This repository has been archived by the owner on Jan 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbibliographie.bib
470 lines (429 loc) · 22.4 KB
/
bibliographie.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
@article{graves_framewise_2005,
title = {Framewise phoneme classification with bidirectional {LSTM} and other neural network architectures},
volume = {18},
issn = {08936080},
url = {http://linkinghub.elsevier.com/retrieve/pii/S0893608005001206},
doi = {10.1016/j.neunet.2005.06.042},
language = {en},
number = {5-6},
urldate = {2016-09-21},
journal = {Neural Networks},
author = {Graves, Alex and Schmidhuber, Jürgen},
month = jul,
year = {2005},
pages = {602--610},
file = {1-s2.0-S0893608005001206-main.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/B4M8SSW9/1-s2.0-S0893608005001206-main.pdf:application/pdf}
}
@article{prieto_neural_2016,
title = {Neural networks: {An} overview of early research, current frameworks and new challenges},
issn = {09252312},
shorttitle = {Neural networks},
url = {http://linkinghub.elsevier.com/retrieve/pii/S0925231216305550},
doi = {10.1016/j.neucom.2016.06.014},
language = {en},
urldate = {2016-09-21},
journal = {Neurocomputing},
author = {Prieto, Alberto and Prieto, Beatriz and Ortigosa, Eva Martinez and Ros, Eduardo and Pelayo, Francisco and Ortega, Julio and Rojas, Ignacio},
month = jun,
year = {2016},
file = {1-s2.0-S0925231216305550-main.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/V2739EBP/1-s2.0-S0925231216305550-main.pdf:application/pdf}
}
@book{amari_neural_2000,
address = {Los Alamitos, Calif.},
title = {Neural computing: new challenges and perspectives for the new millennium: proceedings of the {IEEE}-{INNS}-{ENNS} {International} {Joint} {Conference} on {Neural} {Networks}, {IJCNN} 2000, {Como}, {Italy}, 24 - 27 {July} 2000},
isbn = {978-0-7695-0619-7 978-0-7803-6541-4},
shorttitle = {Neural computing},
language = {eng},
publisher = {IEEE Computer Society},
editor = {Amari, Shun-Ichi and {IJCNN} and {Institute of Electrical and Electronics Engineers} and {International Neural Network Society} and {European Neural Network Society} and {Institute of Electrical and Electronics Engineers}},
year = {2000},
keywords = {Neural Congresses},
file = {1503.04069v1.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/D3UUIRKD/1503.04069v1.pdf:application/pdf}
}
@inproceedings{sutskever_sequence_2014,
title = {Sequence to sequence learning with neural networks},
url = {http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces},
urldate = {2016-09-21},
booktitle = {Advances in neural information processing systems},
author = {Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V.},
year = {2014},
pages = {3104--3112},
file = {5346-sequence-to-sequence-learning-with-neural-networks.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/PNQ98CZF/5346-sequence-to-sequence-learning-with-neural-networks.pdf:application/pdf}
}
@article{werbos_backpropagation_1990,
title = {Backpropagation through time: what it does and how to do it},
volume = {78},
shorttitle = {Backpropagation through time},
url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=58337},
number = {10},
urldate = {2016-09-21},
journal = {Proceedings of the IEEE},
author = {Werbos, Paul J.},
year = {1990},
pages = {1550--1560},
file = {Werbos.backprop.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/CBDAXIPT/Werbos.backprop.pdf:application/pdf}
}
@article{williams_gradient-based_1995,
title = {Gradient-based learning algorithms for recurrent networks and their computational complexity},
url = {http://books.google.com/books?hl=en&lr=&id=B71nu3LDpREC&oi=fnd&pg=PA433&dq=%22we+consider+algorithms+for+training+recurrent+networks+to+perform%22+%22desired+output+is+a+time-varying+sequence.+More+generally,+both%22+%22than+fixed,+they+can+form+delay+line+structures+when+necessary+while%22+&ots=KjzFQzAdUY&sig=YxIXy3hL_OPH1FwpOrq1BWgE60I},
urldate = {2016-09-21},
journal = {Back-propagation: Theory, architectures and applications},
author = {Williams, Ronald J. and Zipser, David},
year = {1995},
pages = {433--486},
file = {Williams Zipser95RecNets.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/PPM29M4A/Williams Zipser95RecNets.pdf:application/pdf}
}
@article{popescu_multilayer_2009,
title = {Multilayer perceptron and neural networks},
volume = {8},
url = {http://www.wseas.us/e-library/transactions/circuits/2009/29-485.pdf},
number = {7},
urldate = {2016-09-21},
journal = {WSEAS Transactions on Circuits and Systems},
author = {Popescu, Marius-Constantin and Balas, Valentina E. and Perescu-Popescu, Liliana and Mastorakis, Nikos},
year = {2009},
pages = {579--588},
file = {Popescu.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/A99I4IQR/Popescu.pdf:application/pdf}
}
@article{lipton_critical_2015,
title = {A critical review of recurrent neural networks for sequence learning},
url = {http://arxiv.org/abs/1506.00019},
urldate = {2016-10-06},
journal = {arXiv preprint arXiv:1506.00019},
author = {Lipton, Zachary C. and Berkowitz, John and Elkan, Charles},
year = {2015},
file = {1506.00019v4.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/DRMJJVQQ/1506.00019v4.pdf:application/pdf}
}
@article{cybenko_approximation_1989,
title = {Approximation by superpositions of a sigmoidal function},
volume = {2},
url = {http://link.springer.com/article/10.1007/BF02551274},
number = {4},
urldate = {2016-10-12},
journal = {Mathematics of control, signals and systems},
author = {Cybenko, George},
year = {1989},
pages = {303--314},
file = {Cybenko_MCSS.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/3JUCP44B/Cybenko_MCSS.pdf:application/pdf}
}
@inproceedings{lecun_efficient_1998,
title = {Efficient {BackProp}},
booktitle = {Neural {Networks}: {Tricks} of the trade},
publisher = {Springer},
author = {LeCun, Y. and Bottou, L. and Orr, G. and Muller, K.},
editor = {Orr, G. and K, Muller},
year = {1998},
file = {lecun-98b[1].pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/C2PHUXPF/lecun-98b[1].pdf:application/pdf}
}
@article{hochreiter_long_1997,
title = {Long {Short}-{Term} {Memory}},
volume = {9},
issn = {0899-7667},
url = {http://dx.doi.org/10.1162/neco.1997.9.8.1735},
doi = {10.1162/neco.1997.9.8.1735},
number = {8},
journal = {Neural Comput.},
author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
month = nov,
year = {1997},
pages = {1735--1780},
file = {Bobby_paper1.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/ENBRT9U6/Bobby_paper1.pdf:application/pdf}
}
@inproceedings{lecun_gradient-based_2001,
title = {Gradient-based learning applied to document recognition},
booktitle = {Intelligent signal processing},
publisher = {IEEE Press},
author = {Lecun, Yann and Bottou, Leon and Bengio, Yoshua and Haffner, Patrick and Lecun, Yann and Bottou, Leon and Bengio, Yoshua and Haffner, Pattrick},
year = {2001},
pages = {306--351},
file = {lecun-01a[1].pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/SX3A66Q8/lecun-01a[1].pdf:application/pdf}
}
@misc{numenta_hierarchial_nodate,
title = {Hierarchial {Temporal} {Memory} including {HTM} {Cortical} {Learning} {Algorithms}},
shorttitle = {{MTH}},
url = {https://numenta.com/assets/pdf/whitepapers/hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-fr.pdf},
abstract = {This document describes in detail new algorithms for learning and prediction
developed by Numenta. The new algorithms are described in sufficient detail that a
programmer can understand and implement them if desired. It starts with an
introductory chapter. If you have been following Numenta and have read some of
our past white papers, the material in the introductory chapter will be familiar. The
other material is new.},
language = {Français, English},
publisher = {Numenta},
author = {{Numenta}},
file = {hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-en.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/8XBBJ4XA/hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-en.pdf:application/pdf;hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-fr.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/ATI5QS3B/hierarchical-temporal-memory-cortical-learning-algorithm-0.2.1-fr.pdf:application/pdf}
}
@article{williams_learning_1989,
title = {A {Learning} {Algorithm} for {Continually} {Running} {Fully} {Recurrent} {Neural} {Networks}},
volume = {1},
issn = {0899-7667},
url = {http://dx.doi.org/10.1162/neco.1989.1.2.270},
doi = {10.1162/neco.1989.1.2.270},
number = {2},
journal = {Neural Comput.},
author = {Williams, Ronald J. and Zipser, David},
month = jun,
year = {1989},
pages = {270--280},
file = {WilliamsZipser.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/RT3JN9IE/WilliamsZipser.pdf:application/pdf}
}
@article{smith_learning_1991,
title = {Learning {Sequential} {Structure} with the {Real}-time {Recurrent} {Learning} {Algorithm}},
volume = {1},
issn = {0129-0657},
url = {http://dx.doi.org/10.1142/S0129065789000037},
doi = {10.1142/S0129065789000037},
number = {2},
journal = {Int. J. Neural Syst.},
author = {Smith, Anthony W. and Zipser, David},
month = sep,
year = {1991},
pages = {125--131},
file = {SmithZipster1989.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/ATKBNZCE/SmithZipster1989.pdf:application/pdf}
}
@misc{olah_calculus_2015,
type = {Blog {GitHub}},
title = {Calculus on {Computational} {Graphs}: {Backpropagation}},
url = {http://colah.github.io/posts/2015-08-Backprop/},
language = {English},
urldate = {2016-10-12},
journal = {Colas' blog},
author = {Olah, Christopher},
month = aug,
year = {2015},
file = {Calculus on Computational Graphs\: Backpropagation -- colah's blog:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/AD2AF8MC/2015-08-Backprop.html:text/html}
}
@unpublished{goodfellow_deep_2016,
title = {Deep {Learning}},
url = {http://www.deeplearningbook.org},
abstract = {The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free.},
author = {Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron},
year = {2016},
note = {Book in preparation for MIT Press},
file = {Deep Learning:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/GCXXQXRU/www.deeplearningbook.org.html:text/html}
}
@book{abu-mostafa_learning_2012,
address = {S.l.},
title = {Learning from data: a short course},
isbn = {978-1-60049-006-4},
shorttitle = {Learning from data},
language = {eng},
publisher = {AMLbook.com},
author = {Abu-Mostafa, Yaser S. and Magdon-Ismail, Malik and Lin, Hsuan-Tien},
year = {2012},
note = {OCLC: 808441289},
file = {Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin-Learning From Data_ A short course-AMLBook.com (2012).pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/NIHN29BI/Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin-Learning From Data_ A short course-AMLBook.com (2012).pdf:application/pdf}
}
@misc{olah_understanding_nodate,
title = {Understanding {LSTM} {Networks} -- colah's blog},
url = {http://colah.github.io/posts/2015-08-Understanding-LSTMs/},
urldate = {2016-10-25},
author = {Olah, Christopher},
file = {Understanding LSTM Networks -- colah's blog:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/I63ZQVQB/2015-08-Understanding-LSTMs.html:text/html}
}
@misc{karpathy_andrej_unreasonable_nodate,
title = {The {Unreasonable} {Effectiveness} of {Recurrent} {Neural} {Networks}},
url = {http://karpathy.github.io/2015/05/21/rnn-effectiveness/},
urldate = {2016-10-25},
author = {Karpathy, Andrej},
file = {The Unreasonable Effectiveness of Recurrent Neural Networks:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/DPFKM6IB/rnn-effectiveness.html:text/html}
}
@article{mak_improvement_1999,
title = {On the improvement of the real time recurrent learning algorithm for recurrent neural networks},
volume = {24},
issn = {09252312},
url = {http://linkinghub.elsevier.com/retrieve/pii/S0925231298000897},
doi = {10.1016/S0925-2312(98)00089-7},
language = {en},
number = {1-3},
urldate = {2016-11-05},
journal = {Neurocomputing},
author = {Mak, M.W. and Ku, K.W. and Lu, Y.L.},
month = feb,
year = {1999},
pages = {13--36},
file = {MakKuLu.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/AXCZBVPS/MakKuLu.pdf:application/pdf}
}
@article{graves_generating_2013,
title = {Generating sequences with recurrent neural networks},
url = {https://arxiv.org/abs/1308.0850},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1308.0850},
author = {Graves, Alex},
year = {2013},
file = {1308.0850.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/H93SR68Q/1308.0850.pdf:application/pdf}
}
@inproceedings{sutskever_generating_2011,
title = {Generating text with recurrent neural networks},
url = {http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf},
urldate = {2017-03-22},
booktitle = {Proceedings of the 28th {International} {Conference} on {Machine} {Learning} ({ICML}-11)},
author = {Sutskever, Ilya and Martens, James and Hinton, Geoffrey E.},
year = {2011},
pages = {1017--1024},
file = {LANG-RNN.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/S9TE8EAD/LANG-RNN.pdf:application/pdf}
}
@misc{sturm_infinite_2015,
title = {The {Infinite} {Irish} {Trad} {Session}},
url = {https://highnoongmt.wordpress.com/2015/08/07/the-infinite-irish-trad-session/},
abstract = {My colleague João Felipe Santos and I found some summertime to create: The Infinite Irish Trad Session Our interests converged when we both took Andrej Karpathy’s RNN code and applied it to l…},
urldate = {2017-03-22},
journal = {High Noon GMT},
author = {Sturm, Bob L.},
month = aug,
year = {2015},
file = {Snapshot:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/24DRF4T5/the-infinite-irish-trad-session.html:text/html}
}
@article{sturm_music_2016,
title = {Music transcription modelling and composition using deep learning},
url = {https://arxiv.org/abs/1604.08723},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1604.08723},
author = {Sturm, Bob L. and Santos, João Felipe and Ben-Tal, Oded and Korshunova, Iryna},
year = {2016},
file = {1604.08723.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/WV3F6E49/1604.08723.pdf:application/pdf}
}
@inproceedings{eck_finding_2002,
title = {Finding temporal structure in music: {Blues} improvisation with {LSTM} recurrent networks},
shorttitle = {Finding temporal structure in music},
url = {http://ieeexplore.ieee.org/abstract/document/1030094/},
urldate = {2017-03-22},
booktitle = {Neural {Networks} for {Signal} {Processing}, 2002. {Proceedings} of the 2002 12th {IEEE} {Workshop} on},
publisher = {IEEE},
author = {Eck, Douglas and Schmidhuber, Juergen},
year = {2002},
pages = {747--756},
file = {IDSIA-07-02.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/9G3J956E/IDSIA-07-02.pdf:application/pdf}
}
@misc{johnson_composing_2015,
title = {Composing {Music} {With} {Recurrent} {Neural} {Networks}},
url = {http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/},
abstract = {(Update: A paper based on this work has been accepted at EvoMusArt 2017! See here for more details.) It’s hard not to be blown away by the surprising power of neural networks these days. With enough training, so called “deep neural networks”, with many nodes and hidden layers, can do impressively well on modeling and predicting all kinds of data. (If you don’t know what I’m talking about, I recommend reading about recurrent character-level language models, Google Deep Dream, and neural Turing machines. Very cool stuff!) Now seems like as good a time as ever to experiment with what a neural network can do. For a while now, I’ve been floating around vague ideas about writing a program to compose music. My original idea was based on a fractal decomposition of time and some sort of repetition mechanism, but after reading more about neural networks, I decided that they would be a better fit. So a few weeks ago, I got to work designing my network. And after training for a while, I am happy to report remarkable success! Here’s a taste of things to come:},
urldate = {2017-03-22},
journal = {hexahedria},
author = {Johnson, Daniel},
month = aug,
year = {2015},
file = {Snapshot:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/NVEHIEJU/composing-music-with-recurrent-neural-networks.html:text/html}
}
@article{jaques_sequence_nodate,
title = {Sequence {Tutor}: {Conservative} {Fine}-{Tuning} of {Sequence} {Generation} {Models} with {KL}-control},
shorttitle = {Sequence {Tutor}},
url = {https://pdfs.semanticscholar.org/e963/7bbe3c34cbebd0869574e86692403735e12e.pdf},
urldate = {2017-03-22},
author = {Jaques, Natasha and Gu, Shixiang and Bahdanau, Dzmitry and Lobato, José Miguel Hernández and Turner, Richard E. and Eck, Douglas},
file = {1611.02796.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/8CSGFWHV/1611.02796.pdf:application/pdf}
}
@article{nayebi_gruv:_2015,
title = {{GRUV}: {Algorithmic} {Music} {Generation} using {Recurrent} {Neural} {Networks}},
shorttitle = {{GRUV}},
url = {http://cs224d.stanford.edu/reports/NayebiAran.pdf},
urldate = {2017-03-22},
author = {Nayebi, Aran and Vitelli, Matt},
year = {2015},
file = {NayebiAran.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/EKT6VCEE/NayebiAran.pdf:application/pdf}
}
@article{valente_network_1995,
title = {Network models of the diffusion of innovations.},
url = {http://www.popline.org/node/287430},
urldate = {2017-03-22},
author = {Valente, Thomas W.},
year = {1995},
file = {f1647680373.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/AT2WFA97/f1647680373.pdf:application/pdf}
}
@misc{johnston_using_2016,
title = {Using {LSTM} {Recurrent} {Neural} {Networks} for {Music} {Generation}},
author = {Johnston, Luke},
month = feb,
year = {2016},
file = {LSTM_RNNs_for_Music_Generation.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/GCP7IDTF/LSTM_RNNs_for_Music_Generation.pdf:application/pdf}
}
@article{valente_network_1995-1,
title = {Network models of the diffusion of innovations.},
url = {http://www.popline.org/node/287430},
urldate = {2017-03-22},
author = {Valente, Thomas W.},
year = {1995},
file = {f1647680373.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/AZWP9R65/f1647680373.pdf:application/pdf}
}
@article{chu_song_2016,
title = {Song {From} {PI}: {A} {Musically} {Plausible} {Network} for {Pop} {Music} {Generation}},
shorttitle = {Song {From} {PI}},
url = {https://arxiv.org/abs/1611.03477},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1611.03477},
author = {Chu, Hang and Urtasun, Raquel and Fidler, Sanja},
year = {2016},
file = {1611.03477v1.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/ZK2HVC5M/1611.03477v1.pdf:application/pdf}
}
@misc{liang_bachbot_2016,
title = {The {BachBot} {Challenge}: {Man} vs {Machine}},
shorttitle = {The {BachBot} {Challenge}},
url = {http://bachbot.com},
abstract = {Can you tell the real Bach apart from a creative artificial intelligence?},
urldate = {2017-03-22},
author = {Liang, Feynman and Gotham, Mark and Tomczak, Marcin and Johnson, Matthew and Shotton, Jamie},
year = {2016},
file = {Snapshot:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/KF4C586J/bachbot.com.html:text/html}
}
@misc{noauthor_ai:_2016,
title = {{AI}•{ON}: {Artificial} {Intelligence} {Open} {Network} - {Music} generation based on surprise optimization},
url = {http://ai-on.org/projects/music-generation-based-on-surprise-optimization.html},
urldate = {2017-03-22},
month = oct,
year = {2016},
file = {AI•ON\: Artificial Intelligence Open Network - Music generation based on surprise optimization:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/MHEUDWRJ/music-generation-based-on-surprise-optimization.html:text/html}
}
@misc{kim_deep_2016,
title = {Deep learning driven jazz generation},
url = {https://jisungk.github.io/deepjazz/},
abstract = {deepjazz uses Keras and Theano, two deep learning libraries, to generate jazz music. Specifically, it builds a two-layer LSTM, learning from the given MIDI file. It uses deep learning, the AI tech that powers Google's AlphaGo and IBM's Watson, to make music -- something that's considered as deeply human.},
urldate = {2017-03-22},
journal = {deepjazz.io},
author = {Kim, Ji-Sung},
year = {2016},
file = {Snapshot:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/SSQPTD6U/deepjazz.io.html:text/html}
}
@misc{wheel_robomozart:_2016,
title = {{RoboMozart}: {Generating} music using {LSTM} networks trained per-tick on a {MIDI} collection with short music segments as input.},
author = {Wheel, Jospeh},
month = jun,
year = {2016},
file = {f1647680373.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/AWKJRAAP/f1647680373.pdf:application/pdf}
}
@misc{karpathy_unreasonable_2015,
title = {The {Unreasonable} {Effectiveness} of {Recurrent} {Neural} {Networks}},
url = {http://karpathy.github.io/2015/05/21/rnn-effectiveness/},
urldate = {2017-03-22},
author = {Karpathy, Andrej},
month = may,
year = {2015},
file = {The Unreasonable Effectiveness of Recurrent Neural Networks:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/FQA99V6A/rnn-effectiveness.html:text/html}
}
@misc{araoz_training_2016,
title = {Training a {Recurrent} {Neural} {Network} to {Compose} {Music}},
url = {https://maraoz.com/2016/02/02/abc-rnn/},
urldate = {2017-03-22},
author = {Araoz, Manuel},
month = feb,
year = {2016},
file = {Training a Recurrent Neural Network to Compose Music:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/77NEFRVT/abc-rnn.html:text/html}
}
@article{van_den_oord_wavenet:_2016,
title = {Wavenet: {A} generative model for raw audio},
shorttitle = {Wavenet},
url = {https://pdfs.semanticscholar.org/df04/02517a7338ae28bc54acaac400de6b456a46.pdf},
urldate = {2017-03-23},
journal = {CoRR abs/1609.03499},
author = {van den Oord, Aäron and Dieleman, Sander and Zen, Heiga and Simonyan, Karen and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew and Kavukcuoglu, Koray},
year = {2016},
file = {1609.03499.pdf:/home/warp/.zotero/zotero/b9kiv6dt.default/zotero/storage/GRSNNM8X/1609.03499.pdf:application/pdf}
}
@misc{vasanth_kalingeri_music_2016,
title = {Music {Generation} {Using} {Deep} {Learning}},
url = {https://arxiv.org/pdf/1612.04928.pdf},
language = {English},
author = {Vasanth Kalingeri, Srikanth Grandhe},
month = dec,
year = {2016}
}