-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathfinetune.py
92 lines (80 loc) · 3.27 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import torch
from pycocotools import coco
import queue
import threading
from model_video import build_model, weights_init
from tools import custom_print
from train import train_finetune_with_flow,train_finetune
from val import validation
import time
import datetime
import collections
from torch.utils.data import DataLoader
import argparse
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
# train_val_config
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='./models/image_best.pth',help="restore checkpoint")
parser.add_argument('--use_flow',default=False, help="dataset for evaluation")
parser.add_argument('--img_size',default=224, help="size of input image")
parser.add_argument('--lr',default=1e-5, help="learning rate")
parser.add_argument('--lr_de',default=20000, help="learning rate decay")
parser.add_argument('--batch_size',default=4, help="batch size")
parser.add_argument('--group_size',default=5, help="group size")
parser.add_argument('--epochs',default=100000, help="epoch")
parser.add_argument('--train_datapath',default='../videoframe', help="training dataset")
parser.add_argument('--val_datapath',default='../cosadatasets/FBMS_flow', help="training dataset")
args = parser.parse_args()
train_datapath = args.train_datapath
val_datapath = [args.val_datapath]
# project config
project_name = 'UFO'
device = torch.device('cuda:0')
img_size = args.img_size
lr = args.lr
lr_de = args.lr_de
epochs = args.epochs
batch_size = args.batch_size
group_size = args.group_size
log_interval = 100
val_interval = 1000
use_flow=args.use_flow
if use_flow:
from model_video_flow import build_model, weights_init
# create log dir
log_root = './logs'
if not os.path.exists(log_root):
os.makedirs(log_root)
# create log txt
log_txt_file = os.path.join(log_root, project_name + '_log.txt')
custom_print(project_name, log_txt_file, 'w')
# create model save dir
models_root = './models'
if not os.path.exists(models_root):
os.makedirs(models_root)
models_train_last = os.path.join(models_root, project_name + '_last_ft.pth')
models_train_best = os.path.join(models_root, project_name + '_best_ft.pth')
# continute load checkpoint
model_path = args.model
gpu_id='cuda:0'
device = torch.device(gpu_id)
net = build_model(device) #.to(device)
for p in net.sp1[0].parameters():
p.requires_grad=False
for p in net.sp2[0].parameters():
p.requires_grad=False
for p in net.cls[0].parameters():
p.requires_grad=False
for p in net.cls_m[0].parameters():
p.requires_grad=False
net=net.to(device)
net=torch.nn.DataParallel(net)
state_dict=torch.load(model_path, map_location=gpu_id)
net.load_state_dict(state_dict)
net.train()
if use_flow==False:
train_finetune(net, train_datapath , device, batch_size, log_txt_file, val_datapath, models_train_best, models_train_last, lr, lr_de, epochs, log_interval, val_interval)
else:
train_finetune_with_flow(net, train_datapath , device, batch_size, log_txt_file, val_datapath, models_train_best, models_train_last, lr, lr_de, epochs, log_interval, val_interval)