-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_top_pathways.py
308 lines (205 loc) · 9.91 KB
/
get_top_pathways.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import anndata
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import os
from utils import load_annotations
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from datasets import RNASeqData
from pathexplainer import PathExplainerTorch
from sklearn.linear_model import LogisticRegression
import argparse
from models import pmVAEModel
import mygene
import os
import time
save_path = 'new_for_revision/new_res/'
def main():
ig_times = []
lr_times = []
train_times = []
# get dataset, removal method
parser = argparse.ArgumentParser()
parser.add_argument('dataset', action="store", default='kang')
parser.add_argument('which_gpu', action="store", default='0')
parser.add_argument('gene_prog', action="store", default='Ctrl')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"]=args.which_gpu
dataset =args.dataset
# load data
# load datlinger data
if args.dataset == 'datlinger':
data = anndata.read('data/datlinger_pp.h5ad')
symbols = data.var_names
# load kang data
if args.dataset == 'kang':
data = anndata.read('data/kang_count.h5ad')
symbols = data.var_names
# load mcfarland data
if args.dataset == 'mcfarland':
data = anndata.read('/projects/leelab/data/single-cell/mcfarland_2020_Idasanutlin/preprocessed/adata_top_2000_genes_tc.h5ad')
data = data[data.obs['condition'] == 'Idasanutlin'].copy()
symbols = data.var_names
# load zheng data
if args.dataset == 'zheng':
data = anndata.read('/projects/leelab/data/single-cell/zheng_2017/preprocessed/adata_top_2000_genes.h5ad')
# convert ENSG IDs to gene symbols:
mg = mygene.MyGeneInfo()
geneList = data.var_names
geneSyms = mg.querymany(geneList , scopes='ensembl.gene', fields='symbol', species='human', returnall=True)
symbols = []
not_in = []
is_in = []
for k in range(2000):
if ('symbol' in geneSyms['out'][k]):
symbols += [geneSyms['out'][k]['symbol']]
is_in += [geneSyms['out'][k]['query']]
else:
not_in += [geneSyms['out'][k]['query']]
symbols = pd.Index(symbols)
symbols = pd.Index(set(symbols.to_numpy()))
# filter out post transplant
data = data[data.obs['condition'] != 'post_transplant'][:,is_in].copy()
# load haber data
if args.dataset == 'haber':
data = anndata.read('/projects/leelab/data/single-cell/haber_2017/preprocessed/adata_top_2000_genes.h5ad')
# filter out H poly
data = data[data.obs['condition'] != 'Salmonella'].copy()
symbols = data.var_names
# load grubman data
if args.dataset == 'grubman':
data = anndata.read('/projects/leelab/data/single-cell/grubman_2019/preprocessed/adata_top_2000_genes.h5ad')
symbols = data.var_names
if args.dataset == 'norman':
data = anndata.read('/projects/leelab/data/single-cell/norman_2019/preprocessed/adata_top_2000_genes_tc.h5ad')
if args.gene_prog == 'erythroid':
data = data[(data.obs['gene_program'] == 'Ctrl') | (data.obs['gene_program'] == 'Erythroid')].copy()
if args.gene_prog == 'granulocyte-apoptosis':
data = data[(data.obs['gene_program'] == 'Ctrl') | (data.obs['gene_program'] == 'Granulocyte/apoptosis')].copy()
if args.gene_prog == 'megakaryocyte':
data = data[(data.obs['gene_program'] == 'Ctrl') | (data.obs['gene_program'] == 'Megakaryocyte')].copy()
if args.gene_prog == 'pro-growth':
data = data[(data.obs['gene_program'] == 'Ctrl') | (data.obs['gene_program'] == 'Pro-growth')].copy()
test_df = pd.DataFrame(index=data.var['gene_name'])
symbols = test_df.index
number_of_replicates = 10
first_run = True
# for 10 experimental replicates
for rand_seed in range(number_of_replicates):
print("replicate number " + str(rand_seed))
# split data
train_data, test_data = train_test_split(data,
test_size=0.25,
shuffle=True,
random_state=rand_seed)
tr_data, val_data = train_test_split(train_data,
test_size=0.25,
shuffle=True,
random_state=rand_seed)
tr_ds = RNASeqData(np.array(tr_data.X))
val_ds = RNASeqData(np.array(val_data.X))
# load annotations
membership_mask = load_annotations('data/c2.cp.reactome.v7.4.symbols.gmt',
symbols,
min_genes=13
).astype(bool).T
##
## train model
##
# initialize base model
basePMVAE = pmVAEModel(membership_mask.values,
[12],
1,
beta=1e-05,
terms=membership_mask.index,
add_auxiliary_module=True
)
if first_run: # first run
top_ig = pd.DataFrame(index=basePMVAE.latent_space_names())
top_lr = pd.DataFrame(index=basePMVAE.latent_space_names())
first_run = False
# train
start_train = time.time()
basePMVAE.train(tr_ds, val_ds,
checkpoint_path='saved_models/' + dataset + '_' + args.gene_prog + '.pkl',
max_epochs=100)
end_train = time.time()
train_times.append(end_train - start_train)
basePMVAE.set_gpu(False)
# IG pathway rankings
print("Calc IG score")
start_ig = time.time()
def model_loss_wrapper(z):
module_outputs = basePMVAE.model.decoder_net(z)
global_recon = basePMVAE.model.merge(module_outputs)
return F.mse_loss(global_recon, ground_truth, reduction='none').mean(1).view(-1,1)
ground_truth = torch.tensor(np.array(val_data.X)).float()
outs = basePMVAE.model(ground_truth)
input_data = outs.z
baseline_data = torch.zeros(outs.z.shape[1])
baseline_data.requires_grad = True
explainer = PathExplainerTorch(model_loss_wrapper)
attributions = explainer.attributions(input_data,
baseline=baseline_data,
num_samples=200,
use_expectation=False)
np_attribs = attributions.detach().numpy()
top_ig[rand_seed] = np_attribs.mean(0)
end_ig = time.time()
ig_times.append(end_ig - start_ig)
# so far!
top_ig.to_csv(save_path + dataset + '_ig.csv', index=False)
# LR pathway rankings
print("Calc LR score")
start_lr = time.time()
if args.dataset == 'kang' or args.dataset == 'datlinger':
y_tr = tr_data.obs['condition']
y_val = val_data.obs['condition']
train_labels = (y_tr == 'stimulated').values
val_labels = (y_val == 'stimulated').values
if args.dataset == 'mcfarland':
y_tr = tr_data.obs['TP53_mutation_status']
y_val = val_data.obs['TP53_mutation_status']
train_labels = (y_tr == 'Wild Type').values
val_labels = (y_val == 'Wild Type').values
if args.dataset == 'haber':
y_tr = tr_data.obs['condition']
y_val = val_data.obs['condition']
train_labels = (y_tr == 'Control').values
val_labels = (y_val == 'Control').values
if args.dataset == 'grubman':
y_tr = tr_data.obs['batchCond']
y_val = val_data.obs['batchCond']
train_labels = (y_tr == 'ct').values
val_labels = (y_val == 'ct').values
if args.dataset == 'zheng':
y_tr = tr_data.obs['condition']
y_val = val_data.obs['condition']
train_labels = (y_tr == 'healthy').values
val_labels = (y_val == 'healthy').values
if args.dataset == 'norman':
y_tr = tr_data.obs['gene_program']
y_val = val_data.obs['gene_program']
train_labels = (y_tr == 'Ctrl').values
val_labels = (y_val == 'Ctrl').values
train_embedding = basePMVAE.model(torch.tensor(tr_data.X).float()).z.detach().numpy()
val_embedding = basePMVAE.model(torch.tensor(val_data.X).float()).z.detach().numpy()
lr_scores = []
for pathway in range(train_embedding.shape[1]):
clf = LogisticRegression(random_state=0).fit(train_embedding[:,pathway].reshape(-1,1), train_labels)
lr_scores.append(clf.score(val_embedding[:,pathway].reshape(-1,1), val_labels))
top_lr[rand_seed] = lr_scores
top_lr[rand_seed] = -1.*top_lr[rand_seed]
end_lr = time.time()
lr_times.append(end_lr - start_lr)
# so far!
top_lr.to_csv(save_path + dataset + '_lr.csv', index=False)
times = pd.DataFrame()
times['ig_times'] = ig_times
times['lr_times'] = lr_times
times['train_times'] = train_times
times.to_csv(save_path + args.dataset + '_times.csv')
if __name__ == '__main__':
main()