-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_code.py
107 lines (80 loc) · 2.35 KB
/
final_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
from sklearn.model_selection import KFold
import random
from pso import Swarm
from knn_code import accuracy
FILENAME = input("Enter filename")
def run(test,train):
'''
Run the algorithm for each test and training set pair
'''
s=Swarm()
s.initialize_swarm(train)
ans=s.omptimize()
return accuracy(ans,test,train)
def normalize(dataset):
'''
Minmax Normalization of the features before running the algorithm
'''
#normalize the features between 0 and 1
#print(dataset)
h=1
l=0
mins=np.min(dataset,axis=0)
maxz=np.max(dataset,axis=0)
rng=maxz-mins
#res containins he normalized features
res=h-(((h-l)*(maxz-dataset))/rng)
#print(res)
#set the class_flag to -1 if the class label is the last column
#set class_flag to 0 if class label is first column
class_flag=int(input("Enter class flag"))
#remove the class column and add back the unormalized class label
#class labels should not be normalized
if class_flag==0:
res=res[:,1:]
dataset=dataset[:,0]
dataset=dataset.reshape(-1, 1)
elif class_flag==-1:
#print(res)
res=res[:,:-1]
dataset=dataset[:,-1]
dataset=dataset.reshape(-1, 1)
#concatanate the class labels with the normalized features along the column axis
out=np.concatenate((dataset,res),axis=1)
return out
def loadfile(filename):
'''Load the data from the file and normalize it'''
dataset=np.genfromtxt(filename,delimiter=',')
dataset=dataset[1:]
np.random.shuffle(dataset)
dataset=normalize(dataset)
return dataset
def kfold(dataset):
'''
kfold validation to test for accuracy
'''
kf=KFold(n_splits=10)
kf.get_n_splits(dataset)
avg_acc=[]
avg_fscr=[]
for train_ind, test_ind in kf.split(dataset):
train,test=dataset[train_ind],dataset[test_ind]
acc,fscr=run(test,train)
print("Accuracy ",acc," F-score ",fscr)
avg_acc.append(acc)
avg_fscr.append(fscr)
avg_acc_ans=0
avg_fscore_ans=0
for i in range(len(avg_acc)):
avg_acc_ans+= avg_acc[i]
avg_fscore_ans += avg_fscr[i]
avg_acc_ans /= len(avg_acc)
avg_fscore_ans /= len(avg_fscr)
print("Average accuracy ",avg_acc_ans)
print("Average fscore ",avg_fscore_ans)
if __name__ == "__main__":
'''Start the algorithm. Use k fold validation to test accuracy'''
dataset=loadfile(FILENAME)
print(FILENAME)
kfold(dataset)