-
Notifications
You must be signed in to change notification settings - Fork 99
/
util.py
352 lines (270 loc) · 11.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import numpy as np
import sys
import tensorflow as tf
import math
import struct
import argparse
import time
import os
import cPickle
import random
import platform
import glob
plat = platform.dist()[0]
if plat == "Ubuntu":
base = "/home/supasorn/"
else:
base = "/projects/grail/supasorn2nb/"
def readSingleInt(path):
with open(path) as f:
return int(f.readline())
def readCVFloatMat(fl):
f = open(fl)
t = struct.unpack('B', f.read(1))[0]
if t != 5:
return 0
h = struct.unpack('i', f.read(4))[0]
w = struct.unpack('i', f.read(4))[0]
return np.reshape(np.array(struct.unpack('%df' % (h * w), f.read(4 * h * w)), float), (h, w))
def _str_to_bool(s):
if s.lower() not in ['true', 'false']:
raise ValueError('Need bool; got %r' % s)
return s.lower() == 'true'
def add_boolean_argument(parser, name, default=False):
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--' + name, nargs='?', default=default, const=True, type=_str_to_bool)
group.add_argument('--no' + name, dest=name, action='store_false')
def normalizeData(lst, savedir, name, varnames, normalize=True):
allstrokes = np.concatenate(lst)
mean = np.mean(allstrokes, 0)
std = np.std(allstrokes, 0)
f = open(savedir + "/" + name + ".txt", "w")
minv = np.min(allstrokes, 0)
maxv = np.max(allstrokes, 0)
if not isinstance(normalize, list):
normalize = [normalize] * len(mean)
for i, n in enumerate(varnames):
if normalize[i]:
f.write(n + "\n mean: %f\n std :%f\n min :%f\n max :%f\n\n" % (mean[i], std[i], minv[i], maxv[i]))
else:
f.write(n + "\n mean: %f (-> 0)\n std :%f (-> 1)\n min :%f\n max :%f\n\n" % (mean[i], std[i], minv[i], maxv[i]))
mean[i] = 0
std[i] = 1
np.save(savedir + '/' + name + '.npy', {'min': minv, 'max': maxv, 'mean': mean, 'std': std})
for i in range(len(lst)):
lst[i] = (lst[i] - mean) / std
f.close()
return mean, std
class TFBase(object):
def __init__(self):
np.random.seed(42)
random.seed(42)
self.parser = argparse.ArgumentParser()
self.addDefaultParameters()
def addDefaultParameters(self):
self.parser.add_argument('--num_epochs', type=int, default=300,
help='number of epochs')
self.parser.add_argument('--save_every', type=int, default=10,
help='save frequency')
self.parser.add_argument('--grad_clip', type=float, default=10.,
help='clip gradients at this value')
self.parser.add_argument('--learning_rate', type=float, default=0.001,
help='learning rate')
self.parser.add_argument('--decay_rate', type=float, default=1,
help='decay rate for rmsprop')
self.parser.add_argument('--keep_prob', type=float, default=1,
help='dropout keep probability')
self.parser.add_argument('--save_dir', type=str, default='',
help='save directory')
self.parser.add_argument('--usetrainingof', type=str, default='',
help='trainingset')
add_boolean_argument(self.parser, "reprocess")
add_boolean_argument(self.parser, "normalizeinput", default=True)
def normalize(self, inps, outps):
meani, stdi = normalizeData(inps["training"], "save/" + self.args.save_dir, "statinput", ["fea%02d" % x for x in range(inps["training"][0].shape[1])], normalize=self.args.normalizeinput)
meano, stdo = normalizeData(outps["training"], "save/" + self.args.save_dir, "statoutput", ["fea%02d" % x for x in range(outps["training"][0].shape[1])], normalize=self.args.normalizeoutput)
for i in range(len(inps["validation"])):
inps["validation"][i] = (inps["validation"][i] - meani) / stdi;
for i in range(len(outps["validation"])):
outps["validation"][i] = (outps["validation"][i] - meano) / stdo;
return meani, stdi, meano, stdo
def loadData(self):
if not os.path.exists("save/"):
os.mkdir("save/")
if not os.path.exists("save/" + self.args.save_dir):
os.mkdir("save/" + self.args.save_dir)
if len(self.args.usetrainingof):
data_file = "data/training_" + self.args.usetrainingof + ".cpkl"
else:
data_file = "data/training_" + self.args.save_dir + ".cpkl"
if not (os.path.exists(data_file)) or self.args.reprocess:
print "creating training data cpkl file from raw source"
inps, outps = self.preprocess(data_file)
meani, stdi, meano, stdo = self.normalize(inps, outps)
if not os.path.exists(os.path.dirname(data_file)):
os.mkdir(os.path.dirname(data_file))
f = open(data_file, "wb")
cPickle.dump({"input": inps["training"], "inputmean": meani, "inputstd": stdi, "output": outps["training"], "outputmean":meano, "outputstd": stdo, "vinput": inps["validation"], "voutput": outps["validation"]}, f, protocol=2)
f.close()
f = open(data_file,"rb")
data = cPickle.load(f)
inps = {"training": data["input"], "validation": data["vinput"]}
outps = {"training": data["output"], "validation": data["voutput"]}
f.close()
self.dimin = inps["training"][0].shape[1]
self.dimout = outps["training"][0].shape[1]
self.inps, self.outps = self.load_preprocessed(inps, outps)
self.num_batches = {}
self.pointer = {}
for key in self.inps:
self.num_batches[key] = 0
for inp in self.inps[key]:
self.num_batches[key] += int(math.ceil((len(inp) - 2) / self.args.seq_length))
self.num_batches[key] = int(self.num_batches[key] / self.args.batch_size)
self.reset_batch_pointer(key)
def preprocess(self):
raise NotImplementedError()
def next_batch(self, key="training"):
# returns a randomised, seq_length sized portion of the training data
x_batch = []
y_batch = []
for i in xrange(self.args.batch_size):
inp = self.inps[key][self.pointer[key]]
outp = self.outps[key][self.pointer[key]]
n_batch = int(math.ceil((len(inp) - 2) / self.args.seq_length))
idx = random.randint(1, len(inp) - self.args.seq_length - 1)
x_batch.append(np.copy(inp[idx:idx+self.args.seq_length]))
y_batch.append(np.copy(outp[idx:idx+self.args.seq_length]))
if random.random() < 1.0 / float(n_batch):
self.tick_batch_pointer(key)
return x_batch, y_batch
def tick_batch_pointer(self, key):
self.pointer[key] += 1
if self.pointer[key] >= len(self.inps[key]):
self.pointer[key] = 0
def reset_batch_pointer(self, key):
self.pointer[key] = 0
def test(self):
# only use save_dir from args
save_dir = self.args.save_dir
with open(os.path.join("save/" + save_dir, 'config.pkl')) as f:
saved_args = cPickle.load(f)
if len(saved_args.usetrainingof):
pt = saved_args.usetrainingof
else:
pt = save_dir
with open("./data/training_" + pt + ".cpkl", "rb") as f:
raw = cPickle.load(f)
model = self.model(saved_args, True)
sess = tf.InteractiveSession()
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state("save/" + save_dir)
saver.restore(sess, ckpt.model_checkpoint_path)
print "loading model: ", ckpt.model_checkpoint_path
saved_args.input = self.args.input
self.sample(sess, saved_args, raw, pt)
def train(self):
with open(os.path.join("save/" + self.args.save_dir, 'config.pkl'), 'w') as f:
cPickle.dump(self.args, f)
with tf.Session() as sess:
model = self.model(self.args)
tf.initialize_all_variables().run()
ts = TrainingStatus(sess, self.args.num_epochs, self.num_batches["training"], save_interval = self.args.save_every, graph = sess.graph, save_dir = "save/" + self.args.save_dir)
print "training batches: ", self.num_batches["training"]
for e in xrange(ts.startEpoch, self.args.num_epochs):
sess.run(tf.assign(self.lr, self.args.learning_rate * (self.args.decay_rate ** e)))
self.reset_batch_pointer("training")
self.reset_batch_pointer("validation")
state = []
for c, m in self.initial_state:
state.append((c.eval(), m.eval()))
fetches = []
fetches.append(self.cost)
fetches.append(self.train_op)
feed_dict = {}
for i, (c, m) in enumerate(self.initial_state):
feed_dict[c], feed_dict[m] = state[i]
for b in xrange(self.num_batches["training"]):
ts.tic()
x, y = self.next_batch()
feed_dict[self.input_data] = x
feed_dict[self.target_data] = y
res = sess.run(fetches, feed_dict)
train_loss = res[0]
print ts.tocBatch(e, b, train_loss)
validLoss = 0
if self.num_batches["validation"] > 0:
fetches = []
fetches.append(self.cost)
for b in xrange(self.num_batches["validation"]):
x, y = self.next_batch("validation")
feed_dict[self.input_data] = x
feed_dict[self.target_data] = y
loss = sess.run(fetches, feed_dict)
validLoss += loss[0]
validLoss /= self.num_batches["validation"]
ts.tocEpoch(sess, e, validLoss)
class TrainingStatus:
def __init__(self, sess, num_epochs, num_batches, logwrite_interval = 25, eta_interval = 25, save_interval = 100, save_dir = "save", graph = None):
if not os.path.exists(save_dir):
os.mkdir(save_dir)
#if graph is not None:
#self.writer = tf.train.SummaryWriter(save_dir, graph)
#else:
#self.writer = tf.train.SummaryWriter(save_dir)
self.save_dir = save_dir
self.model_dir = os.path.join(save_dir, 'model.ckpt')
#self.saver = tf.train.Saver(tf.all_variables(), max_to_keep = 0)
self.saver = tf.train.Saver(tf.all_variables())
lastCheckpoint = tf.train.latest_checkpoint(save_dir)
if lastCheckpoint is None:
self.startEpoch = 0
else:
print "Last checkpoint :", lastCheckpoint
self.startEpoch = int(lastCheckpoint.split("-")[-1])
self.saver.restore(sess, lastCheckpoint)
print "startEpoch = ", self.startEpoch
self.logwrite_interval = logwrite_interval
self.eta_interval = eta_interval
self.totalTask = num_epochs * num_batches
self.num_epochs = num_epochs
self.num_batches = num_batches
self.save_interval = save_interval
self.etaCount = 0
self.etaStart = time.time()
self.duration = 0
self.avgloss = 0
self.avgcount = 0
def tic(self):
self.start = time.time()
def tocBatch(self, e, b, loss):
self.end = time.time()
taskNum = (e * self.num_batches + b)
self.etaCount += 1
if self.etaCount % self.eta_interval == 0:
self.duration = time.time() - self.etaStart
self.etaStart = time.time()
etaTime = float(self.totalTask - (taskNum + 1)) / self.eta_interval * self.duration
m, s = divmod(etaTime, 60)
h, m = divmod(m, 60)
etaString = "%d:%02d:%02d" % (h, m, s)
self.avgloss += loss
self.avgcount += 1
if taskNum == 0:
with open(self.save_dir + "/avgloss.txt", "w") as f:
f.write("0 %f %f\n" % (loss, loss))
return "%.2f%% (%d/%d): %.3f t %.3f @ %s (%s)" % (taskNum * 100.0 / self.totalTask, e, self.num_epochs, loss, self.end - self.start, time.strftime("%a %d %H:%M:%S", time.localtime(time.time() + etaTime)), etaString)
def tocEpoch(self, sess, e, validLoss=0):
if (e + 1) % self.save_interval == 0 or e == self.num_epochs - 1:
self.saver.save(sess, self.model_dir, global_step = e + 1)
print "model saved to {}".format(self.model_dir)
lines = open(self.save_dir + "/avgloss.txt", "r").readlines()
with open(self.save_dir + "/avgloss.txt", "w") as f:
for line in lines:
if int(line.split(" ")[0]) >= e + 1:
break
f.write(line)
f.write("%d %f %f\n" % (e+1, self.avgloss / self.avgcount, validLoss))
self.avgcount = 0
self.avgloss = 0;