5]])
assert rate([t1, t2], weights={(1, 0): 0}) == \
rate([t1, t2], weights=[[1], [0, 1]])
assert rate([t1, t2], weights={(1, 0): 0.5}) == \
rate([t1, t2], weights=[[1], [0.5, 1]])
@various_backends
def test_microsoft_research_example():
# http://research.microsoft.com/en-us/projects/trueskill/details.aspx
alice, bob, chris, darren, eve, fabien, george, hillary = \
Rating(), Rating(), Rating(), Rating(), \
Rating(), Rating(), Rating(), Rating()
_rated = rate([{'alice': alice}, {'bob': bob}, {'chris': chris},
{'darren': darren}, {'eve': eve}, {'fabien': fabien},
{'george': george}, {'hillary': hillary}])
rated = {}
list(map(rated.update, _rated))
assert almost(rated['alice']) == (36.771, 5.749)
assert almost(rated['bob']) == (32.242, 5.133)
assert almost(rated['chris']) == (29.074, 4.943)
assert almost(rated['darren']) == (26.322, 4.874)
assert almost(rated['eve']) == (23.678, 4.874)
assert almost(rated['fabien']) == (20.926, 4.943)
assert almost(rated['george']) == (17.758, 5.133)
assert almost(rated['hillary']) == (13.229, 5.749)
@various_backends
def test_dynamic_draw_probability():
from trueskillhelpers import calc_dynamic_draw_probability as calc
def assert_predictable_draw_probability(r1, r2, drawn=False):
dyn = TrueSkill(draw_probability=t.dynamic_draw_probability)
sta = TrueSkill(draw_probability=calc((r1,), (r2,), dyn))
assert dyn.rate_1vs1(r1, r2, drawn) == sta.rate_1vs1(r1, r2, drawn)
assert_predictable_draw_probability(Rating(100), Rating(10))
assert_predictable_draw_probability(Rating(10), Rating(100))
assert_predictable_draw_probability(Rating(10), Rating(100), drawn=True)
assert_predictable_draw_probability(Rating(25), Rating(25))
assert_predictable_draw_probability(Rating(25), Rating(25), drawn=True)
assert_predictable_draw_probability(Rating(-25), Rating(125))
assert_predictable_draw_probability(Rating(125), Rating(-25))
assert_predictable_draw_probability(Rating(-25), Rating(125), drawn=True)
assert_predictable_draw_probability(Rating(25, 10), Rating(25, 0.1))
# functions
@various_backends
def test_exposure():
env = TrueSkill()
assert env.expose(env.create_rating()) == 0
env = TrueSkill(1000, 200)
assert env.expose(env.create_rating()) == 0
# mathematics
def test_valid_gaussian():
from trueskill.mathematics import Gaussian
with raises(TypeError): # sigma argument is needed
Gaussian(0)
with raises(ValueError): # sigma**2 should be greater than 0
Gaussian(0, 0)
def test_valid_matrix():
from trueskill.mathematics import Matrix
with raises(TypeError): # src must be a list or dict or callable
Matrix(None)
with raises(ValueError): # src must be a rectangular array of numbers
Matrix([])
with raises(ValueError): # src must be a rectangular array of numbers
Matrix([[1, 2, 3], [4, 5]])
with raises(TypeError):
# A callable src must return an interable which generates a tuple
# containing coordinate and value
Matrix(lambda: None)
def test_matrix_from_dict():
from trueskill.mathematics import Matrix
mat = Matrix({(0, 0): 1, (4, 9): 1})
assert mat.height == 5
assert mat.width == 10
assert mat[0][0] == 1
assert mat[0][1] == 0
assert mat[4][9] == 1
assert mat[4][8] == 0
def test_matrix_from_item_generator():
from trueskill.mathematics import Matrix
def gen_matrix(height, width):
yield (0, 0), 1
yield (height - 1, width - 1), 1
mat = Matrix(gen_matrix, 5, 10)
assert mat.height == 5
assert mat.width == 10
assert mat[0][0] == 1
assert mat[0][1] == 0
assert mat[4][9] == 1
assert mat[4][8] == 0
with raises(TypeError):
# A callable src must call set_height and set_width if the size is
# non-deterministic
Matrix(gen_matrix)
def gen_and_set_size_matrix(set_height, set_width):
set_height(5)
set_width(10)
return [((0, 0), 1), ((4, 9), 1)]
mat = Matrix(gen_and_set_size_matrix)
assert mat.height == 5
assert mat.width == 10
assert mat[0][0] == 1
assert mat[0][1] == 0
assert mat[4][9] == 1
assert mat[4][8] == 0
def test_matrix_operations():
from trueskill.mathematics import Matrix
assert Matrix([[1, 2], [3, 4]]).inverse() == \
Matrix([[-2.0, 1.0], [1.5, -0.5]])
assert Matrix([[1, 2], [3, 4]]).determinant() == -2
assert Matrix([[1, 2], [3, 4]]).adjugate() == Matrix([[4, -2], [-3, 1]])
with raises(ValueError): # Bad size
assert Matrix([[1, 2], [3, 4]]) * Matrix([[5, 6]])
assert Matrix([[1, 2], [3, 4]]) * Matrix([[5, 6, 7], [8, 9, 10]]) == \
Matrix([[21, 24, 27], [47, 54, 61]])
with raises(ValueError): # Must be same size
Matrix([[1, 2], [3, 4]]) + Matrix([[5, 6, 7], [8, 9, 10]])
assert Matrix([[1, 2], [3, 4]]) + Matrix([[5, 6], [7, 8]]) == \
Matrix([[6, 8], [10, 12]])
# reported bugs
@various_backends
def test_issue3():
"""The `issue #3`_, opened by @youknowone.
These inputs led to ZeroDivisionError before 0.1.4. Also another TrueSkill
implementations cannot calculate this case.
.. _issue #3: https://github.com/sublee/trueskill/issues/3
"""
# @konikos's case 1
t1 = (Rating(42.234, 3.728), Rating(43.290, 3.842))
t2 = (Rating(16.667, 0.500), Rating(16.667, 0.500), Rating(16.667, 0.500),
Rating(16.667, 0.500), Rating(16.667, 0.500), Rating(16.667, 0.500),
Rating(16.667, 0.500), Rating(16.667, 0.500), Rating(16.667, 0.500),
Rating(16.667, 0.500), Rating(16.667, 0.500), Rating(16.667, 0.500),
Rating(16.667, 0.500), Rating(16.667, 0.500), Rating(16.667, 0.500))
rate([t1, t2], [6, 5])
# @konikos's case 2
t1 = (Rating(25.000, 0.500), Rating(25.000, 0.500), Rating(25.000, 0.500),
Rating(25.000, 0.500), Rating(33.333, 0.500), Rating(33.333, 0.500),
Rating(33.333, 0.500), Rating(33.333, 0.500), Rating(41.667, 0.500),
Rating(41.667, 0.500), Rating(41.667, 0.500), Rating(41.667, 0.500))
t2 = (Rating(42.234, 3.728), Rating(43.291, 3.842))
rate([t1, t2], [0, 28])
@various_backends(['scipy'])
def test_issue4():
"""The `issue #4`_, opened by @sublee.
numpy.float64 handles floating-point error by different way. For example,
it can just warn RuntimeWarning on n/0 problem instead of throwing
ZeroDivisionError.
.. _issue #4: https://github.com/sublee/trueskill/issues/4
"""
import numpy
r1, r2 = Rating(105.247, 0.439), Rating(27.030, 0.901)
# make numpy to raise FloatingPointError instead of warning
# RuntimeWarning
old_settings = numpy.seterr(divide='raise')
try:
rate([(r1,), (r2,)])
finally:
numpy.seterr(**old_settings)
@various_backends([None, 'scipy'])
def test_issue5(backend):
"""The `issue #5`_, opened by @warner121.
This error occurs when a winner has too low rating than a loser. Basically
Python cannot calculate correct result but mpmath_ can. I added ``backend``
option to :class:`TrueSkill` class. If it is set to 'mpmath' then the
problem will have gone.
The result of TrueSkill calculator by Microsoft is N(-273.092, 2.683) and
N(-75.830, 2.080), of C# Skills by Moserware is N(NaN, 2.6826) and
N(NaN, 2.0798). I choose Microsoft's result as an expectation for the test
suite.
.. _issue #5: https://github.com/sublee/trueskill/issues/5
.. _mpmath: http://mpmath.googlecode.com/
"""
assert _quality_1vs1(Rating(-323.263, 2.965), Rating(-48.441, 2.190)) == 0
with raises(FloatingPointError):
rate_1vs1(Rating(-323.263, 2.965), Rating(-48.441, 2.190))
assert _quality_1vs1(Rating(), Rating(1000)) == 0
with raises(FloatingPointError):
rate_1vs1(Rating(), Rating(1000))
@various_backends(['mpmath'])
def test_issue5_with_mpmath():
_rate_1vs1 = almost.wrap(rate_1vs1, 0)
assert _quality_1vs1(Rating(-323.263, 2.965), Rating(-48.441, 2.190)) == 0
assert _rate_1vs1(Rating(-323.263, 2.965), Rating(-48.441, 2.190)) == \
[(-273.361, 2.683), (-75.683, 2.080)]
assert _quality_1vs1(Rating(), Rating(1000)) == 0
assert _rate_1vs1(Rating(), Rating(1000)) == \
[(415.298, 6.455), (609.702, 6.455)]
@various_backends(['mpmath'])
def test_issue5_with_more_extreme():
"""If the input is more extreme, 'mpmath' backend also made an exception.
But we can avoid the problem with higher precision.
"""
import mpmath
try:
dps = mpmath.mp.dps
with raises(FloatingPointError):
rate_1vs1(Rating(), Rating(1000000))
mpmath.mp.dps = 50
assert almost(rate_1vs1(Rating(), Rating(1000000)), prec=-1) == \
[(400016.896, 6.455), (600008.104, 6.455)]
with raises(FloatingPointError):
rate_1vs1(Rating(), Rating(1000000000000))
mpmath.mp.dps = 100
assert almost(rate_1vs1(Rating(), Rating(1000000000000)), prec=-7) == \
[(400001600117.693, 6.455), (599998399907.307, 6.455)]
finally:
mpmath.mp.dps = dps
def test_issue9_weights_dict_with_object_keys():
"""The `issue #9`_, opened by @.
.. _issue #9: https://github.com/sublee/trueskill/issues/9
"""
class Player(object):
def __init__(self, rating, team):
self.rating = rating
self.team = team
p1 = Player(Rating(), 0)
p2 = Player(Rating(), 0)
p3 = Player(Rating(), 1)
teams = [{p1: p1.rating, p2: p2.rating}, {p3: p3.rating}]
rated = rate(teams, weights={(0, p1): 1, (0, p2): 0.5, (1, p3): 1})
assert rated[0][p1].mu > rated[0][p2].mu
assert rated[0][p1].sigma < rated[0][p2].sigma
assert rated[0][p1].sigma == rated[1][p3].sigma