-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain.py
221 lines (193 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from loss import Loss
from torch.optim import Adam
from tools import custom_print
import datetime
import torch
from val import validation,validation_with_flow
from torch.utils.data import DataLoader
from data_processed import VideoDataset
def train(net, device, q, log_txt_file, val_datapath, models_train_best, models_train_last, lr=1e-4, lr_de_epoch=25000,
epochs=100000, log_interval=100, val_interval=1000):
optimizer = Adam(net.parameters(), lr, weight_decay=1e-6)
loss = Loss().cuda()
best_p, best_j = 0, 1
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
for epoch in range(1, epochs+1):
img, cls_gt, mask_gt = q.get()
net.zero_grad()
img, cls_gt, mask_gt = img.cuda(), cls_gt.cuda(), mask_gt.cuda()
pred_cls, pred_mask = net(img)
all_loss, m_loss, c_loss, s_loss, iou_loss = loss(pred_mask, mask_gt, pred_cls, cls_gt)
all_loss.backward()
epoch_loss = all_loss.item()
m_l = m_loss.item()
c_l = c_loss.item()
s_l = s_loss.item()
i_l = iou_loss.item()
ave_loss += epoch_loss
ave_m_loss += m_l
ave_c_loss += c_l
ave_s_loss += s_l
ave_i_loss += i_l
optimizer.step()
if epoch % log_interval == 0:
ave_loss = ave_loss / log_interval
ave_m_loss = ave_m_loss / log_interval
ave_c_loss = ave_c_loss / log_interval
ave_s_loss = ave_s_loss / log_interval
ave_i_loss = ave_i_loss / log_interval
custom_print(datetime.datetime.now().strftime('%F %T') +
' lr: %e, epoch: [%d/%d], all_loss: [%.4f], m_loss: [%.4f], c_loss: [%.4f], s_loss: [%.4f], i_loss: [%.4f]' %
(lr, epoch, epochs, ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss), log_txt_file, 'a+')
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
if epoch % val_interval == 0:
net.eval()
with torch.no_grad():
custom_print(datetime.datetime.now().strftime('%F %T') +
' now is evaluating the coseg dataset', log_txt_file, 'a+')
ave_p, ave_j = validation(net, val_datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png'])
if ave_p[3] > best_p:
# follow yourself save condition
best_p = ave_p[3]
best_j = ave_j[0]
torch.save(net.state_dict(), models_train_best)
torch.save(net.state_dict(), models_train_last)
custom_print('-' * 100, log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' iCoseg8 p: [%.4f], j: [%.4f]' %
(ave_p[0], ave_j[0]), log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' MSRC7 p: [%.4f], j: [%.4f]' %
(ave_p[1], ave_j[1]), log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' Int_300 p: [%.4f], j: [%.4f]' %
(ave_p[2], ave_j[2]), log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' PAS_VOC p: [%.4f], j: [%.4f]' %
(ave_p[3], ave_j[3]), log_txt_file, 'a+')
custom_print('-' * 100, log_txt_file, 'a+')
net.train()
if epoch % lr_de_epoch == 0:
optimizer = Adam(net.parameters(), lr/2, weight_decay=1e-6)
lr = lr / 2
def train_finetune(net, data_path,device, bs, log_txt_file, val_datapath, models_train_best, models_train_last, lr=1e-4, lr_de_epoch=25000,
epochs=100000, log_interval=100, val_interval=1000):
optimizer = Adam(net.parameters(), lr, weight_decay=1e-6)
train_loader=DataLoader(VideoDataset(data_path,epochs*bs,use_flow=False), num_workers=4,
batch_size=bs, shuffle=True, drop_last=False,pin_memory=False)
loss = Loss().cuda()
best_p, best_j = 0, 1
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
epoch=0
for data,mask in train_loader:
epoch+=1
data=data.view(-1,data.shape[2],data.shape[3],data.shape[4])
mask=mask.view(-1,mask.shape[2],mask.shape[3])
img,cls_gt, mask_gt = data,torch.rand(bs,78),mask
net.zero_grad()
img, cls_gt, mask_gt = img.cuda(), cls_gt.cuda(), mask_gt.cuda()
pred_cls, pred_mask = net(img)
all_loss, m_loss, c_loss, s_loss, iou_loss = loss(pred_mask, mask_gt, pred_cls, cls_gt)
all_loss.backward()
epoch_loss = all_loss.item()
m_l = m_loss.item()
c_l = c_loss.item()
s_l = s_loss.item()
i_l = iou_loss.item()
ave_loss += epoch_loss
ave_m_loss += m_l
ave_c_loss += c_l
ave_s_loss += s_l
ave_i_loss += i_l
optimizer.step()
if epoch % log_interval == 0:
ave_loss = ave_loss / log_interval
ave_m_loss = ave_m_loss / log_interval
ave_c_loss = ave_c_loss / log_interval
ave_s_loss = ave_s_loss / log_interval
ave_i_loss = ave_i_loss / log_interval
custom_print(datetime.datetime.now().strftime('%F %T') +
' lr: %e, epoch: [%d/%d], all_loss: [%.4f], m_loss: [%.4f], c_loss: [%.4f], s_loss: [%.4f], i_loss: [%.4f]' %
(lr, epoch, epochs, ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss), log_txt_file, 'a+')
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
if epoch % val_interval == 0:
net.eval()
with torch.no_grad():
custom_print(datetime.datetime.now().strftime('%F %T') +
' now is evaluating the coseg dataset', log_txt_file, 'a+')
ave_p, ave_j = validation(net, val_datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png'])
if ave_p[0] > best_p:
# follow yourself save condition
best_p = ave_p[0]
best_j = ave_j[0]
torch.save(net.state_dict(), models_train_best)
torch.save(net.state_dict(), models_train_last)
custom_print('-' * 100, log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' DAVIS p: [%.4f], j: [%.4f]' %
(ave_p[0], ave_j[0]), log_txt_file, 'a+')
custom_print('-' * 100, log_txt_file, 'a+')
net.train()
if epoch % lr_de_epoch == 0:
optimizer = Adam(net.parameters(), lr/2, weight_decay=1e-6)
lr = lr / 2
def train_finetune_with_flow(net, data_path,device, bs, log_txt_file, val_datapath, models_train_best, models_train_last, lr=1e-4, lr_de_epoch=25000,
epochs=100000, log_interval=100, val_interval=1000):
optimizer = Adam(net.parameters(), lr, weight_decay=1e-6)
train_loader=DataLoader(VideoDataset(data_path,epochs*bs,use_flow=True), num_workers=4,
batch_size=bs, shuffle=True, drop_last=False,pin_memory=False)
loss = Loss().cuda()
best_p, best_j = 0, 1
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
epoch=0
for data,flow,mask in train_loader:
epoch+=1
data=data.view(-1,data.shape[2],data.shape[3],data.shape[4])
flow=flow.view(-1,flow.shape[2],flow.shape[3],flow.shape[4])
mask=mask.view(-1,mask.shape[2],mask.shape[3])
flow=flow.cuda()
img,cls_gt, mask_gt = data,torch.rand(bs,78),mask
net.zero_grad()
img, cls_gt, mask_gt = img.cuda(), cls_gt.cuda(), mask_gt.cuda()
pred_cls,pred_mask = net(img,flow)
all_loss, m_loss, c_loss, s_loss, iou_loss = loss(pred_mask, mask_gt, pred_cls, cls_gt)
all_loss.backward()
epoch_loss = all_loss.item()
m_l = m_loss.item()
c_l = c_loss.item()
s_l = s_loss.item()
i_l = iou_loss.item()
ave_loss += epoch_loss
ave_m_loss += m_l
ave_c_loss += c_l
ave_s_loss += s_l
ave_i_loss += i_l
optimizer.step()
if epoch % log_interval == 0:
ave_loss = ave_loss / log_interval
ave_m_loss = ave_m_loss / log_interval
ave_c_loss = ave_c_loss / log_interval
ave_s_loss = ave_s_loss / log_interval
ave_i_loss = ave_i_loss / log_interval
custom_print(datetime.datetime.now().strftime('%F %T') +
' lr: %e, epoch: [%d/%d], all_loss: [%.4f], m_loss: [%.4f], c_loss: [%.4f], s_loss: [%.4f], i_loss: [%.4f]' %
(lr, epoch, epochs, ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss), log_txt_file, 'a+')
ave_loss, ave_m_loss, ave_c_loss, ave_s_loss, ave_i_loss = 0, 0, 0, 0, 0
if epoch % val_interval == 0:
net.eval()
with torch.no_grad():
custom_print(datetime.datetime.now().strftime('%F %T') +
' now is evaluating the coseg dataset', log_txt_file, 'a+')
ave_p, ave_j = validation_with_flow(net, val_datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png'])
if ave_p[0] > best_p:
# follow yourself save condition
best_p = ave_p[0]
best_j = ave_j[0]
torch.save(net.state_dict(), models_train_best)
torch.save(net.state_dict(), models_train_last)
custom_print('-' * 100, log_txt_file, 'a+')
custom_print(datetime.datetime.now().strftime('%F %T') + ' DAVIS p: [%.4f], j: [%.4f]' %
(ave_p[0], ave_j[0]), log_txt_file, 'a+')
custom_print('-' * 100, log_txt_file, 'a+')
net.train()
if epoch % lr_de_epoch == 0:
optimizer = Adam(net.parameters(), lr/2, weight_decay=1e-6)
lr = lr / 2