forked from elyha7/yoloface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detector.py
191 lines (175 loc) · 8.36 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import joblib
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import cv2
import copy
import scipy
import pathlib
import warnings
from math import sqrt
sys.path.append(os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))
from models.common import Conv
from models.yolo import Model
from utils.datasets import letterbox
from utils.preprocess_utils import align_faces
from utils.general import check_img_size, non_max_suppression_face, \
scale_coords,scale_coords_landmarks,filter_boxes
class YoloDetector:
def __init__(self, weights_name='yolov5n_state_dict.pt', config_name='yolov5n.yaml', device='cuda:0', min_face=100, target_size=None, frontal=False):
"""
weights_name: name of file with network weights in weights/ folder.
config_name: name of .yaml config with network configuration from models/ folder.
gpu : pytorch device. Use 'cuda:0', 'cuda:1', e.t.c to use gpu or 'cpu' to use cpu.
min_face : minimal face size in pixels.
target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080. Choose None for original resolution.
frontal : if True tries to filter nonfrontal faces by keypoints location.
"""
self._class_path = pathlib.Path(__file__).parent.absolute()#os.path.dirname(inspect.getfile(self.__class__))
self.device = device
self.target_size = target_size
self.min_face = min_face
self.frontal = frontal
if self.frontal:
print('Currently unavailable')
# self.anti_profile = joblib.load(os.path.join(self._class_path, 'models/anti_profile/anti_profile_xgb_new.pkl'))
self.detector = self.init_detector(weights_name,config_name)
def init_detector(self,weights_name,config_name):
print(self.device)
model_path = os.path.join(self._class_path,'weights/',weights_name)
print(model_path)
config_path = os.path.join(self._class_path,'models/',config_name)
state_dict = torch.load(model_path)
detector = Model(cfg=config_path)
detector.load_state_dict(state_dict)
detector = detector.to(self.device).float().eval()
for m in detector.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
return detector
def _preprocess(self,imgs):
"""
Preprocessing image before passing through the network. Resize and conversion to torch tensor.
"""
pp_imgs = []
for img in imgs:
h0, w0 = img.shape[:2] # orig hw
if self.target_size:
r = self.target_size / min(h0, w0) # resize image to img_size
if r < 1:
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
img = letterbox(img, new_shape=imgsz)[0]
pp_imgs.append(img)
pp_imgs = np.array(pp_imgs)
pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
pp_imgs = pp_imgs.float() # uint8 to fp16/32
pp_imgs /= 255.0 # 0 - 255 to 0.0 - 1.0
return pp_imgs
def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
"""
Postprocessing of raw pytorch model output.
Returns:
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
"""
bboxes = [[] for i in range(len(origimgs))]
landmarks = [[] for i in range(len(origimgs))]
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
for i in range(len(origimgs)):
img_shape = origimgs[i].shape
h,w = img_shape[:2]
gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
det = pred[i].cpu()
scaled_bboxes = scale_coords(imgs[i].shape[1:], det[:, :4], img_shape).round()
scaled_cords = scale_coords_landmarks(imgs[i].shape[1:], det[:, 5:15], img_shape).round()
for j in range(det.size()[0]):
box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
box = list(map(int,[box[0]*w,box[1]*h,box[2]*w,box[3]*h]))
if box[3] - box[1] < self.min_face:
continue
lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
lm = list(map(int,[i*w if j%2==0 else i*h for j,i in enumerate(lm)]))
lm = [lm[i:i+2] for i in range(0,len(lm),2)]
bboxes[i].append(box)
landmarks[i].append(lm)
return bboxes, landmarks
def get_frontal_predict(self, box, points):
'''
Make a decision whether face is frontal by keypoints.
Returns:
True if face is frontal, False otherwise.
'''
cur_points = points.astype('int')
x1, y1, x2, y2 = box[0:4]
w = x2-x1
h = y2-y1
diag = sqrt(w**2+h**2)
dist = scipy.spatial.distance.pdist(cur_points)/diag
predict = self.anti_profile.predict(dist.reshape(1, -1))[0]
if predict == 0:
return True
else:
return False
def align(self, img, points):
'''
Align faces, found on images.
Params:
img: Single image, used in predict method.
points: list of keypoints, produced in predict method.
Returns:
crops: list of croped and aligned faces of shape (112,112,3).
'''
crops = [align_faces(img,landmark=np.array(i)) for i in points]
return crops
def predict(self, imgs, conf_thres = 0.3, iou_thres = 0.5):
'''
Get bbox coordinates and keypoints of faces on original image.
Params:
imgs: image or list of images to detect faces on
conf_thres: confidence threshold for each prediction
iou_thres: threshold for NMS (filtering of intersecting bboxes)
Returns:
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
'''
one_by_one = False
# Pass input images through face detector
if type(imgs) != list:
images = [imgs]
else:
images = imgs
one_by_one = False
shapes = {arr.shape for arr in images}
if len(shapes) != 1:
one_by_one = True
warnings.warn(f"Can't use batch predict due to different shapes of input images. Using one by one strategy.")
origimgs = copy.deepcopy(images)
if one_by_one:
images = [self._preprocess([img]) for img in images]
bboxes = [[] for i in range(len(origimgs))]
points = [[] for i in range(len(origimgs))]
for num, img in enumerate(images):
with torch.inference_mode(): # change this with torch.no_grad() for pytorch <1.8 compatibility
single_pred = self.detector(img)[0]
print(single_pred.shape)
bb, pt = self._postprocess(img, [origimgs[num]], single_pred, conf_thres, iou_thres)
#print(bb)
bboxes[num] = bb[0]
points[num] = pt[0]
else:
images = self._preprocess(images)
with torch.inference_mode(): # change this with torch.no_grad() for pytorch <1.8 compatibility
pred = self.detector(images)[0]
bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
return bboxes, points
def __call__(self,*args):
return self.predict(*args)
if __name__=='__main__':
a = YoloDetector()