forked from Harryqu123/LMC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtinyimagenet_eval_msp.py
236 lines (198 loc) · 10.9 KB
/
tinyimagenet_eval_msp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import torch
import os
from dataloaders.ZO_Clip_loaders import tinyimage_single_isolated_class_loader, tiny_single_isolated_class_dino_loader, tinyimage_semantic_spit_generator
from clip.simple_tokenizer import SimpleTokenizer as clip_tokenizer
from tqdm import tqdm
import numpy as np
from sklearn.metrics import roc_auc_score
import json
from datetime import datetime
import sys
from utils_.utils_ import Logger, compute_oscr
from utils_.clip_utils import tokenize_for_clip
from utils_.dino_utils import extract_features
import time
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser("tiny imagenet eval")
parser.add_argument("--gpu_devices", default=1, help="gpu device")
parser.add_argument("--k_images", default=10, type=int)
parser.add_argument("--save_dir", default="output/tiny_imagenet")
parser.add_argument("--image_path", default="output/self_debug/keep")
def image_decoder(clip_model, dino_model, stored_features, k_images, device, image_loaders, split, chatgpt_manual_similar_label, detailed_labels=None):
seen_labels = split[:20]
if detailed_labels is not None:
seen_descriptions = [f"This is a photo of a {detailed_labels[label]}" for label in seen_labels]
else:
seen_descriptions = [f"This is a photo of a {label}" for label in seen_labels]
n_seen = sum([len(image_loaders[label]) for label in seen_labels])
n_unseen = sum([len(image_loaders[label]) for label in split[20:]])
targets = torch.tensor(n_seen*[0] + n_unseen*[1])
clip_ood_probs_sum = []
dino_ood_probs_sum = []
clip_closeset_probs_sum = []
dino_closeset_probs_sum = []
closeset_labels_list = []
for i, semantic_label in tqdm(enumerate(split)):
if semantic_label in seen_labels:
close_set = True
else:
close_set = False
loader = image_loaders[semantic_label]
# Prepare for dino
total_labels = seen_labels + chatgpt_manual_similar_label
total_features = []
for i in total_labels:
if i in stored_features:
feats = stored_features[i]
else:
feats = None
if feats is not None:
if feats.shape[0] < k_images:
k = feats.shape[0]
k_short = k_images - k
n = k_short // k
p = k_short % k
stack_feat = [feats for n_ in range(n + 1)]
stack_feat.append(feats[:p, ...])
feats = torch.cat(stack_feat, dim=0)
assert feats.shape[0] == k_images
total_features.append(feats)
else:
if i in seen_labels:
raise NotImplementedError("no image for class {}".format(i))
total_features = torch.cat(total_features, dim=0)
total_features = total_features.t() # (d, k_images * k_class)
for idx, image in enumerate(loader):
# CLIP Alignment
all_desc = seen_descriptions + [f"This is a photo of a {label}" for label in chatgpt_manual_similar_label]
all_desc_ids = tokenize_for_clip(all_desc, cliptokenizer)
with torch.no_grad():
image_feature = clip_model.encode_image(image.cuda()).float()
image_feature /= image_feature.norm(dim=-1, keepdim=True)
text_features = clip_model.encode_text(all_desc_ids.cuda()).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
zeroshot_probs = (100.0 * image_feature @ text_features.T).softmax(dim=-1).squeeze()
clip_ood_prob_sum = zeroshot_probs[:20].detach().cpu().numpy()
clip_ood_probs_sum.append(clip_ood_prob_sum)
# DINO Alignment
with torch.no_grad():
image = image.cuda()
feats = dino_model(image)
feats = torch.nn.functional.normalize(feats, dim=1, p=2)
# softmax then take sum (avg) for each class
zeroshot_probs_dino = (100.0 * feats @ total_features)
zeroshot_probs_dino_cls = zeroshot_probs_dino.split(k_images, dim=-1)
zeroshot_probs_dino_cls = torch.tensor([torch.mean(zeroshot_probs_dino_cls[i]) for i in range(len(total_labels))]).softmax(dim=-1).squeeze()
ood_prob_sum_dino = zeroshot_probs_dino_cls[:len(seen_labels)].detach().cpu().numpy()
dino_ood_probs_sum.append(ood_prob_sum_dino)
if close_set:
# CLIP
with torch.no_grad():
seen_desc_ids = tokenize_for_clip(seen_descriptions, cliptokenizer)
seen_text_feature = clip_model.encode_text(seen_desc_ids.cuda()).float()
seen_text_feature /= seen_text_feature.norm(dim=-1, keepdim=True)
clip_closeset_probs = (100.0 * image_feature @ seen_text_feature.T).softmax(dim=-1).squeeze()
clip_closeset_probs_sum.append(clip_closeset_probs.detach().cpu().numpy())
closeset_labels_list.append(seen_labels.index(semantic_label))
# DINO
closeset_probs_dino = (100.0 * feats @ total_features[:, :len(seen_labels*k_images)])
closeset_probs_dino_per_cls_ = closeset_probs_dino.split(k_images, dim=1)
closeset_probs_dino_per_cls = torch.tensor([torch.mean(closeset_probs_dino_per_cls_[i]) for i in range(len(seen_labels))])
closeset_probs_dino = closeset_probs_dino_per_cls.softmax(dim=-1).squeeze()
dino_closeset_probs_sum.append(closeset_probs_dino.detach().cpu().numpy())
prob = 0.6
ood_probs_sum_ = [a * prob + b * (1 - prob) for (a, b) in zip(clip_ood_probs_sum, dino_ood_probs_sum)]
ood_probs_sum = [1 - max(ood_probs_sum_[ii]) for ii in range(len(ood_probs_sum_))]
auc_sum = roc_auc_score(np.array(targets), np.squeeze(ood_probs_sum))
closeset_probs_sum = [a * prob + b * (1 - prob) for (a, b) in zip(clip_closeset_probs_sum, dino_closeset_probs_sum)]
closeset_preds_list = []
for closeset_prob in closeset_probs_sum:
closeset_pred = np.argmax(closeset_prob, axis=-1)
closeset_pred_label = seen_labels[closeset_pred]
closeset_preds_list.append(seen_labels.index(closeset_pred_label))
closeset_preds_list = np.array(closeset_preds_list)
closeset_labels_list = np.array(closeset_labels_list)
oscr = compute_oscr(np.squeeze(ood_probs_sum)[:n_seen], np.squeeze(ood_probs_sum)[n_seen:], closeset_preds_list, closeset_labels_list)
print('AUROC = {}, OSCR = {}'.format(auc_sum, oscr))
return auc_sum, oscr
if __name__ == '__main__':
args = parser.parse_args()
k_images = args.k_images
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
time_str = datetime.strftime(datetime.now(), '%Y-%m-%d-%H:%M:%S')
sys.stdout = Logger(os.path.join(args.save_dir, 'eval_{}.log'.format(time_str)))
print('settings:')
print(args)
# prepare dino model
dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitb14")
dino_model.cuda()
state_dict = torch.load("pretrained_model/dinov2_vitb14_pretrain.pth", map_location='cpu')
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = dino_model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at pretrained_model/dinov2_vitb14_pretrain.pth and loaded with msg: {}'.format(msg))
dino_model.eval()
# prepare clip model
# initialize tokenizers for clip and bert, these two use different tokenizers
clip_model = torch.jit.load("pretrained_model/ViT-B-32.pt").to(device).eval()
cliptokenizer = clip_tokenizer()
chatgpt_dict = json.load(open('chat_json/tinyimagenet.json'))
chatgpt_labels = []
virtual_labels = []
for i in range(5):
virtual_labels.append(chatgpt_dict[str(i)])
chatgpt_labels += chatgpt_dict[str(i)]
chatgpt_labels = list(set(chatgpt_labels))
all_seen_labels = []
semantic_splits, _ = tinyimage_semantic_spit_generator()
for split in semantic_splits:
all_seen_labels += split[:20]
all_seen_labels = list(set(all_seen_labels))
stored_features_list = []
for i in range(5):
labels = virtual_labels[i]
labels += semantic_splits[i][:20]
image_root = os.path.join(args.image_path, str(i))
classes = os.listdir(image_root)
for l in labels:
if l not in classes:
labels.remove(l)
tiny_dino_loaders, tiny_dino_labels = tiny_single_isolated_class_dino_loader(tiny_dino_labels=labels, root=image_root)
stored_features = {}
for idx_lable, semantic_label in enumerate(tiny_dino_labels):
print("Extracting features {} {}/{}".format(semantic_label, idx_lable, len(tiny_dino_labels)))
if semantic_label not in tiny_dino_loaders:
continue
stored_features[semantic_label] = extract_features(dino_model, tiny_dino_loaders[semantic_label], k_images)
print("Finish storing features")
stored_features_list.append(stored_features)
splits, detailed_labels, tinyimg_loaders = tinyimage_single_isolated_class_loader()
print('seen splits:')
for split in splits:
print(split[:20])
auc_scores = []
oscr_scores = []
for index, split in enumerate(splits):
chatgpt_labels = virtual_labels[index]
stored_features = stored_features_list[index]
auc_list_sum_per_split, oscr_list_sum_per_split = image_decoder(clip_model=clip_model,
dino_model=dino_model,
stored_features=stored_features,
k_images=k_images,
device=device,
image_loaders=tinyimg_loaders,
split=split,
chatgpt_manual_similar_label=chatgpt_labels,
detailed_labels=None)
auc_scores.append(auc_list_sum_per_split)
oscr_scores.append(oscr_list_sum_per_split)
prob = 0.6
print('Average over 5 splits:')
print(' AUROC: {} +/- {}, {}'.format(np.mean(auc_scores), np.std(auc_scores), auc_scores))
print(' OSCR: {} +/- {}, {}'.format(np.mean(oscr_scores), np.std(oscr_scores), oscr_scores))