-
Notifications
You must be signed in to change notification settings - Fork 0
/
Forecast by WEKA Time Series Function.R
169 lines (157 loc) · 5.14 KB
/
Forecast by WEKA Time Series Function.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
forecast_by_weka_timeseries_func<-function(dataset,summary=FALSE,eval_summary=FALSE)
{
num_time_units<-readline("Enter number of time units to forecast : ")
done<-FALSE
while(!done)
{
to_store<-readline("Whether to store forecast result into file(TRUE|FALSE) : ")
to_store<-as.logical(toupper(to_store))
if(to_store==TRUE||to_store==FALSE)
{
done<-TRUE
}
else
{
cat("Invalid input\n")
}
}
JAN<-double(0)
FEB<-double(0)
MAR<-double(0)
APR<-double(0)
MAY<-double(0)
JUN<-double(0)
JUL<-double(0)
AUG<-double(0)
SEP<-double(0)
OCT<-double(0)
NOV<-double(0)
DEC<-double(0)
file.create("All India Rainfall Record_copy.csv")
file.copy(from = "All India Rainfall Record.csv",to = "All India Rainfall Record_copy.csv",overwrite = TRUE)
dataset_copy<-read.csv("All India Rainfall Record_copy.csv")
for(k in seq_len(num_time_units))
{
YEAR<-nrow(dataset_copy)+dataset_copy[1,1]
JAN<-0
FEB<-0
MAR<-0
APR<-0
MAY<-0
JUN<-0
JUL<-0
AUG<-0
SEP<-0
OCT<-0
NOV<-0
DEC<-0
for(i in 1:12)
{
dataset_new<-dataset_subset_creator(i,dataset_copy)
if(i==1)
{
dataset_reg<-LinearRegression(JAN ~ .,data=dataset_new)
step(lm(JAN ~ ., data = dataset_new), trace = 0)
}
else if(i==2)
{
dataset_reg<-LinearRegression(FEB ~ .,data=dataset_new)
step(lm(FEB ~ ., data = dataset_new), trace = 0)
}
else if(i==3)
{
dataset_reg<-LinearRegression(MAR ~ .,data=dataset_new)
step(lm(MAR ~ ., data = dataset_new), trace = 0)
}
else if(i==4)
{
dataset_reg<-LinearRegression(APR ~ .,data=dataset_new)
step(lm(APR ~ ., data = dataset_new), trace = 0)
}
else if(i==5)
{
dataset_reg<-LinearRegression(MAY ~ .,data=dataset_new)
step(lm(MAY ~ ., data = dataset_new), trace = 0)
}
else if(i==6)
{
dataset_reg<-LinearRegression(JUN ~ .,data=dataset_new)
step(lm(JUN ~ ., data = dataset_new), trace = 0)
}
else if(i==7)
{
dataset_reg<-LinearRegression(JUL ~ .,data=dataset_new)
step(lm(JUL ~ ., data = dataset_new), trace = 0)
}
else if(i==8)
{
dataset_reg<-LinearRegression(AUG ~ .,data=dataset_new)
step(lm(AUG ~ ., data = dataset_new), trace = 0)
}
else if(i==9)
{
dataset_reg<-LinearRegression(SEP ~ .,data=dataset_new)
step(lm(SEP ~ ., data = dataset_new), trace = 0)
}
else if(i==10)
{
dataset_reg<-LinearRegression(OCT ~ .,data=dataset_new)
step(lm(OCT ~ ., data = dataset_new), trace = 0)
}
else if(i==11)
{
dataset_reg<-LinearRegression(NOV ~ .,data=dataset_new)
step(lm(NOV ~ ., data = dataset_new), trace = 0)
}
else
{
dataset_reg<-LinearRegression(DEC ~ .,data=dataset_new)
step(lm(DEC ~ ., data = dataset_new), trace = 0)
}
capture.output(dataset_reg,file = "Hypothesis_formula.txt")
text<-read.fwf("Hypothesis_formula.txt", c(0,900), stringsAsFactors=FALSE)
text<-text[2][1]
text<-text[,1,drop=TRUE]
text<-as.character(text)
text<-na.omit(text)
text<-as.character(text)
text<-str_replace_all(text, " ", "")
text<-str_replace_all(text, "LinearRegressionModel", "")
text<-paste(text,collapse="")
text<-stri_replace_all_fixed(text, "+-", "-")
text<-stri_replace_all_fixed(text, "-+", "-")
eval(parse(text=text))
cat("-----------------------------------------------------------------------------------------\n")
cat("The Built model is given as\n")
print(dataset_reg)
if(summary==TRUE)
{
cat("-----------------------------------------------------------------------------------------\n")
cat("Summary of the model is\n")
print(summary(dataset_reg))
}
if(eval_summary==TRUE)
{
cat("-----------------------------------------------------------------------------------------\n")
cat("Summary of the model on Cross validation\n")
eval_forecast <- evaluate_Weka_classifier(dataset_reg, numFolds = 10, complexity = FALSE, seed = 1, class = TRUE)
print(eval_forecast)
cat("-----------------------------------------------------------------------------------------\n")
}
}
dataset_copy<-forecast_data_write_to_file(dataset_copy,YEAR,JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC)
print(dataset_copy)
if(to_store==TRUE)
{
file.remove("All India Rainfall Record_copy.csv")
file.create("All India Rainfall Record_copy.csv")
write.csv(dataset_copy,file = "All India Rainfall Record_copy.csv",row.names = FALSE)
}
display_forecast_result(YEAR,JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC)
}
if(to_store==FALSE)
{
file.remove("All India Rainfall Record_copy.csv")
}
return()
}