-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
executable file
·175 lines (149 loc) · 7.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import csv
import json
import random
from datetime import datetime
from argparse import ArgumentParser
import numpy as np
import torch
import grid2op
from lightsim2grid import LightSimBackend
from grid2op.Reward import L2RPNSandBoxScore
from custom_reward import *
from agent import Agent
from train import TrainAgent
import matplotlib.cbook
import warnings
warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)
ENV_CASE = {
'5': 'rte_case5_example',
'sand': 'l2rpn_case14_sandbox',
'wcci': 'l2rpn_wcci_2020'
}
DATA_SPLIT = {
'5': ([i for i in range(20) if i not in [17, 19]], [17], [19]),
'sand': (list(range(0, 40*26, 40)), list(range(1, 100*10+1, 100)), []),# list(range(2, 100*10+2, 100))),
'wcci': ([17, 240, 494, 737, 990, 1452, 1717, 1942, 2204, 2403, 19, 242, 496, 739, 992, 1454, 1719, 1944, 2206, 2405, 230, 301, 704, 952, 1008, 1306, 1550, 1751, 2110, 2341, 2443, 2689],
list(range(2880, 2890)), [])
}
MAX_FFW = {
'5': 5,
'sand': 26,
'wcci': 26
}
def cli():
parser = ArgumentParser()
parser.add_argument('-s', '--seed', type=int, default=0)
parser.add_argument('-c', '--case', type=str, default='wcci', choices=['sand', 'wcci', '5'])
parser.add_argument('-gpu', '--gpuid', type=int, default=0)
parser.add_argument('-ml', '--memlen', type=int, default=50000)
parser.add_argument('-nf', '--nb_frame', type=int, default=100000,
help='the total number of interactions')
parser.add_argument('-ts', '--test_step', type=int, default=1000,
help='the interaction number for next evaluation')
parser.add_argument('-hn', '--head_number', type=int, default=8,
help='the number of head for attention')
parser.add_argument('-sd', '--state_dim', type=int, default=128,
help='dimension of hidden state for GNN')
parser.add_argument('-nh', '--n_history', type=int, default=6,
help='length of frame stack')
parser.add_argument('-do', '--dropout', type=float, default=0.)
parser.add_argument('-r', '--rule', type=str, default='c', choices=['c', 'd', 'o', 'f'],
help='low-level rule (capa, desc, opti, fixed)')
parser.add_argument('-thr', '--threshold', type=float, default=0.1,
help='[-1, thr) -> bus 1 / [thr, 1] -> bus 2')
parser.add_argument('-dg', '--danger', type=float, default=0.9,
help='the powerline with rho over danger is regarded as hazardous')
parser.add_argument('-m', '--mask', type=int, default=5,
help='this agent manages the substations containing topology elements over "mask"')
parser.add_argument('-tu', '--target_update', type=int, default=1,
help='period of target update')
parser.add_argument('--tau', type=float, default=1e-3,
help='the weight of soft target update')
parser.add_argument('-bs', '--batch_size', type=int, default=128)
parser.add_argument('-lr', '--lr', type=float, default=5e-5)
parser.add_argument('--gamma', type=float, default=0.995)
parser.add_argument('-n', '--name', type=str, default='untitled')
args = parser.parse_args()
args.actor_lr = args.critic_lr = args.embed_lr = args.alpha_lr = args.lr
return args
def log_params(args, path):
f = open(os.path.join(path, "param.txt"), 'w')
for key, val in args.__dict__.items():
f.write(key + ': ' + str(val) + "\n")
f.close()
with open(os.path.join(path, 'param.json'), 'w', encoding='utf-8') as f:
json.dump(vars(args), f)
def read_ffw_json(path, chronics, case):
res = {}
for i in chronics:
for j in range(MAX_FFW[case]):
with open(os.path.join(path, f'{i}_{j}.json'), 'r', encoding='utf-8') as f:
a = json.load(f)
res[(i,j)] = (a['dn_played'], a['donothing_reward'], a['donothing_nodisc_reward'])
if i >= 2880: break
return res
def seed_everything(seed_value):
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
args = cli()
seed_everything(args.seed)
# settings
model_name = f'{args.name}_{args.seed}'
print('model name: ', model_name)
OUTPUT_DIR = './result'
DATA_DIR = './data'
output_result_dir = os.path.join(OUTPUT_DIR, model_name)
model_path = os.path.join(output_result_dir, 'model')
if torch.cuda.is_available():
torch.cuda.set_device(args.gpuid)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env_name = ENV_CASE[args.case]
env_path = os.path.join(DATA_DIR, env_name)
chronics_path = os.path.join(env_path, 'chronics')
train_chronics, valid_chronics, test_chronics = DATA_SPLIT[args.case]
dn_json_path = os.path.join(env_path, 'json')
# select chronics
dn_ffw = read_ffw_json(dn_json_path, train_chronics + valid_chronics, args.case)
ep_infos = {}
if os.path.exists(dn_json_path):
for i in list(set(train_chronics+valid_chronics)):
with open(os.path.join(dn_json_path, f'{i}.json'), 'r', encoding='utf-8') as f:
ep_infos[i] = json.load(f)
env = grid2op.make(env_path, test=True, reward_class=L2RPNSandBoxScore, backend=LightSimBackend(),
other_rewards={'loss': LossReward})
test_env = grid2op.make(env_path, test=True, reward_class=L2RPNSandBoxScore, backend=LightSimBackend(),
other_rewards={'loss': LossReward})
env.deactivate_forecast()
test_env.deactivate_forecast()
env.seed(args.seed)
test_env.parameters.NB_TIMESTEP_OVERFLOW_ALLOWED = env.parameters.NB_TIMESTEP_OVERFLOW_ALLOWED = 3
test_env.parameters.NB_TIMESTEP_RECONNECTION = env.parameters.NB_TIMESTEP_RECONNECTION = 12
test_env.parameters.NB_TIMESTEP_COOLDOWN_LINE = env.parameters.NB_TIMESTEP_COOLDOWN_LINE = 3
test_env.parameters.NB_TIMESTEP_COOLDOWN_SUB = env.parameters.NB_TIMESTEP_COOLDOWN_SUB = 3
test_env.parameters.HARD_OVERFLOW_THRESHOLD = env.parameters.HARD_OVERFLOW_THRESHOLD = 200.0
test_env.seed(59)
chronic_num = len(test_chronics)
print(env.parameters.__dict__)
# specify agent
my_agent = Agent(env, **vars(args))
mean = torch.load(os.path.join(env_path, 'mean.pt'))
std = torch.load(os.path.join(env_path, 'std.pt'))
my_agent.load_mean_std(mean, std)
trainer = TrainAgent(my_agent, env, test_env, device, dn_json_path, dn_ffw, ep_infos)
if not os.path.exists(output_result_dir):
os.makedirs(output_result_dir)
os.makedirs(model_path)
log_params(args, output_result_dir)
trainer.train(
args.seed, args.nb_frame, args.test_step,
train_chronics, valid_chronics, output_result_dir, model_path, MAX_FFW[args.case])
trainer.agent.save_model(model_path, 'last')