-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
194 lines (168 loc) · 8.88 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import fitz
import pathlib
import sys
import pandas as pd
from tqdm import tqdm
from llm_processing.pdf_processing import *
class SimpleTextRetreiver:
def __init__(self, margin_threshold=0.05):
self.margin_threshold = margin_threshold
def retreive_text_remove_formatting(self, page):
formatting_lines = []
content = []
width, height = page.rect[2], page.rect[3]
blocks = page.get_text('blocks')
for block in blocks:
left, top, right, bottom, text, *metadata = block
if metadata[1]==0:
# Check if the block is within the margin threshold from page edges
if top/height < self.margin_threshold or (height - bottom)/height < self.margin_threshold:
# print(f"Non-essential (formatting): {text.strip()}")
formatting_lines.append(text.strip())
continue
content.append(text)
return ''.join(content), '\n'.join(formatting_lines)
class PDFLLMParser:
def __init__(self, directory, write_path, visualize_path, llm_callback, retreiver = SimpleTextRetreiver()):
"""
Args:
directory (str): The path to the directory containing PDF files to be processed. This directory is scanned
recursively for PDF files.
write_path (str): The path to the directory where the analysis results, such as complexity scores and
filtered text, will be written.
visualize_path (str): The path to the directory where visualizations, such as PDFs with bounding boxes,
will be stored.
llm_callback (callable): A callback function that is called with the text extracted from PDF files. This
function should take a single string argument (the text input) and return an analysis result used
in the complexity analysis and other processing steps.
retriever (object, optional): An instance of a class used for text retrieval and processing within PDF
files. This object must have a method for retrieving text and optionally removing formatting. If not
provided, a `SimpleTextRetriever` instance is used by default. This allows for customization of text
extraction and processing strategies.
"""
self.directory = pathlib.Path(directory)
self.write_path = pathlib.Path(write_path)
self.visualize_path = pathlib.Path(visualize_path)
self.pdf_files = self._scan_directory_for_pdfs()
self.llm_callback = llm_callback
self.retreiver = retreiver
self._assure_path_exist()
def _assure_path_exist(self):
assert self.directory.exists(), "Data directory doesn't exist"
assert self.write_path.exists(), "Write directory doesn't exist"
assert self.visualize_path.exists(), "Visualization directory doesn't exist"
def _scan_directory_for_pdfs(self):
"""Scans the specified directory for PDF files and returns a list of their paths."""
pdf_files = self.directory.rglob('*.pdf')
return pdf_files
def _plot_bbs(self, file_path, bb_level='blocks'):
"""
Plots bounding boxes on pages of a given PDF file, saving the visual output to a specified path.
bb_level: (words, blocks), specifying granularity of bounding boxes
"""
path = pathlib.Path(file_path)
name = path.name
namespace = path.parts[-2]
save_file = self.visualize_path/f"{namespace}_{name}"
with open_document(file_path) as doc:
for page in tqdm(doc):
draw_bounding_boxes_on_pdf(page,
bb_level=bb_level)
doc.save(save_file)
return save_file
def _get_input_for_llm(self,
path,
bb_level='blocks',
include_font_info=False,
add_drawing_info=True):
"""Generates formatted input for the LLM from a PDF file, including optional font and drawing information."""
with open_document(path) as doc:
for page_i in range(doc.page_count):
page = doc[page_i]
tags = []
blocks = page.get_text(bb_level, sort=True)
# Assuming get_image_tag, preprocess_font_info, summarize_non_text_blocks,
# detect_non_text_blocks, and blocks_to_text are defined elsewhere
for block in blocks:
tags.append(get_image_tag(page, block[4]))
fonts_info = preprocess_font_info(page.get_fonts())
num_image, num_drawings = summarize_non_text_blocks(detect_non_text_blocks(page))
input_formatted = blocks_to_text(blocks, [0,1,2,3], tags)
if include_font_info:
input_formatted += f"\nfonts: {fonts_info}"
if add_drawing_info:
input_formatted+= f"\n IMG: {num_image} DRAW: {num_drawings}"
yield (page_i, input_formatted)
def analyze_files(self, pdf_path, append_namespace=False):
"""
Call LLM inference on specified PDF file (iterating over pages), writing the ourput to a designated directory.
append_namespace: to take two last parts in the file_path in order to infer the file_name (for cases like book_name/page_10.pdf)
"""
path = pathlib.Path(pdf_path)
name = path.name.split('.')[0]
namespace = path.parts[-2]
if append_namespace:
file_namespace = f"{namespace}_{name}"
else:
file_namespace = name
write_path = (self.write_path/file_namespace)/"scores"
write_path.mkdir(exist_ok=True, parents=True)
print(f"Writing llm output to {write_path}")
for i, input in tqdm(self._get_input_for_llm(pdf_path), total=get_pdf_page_count(path)):
meta_file = write_path/f"{i+1}.txt"
if not meta_file.exists():
try:
output = self.llm_callback(input)
except Exception as e:
print(e)
output = None
if output:
meta_file.write_text(output)
print(f"Finish doing llm inderence")
return write_path
def aggregate_metadata(self, write_directory):
"""Aggregates metadata from analyzed files into a metadata CSV file in the specified directory."""
write_path = pathlib.Path(write_directory)
metadata_file = write_path/"metadata.csv"
if not metadata_file.exists():
# data = pd.DataFrame(columns=["file_path", "score"])
array = []
files_parsed = write_path.rglob('./*.txt')
for file in files_parsed:
try:
file_name = file.parts[-3]
page_number = file.parts[-1].split('.')[0]
score = float(file.read_text())
array.append([file, str(file_name), page_number, score])
except Exception as e:
print(f"Fail extracting score for {file}")
data = pd.DataFrame(array, columns=["file_path", "file_name", "page_number", "score"])
data.to_csv(metadata_file, index=False)
return metadata_file
def parse_pdfs(self, metadata, threshold = 0.5, is_greater=False):
"""Filters and parses PDFs based on complexity scores, organizing output into directories based on complexity level."""
data = pd.read_csv(metadata, dtype={"file_name": str})
flag = "complex" if is_greater else "easy"
if is_greater:
filtered_pds = data[data.score > threshold]
else:
filtered_pds = data[data.score <= threshold]
write_dir = None
if len(filtered_pds):
for i, row in tqdm(filtered_pds.iterrows(), total = len(filtered_pds)):
file_name = self.directory/(str(row.file_name)+'.pdf')
assert(file_name.exists())
page_number = row.page_number
with open_document(file_name) as file:
page = file[page_number-1]
text, formatting_lines = self.retreiver.retreive_text_remove_formatting(page)
write_dir = (((self.write_path/row.file_name)/"parsed_text")/flag)
write_dir.mkdir(exist_ok=True, parents=True)
write_path = write_dir/f"page_{page_number}.txt"
text_to_write = text + "\n\n\n ### Formatting lines ### \n\n\n"+ formatting_lines
write_path.write_text(text_to_write)
else:
print("No rows with given threshold")
return None
return write_dir