-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE_sentiment_analysis.py
317 lines (285 loc) · 12.8 KB
/
E_sentiment_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import pandas as pd
import re
from nltk import word_tokenize
from nltk.corpus import stopwords
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
import nltk
nltk.download('punkt')
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
df = pd.read_csv('data/B_processed_dataset/combined_dataset.csv')
lengths1 = df['text'].str.split().apply(len)
sns.set_theme(style="whitegrid")
plt.figure(figsize=(12, 8))
sns.histplot(lengths1, bins=50, kde=True, color="skyblue", alpha=0.6, edgecolor='black')
mean_length1 = lengths1.mean()
plt.axvline(mean_length1, color='red', linestyle='dashed', linewidth=2, label=f'Mean text length: {mean_length1:.2f}')
plt.xticks(np.arange(0, lengths1.max() + 10, 10)) # Adjust the max value accordingly if necessary
plt.xlabel('Length of Text (in words)', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.legend(fontsize=12)
plt.tight_layout()
plt.savefig('figures/tweet_lengths.png', dpi=300)
# 54 keywords in total
medication_keywords=[
'topiramate', 'topamax', 'propranolol', 'inderal', 'atenolol', 'tenormin', 'metoprolol', 'toprol',
'amitriptyline', 'elavil', 'nortriptyline', 'pamelor', 'onabotulinumtoxina', 'botox', 'erenumab',
'aimovig', 'galcanezumab', 'emgality', 'fremanezumab', 'ajovy', 'eptinezumab', 'vyepti', 'atogepant',
'qulipta', 'rimegepant', 'nurtec', 'sumatriptan', 'imitrex', 'rizatriptan', 'maxalt', 'eletriptan',
'relpax', 'naratriptan', 'amerge', 'frovatriptan', 'frova', 'zolmitriptan', 'zomig', 'almotriptan',
'axert', 'ubrogepant', 'ubrelvy', 'rimegepant', 'nurtec', 'zavegepant', 'zavzpret', 'lasmiditan',
'reyvow', 'dihydroergotamine', 'dhe', 'migranal', 'trudhesa', 'ergotamine', 'cafergot'
]
med_group_mapping = {
'topamax': 'antiseizure medications',
'topiramate': 'antiseizure medications',
'inderal': 'beta blockers',
'propranolol': 'beta blockers',
'tenormin': 'beta blockers',
'atenolol': 'beta blockers',
'toprol': 'beta blockers',
'metoprolol': 'beta blockers',
'elavil': 'tricyclic antidepressants',
'amitriptyline': 'tricyclic antidepressants',
'pamelor': 'tricyclic antidepressants',
'nortriptyline': 'tricyclic antidepressants',
'botox': 'onabotulinumtoxina (botox)',
'onabotulinumtoxina': 'onabotulinumtoxina (botox)',
'aimovig': 'cgrp monoclonal antibodies',
'erenumab': 'cgrp monoclonal antibodies',
'emgality': 'cgrp monoclonal antibodies',
'galcanezumab': 'cgrp monoclonal antibodies',
'ajovy': 'cgrp monoclonal antibodies',
'fremanezumab': 'cgrp monoclonal antibodies',
'vyepti': 'cgrp monoclonal antibodies',
'eptinezumab': 'cgrp monoclonal antibodies',
'qulipta': 'gepants',
'atogepant': 'gepants',
'nurtec': 'gepants',
'rimegepant': 'gepants',
'imitrex': 'triptans',
'sumatriptan': 'triptans',
'maxalt': 'triptans',
'rizatriptan': 'triptans',
'relpax': 'triptans',
'eletriptan': 'triptans',
'amerge': 'triptans',
'naratriptan': 'triptans',
'frova': 'triptans',
'frovatriptan': 'triptans',
'zomig': 'triptans',
'zolmitriptan': 'triptans',
'axert': 'triptans',
'almotriptan': 'triptans',
'ubrelvy': 'gepants',
'ubrogepant': 'gepants',
'zavzpret': 'gepants',
'zavegepant': 'gepants',
'reyvow': 'ditan',
'lasmiditan': 'ditan',
'dhe': 'ergots',
'dihydroergotamine': 'ergots',
'migranal': 'ergots',
'trudhesa': 'ergots',
'cafergot': 'ergots',
'ergotamine': 'ergots'
}
# medication_type_mapping = {
# 'antiseizure medications': 'migraine preventive medications',
# 'beta blockers': 'migraine preventive medications',
# 'tricyclic antidepressants': 'migraine preventive medications',
# 'onabotulinumtoxina (botox)': 'migraine preventive medications',
# 'cgrp monoclonal antibodies': 'migraine preventive medications',
# 'gepants': 'migraine acute medications', # Note that Gepants appears in both Preventive and Acute
# 'triptans': 'migraine acute medications',
# 'ditan': 'migraine acute medications',
# 'ergots': 'migraine acute medications'
# }
medication_type_mapping = {
'topiramate': 'migraine preventive medication',
'propranolol': 'migraine preventive medication',
'atenolol': 'migraine preventive medication',
'metoprolol': 'migraine preventive medication',
'amitriptyline': 'migraine preventive medication',
'nortriptyline': 'migraine preventive medication',
'onabotulinumtoxina': 'migraine preventive medication',
'erenumab': 'migraine preventive medication',
'galcanezumab': 'migraine preventive medication',
'fremanezumab': 'migraine preventive medication',
'eptinezumab': 'migraine preventive medication',
'atogepant': 'migraine preventive medication',
'rimegepant': 'migraine preventive medication',
'sumatriptan': 'migraine acute medication',
'rizatriptan': 'migraine acute medication',
'eletriptan': 'migraine acute medication',
'naratriptan': 'migraine acute medication',
'frovatriptan': 'migraine acute medication',
'zolmitriptan': 'migraine acute medication',
'almotriptan': 'migraine acute medication',
'ubrogepant': 'migraine acute medication',
'rimegepant': 'migraine acute medication',
'zavegepant': 'migraine acute medication',
'lasmiditan': 'migraine acute medication',
'dihydroergotamine': 'migraine acute medication',
'ergotamine': 'migraine acute medication'
}
# Dictionary mapping brand names to generic names
brand_to_generic = {
"topamax": "topiramate",
"inderal": "propranolol",
"tenormin": "atenolol",
"toprol": "metoprolol",
"elavil": "amitriptyline",
"pamelor": "nortriptyline",
"botox": "onabotulinumtoxina",
"aimovig": "erenumab",
"emgality": "galcanezumab",
"ajovy": "fremanezumab",
"vyepti": "eptinezumab",
"qulipta": "atogepant",
"nurtec": "rimegepant",
"imitrex": "sumatriptan",
"maxalt": "rizatriptan",
"relpax": "eletriptan",
"amerge": "naratriptan",
"frova": "frovatriptan",
"zomig": "zolmitriptan",
"axert": "almotriptan",
"ubrelvy": "ubrogepant",
"zavzpret": "zavegepant",
"reyvow": "lasmiditan",
"dhe": "dihydroergotamine",
"migranal": "dihydroergotamine",
"trudhesa": "dihydroergotamine",
"cafergot": "ergotamine"
}
def sentiment_score(text):
return analyzer.polarity_scores(text)['compound']
# Function to find medication keywords using regex
def find_keywords(text):
words = set(word.lower() for word in re.findall(r'\b\w+\b', text))
found_keywords = {keyword for keyword in medication_keywords if keyword in words}
return ', '.join(found_keywords)
# Function to map keywords to medication groups
def map_to_med_group(keywords):
if keywords:
groups = {med_group_mapping[keyword] for keyword in keywords.split(', ') if keyword in med_group_mapping}
return ', '.join(groups)
return ''
def convert_brand_to_generic(keywords):
# Split keywords by comma and strip spaces
keywords_list = keywords.split(', ')
# Replace brand names with generic names
generic_list = [brand_to_generic.get(keyword, keyword) for keyword in keywords_list]
# Join the list back into a string
return ', '.join(generic_list)
# Function to classify as preventive or acute medication
def classify_medication_type(groups):
if groups:
types = {medication_type_mapping[group] for group in groups.split(', ') if group in medication_type_mapping}
return ', '.join(types)
return ''
df['text'] = df['text'].str.lower() # Convert entire text column to lowercase
df['sentiment_score'] = df['text'].apply(sentiment_score)
df['matched_keywords'] = df['text'].apply(find_keywords)
df['generic_keywords'] = df['matched_keywords'].apply(convert_brand_to_generic)
df['med_group'] = df['matched_keywords'].apply(map_to_med_group)
df['prev_acute'] = df['generic_keywords'].apply(classify_medication_type)
df.to_csv('results/migraine_med_sentiments.csv', index=False)
print("migraine_med_sentiments.csv file saved in results folder!")
def count_keywords(keyword_column):
"""Counts occurrences of each keyword in the keyword column of the DataFrame."""
keyword_counts = {}
for keywords in keyword_column:
for keyword in keywords.split(', '):
if keyword: # This checks if the keyword is not an empty string
if keyword in keyword_counts:
keyword_counts[keyword] += 1
else:
keyword_counts[keyword] = 1
return keyword_counts
# Count the keywords using the function
keyword_counts = count_keywords(df['generic_keywords'])
keyword_counts = {key: val for key, val in keyword_counts.items() if val > 0}
print(keyword_counts)
plt.figure(figsize=(12, 8))
plt.barh(list(keyword_counts.keys()), list(keyword_counts.values()), color='blue')
plt.ylabel('Medication Keywords', fontsize=12) # Adjusted to be the y-axis label
plt.xlabel('Frequency', fontsize=12) # Adjusted to be the x-axis label
plt.title('Frequency of Generic Migraine Medication in Texts', fontsize=16)
plt.yticks(rotation=0) # Ensures y-axis labels are horizontal (might not be necessary)
plt.tight_layout() # Automatically adjust subplot parameters to give specified padding
plt.grid(True)
plt.savefig('figures/freq_medication_keywords.png')
med_group = count_keywords(df['med_group'])
# print(med_group)
plt.figure(figsize=(12, 8))
plt.barh(list(med_group.keys()), list(med_group.values()), color='blue')
plt.ylabel('Medication Groups', fontsize=12)
plt.xlabel('Frequency', fontsize=12)
plt.title('Frequency of Each Medication Group in Texts', fontsize=16)
plt.xticks(rotation=0) # Rotate x-axis labels for better visibility
plt.tight_layout() # Automatically adjust subplot parameters to give specified padding
plt.grid(True)
plt.savefig('figures/freq_medication_groups.png')
group_type = count_keywords(df['prev_acute'])
# print(group_type)
plt.figure(figsize=(12, 8))
plt.bar(group_type.keys(), group_type.values(), color='blue')
plt.xlabel('Medication Medication', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.title('Preventive v/s Acute Migraine Medications', fontsize=16)
plt.tight_layout() # Automatically adjust subplot parameters to give specified padding
plt.grid(True)
plt.savefig('figures/freq_medication_prev_acute.png')
# Function to expand the comma-separated entries into individual rows
def expand_rows(df, column_name):
s = df.apply(lambda x: pd.Series(x[column_name].split(',')), axis=1).stack().reset_index(level=1, drop=True)
s.name = column_name
return df.drop(column_name, axis=1).join(s)
# Expanding "matched_keywords", "med_group", and "prev_acute"
df_keywords = expand_rows(df, 'generic_keywords')
df_med_groups = expand_rows(df, 'med_group')
df_prev_acute = expand_rows(df, 'prev_acute')
# Strip extra whitespace
df_keywords['generic_keywords'] = df_keywords['generic_keywords'].str.strip()
df_keywords = df_keywords[df_keywords['generic_keywords'] != '']
df_med_groups['med_group'] = df_med_groups['med_group'].str.strip()
df_med_groups = df_med_groups[df_med_groups['med_group'] != '']
df_prev_acute['prev_acute'] = df_prev_acute['prev_acute'].str.strip()
df_prev_acute = df_prev_acute[df_prev_acute['prev_acute'] != '']
plt.figure(figsize=(18, 14))
sns.boxplot(y='generic_keywords', x='sentiment_score', data=df_keywords, orient='h', palette='coolwarm')
plt.title('Sentiment Scores Distribution Across Migraine Medication Keywords', fontsize=16)
plt.xlabel('Sentiment Score', fontsize=14)
plt.ylabel('Matched Keywords', fontsize=14)
plt.grid(True, linestyle='--', linewidth=0.5, color='gray')
plt.savefig('figures/vader_sentiment_across_keywords.png')
plt.close()
plt.figure(figsize=(21, 14))
sns.boxplot(y='med_group', x='sentiment_score', data=df_med_groups, orient='h', palette='viridis')
plt.title('Sentiment Scores Distribution Across Migraine Medication Groups', fontsize=16)
plt.xlabel('Sentiment Score', fontsize=14)
plt.ylabel('Medication Groups', fontsize=14)
plt.grid(True, linestyle='--', linewidth=0.5, color='gray')
plt.savefig('figures/vader_sentiment_across_groups.png')
plt.close()
plt.figure(figsize=(24, 7))
sns.boxplot(y='prev_acute', x='sentiment_score', data=df_prev_acute, orient='h', palette='magma')
plt.title('Sentiment Scores Distribution Across Preventive/Acute Migraine Medications', fontsize=16)
plt.xlabel('Sentiment Score', fontsize=14)
plt.ylabel('Category', fontsize=14)
plt.grid(True, linestyle='--', linewidth=0.5, color='gray')
plt.savefig('figures/vader_sentiment_across_categories.png')
plt.close()
# KDE Plot
plt.figure(figsize=(15, 11))
sns.kdeplot(data=df_med_groups, x='sentiment_score', hue='med_group', multiple='layer',clip=[-1, 1])
plt.title('Density Plot of Sentiment Scores by Medication Group')
plt.xlabel('Sentiment Score')
plt.ylabel('Density')
plt.savefig('figures/kde_sentiment_scores.png', dpi=300)
plt.close()